2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include <linux/iversion.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
63 #include "compression.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32 {
74 } __attribute__ ((__packed__));
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
97 __u64 reserved[4]; /* in */
98 } __attribute__ ((__packed__));
100 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
101 struct btrfs_ioctl_send_args_32)
104 static int btrfs_clone(struct inode *src, struct inode *inode,
105 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
108 /* Mask out flags that are inappropriate for the given type of inode. */
109 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
113 else if (S_ISREG(mode))
114 return flags & ~FS_DIRSYNC_FL;
116 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
120 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
122 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
124 unsigned int iflags = 0;
126 if (flags & BTRFS_INODE_SYNC)
127 iflags |= FS_SYNC_FL;
128 if (flags & BTRFS_INODE_IMMUTABLE)
129 iflags |= FS_IMMUTABLE_FL;
130 if (flags & BTRFS_INODE_APPEND)
131 iflags |= FS_APPEND_FL;
132 if (flags & BTRFS_INODE_NODUMP)
133 iflags |= FS_NODUMP_FL;
134 if (flags & BTRFS_INODE_NOATIME)
135 iflags |= FS_NOATIME_FL;
136 if (flags & BTRFS_INODE_DIRSYNC)
137 iflags |= FS_DIRSYNC_FL;
138 if (flags & BTRFS_INODE_NODATACOW)
139 iflags |= FS_NOCOW_FL;
141 if (flags & BTRFS_INODE_NOCOMPRESS)
142 iflags |= FS_NOCOMP_FL;
143 else if (flags & BTRFS_INODE_COMPRESS)
144 iflags |= FS_COMPR_FL;
150 * Update inode->i_flags based on the btrfs internal flags.
152 void btrfs_update_iflags(struct inode *inode)
154 struct btrfs_inode *ip = BTRFS_I(inode);
155 unsigned int new_fl = 0;
157 if (ip->flags & BTRFS_INODE_SYNC)
159 if (ip->flags & BTRFS_INODE_IMMUTABLE)
160 new_fl |= S_IMMUTABLE;
161 if (ip->flags & BTRFS_INODE_APPEND)
163 if (ip->flags & BTRFS_INODE_NOATIME)
165 if (ip->flags & BTRFS_INODE_DIRSYNC)
168 set_mask_bits(&inode->i_flags,
169 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
173 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
175 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
176 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
178 if (copy_to_user(arg, &flags, sizeof(flags)))
183 static int check_flags(unsigned int flags)
185 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
186 FS_NOATIME_FL | FS_NODUMP_FL | \
187 FS_SYNC_FL | FS_DIRSYNC_FL | \
188 FS_NOCOMP_FL | FS_COMPR_FL |
192 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
198 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
200 struct inode *inode = file_inode(file);
201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
202 struct btrfs_inode *ip = BTRFS_I(inode);
203 struct btrfs_root *root = ip->root;
204 struct btrfs_trans_handle *trans;
205 unsigned int flags, oldflags;
208 unsigned int i_oldflags;
211 if (!inode_owner_or_capable(inode))
214 if (btrfs_root_readonly(root))
217 if (copy_from_user(&flags, arg, sizeof(flags)))
220 ret = check_flags(flags);
224 ret = mnt_want_write_file(file);
230 ip_oldflags = ip->flags;
231 i_oldflags = inode->i_flags;
232 mode = inode->i_mode;
234 flags = btrfs_mask_flags(inode->i_mode, flags);
235 oldflags = btrfs_flags_to_ioctl(ip->flags);
236 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
237 if (!capable(CAP_LINUX_IMMUTABLE)) {
243 if (flags & FS_SYNC_FL)
244 ip->flags |= BTRFS_INODE_SYNC;
246 ip->flags &= ~BTRFS_INODE_SYNC;
247 if (flags & FS_IMMUTABLE_FL)
248 ip->flags |= BTRFS_INODE_IMMUTABLE;
250 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
251 if (flags & FS_APPEND_FL)
252 ip->flags |= BTRFS_INODE_APPEND;
254 ip->flags &= ~BTRFS_INODE_APPEND;
255 if (flags & FS_NODUMP_FL)
256 ip->flags |= BTRFS_INODE_NODUMP;
258 ip->flags &= ~BTRFS_INODE_NODUMP;
259 if (flags & FS_NOATIME_FL)
260 ip->flags |= BTRFS_INODE_NOATIME;
262 ip->flags &= ~BTRFS_INODE_NOATIME;
263 if (flags & FS_DIRSYNC_FL)
264 ip->flags |= BTRFS_INODE_DIRSYNC;
266 ip->flags &= ~BTRFS_INODE_DIRSYNC;
267 if (flags & FS_NOCOW_FL) {
270 * It's safe to turn csums off here, no extents exist.
271 * Otherwise we want the flag to reflect the real COW
272 * status of the file and will not set it.
274 if (inode->i_size == 0)
275 ip->flags |= BTRFS_INODE_NODATACOW
276 | BTRFS_INODE_NODATASUM;
278 ip->flags |= BTRFS_INODE_NODATACOW;
282 * Revert back under same assumptions as above
285 if (inode->i_size == 0)
286 ip->flags &= ~(BTRFS_INODE_NODATACOW
287 | BTRFS_INODE_NODATASUM);
289 ip->flags &= ~BTRFS_INODE_NODATACOW;
294 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
295 * flag may be changed automatically if compression code won't make
298 if (flags & FS_NOCOMP_FL) {
299 ip->flags &= ~BTRFS_INODE_COMPRESS;
300 ip->flags |= BTRFS_INODE_NOCOMPRESS;
302 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
303 if (ret && ret != -ENODATA)
305 } else if (flags & FS_COMPR_FL) {
308 ip->flags |= BTRFS_INODE_COMPRESS;
309 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
311 comp = btrfs_compress_type2str(fs_info->compress_type);
312 if (!comp || comp[0] == 0)
313 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
315 ret = btrfs_set_prop(inode, "btrfs.compression",
316 comp, strlen(comp), 0);
321 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
322 if (ret && ret != -ENODATA)
324 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 trans = btrfs_start_transaction(root, 1);
329 ret = PTR_ERR(trans);
333 btrfs_update_iflags(inode);
334 inode_inc_iversion(inode);
335 inode->i_ctime = current_time(inode);
336 ret = btrfs_update_inode(trans, root, inode);
338 btrfs_end_transaction(trans);
341 ip->flags = ip_oldflags;
342 inode->i_flags = i_oldflags;
347 mnt_drop_write_file(file);
351 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
353 struct inode *inode = file_inode(file);
355 return put_user(inode->i_generation, arg);
358 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
360 struct inode *inode = file_inode(file);
361 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
362 struct btrfs_device *device;
363 struct request_queue *q;
364 struct fstrim_range range;
365 u64 minlen = ULLONG_MAX;
367 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
370 if (!capable(CAP_SYS_ADMIN))
374 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
378 q = bdev_get_queue(device->bdev);
379 if (blk_queue_discard(q)) {
381 minlen = min_t(u64, q->limits.discard_granularity,
389 if (copy_from_user(&range, arg, sizeof(range)))
391 if (range.start > total_bytes ||
392 range.len < fs_info->sb->s_blocksize)
395 range.len = min(range.len, total_bytes - range.start);
396 range.minlen = max(range.minlen, minlen);
397 ret = btrfs_trim_fs(fs_info, &range);
401 if (copy_to_user(arg, &range, sizeof(range)))
407 int btrfs_is_empty_uuid(u8 *uuid)
411 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
418 static noinline int create_subvol(struct inode *dir,
419 struct dentry *dentry,
420 const char *name, int namelen,
422 struct btrfs_qgroup_inherit *inherit)
424 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
425 struct btrfs_trans_handle *trans;
426 struct btrfs_key key;
427 struct btrfs_root_item *root_item;
428 struct btrfs_inode_item *inode_item;
429 struct extent_buffer *leaf;
430 struct btrfs_root *root = BTRFS_I(dir)->root;
431 struct btrfs_root *new_root;
432 struct btrfs_block_rsv block_rsv;
433 struct timespec cur_time = current_time(dir);
438 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
443 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
447 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
452 * Don't create subvolume whose level is not zero. Or qgroup will be
453 * screwed up since it assumes subvolume qgroup's level to be 0.
455 if (btrfs_qgroup_level(objectid)) {
460 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
462 * The same as the snapshot creation, please see the comment
463 * of create_snapshot().
