Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         u32                     blocksize;
70         int                     err;
71         struct list_head        extctl;
72         int                     refcnt;
73         spinlock_t              lock;
74         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
75         int                     nzones;
76         struct btrfs_device     *scheduled_for;
77 };
78
79 struct reada_zone {
80         u64                     start;
81         u64                     end;
82         u64                     elems;
83         struct list_head        list;
84         spinlock_t              lock;
85         int                     locked;
86         struct btrfs_device     *device;
87         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
88                                                            * self */
89         int                     ndevs;
90         struct kref             refcnt;
91 };
92
93 struct reada_machine_work {
94         struct btrfs_work       work;
95         struct btrfs_fs_info    *fs_info;
96 };
97
98 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
99 static void reada_control_release(struct kref *kref);
100 static void reada_zone_release(struct kref *kref);
101 static void reada_start_machine(struct btrfs_fs_info *fs_info);
102 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103
104 static int reada_add_block(struct reada_control *rc, u64 logical,
105                            struct btrfs_key *top, int level, u64 generation);
106
107 /* recurses */
108 /* in case of err, eb might be NULL */
109 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
110                             u64 start, int err)
111 {
112         int level = 0;
113         int nritems;
114         int i;
115         u64 bytenr;
116         u64 generation;
117         struct reada_extent *re;
118         struct btrfs_fs_info *fs_info = root->fs_info;
119         struct list_head list;
120         unsigned long index = start >> PAGE_CACHE_SHIFT;
121         struct btrfs_device *for_dev;
122
123         if (eb)
124                 level = btrfs_header_level(eb);
125
126         /* find extent */
127         spin_lock(&fs_info->reada_lock);
128         re = radix_tree_lookup(&fs_info->reada_tree, index);
129         if (re)
130                 re->refcnt++;
131         spin_unlock(&fs_info->reada_lock);
132
133         if (!re)
134                 return -1;
135
136         spin_lock(&re->lock);
137         /*
138          * just take the full list from the extent. afterwards we
139          * don't need the lock anymore
140          */
141         list_replace_init(&re->extctl, &list);
142         for_dev = re->scheduled_for;
143         re->scheduled_for = NULL;
144         spin_unlock(&re->lock);
145
146         if (err == 0) {
147                 nritems = level ? btrfs_header_nritems(eb) : 0;
148                 generation = btrfs_header_generation(eb);
149                 /*
150                  * FIXME: currently we just set nritems to 0 if this is a leaf,
151                  * effectively ignoring the content. In a next step we could
152                  * trigger more readahead depending from the content, e.g.
153                  * fetch the checksums for the extents in the leaf.
154                  */
155         } else {
156                 /*
157                  * this is the error case, the extent buffer has not been
158                  * read correctly. We won't access anything from it and
159                  * just cleanup our data structures. Effectively this will
160                  * cut the branch below this node from read ahead.
161                  */
162                 nritems = 0;
163                 generation = 0;
164         }
165
166         for (i = 0; i < nritems; i++) {
167                 struct reada_extctl *rec;
168                 u64 n_gen;
169                 struct btrfs_key key;
170                 struct btrfs_key next_key;
171
172                 btrfs_node_key_to_cpu(eb, &key, i);
173                 if (i + 1 < nritems)
174                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
175                 else
176                         next_key = re->top;
177                 bytenr = btrfs_node_blockptr(eb, i);
178                 n_gen = btrfs_node_ptr_generation(eb, i);
179
180                 list_for_each_entry(rec, &list, list) {
181                         struct reada_control *rc = rec->rc;
182
183                         /*
184                          * if the generation doesn't match, just ignore this
185                          * extctl. This will probably cut off a branch from
186                          * prefetch. Alternatively one could start a new (sub-)
187                          * prefetch for this branch, starting again from root.
