1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/fsnotify.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/mount.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/swap.h>
22 #include <linux/writeback.h>
23 #include <linux/compat.h>
24 #include <linux/bit_spinlock.h>
25 #include <linux/security.h>
26 #include <linux/xattr.h>
28 #include <linux/slab.h>
29 #include <linux/blkdev.h>
30 #include <linux/uuid.h>
31 #include <linux/btrfs.h>
32 #include <linux/uaccess.h>
33 #include <linux/iversion.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
41 #include "inode-map.h"
43 #include "rcu-string.h"
45 #include "dev-replace.h"
50 #include "compression.h"
53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54 * structures are incorrect, as the timespec structure from userspace
55 * is 4 bytes too small. We define these alternatives here to teach
56 * the kernel about the 32-bit struct packing.
58 struct btrfs_ioctl_timespec_32 {
61 } __attribute__ ((__packed__));
63 struct btrfs_ioctl_received_subvol_args_32 {
64 char uuid[BTRFS_UUID_SIZE]; /* in */
65 __u64 stransid; /* in */
66 __u64 rtransid; /* out */
67 struct btrfs_ioctl_timespec_32 stime; /* in */
68 struct btrfs_ioctl_timespec_32 rtime; /* out */
70 __u64 reserved[16]; /* in */
71 } __attribute__ ((__packed__));
73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 struct btrfs_ioctl_received_subvol_args_32)
77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78 struct btrfs_ioctl_send_args_32 {
79 __s64 send_fd; /* in */
80 __u64 clone_sources_count; /* in */
81 compat_uptr_t clone_sources; /* in */
82 __u64 parent_root; /* in */
84 __u64 reserved[4]; /* in */
85 } __attribute__ ((__packed__));
87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 struct btrfs_ioctl_send_args_32)
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
99 if (S_ISDIR(inode->i_mode))
101 else if (S_ISREG(inode->i_mode))
102 return flags & ~FS_DIRSYNC_FL;
104 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
108 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
111 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
113 unsigned int iflags = 0;
115 if (flags & BTRFS_INODE_SYNC)
116 iflags |= FS_SYNC_FL;
117 if (flags & BTRFS_INODE_IMMUTABLE)
118 iflags |= FS_IMMUTABLE_FL;
119 if (flags & BTRFS_INODE_APPEND)
120 iflags |= FS_APPEND_FL;
121 if (flags & BTRFS_INODE_NODUMP)
122 iflags |= FS_NODUMP_FL;
123 if (flags & BTRFS_INODE_NOATIME)
124 iflags |= FS_NOATIME_FL;
125 if (flags & BTRFS_INODE_DIRSYNC)
126 iflags |= FS_DIRSYNC_FL;
127 if (flags & BTRFS_INODE_NODATACOW)
128 iflags |= FS_NOCOW_FL;
130 if (flags & BTRFS_INODE_NOCOMPRESS)
131 iflags |= FS_NOCOMP_FL;
132 else if (flags & BTRFS_INODE_COMPRESS)
133 iflags |= FS_COMPR_FL;
139 * Update inode->i_flags based on the btrfs internal flags.
141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
143 struct btrfs_inode *binode = BTRFS_I(inode);
144 unsigned int new_fl = 0;
146 if (binode->flags & BTRFS_INODE_SYNC)
148 if (binode->flags & BTRFS_INODE_IMMUTABLE)
149 new_fl |= S_IMMUTABLE;
150 if (binode->flags & BTRFS_INODE_APPEND)
152 if (binode->flags & BTRFS_INODE_NOATIME)
154 if (binode->flags & BTRFS_INODE_DIRSYNC)
157 set_mask_bits(&inode->i_flags,
158 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
162 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
164 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
165 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
167 if (copy_to_user(arg, &flags, sizeof(flags)))
172 /* Check if @flags are a supported and valid set of FS_*_FL flags */
173 static int check_fsflags(unsigned int flags)
175 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
176 FS_NOATIME_FL | FS_NODUMP_FL | \
177 FS_SYNC_FL | FS_DIRSYNC_FL | \
178 FS_NOCOMP_FL | FS_COMPR_FL |
182 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
188 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
190 struct inode *inode = file_inode(file);
191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
192 struct btrfs_inode *binode = BTRFS_I(inode);
193 struct btrfs_root *root = binode->root;
194 struct btrfs_trans_handle *trans;
195 unsigned int fsflags, old_fsflags;
198 unsigned int old_i_flags;
201 if (!inode_owner_or_capable(inode))
204 if (btrfs_root_readonly(root))
207 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
210 ret = check_fsflags(fsflags);
214 ret = mnt_want_write_file(file);
220 old_flags = binode->flags;
221 old_i_flags = inode->i_flags;
222 mode = inode->i_mode;
224 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
225 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
226 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
227 if (!capable(CAP_LINUX_IMMUTABLE)) {
233 if (fsflags & FS_SYNC_FL)
234 binode->flags |= BTRFS_INODE_SYNC;
236 binode->flags &= ~BTRFS_INODE_SYNC;
237 if (fsflags & FS_IMMUTABLE_FL)
238 binode->flags |= BTRFS_INODE_IMMUTABLE;
240 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
241 if (fsflags & FS_APPEND_FL)
242 binode->flags |= BTRFS_INODE_APPEND;
244 binode->flags &= ~BTRFS_INODE_APPEND;
245 if (fsflags & FS_NODUMP_FL)
246 binode->flags |= BTRFS_INODE_NODUMP;
248 binode->flags &= ~BTRFS_INODE_NODUMP;
249 if (fsflags & FS_NOATIME_FL)
250 binode->flags |= BTRFS_INODE_NOATIME;
252 binode->flags &= ~BTRFS_INODE_NOATIME;
253 if (fsflags & FS_DIRSYNC_FL)
254 binode->flags |= BTRFS_INODE_DIRSYNC;
256 binode->flags &= ~BTRFS_INODE_DIRSYNC;
257 if (fsflags & FS_NOCOW_FL) {
260 * It's safe to turn csums off here, no extents exist.
261 * Otherwise we want the flag to reflect the real COW
262 * status of the file and will not set it.
264 if (inode->i_size == 0)
265 binode->flags |= BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM;
268 binode->flags |= BTRFS_INODE_NODATACOW;
272 * Revert back under same assumptions as above
275 if (inode->i_size == 0)
276 binode->flags &= ~(BTRFS_INODE_NODATACOW
277 | BTRFS_INODE_NODATASUM);
279 binode->flags &= ~BTRFS_INODE_NODATACOW;
284 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
285 * flag may be changed automatically if compression code won't make
288 if (fsflags & FS_NOCOMP_FL) {
289 binode->flags &= ~BTRFS_INODE_COMPRESS;
290 binode->flags |= BTRFS_INODE_NOCOMPRESS;
292 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
293 if (ret && ret != -ENODATA)
295 } else if (fsflags & FS_COMPR_FL) {
298 binode->flags |= BTRFS_INODE_COMPRESS;
299 binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
301 comp = btrfs_compress_type2str(fs_info->compress_type);
302 if (!comp || comp[0] == 0)
303 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 ret = btrfs_set_prop(inode, "btrfs.compression",
306 comp, strlen(comp), 0);
311 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
312 if (ret && ret != -ENODATA)
314 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
317 trans = btrfs_start_transaction(root, 1);
319 ret = PTR_ERR(trans);
323 btrfs_sync_inode_flags_to_i_flags(inode);
324 inode_inc_iversion(inode);
325 inode->i_ctime = current_time(inode);
326 ret = btrfs_update_inode(trans, root, inode);
328 btrfs_end_transaction(trans);
331 binode->flags = old_flags;
332 inode->i_flags = old_i_flags;
337 mnt_drop_write_file(file);
342 * Translate btrfs internal inode flags to xflags as expected by the
343 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
346 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
348 unsigned int xflags = 0;
350 if (flags & BTRFS_INODE_APPEND)
351 xflags |= FS_XFLAG_APPEND;
352 if (flags & BTRFS_INODE_IMMUTABLE)
353 xflags |= FS_XFLAG_IMMUTABLE;
354 if (flags & BTRFS_INODE_NOATIME)
355 xflags |= FS_XFLAG_NOATIME;
356 if (flags & BTRFS_INODE_NODUMP)
357 xflags |= FS_XFLAG_NODUMP;
358 if (flags & BTRFS_INODE_SYNC)
359 xflags |= FS_XFLAG_SYNC;
364 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
365 static int check_xflags(unsigned int flags)
367 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
368 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
374 * Set the xflags from the internal inode flags. The remaining items of fsxattr
377 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
379 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
382 memset(&fa, 0, sizeof(fa));
383 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
385 if (copy_to_user(arg, &fa, sizeof(fa)))
391 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
393 struct inode *inode = file_inode(file);
394 struct btrfs_inode *binode = BTRFS_I(inode);
395 struct btrfs_root *root = binode->root;
396 struct btrfs_trans_handle *trans;
399 unsigned old_i_flags;
402 if (!inode_owner_or_capable(inode))
405 if (btrfs_root_readonly(root))
408 memset(&fa, 0, sizeof(fa));
409 if (copy_from_user(&fa, arg, sizeof(fa)))
412 ret = check_xflags(fa.fsx_xflags);
416 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
419 ret = mnt_want_write_file(file);
425 old_flags = binode->flags;
426 old_i_flags = inode->i_flags;
428 /* We need the capabilities to change append-only or immutable inode */
429 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
430 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
431 !capable(CAP_LINUX_IMMUTABLE)) {
436 if (fa.fsx_xflags & FS_XFLAG_SYNC)
437 binode->flags |= BTRFS_INODE_SYNC;
439 binode->flags &= ~BTRFS_INODE_SYNC;
440 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