465 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
466 8, &qgroup_reserved, false);
470 trans = btrfs_start_transaction(root, 0);
472 ret = PTR_ERR(trans);
473 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
476 trans->block_rsv = &block_rsv;
477 trans->bytes_reserved = block_rsv.size;
479 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
483 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
489 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
490 btrfs_set_header_bytenr(leaf, leaf->start);
491 btrfs_set_header_generation(leaf, trans->transid);
492 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
493 btrfs_set_header_owner(leaf, objectid);
495 write_extent_buffer_fsid(leaf, fs_info->fsid);
496 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
497 btrfs_mark_buffer_dirty(leaf);
499 inode_item = &root_item->inode;
500 btrfs_set_stack_inode_generation(inode_item, 1);
501 btrfs_set_stack_inode_size(inode_item, 3);
502 btrfs_set_stack_inode_nlink(inode_item, 1);
503 btrfs_set_stack_inode_nbytes(inode_item,
505 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
507 btrfs_set_root_flags(root_item, 0);
508 btrfs_set_root_limit(root_item, 0);
509 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
511 btrfs_set_root_bytenr(root_item, leaf->start);
512 btrfs_set_root_generation(root_item, trans->transid);
513 btrfs_set_root_level(root_item, 0);
514 btrfs_set_root_refs(root_item, 1);
515 btrfs_set_root_used(root_item, leaf->len);
516 btrfs_set_root_last_snapshot(root_item, 0);
518 btrfs_set_root_generation_v2(root_item,
519 btrfs_root_generation(root_item));
520 uuid_le_gen(&new_uuid);
521 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
522 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
523 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
524 root_item->ctime = root_item->otime;
525 btrfs_set_root_ctransid(root_item, trans->transid);
526 btrfs_set_root_otransid(root_item, trans->transid);
528 btrfs_tree_unlock(leaf);
529 free_extent_buffer(leaf);
532 btrfs_set_root_dirid(root_item, new_dirid);
534 key.objectid = objectid;
536 key.type = BTRFS_ROOT_ITEM_KEY;
537 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
542 key.offset = (u64)-1;
543 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
544 if (IS_ERR(new_root)) {
545 ret = PTR_ERR(new_root);
546 btrfs_abort_transaction(trans, ret);
550 btrfs_record_root_in_trans(trans, new_root);
552 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
554 /* We potentially lose an unused inode item here */
555 btrfs_abort_transaction(trans, ret);
559 mutex_lock(&new_root->objectid_mutex);
560 new_root->highest_objectid = new_dirid;
561 mutex_unlock(&new_root->objectid_mutex);
564 * insert the directory item
566 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
568 btrfs_abort_transaction(trans, ret);
572 ret = btrfs_insert_dir_item(trans, root,
573 name, namelen, BTRFS_I(dir), &key,
574 BTRFS_FT_DIR, index);
576 btrfs_abort_transaction(trans, ret);
580 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
581 ret = btrfs_update_inode(trans, root, dir);
584 ret = btrfs_add_root_ref(trans, fs_info,
585 objectid, root->root_key.objectid,
586 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
589 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
590 BTRFS_UUID_KEY_SUBVOL, objectid);
592 btrfs_abort_transaction(trans, ret);
596 trans->block_rsv = NULL;
597 trans->bytes_reserved = 0;
598 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
601 *async_transid = trans->transid;
602 err = btrfs_commit_transaction_async(trans, 1);
604 err = btrfs_commit_transaction(trans);
606 err = btrfs_commit_transaction(trans);
612 inode = btrfs_lookup_dentry(dir, dentry);
614 return PTR_ERR(inode);
615 d_instantiate(dentry, inode);
624 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
625 struct dentry *dentry,
626 u64 *async_transid, bool readonly,
627 struct btrfs_qgroup_inherit *inherit)
629 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
631 struct btrfs_pending_snapshot *pending_snapshot;
632 struct btrfs_trans_handle *trans;
635 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
638 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
639 if (!pending_snapshot)
642 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
644 pending_snapshot->path = btrfs_alloc_path();
645 if (!pending_snapshot->root_item || !pending_snapshot->path) {
650 atomic_inc(&root->will_be_snapshotted);
651 smp_mb__after_atomic();
652 /* wait for no snapshot writes */
653 wait_event(root->subv_writers->wait,
654 percpu_counter_sum(&root->subv_writers->counter) == 0);
656 ret = btrfs_start_delalloc_inodes(root, 0);
660 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
663 BTRFS_BLOCK_RSV_TEMP);
665 * 1 - parent dir inode
668 * 2 - root ref/backref
669 * 1 - root of snapshot
672 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
673 &pending_snapshot->block_rsv, 8,
674 &pending_snapshot->qgroup_reserved,
679 pending_snapshot->dentry = dentry;
680 pending_snapshot->root = root;
681 pending_snapshot->readonly = readonly;
682 pending_snapshot->dir = dir;
683 pending_snapshot->inherit = inherit;
685 trans = btrfs_start_transaction(root, 0);
687 ret = PTR_ERR(trans);
691 spin_lock(&fs_info->trans_lock);
692 list_add(&pending_snapshot->list,
693 &trans->transaction->pending_snapshots);
694 spin_unlock(&fs_info->trans_lock);
696 *async_transid = trans->transid;
697 ret = btrfs_commit_transaction_async(trans, 1);
699 ret = btrfs_commit_transaction(trans);
701 ret = btrfs_commit_transaction(trans);
706 ret = pending_snapshot->error;
710 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
714 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
716 ret = PTR_ERR(inode);
720 d_instantiate(dentry, inode);
723 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
725 if (atomic_dec_and_test(&root->will_be_snapshotted))
726 wake_up_atomic_t(&root->will_be_snapshotted);
728 kfree(pending_snapshot->root_item);
729 btrfs_free_path(pending_snapshot->path);
730 kfree(pending_snapshot);
735 /* copy of may_delete in fs/namei.c()
736 * Check whether we can remove a link victim from directory dir, check
737 * whether the type of victim is right.
738 * 1. We can't do it if dir is read-only (done in permission())
739 * 2. We should have write and exec permissions on dir
740 * 3. We can't remove anything from append-only dir
741 * 4. We can't do anything with immutable dir (done in permission())
742 * 5. If the sticky bit on dir is set we should either
743 * a. be owner of dir, or
744 * b. be owner of victim, or
745 * c. have CAP_FOWNER capability
746 * 6. If the victim is append-only or immutable we can't do anything with
747 * links pointing to it.
748 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
749 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
750 * 9. We can't remove a root or mountpoint.
751 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
752 * nfs_async_unlink().
755 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
759 if (d_really_is_negative(victim))
762 BUG_ON(d_inode(victim->d_parent) != dir);
763 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
770 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
771 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
774 if (!d_is_dir(victim))
778 } else if (d_is_dir(victim))
782 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
787 /* copy of may_create in fs/namei.c() */
788 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 if (d_really_is_positive(child))
794 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
798 * Create a new subvolume below @parent. This is largely modeled after
799 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
800 * inside this filesystem so it's quite a bit simpler.
802 static noinline int btrfs_mksubvol(const struct path *parent,
803 const char *name, int namelen,
804 struct btrfs_root *snap_src,
805 u64 *async_transid, bool readonly,
806 struct btrfs_qgroup_inherit *inherit)
808 struct inode *dir = d_inode(parent->dentry);
809 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
810 struct dentry *dentry;
813 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
817 dentry = lookup_one_len(name, parent->dentry, namelen);
818 error = PTR_ERR(dentry);
822 error = btrfs_may_create(dir, dentry);
827 * even if this name doesn't exist, we may get hash collisions.
828 * check for them now when we can safely fail
830 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
836 down_read(&fs_info->subvol_sem);
838 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
842 error = create_snapshot(snap_src, dir, dentry,
843 async_transid, readonly, inherit);
845 error = create_subvol(dir, dentry, name, namelen,
846 async_transid, inherit);
849 fsnotify_mkdir(dir, dentry);
851 up_read(&fs_info->subvol_sem);
860 * When we're defragging a range, we don't want to kick it off again
861 * if it is really just waiting for delalloc to send it down.
862 * If we find a nice big extent or delalloc range for the bytes in the
863 * file you want to defrag, we return 0 to let you know to skip this
866 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
869 struct extent_map *em = NULL;
870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
873 read_lock(&em_tree->lock);
874 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
875 read_unlock(&em_tree->lock);
878 end = extent_map_end(em);
880 if (end - offset > thresh)
883 /* if we already have a nice delalloc here, just stop */
885 end = count_range_bits(io_tree, &offset, offset + thresh,
886 thresh, EXTENT_DELALLOC, 1);
893 * helper function to walk through a file and find extents
894 * newer than a specific transid, and smaller than thresh.
