btrfs: trace: Remove unnecessary fs_info parameter for btrfs__reserve_extent event...
[sfrench/cifs-2.6.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/pagevec.h>
10 #include "ctree.h"
11 #include "transaction.h"
12 #include "btrfs_inode.h"
13 #include "extent_io.h"
14 #include "disk-io.h"
15 #include "compression.h"
16
17 static struct kmem_cache *btrfs_ordered_extent_cache;
18
19 static u64 entry_end(struct btrfs_ordered_extent *entry)
20 {
21         if (entry->file_offset + entry->len < entry->file_offset)
22                 return (u64)-1;
23         return entry->file_offset + entry->len;
24 }
25
26 /* returns NULL if the insertion worked, or it returns the node it did find
27  * in the tree
28  */
29 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30                                    struct rb_node *node)
31 {
32         struct rb_node **p = &root->rb_node;
33         struct rb_node *parent = NULL;
34         struct btrfs_ordered_extent *entry;
35
36         while (*p) {
37                 parent = *p;
38                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39
40                 if (file_offset < entry->file_offset)
41                         p = &(*p)->rb_left;
42                 else if (file_offset >= entry_end(entry))
43                         p = &(*p)->rb_right;
44                 else
45                         return parent;
46         }
47
48         rb_link_node(node, parent, p);
49         rb_insert_color(node, root);
50         return NULL;
51 }
52
53 static void ordered_data_tree_panic(struct inode *inode, int errno,
54                                                u64 offset)
55 {
56         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57         btrfs_panic(fs_info, errno,
58                     "Inconsistency in ordered tree at offset %llu", offset);
59 }
60
61 /*
62  * look for a given offset in the tree, and if it can't be found return the
63  * first lesser offset
64  */
65 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66                                      struct rb_node **prev_ret)
67 {
68         struct rb_node *n = root->rb_node;
69         struct rb_node *prev = NULL;
70         struct rb_node *test;
71         struct btrfs_ordered_extent *entry;
72         struct btrfs_ordered_extent *prev_entry = NULL;
73
74         while (n) {
75                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76                 prev = n;
77                 prev_entry = entry;
78
79                 if (file_offset < entry->file_offset)
80                         n = n->rb_left;
81                 else if (file_offset >= entry_end(entry))
82                         n = n->rb_right;
83                 else
84                         return n;
85         }
86         if (!prev_ret)
87                 return NULL;
88
89         while (prev && file_offset >= entry_end(prev_entry)) {
90                 test = rb_next(prev);
91                 if (!test)
92                         break;
93                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94                                       rb_node);
95                 if (file_offset < entry_end(prev_entry))
96                         break;
97
98                 prev = test;
99         }
100         if (prev)
101                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102                                       rb_node);
103         while (prev && file_offset < entry_end(prev_entry)) {
104                 test = rb_prev(prev);
105                 if (!test)
106                         break;
107                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108                                       rb_node);
109                 prev = test;
110         }
111         *prev_ret = prev;
112         return NULL;
113 }
114
115 /*
116  * helper to check if a given offset is inside a given entry
117  */
118 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119 {
120         if (file_offset < entry->file_offset ||
121             entry->file_offset + entry->len <= file_offset)
122                 return 0;
123         return 1;
124 }
125
126 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127                           u64 len)
128 {
129         if (file_offset + len <= entry->file_offset ||
130             entry->file_offset + entry->len <= file_offset)
131                 return 0;
132         return 1;
133 }
134
135 /*
136  * look find the first ordered struct that has this offset, otherwise
137  * the first one less than this offset
138  */
139 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140                                           u64 file_offset)
141 {
142         struct rb_root *root = &tree->tree;
143         struct rb_node *prev = NULL;
144         struct rb_node *ret;
145         struct btrfs_ordered_extent *entry;
146
147         if (tree->last) {
148                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149                                  rb_node);
150                 if (offset_in_entry(entry, file_offset))
151                         return tree->last;
152         }
153         ret = __tree_search(root, file_offset, &prev);
154         if (!ret)
155                 ret = prev;
156         if (ret)
157                 tree->last = ret;
158         return ret;
159 }
160
161 /* allocate and add a new ordered_extent into the per-inode tree.
162  * file_offset is the logical offset in the file
163  *
164  * start is the disk block number of an extent already reserved in the
165  * extent allocation tree
166  *
167  * len is the length of the extent
168  *
169  * The tree is given a single reference on the ordered extent that was
170  * inserted.