188                          * FIXME: move the generation check out of this loop
189                          */
190 #ifdef DEBUG
191                         if (rec->generation != generation) {
192                                 btrfs_debug(root->fs_info,
193                                            "generation mismatch for (%llu,%d,%llu) %llu != %llu",
194                                        key.objectid, key.type, key.offset,
195                                        rec->generation, generation);
196                         }
197 #endif
198                         if (rec->generation == generation &&
199                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
200                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
201                                 reada_add_block(rc, bytenr, &next_key,
202                                                 level - 1, n_gen);
203                 }
204         }
205         /*
206          * free extctl records
207          */
208         while (!list_empty(&list)) {
209                 struct reada_control *rc;
210                 struct reada_extctl *rec;
211
212                 rec = list_first_entry(&list, struct reada_extctl, list);
213                 list_del(&rec->list);
214                 rc = rec->rc;
215                 kfree(rec);
216
217                 kref_get(&rc->refcnt);
218                 if (atomic_dec_and_test(&rc->elems)) {
219                         kref_put(&rc->refcnt, reada_control_release);
220                         wake_up(&rc->wait);
221                 }
222                 kref_put(&rc->refcnt, reada_control_release);
223
224                 reada_extent_put(fs_info, re);  /* one ref for each entry */
225         }
226         reada_extent_put(fs_info, re);  /* our ref */
227         if (for_dev)
228                 atomic_dec(&for_dev->reada_in_flight);
229
230         return 0;
231 }
232
233 /*
234  * start is passed separately in case eb in NULL, which may be the case with
235  * failed I/O
236  */
237 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
238                          u64 start, int err)
239 {
240         int ret;
241
242         ret = __readahead_hook(root, eb, start, err);
243
244         reada_start_machine(root->fs_info);
245
246         return ret;
247 }
248
249 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
250                                           struct btrfs_device *dev, u64 logical,
251                                           struct btrfs_bio *bbio)
252 {
253         int ret;
254         struct reada_zone *zone;
255         struct btrfs_block_group_cache *cache = NULL;
256         u64 start;
257         u64 end;
258         int i;
259
260         zone = NULL;
261         spin_lock(&fs_info->reada_lock);
262         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
263                                      logical >> PAGE_CACHE_SHIFT, 1);
264         if (ret == 1)
265                 kref_get(&zone->refcnt);
266         spin_unlock(&fs_info->reada_lock);
267
268         if (ret == 1) {
269                 if (logical >= zone->start && logical < zone->end)
270                         return zone;
271                 spin_lock(&fs_info->reada_lock);
272                 kref_put(&zone->refcnt, reada_zone_release);
273                 spin_unlock(&fs_info->reada_lock);
274         }
275
276         cache = btrfs_lookup_block_group(fs_info, logical);
277         if (!cache)
278                 return NULL;
279
280         start = cache->key.objectid;
281         end = start + cache->key.offset - 1;
282         btrfs_put_block_group(cache);
283
284         zone = kzalloc(sizeof(*zone), GFP_NOFS);
285         if (!zone)
286                 return NULL;
287
288         zone->start = start;
289         zone->end = end;
290         INIT_LIST_HEAD(&zone->list);
291         spin_lock_init(&zone->lock);
292         zone->locked = 0;
293         kref_init(&zone->refcnt);
294         zone->elems = 0;
295         zone->device = dev; /* our device always sits at index 0 */
296         for (i = 0; i < bbio->num_stripes; ++i) {
297                 /* bounds have already been checked */
298                 zone->devs[i] = bbio->stripes[i].dev;
299         }
300         zone->ndevs = bbio->num_stripes;
301
302         spin_lock(&fs_info->reada_lock);
303         ret = radix_tree_insert(&dev->reada_zones,
304                                 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
305                                 zone);
306
307         if (ret == -EEXIST) {
308                 kfree(zone);
309                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
310                                              logical >> PAGE_CACHE_SHIFT, 1);
311                 if (ret == 1)
312                         kref_get(&zone->refcnt);
313         }
314         spin_unlock(&fs_info->reada_lock);
315
316         return zone;
317 }
318
319 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
320                                               u64 logical,
