1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/xattr.h>
23 #include <linux/posix_acl.h>
24 #include <linux/falloc.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/mount.h>
28 #include <linux/btrfs.h>
29 #include <linux/blkdev.h>
30 #include <linux/posix_acl_xattr.h>
31 #include <linux/uio.h>
32 #include <linux/magic.h>
33 #include <linux/iversion.h>
34 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
44 #include "compression.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
53 struct btrfs_iget_args {
54 struct btrfs_key *location;
55 struct btrfs_root *root;
58 struct btrfs_dio_data {
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct address_space_operations btrfs_symlink_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
81 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
91 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
92 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, u64 delalloc_end,
97 int *page_started, unsigned long *nr_written,
98 int unlock, struct btrfs_dedupe_hash *hash);
99 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 u64 orig_start, u64 block_start,
101 u64 block_len, u64 orig_block_len,
102 u64 ram_bytes, int compress_type,
105 static void __endio_write_update_ordered(struct inode *inode,
106 const u64 offset, const u64 bytes,
107 const bool uptodate);
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
122 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
126 unsigned long index = offset >> PAGE_SHIFT;
127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
130 while (index <= end_index) {
131 page = find_get_page(inode->i_mapping, index);
135 ClearPagePrivate2(page);
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
142 static int btrfs_dirty_inode(struct inode *inode);
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode *inode)
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
157 err = btrfs_init_acl(trans, inode, dir);
159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
168 static int insert_inline_extent(struct btrfs_trans_handle *trans,
169 struct btrfs_path *path, int extent_inserted,
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
173 struct page **compressed_pages)
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
179 struct btrfs_file_extent_item *ei;
181 size_t cur_size = size;
182 unsigned long offset;
184 if (compressed_size && compressed_pages)
185 cur_size = compressed_size;
187 inode_add_bytes(inode, size);
189 if (!extent_inserted) {
190 struct btrfs_key key;
193 key.objectid = btrfs_ino(BTRFS_I(inode));
195 key.type = BTRFS_EXTENT_DATA_KEY;
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
214 if (compress_type != BTRFS_COMPRESS_NONE) {
217 while (compressed_size > 0) {
218 cpage = compressed_pages[i];
219 cur_size = min_t(unsigned long, compressed_size,
222 kaddr = kmap_atomic(cpage);
223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
224 kunmap_atomic(kaddr);
228 compressed_size -= cur_size;
230 btrfs_set_file_extent_compression(leaf, ei,
233 page = find_get_page(inode->i_mapping,
234 start >> PAGE_SHIFT);
235 btrfs_set_file_extent_compression(leaf, ei, 0);
236 kaddr = kmap_atomic(page);
237 offset = start & (PAGE_SIZE - 1);
238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
239 kunmap_atomic(kaddr);
242 btrfs_mark_buffer_dirty(leaf);
243 btrfs_release_path(path);
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
254 BTRFS_I(inode)->disk_i_size = inode->i_size;
255 ret = btrfs_update_inode(trans, root, inode);
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
267 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
268 u64 end, size_t compressed_size,
270 struct page **compressed_pages)
272 struct btrfs_root *root = BTRFS_I(inode)->root;
273 struct btrfs_fs_info *fs_info = root->fs_info;
274 struct btrfs_trans_handle *trans;
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
279 u64 data_len = inline_len;
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
286 data_len = compressed_size;
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 data_len > fs_info->max_inline) {
298 path = btrfs_alloc_path();
302 trans = btrfs_join_transaction(root);
304 btrfs_free_path(path);
305 return PTR_ERR(trans);
307 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
313 extent_item_size = btrfs_file_extent_calc_inline_size(
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