171  */
172 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173                                       u64 start, u64 len, u64 disk_len,
174                                       int type, int dio, int compress_type)
175 {
176         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177         struct btrfs_root *root = BTRFS_I(inode)->root;
178         struct btrfs_ordered_inode_tree *tree;
179         struct rb_node *node;
180         struct btrfs_ordered_extent *entry;
181
182         tree = &BTRFS_I(inode)->ordered_tree;
183         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184         if (!entry)
185                 return -ENOMEM;
186
187         entry->file_offset = file_offset;
188         entry->start = start;
189         entry->len = len;
190         entry->disk_len = disk_len;
191         entry->bytes_left = len;
192         entry->inode = igrab(inode);
193         entry->compress_type = compress_type;
194         entry->truncated_len = (u64)-1;
195         if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196                 set_bit(type, &entry->flags);
197
198         if (dio)
199                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200
201         /* one ref for the tree */
202         refcount_set(&entry->refs, 1);
203         init_waitqueue_head(&entry->wait);
204         INIT_LIST_HEAD(&entry->list);
205         INIT_LIST_HEAD(&entry->root_extent_list);
206         INIT_LIST_HEAD(&entry->work_list);
207         init_completion(&entry->completion);
208         INIT_LIST_HEAD(&entry->log_list);
209         INIT_LIST_HEAD(&entry->trans_list);
210
211         trace_btrfs_ordered_extent_add(inode, entry);
212
213         spin_lock_irq(&tree->lock);
214         node = tree_insert(&tree->tree, file_offset,
215                            &entry->rb_node);
216         if (node)
217                 ordered_data_tree_panic(inode, -EEXIST, file_offset);
218         spin_unlock_irq(&tree->lock);
219
220         spin_lock(&root->ordered_extent_lock);
221         list_add_tail(&entry->root_extent_list,
222                       &root->ordered_extents);
223         root->nr_ordered_extents++;
224         if (root->nr_ordered_extents == 1) {
225                 spin_lock(&fs_info->ordered_root_lock);
226                 BUG_ON(!list_empty(&root->ordered_root));
227                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228                 spin_unlock(&fs_info->ordered_root_lock);
229         }
230         spin_unlock(&root->ordered_extent_lock);
231
232         /*
233          * We don't need the count_max_extents here, we can assume that all of
234          * that work has been done at higher layers, so this is truly the
235          * smallest the extent is going to get.
236          */
237         spin_lock(&BTRFS_I(inode)->lock);
238         btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239         spin_unlock(&BTRFS_I(inode)->lock);
240
241         return 0;
242 }
243
244 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245                              u64 start, u64 len, u64 disk_len, int type)
246 {
247         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248                                           disk_len, type, 0,
249                                           BTRFS_COMPRESS_NONE);
250 }
251
252 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253                                  u64 start, u64 len, u64 disk_len, int type)
254 {
255         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256                                           disk_len, type, 1,
257                                           BTRFS_COMPRESS_NONE);
258 }
259
260 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261                                       u64 start, u64 len, u64 disk_len,
262                                       int type, int compress_type)
263 {
264         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265                                           disk_len, type, 0,
266                                           compress_type);
267 }
268
269 /*
270  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271  * when an ordered extent is finished.  If the list covers more than one
272  * ordered extent, it is split across multiples.
273  */
274 void btrfs_add_ordered_sum(struct inode *inode,
275                            struct btrfs_ordered_extent *entry,
276                            struct btrfs_ordered_sum *sum)
277 {
278         struct btrfs_ordered_inode_tree *tree;
279
280         tree = &BTRFS_I(inode)->ordered_tree;
281         spin_lock_irq(&tree->lock);
282         list_add_tail(&sum->list, &entry->list);
283         spin_unlock_irq(&tree->lock);
284 }
285
286 /*
287  * this is used to account for finished IO across a given range
288  * of the file.  The IO may span ordered extents.  If
289  * a given ordered_extent is completely done, 1 is returned, otherwise
290  * 0.
291  *
292  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293  * to make sure this function only returns 1 once for a given ordered extent.
294  *
295  * file_offset is updated to one byte past the range that is recorded as
296  * complete.  This allows you to walk forward in the file.