441 binode->flags |= BTRFS_INODE_IMMUTABLE;
443 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
444 if (fa.fsx_xflags & FS_XFLAG_APPEND)
445 binode->flags |= BTRFS_INODE_APPEND;
447 binode->flags &= ~BTRFS_INODE_APPEND;
448 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
449 binode->flags |= BTRFS_INODE_NODUMP;
451 binode->flags &= ~BTRFS_INODE_NODUMP;
452 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
453 binode->flags |= BTRFS_INODE_NOATIME;
455 binode->flags &= ~BTRFS_INODE_NOATIME;
457 /* 1 item for the inode */
458 trans = btrfs_start_transaction(root, 1);
460 ret = PTR_ERR(trans);
464 btrfs_sync_inode_flags_to_i_flags(inode);
465 inode_inc_iversion(inode);
466 inode->i_ctime = current_time(inode);
467 ret = btrfs_update_inode(trans, root, inode);
469 btrfs_end_transaction(trans);
473 binode->flags = old_flags;
474 inode->i_flags = old_i_flags;
478 mnt_drop_write_file(file);
483 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
485 struct inode *inode = file_inode(file);
487 return put_user(inode->i_generation, arg);
490 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
492 struct inode *inode = file_inode(file);
493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
494 struct btrfs_device *device;
495 struct request_queue *q;
496 struct fstrim_range range;
497 u64 minlen = ULLONG_MAX;
499 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
502 if (!capable(CAP_SYS_ADMIN))
506 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
510 q = bdev_get_queue(device->bdev);
511 if (blk_queue_discard(q)) {
513 minlen = min_t(u64, q->limits.discard_granularity,
521 if (copy_from_user(&range, arg, sizeof(range)))
523 if (range.start > total_bytes ||
524 range.len < fs_info->sb->s_blocksize)
527 range.len = min(range.len, total_bytes - range.start);
528 range.minlen = max(range.minlen, minlen);
529 ret = btrfs_trim_fs(fs_info, &range);
533 if (copy_to_user(arg, &range, sizeof(range)))
539 int btrfs_is_empty_uuid(u8 *uuid)
543 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 static noinline int create_subvol(struct inode *dir,
551 struct dentry *dentry,
552 const char *name, int namelen,
554 struct btrfs_qgroup_inherit *inherit)
556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
557 struct btrfs_trans_handle *trans;
558 struct btrfs_key key;
559 struct btrfs_root_item *root_item;
560 struct btrfs_inode_item *inode_item;
561 struct extent_buffer *leaf;
562 struct btrfs_root *root = BTRFS_I(dir)->root;
563 struct btrfs_root *new_root;
564 struct btrfs_block_rsv block_rsv;
565 struct timespec cur_time = current_time(dir);
570 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
574 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
578 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
583 * Don't create subvolume whose level is not zero. Or qgroup will be
584 * screwed up since it assumes subvolume qgroup's level to be 0.
586 if (btrfs_qgroup_level(objectid)) {
591 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
593 * The same as the snapshot creation, please see the comment
594 * of create_snapshot().
596 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
600 trans = btrfs_start_transaction(root, 0);
602 ret = PTR_ERR(trans);
603 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
606 trans->block_rsv = &block_rsv;
607 trans->bytes_reserved = block_rsv.size;
609 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
613 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
619 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
620 btrfs_set_header_bytenr(leaf, leaf->start);
621 btrfs_set_header_generation(leaf, trans->transid);
622 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
623 btrfs_set_header_owner(leaf, objectid);
625 write_extent_buffer_fsid(leaf, fs_info->fsid);
626 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
627 btrfs_mark_buffer_dirty(leaf);
629 inode_item = &root_item->inode;
630 btrfs_set_stack_inode_generation(inode_item, 1);
631 btrfs_set_stack_inode_size(inode_item, 3);
632 btrfs_set_stack_inode_nlink(inode_item, 1);
633 btrfs_set_stack_inode_nbytes(inode_item,
635 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
637 btrfs_set_root_flags(root_item, 0);
638 btrfs_set_root_limit(root_item, 0);
639 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
641 btrfs_set_root_bytenr(root_item, leaf->start);
642 btrfs_set_root_generation(root_item, trans->transid);
643 btrfs_set_root_level(root_item, 0);
644 btrfs_set_root_refs(root_item, 1);
645 btrfs_set_root_used(root_item, leaf->len);
646 btrfs_set_root_last_snapshot(root_item, 0);
648 btrfs_set_root_generation_v2(root_item,
649 btrfs_root_generation(root_item));
650 uuid_le_gen(&new_uuid);
651 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
652 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
653 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
654 root_item->ctime = root_item->otime;
655 btrfs_set_root_ctransid(root_item, trans->transid);
656 btrfs_set_root_otransid(root_item, trans->transid);
658 btrfs_tree_unlock(leaf);
659 free_extent_buffer(leaf);
662 btrfs_set_root_dirid(root_item, new_dirid);
664 key.objectid = objectid;
666 key.type = BTRFS_ROOT_ITEM_KEY;
667 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
672 key.offset = (u64)-1;
673 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
674 if (IS_ERR(new_root)) {
675 ret = PTR_ERR(new_root);
676 btrfs_abort_transaction(trans, ret);
680 btrfs_record_root_in_trans(trans, new_root);
682 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
684 /* We potentially lose an unused inode item here */
685 btrfs_abort_transaction(trans, ret);
689 mutex_lock(&new_root->objectid_mutex);
690 new_root->highest_objectid = new_dirid;
691 mutex_unlock(&new_root->objectid_mutex);
694 * insert the directory item
696 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
698 btrfs_abort_transaction(trans, ret);
702 ret = btrfs_insert_dir_item(trans, root,
703 name, namelen, BTRFS_I(dir), &key,
704 BTRFS_FT_DIR, index);
706 btrfs_abort_transaction(trans, ret);
710 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
711 ret = btrfs_update_inode(trans, root, dir);
714 ret = btrfs_add_root_ref(trans, fs_info,
715 objectid, root->root_key.objectid,
716 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
719 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
720 BTRFS_UUID_KEY_SUBVOL, objectid);
722 btrfs_abort_transaction(trans, ret);
726 trans->block_rsv = NULL;
727 trans->bytes_reserved = 0;
728 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
731 *async_transid = trans->transid;
732 err = btrfs_commit_transaction_async(trans, 1);
734 err = btrfs_commit_transaction(trans);
736 err = btrfs_commit_transaction(trans);
742 inode = btrfs_lookup_dentry(dir, dentry);
744 return PTR_ERR(inode);
745 d_instantiate(dentry, inode);
754 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
755 struct dentry *dentry,
756 u64 *async_transid, bool readonly,
757 struct btrfs_qgroup_inherit *inherit)
759 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
761 struct btrfs_pending_snapshot *pending_snapshot;
762 struct btrfs_trans_handle *trans;
765 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
768 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
769 if (!pending_snapshot)
772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
774 pending_snapshot->path = btrfs_alloc_path();
775 if (!pending_snapshot->root_item || !pending_snapshot->path) {
780 atomic_inc(&root->will_be_snapshotted);
781 smp_mb__after_atomic();
782 /* wait for no snapshot writes */
783 wait_event(root->subv_writers->wait,
784 percpu_counter_sum(&root->subv_writers->counter) == 0);
786 ret = btrfs_start_delalloc_inodes(root);
790 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
792 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
793 BTRFS_BLOCK_RSV_TEMP);
795 * 1 - parent dir inode
798 * 2 - root ref/backref
799 * 1 - root of snapshot
802 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
803 &pending_snapshot->block_rsv, 8,
808 pending_snapshot->dentry = dentry;
809 pending_snapshot->root = root;
810 pending_snapshot->readonly = readonly;
811 pending_snapshot->dir = dir;
812 pending_snapshot->inherit = inherit;
814 trans = btrfs_start_transaction(root, 0);
816 ret = PTR_ERR(trans);
820 spin_lock(&fs_info->trans_lock);
821 list_add(&pending_snapshot->list,
822 &trans->transaction->pending_snapshots);
823 spin_unlock(&fs_info->trans_lock);
825 *async_transid = trans->transid;
826 ret = btrfs_commit_transaction_async(trans, 1);
828 ret = btrfs_commit_transaction(trans);
830 ret = btrfs_commit_transaction(trans);
835 ret = pending_snapshot->error;
839 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
843 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
845 ret = PTR_ERR(inode);
849 d_instantiate(dentry, inode);
852 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
854 if (atomic_dec_and_test(&root->will_be_snapshotted))
855 wake_up_var(&root->will_be_snapshotted);
857 kfree(pending_snapshot->root_item);
858 btrfs_free_path(pending_snapshot->path);
859 kfree(pending_snapshot);
864 /* copy of may_delete in fs/namei.c()
865 * Check whether we can remove a link victim from directory dir, check
866 * whether the type of victim is right.