320 btrfs_abort_transaction(trans, ret);
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
326 ret = insert_inline_extent(trans, path, extent_inserted,
328 inline_len, compressed_size,
329 compress_type, compressed_pages);
330 if (ret && ret != -ENOSPC) {
331 btrfs_abort_transaction(trans, ret);
333 } else if (ret == -ENOSPC) {
338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
348 btrfs_free_path(path);
349 btrfs_end_transaction(trans);
353 struct async_extent {
358 unsigned long nr_pages;
360 struct list_head list;
365 struct btrfs_root *root;
366 struct page *locked_page;
369 unsigned int write_flags;
370 struct list_head extents;
371 struct btrfs_work work;
374 static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
378 unsigned long nr_pages,
381 struct async_extent *async_extent;
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
384 BUG_ON(!async_extent); /* -ENOMEM */
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
390 async_extent->compress_type = compress_type;
391 list_add_tail(&async_extent->list, &cow->extents);
395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
403 if (BTRFS_I(inode)->defrag_compress)
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
408 if (btrfs_test_opt(fs_info, COMPRESS) ||
409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
410 BTRFS_I(inode)->prop_compress)
411 return btrfs_compress_heuristic(inode, start, end);
415 static inline void inode_should_defrag(struct btrfs_inode *inode,
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
420 (start > 0 || end + 1 < inode->disk_i_size))
421 btrfs_add_inode_defrag(NULL, inode);
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
438 * are written in the same order that the flusher thread sent them
441 static noinline void compress_file_range(struct inode *inode,
442 struct page *locked_page,
444 struct async_cow *async_cow,
447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
448 u64 blocksize = fs_info->sectorsize;
450 u64 isize = i_size_read(inode);
452 struct page **pages = NULL;
453 unsigned long nr_pages;
454 unsigned long total_compressed = 0;
455 unsigned long total_in = 0;
458 int compress_type = fs_info->compress_type;
461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
464 actual_end = min_t(u64, isize, end + 1);
467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 nr_pages = min_t(unsigned long, nr_pages,
470 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
482 if (actual_end <= start)
483 goto cleanup_and_bail_uncompressed;
485 total_compressed = actual_end - start;
488 * skip compression for a small file range(<=blocksize) that
489 * isn't an inline extent, since it doesn't save disk space at all.
491 if (total_compressed <= blocksize &&
492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 goto cleanup_and_bail_uncompressed;
495 total_compressed = min_t(unsigned long, total_compressed,
496 BTRFS_MAX_UNCOMPRESSED);
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
505 if (inode_need_compress(inode, start, end)) {
507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
509 /* just bail out to the uncompressed code */
513 if (BTRFS_I(inode)->defrag_compress)
514 compress_type = BTRFS_I(inode)->defrag_compress;
515 else if (BTRFS_I(inode)->prop_compress)
516 compress_type = BTRFS_I(inode)->prop_compress;
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
531 extent_range_clear_dirty_for_io(inode, start, end);
535 /* Compression level is applied here and only here */
536 ret = btrfs_compress_pages(
537 compress_type | (fs_info->compress_level << 4),
538 inode->i_mapping, start,
545 unsigned long offset = total_compressed &
547 struct page *page = pages[nr_pages - 1];
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
554 kaddr = kmap_atomic(page);
555 memset(kaddr + offset, 0,
557 kunmap_atomic(kaddr);
564 /* lets try to make an inline extent */
565 if (ret || total_in < actual_end) {
566 /* we didn't compress the entire range, try
567 * to make an uncompressed inline extent.
569 ret = cow_file_range_inline(inode, start, end, 0,
570 BTRFS_COMPRESS_NONE, NULL);
572 /* try making a compressed inline extent */
573 ret = cow_file_range_inline(inode, start, end,
575 compress_type, pages);
578 unsigned long clear_flags = EXTENT_DELALLOC |
579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 EXTENT_DO_ACCOUNTING;
581 unsigned long page_error_op;
583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