896 * This is used by the defragging code to find new and small
899 static int find_new_extents(struct btrfs_root *root,
900 struct inode *inode, u64 newer_than,
901 u64 *off, u32 thresh)
903 struct btrfs_path *path;
904 struct btrfs_key min_key;
905 struct extent_buffer *leaf;
906 struct btrfs_file_extent_item *extent;
909 u64 ino = btrfs_ino(BTRFS_I(inode));
911 path = btrfs_alloc_path();
915 min_key.objectid = ino;
916 min_key.type = BTRFS_EXTENT_DATA_KEY;
917 min_key.offset = *off;
920 ret = btrfs_search_forward(root, &min_key, path, newer_than);
924 if (min_key.objectid != ino)
926 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
929 leaf = path->nodes[0];
930 extent = btrfs_item_ptr(leaf, path->slots[0],
931 struct btrfs_file_extent_item);
933 type = btrfs_file_extent_type(leaf, extent);
934 if (type == BTRFS_FILE_EXTENT_REG &&
935 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
936 check_defrag_in_cache(inode, min_key.offset, thresh)) {
937 *off = min_key.offset;
938 btrfs_free_path(path);
943 if (path->slots[0] < btrfs_header_nritems(leaf)) {
944 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
948 if (min_key.offset == (u64)-1)
952 btrfs_release_path(path);
955 btrfs_free_path(path);
959 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
962 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
963 struct extent_map *em;
967 * hopefully we have this extent in the tree already, try without
968 * the full extent lock
970 read_lock(&em_tree->lock);
971 em = lookup_extent_mapping(em_tree, start, len);
972 read_unlock(&em_tree->lock);
975 struct extent_state *cached = NULL;
976 u64 end = start + len - 1;
978 /* get the big lock and read metadata off disk */
979 lock_extent_bits(io_tree, start, end, &cached);
980 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
981 unlock_extent_cached(io_tree, start, end, &cached);
990 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 struct extent_map *next;
995 /* this is the last extent */
996 if (em->start + em->len >= i_size_read(inode))
999 next = defrag_lookup_extent(inode, em->start + em->len);
1000 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1002 else if ((em->block_start + em->block_len == next->block_start) &&
1003 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1006 free_extent_map(next);
1010 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1011 u64 *last_len, u64 *skip, u64 *defrag_end,
1014 struct extent_map *em;
1016 bool next_mergeable = true;
1017 bool prev_mergeable = true;
1020 * make sure that once we start defragging an extent, we keep on
1023 if (start < *defrag_end)
1028 em = defrag_lookup_extent(inode, start);
1032 /* this will cover holes, and inline extents */
1033 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1039 prev_mergeable = false;
1041 next_mergeable = defrag_check_next_extent(inode, em);
1043 * we hit a real extent, if it is big or the next extent is not a
1044 * real extent, don't bother defragging it
1046 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1047 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1051 * last_len ends up being a counter of how many bytes we've defragged.
1052 * every time we choose not to defrag an extent, we reset *last_len
1053 * so that the next tiny extent will force a defrag.
1055 * The end result of this is that tiny extents before a single big
1056 * extent will force at least part of that big extent to be defragged.
1059 *defrag_end = extent_map_end(em);
1062 *skip = extent_map_end(em);
1066 free_extent_map(em);
1071 * it doesn't do much good to defrag one or two pages
1072 * at a time. This pulls in a nice chunk of pages
1073 * to COW and defrag.
1075 * It also makes sure the delalloc code has enough
1076 * dirty data to avoid making new small extents as part
1079 * It's a good idea to start RA on this range
1080 * before calling this.
1082 static int cluster_pages_for_defrag(struct inode *inode,
1083 struct page **pages,
1084 unsigned long start_index,
1085 unsigned long num_pages)
1087 unsigned long file_end;
1088 u64 isize = i_size_read(inode);
1095 struct btrfs_ordered_extent *ordered;
1096 struct extent_state *cached_state = NULL;
1097 struct extent_io_tree *tree;
1098 struct extent_changeset *data_reserved = NULL;
1099 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101 file_end = (isize - 1) >> PAGE_SHIFT;
1102 if (!isize || start_index > file_end)
1105 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1108 start_index << PAGE_SHIFT,
1109 page_cnt << PAGE_SHIFT);
1113 tree = &BTRFS_I(inode)->io_tree;
1115 /* step one, lock all the pages */
1116 for (i = 0; i < page_cnt; i++) {
1119 page = find_or_create_page(inode->i_mapping,
1120 start_index + i, mask);
1124 page_start = page_offset(page);
1125 page_end = page_start + PAGE_SIZE - 1;
1127 lock_extent_bits(tree, page_start, page_end,
1129 ordered = btrfs_lookup_ordered_extent(inode,
1131 unlock_extent_cached(tree, page_start, page_end,
1137 btrfs_start_ordered_extent(inode, ordered, 1);
1138 btrfs_put_ordered_extent(ordered);
1141 * we unlocked the page above, so we need check if
1142 * it was released or not.
1144 if (page->mapping != inode->i_mapping) {
1151 if (!PageUptodate(page)) {
1152 btrfs_readpage(NULL, page);
1154 if (!PageUptodate(page)) {
1162 if (page->mapping != inode->i_mapping) {
1174 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1178 * so now we have a nice long stream of locked
1179 * and up to date pages, lets wait on them
1181 for (i = 0; i < i_done; i++)
1182 wait_on_page_writeback(pages[i]);
1184 page_start = page_offset(pages[0]);
1185 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1188 page_start, page_end - 1, &cached_state);
1189 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1190 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1191 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1194 if (i_done != page_cnt) {
1195 spin_lock(&BTRFS_I(inode)->lock);
1196 BTRFS_I(inode)->outstanding_extents++;
1197 spin_unlock(&BTRFS_I(inode)->lock);
1198 btrfs_delalloc_release_space(inode, data_reserved,
1199 start_index << PAGE_SHIFT,
1200 (page_cnt - i_done) << PAGE_SHIFT);
1204 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1207 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1208 page_start, page_end - 1, &cached_state);
1210 for (i = 0; i < i_done; i++) {
1211 clear_page_dirty_for_io(pages[i]);
1212 ClearPageChecked(pages[i]);
1213 set_page_extent_mapped(pages[i]);
1214 set_page_dirty(pages[i]);
1215 unlock_page(pages[i]);
1218 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1219 extent_changeset_free(data_reserved);
1222 for (i = 0; i < i_done; i++) {
1223 unlock_page(pages[i]);
1226 btrfs_delalloc_release_space(inode, data_reserved,
1227 start_index << PAGE_SHIFT,
1228 page_cnt << PAGE_SHIFT);
1229 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1230 extent_changeset_free(data_reserved);
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 struct btrfs_ioctl_defrag_range_args *range,
1237 u64 newer_than, unsigned long max_to_defrag)
1239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 struct btrfs_root *root = BTRFS_I(inode)->root;
1241 struct file_ra_state *ra = NULL;
1242 unsigned long last_index;
1243 u64 isize = i_size_read(inode);
1247 u64 newer_off = range->start;
1249 unsigned long ra_index = 0;
1251 int defrag_count = 0;
1252 int compress_type = BTRFS_COMPRESS_ZLIB;
1253 u32 extent_thresh = range->extent_thresh;
1254 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 unsigned long cluster = max_cluster;
1256 u64 new_align = ~((u64)SZ_128K - 1);
1257 struct page **pages = NULL;
1258 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1263 if (range->start >= isize)
1267 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1269 if (range->compress_type)
1270 compress_type = range->compress_type;
1273 if (extent_thresh == 0)
1274 extent_thresh = SZ_256K;
1277 * If we were not given a file, allocate a readahead context. As
1278 * readahead is just an optimization, defrag will work without it so
1279 * we don't error out.
1282 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1284 file_ra_state_init(ra, inode->i_mapping);
1289 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1295 /* find the last page to defrag */
1296 if (range->start + range->len > range->start) {
1297 last_index = min_t(u64, isize - 1,
1298 range->start + range->len - 1) >> PAGE_SHIFT;
1300 last_index = (isize - 1) >> PAGE_SHIFT;
1304 ret = find_new_extents(root, inode, newer_than,
1305 &newer_off, SZ_64K);
1307 range->start = newer_off;
1309 * we always align our defrag to help keep
1310 * the extents in the file evenly spaced
1312 i = (newer_off & new_align) >> PAGE_SHIFT;
1316 i = range->start >> PAGE_SHIFT;
1319 max_to_defrag = last_index - i + 1;
1322 * make writeback starts from i, so the defrag range can be
1323 * written sequentially.