867 * 1. We can't do it if dir is read-only (done in permission())
868 * 2. We should have write and exec permissions on dir
869 * 3. We can't remove anything from append-only dir
870 * 4. We can't do anything with immutable dir (done in permission())
871 * 5. If the sticky bit on dir is set we should either
872 * a. be owner of dir, or
873 * b. be owner of victim, or
874 * c. have CAP_FOWNER capability
875 * 6. If the victim is append-only or immutable we can't do anything with
876 * links pointing to it.
877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
879 * 9. We can't remove a root or mountpoint.
880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
881 * nfs_async_unlink().
884 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
888 if (d_really_is_negative(victim))
891 BUG_ON(d_inode(victim->d_parent) != dir);
892 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
894 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
899 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
900 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
903 if (!d_is_dir(victim))
907 } else if (d_is_dir(victim))
911 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
916 /* copy of may_create in fs/namei.c() */
917 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
919 if (d_really_is_positive(child))
923 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
927 * Create a new subvolume below @parent. This is largely modeled after
928 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
929 * inside this filesystem so it's quite a bit simpler.
931 static noinline int btrfs_mksubvol(const struct path *parent,
932 const char *name, int namelen,
933 struct btrfs_root *snap_src,
934 u64 *async_transid, bool readonly,
935 struct btrfs_qgroup_inherit *inherit)
937 struct inode *dir = d_inode(parent->dentry);
938 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
939 struct dentry *dentry;
942 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
946 dentry = lookup_one_len(name, parent->dentry, namelen);
947 error = PTR_ERR(dentry);
951 error = btrfs_may_create(dir, dentry);
956 * even if this name doesn't exist, we may get hash collisions.
957 * check for them now when we can safely fail
959 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
965 down_read(&fs_info->subvol_sem);
967 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
971 error = create_snapshot(snap_src, dir, dentry,
972 async_transid, readonly, inherit);
974 error = create_subvol(dir, dentry, name, namelen,
975 async_transid, inherit);
978 fsnotify_mkdir(dir, dentry);
980 up_read(&fs_info->subvol_sem);
989 * When we're defragging a range, we don't want to kick it off again
990 * if it is really just waiting for delalloc to send it down.
991 * If we find a nice big extent or delalloc range for the bytes in the
992 * file you want to defrag, we return 0 to let you know to skip this
995 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
998 struct extent_map *em = NULL;
999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1002 read_lock(&em_tree->lock);
1003 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1004 read_unlock(&em_tree->lock);
1007 end = extent_map_end(em);
1008 free_extent_map(em);
1009 if (end - offset > thresh)
1012 /* if we already have a nice delalloc here, just stop */
1014 end = count_range_bits(io_tree, &offset, offset + thresh,
1015 thresh, EXTENT_DELALLOC, 1);
1022 * helper function to walk through a file and find extents
1023 * newer than a specific transid, and smaller than thresh.
1025 * This is used by the defragging code to find new and small
1028 static int find_new_extents(struct btrfs_root *root,
1029 struct inode *inode, u64 newer_than,
1030 u64 *off, u32 thresh)
1032 struct btrfs_path *path;
1033 struct btrfs_key min_key;
1034 struct extent_buffer *leaf;
1035 struct btrfs_file_extent_item *extent;
1038 u64 ino = btrfs_ino(BTRFS_I(inode));
1040 path = btrfs_alloc_path();
1044 min_key.objectid = ino;
1045 min_key.type = BTRFS_EXTENT_DATA_KEY;
1046 min_key.offset = *off;
1049 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1053 if (min_key.objectid != ino)
1055 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1058 leaf = path->nodes[0];
1059 extent = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_file_extent_item);
1062 type = btrfs_file_extent_type(leaf, extent);
1063 if (type == BTRFS_FILE_EXTENT_REG &&
1064 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1065 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1066 *off = min_key.offset;
1067 btrfs_free_path(path);
1072 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1073 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1077 if (min_key.offset == (u64)-1)
1081 btrfs_release_path(path);
1084 btrfs_free_path(path);
1088 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1090 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1092 struct extent_map *em;
1093 u64 len = PAGE_SIZE;
1096 * hopefully we have this extent in the tree already, try without
1097 * the full extent lock
1099 read_lock(&em_tree->lock);
1100 em = lookup_extent_mapping(em_tree, start, len);
1101 read_unlock(&em_tree->lock);
1104 struct extent_state *cached = NULL;
1105 u64 end = start + len - 1;
1107 /* get the big lock and read metadata off disk */
1108 lock_extent_bits(io_tree, start, end, &cached);
1109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1110 unlock_extent_cached(io_tree, start, end, &cached);
1119 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1121 struct extent_map *next;
1124 /* this is the last extent */
1125 if (em->start + em->len >= i_size_read(inode))
1128 next = defrag_lookup_extent(inode, em->start + em->len);
1129 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1131 else if ((em->block_start + em->block_len == next->block_start) &&
1132 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1135 free_extent_map(next);
1139 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1140 u64 *last_len, u64 *skip, u64 *defrag_end,
1143 struct extent_map *em;
1145 bool next_mergeable = true;
1146 bool prev_mergeable = true;
1149 * make sure that once we start defragging an extent, we keep on
1152 if (start < *defrag_end)
1157 em = defrag_lookup_extent(inode, start);
1161 /* this will cover holes, and inline extents */
1162 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1168 prev_mergeable = false;
1170 next_mergeable = defrag_check_next_extent(inode, em);
1172 * we hit a real extent, if it is big or the next extent is not a
1173 * real extent, don't bother defragging it
1175 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1176 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1180 * last_len ends up being a counter of how many bytes we've defragged.
1181 * every time we choose not to defrag an extent, we reset *last_len
1182 * so that the next tiny extent will force a defrag.
1184 * The end result of this is that tiny extents before a single big
1185 * extent will force at least part of that big extent to be defragged.
1188 *defrag_end = extent_map_end(em);
1191 *skip = extent_map_end(em);
1195 free_extent_map(em);
1200 * it doesn't do much good to defrag one or two pages
1201 * at a time. This pulls in a nice chunk of pages
1202 * to COW and defrag.
1204 * It also makes sure the delalloc code has enough
1205 * dirty data to avoid making new small extents as part
1208 * It's a good idea to start RA on this range
1209 * before calling this.
1211 static int cluster_pages_for_defrag(struct inode *inode,
1212 struct page **pages,
1213 unsigned long start_index,
1214 unsigned long num_pages)
1216 unsigned long file_end;
1217 u64 isize = i_size_read(inode);
1224 struct btrfs_ordered_extent *ordered;
1225 struct extent_state *cached_state = NULL;
1226 struct extent_io_tree *tree;
1227 struct extent_changeset *data_reserved = NULL;
1228 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1230 file_end = (isize - 1) >> PAGE_SHIFT;
1231 if (!isize || start_index > file_end)
1234 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1236 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1237 start_index << PAGE_SHIFT,
1238 page_cnt << PAGE_SHIFT);
1242 tree = &BTRFS_I(inode)->io_tree;
1244 /* step one, lock all the pages */
1245 for (i = 0; i < page_cnt; i++) {
1248 page = find_or_create_page(inode->i_mapping,
1249 start_index + i, mask);
1253 page_start = page_offset(page);
1254 page_end = page_start + PAGE_SIZE - 1;
1256 lock_extent_bits(tree, page_start, page_end,
1258 ordered = btrfs_lookup_ordered_extent(inode,
1260 unlock_extent_cached(tree, page_start, page_end,
1266 btrfs_start_ordered_extent(inode, ordered, 1);
1267 btrfs_put_ordered_extent(ordered);
1270 * we unlocked the page above, so we need check if
1271 * it was released or not.