321                                               struct btrfs_key *top, int level)
322 {
323         int ret;
324         struct reada_extent *re = NULL;
325         struct reada_extent *re_exist = NULL;
326         struct btrfs_fs_info *fs_info = root->fs_info;
327         struct btrfs_bio *bbio = NULL;
328         struct btrfs_device *dev;
329         struct btrfs_device *prev_dev;
330         u32 blocksize;
331         u64 length;
332         int nzones = 0;
333         int i;
334         unsigned long index = logical >> PAGE_CACHE_SHIFT;
335         int dev_replace_is_ongoing;
336
337         spin_lock(&fs_info->reada_lock);
338         re = radix_tree_lookup(&fs_info->reada_tree, index);
339         if (re)
340                 re->refcnt++;
341         spin_unlock(&fs_info->reada_lock);
342
343         if (re)
344                 return re;
345
346         re = kzalloc(sizeof(*re), GFP_NOFS);
347         if (!re)
348                 return NULL;
349
350         blocksize = btrfs_level_size(root, level);
351         re->logical = logical;
352         re->blocksize = blocksize;
353         re->top = *top;
354         INIT_LIST_HEAD(&re->extctl);
355         spin_lock_init(&re->lock);
356         re->refcnt = 1;
357
358         /*
359          * map block
360          */
361         length = blocksize;
362         ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
363                               &bbio, 0);
364         if (ret || !bbio || length < blocksize)
365                 goto error;
366
367         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
368                 btrfs_err(root->fs_info,
369                            "readahead: more than %d copies not supported",
370                            BTRFS_MAX_MIRRORS);
371                 goto error;
372         }
373
374         for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
375                 struct reada_zone *zone;
376
377                 dev = bbio->stripes[nzones].dev;
378                 zone = reada_find_zone(fs_info, dev, logical, bbio);
379                 if (!zone)
380                         break;
381
382                 re->zones[nzones] = zone;
383                 spin_lock(&zone->lock);
384                 if (!zone->elems)
385                         kref_get(&zone->refcnt);
386                 ++zone->elems;
387                 spin_unlock(&zone->lock);
388                 spin_lock(&fs_info->reada_lock);
389                 kref_put(&zone->refcnt, reada_zone_release);
390                 spin_unlock(&fs_info->reada_lock);
391         }
392         re->nzones = nzones;
393         if (nzones == 0) {
394                 /* not a single zone found, error and out */
395                 goto error;
396         }
397
398         /* insert extent in reada_tree + all per-device trees, all or nothing */
399         btrfs_dev_replace_lock(&fs_info->dev_replace);
400         spin_lock(&fs_info->reada_lock);
401         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402         if (ret == -EEXIST) {
403                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
404                 BUG_ON(!re_exist);
405                 re_exist->refcnt++;
406                 spin_unlock(&fs_info->reada_lock);
407                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
408                 goto error;
409         }
410         if (ret) {
411                 spin_unlock(&fs_info->reada_lock);
412                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
413                 goto error;
414         }
415         prev_dev = NULL;
416         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
417                         &fs_info->dev_replace);
418         for (i = 0; i < nzones; ++i) {
419                 dev = bbio->stripes[i].dev;
420                 if (dev == prev_dev) {
421                         /*
422                          * in case of DUP, just add the first zone. As both
423                          * are on the same device, there's nothing to gain
424                          * from adding both.
425                          * Also, it wouldn't work, as the tree is per device
426                          * and adding would fail with EEXIST
427                          */
428                         continue;
429                 }
430                 if (!dev->bdev) {
431                         /*
432                          * cannot read ahead on missing device, but for RAID5/6,
433                          * REQ_GET_READ_MIRRORS return 1. So don't skip missing
434                          * device for such case.
435                          */
436                         if (nzones > 1)
437                                 continue;
438                 }
439                 if (dev_replace_is_ongoing &&
440                     dev == fs_info->dev_replace.tgtdev) {
441                         /*
442                          * as this device is selected for reading only as
443                          * a last resort, skip it for read ahead.