595 extent_clear_unlock_delalloc(inode, start, end, end,
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
612 total_compressed = ALIGN(total_compressed, blocksize);
615 * one last check to make sure the compression is really a
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
619 total_in = ALIGN(total_in, PAGE_SIZE);
620 if (total_compressed + blocksize <= total_in) {
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
628 add_async_extent(async_cow, start, total_in,
629 total_compressed, pages, nr_pages,
632 if (start + total_in < end) {
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
646 for (i = 0; i < nr_pages; i++) {
647 WARN_ON(pages[i]->mapping);
652 total_compressed = 0;
655 /* flag the file so we don't compress in the future */
656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
657 !(BTRFS_I(inode)->prop_compress)) {
658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
661 cleanup_and_bail_uncompressed:
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
668 if (page_offset(locked_page) >= start &&
669 page_offset(locked_page) <= end)
670 __set_page_dirty_nobuffers(locked_page);
671 /* unlocked later on in the async handlers */
674 extent_range_redirty_for_io(inode, start, end);
675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 BTRFS_COMPRESS_NONE);
682 for (i = 0; i < nr_pages; i++) {
683 WARN_ON(pages[i]->mapping);
689 static void free_async_extent_pages(struct async_extent *async_extent)
693 if (!async_extent->pages)
696 for (i = 0; i < async_extent->nr_pages; i++) {
697 WARN_ON(async_extent->pages[i]->mapping);
698 put_page(async_extent->pages[i]);
700 kfree(async_extent->pages);
701 async_extent->nr_pages = 0;
702 async_extent->pages = NULL;
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
711 static noinline void submit_compressed_extents(struct inode *inode,
712 struct async_cow *async_cow)
714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
715 struct async_extent *async_extent;
717 struct btrfs_key ins;
718 struct extent_map *em;
719 struct btrfs_root *root = BTRFS_I(inode)->root;
720 struct extent_io_tree *io_tree;
724 while (!list_empty(&async_cow->extents)) {
725 async_extent = list_entry(async_cow->extents.next,
726 struct async_extent, list);
727 list_del(&async_extent->list);
729 io_tree = &BTRFS_I(inode)->io_tree;
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent->pages) {
734 int page_started = 0;
735 unsigned long nr_written = 0;
737 lock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
741 /* allocate blocks */
742 ret = cow_file_range(inode, async_cow->locked_page,
744 async_extent->start +
745 async_extent->ram_size - 1,
746 async_extent->start +
747 async_extent->ram_size - 1,
748 &page_started, &nr_written, 0,
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
759 if (!page_started && !ret)
760 extent_write_locked_range(inode,
762 async_extent->start +
763 async_extent->ram_size - 1,
766 unlock_page(async_cow->locked_page);
772 lock_extent(io_tree, async_extent->start,
773 async_extent->start + async_extent->ram_size - 1);
775 ret = btrfs_reserve_extent(root, async_extent->ram_size,
776 async_extent->compressed_size,
777 async_extent->compressed_size,
778 0, alloc_hint, &ins, 1, 1);
780 free_async_extent_pages(async_extent);
782 if (ret == -ENOSPC) {
783 unlock_extent(io_tree, async_extent->start,
784 async_extent->start +
785 async_extent->ram_size - 1);
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
793 extent_range_redirty_for_io(inode,
795 async_extent->start +
796 async_extent->ram_size - 1);
803 * here we're doing allocation and writeback of the
806 em = create_io_em(inode, async_extent->start,
807 async_extent->ram_size, /* len */
808 async_extent->start, /* orig_start */
809 ins.objectid, /* block_start */
810 ins.offset, /* block_len */
811 ins.offset, /* orig_block_len */
812 async_extent->ram_size, /* ram_bytes */
813 async_extent->compress_type,
814 BTRFS_ORDERED_COMPRESSED);
816 /* ret value is not necessary due to void function */
817 goto out_free_reserve;
820 ret = btrfs_add_ordered_extent_compress(inode,
823 async_extent->ram_size,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
828 btrfs_drop_extent_cache(BTRFS_I(inode),
830 async_extent->start +
831 async_extent->ram_size - 1, 0);
832 goto out_free_reserve;
834 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
837 * clear dirty, set writeback and unlock the pages.