1273 if (page->mapping != inode->i_mapping) {
1280 if (!PageUptodate(page)) {
1281 btrfs_readpage(NULL, page);
1283 if (!PageUptodate(page)) {
1291 if (page->mapping != inode->i_mapping) {
1303 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1307 * so now we have a nice long stream of locked
1308 * and up to date pages, lets wait on them
1310 for (i = 0; i < i_done; i++)
1311 wait_on_page_writeback(pages[i]);
1313 page_start = page_offset(pages[0]);
1314 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1316 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1317 page_start, page_end - 1, &cached_state);
1318 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1319 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1320 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1323 if (i_done != page_cnt) {
1324 spin_lock(&BTRFS_I(inode)->lock);
1325 BTRFS_I(inode)->outstanding_extents++;
1326 spin_unlock(&BTRFS_I(inode)->lock);
1327 btrfs_delalloc_release_space(inode, data_reserved,
1328 start_index << PAGE_SHIFT,
1329 (page_cnt - i_done) << PAGE_SHIFT, true);
1333 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1336 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1337 page_start, page_end - 1, &cached_state);
1339 for (i = 0; i < i_done; i++) {
1340 clear_page_dirty_for_io(pages[i]);
1341 ClearPageChecked(pages[i]);
1342 set_page_extent_mapped(pages[i]);
1343 set_page_dirty(pages[i]);
1344 unlock_page(pages[i]);
1347 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1349 extent_changeset_free(data_reserved);
1352 for (i = 0; i < i_done; i++) {
1353 unlock_page(pages[i]);
1356 btrfs_delalloc_release_space(inode, data_reserved,
1357 start_index << PAGE_SHIFT,
1358 page_cnt << PAGE_SHIFT, true);
1359 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1361 extent_changeset_free(data_reserved);
1366 int btrfs_defrag_file(struct inode *inode, struct file *file,
1367 struct btrfs_ioctl_defrag_range_args *range,
1368 u64 newer_than, unsigned long max_to_defrag)
1370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1371 struct btrfs_root *root = BTRFS_I(inode)->root;
1372 struct file_ra_state *ra = NULL;
1373 unsigned long last_index;
1374 u64 isize = i_size_read(inode);
1378 u64 newer_off = range->start;
1380 unsigned long ra_index = 0;
1382 int defrag_count = 0;
1383 int compress_type = BTRFS_COMPRESS_ZLIB;
1384 u32 extent_thresh = range->extent_thresh;
1385 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1386 unsigned long cluster = max_cluster;
1387 u64 new_align = ~((u64)SZ_128K - 1);
1388 struct page **pages = NULL;
1389 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1394 if (range->start >= isize)
1398 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1400 if (range->compress_type)
1401 compress_type = range->compress_type;
1404 if (extent_thresh == 0)
1405 extent_thresh = SZ_256K;
1408 * If we were not given a file, allocate a readahead context. As
1409 * readahead is just an optimization, defrag will work without it so
1410 * we don't error out.
1413 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1415 file_ra_state_init(ra, inode->i_mapping);
1420 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1426 /* find the last page to defrag */
1427 if (range->start + range->len > range->start) {
1428 last_index = min_t(u64, isize - 1,
1429 range->start + range->len - 1) >> PAGE_SHIFT;
1431 last_index = (isize - 1) >> PAGE_SHIFT;
1435 ret = find_new_extents(root, inode, newer_than,
1436 &newer_off, SZ_64K);
1438 range->start = newer_off;
1440 * we always align our defrag to help keep
1441 * the extents in the file evenly spaced
1443 i = (newer_off & new_align) >> PAGE_SHIFT;
1447 i = range->start >> PAGE_SHIFT;
1450 max_to_defrag = last_index - i + 1;
1453 * make writeback starts from i, so the defrag range can be
1454 * written sequentially.
1456 if (i < inode->i_mapping->writeback_index)
1457 inode->i_mapping->writeback_index = i;
1459 while (i <= last_index && defrag_count < max_to_defrag &&
1460 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1462 * make sure we stop running if someone unmounts
1465 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1468 if (btrfs_defrag_cancelled(fs_info)) {
1469 btrfs_debug(fs_info, "defrag_file cancelled");
1474 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1475 extent_thresh, &last_len, &skip,
1476 &defrag_end, do_compress)){
1479 * the should_defrag function tells us how much to skip
1480 * bump our counter by the suggested amount
1482 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1483 i = max(i + 1, next);
1488 cluster = (PAGE_ALIGN(defrag_end) >>
1490 cluster = min(cluster, max_cluster);
1492 cluster = max_cluster;
1495 if (i + cluster > ra_index) {
1496 ra_index = max(i, ra_index);
1498 page_cache_sync_readahead(inode->i_mapping, ra,
1499 file, ra_index, cluster);
1500 ra_index += cluster;
1505 BTRFS_I(inode)->defrag_compress = compress_type;
1506 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1508 inode_unlock(inode);
1512 defrag_count += ret;
1513 balance_dirty_pages_ratelimited(inode->i_mapping);
1514 inode_unlock(inode);
1517 if (newer_off == (u64)-1)
1523 newer_off = max(newer_off + 1,
1524 (u64)i << PAGE_SHIFT);
1526 ret = find_new_extents(root, inode, newer_than,
1527 &newer_off, SZ_64K);
1529 range->start = newer_off;
1530 i = (newer_off & new_align) >> PAGE_SHIFT;
1537 last_len += ret << PAGE_SHIFT;
1545 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1546 filemap_flush(inode->i_mapping);
1547 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1548 &BTRFS_I(inode)->runtime_flags))
1549 filemap_flush(inode->i_mapping);
1552 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1553 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1554 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1555 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1563 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1564 inode_unlock(inode);
1572 static noinline int btrfs_ioctl_resize(struct file *file,
1575 struct inode *inode = file_inode(file);
1576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1580 struct btrfs_root *root = BTRFS_I(inode)->root;
1581 struct btrfs_ioctl_vol_args *vol_args;
1582 struct btrfs_trans_handle *trans;
1583 struct btrfs_device *device = NULL;
1586 char *devstr = NULL;
1590 if (!capable(CAP_SYS_ADMIN))
1593 ret = mnt_want_write_file(file);
1597 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1598 mnt_drop_write_file(file);
1599 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1602 vol_args = memdup_user(arg, sizeof(*vol_args));
1603 if (IS_ERR(vol_args)) {
1604 ret = PTR_ERR(vol_args);
1608 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1610 sizestr = vol_args->name;
1611 devstr = strchr(sizestr, ':');
1613 sizestr = devstr + 1;
1615 devstr = vol_args->name;
1616 ret = kstrtoull(devstr, 10, &devid);
1623 btrfs_info(fs_info, "resizing devid %llu", devid);
1626 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1628 btrfs_info(fs_info, "resizer unable to find device %llu",
1634 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1636 "resizer unable to apply on readonly device %llu",
1642 if (!strcmp(sizestr, "max"))
1643 new_size = device->bdev->bd_inode->i_size;
1645 if (sizestr[0] == '-') {
1648 } else if (sizestr[0] == '+') {
1652 new_size = memparse(sizestr, &retptr);
1653 if (*retptr != '\0' || new_size == 0) {
1659 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1664 old_size = btrfs_device_get_total_bytes(device);
1667 if (new_size > old_size) {
1671 new_size = old_size - new_size;
1672 } else if (mod > 0) {
1673 if (new_size > ULLONG_MAX - old_size) {
1677 new_size = old_size + new_size;
1680 if (new_size < SZ_256M) {
1684 if (new_size > device->bdev->bd_inode->i_size) {
1689 new_size = round_down(new_size, fs_info->sectorsize);
1691 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1692 rcu_str_deref(device->name), new_size);
1694 if (new_size > old_size) {
1695 trans = btrfs_start_transaction(root, 0);
1696 if (IS_ERR(trans)) {
1697 ret = PTR_ERR(trans);
1700 ret = btrfs_grow_device(trans, device, new_size);
1701 btrfs_commit_transaction(trans);
1702 } else if (new_size < old_size) {
1703 ret = btrfs_shrink_device(device, new_size);
1704 } /* equal, nothing need to do */
1709 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1710 mnt_drop_write_file(file);
1714 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1715 const char *name, unsigned long fd, int subvol,
1716 u64 *transid, bool readonly,
1717 struct btrfs_qgroup_inherit *inherit)
1722 if (!S_ISDIR(file_inode(file)->i_mode))
1725 ret = mnt_want_write_file(file);
1729 namelen = strlen(name);
1730 if (strchr(name, '/')) {
1732 goto out_drop_write;
1735 if (name[0] == '.' &&
1736 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1738 goto out_drop_write;
1742 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1743 NULL, transid, readonly, inherit);
1745 struct fd src = fdget(fd);
1746 struct inode *src_inode;
1749 goto out_drop_write;
1752 src_inode = file_inode(src.file);
1753 if (src_inode->i_sb != file_inode(file)->i_sb) {
1754 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1755 "Snapshot src from another FS");
1757 } else if (!inode_owner_or_capable(src_inode)) {
1759 * Subvolume creation is not restricted, but snapshots
1760 * are limited to own subvolumes only
1764 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1765 BTRFS_I(src_inode)->root,
1766 transid, readonly, inherit);
1771 mnt_drop_write_file(file);
1776 static noinline int btrfs_ioctl_snap_create(struct file *file,
1777 void __user *arg, int subvol)
1779 struct btrfs_ioctl_vol_args *vol_args;
1782 if (!S_ISDIR(file_inode(file)->i_mode))
1785 vol_args = memdup_user(arg, sizeof(*vol_args));
1786 if (IS_ERR(vol_args))
1787 return PTR_ERR(vol_args);
1788 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1790 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1791 vol_args->fd, subvol,
1798 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1799 void __user *arg, int subvol)
1801 struct btrfs_ioctl_vol_args_v2 *vol_args;
1805 bool readonly = false;
1806 struct btrfs_qgroup_inherit *inherit = NULL;
1808 if (!S_ISDIR(file_inode(file)->i_mode))