444                          */
445                         continue;
446                 }
447                 prev_dev = dev;
448                 ret = radix_tree_insert(&dev->reada_extents, index, re);
449                 if (ret) {
450                         while (--i >= 0) {
451                                 dev = bbio->stripes[i].dev;
452                                 BUG_ON(dev == NULL);
453                                 /* ignore whether the entry was inserted */
454                                 radix_tree_delete(&dev->reada_extents, index);
455                         }
456                         BUG_ON(fs_info == NULL);
457                         radix_tree_delete(&fs_info->reada_tree, index);
458                         spin_unlock(&fs_info->reada_lock);
459                         btrfs_dev_replace_unlock(&fs_info->dev_replace);
460                         goto error;
461                 }
462         }
463         spin_unlock(&fs_info->reada_lock);
464         btrfs_dev_replace_unlock(&fs_info->dev_replace);
465
466         kfree(bbio);
467         return re;
468
469 error:
470         while (nzones) {
471                 struct reada_zone *zone;
472
473                 --nzones;
474                 zone = re->zones[nzones];
475                 kref_get(&zone->refcnt);
476                 spin_lock(&zone->lock);
477                 --zone->elems;
478                 if (zone->elems == 0) {
479                         /*
480                          * no fs_info->reada_lock needed, as this can't be
481                          * the last ref
482                          */
483                         kref_put(&zone->refcnt, reada_zone_release);
484                 }
485                 spin_unlock(&zone->lock);
486
487                 spin_lock(&fs_info->reada_lock);
488                 kref_put(&zone->refcnt, reada_zone_release);
489                 spin_unlock(&fs_info->reada_lock);
490         }
491         kfree(bbio);
492         kfree(re);
493         return re_exist;
494 }
495
496 static void reada_extent_put(struct btrfs_fs_info *fs_info,
497                              struct reada_extent *re)
498 {
499         int i;
500         unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
501
502         spin_lock(&fs_info->reada_lock);
503         if (--re->refcnt) {
504                 spin_unlock(&fs_info->reada_lock);
505                 return;
506         }
507
508         radix_tree_delete(&fs_info->reada_tree, index);
509         for (i = 0; i < re->nzones; ++i) {
510                 struct reada_zone *zone = re->zones[i];
511
512                 radix_tree_delete(&zone->device->reada_extents, index);
513         }
514
515         spin_unlock(&fs_info->reada_lock);
516
517         for (i = 0; i < re->nzones; ++i) {
518                 struct reada_zone *zone = re->zones[i];
519
520                 kref_get(&zone->refcnt);
521                 spin_lock(&zone->lock);
522                 --zone->elems;
523                 if (zone->elems == 0) {
524                         /* no fs_info->reada_lock needed, as this can't be
525                          * the last ref */
526                         kref_put(&zone->refcnt, reada_zone_release);
527                 }
528                 spin_unlock(&zone->lock);
529
530                 spin_lock(&fs_info->reada_lock);
531                 kref_put(&zone->refcnt, reada_zone_release);
532                 spin_unlock(&fs_info->reada_lock);
533         }
534         if (re->scheduled_for)
535                 atomic_dec(&re->scheduled_for->reada_in_flight);
536
537         kfree(re);
538 }
539
540 static void reada_zone_release(struct kref *kref)
541 {
542         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
543
544         radix_tree_delete(&zone->device->reada_zones,
545                           zone->end >> PAGE_CACHE_SHIFT);
546
547         kfree(zone);
548 }
549
550 static void reada_control_release(struct kref *kref)
551 {
552         struct reada_control *rc = container_of(kref, struct reada_control,
553                                                 refcnt);
554
555         kfree(rc);
556 }
557
558 static int reada_add_block(struct reada_control *rc, u64 logical,
559                            struct btrfs_key *top, int level, u64 generation)
560 {
561         struct btrfs_root *root = rc->root;
562         struct reada_extent *re;
563         struct reada_extctl *rec;
564
565         re = reada_find_extent(root, logical, top, level); /* takes one ref */
566         if (!re)
567                 return -1;
568
569         rec = kzalloc(sizeof(*rec), GFP_NOFS);
570         if (!rec) {
571                 reada_extent_put(root->fs_info, re);
572                 return -1;
573         }
574
575         rec->rc = rc;
576         rec->generation = generation;
577         atomic_inc(&rc->elems);
578
579         spin_lock(&re->lock);
580         list_add_tail(&rec->list, &re->extctl);
581         spin_unlock(&re->lock);
582
583         /* leave the ref on the extent */
584
585         return 0;
586 }
587
588 /*
589  * called with fs_info->reada_lock held
590  */