297  */
298 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299                                    struct btrfs_ordered_extent **cached,
300                                    u64 *file_offset, u64 io_size, int uptodate)
301 {
302         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303         struct btrfs_ordered_inode_tree *tree;
304         struct rb_node *node;
305         struct btrfs_ordered_extent *entry = NULL;
306         int ret;
307         unsigned long flags;
308         u64 dec_end;
309         u64 dec_start;
310         u64 to_dec;
311
312         tree = &BTRFS_I(inode)->ordered_tree;
313         spin_lock_irqsave(&tree->lock, flags);
314         node = tree_search(tree, *file_offset);
315         if (!node) {
316                 ret = 1;
317                 goto out;
318         }
319
320         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321         if (!offset_in_entry(entry, *file_offset)) {
322                 ret = 1;
323                 goto out;
324         }
325
326         dec_start = max(*file_offset, entry->file_offset);
327         dec_end = min(*file_offset + io_size, entry->file_offset +
328                       entry->len);
329         *file_offset = dec_end;
330         if (dec_start > dec_end) {
331                 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332                            dec_start, dec_end);
333         }
334         to_dec = dec_end - dec_start;
335         if (to_dec > entry->bytes_left) {
336                 btrfs_crit(fs_info,
337                            "bad ordered accounting left %llu size %llu",
338                            entry->bytes_left, to_dec);
339         }
340         entry->bytes_left -= to_dec;
341         if (!uptodate)
342                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343
344         if (entry->bytes_left == 0) {
345                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346                 /*
347                  * Implicit memory barrier after test_and_set_bit
348                  */
349                 if (waitqueue_active(&entry->wait))
350                         wake_up(&entry->wait);
351         } else {
352                 ret = 1;
353         }
354 out:
355         if (!ret && cached && entry) {
356                 *cached = entry;
357                 refcount_inc(&entry->refs);
358         }
359         spin_unlock_irqrestore(&tree->lock, flags);
360         return ret == 0;
361 }
362
363 /*
364  * this is used to account for finished IO across a given range
365  * of the file.  The IO should not span ordered extents.  If
366  * a given ordered_extent is completely done, 1 is returned, otherwise
367  * 0.
368  *
369  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
370  * to make sure this function only returns 1 once for a given ordered extent.
371  */
372 int btrfs_dec_test_ordered_pending(struct inode *inode,
373                                    struct btrfs_ordered_extent **cached,
374                                    u64 file_offset, u64 io_size, int uptodate)
375 {
376         struct btrfs_ordered_inode_tree *tree;
377         struct rb_node *node;
378         struct btrfs_ordered_extent *entry = NULL;
379         unsigned long flags;
380         int ret;
381
382         tree = &BTRFS_I(inode)->ordered_tree;
383         spin_lock_irqsave(&tree->lock, flags);
384         if (cached && *cached) {
385                 entry = *cached;
386                 goto have_entry;
387         }
388
389         node = tree_search(tree, file_offset);
390         if (!node) {
391                 ret = 1;
392                 goto out;
393         }
394
395         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
396 have_entry:
397         if (!offset_in_entry(entry, file_offset)) {
398                 ret = 1;
399                 goto out;
400         }
401
402         if (io_size > entry->bytes_left) {
403                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
404                            "bad ordered accounting left %llu size %llu",
405                        entry->bytes_left, io_size);
406         }
407         entry->bytes_left -= io_size;
408         if (!uptodate)
409                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410
411         if (entry->bytes_left == 0) {
412                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413                 /*
414                  * Implicit memory barrier after test_and_set_bit
415                  */
416                 if (waitqueue_active(&entry->wait))
417                         wake_up(&entry->wait);
418         } else {
419                 ret = 1;
420         }
421 out:
422         if (!ret && cached && entry) {
423                 *cached = entry;
424                 refcount_inc(&entry->refs);
425         }
426         spin_unlock_irqrestore(&tree->lock, flags);
427         return ret == 0;
428 }
429
430 /* Needs to either be called under a log transaction or the log_mutex */
431 void btrfs_get_logged_extents(struct btrfs_inode *inode,
432                               struct list_head *logged_list,
433                               const loff_t start,
434                               const loff_t end)
435 {
436         struct btrfs_ordered_inode_tree *tree;
437         struct btrfs_ordered_extent *ordered;
438         struct rb_node *n;
439         struct rb_node *prev;
440
441         tree = &inode->ordered_tree;
442         spin_lock_irq(&tree->lock);
443         n = __tree_search(&tree->tree, end, &prev);
444         if (!n)
445                 n = prev;
446         for (; n; n = rb_prev(n)) {
447                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
448                 if (ordered->file_offset > end)
449                         continue;
450                 if (entry_end(ordered) <= start)
451                         break;