839 extent_clear_unlock_delalloc(inode, async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1,
842 async_extent->start +
843 async_extent->ram_size - 1,
844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
847 if (btrfs_submit_compressed_write(inode,
849 async_extent->ram_size,
851 ins.offset, async_extent->pages,
852 async_extent->nr_pages,
853 async_cow->write_flags)) {
854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 struct page *p = async_extent->pages[0];
856 const u64 start = async_extent->start;
857 const u64 end = start + async_extent->ram_size - 1;
859 p->mapping = inode->i_mapping;
860 tree->ops->writepage_end_io_hook(p, start, end,
863 extent_clear_unlock_delalloc(inode, start, end, end,
867 free_async_extent_pages(async_extent);
869 alloc_hint = ins.objectid + ins.offset;
875 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
878 extent_clear_unlock_delalloc(inode, async_extent->start,
879 async_extent->start +
880 async_extent->ram_size - 1,
881 async_extent->start +
882 async_extent->ram_size - 1,
883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
884 EXTENT_DELALLOC_NEW |
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
889 free_async_extent_pages(async_extent);
894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
917 alloc_hint = em->block_start;
921 read_unlock(&em_tree->lock);
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
939 static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
946 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long ram_size;
950 u64 cur_alloc_size = 0;
951 u64 blocksize = fs_info->sectorsize;
952 struct btrfs_key ins;
953 struct extent_map *em;
955 unsigned long page_ops;
956 bool extent_reserved = false;
959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
965 num_bytes = ALIGN(end - start + 1, blocksize);
966 num_bytes = max(blocksize, num_bytes);
967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
972 /* lets try to make an inline extent */
973 ret = cow_file_range_inline(inode, start, end, 0,
974 BTRFS_COMPRESS_NONE, NULL);
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
982 extent_clear_unlock_delalloc(inode, start, end,
984 EXTENT_LOCKED | EXTENT_DELALLOC |
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
989 *nr_written = *nr_written +
990 (end - start + PAGE_SIZE) / PAGE_SIZE;
993 } else if (ret < 0) {
998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
999 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 start + num_bytes - 1, 0);
1002 while (num_bytes > 0) {
1003 cur_alloc_size = num_bytes;
1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005 fs_info->sectorsize, 0, alloc_hint,
1009 cur_alloc_size = ins.offset;
1010 extent_reserved = true;
1012 ram_size = ins.offset;
1013 em = create_io_em(inode, start, ins.offset, /* len */
1014 start, /* orig_start */
1015 ins.objectid, /* block_start */
1016 ins.offset, /* block_len */
1017 ins.offset, /* orig_block_len */
1018 ram_size, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE, /* compress_type */
1020 BTRFS_ORDERED_REGULAR /* type */);
1023 free_extent_map(em);
1025 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1026 ram_size, cur_alloc_size, 0);
1028 goto out_drop_extent_cache;
1030 if (root->root_key.objectid ==
1031 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 ret = btrfs_reloc_clone_csums(inode, start,
1035 * Only drop cache here, and process as normal.
1037 * We must not allow extent_clear_unlock_delalloc()
1038 * at out_unlock label to free meta of this ordered
1039 * extent, as its meta should be freed by
1040 * btrfs_finish_ordered_io().
1042 * So we must continue until @start is increased to
1043 * skip current ordered extent.
1046 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 start + ram_size - 1, 0);
1050 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1052 /* we're not doing compressed IO, don't unlock the first
1053 * page (which the caller expects to stay locked), don't
1054 * clear any dirty bits and don't set any writeback bits
1056 * Do set the Private2 bit so we know this page was properly
1057 * setup for writepage
1059 page_ops = unlock ? PAGE_UNLOCK : 0;
1060 page_ops |= PAGE_SET_PRIVATE2;
1062 extent_clear_unlock_delalloc(inode, start,
1063 start + ram_size - 1,
1064 delalloc_end, locked_page,
1065 EXTENT_LOCKED | EXTENT_DELALLOC,
1067 if (num_bytes < cur_alloc_size)
1070 num_bytes -= cur_alloc_size;
1071 alloc_hint = ins.objectid + ins.offset;
1072 start += cur_alloc_size;
1073 extent_reserved = false;
1076 * btrfs_reloc_clone_csums() error, since start is increased
1077 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 * free metadata of current ordered extent, we're OK to exit.
1086 out_drop_extent_cache:
1087 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1089 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1090 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1092 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1094 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1097 * If we reserved an extent for our delalloc range (or a subrange) and
1098 * failed to create the respective ordered extent, then it means that
1099 * when we reserved the extent we decremented the extent's size from
1100 * the data space_info's bytes_may_use counter and incremented the
1101 * space_info's bytes_reserved counter by the same amount. We must make
1102 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 * it the flag EXTENT_CLEAR_DATA_RESV.