1811 vol_args = memdup_user(arg, sizeof(*vol_args));
1812 if (IS_ERR(vol_args))
1813 return PTR_ERR(vol_args);
1814 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1816 if (vol_args->flags &
1817 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1818 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1823 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1825 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1827 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1828 if (vol_args->size > PAGE_SIZE) {
1832 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1833 if (IS_ERR(inherit)) {
1834 ret = PTR_ERR(inherit);
1839 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1840 vol_args->fd, subvol, ptr,
1845 if (ptr && copy_to_user(arg +
1846 offsetof(struct btrfs_ioctl_vol_args_v2,
1858 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1861 struct inode *inode = file_inode(file);
1862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1863 struct btrfs_root *root = BTRFS_I(inode)->root;
1867 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1870 down_read(&fs_info->subvol_sem);
1871 if (btrfs_root_readonly(root))
1872 flags |= BTRFS_SUBVOL_RDONLY;
1873 up_read(&fs_info->subvol_sem);
1875 if (copy_to_user(arg, &flags, sizeof(flags)))
1881 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1884 struct inode *inode = file_inode(file);
1885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
1887 struct btrfs_trans_handle *trans;
1892 if (!inode_owner_or_capable(inode))
1895 ret = mnt_want_write_file(file);
1899 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1901 goto out_drop_write;
1904 if (copy_from_user(&flags, arg, sizeof(flags))) {
1906 goto out_drop_write;
1909 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1911 goto out_drop_write;
1914 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1916 goto out_drop_write;
1919 down_write(&fs_info->subvol_sem);
1922 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1925 root_flags = btrfs_root_flags(&root->root_item);
1926 if (flags & BTRFS_SUBVOL_RDONLY) {
1927 btrfs_set_root_flags(&root->root_item,
1928 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1931 * Block RO -> RW transition if this subvolume is involved in
1934 spin_lock(&root->root_item_lock);
1935 if (root->send_in_progress == 0) {
1936 btrfs_set_root_flags(&root->root_item,
1937 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1938 spin_unlock(&root->root_item_lock);
1940 spin_unlock(&root->root_item_lock);
1942 "Attempt to set subvolume %llu read-write during send",
1943 root->root_key.objectid);
1949 trans = btrfs_start_transaction(root, 1);
1950 if (IS_ERR(trans)) {
1951 ret = PTR_ERR(trans);
1955 ret = btrfs_update_root(trans, fs_info->tree_root,
1956 &root->root_key, &root->root_item);
1958 btrfs_end_transaction(trans);
1962 ret = btrfs_commit_transaction(trans);
1966 btrfs_set_root_flags(&root->root_item, root_flags);
1968 up_write(&fs_info->subvol_sem);
1970 mnt_drop_write_file(file);
1975 static noinline int key_in_sk(struct btrfs_key *key,
1976 struct btrfs_ioctl_search_key *sk)
1978 struct btrfs_key test;
1981 test.objectid = sk->min_objectid;
1982 test.type = sk->min_type;
1983 test.offset = sk->min_offset;
1985 ret = btrfs_comp_cpu_keys(key, &test);
1989 test.objectid = sk->max_objectid;
1990 test.type = sk->max_type;
1991 test.offset = sk->max_offset;
1993 ret = btrfs_comp_cpu_keys(key, &test);
1999 static noinline int copy_to_sk(struct btrfs_path *path,
2000 struct btrfs_key *key,
2001 struct btrfs_ioctl_search_key *sk,
2004 unsigned long *sk_offset,
2008 struct extent_buffer *leaf;
2009 struct btrfs_ioctl_search_header sh;
2010 struct btrfs_key test;
2011 unsigned long item_off;
2012 unsigned long item_len;
2018 leaf = path->nodes[0];
2019 slot = path->slots[0];
2020 nritems = btrfs_header_nritems(leaf);
2022 if (btrfs_header_generation(leaf) > sk->max_transid) {
2026 found_transid = btrfs_header_generation(leaf);
2028 for (i = slot; i < nritems; i++) {
2029 item_off = btrfs_item_ptr_offset(leaf, i);
2030 item_len = btrfs_item_size_nr(leaf, i);
2032 btrfs_item_key_to_cpu(leaf, key, i);
2033 if (!key_in_sk(key, sk))
2036 if (sizeof(sh) + item_len > *buf_size) {
2043 * return one empty item back for v1, which does not
2047 *buf_size = sizeof(sh) + item_len;
2052 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2057 sh.objectid = key->objectid;
2058 sh.offset = key->offset;
2059 sh.type = key->type;
2061 sh.transid = found_transid;
2063 /* copy search result header */
2064 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2069 *sk_offset += sizeof(sh);
2072 char __user *up = ubuf + *sk_offset;
2074 if (read_extent_buffer_to_user(leaf, up,
2075 item_off, item_len)) {
2080 *sk_offset += item_len;
2084 if (ret) /* -EOVERFLOW from above */
2087 if (*num_found >= sk->nr_items) {
2094 test.objectid = sk->max_objectid;
2095 test.type = sk->max_type;
2096 test.offset = sk->max_offset;
2097 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2099 else if (key->offset < (u64)-1)
2101 else if (key->type < (u8)-1) {
2104 } else if (key->objectid < (u64)-1) {
2112 * 0: all items from this leaf copied, continue with next
2113 * 1: * more items can be copied, but unused buffer is too small
2114 * * all items were found
2115 * Either way, it will stops the loop which iterates to the next
2117 * -EOVERFLOW: item was to large for buffer
2118 * -EFAULT: could not copy extent buffer back to userspace
2123 static noinline int search_ioctl(struct inode *inode,
2124 struct btrfs_ioctl_search_key *sk,
2128 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2129 struct btrfs_root *root;
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2134 unsigned long sk_offset = 0;
2136 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2137 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2141 path = btrfs_alloc_path();
2145 if (sk->tree_id == 0) {
2146 /* search the root of the inode that was passed */
2147 root = BTRFS_I(inode)->root;
2149 key.objectid = sk->tree_id;
2150 key.type = BTRFS_ROOT_ITEM_KEY;
2151 key.offset = (u64)-1;
2152 root = btrfs_read_fs_root_no_name(info, &key);
2154 btrfs_free_path(path);
2155 return PTR_ERR(root);
2159 key.objectid = sk->min_objectid;
2160 key.type = sk->min_type;
2161 key.offset = sk->min_offset;
2164 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2170 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2171 &sk_offset, &num_found);
2172 btrfs_release_path(path);
2180 sk->nr_items = num_found;
2181 btrfs_free_path(path);
2185 static noinline int btrfs_ioctl_tree_search(struct file *file,
2188 struct btrfs_ioctl_search_args __user *uargs;
2189 struct btrfs_ioctl_search_key sk;
2190 struct inode *inode;
2194 if (!capable(CAP_SYS_ADMIN))
2197 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2199 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2202 buf_size = sizeof(uargs->buf);
2204 inode = file_inode(file);
2205 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2208 * In the origin implementation an overflow is handled by returning a
2209 * search header with a len of zero, so reset ret.
2211 if (ret == -EOVERFLOW)
2214 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2219 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2222 struct btrfs_ioctl_search_args_v2 __user *uarg;
2223 struct btrfs_ioctl_search_args_v2 args;
2224 struct inode *inode;
2227 const size_t buf_limit = SZ_16M;
2229 if (!capable(CAP_SYS_ADMIN))
2232 /* copy search header and buffer size */
2233 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2234 if (copy_from_user(&args, uarg, sizeof(args)))
2237 buf_size = args.buf_size;
2239 /* limit result size to 16MB */
2240 if (buf_size > buf_limit)
2241 buf_size = buf_limit;
2243 inode = file_inode(file);
2244 ret = search_ioctl(inode, &args.key, &buf_size,
2245 (char __user *)(&uarg->buf[0]));
2246 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2248 else if (ret == -EOVERFLOW &&
2249 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2256 * Search INODE_REFs to identify path name of 'dirid' directory
2257 * in a 'tree_id' tree. and sets path name to 'name'.
2259 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2260 u64 tree_id, u64 dirid, char *name)
2262 struct btrfs_root *root;
2263 struct btrfs_key key;
2269 struct btrfs_inode_ref *iref;
2270 struct extent_buffer *l;
2271 struct btrfs_path *path;
2273 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2278 path = btrfs_alloc_path();
2282 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2284 key.objectid = tree_id;
2285 key.type = BTRFS_ROOT_ITEM_KEY;
2286 key.offset = (u64)-1;
2287 root = btrfs_read_fs_root_no_name(info, &key);
2289 ret = PTR_ERR(root);
2293 key.objectid = dirid;
2294 key.type = BTRFS_INODE_REF_KEY;
2295 key.offset = (u64)-1;
2298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2302 ret = btrfs_previous_item(root, path, dirid,
2303 BTRFS_INODE_REF_KEY);
2313 slot = path->slots[0];
2314 btrfs_item_key_to_cpu(l, &key, slot);
2316 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2317 len = btrfs_inode_ref_name_len(l, iref);
2319 total_len += len + 1;
2321 ret = -ENAMETOOLONG;
2326 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2328 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2331 btrfs_release_path(path);
2332 key.objectid = key.offset;
2333 key.offset = (u64)-1;
2334 dirid = key.objectid;
2336 memmove(name, ptr, total_len);
2337 name[total_len] = '\0';
2340 btrfs_free_path(path);
2344 static int btrfs_search_path_in_tree_user(struct inode *inode,
2345 struct btrfs_ioctl_ino_lookup_user_args *args)
2347 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2348 struct super_block *sb = inode->i_sb;
2349 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2350 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2351 u64 dirid = args->dirid;
2352 unsigned long item_off;
2353 unsigned long item_len;
2354 struct btrfs_inode_ref *iref;
2355 struct btrfs_root_ref *rref;
2356 struct btrfs_root *root;
2357 struct btrfs_path *path;
2358 struct btrfs_key key, key2;
2359 struct extent_buffer *leaf;
2360 struct inode *temp_inode;
2367 path = btrfs_alloc_path();
2372 * If the bottom subvolume does not exist directly under upper_limit,
2373 * construct the path in from the bottom up.