452                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
453                         continue;
454                 list_add(&ordered->log_list, logged_list);
455                 refcount_inc(&ordered->refs);
456         }
457         spin_unlock_irq(&tree->lock);
458 }
459
460 void btrfs_put_logged_extents(struct list_head *logged_list)
461 {
462         struct btrfs_ordered_extent *ordered;
463
464         while (!list_empty(logged_list)) {
465                 ordered = list_first_entry(logged_list,
466                                            struct btrfs_ordered_extent,
467                                            log_list);
468                 list_del_init(&ordered->log_list);
469                 btrfs_put_ordered_extent(ordered);
470         }
471 }
472
473 void btrfs_submit_logged_extents(struct list_head *logged_list,
474                                  struct btrfs_root *log)
475 {
476         int index = log->log_transid % 2;
477
478         spin_lock_irq(&log->log_extents_lock[index]);
479         list_splice_tail(logged_list, &log->logged_list[index]);
480         spin_unlock_irq(&log->log_extents_lock[index]);
481 }
482
483 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
484                                struct btrfs_root *log, u64 transid)
485 {
486         struct btrfs_ordered_extent *ordered;
487         int index = transid % 2;
488
489         spin_lock_irq(&log->log_extents_lock[index]);
490         while (!list_empty(&log->logged_list[index])) {
491                 struct inode *inode;
492                 ordered = list_first_entry(&log->logged_list[index],
493                                            struct btrfs_ordered_extent,
494                                            log_list);
495                 list_del_init(&ordered->log_list);
496                 inode = ordered->inode;
497                 spin_unlock_irq(&log->log_extents_lock[index]);
498
499                 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
500                     !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
501                         u64 start = ordered->file_offset;
502                         u64 end = ordered->file_offset + ordered->len - 1;
503
504                         WARN_ON(!inode);
505                         filemap_fdatawrite_range(inode->i_mapping, start, end);
506                 }
507                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
508                                                    &ordered->flags));
509
510                 /*
511                  * In order to keep us from losing our ordered extent
512                  * information when committing the transaction we have to make
513                  * sure that any logged extents are completed when we go to
514                  * commit the transaction.  To do this we simply increase the
515                  * current transactions pending_ordered counter and decrement it
516                  * when the ordered extent completes.
517                  */
518                 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
519                         struct btrfs_ordered_inode_tree *tree;
520
521                         tree = &BTRFS_I(inode)->ordered_tree;
522                         spin_lock_irq(&tree->lock);
523                         if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
524                                 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
525                                 atomic_inc(&trans->transaction->pending_ordered);
526                         }
527                         spin_unlock_irq(&tree->lock);
528                 }
529                 btrfs_put_ordered_extent(ordered);
530                 spin_lock_irq(&log->log_extents_lock[index]);
531         }
532         spin_unlock_irq(&log->log_extents_lock[index]);
533 }
534
535 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
536 {
537         struct btrfs_ordered_extent *ordered;
538         int index = transid % 2;
539
540         spin_lock_irq(&log->log_extents_lock[index]);
541         while (!list_empty(&log->logged_list[index])) {
542                 ordered = list_first_entry(&log->logged_list[index],
543                                            struct btrfs_ordered_extent,
544                                            log_list);
545                 list_del_init(&ordered->log_list);
546                 spin_unlock_irq(&log->log_extents_lock[index]);
547                 btrfs_put_ordered_extent(ordered);
548                 spin_lock_irq(&log->log_extents_lock[index]);
549         }
550         spin_unlock_irq(&log->log_extents_lock[index]);
551 }
552
553 /*
554  * used to drop a reference on an ordered extent.  This will free
555  * the extent if the last reference is dropped
556  */
557 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
558 {
559         struct list_head *cur;
560         struct btrfs_ordered_sum *sum;
561
562         trace_btrfs_ordered_extent_put(entry->inode, entry);
563
564         if (refcount_dec_and_test(&entry->refs)) {
565                 ASSERT(list_empty(&entry->log_list));
566                 ASSERT(list_empty(&entry->trans_list));
567                 ASSERT(list_empty(&entry->root_extent_list));
568                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
569                 if (entry->inode)
570                         btrfs_add_delayed_iput(entry->inode);
571                 while (!list_empty(&entry->list)) {
572                         cur = entry->list.next;
573                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
574                         list_del(&sum->list);
575                         kfree(sum);
576                 }
577                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
578         }
579 }
580
581 /*
582  * remove an ordered extent from the tree.  No references are dropped
583  * and waiters are woken up.