1106 if (extent_reserved) {
1107 extent_clear_unlock_delalloc(inode, start,
1108 start + cur_alloc_size,
1109 start + cur_alloc_size,
1113 start += cur_alloc_size;
1117 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1119 clear_bits | EXTENT_CLEAR_DATA_RESV,
1125 * work queue call back to started compression on a file and pages
1127 static noinline void async_cow_start(struct btrfs_work *work)
1129 struct async_cow *async_cow;
1131 async_cow = container_of(work, struct async_cow, work);
1133 compress_file_range(async_cow->inode, async_cow->locked_page,
1134 async_cow->start, async_cow->end, async_cow,
1136 if (num_added == 0) {
1137 btrfs_add_delayed_iput(async_cow->inode);
1138 async_cow->inode = NULL;
1143 * work queue call back to submit previously compressed pages
1145 static noinline void async_cow_submit(struct btrfs_work *work)
1147 struct btrfs_fs_info *fs_info;
1148 struct async_cow *async_cow;
1149 struct btrfs_root *root;
1150 unsigned long nr_pages;
1152 async_cow = container_of(work, struct async_cow, work);
1154 root = async_cow->root;
1155 fs_info = root->fs_info;
1156 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1160 * atomic_sub_return implies a barrier for waitqueue_active
1162 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1164 waitqueue_active(&fs_info->async_submit_wait))
1165 wake_up(&fs_info->async_submit_wait);
1167 if (async_cow->inode)
1168 submit_compressed_extents(async_cow->inode, async_cow);
1171 static noinline void async_cow_free(struct btrfs_work *work)
1173 struct async_cow *async_cow;
1174 async_cow = container_of(work, struct async_cow, work);
1175 if (async_cow->inode)
1176 btrfs_add_delayed_iput(async_cow->inode);
1180 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1181 u64 start, u64 end, int *page_started,
1182 unsigned long *nr_written,
1183 unsigned int write_flags)
1185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1186 struct async_cow *async_cow;
1187 struct btrfs_root *root = BTRFS_I(inode)->root;
1188 unsigned long nr_pages;
1191 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1193 while (start < end) {
1194 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1195 BUG_ON(!async_cow); /* -ENOMEM */
1196 async_cow->inode = igrab(inode);
1197 async_cow->root = root;
1198 async_cow->locked_page = locked_page;
1199 async_cow->start = start;
1200 async_cow->write_flags = write_flags;
1202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1203 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1206 cur_end = min(end, start + SZ_512K - 1);
1208 async_cow->end = cur_end;
1209 INIT_LIST_HEAD(&async_cow->extents);
1211 btrfs_init_work(&async_cow->work,
1212 btrfs_delalloc_helper,
1213 async_cow_start, async_cow_submit,
1216 nr_pages = (cur_end - start + PAGE_SIZE) >>
1218 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1220 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1222 *nr_written += nr_pages;
1223 start = cur_end + 1;
1229 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1230 u64 bytenr, u64 num_bytes)
1233 struct btrfs_ordered_sum *sums;
1236 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1237 bytenr + num_bytes - 1, &list, 0);
1238 if (ret == 0 && list_empty(&list))
1241 while (!list_empty(&list)) {
1242 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1243 list_del(&sums->list);
1252 * when nowcow writeback call back. This checks for snapshots or COW copies
1253 * of the extents that exist in the file, and COWs the file as required.
1255 * If no cow copies or snapshots exist, we write directly to the existing
1258 static noinline int run_delalloc_nocow(struct inode *inode,
1259 struct page *locked_page,
1260 u64 start, u64 end, int *page_started, int force,
1261 unsigned long *nr_written)
1263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1264 struct btrfs_root *root = BTRFS_I(inode)->root;
1265 struct extent_buffer *leaf;
1266 struct btrfs_path *path;
1267 struct btrfs_file_extent_item *fi;
1268 struct btrfs_key found_key;
1269 struct extent_map *em;
1284 u64 ino = btrfs_ino(BTRFS_I(inode));
1286 path = btrfs_alloc_path();
1288 extent_clear_unlock_delalloc(inode, start, end, end,
1290 EXTENT_LOCKED | EXTENT_DELALLOC |
1291 EXTENT_DO_ACCOUNTING |
1292 EXTENT_DEFRAG, PAGE_UNLOCK |
1294 PAGE_SET_WRITEBACK |
1295 PAGE_END_WRITEBACK);
1299 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1301 cow_start = (u64)-1;
1304 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1308 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309 leaf = path->nodes[0];