2375 if (dirid != upper_limit.objectid) {
2376 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2378 key.objectid = treeid;
2379 key.type = BTRFS_ROOT_ITEM_KEY;
2380 key.offset = (u64)-1;
2381 root = btrfs_read_fs_root_no_name(fs_info, &key);
2383 ret = PTR_ERR(root);
2387 key.objectid = dirid;
2388 key.type = BTRFS_INODE_REF_KEY;
2389 key.offset = (u64)-1;
2391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2394 } else if (ret > 0) {
2395 ret = btrfs_previous_item(root, path, dirid,
2396 BTRFS_INODE_REF_KEY);
2399 } else if (ret > 0) {
2405 leaf = path->nodes[0];
2406 slot = path->slots[0];
2407 btrfs_item_key_to_cpu(leaf, &key, slot);
2409 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2410 len = btrfs_inode_ref_name_len(leaf, iref);
2412 total_len += len + 1;
2413 if (ptr < args->path) {
2414 ret = -ENAMETOOLONG;
2419 read_extent_buffer(leaf, ptr,
2420 (unsigned long)(iref + 1), len);
2422 /* Check the read+exec permission of this directory */
2423 ret = btrfs_previous_item(root, path, dirid,
2424 BTRFS_INODE_ITEM_KEY);
2427 } else if (ret > 0) {
2432 leaf = path->nodes[0];
2433 slot = path->slots[0];
2434 btrfs_item_key_to_cpu(leaf, &key2, slot);
2435 if (key2.objectid != dirid) {
2440 temp_inode = btrfs_iget(sb, &key2, root, NULL);
2441 if (IS_ERR(temp_inode)) {
2442 ret = PTR_ERR(temp_inode);
2445 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2452 if (key.offset == upper_limit.objectid)
2454 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2459 btrfs_release_path(path);
2460 key.objectid = key.offset;
2461 key.offset = (u64)-1;
2462 dirid = key.objectid;
2465 memmove(args->path, ptr, total_len);
2466 args->path[total_len] = '\0';
2467 btrfs_release_path(path);
2470 /* Get the bottom subvolume's name from ROOT_REF */
2471 root = fs_info->tree_root;
2472 key.objectid = treeid;
2473 key.type = BTRFS_ROOT_REF_KEY;
2474 key.offset = args->treeid;
2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2478 } else if (ret > 0) {
2483 leaf = path->nodes[0];
2484 slot = path->slots[0];
2485 btrfs_item_key_to_cpu(leaf, &key, slot);
2487 item_off = btrfs_item_ptr_offset(leaf, slot);
2488 item_len = btrfs_item_size_nr(leaf, slot);
2489 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2490 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2491 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2496 /* Copy subvolume's name */
2497 item_off += sizeof(struct btrfs_root_ref);
2498 item_len -= sizeof(struct btrfs_root_ref);
2499 read_extent_buffer(leaf, args->name, item_off, item_len);
2500 args->name[item_len] = 0;
2503 btrfs_free_path(path);
2507 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2510 struct btrfs_ioctl_ino_lookup_args *args;
2511 struct inode *inode;
2514 args = memdup_user(argp, sizeof(*args));
2516 return PTR_ERR(args);
2518 inode = file_inode(file);
2521 * Unprivileged query to obtain the containing subvolume root id. The
2522 * path is reset so it's consistent with btrfs_search_path_in_tree.
2524 if (args->treeid == 0)
2525 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2527 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2532 if (!capable(CAP_SYS_ADMIN)) {
2537 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2538 args->treeid, args->objectid,
2542 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2550 * Version of ino_lookup ioctl (unprivileged)
2552 * The main differences from ino_lookup ioctl are:
2554 * 1. Read + Exec permission will be checked using inode_permission() during
2555 * path construction. -EACCES will be returned in case of failure.
2556 * 2. Path construction will be stopped at the inode number which corresponds
2557 * to the fd with which this ioctl is called. If constructed path does not
2558 * exist under fd's inode, -EACCES will be returned.
2559 * 3. The name of bottom subvolume is also searched and filled.
2561 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2563 struct btrfs_ioctl_ino_lookup_user_args *args;
2564 struct inode *inode;
2567 args = memdup_user(argp, sizeof(*args));
2569 return PTR_ERR(args);
2571 inode = file_inode(file);
2573 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2574 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2576 * The subvolume does not exist under fd with which this is
2583 ret = btrfs_search_path_in_tree_user(inode, args);
2585 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2592 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2593 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2595 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2596 struct btrfs_fs_info *fs_info;
2597 struct btrfs_root *root;
2598 struct btrfs_path *path;
2599 struct btrfs_key key;
2600 struct btrfs_root_item *root_item;
2601 struct btrfs_root_ref *rref;
2602 struct extent_buffer *leaf;
2603 unsigned long item_off;
2604 unsigned long item_len;
2605 struct inode *inode;
2609 path = btrfs_alloc_path();
2613 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2615 btrfs_free_path(path);
2619 inode = file_inode(file);
2620 fs_info = BTRFS_I(inode)->root->fs_info;
2622 /* Get root_item of inode's subvolume */
2623 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2624 key.type = BTRFS_ROOT_ITEM_KEY;
2625 key.offset = (u64)-1;
2626 root = btrfs_read_fs_root_no_name(fs_info, &key);
2628 ret = PTR_ERR(root);
2631 root_item = &root->root_item;
2633 subvol_info->treeid = key.objectid;
2635 subvol_info->generation = btrfs_root_generation(root_item);
2636 subvol_info->flags = btrfs_root_flags(root_item);
2638 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2639 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2641 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2644 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2645 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2646 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2648 subvol_info->otransid = btrfs_root_otransid(root_item);
2649 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2650 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2652 subvol_info->stransid = btrfs_root_stransid(root_item);
2653 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2654 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2656 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2657 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2658 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2660 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2661 /* Search root tree for ROOT_BACKREF of this subvolume */
2662 root = fs_info->tree_root;
2664 key.type = BTRFS_ROOT_BACKREF_KEY;
2666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2669 } else if (path->slots[0] >=
2670 btrfs_header_nritems(path->nodes[0])) {
2671 ret = btrfs_next_leaf(root, path);
2674 } else if (ret > 0) {
2680 leaf = path->nodes[0];
2681 slot = path->slots[0];
2682 btrfs_item_key_to_cpu(leaf, &key, slot);
2683 if (key.objectid == subvol_info->treeid &&
2684 key.type == BTRFS_ROOT_BACKREF_KEY) {
2685 subvol_info->parent_id = key.offset;
2687 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2688 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2690 item_off = btrfs_item_ptr_offset(leaf, slot)
2691 + sizeof(struct btrfs_root_ref);
2692 item_len = btrfs_item_size_nr(leaf, slot)
2693 - sizeof(struct btrfs_root_ref);
2694 read_extent_buffer(leaf, subvol_info->name,
2695 item_off, item_len);
2702 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2706 btrfs_free_path(path);
2707 kzfree(subvol_info);
2712 * Return ROOT_REF information of the subvolume containing this inode
2713 * except the subvolume name.