584  */
585 void btrfs_remove_ordered_extent(struct inode *inode,
586                                  struct btrfs_ordered_extent *entry)
587 {
588         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
589         struct btrfs_ordered_inode_tree *tree;
590         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
591         struct btrfs_root *root = btrfs_inode->root;
592         struct rb_node *node;
593         bool dec_pending_ordered = false;
594
595         /* This is paired with btrfs_add_ordered_extent. */
596         spin_lock(&btrfs_inode->lock);
597         btrfs_mod_outstanding_extents(btrfs_inode, -1);
598         spin_unlock(&btrfs_inode->lock);
599         if (root != fs_info->tree_root)
600                 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
601
602         tree = &btrfs_inode->ordered_tree;
603         spin_lock_irq(&tree->lock);
604         node = &entry->rb_node;
605         rb_erase(node, &tree->tree);
606         RB_CLEAR_NODE(node);
607         if (tree->last == node)
608                 tree->last = NULL;
609         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
610         if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
611                 dec_pending_ordered = true;
612         spin_unlock_irq(&tree->lock);
613
614         /*
615          * The current running transaction is waiting on us, we need to let it
616          * know that we're complete and wake it up.
617          */
618         if (dec_pending_ordered) {
619                 struct btrfs_transaction *trans;
620
621                 /*
622                  * The checks for trans are just a formality, it should be set,
623                  * but if it isn't we don't want to deref/assert under the spin
624                  * lock, so be nice and check if trans is set, but ASSERT() so
625                  * if it isn't set a developer will notice.
626                  */
627                 spin_lock(&fs_info->trans_lock);
628                 trans = fs_info->running_transaction;
629                 if (trans)
630                         refcount_inc(&trans->use_count);
631                 spin_unlock(&fs_info->trans_lock);
632
633                 ASSERT(trans);
634                 if (trans) {
635                         if (atomic_dec_and_test(&trans->pending_ordered))
636                                 wake_up(&trans->pending_wait);
637                         btrfs_put_transaction(trans);
638                 }
639         }
640
641         spin_lock(&root->ordered_extent_lock);
642         list_del_init(&entry->root_extent_list);
643         root->nr_ordered_extents--;
644
645         trace_btrfs_ordered_extent_remove(inode, entry);
646
647         if (!root->nr_ordered_extents) {
648                 spin_lock(&fs_info->ordered_root_lock);
649                 BUG_ON(list_empty(&root->ordered_root));
650                 list_del_init(&root->ordered_root);
651                 spin_unlock(&fs_info->ordered_root_lock);
652         }
653         spin_unlock(&root->ordered_extent_lock);
654         wake_up(&entry->wait);
655 }
656
657 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
658 {
659         struct btrfs_ordered_extent *ordered;
660
661         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
662         btrfs_start_ordered_extent(ordered->inode, ordered, 1);
663         complete(&ordered->completion);
664 }
665
666 /*
667  * wait for all the ordered extents in a root.  This is done when balancing
668  * space between drives.
669  */
670 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
671                                const u64 range_start, const u64 range_len)
672 {
673         struct btrfs_fs_info *fs_info = root->fs_info;
674         LIST_HEAD(splice);
675         LIST_HEAD(skipped);
676         LIST_HEAD(works);
677         struct btrfs_ordered_extent *ordered, *next;
678         u64 count = 0;
679         const u64 range_end = range_start + range_len;
680
681         mutex_lock(&root->ordered_extent_mutex);
682         spin_lock(&root->ordered_extent_lock);
683         list_splice_init(&root->ordered_extents, &splice);
684         while (!list_empty(&splice) && nr) {
685                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
686                                            root_extent_list);
687
688                 if (range_end <= ordered->start ||
689                     ordered->start + ordered->disk_len <= range_start) {
690                         list_move_tail(&ordered->root_extent_list, &skipped);
691                         cond_resched_lock(&root->ordered_extent_lock);
692                         continue;
693                 }
694
695                 list_move_tail(&ordered->root_extent_list,
696                                &root->ordered_extents);
697                 refcount_inc(&ordered->refs);
698                 spin_unlock(&root->ordered_extent_lock);
699
700                 btrfs_init_work(&ordered->flush_work,
701                                 btrfs_flush_delalloc_helper,
702                                 btrfs_run_ordered_extent_work, NULL, NULL);
703                 list_add_tail(&ordered->work_list, &works);
704                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
705
706                 cond_resched();
707                 spin_lock(&root->ordered_extent_lock);
708                 if (nr != U64_MAX)
709                         nr--;
710                 count++;
711         }
712         list_splice_tail(&skipped, &root->ordered_extents);
713         list_splice_tail(&splice, &root->ordered_extents);
714         spin_unlock(&root->ordered_extent_lock);
715
716         list_for_each_entry_safe(ordered, next, &works, work_list) {
717                 list_del_init(&ordered->work_list);
718                 wait_for_completion(&ordered->completion);
719                 btrfs_put_ordered_extent(ordered);
720                 cond_resched();
721         }
722         mutex_unlock(&root->ordered_extent_mutex);
723
724         return count;
725 }
726
727 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
728                              const u64 range_start, const u64 range_len)