1310 btrfs_item_key_to_cpu(leaf, &found_key,
1311 path->slots[0] - 1);
1312 if (found_key.objectid == ino &&
1313 found_key.type == BTRFS_EXTENT_DATA_KEY)
1318 leaf = path->nodes[0];
1319 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320 ret = btrfs_next_leaf(root, path);
1322 if (cow_start != (u64)-1)
1323 cur_offset = cow_start;
1328 leaf = path->nodes[0];
1334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1336 if (found_key.objectid > ino)
1338 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1339 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1343 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1344 found_key.offset > end)
1347 if (found_key.offset > cur_offset) {
1348 extent_end = found_key.offset;
1353 fi = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_file_extent_item);
1355 extent_type = btrfs_file_extent_type(leaf, fi);
1357 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1358 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1359 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1360 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1361 extent_offset = btrfs_file_extent_offset(leaf, fi);
1362 extent_end = found_key.offset +
1363 btrfs_file_extent_num_bytes(leaf, fi);
1365 btrfs_file_extent_disk_num_bytes(leaf, fi);
1366 if (extent_end <= start) {
1370 if (disk_bytenr == 0)
1372 if (btrfs_file_extent_compression(leaf, fi) ||
1373 btrfs_file_extent_encryption(leaf, fi) ||
1374 btrfs_file_extent_other_encoding(leaf, fi))
1376 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1378 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1380 ret = btrfs_cross_ref_exist(root, ino,
1382 extent_offset, disk_bytenr);
1385 * ret could be -EIO if the above fails to read
1389 if (cow_start != (u64)-1)
1390 cur_offset = cow_start;
1394 WARN_ON_ONCE(nolock);
1397 disk_bytenr += extent_offset;
1398 disk_bytenr += cur_offset - found_key.offset;
1399 num_bytes = min(end + 1, extent_end) - cur_offset;
1401 * if there are pending snapshots for this root,
1402 * we fall into common COW way.
1405 err = btrfs_start_write_no_snapshotting(root);
1410 * force cow if csum exists in the range.
1411 * this ensure that csum for a given extent are
1412 * either valid or do not exist.
1414 ret = csum_exist_in_range(fs_info, disk_bytenr,
1418 btrfs_end_write_no_snapshotting(root);
1421 * ret could be -EIO if the above fails to read
1425 if (cow_start != (u64)-1)
1426 cur_offset = cow_start;
1429 WARN_ON_ONCE(nolock);
1432 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1434 btrfs_end_write_no_snapshotting(root);
1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 extent_end = found_key.offset +
1440 btrfs_file_extent_inline_len(leaf,
1441 path->slots[0], fi);
1442 extent_end = ALIGN(extent_end,
1443 fs_info->sectorsize);
1448 if (extent_end <= start) {
1450 if (!nolock && nocow)
1451 btrfs_end_write_no_snapshotting(root);
1453 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1457 if (cow_start == (u64)-1)
1458 cow_start = cur_offset;
1459 cur_offset = extent_end;
1460 if (cur_offset > end)
1466 btrfs_release_path(path);
1467 if (cow_start != (u64)-1) {
1468 ret = cow_file_range(inode, locked_page,
1469 cow_start, found_key.offset - 1,
1470 end, page_started, nr_written, 1,
1473 if (!nolock && nocow)
1474 btrfs_end_write_no_snapshotting(root);
1476 btrfs_dec_nocow_writers(fs_info,
1480 cow_start = (u64)-1;
1483 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1484 u64 orig_start = found_key.offset - extent_offset;
1486 em = create_io_em(inode, cur_offset, num_bytes,
1488 disk_bytenr, /* block_start */
1489 num_bytes, /* block_len */
1490 disk_num_bytes, /* orig_block_len */
1491 ram_bytes, BTRFS_COMPRESS_NONE,
1492 BTRFS_ORDERED_PREALLOC);
1494 if (!nolock && nocow)
1495 btrfs_end_write_no_snapshotting(root);
1497 btrfs_dec_nocow_writers(fs_info,
1502 free_extent_map(em);
1505 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1506 type = BTRFS_ORDERED_PREALLOC;
1508 type = BTRFS_ORDERED_NOCOW;
1511 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1512 num_bytes, num_bytes, type);
1514 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1515 BUG_ON(ret); /* -ENOMEM */
1517 if (root->root_key.objectid ==
1518 BTRFS_DATA_RELOC_TREE_OBJECTID)
1520 * Error handled later, as we must prevent
1521 * extent_clear_unlock_delalloc() in error handler
1522 * from freeing metadata of created ordered extent.