591 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
592 {
593         int i;
594         unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
595
596         for (i = 0; i < zone->ndevs; ++i) {
597                 struct reada_zone *peer;
598                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
599                 if (peer && peer->device != zone->device)
600                         peer->locked = lock;
601         }
602 }
603
604 /*
605  * called with fs_info->reada_lock held
606  */
607 static int reada_pick_zone(struct btrfs_device *dev)
608 {
609         struct reada_zone *top_zone = NULL;
610         struct reada_zone *top_locked_zone = NULL;
611         u64 top_elems = 0;
612         u64 top_locked_elems = 0;
613         unsigned long index = 0;
614         int ret;
615
616         if (dev->reada_curr_zone) {
617                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
618                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
619                 dev->reada_curr_zone = NULL;
620         }
621         /* pick the zone with the most elements */
622         while (1) {
623                 struct reada_zone *zone;
624
625                 ret = radix_tree_gang_lookup(&dev->reada_zones,
626                                              (void **)&zone, index, 1);
627                 if (ret == 0)
628                         break;
629                 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
630                 if (zone->locked) {
631                         if (zone->elems > top_locked_elems) {
632                                 top_locked_elems = zone->elems;
633                                 top_locked_zone = zone;
634                         }
635                 } else {
636                         if (zone->elems > top_elems) {
637                                 top_elems = zone->elems;
638                                 top_zone = zone;
639                         }
640                 }
641         }
642         if (top_zone)
643                 dev->reada_curr_zone = top_zone;
644         else if (top_locked_zone)
645                 dev->reada_curr_zone = top_locked_zone;
646         else
647                 return 0;
648
649         dev->reada_next = dev->reada_curr_zone->start;
650         kref_get(&dev->reada_curr_zone->refcnt);
651         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
652
653         return 1;
654 }
655
656 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
657                                    struct btrfs_device *dev)
658 {
659         struct reada_extent *re = NULL;
660         int mirror_num = 0;
661         struct extent_buffer *eb = NULL;
662         u64 logical;
663         u32 blocksize;
664         int ret;
665         int i;
666         int need_kick = 0;
667
668         spin_lock(&fs_info->reada_lock);
669         if (dev->reada_curr_zone == NULL) {
670                 ret = reada_pick_zone(dev);
671                 if (!ret) {
672                         spin_unlock(&fs_info->reada_lock);
673                         return 0;
674                 }
675         }
676         /*
677          * FIXME currently we issue the reads one extent at a time. If we have
678          * a contiguous block of extents, we could also coagulate them or use
679          * plugging to speed things up
680          */
681         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
682                                      dev->reada_next >> PAGE_CACHE_SHIFT, 1);
683         if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
684                 ret = reada_pick_zone(dev);
685                 if (!ret) {
686                         spin_unlock(&fs_info->reada_lock);
687                         return 0;
688                 }
689                 re = NULL;
690                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
691                                         dev->reada_next >> PAGE_CACHE_SHIFT, 1);
692         }
693         if (ret == 0) {
694                 spin_unlock(&fs_info->reada_lock);
695                 return 0;
696         }
697         dev->reada_next = re->logical + re->blocksize;
698         re->refcnt++;
699
700         spin_unlock(&fs_info->reada_lock);
701
702         /*
703          * find mirror num
704          */
705         for (i = 0; i < re->nzones; ++i) {
706                 if (re->zones[i]->device == dev) {
707                         mirror_num = i + 1;
708                         break;
709                 }
710         }
711         logical = re->logical;
712         blocksize = re->blocksize;
713
714         spin_lock(&re->lock);
715         if (re->scheduled_for == NULL) {
716                 re->scheduled_for = dev;
717                 need_kick = 1;
718         }
719         spin_unlock(&re->lock);
720
721         reada_extent_put(fs_info, re);
722
723         if (!need_kick)
724                 return 0;
725
726         atomic_inc(&dev->reada_in_flight);
727         ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
728                          mirror_num, &eb);
729         if (ret)