1325 if (i < inode->i_mapping->writeback_index)
1326 inode->i_mapping->writeback_index = i;
1328 while (i <= last_index && defrag_count < max_to_defrag &&
1329 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1331 * make sure we stop running if someone unmounts
1334 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1337 if (btrfs_defrag_cancelled(fs_info)) {
1338 btrfs_debug(fs_info, "defrag_file cancelled");
1343 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1344 extent_thresh, &last_len, &skip,
1345 &defrag_end, do_compress)){
1348 * the should_defrag function tells us how much to skip
1349 * bump our counter by the suggested amount
1351 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 i = max(i + 1, next);
1357 cluster = (PAGE_ALIGN(defrag_end) >>
1359 cluster = min(cluster, max_cluster);
1361 cluster = max_cluster;
1364 if (i + cluster > ra_index) {
1365 ra_index = max(i, ra_index);
1367 page_cache_sync_readahead(inode->i_mapping, ra,
1368 file, ra_index, cluster);
1369 ra_index += cluster;
1374 BTRFS_I(inode)->defrag_compress = compress_type;
1375 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1377 inode_unlock(inode);
1381 defrag_count += ret;
1382 balance_dirty_pages_ratelimited(inode->i_mapping);
1383 inode_unlock(inode);
1386 if (newer_off == (u64)-1)
1392 newer_off = max(newer_off + 1,
1393 (u64)i << PAGE_SHIFT);
1395 ret = find_new_extents(root, inode, newer_than,
1396 &newer_off, SZ_64K);
1398 range->start = newer_off;
1399 i = (newer_off & new_align) >> PAGE_SHIFT;
1406 last_len += ret << PAGE_SHIFT;
1414 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 filemap_flush(inode->i_mapping);
1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 &BTRFS_I(inode)->runtime_flags))
1418 filemap_flush(inode->i_mapping);
1421 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1422 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1423 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1424 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1432 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1433 inode_unlock(inode);
1441 static noinline int btrfs_ioctl_resize(struct file *file,
1444 struct inode *inode = file_inode(file);
1445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 struct btrfs_ioctl_vol_args *vol_args;
1451 struct btrfs_trans_handle *trans;
1452 struct btrfs_device *device = NULL;
1455 char *devstr = NULL;
1459 if (!capable(CAP_SYS_ADMIN))
1462 ret = mnt_want_write_file(file);
1466 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1467 mnt_drop_write_file(file);
1468 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1471 mutex_lock(&fs_info->volume_mutex);
1472 vol_args = memdup_user(arg, sizeof(*vol_args));
1473 if (IS_ERR(vol_args)) {
1474 ret = PTR_ERR(vol_args);
1478 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1480 sizestr = vol_args->name;
1481 devstr = strchr(sizestr, ':');
1483 sizestr = devstr + 1;
1485 devstr = vol_args->name;
1486 ret = kstrtoull(devstr, 10, &devid);
1493 btrfs_info(fs_info, "resizing devid %llu", devid);
1496 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1498 btrfs_info(fs_info, "resizer unable to find device %llu",
1504 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1506 "resizer unable to apply on readonly device %llu",
1512 if (!strcmp(sizestr, "max"))
1513 new_size = device->bdev->bd_inode->i_size;
1515 if (sizestr[0] == '-') {
1518 } else if (sizestr[0] == '+') {
1522 new_size = memparse(sizestr, &retptr);
1523 if (*retptr != '\0' || new_size == 0) {
1529 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1534 old_size = btrfs_device_get_total_bytes(device);
1537 if (new_size > old_size) {
1541 new_size = old_size - new_size;
1542 } else if (mod > 0) {
1543 if (new_size > ULLONG_MAX - old_size) {
1547 new_size = old_size + new_size;
1550 if (new_size < SZ_256M) {
1554 if (new_size > device->bdev->bd_inode->i_size) {
1559 new_size = round_down(new_size, fs_info->sectorsize);
1561 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1562 rcu_str_deref(device->name), new_size);
1564 if (new_size > old_size) {
1565 trans = btrfs_start_transaction(root, 0);
1566 if (IS_ERR(trans)) {
1567 ret = PTR_ERR(trans);
1570 ret = btrfs_grow_device(trans, device, new_size);
1571 btrfs_commit_transaction(trans);
1572 } else if (new_size < old_size) {
1573 ret = btrfs_shrink_device(device, new_size);
1574 } /* equal, nothing need to do */
1579 mutex_unlock(&fs_info->volume_mutex);
1580 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1581 mnt_drop_write_file(file);
1585 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1586 const char *name, unsigned long fd, int subvol,
1587 u64 *transid, bool readonly,
1588 struct btrfs_qgroup_inherit *inherit)
1593 if (!S_ISDIR(file_inode(file)->i_mode))
1596 ret = mnt_want_write_file(file);
1600 namelen = strlen(name);
1601 if (strchr(name, '/')) {
1603 goto out_drop_write;
1606 if (name[0] == '.' &&
1607 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1609 goto out_drop_write;
1613 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1614 NULL, transid, readonly, inherit);
1616 struct fd src = fdget(fd);
1617 struct inode *src_inode;
1620 goto out_drop_write;
1623 src_inode = file_inode(src.file);
1624 if (src_inode->i_sb != file_inode(file)->i_sb) {
1625 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1626 "Snapshot src from another FS");
1628 } else if (!inode_owner_or_capable(src_inode)) {
1630 * Subvolume creation is not restricted, but snapshots
1631 * are limited to own subvolumes only
1635 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1636 BTRFS_I(src_inode)->root,
1637 transid, readonly, inherit);
1642 mnt_drop_write_file(file);
1647 static noinline int btrfs_ioctl_snap_create(struct file *file,
1648 void __user *arg, int subvol)
1650 struct btrfs_ioctl_vol_args *vol_args;
1653 if (!S_ISDIR(file_inode(file)->i_mode))
1656 vol_args = memdup_user(arg, sizeof(*vol_args));
1657 if (IS_ERR(vol_args))
1658 return PTR_ERR(vol_args);
1659 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1661 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1662 vol_args->fd, subvol,
1669 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1670 void __user *arg, int subvol)
1672 struct btrfs_ioctl_vol_args_v2 *vol_args;
1676 bool readonly = false;
1677 struct btrfs_qgroup_inherit *inherit = NULL;
1679 if (!S_ISDIR(file_inode(file)->i_mode))
1682 vol_args = memdup_user(arg, sizeof(*vol_args));
1683 if (IS_ERR(vol_args))
1684 return PTR_ERR(vol_args);
1685 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1687 if (vol_args->flags &
1688 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1689 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1694 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1696 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1698 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1699 if (vol_args->size > PAGE_SIZE) {
1703 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1704 if (IS_ERR(inherit)) {
1705 ret = PTR_ERR(inherit);
1710 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1711 vol_args->fd, subvol, ptr,
1716 if (ptr && copy_to_user(arg +
1717 offsetof(struct btrfs_ioctl_vol_args_v2,
1729 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1732 struct inode *inode = file_inode(file);
1733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1734 struct btrfs_root *root = BTRFS_I(inode)->root;
1738 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1741 down_read(&fs_info->subvol_sem);
1742 if (btrfs_root_readonly(root))
1743 flags |= BTRFS_SUBVOL_RDONLY;
1744 up_read(&fs_info->subvol_sem);
1746 if (copy_to_user(arg, &flags, sizeof(flags)))
1752 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1755 struct inode *inode = file_inode(file);
1756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1757 struct btrfs_root *root = BTRFS_I(inode)->root;
1758 struct btrfs_trans_handle *trans;
1763 if (!inode_owner_or_capable(inode))
1766 ret = mnt_want_write_file(file);
1770 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1772 goto out_drop_write;
1775 if (copy_from_user(&flags, arg, sizeof(flags))) {
1777 goto out_drop_write;
1780 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1782 goto out_drop_write;
1785 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1787 goto out_drop_write;
1790 down_write(&fs_info->subvol_sem);
1793 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1796 root_flags = btrfs_root_flags(&root->root_item);
1797 if (flags & BTRFS_SUBVOL_RDONLY) {
1798 btrfs_set_root_flags(&root->root_item,
1799 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1802 * Block RO -> RW transition if this subvolume is involved in
1805 spin_lock(&root->root_item_lock);
1806 if (root->send_in_progress == 0) {
1807 btrfs_set_root_flags(&root->root_item,
1808 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1809 spin_unlock(&root->root_item_lock);
1811 spin_unlock(&root->root_item_lock);
1813 "Attempt to set subvolume %llu read-write during send",
1814 root->root_key.objectid);
1820 trans = btrfs_start_transaction(root, 1);
1821 if (IS_ERR(trans)) {
1822 ret = PTR_ERR(trans);
1826 ret = btrfs_update_root(trans, fs_info->tree_root,
1827 &root->root_key, &root->root_item);
1829 btrfs_end_transaction(trans);
1833 ret = btrfs_commit_transaction(trans);
1837 btrfs_set_root_flags(&root->root_item, root_flags);
1839 up_write(&fs_info->subvol_sem);
1841 mnt_drop_write_file(file);
1847 * helper to check if the subvolume references other subvolumes
1849 static noinline int may_destroy_subvol(struct btrfs_root *root)
1851 struct btrfs_fs_info *fs_info = root->fs_info;