1524 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1527 extent_clear_unlock_delalloc(inode, cur_offset,
1528 cur_offset + num_bytes - 1, end,
1529 locked_page, EXTENT_LOCKED |
1531 EXTENT_CLEAR_DATA_RESV,
1532 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1534 if (!nolock && nocow)
1535 btrfs_end_write_no_snapshotting(root);
1536 cur_offset = extent_end;
1539 * btrfs_reloc_clone_csums() error, now we're OK to call error
1540 * handler, as metadata for created ordered extent will only
1541 * be freed by btrfs_finish_ordered_io().
1545 if (cur_offset > end)
1548 btrfs_release_path(path);
1550 if (cur_offset <= end && cow_start == (u64)-1) {
1551 cow_start = cur_offset;
1555 if (cow_start != (u64)-1) {
1556 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557 page_started, nr_written, 1, NULL);
1563 if (ret && cur_offset < end)
1564 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1565 locked_page, EXTENT_LOCKED |
1566 EXTENT_DELALLOC | EXTENT_DEFRAG |
1567 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1569 PAGE_SET_WRITEBACK |
1570 PAGE_END_WRITEBACK);
1571 btrfs_free_path(path);
1575 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1578 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1583 * @defrag_bytes is a hint value, no spinlock held here,
1584 * if is not zero, it means the file is defragging.
1585 * Force cow if given extent needs to be defragged.
1587 if (BTRFS_I(inode)->defrag_bytes &&
1588 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589 EXTENT_DEFRAG, 0, NULL))
1596 * extent_io.c call back to do delayed allocation processing
1598 static int run_delalloc_range(void *private_data, struct page *locked_page,
1599 u64 start, u64 end, int *page_started,
1600 unsigned long *nr_written,
1601 struct writeback_control *wbc)
1603 struct inode *inode = private_data;
1605 int force_cow = need_force_cow(inode, start, end);
1606 unsigned int write_flags = wbc_to_write_flags(wbc);
1608 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1609 ret = run_delalloc_nocow(inode, locked_page, start, end,
1610 page_started, 1, nr_written);
1611 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1612 ret = run_delalloc_nocow(inode, locked_page, start, end,
1613 page_started, 0, nr_written);
1614 } else if (!inode_need_compress(inode, start, end)) {
1615 ret = cow_file_range(inode, locked_page, start, end, end,
1616 page_started, nr_written, 1, NULL);
1618 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1619 &BTRFS_I(inode)->runtime_flags);
1620 ret = cow_file_range_async(inode, locked_page, start, end,
1621 page_started, nr_written,
1625 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1629 static void btrfs_split_extent_hook(void *private_data,
1630 struct extent_state *orig, u64 split)
1632 struct inode *inode = private_data;
1635 /* not delalloc, ignore it */
1636 if (!(orig->state & EXTENT_DELALLOC))
1639 size = orig->end - orig->start + 1;
1640 if (size > BTRFS_MAX_EXTENT_SIZE) {
1645 * See the explanation in btrfs_merge_extent_hook, the same
1646 * applies here, just in reverse.
1648 new_size = orig->end - split + 1;
1649 num_extents = count_max_extents(new_size);
1650 new_size = split - orig->start;
1651 num_extents += count_max_extents(new_size);
1652 if (count_max_extents(size) >= num_extents)
1656 spin_lock(&BTRFS_I(inode)->lock);
1657 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1658 spin_unlock(&BTRFS_I(inode)->lock);
1662 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1663 * extents so we can keep track of new extents that are just merged onto old
1664 * extents, such as when we are doing sequential writes, so we can properly
1665 * account for the metadata space we'll need.