2715 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2717 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2718 struct btrfs_root_ref *rref;
2719 struct btrfs_root *root;
2720 struct btrfs_path *path;
2721 struct btrfs_key key;
2722 struct extent_buffer *leaf;
2723 struct inode *inode;
2729 path = btrfs_alloc_path();
2733 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2734 if (IS_ERR(rootrefs)) {
2735 btrfs_free_path(path);
2736 return PTR_ERR(rootrefs);
2739 inode = file_inode(file);
2740 root = BTRFS_I(inode)->root->fs_info->tree_root;
2741 objectid = BTRFS_I(inode)->root->root_key.objectid;
2743 key.objectid = objectid;
2744 key.type = BTRFS_ROOT_REF_KEY;
2745 key.offset = rootrefs->min_treeid;
2748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2751 } else if (path->slots[0] >=
2752 btrfs_header_nritems(path->nodes[0])) {
2753 ret = btrfs_next_leaf(root, path);
2756 } else if (ret > 0) {
2762 leaf = path->nodes[0];
2763 slot = path->slots[0];
2765 btrfs_item_key_to_cpu(leaf, &key, slot);
2766 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2771 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2776 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2777 rootrefs->rootref[found].treeid = key.offset;
2778 rootrefs->rootref[found].dirid =
2779 btrfs_root_ref_dirid(leaf, rref);
2782 ret = btrfs_next_item(root, path);
2785 } else if (ret > 0) {
2792 if (!ret || ret == -EOVERFLOW) {
2793 rootrefs->num_items = found;
2794 /* update min_treeid for next search */
2796 rootrefs->min_treeid =
2797 rootrefs->rootref[found - 1].treeid + 1;
2798 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2803 btrfs_free_path(path);
2808 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2811 struct dentry *parent = file->f_path.dentry;
2812 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2813 struct dentry *dentry;
2814 struct inode *dir = d_inode(parent);
2815 struct inode *inode;
2816 struct btrfs_root *root = BTRFS_I(dir)->root;
2817 struct btrfs_root *dest = NULL;
2818 struct btrfs_ioctl_vol_args *vol_args;
2822 if (!S_ISDIR(dir->i_mode))
2825 vol_args = memdup_user(arg, sizeof(*vol_args));
2826 if (IS_ERR(vol_args))
2827 return PTR_ERR(vol_args);
2829 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2830 namelen = strlen(vol_args->name);
2831 if (strchr(vol_args->name, '/') ||
2832 strncmp(vol_args->name, "..", namelen) == 0) {
2837 err = mnt_want_write_file(file);
2842 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2844 goto out_drop_write;
2845 dentry = lookup_one_len(vol_args->name, parent, namelen);
2846 if (IS_ERR(dentry)) {
2847 err = PTR_ERR(dentry);
2848 goto out_unlock_dir;
2851 if (d_really_is_negative(dentry)) {
2856 inode = d_inode(dentry);
2857 dest = BTRFS_I(inode)->root;
2858 if (!capable(CAP_SYS_ADMIN)) {
2860 * Regular user. Only allow this with a special mount
2861 * option, when the user has write+exec access to the
2862 * subvol root, and when rmdir(2) would have been
2865 * Note that this is _not_ check that the subvol is
2866 * empty or doesn't contain data that we wouldn't
2867 * otherwise be able to delete.
2869 * Users who want to delete empty subvols should try
2873 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2877 * Do not allow deletion if the parent dir is the same
2878 * as the dir to be deleted. That means the ioctl
2879 * must be called on the dentry referencing the root
2880 * of the subvol, not a random directory contained
2887 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2892 /* check if subvolume may be deleted by a user */
2893 err = btrfs_may_delete(dir, dentry, 1);
2897 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2903 err = btrfs_delete_subvolume(dir, dentry);
2904 inode_unlock(inode);
2913 mnt_drop_write_file(file);
2919 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2921 struct inode *inode = file_inode(file);
2922 struct btrfs_root *root = BTRFS_I(inode)->root;
2923 struct btrfs_ioctl_defrag_range_args *range;
2926 ret = mnt_want_write_file(file);
2930 if (btrfs_root_readonly(root)) {
2935 switch (inode->i_mode & S_IFMT) {
2937 if (!capable(CAP_SYS_ADMIN)) {
2941 ret = btrfs_defrag_root(root);
2944 if (!(file->f_mode & FMODE_WRITE)) {
2949 range = kzalloc(sizeof(*range), GFP_KERNEL);
2956 if (copy_from_user(range, argp,
2962 /* compression requires us to start the IO */
2963 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2964 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2965 range->extent_thresh = (u32)-1;
2968 /* the rest are all set to zero by kzalloc */
2969 range->len = (u64)-1;
2971 ret = btrfs_defrag_file(file_inode(file), file,
2972 range, BTRFS_OLDEST_GENERATION, 0);
2981 mnt_drop_write_file(file);
2985 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2987 struct btrfs_ioctl_vol_args *vol_args;
2990 if (!capable(CAP_SYS_ADMIN))
2993 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2994 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2996 vol_args = memdup_user(arg, sizeof(*vol_args));
2997 if (IS_ERR(vol_args)) {
2998 ret = PTR_ERR(vol_args);
3002 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3003 ret = btrfs_init_new_device(fs_info, vol_args->name);
3006 btrfs_info(fs_info, "disk added %s", vol_args->name);
3010 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3014 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3016 struct inode *inode = file_inode(file);
3017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3018 struct btrfs_ioctl_vol_args_v2 *vol_args;
3021 if (!capable(CAP_SYS_ADMIN))
3024 ret = mnt_want_write_file(file);
3028 vol_args = memdup_user(arg, sizeof(*vol_args));
3029 if (IS_ERR(vol_args)) {
3030 ret = PTR_ERR(vol_args);
3034 /* Check for compatibility reject unknown flags */
3035 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3040 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3041 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3045 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3046 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3048 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3049 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3051 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3054 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3055 btrfs_info(fs_info, "device deleted: id %llu",
3058 btrfs_info(fs_info, "device deleted: %s",
3064 mnt_drop_write_file(file);
3068 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3070 struct inode *inode = file_inode(file);
3071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3072 struct btrfs_ioctl_vol_args *vol_args;
3075 if (!capable(CAP_SYS_ADMIN))
3078 ret = mnt_want_write_file(file);
3082 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3083 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3084 goto out_drop_write;
3087 vol_args = memdup_user(arg, sizeof(*vol_args));
3088 if (IS_ERR(vol_args)) {
3089 ret = PTR_ERR(vol_args);
3093 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3094 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3097 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3100 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3102 mnt_drop_write_file(file);
3107 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3110 struct btrfs_ioctl_fs_info_args *fi_args;
3111 struct btrfs_device *device;
3112 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3115 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3120 fi_args->num_devices = fs_devices->num_devices;
3122 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3123 if (device->devid > fi_args->max_id)
3124 fi_args->max_id = device->devid;
3128 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
3129 fi_args->nodesize = fs_info->nodesize;
3130 fi_args->sectorsize = fs_info->sectorsize;
3131 fi_args->clone_alignment = fs_info->sectorsize;
3133 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3140 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3143 struct btrfs_ioctl_dev_info_args *di_args;
3144 struct btrfs_device *dev;
3146 char *s_uuid = NULL;
3148 di_args = memdup_user(arg, sizeof(*di_args));
3149 if (IS_ERR(di_args))
3150 return PTR_ERR(di_args);
3152 if (!btrfs_is_empty_uuid(di_args->uuid))
3153 s_uuid = di_args->uuid;
3156 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
3163 di_args->devid = dev->devid;
3164 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3165 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3166 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3168 struct rcu_string *name;
3170 name = rcu_dereference(dev->name);
3171 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
3172 di_args->path[sizeof(di_args->path) - 1] = 0;
3174 di_args->path[0] = '\0';
3179 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3186 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
3190 page = grab_cache_page(inode->i_mapping, index);
3192 return ERR_PTR(-ENOMEM);
3194 if (!PageUptodate(page)) {
3197 ret = btrfs_readpage(NULL, page);
3199 return ERR_PTR(ret);
3201 if (!PageUptodate(page)) {
3204 return ERR_PTR(-EIO);
3206 if (page->mapping != inode->i_mapping) {
3209 return ERR_PTR(-EAGAIN);
3216 static int gather_extent_pages(struct inode *inode, struct page **pages,
3217 int num_pages, u64 off)
3220 pgoff_t index = off >> PAGE_SHIFT;
3222 for (i = 0; i < num_pages; i++) {
3224 pages[i] = extent_same_get_page(inode, index + i);
3225 if (IS_ERR(pages[i])) {
3226 int err = PTR_ERR(pages[i]);
3237 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
3238 bool retry_range_locking)
3241 * Do any pending delalloc/csum calculations on inode, one way or
3242 * another, and lock file content.