1852 struct btrfs_path *path;
1853 struct btrfs_dir_item *di;
1854 struct btrfs_key key;
1858 path = btrfs_alloc_path();
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1864 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1865 dir_id, "default", 7, 0);
1866 if (di && !IS_ERR(di)) {
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1868 if (key.objectid == root->root_key.objectid) {
1871 "deleting default subvolume %llu is not allowed",
1875 btrfs_release_path(path);
1878 key.objectid = root->root_key.objectid;
1879 key.type = BTRFS_ROOT_REF_KEY;
1880 key.offset = (u64)-1;
1882 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1888 if (path->slots[0] > 0) {
1890 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1891 if (key.objectid == root->root_key.objectid &&
1892 key.type == BTRFS_ROOT_REF_KEY)
1896 btrfs_free_path(path);
1900 static noinline int key_in_sk(struct btrfs_key *key,
1901 struct btrfs_ioctl_search_key *sk)
1903 struct btrfs_key test;
1906 test.objectid = sk->min_objectid;
1907 test.type = sk->min_type;
1908 test.offset = sk->min_offset;
1910 ret = btrfs_comp_cpu_keys(key, &test);
1914 test.objectid = sk->max_objectid;
1915 test.type = sk->max_type;
1916 test.offset = sk->max_offset;
1918 ret = btrfs_comp_cpu_keys(key, &test);
1924 static noinline int copy_to_sk(struct btrfs_path *path,
1925 struct btrfs_key *key,
1926 struct btrfs_ioctl_search_key *sk,
1929 unsigned long *sk_offset,
1933 struct extent_buffer *leaf;
1934 struct btrfs_ioctl_search_header sh;
1935 struct btrfs_key test;
1936 unsigned long item_off;
1937 unsigned long item_len;
1943 leaf = path->nodes[0];
1944 slot = path->slots[0];
1945 nritems = btrfs_header_nritems(leaf);
1947 if (btrfs_header_generation(leaf) > sk->max_transid) {
1951 found_transid = btrfs_header_generation(leaf);
1953 for (i = slot; i < nritems; i++) {
1954 item_off = btrfs_item_ptr_offset(leaf, i);
1955 item_len = btrfs_item_size_nr(leaf, i);
1957 btrfs_item_key_to_cpu(leaf, key, i);
1958 if (!key_in_sk(key, sk))
1961 if (sizeof(sh) + item_len > *buf_size) {
1968 * return one empty item back for v1, which does not
1972 *buf_size = sizeof(sh) + item_len;
1977 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1982 sh.objectid = key->objectid;
1983 sh.offset = key->offset;
1984 sh.type = key->type;
1986 sh.transid = found_transid;
1988 /* copy search result header */
1989 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1994 *sk_offset += sizeof(sh);
1997 char __user *up = ubuf + *sk_offset;
1999 if (read_extent_buffer_to_user(leaf, up,
2000 item_off, item_len)) {
2005 *sk_offset += item_len;
2009 if (ret) /* -EOVERFLOW from above */
2012 if (*num_found >= sk->nr_items) {
2019 test.objectid = sk->max_objectid;
2020 test.type = sk->max_type;
2021 test.offset = sk->max_offset;
2022 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2024 else if (key->offset < (u64)-1)
2026 else if (key->type < (u8)-1) {
2029 } else if (key->objectid < (u64)-1) {
2037 * 0: all items from this leaf copied, continue with next
2038 * 1: * more items can be copied, but unused buffer is too small
2039 * * all items were found
2040 * Either way, it will stops the loop which iterates to the next
2042 * -EOVERFLOW: item was to large for buffer
2043 * -EFAULT: could not copy extent buffer back to userspace
2048 static noinline int search_ioctl(struct inode *inode,
2049 struct btrfs_ioctl_search_key *sk,
2053 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2054 struct btrfs_root *root;
2055 struct btrfs_key key;
2056 struct btrfs_path *path;
2059 unsigned long sk_offset = 0;
2061 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2062 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2066 path = btrfs_alloc_path();
2070 if (sk->tree_id == 0) {
2071 /* search the root of the inode that was passed */
2072 root = BTRFS_I(inode)->root;
2074 key.objectid = sk->tree_id;
2075 key.type = BTRFS_ROOT_ITEM_KEY;
2076 key.offset = (u64)-1;
2077 root = btrfs_read_fs_root_no_name(info, &key);
2079 btrfs_free_path(path);
2084 key.objectid = sk->min_objectid;
2085 key.type = sk->min_type;
2086 key.offset = sk->min_offset;
2089 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2095 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2096 &sk_offset, &num_found);
2097 btrfs_release_path(path);
2105 sk->nr_items = num_found;
2106 btrfs_free_path(path);
2110 static noinline int btrfs_ioctl_tree_search(struct file *file,
2113 struct btrfs_ioctl_search_args __user *uargs;
2114 struct btrfs_ioctl_search_key sk;
2115 struct inode *inode;
2119 if (!capable(CAP_SYS_ADMIN))
2122 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2124 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2127 buf_size = sizeof(uargs->buf);
2129 inode = file_inode(file);
2130 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2133 * In the origin implementation an overflow is handled by returning a
2134 * search header with a len of zero, so reset ret.
2136 if (ret == -EOVERFLOW)
2139 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2144 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2147 struct btrfs_ioctl_search_args_v2 __user *uarg;
2148 struct btrfs_ioctl_search_args_v2 args;
2149 struct inode *inode;
2152 const size_t buf_limit = SZ_16M;
2154 if (!capable(CAP_SYS_ADMIN))
2157 /* copy search header and buffer size */
2158 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2159 if (copy_from_user(&args, uarg, sizeof(args)))
2162 buf_size = args.buf_size;
2164 /* limit result size to 16MB */
2165 if (buf_size > buf_limit)
2166 buf_size = buf_limit;
2168 inode = file_inode(file);
2169 ret = search_ioctl(inode, &args.key, &buf_size,
2170 (char __user *)(&uarg->buf[0]));
2171 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2173 else if (ret == -EOVERFLOW &&
2174 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2181 * Search INODE_REFs to identify path name of 'dirid' directory
2182 * in a 'tree_id' tree. and sets path name to 'name'.
2184 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2185 u64 tree_id, u64 dirid, char *name)
2187 struct btrfs_root *root;
2188 struct btrfs_key key;
2194 struct btrfs_inode_ref *iref;
2195 struct extent_buffer *l;
2196 struct btrfs_path *path;
2198 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2203 path = btrfs_alloc_path();
2207 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2209 key.objectid = tree_id;
2210 key.type = BTRFS_ROOT_ITEM_KEY;
2211 key.offset = (u64)-1;
2212 root = btrfs_read_fs_root_no_name(info, &key);
2214 btrfs_err(info, "could not find root %llu", tree_id);
2219 key.objectid = dirid;
2220 key.type = BTRFS_INODE_REF_KEY;
2221 key.offset = (u64)-1;
2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 ret = btrfs_previous_item(root, path, dirid,
2229 BTRFS_INODE_REF_KEY);
2239 slot = path->slots[0];
2240 btrfs_item_key_to_cpu(l, &key, slot);
2242 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2243 len = btrfs_inode_ref_name_len(l, iref);
2245 total_len += len + 1;
2247 ret = -ENAMETOOLONG;
2252 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2254 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2257 btrfs_release_path(path);
2258 key.objectid = key.offset;
2259 key.offset = (u64)-1;
2260 dirid = key.objectid;
2262 memmove(name, ptr, total_len);
2263 name[total_len] = '\0';
2266 btrfs_free_path(path);
2270 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2273 struct btrfs_ioctl_ino_lookup_args *args;
2274 struct inode *inode;
2277 args = memdup_user(argp, sizeof(*args));
2279 return PTR_ERR(args);
2281 inode = file_inode(file);
2284 * Unprivileged query to obtain the containing subvolume root id. The
2285 * path is reset so it's consistent with btrfs_search_path_in_tree.
2287 if (args->treeid == 0)
2288 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2290 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2295 if (!capable(CAP_SYS_ADMIN)) {
2300 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2301 args->treeid, args->objectid,
2305 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2312 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2315 struct dentry *parent = file->f_path.dentry;
2316 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2317 struct dentry *dentry;
2318 struct inode *dir = d_inode(parent);
2319 struct inode *inode;
2320 struct btrfs_root *root = BTRFS_I(dir)->root;
2321 struct btrfs_root *dest = NULL;
2322 struct btrfs_ioctl_vol_args *vol_args;
2323 struct btrfs_trans_handle *trans;
2324 struct btrfs_block_rsv block_rsv;
2326 u64 qgroup_reserved;
2331 if (!S_ISDIR(dir->i_mode))
2334 vol_args = memdup_user(arg, sizeof(*vol_args));
2335 if (IS_ERR(vol_args))
2336 return PTR_ERR(vol_args);
2338 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2339 namelen = strlen(vol_args->name);
2340 if (strchr(vol_args->name, '/') ||
2341 strncmp(vol_args->name, "..", namelen) == 0) {
2346 err = mnt_want_write_file(file);
2351 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2353 goto out_drop_write;
2354 dentry = lookup_one_len(vol_args->name, parent, namelen);
2355 if (IS_ERR(dentry)) {
2356 err = PTR_ERR(dentry);
2357 goto out_unlock_dir;
2360 if (d_really_is_negative(dentry)) {
2365 inode = d_inode(dentry);
2366 dest = BTRFS_I(inode)->root;
2367 if (!capable(CAP_SYS_ADMIN)) {
2369 * Regular user. Only allow this with a special mount
2370 * option, when the user has write+exec access to the
2371 * subvol root, and when rmdir(2) would have been
2374 * Note that this is _not_ check that the subvol is
2375 * empty or doesn't contain data that we wouldn't
2376 * otherwise be able to delete.