729 {
730         struct btrfs_root *root;
731         struct list_head splice;
732         u64 total_done = 0;
733         u64 done;
734
735         INIT_LIST_HEAD(&splice);
736
737         mutex_lock(&fs_info->ordered_operations_mutex);
738         spin_lock(&fs_info->ordered_root_lock);
739         list_splice_init(&fs_info->ordered_roots, &splice);
740         while (!list_empty(&splice) && nr) {
741                 root = list_first_entry(&splice, struct btrfs_root,
742                                         ordered_root);
743                 root = btrfs_grab_fs_root(root);
744                 BUG_ON(!root);
745                 list_move_tail(&root->ordered_root,
746                                &fs_info->ordered_roots);
747                 spin_unlock(&fs_info->ordered_root_lock);
748
749                 done = btrfs_wait_ordered_extents(root, nr,
750                                                   range_start, range_len);
751                 btrfs_put_fs_root(root);
752                 total_done += done;
753
754                 spin_lock(&fs_info->ordered_root_lock);
755                 if (nr != U64_MAX) {
756                         nr -= done;
757                 }
758         }
759         list_splice_tail(&splice, &fs_info->ordered_roots);
760         spin_unlock(&fs_info->ordered_root_lock);
761         mutex_unlock(&fs_info->ordered_operations_mutex);
762
763         return total_done;
764 }
765
766 /*
767  * Used to start IO or wait for a given ordered extent to finish.
768  *
769  * If wait is one, this effectively waits on page writeback for all the pages
770  * in the extent, and it waits on the io completion code to insert
771  * metadata into the btree corresponding to the extent
772  */
773 void btrfs_start_ordered_extent(struct inode *inode,
774                                        struct btrfs_ordered_extent *entry,
775                                        int wait)
776 {
777         u64 start = entry->file_offset;
778         u64 end = start + entry->len - 1;
779
780         trace_btrfs_ordered_extent_start(inode, entry);
781
782         /*
783          * pages in the range can be dirty, clean or writeback.  We
784          * start IO on any dirty ones so the wait doesn't stall waiting
785          * for the flusher thread to find them
786          */
787         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
788                 filemap_fdatawrite_range(inode->i_mapping, start, end);
789         if (wait) {
790                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
791                                                  &entry->flags));
792         }
793 }
794
795 /*
796  * Used to wait on ordered extents across a large range of bytes.
797  */
798 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
799 {
800         int ret = 0;
801         int ret_wb = 0;
802         u64 end;
803         u64 orig_end;
804         struct btrfs_ordered_extent *ordered;
805
806         if (start + len < start) {
807                 orig_end = INT_LIMIT(loff_t);
808         } else {
809                 orig_end = start + len - 1;
810                 if (orig_end > INT_LIMIT(loff_t))
811                         orig_end = INT_LIMIT(loff_t);
812         }
813
814         /* start IO across the range first to instantiate any delalloc
815          * extents
816          */
817         ret = btrfs_fdatawrite_range(inode, start, orig_end);
818         if (ret)
819                 return ret;
820
821         /*
822          * If we have a writeback error don't return immediately. Wait first
823          * for any ordered extents that haven't completed yet. This is to make
824          * sure no one can dirty the same page ranges and call writepages()
825          * before the ordered extents complete - to avoid failures (-EEXIST)
826          * when adding the new ordered extents to the ordered tree.
827          */
828         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
829
830         end = orig_end;
831         while (1) {
832                 ordered = btrfs_lookup_first_ordered_extent(inode, end);
833                 if (!ordered)
834                         break;
835                 if (ordered->file_offset > orig_end) {
836                         btrfs_put_ordered_extent(ordered);
837                         break;
838                 }
839                 if (ordered->file_offset + ordered->len <= start) {
840                         btrfs_put_ordered_extent(ordered);
841                         break;
842                 }
843                 btrfs_start_ordered_extent(inode, ordered, 1);
844                 end = ordered->file_offset;
845                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
846                         ret = -EIO;
847                 btrfs_put_ordered_extent(ordered);
848                 if (ret || end == 0 || end == start)
849                         break;
850                 end--;
851         }
852         return ret_wb ? ret_wb : ret;
853 }
854
855 /*
856  * find an ordered extent corresponding to file_offset.  return NULL if
857  * nothing is found, otherwise take a reference on the extent and return it
858  */
859 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
860                                                          u64 file_offset)
861 {
862         struct btrfs_ordered_inode_tree *tree;
863         struct rb_node *node;
864         struct btrfs_ordered_extent *entry = NULL;
865
866         tree = &BTRFS_I(inode)->ordered_tree;
867         spin_lock_irq(&tree->lock);
868         node = tree_search(tree, file_offset);
869         if (!node)
870                 goto out;
871
872         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
873         if (!offset_in_entry(entry, file_offset))
874                 entry = NULL;
875         if (entry)
876                 refcount_inc(&entry->refs);
877 out:
878         spin_unlock_irq(&tree->lock);
879         return entry;
880 }
881
882 /* Since the DIO code tries to lock a wide area we need to look for any ordered
883  * extents that exist in the range, rather than just the start of the range.