3243 * The locking order is:
3246 * 2) range in the inode's io tree
3249 struct btrfs_ordered_extent *ordered;
3250 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3251 ordered = btrfs_lookup_first_ordered_extent(inode,
3254 ordered->file_offset + ordered->len <= off ||
3255 ordered->file_offset >= off + len) &&
3256 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
3257 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
3259 btrfs_put_ordered_extent(ordered);
3262 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3264 btrfs_put_ordered_extent(ordered);
3265 if (!retry_range_locking)
3267 btrfs_wait_ordered_range(inode, off, len);
3272 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
3274 inode_unlock(inode1);
3275 inode_unlock(inode2);
3278 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
3280 if (inode1 < inode2)
3281 swap(inode1, inode2);
3283 inode_lock_nested(inode1, I_MUTEX_PARENT);
3284 inode_lock_nested(inode2, I_MUTEX_CHILD);
3287 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3288 struct inode *inode2, u64 loff2, u64 len)
3290 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3291 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3294 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3295 struct inode *inode2, u64 loff2, u64 len,
3296 bool retry_range_locking)
3300 if (inode1 < inode2) {
3301 swap(inode1, inode2);
3304 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
3307 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
3309 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3316 struct page **src_pages;
3317 struct page **dst_pages;
3320 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3325 for (i = 0; i < cmp->num_pages; i++) {
3326 pg = cmp->src_pages[i];
3331 pg = cmp->dst_pages[i];
3339 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3340 struct inode *dst, u64 dst_loff,
3341 u64 len, struct cmp_pages *cmp)
3344 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3346 cmp->num_pages = num_pages;
3348 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
3352 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
3356 btrfs_cmp_data_free(cmp);
3360 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3364 struct page *src_page, *dst_page;
3365 unsigned int cmp_len = PAGE_SIZE;
3366 void *addr, *dst_addr;
3370 if (len < PAGE_SIZE)
3373 BUG_ON(i >= cmp->num_pages);
3375 src_page = cmp->src_pages[i];
3376 dst_page = cmp->dst_pages[i];
3377 ASSERT(PageLocked(src_page));
3378 ASSERT(PageLocked(dst_page));
3380 addr = kmap_atomic(src_page);
3381 dst_addr = kmap_atomic(dst_page);
3383 flush_dcache_page(src_page);
3384 flush_dcache_page(dst_page);
3386 if (memcmp(addr, dst_addr, cmp_len))
3389 kunmap_atomic(addr);
3390 kunmap_atomic(dst_addr);
3402 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3406 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3408 if (off + olen > inode->i_size || off + olen < off)
3411 /* if we extend to eof, continue to block boundary */
3412 if (off + len == inode->i_size)
3413 *plen = len = ALIGN(inode->i_size, bs) - off;
3415 /* Check that we are block aligned - btrfs_clone() requires this */
3416 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3422 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
3423 struct inode *dst, u64 dst_loff,
3424 struct cmp_pages *cmp)
3428 bool same_inode = (src == dst);
3429 u64 same_lock_start = 0;
3430 u64 same_lock_len = 0;
3432 ret = extent_same_check_offsets(src, loff, &len, olen);
3436 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3442 * Single inode case wants the same checks, except we
3443 * don't want our length pushed out past i_size as
3444 * comparing that data range makes no sense.
3446 * extent_same_check_offsets() will do this for an
3447 * unaligned length at i_size, so catch it here and
3448 * reject the request.
3450 * This effectively means we require aligned extents
3451 * for the single-inode case, whereas the other cases
3452 * allow an unaligned length so long as it ends at
3458 /* Check for overlapping ranges */
3459 if (dst_loff + len > loff && dst_loff < loff + len)
3462 same_lock_start = min_t(u64, loff, dst_loff);
3463 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3467 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
3472 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3475 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3478 * If one of the inodes has dirty pages in the respective range or
3479 * ordered extents, we need to flush dellaloc and wait for all ordered
3480 * extents in the range. We must unlock the pages and the ranges in the
3481 * io trees to avoid deadlocks when flushing delalloc (requires locking
3482 * pages) and when waiting for ordered extents to complete (they require
3485 if (ret == -EAGAIN) {
3487 * Ranges in the io trees already unlocked. Now unlock all
3488 * pages before waiting for all IO to complete.
3490 btrfs_cmp_data_free(cmp);
3492 btrfs_wait_ordered_range(src, same_lock_start,
3495 btrfs_wait_ordered_range(src, loff, len);
3496 btrfs_wait_ordered_range(dst, dst_loff, len);
3502 /* ranges in the io trees already unlocked */
3503 btrfs_cmp_data_free(cmp);
3507 /* pass original length for comparison so we stay within i_size */
3508 ret = btrfs_cmp_data(olen, cmp);
3510 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3513 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3514 same_lock_start + same_lock_len - 1);
3516 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3518 btrfs_cmp_data_free(cmp);
3523 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3525 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3526 struct inode *dst, u64 dst_loff)
3529 struct cmp_pages cmp;
3530 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
3531 bool same_inode = (src == dst);
3532 u64 i, tail_len, chunk_count;
3540 btrfs_double_inode_lock(src, dst);
3542 /* don't make the dst file partly checksummed */
3543 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3544 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3549 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3550 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3551 if (chunk_count == 0)
3552 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
3555 * If deduping ranges in the same inode, locking rules make it
3556 * mandatory to always lock pages in ascending order to avoid deadlocks
3557 * with concurrent tasks (such as starting writeback/delalloc).
3559 if (same_inode && dst_loff < loff)
3560 swap(loff, dst_loff);
3563 * We must gather up all the pages before we initiate our extent
3564 * locking. We use an array for the page pointers. Size of the array is
3565 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
3567 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3568 GFP_KERNEL | __GFP_ZERO);
3569 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3570 GFP_KERNEL | __GFP_ZERO);
3571 if (!cmp.src_pages || !cmp.dst_pages) {
3576 for (i = 0; i < chunk_count; i++) {
3577 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3578 dst, dst_loff, &cmp);
3582 loff += BTRFS_MAX_DEDUPE_LEN;
3583 dst_loff += BTRFS_MAX_DEDUPE_LEN;
3587 ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3594 btrfs_double_inode_unlock(src, dst);
3597 kvfree(cmp.src_pages);
3598 kvfree(cmp.dst_pages);
3603 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3604 struct file *dst_file, u64 dst_loff)
3606 struct inode *src = file_inode(src_file);
3607 struct inode *dst = file_inode(dst_file);
3608 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3611 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3613 * Btrfs does not support blocksize < page_size. As a
3614 * result, btrfs_cmp_data() won't correctly handle
3615 * this situation without an update.
3620 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3626 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3627 struct inode *inode,
3633 struct btrfs_root *root = BTRFS_I(inode)->root;
3636 inode_inc_iversion(inode);
3637 if (!no_time_update)
3638 inode->i_mtime = inode->i_ctime = current_time(inode);
3640 * We round up to the block size at eof when determining which
3641 * extents to clone above, but shouldn't round up the file size.
3643 if (endoff > destoff + olen)
3644 endoff = destoff + olen;
3645 if (endoff > inode->i_size)
3646 btrfs_i_size_write(BTRFS_I(inode), endoff);
3648 ret = btrfs_update_inode(trans, root, inode);
3650 btrfs_abort_transaction(trans, ret);
3651 btrfs_end_transaction(trans);
3654 ret = btrfs_end_transaction(trans);
3659 static void clone_update_extent_map(struct btrfs_inode *inode,
3660 const struct btrfs_trans_handle *trans,
3661 const struct btrfs_path *path,
3662 const u64 hole_offset,
3665 struct extent_map_tree *em_tree = &inode->extent_tree;
3666 struct extent_map *em;
3669 em = alloc_extent_map();
3671 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3676 struct btrfs_file_extent_item *fi;
3678 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3679 struct btrfs_file_extent_item);
3680 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3681 em->generation = -1;
3682 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3683 BTRFS_FILE_EXTENT_INLINE)
3684 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3685 &inode->runtime_flags);
3687 em->start = hole_offset;
3689 em->ram_bytes = em->len;
3690 em->orig_start = hole_offset;
3691 em->block_start = EXTENT_MAP_HOLE;
3693 em->orig_block_len = 0;
3694 em->compress_type = BTRFS_COMPRESS_NONE;
3695 em->generation = trans->transid;
3699 write_lock(&em_tree->lock);
3700 ret = add_extent_mapping(em_tree, em, 1);
3701 write_unlock(&em_tree->lock);
3702 if (ret != -EEXIST) {
3703 free_extent_map(em);
3706 btrfs_drop_extent_cache(inode, em->start,
3707 em->start + em->len - 1, 0);
3711 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3715 * Make sure we do not end up inserting an inline extent into a file that has
3716 * already other (non-inline) extents. If a file has an inline extent it can
3717 * not have any other extents and the (single) inline extent must start at the
3718 * file offset 0. Failing to respect these rules will lead to file corruption,
3719 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3721 * We can have extents that have been already written to disk or we can have
3722 * dirty ranges still in delalloc, in which case the extent maps and items are
3723 * created only when we run delalloc, and the delalloc ranges might fall outside
3724 * the range we are currently locking in the inode's io tree. So we check the
3725 * inode's i_size because of that (i_size updates are done while holding the
3726 * i_mutex, which we are holding here).
3727 * We also check to see if the inode has a size not greater than "datal" but has
3728 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3729 * protected against such concurrent fallocate calls by the i_mutex).
3731 * If the file has no extents but a size greater than datal, do not allow the
3732 * copy because we would need turn the inline extent into a non-inline one (even
3733 * with NO_HOLES enabled). If we find our destination inode only has one inline
3734 * extent, just overwrite it with the source inline extent if its size is less
3735 * than the source extent's size, or we could copy the source inline extent's
3736 * data into the destination inode's inline extent if the later is greater then
3739 static int clone_copy_inline_extent(struct inode *dst,
3740 struct btrfs_trans_handle *trans,
3741 struct btrfs_path *path,
3742 struct btrfs_key *new_key,
3743 const u64 drop_start,
3749 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3750 struct btrfs_root *root = BTRFS_I(dst)->root;
3751 const u64 aligned_end = ALIGN(new_key->offset + datal,
3752 fs_info->sectorsize);
3754 struct btrfs_key key;
3756 if (new_key->offset > 0)
3759 key.objectid = btrfs_ino(BTRFS_I(dst));
3760 key.type = BTRFS_EXTENT_DATA_KEY;
3762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3765 } else if (ret > 0) {
3766 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3767 ret = btrfs_next_leaf(root, path);