2378 * Users who want to delete empty subvols should try
2382 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2386 * Do not allow deletion if the parent dir is the same
2387 * as the dir to be deleted. That means the ioctl
2388 * must be called on the dentry referencing the root
2389 * of the subvol, not a random directory contained
2396 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2401 /* check if subvolume may be deleted by a user */
2402 err = btrfs_may_delete(dir, dentry, 1);
2406 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2414 * Don't allow to delete a subvolume with send in progress. This is
2415 * inside the i_mutex so the error handling that has to drop the bit
2416 * again is not run concurrently.
2418 spin_lock(&dest->root_item_lock);
2419 root_flags = btrfs_root_flags(&dest->root_item);
2420 if (dest->send_in_progress == 0) {
2421 btrfs_set_root_flags(&dest->root_item,
2422 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2423 spin_unlock(&dest->root_item_lock);
2425 spin_unlock(&dest->root_item_lock);
2427 "Attempt to delete subvolume %llu during send",
2428 dest->root_key.objectid);
2430 goto out_unlock_inode;
2433 down_write(&fs_info->subvol_sem);
2435 err = may_destroy_subvol(dest);
2439 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2441 * One for dir inode, two for dir entries, two for root
2444 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2445 5, &qgroup_reserved, true);
2449 trans = btrfs_start_transaction(root, 0);
2450 if (IS_ERR(trans)) {
2451 err = PTR_ERR(trans);
2454 trans->block_rsv = &block_rsv;
2455 trans->bytes_reserved = block_rsv.size;
2457 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2459 ret = btrfs_unlink_subvol(trans, root, dir,
2460 dest->root_key.objectid,
2461 dentry->d_name.name,
2462 dentry->d_name.len);
2465 btrfs_abort_transaction(trans, ret);
2469 btrfs_record_root_in_trans(trans, dest);
2471 memset(&dest->root_item.drop_progress, 0,
2472 sizeof(dest->root_item.drop_progress));
2473 dest->root_item.drop_level = 0;
2474 btrfs_set_root_refs(&dest->root_item, 0);
2476 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2477 ret = btrfs_insert_orphan_item(trans,
2479 dest->root_key.objectid);
2481 btrfs_abort_transaction(trans, ret);
2487 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2488 BTRFS_UUID_KEY_SUBVOL,
2489 dest->root_key.objectid);
2490 if (ret && ret != -ENOENT) {
2491 btrfs_abort_transaction(trans, ret);
2495 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2496 ret = btrfs_uuid_tree_rem(trans, fs_info,
2497 dest->root_item.received_uuid,
2498 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2499 dest->root_key.objectid);
2500 if (ret && ret != -ENOENT) {
2501 btrfs_abort_transaction(trans, ret);
2508 trans->block_rsv = NULL;
2509 trans->bytes_reserved = 0;
2510 ret = btrfs_end_transaction(trans);
2513 inode->i_flags |= S_DEAD;
2515 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2517 up_write(&fs_info->subvol_sem);
2519 spin_lock(&dest->root_item_lock);
2520 root_flags = btrfs_root_flags(&dest->root_item);
2521 btrfs_set_root_flags(&dest->root_item,
2522 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2523 spin_unlock(&dest->root_item_lock);
2526 inode_unlock(inode);
2528 d_invalidate(dentry);
2529 btrfs_invalidate_inodes(dest);
2531 ASSERT(dest->send_in_progress == 0);
2534 if (dest->ino_cache_inode) {
2535 iput(dest->ino_cache_inode);
2536 dest->ino_cache_inode = NULL;
2544 mnt_drop_write_file(file);
2550 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2552 struct inode *inode = file_inode(file);
2553 struct btrfs_root *root = BTRFS_I(inode)->root;
2554 struct btrfs_ioctl_defrag_range_args *range;
2557 ret = mnt_want_write_file(file);
2561 if (btrfs_root_readonly(root)) {
2566 switch (inode->i_mode & S_IFMT) {
2568 if (!capable(CAP_SYS_ADMIN)) {
2572 ret = btrfs_defrag_root(root);
2575 if (!(file->f_mode & FMODE_WRITE)) {
2580 range = kzalloc(sizeof(*range), GFP_KERNEL);
2587 if (copy_from_user(range, argp,
2593 /* compression requires us to start the IO */
2594 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2595 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2596 range->extent_thresh = (u32)-1;
2599 /* the rest are all set to zero by kzalloc */
2600 range->len = (u64)-1;
2602 ret = btrfs_defrag_file(file_inode(file), file,
2603 range, BTRFS_OLDEST_GENERATION, 0);
2612 mnt_drop_write_file(file);
2616 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2618 struct btrfs_ioctl_vol_args *vol_args;
2621 if (!capable(CAP_SYS_ADMIN))
2624 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2625 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2627 mutex_lock(&fs_info->volume_mutex);
2628 vol_args = memdup_user(arg, sizeof(*vol_args));
2629 if (IS_ERR(vol_args)) {
2630 ret = PTR_ERR(vol_args);
2634 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2635 ret = btrfs_init_new_device(fs_info, vol_args->name);
2638 btrfs_info(fs_info, "disk added %s", vol_args->name);
2642 mutex_unlock(&fs_info->volume_mutex);
2643 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2647 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2649 struct inode *inode = file_inode(file);
2650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2651 struct btrfs_ioctl_vol_args_v2 *vol_args;
2654 if (!capable(CAP_SYS_ADMIN))
2657 ret = mnt_want_write_file(file);
2661 vol_args = memdup_user(arg, sizeof(*vol_args));
2662 if (IS_ERR(vol_args)) {
2663 ret = PTR_ERR(vol_args);
2667 /* Check for compatibility reject unknown flags */
2668 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2671 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2672 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2676 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2677 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2679 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2680 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2682 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2685 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2686 btrfs_info(fs_info, "device deleted: id %llu",
2689 btrfs_info(fs_info, "device deleted: %s",
2695 mnt_drop_write_file(file);
2699 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2701 struct inode *inode = file_inode(file);
2702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2703 struct btrfs_ioctl_vol_args *vol_args;
2706 if (!capable(CAP_SYS_ADMIN))
2709 ret = mnt_want_write_file(file);
2713 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2714 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2715 goto out_drop_write;
2718 vol_args = memdup_user(arg, sizeof(*vol_args));
2719 if (IS_ERR(vol_args)) {
2720 ret = PTR_ERR(vol_args);
2724 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2725 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2728 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2731 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2733 mnt_drop_write_file(file);
2738 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2741 struct btrfs_ioctl_fs_info_args *fi_args;
2742 struct btrfs_device *device;
2743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2746 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2751 fi_args->num_devices = fs_devices->num_devices;
2753 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2754 if (device->devid > fi_args->max_id)
2755 fi_args->max_id = device->devid;
2759 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2760 fi_args->nodesize = fs_info->nodesize;
2761 fi_args->sectorsize = fs_info->sectorsize;
2762 fi_args->clone_alignment = fs_info->sectorsize;
2764 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2771 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2774 struct btrfs_ioctl_dev_info_args *di_args;
2775 struct btrfs_device *dev;
2777 char *s_uuid = NULL;
2779 di_args = memdup_user(arg, sizeof(*di_args));
2780 if (IS_ERR(di_args))
2781 return PTR_ERR(di_args);
2783 if (!btrfs_is_empty_uuid(di_args->uuid))
2784 s_uuid = di_args->uuid;
2787 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2794 di_args->devid = dev->devid;
2795 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2796 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2797 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2799 struct rcu_string *name;
2801 name = rcu_dereference(dev->name);
2802 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2803 di_args->path[sizeof(di_args->path) - 1] = 0;
2805 di_args->path[0] = '\0';
2810 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2817 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2821 page = grab_cache_page(inode->i_mapping, index);
2823 return ERR_PTR(-ENOMEM);
2825 if (!PageUptodate(page)) {
2828 ret = btrfs_readpage(NULL, page);
2830 return ERR_PTR(ret);
2832 if (!PageUptodate(page)) {
2835 return ERR_PTR(-EIO);
2837 if (page->mapping != inode->i_mapping) {
2840 return ERR_PTR(-EAGAIN);
2847 static int gather_extent_pages(struct inode *inode, struct page **pages,
2848 int num_pages, u64 off)
2851 pgoff_t index = off >> PAGE_SHIFT;
2853 for (i = 0; i < num_pages; i++) {
2855 pages[i] = extent_same_get_page(inode, index + i);
2856 if (IS_ERR(pages[i])) {
2857 int err = PTR_ERR(pages[i]);
2868 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2869 bool retry_range_locking)
2872 * Do any pending delalloc/csum calculations on inode, one way or
2873 * another, and lock file content.