884  */
885 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
886                 struct btrfs_inode *inode, u64 file_offset, u64 len)
887 {
888         struct btrfs_ordered_inode_tree *tree;
889         struct rb_node *node;
890         struct btrfs_ordered_extent *entry = NULL;
891
892         tree = &inode->ordered_tree;
893         spin_lock_irq(&tree->lock);
894         node = tree_search(tree, file_offset);
895         if (!node) {
896                 node = tree_search(tree, file_offset + len);
897                 if (!node)
898                         goto out;
899         }
900
901         while (1) {
902                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
903                 if (range_overlaps(entry, file_offset, len))
904                         break;
905
906                 if (entry->file_offset >= file_offset + len) {
907                         entry = NULL;
908                         break;
909                 }
910                 entry = NULL;
911                 node = rb_next(node);
912                 if (!node)
913                         break;
914         }
915 out:
916         if (entry)
917                 refcount_inc(&entry->refs);
918         spin_unlock_irq(&tree->lock);
919         return entry;
920 }
921
922 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
923                                          u64 file_offset,
924                                          u64 len)
925 {
926         struct btrfs_ordered_extent *oe;
927
928         oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
929         if (oe) {
930                 btrfs_put_ordered_extent(oe);
931                 return true;
932         }
933         return false;
934 }
935
936 /*
937  * lookup and return any extent before 'file_offset'.  NULL is returned
938  * if none is found
939  */
940 struct btrfs_ordered_extent *
941 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
942 {
943         struct btrfs_ordered_inode_tree *tree;
944         struct rb_node *node;
945         struct btrfs_ordered_extent *entry = NULL;
946
947         tree = &BTRFS_I(inode)->ordered_tree;
948         spin_lock_irq(&tree->lock);
949         node = tree_search(tree, file_offset);
950         if (!node)
951                 goto out;
952
953         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
954         refcount_inc(&entry->refs);
955 out:
956         spin_unlock_irq(&tree->lock);
957         return entry;
958 }
959
960 /*
961  * After an extent is done, call this to conditionally update the on disk
962  * i_size.  i_size is updated to cover any fully written part of the file.
963  */
964 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
965                                 struct btrfs_ordered_extent *ordered)
966 {
967         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
968         u64 disk_i_size;
969         u64 new_i_size;
970         u64 i_size = i_size_read(inode);
971         struct rb_node *node;
972         struct rb_node *prev = NULL;
973         struct btrfs_ordered_extent *test;
974         int ret = 1;
975         u64 orig_offset = offset;
976
977         spin_lock_irq(&tree->lock);
978         if (ordered) {
979                 offset = entry_end(ordered);
980                 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
981                         offset = min(offset,
982                                      ordered->file_offset +
983                                      ordered->truncated_len);
984         } else {
985                 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
986         }
987         disk_i_size = BTRFS_I(inode)->disk_i_size;
988
989         /*
990          * truncate file.
991          * If ordered is not NULL, then this is called from endio and
992          * disk_i_size will be updated by either truncate itself or any
993          * in-flight IOs which are inside the disk_i_size.
994          *
995          * Because btrfs_setsize() may set i_size with disk_i_size if truncate
996          * fails somehow, we need to make sure we have a precise disk_i_size by
997          * updating it as usual.
998          *
999          */
1000         if (!ordered && disk_i_size > i_size) {
1001                 BTRFS_I(inode)->disk_i_size = orig_offset;
1002                 ret = 0;
1003                 goto out;
1004         }
1005
1006         /*
1007          * if the disk i_size is already at the inode->i_size, or
1008          * this ordered extent is inside the disk i_size, we're done
1009          */
1010         if (disk_i_size == i_size)
1011                 goto out;
1012
1013         /*
1014          * We still need to update disk_i_size if outstanding_isize is greater
1015          * than disk_i_size.