730                 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
731         else if (eb)
732                 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
733
734         if (eb)
735                 free_extent_buffer(eb);
736
737         return 1;
738
739 }
740
741 static void reada_start_machine_worker(struct btrfs_work *work)
742 {
743         struct reada_machine_work *rmw;
744         struct btrfs_fs_info *fs_info;
745         int old_ioprio;
746
747         rmw = container_of(work, struct reada_machine_work, work);
748         fs_info = rmw->fs_info;
749
750         kfree(rmw);
751
752         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
753                                        task_nice_ioprio(current));
754         set_task_ioprio(current, BTRFS_IOPRIO_READA);
755         __reada_start_machine(fs_info);
756         set_task_ioprio(current, old_ioprio);
757 }
758
759 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
760 {
761         struct btrfs_device *device;
762         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
763         u64 enqueued;
764         u64 total = 0;
765         int i;
766
767         do {
768                 enqueued = 0;
769                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
770                         if (atomic_read(&device->reada_in_flight) <
771                             MAX_IN_FLIGHT)
772                                 enqueued += reada_start_machine_dev(fs_info,
773                                                                     device);
774                 }
775                 total += enqueued;
776         } while (enqueued && total < 10000);
777
778         if (enqueued == 0)
779                 return;
780
781         /*
782          * If everything is already in the cache, this is effectively single
783          * threaded. To a) not hold the caller for too long and b) to utilize
784          * more cores, we broke the loop above after 10000 iterations and now
785          * enqueue to workers to finish it. This will distribute the load to
786          * the cores.
787          */
788         for (i = 0; i < 2; ++i)
789                 reada_start_machine(fs_info);
790 }
791
792 static void reada_start_machine(struct btrfs_fs_info *fs_info)
793 {
794         struct reada_machine_work *rmw;
795
796         rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
797         if (!rmw) {
798                 /* FIXME we cannot handle this properly right now */
799                 BUG();
800         }
801         btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
802         rmw->fs_info = fs_info;
803
804         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
805 }
806
807 #ifdef DEBUG
808 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
809 {
810         struct btrfs_device *device;
811         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
812         unsigned long index;
813         int ret;
814         int i;
815         int j;
816         int cnt;
817
818         spin_lock(&fs_info->reada_lock);
819         list_for_each_entry(device, &fs_devices->devices, dev_list) {
820                 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
821                         atomic_read(&device->reada_in_flight));
822                 index = 0;
823                 while (1) {
824                         struct reada_zone *zone;
825                         ret = radix_tree_gang_lookup(&device->reada_zones,
826                                                      (void **)&zone, index, 1);
827                         if (ret == 0)
828                                 break;
829                         printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
830                                 "%d devs", zone->start, zone->end, zone->elems,
831                                 zone->locked);
832                         for (j = 0; j < zone->ndevs; ++j) {
833                                 printk(KERN_CONT " %lld",
834                                         zone->devs[j]->devid);
835                         }
836                         if (device->reada_curr_zone == zone)
837                                 printk(KERN_CONT " curr off %llu",
838                                         device->reada_next - zone->start);
839                         printk(KERN_CONT "\n");
840                         index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
841                 }
842                 cnt = 0;
843                 index = 0;
844                 while (all) {
845                         struct reada_extent *re = NULL;
846
847                         ret = radix_tree_gang_lookup(&device->reada_extents,
848                                                      (void **)&re, index, 1);
849                         if (ret == 0)
850                                 break;
851                         printk(KERN_DEBUG
852                                 "  re: logical %llu size %u empty %d for %lld",
853                                 re->logical, re->blocksize,
854                                 list_empty(&re->extctl), re->scheduled_for ?