2874 * The locking order is:
2877 * 2) range in the inode's io tree
2880 struct btrfs_ordered_extent *ordered;
2881 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2882 ordered = btrfs_lookup_first_ordered_extent(inode,
2885 ordered->file_offset + ordered->len <= off ||
2886 ordered->file_offset >= off + len) &&
2887 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2888 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2890 btrfs_put_ordered_extent(ordered);
2893 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2895 btrfs_put_ordered_extent(ordered);
2896 if (!retry_range_locking)
2898 btrfs_wait_ordered_range(inode, off, len);
2903 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2905 inode_unlock(inode1);
2906 inode_unlock(inode2);
2909 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2911 if (inode1 < inode2)
2912 swap(inode1, inode2);
2914 inode_lock_nested(inode1, I_MUTEX_PARENT);
2915 inode_lock_nested(inode2, I_MUTEX_CHILD);
2918 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2919 struct inode *inode2, u64 loff2, u64 len)
2921 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2922 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2925 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2926 struct inode *inode2, u64 loff2, u64 len,
2927 bool retry_range_locking)
2931 if (inode1 < inode2) {
2932 swap(inode1, inode2);
2935 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2938 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2940 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2947 struct page **src_pages;
2948 struct page **dst_pages;
2951 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2956 for (i = 0; i < cmp->num_pages; i++) {
2957 pg = cmp->src_pages[i];
2962 pg = cmp->dst_pages[i];
2968 kfree(cmp->src_pages);
2969 kfree(cmp->dst_pages);
2972 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2973 struct inode *dst, u64 dst_loff,
2974 u64 len, struct cmp_pages *cmp)
2977 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2978 struct page **src_pgarr, **dst_pgarr;
2981 * We must gather up all the pages before we initiate our
2982 * extent locking. We use an array for the page pointers. Size
2983 * of the array is bounded by len, which is in turn bounded by
2984 * BTRFS_MAX_DEDUPE_LEN.
2986 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2987 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2988 if (!src_pgarr || !dst_pgarr) {
2993 cmp->num_pages = num_pages;
2994 cmp->src_pages = src_pgarr;
2995 cmp->dst_pages = dst_pgarr;
2998 * If deduping ranges in the same inode, locking rules make it mandatory
2999 * to always lock pages in ascending order to avoid deadlocks with
3000 * concurrent tasks (such as starting writeback/delalloc).
3002 if (src == dst && dst_loff < loff) {
3003 swap(src_pgarr, dst_pgarr);
3004 swap(loff, dst_loff);
3007 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3011 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3015 btrfs_cmp_data_free(cmp);
3019 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3023 struct page *src_page, *dst_page;
3024 unsigned int cmp_len = PAGE_SIZE;
3025 void *addr, *dst_addr;
3029 if (len < PAGE_SIZE)
3032 BUG_ON(i >= cmp->num_pages);
3034 src_page = cmp->src_pages[i];
3035 dst_page = cmp->dst_pages[i];
3036 ASSERT(PageLocked(src_page));
3037 ASSERT(PageLocked(dst_page));
3039 addr = kmap_atomic(src_page);
3040 dst_addr = kmap_atomic(dst_page);
3042 flush_dcache_page(src_page);
3043 flush_dcache_page(dst_page);
3045 if (memcmp(addr, dst_addr, cmp_len))
3048 kunmap_atomic(addr);
3049 kunmap_atomic(dst_addr);
3061 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3065 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3067 if (off + olen > inode->i_size || off + olen < off)
3070 /* if we extend to eof, continue to block boundary */
3071 if (off + len == inode->i_size)
3072 *plen = len = ALIGN(inode->i_size, bs) - off;
3074 /* Check that we are block aligned - btrfs_clone() requires this */
3075 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3081 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3082 struct inode *dst, u64 dst_loff)
3086 struct cmp_pages cmp;
3087 bool same_inode = (src == dst);
3088 u64 same_lock_start = 0;
3089 u64 same_lock_len = 0;
3097 btrfs_double_inode_lock(src, dst);
3099 ret = extent_same_check_offsets(src, loff, &len, olen);
3103 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3109 * Single inode case wants the same checks, except we
3110 * don't want our length pushed out past i_size as
3111 * comparing that data range makes no sense.
3113 * extent_same_check_offsets() will do this for an
3114 * unaligned length at i_size, so catch it here and
3115 * reject the request.
3117 * This effectively means we require aligned extents
3118 * for the single-inode case, whereas the other cases
3119 * allow an unaligned length so long as it ends at
3127 /* Check for overlapping ranges */
3128 if (dst_loff + len > loff && dst_loff < loff + len) {
3133 same_lock_start = min_t(u64, loff, dst_loff);
3134 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3137 /* don't make the dst file partly checksummed */
3138 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3139 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3145 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3150 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3153 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3156 * If one of the inodes has dirty pages in the respective range or
3157 * ordered extents, we need to flush dellaloc and wait for all ordered
3158 * extents in the range. We must unlock the pages and the ranges in the
3159 * io trees to avoid deadlocks when flushing delalloc (requires locking
3160 * pages) and when waiting for ordered extents to complete (they require
3163 if (ret == -EAGAIN) {
3165 * Ranges in the io trees already unlocked. Now unlock all
3166 * pages before waiting for all IO to complete.
3168 btrfs_cmp_data_free(&cmp);
3170 btrfs_wait_ordered_range(src, same_lock_start,
3173 btrfs_wait_ordered_range(src, loff, len);
3174 btrfs_wait_ordered_range(dst, dst_loff, len);
3180 /* ranges in the io trees already unlocked */
3181 btrfs_cmp_data_free(&cmp);
3185 /* pass original length for comparison so we stay within i_size */
3186 ret = btrfs_cmp_data(olen, &cmp);
3188 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3191 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3192 same_lock_start + same_lock_len - 1);
3194 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3196 btrfs_cmp_data_free(&cmp);
3201 btrfs_double_inode_unlock(src, dst);
3206 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3208 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3209 struct file *dst_file, u64 dst_loff)
3211 struct inode *src = file_inode(src_file);
3212 struct inode *dst = file_inode(dst_file);
3213 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3216 if (olen > BTRFS_MAX_DEDUPE_LEN)
3217 olen = BTRFS_MAX_DEDUPE_LEN;
3219 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3221 * Btrfs does not support blocksize < page_size. As a
3222 * result, btrfs_cmp_data() won't correctly handle
3223 * this situation without an update.
3228 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3234 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3235 struct inode *inode,
3241 struct btrfs_root *root = BTRFS_I(inode)->root;
3244 inode_inc_iversion(inode);
3245 if (!no_time_update)
3246 inode->i_mtime = inode->i_ctime = current_time(inode);
3248 * We round up to the block size at eof when determining which
3249 * extents to clone above, but shouldn't round up the file size.
3251 if (endoff > destoff + olen)
3252 endoff = destoff + olen;
3253 if (endoff > inode->i_size)
3254 btrfs_i_size_write(BTRFS_I(inode), endoff);
3256 ret = btrfs_update_inode(trans, root, inode);
3258 btrfs_abort_transaction(trans, ret);
3259 btrfs_end_transaction(trans);
3262 ret = btrfs_end_transaction(trans);
3267 static void clone_update_extent_map(struct btrfs_inode *inode,
3268 const struct btrfs_trans_handle *trans,
3269 const struct btrfs_path *path,
3270 const u64 hole_offset,
3273 struct extent_map_tree *em_tree = &inode->extent_tree;
3274 struct extent_map *em;
3277 em = alloc_extent_map();
3279 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3284 struct btrfs_file_extent_item *fi;
3286 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3287 struct btrfs_file_extent_item);
3288 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3289 em->generation = -1;
3290 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3291 BTRFS_FILE_EXTENT_INLINE)
3292 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3293 &inode->runtime_flags);
3295 em->start = hole_offset;
3297 em->ram_bytes = em->len;
3298 em->orig_start = hole_offset;
3299 em->block_start = EXTENT_MAP_HOLE;
3301 em->orig_block_len = 0;
3302 em->compress_type = BTRFS_COMPRESS_NONE;
3303 em->generation = trans->transid;
3307 write_lock(&em_tree->lock);
3308 ret = add_extent_mapping(em_tree, em, 1);
3309 write_unlock(&em_tree->lock);
3310 if (ret != -EEXIST) {
3311 free_extent_map(em);
3314 btrfs_drop_extent_cache(inode, em->start,
3315 em->start + em->len - 1, 0);
3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3323 * Make sure we do not end up inserting an inline extent into a file that has
3324 * already other (non-inline) extents. If a file has an inline extent it can
3325 * not have any other extents and the (single) inline extent must start at the
3326 * file offset 0. Failing to respect these rules will lead to file corruption,
3327 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3329 * We can have extents that have been already written to disk or we can have
3330 * dirty ranges still in delalloc, in which case the extent maps and items are
3331 * created only when we run delalloc, and the delalloc ranges might fall outside
3332 * the range we are currently locking in the inode's io tree. So we check the
3333 * inode's i_size because of that (i_size updates are done while holding the
3334 * i_mutex, which we are holding here).
3335 * We also check to see if the inode has a size not greater than "datal" but has
3336 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3337 * protected against such concurrent fallocate calls by the i_mutex).