1016          */
1017         if (offset <= disk_i_size &&
1018             (!ordered || ordered->outstanding_isize <= disk_i_size))
1019                 goto out;
1020
1021         /*
1022          * walk backward from this ordered extent to disk_i_size.
1023          * if we find an ordered extent then we can't update disk i_size
1024          * yet
1025          */
1026         if (ordered) {
1027                 node = rb_prev(&ordered->rb_node);
1028         } else {
1029                 prev = tree_search(tree, offset);
1030                 /*
1031                  * we insert file extents without involving ordered struct,
1032                  * so there should be no ordered struct cover this offset
1033                  */
1034                 if (prev) {
1035                         test = rb_entry(prev, struct btrfs_ordered_extent,
1036                                         rb_node);
1037                         BUG_ON(offset_in_entry(test, offset));
1038                 }
1039                 node = prev;
1040         }
1041         for (; node; node = rb_prev(node)) {
1042                 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1043
1044                 /* We treat this entry as if it doesn't exist */
1045                 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1046                         continue;
1047
1048                 if (entry_end(test) <= disk_i_size)
1049                         break;
1050                 if (test->file_offset >= i_size)
1051                         break;
1052
1053                 /*
1054                  * We don't update disk_i_size now, so record this undealt
1055                  * i_size. Or we will not know the real i_size.
1056                  */
1057                 if (test->outstanding_isize < offset)
1058                         test->outstanding_isize = offset;
1059                 if (ordered &&
1060                     ordered->outstanding_isize > test->outstanding_isize)
1061                         test->outstanding_isize = ordered->outstanding_isize;
1062                 goto out;
1063         }
1064         new_i_size = min_t(u64, offset, i_size);
1065
1066         /*
1067          * Some ordered extents may completed before the current one, and
1068          * we hold the real i_size in ->outstanding_isize.
1069          */
1070         if (ordered && ordered->outstanding_isize > new_i_size)
1071                 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1072         BTRFS_I(inode)->disk_i_size = new_i_size;
1073         ret = 0;
1074 out:
1075         /*
1076          * We need to do this because we can't remove ordered extents until
1077          * after the i_disk_size has been updated and then the inode has been
1078          * updated to reflect the change, so we need to tell anybody who finds
1079          * this ordered extent that we've already done all the real work, we
1080          * just haven't completed all the other work.
1081          */
1082         if (ordered)
1083                 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1084         spin_unlock_irq(&tree->lock);
1085         return ret;
1086 }
1087
1088 /*
1089  * search the ordered extents for one corresponding to 'offset' and
1090  * try to find a checksum.  This is used because we allow pages to
1091  * be reclaimed before their checksum is actually put into the btree
1092  */
1093 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1094                            u32 *sum, int len)
1095 {
1096         struct btrfs_ordered_sum *ordered_sum;
1097         struct btrfs_ordered_extent *ordered;
1098         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1099         unsigned long num_sectors;
1100         unsigned long i;
1101         u32 sectorsize = btrfs_inode_sectorsize(inode);
1102         int index = 0;
1103
1104         ordered = btrfs_lookup_ordered_extent(inode, offset);
1105         if (!ordered)
1106                 return 0;
1107
1108         spin_lock_irq(&tree->lock);
1109         list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1110                 if (disk_bytenr >= ordered_sum->bytenr &&
1111                     disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1112                         i = (disk_bytenr - ordered_sum->bytenr) >>
1113                             inode->i_sb->s_blocksize_bits;
1114                         num_sectors = ordered_sum->len >>
1115                                       inode->i_sb->s_blocksize_bits;
1116                         num_sectors = min_t(int, len - index, num_sectors - i);
1117                         memcpy(sum + index, ordered_sum->sums + i,
1118                                num_sectors);
1119
1120                         index += (int)num_sectors;
1121                         if (index == len)
1122                                 goto out;
1123                         disk_bytenr += num_sectors * sectorsize;
1124                 }
1125         }
1126 out:
1127         spin_unlock_irq(&tree->lock);
1128         btrfs_put_ordered_extent(ordered);
1129         return index;
1130 }
1131
1132 int __init ordered_data_init(void)
1133 {
1134         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1135                                      sizeof(struct btrfs_ordered_extent), 0,
1136                                      SLAB_MEM_SPREAD,
1137                                      NULL);
1138         if (!btrfs_ordered_extent_cache)
1139                 return -ENOMEM;
1140
1141         return 0;
1142 }
1143
1144 void __cold ordered_data_exit(void)
1145 {
1146         kmem_cache_destroy(btrfs_ordered_extent_cache);
1147 }