855                                 re->scheduled_for->devid : -1);
856
857                         for (i = 0; i < re->nzones; ++i) {
858                                 printk(KERN_CONT " zone %llu-%llu devs",
859                                         re->zones[i]->start,
860                                         re->zones[i]->end);
861                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
862                                         printk(KERN_CONT " %lld",
863                                                 re->zones[i]->devs[j]->devid);
864                                 }
865                         }
866                         printk(KERN_CONT "\n");
867                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
868                         if (++cnt > 15)
869                                 break;
870                 }
871         }
872
873         index = 0;
874         cnt = 0;
875         while (all) {
876                 struct reada_extent *re = NULL;
877
878                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
879                                              index, 1);
880                 if (ret == 0)
881                         break;
882                 if (!re->scheduled_for) {
883                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
884                         continue;
885                 }
886                 printk(KERN_DEBUG
887                         "re: logical %llu size %u list empty %d for %lld",
888                         re->logical, re->blocksize, list_empty(&re->extctl),
889                         re->scheduled_for ? re->scheduled_for->devid : -1);
890                 for (i = 0; i < re->nzones; ++i) {
891                         printk(KERN_CONT " zone %llu-%llu devs",
892                                 re->zones[i]->start,
893                                 re->zones[i]->end);
894                         for (i = 0; i < re->nzones; ++i) {
895                                 printk(KERN_CONT " zone %llu-%llu devs",
896                                         re->zones[i]->start,
897                                         re->zones[i]->end);
898                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
899                                         printk(KERN_CONT " %lld",
900                                                 re->zones[i]->devs[j]->devid);
901                                 }
902                         }
903                 }
904                 printk(KERN_CONT "\n");
905                 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
906         }
907         spin_unlock(&fs_info->reada_lock);
908 }
909 #endif
910
911 /*
912  * interface
913  */
914 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
915                         struct btrfs_key *key_start, struct btrfs_key *key_end)
916 {
917         struct reada_control *rc;
918         u64 start;
919         u64 generation;
920         int level;
921         struct extent_buffer *node;
922         static struct btrfs_key max_key = {
923                 .objectid = (u64)-1,
924                 .type = (u8)-1,
925                 .offset = (u64)-1
926         };
927
928         rc = kzalloc(sizeof(*rc), GFP_NOFS);
929         if (!rc)
930                 return ERR_PTR(-ENOMEM);
931
932         rc->root = root;
933         rc->key_start = *key_start;
934         rc->key_end = *key_end;
935         atomic_set(&rc->elems, 0);
936         init_waitqueue_head(&rc->wait);
937         kref_init(&rc->refcnt);
938         kref_get(&rc->refcnt); /* one ref for having elements */
939
940         node = btrfs_root_node(root);
941         start = node->start;
942         level = btrfs_header_level(node);
943         generation = btrfs_header_generation(node);
944         free_extent_buffer(node);
945
946         if (reada_add_block(rc, start, &max_key, level, generation)) {
947                 kfree(rc);
948                 return ERR_PTR(-ENOMEM);
949         }
950
951         reada_start_machine(root->fs_info);
952
953         return rc;
954 }
955
956 #ifdef DEBUG
957 int btrfs_reada_wait(void *handle)
958 {
959         struct reada_control *rc = handle;
960
961         while (atomic_read(&rc->elems)) {
962                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
963                                    5 * HZ);
964                 dump_devs(rc->root->fs_info,
965                           atomic_read(&rc->elems) < 10 ? 1 : 0);
966         }
967
968         dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
969
970         kref_put(&rc->refcnt, reada_control_release);
971
972         return 0;
973 }
974 #else
975 int btrfs_reada_wait(void *handle)
976 {
977         struct reada_control *rc = handle;
978
979         while (atomic_read(&rc->elems)) {
980                 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
981         }
982
983         kref_put(&rc->refcnt, reada_control_release);
984
985         return 0;
986 }
987 #endif
988
989 void btrfs_reada_detach(void *handle)
990 {
991         struct reada_control *rc = handle;
992
993         kref_put(&rc->refcnt, reada_control_release);
994 }