3339 * If the file has no extents but a size greater than datal, do not allow the
3340 * copy because we would need turn the inline extent into a non-inline one (even
3341 * with NO_HOLES enabled). If we find our destination inode only has one inline
3342 * extent, just overwrite it with the source inline extent if its size is less
3343 * than the source extent's size, or we could copy the source inline extent's
3344 * data into the destination inode's inline extent if the later is greater then
3347 static int clone_copy_inline_extent(struct inode *dst,
3348 struct btrfs_trans_handle *trans,
3349 struct btrfs_path *path,
3350 struct btrfs_key *new_key,
3351 const u64 drop_start,
3357 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3358 struct btrfs_root *root = BTRFS_I(dst)->root;
3359 const u64 aligned_end = ALIGN(new_key->offset + datal,
3360 fs_info->sectorsize);
3362 struct btrfs_key key;
3364 if (new_key->offset > 0)
3367 key.objectid = btrfs_ino(BTRFS_I(dst));
3368 key.type = BTRFS_EXTENT_DATA_KEY;
3370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3373 } else if (ret > 0) {
3374 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3375 ret = btrfs_next_leaf(root, path);
3379 goto copy_inline_extent;
3381 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3382 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3383 key.type == BTRFS_EXTENT_DATA_KEY) {
3384 ASSERT(key.offset > 0);
3387 } else if (i_size_read(dst) <= datal) {
3388 struct btrfs_file_extent_item *ei;
3392 * If the file size is <= datal, make sure there are no other
3393 * extents following (can happen do to an fallocate call with
3394 * the flag FALLOC_FL_KEEP_SIZE).
3396 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3397 struct btrfs_file_extent_item);
3399 * If it's an inline extent, it can not have other extents
3402 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3403 BTRFS_FILE_EXTENT_INLINE)
3404 goto copy_inline_extent;
3406 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3407 if (ext_len > aligned_end)
3410 ret = btrfs_next_item(root, path);
3413 } else if (ret == 0) {
3414 btrfs_item_key_to_cpu(path->nodes[0], &key,
3416 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3417 key.type == BTRFS_EXTENT_DATA_KEY)
3424 * We have no extent items, or we have an extent at offset 0 which may
3425 * or may not be inlined. All these cases are dealt the same way.
3427 if (i_size_read(dst) > datal) {
3429 * If the destination inode has an inline extent...
3430 * This would require copying the data from the source inline
3431 * extent into the beginning of the destination's inline extent.
3432 * But this is really complex, both extents can be compressed
3433 * or just one of them, which would require decompressing and
3434 * re-compressing data (which could increase the new compressed
3435 * size, not allowing the compressed data to fit anymore in an
3437 * So just don't support this case for now (it should be rare,
3438 * we are not really saving space when cloning inline extents).
3443 btrfs_release_path(path);
3444 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3447 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3452 const u32 start = btrfs_file_extent_calc_inline_size(0);
3454 memmove(inline_data + start, inline_data + start + skip, datal);
3457 write_extent_buffer(path->nodes[0], inline_data,
3458 btrfs_item_ptr_offset(path->nodes[0],
3461 inode_add_bytes(dst, datal);
3467 * btrfs_clone() - clone a range from inode file to another
3469 * @src: Inode to clone from
3470 * @inode: Inode to clone to
3471 * @off: Offset within source to start clone from
3472 * @olen: Original length, passed by user, of range to clone
3473 * @olen_aligned: Block-aligned value of olen
3474 * @destoff: Offset within @inode to start clone
3475 * @no_time_update: Whether to update mtime/ctime on the target inode
3477 static int btrfs_clone(struct inode *src, struct inode *inode,
3478 const u64 off, const u64 olen, const u64 olen_aligned,
3479 const u64 destoff, int no_time_update)
3481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3482 struct btrfs_root *root = BTRFS_I(inode)->root;
3483 struct btrfs_path *path = NULL;
3484 struct extent_buffer *leaf;
3485 struct btrfs_trans_handle *trans;
3487 struct btrfs_key key;
3491 const u64 len = olen_aligned;
3492 u64 last_dest_end = destoff;
3495 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3499 path = btrfs_alloc_path();
3505 path->reada = READA_FORWARD;
3507 key.objectid = btrfs_ino(BTRFS_I(src));
3508 key.type = BTRFS_EXTENT_DATA_KEY;
3512 u64 next_key_min_offset = key.offset + 1;
3515 * note the key will change type as we walk through the
3518 path->leave_spinning = 1;
3519 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3524 * First search, if no extent item that starts at offset off was
3525 * found but the previous item is an extent item, it's possible
3526 * it might overlap our target range, therefore process it.
3528 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3529 btrfs_item_key_to_cpu(path->nodes[0], &key,
3530 path->slots[0] - 1);
3531 if (key.type == BTRFS_EXTENT_DATA_KEY)
3535 nritems = btrfs_header_nritems(path->nodes[0]);
3537 if (path->slots[0] >= nritems) {
3538 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3543 nritems = btrfs_header_nritems(path->nodes[0]);
3545 leaf = path->nodes[0];
3546 slot = path->slots[0];
3548 btrfs_item_key_to_cpu(leaf, &key, slot);
3549 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3550 key.objectid != btrfs_ino(BTRFS_I(src)))
3553 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3554 struct btrfs_file_extent_item *extent;
3557 struct btrfs_key new_key;
3558 u64 disko = 0, diskl = 0;
3559 u64 datao = 0, datal = 0;
3563 extent = btrfs_item_ptr(leaf, slot,
3564 struct btrfs_file_extent_item);
3565 comp = btrfs_file_extent_compression(leaf, extent);
3566 type = btrfs_file_extent_type(leaf, extent);
3567 if (type == BTRFS_FILE_EXTENT_REG ||
3568 type == BTRFS_FILE_EXTENT_PREALLOC) {
3569 disko = btrfs_file_extent_disk_bytenr(leaf,
3571 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3573 datao = btrfs_file_extent_offset(leaf, extent);
3574 datal = btrfs_file_extent_num_bytes(leaf,
3576 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3577 /* take upper bound, may be compressed */
3578 datal = btrfs_file_extent_ram_bytes(leaf,
3583 * The first search might have left us at an extent
3584 * item that ends before our target range's start, can
3585 * happen if we have holes and NO_HOLES feature enabled.
3587 if (key.offset + datal <= off) {
3590 } else if (key.offset >= off + len) {
3593 next_key_min_offset = key.offset + datal;
3594 size = btrfs_item_size_nr(leaf, slot);
3595 read_extent_buffer(leaf, buf,
3596 btrfs_item_ptr_offset(leaf, slot),
3599 btrfs_release_path(path);
3600 path->leave_spinning = 0;
3602 memcpy(&new_key, &key, sizeof(new_key));
3603 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3604 if (off <= key.offset)
3605 new_key.offset = key.offset + destoff - off;
3607 new_key.offset = destoff;
3610 * Deal with a hole that doesn't have an extent item
3611 * that represents it (NO_HOLES feature enabled).
3612 * This hole is either in the middle of the cloning
3613 * range or at the beginning (fully overlaps it or
3614 * partially overlaps it).
3616 if (new_key.offset != last_dest_end)
3617 drop_start = last_dest_end;
3619 drop_start = new_key.offset;
3622 * 1 - adjusting old extent (we may have to split it)
3623 * 1 - add new extent
3626 trans = btrfs_start_transaction(root, 3);
3627 if (IS_ERR(trans)) {
3628 ret = PTR_ERR(trans);
3632 if (type == BTRFS_FILE_EXTENT_REG ||
3633 type == BTRFS_FILE_EXTENT_PREALLOC) {
3635 * a | --- range to clone ---| b
3636 * | ------------- extent ------------- |
3639 /* subtract range b */
3640 if (key.offset + datal > off + len)
3641 datal = off + len - key.offset;
3643 /* subtract range a */
3644 if (off > key.offset) {
3645 datao += off - key.offset;
3646 datal -= off - key.offset;
3649 ret = btrfs_drop_extents(trans, root, inode,
3651 new_key.offset + datal,
3654 if (ret != -EOPNOTSUPP)
3655 btrfs_abort_transaction(trans,
3657 btrfs_end_transaction(trans);
3661 ret = btrfs_insert_empty_item(trans, root, path,
3664 btrfs_abort_transaction(trans, ret);
3665 btrfs_end_transaction(trans);
3669 leaf = path->nodes[0];
3670 slot = path->slots[0];
3671 write_extent_buffer(leaf, buf,
3672 btrfs_item_ptr_offset(leaf, slot),
3675 extent = btrfs_item_ptr(leaf, slot,
3676 struct btrfs_file_extent_item);
3678 /* disko == 0 means it's a hole */
3682 btrfs_set_file_extent_offset(leaf, extent,
3684 btrfs_set_file_extent_num_bytes(leaf, extent,
3688 inode_add_bytes(inode, datal);
3689 ret = btrfs_inc_extent_ref(trans,
3692 root->root_key.objectid,
3693 btrfs_ino(BTRFS_I(inode)),
3694 new_key.offset - datao);
3696 btrfs_abort_transaction(trans,