1667 static void btrfs_merge_extent_hook(void *private_data,
1668 struct extent_state *new,
1669 struct extent_state *other)
1671 struct inode *inode = private_data;
1672 u64 new_size, old_size;
1675 /* not delalloc, ignore it */
1676 if (!(other->state & EXTENT_DELALLOC))
1679 if (new->start > other->start)
1680 new_size = new->end - other->start + 1;
1682 new_size = other->end - new->start + 1;
1684 /* we're not bigger than the max, unreserve the space and go */
1685 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1686 spin_lock(&BTRFS_I(inode)->lock);
1687 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1688 spin_unlock(&BTRFS_I(inode)->lock);
1693 * We have to add up either side to figure out how many extents were
1694 * accounted for before we merged into one big extent. If the number of
1695 * extents we accounted for is <= the amount we need for the new range
1696 * then we can return, otherwise drop. Think of it like this
1700 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1701 * need 2 outstanding extents, on one side we have 1 and the other side
1702 * we have 1 so they are == and we can return. But in this case
1704 * [MAX_SIZE+4k][MAX_SIZE+4k]
1706 * Each range on their own accounts for 2 extents, but merged together
1707 * they are only 3 extents worth of accounting, so we need to drop in
1710 old_size = other->end - other->start + 1;
1711 num_extents = count_max_extents(old_size);
1712 old_size = new->end - new->start + 1;
1713 num_extents += count_max_extents(old_size);
1714 if (count_max_extents(new_size) >= num_extents)
1717 spin_lock(&BTRFS_I(inode)->lock);
1718 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1719 spin_unlock(&BTRFS_I(inode)->lock);
1722 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1723 struct inode *inode)
1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1727 spin_lock(&root->delalloc_lock);
1728 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1730 &root->delalloc_inodes);
1731 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1732 &BTRFS_I(inode)->runtime_flags);
1733 root->nr_delalloc_inodes++;
1734 if (root->nr_delalloc_inodes == 1) {
1735 spin_lock(&fs_info->delalloc_root_lock);
1736 BUG_ON(!list_empty(&root->delalloc_root));
1737 list_add_tail(&root->delalloc_root,
1738 &fs_info->delalloc_roots);
1739 spin_unlock(&fs_info->delalloc_root_lock);
1742 spin_unlock(&root->delalloc_lock);
1745 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1746 struct btrfs_inode *inode)
1748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1750 spin_lock(&root->delalloc_lock);
1751 if (!list_empty(&inode->delalloc_inodes)) {
1752 list_del_init(&inode->delalloc_inodes);
1753 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1754 &inode->runtime_flags);
1755 root->nr_delalloc_inodes--;
1756 if (!root->nr_delalloc_inodes) {
1757 spin_lock(&fs_info->delalloc_root_lock);
1758 BUG_ON(list_empty(&root->delalloc_root));
1759 list_del_init(&root->delalloc_root);
1760 spin_unlock(&fs_info->delalloc_root_lock);
1763 spin_unlock(&root->delalloc_lock);
1767 * extent_io.c set_bit_hook, used to track delayed allocation
1768 * bytes in this file, and to maintain the list of inodes that
1769 * have pending delalloc work to be done.
1771 static void btrfs_set_bit_hook(void *private_data,
1772 struct extent_state *state, unsigned *bits)
1774 struct inode *inode = private_data;
1776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1778 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1781 * set_bit and clear bit hooks normally require _irqsave/restore
1782 * but in this case, we are only testing for the DELALLOC
1783 * bit, which is only set or cleared with irqs on
1785 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 u64 len = state->end + 1 - state->start;
1788 u32 num_extents = count_max_extents(len);
1789 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1791 spin_lock(&BTRFS_I(inode)->lock);
1792 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1793 spin_unlock(&BTRFS_I(inode)->lock);
1795 /* For sanity tests */
1796 if (btrfs_is_testing(fs_info))
1799 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1800 fs_info->delalloc_batch);
1801 spin_lock(&BTRFS_I(inode)->lock);
1802 BTRFS_I(inode)->delalloc_bytes += len;
1803 if (*bits & EXTENT_DEFRAG)
1804 BTRFS_I(inode)->defrag_bytes += len;
1805 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1806 &BTRFS_I(inode)->runtime_flags))
1807 btrfs_add_delalloc_inodes(root, inode);
1808 spin_unlock(&BTRFS_I(inode)->lock);
1811 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1812 (*bits & EXTENT_DELALLOC_NEW)) {
1813 spin_lock(&BTRFS_I(inode)->lock);
1814 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1816 spin_unlock(&BTRFS_I(inode)->lock);
1821 * extent_io.c clear_bit_hook, see set_bit_hook for why
1823 static void btrfs_clear_bit_hook(void *private_data,
1824 struct extent_state *state,
1827 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1829 u64 len = state->end + 1 - state->start;
1830 u32 num_extents = count_max_extents(len);
1832 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1833 spin_lock(&inode->lock);
1834 inode->defrag_bytes -= len;
1835 spin_unlock(&inode->lock);
1839 * set_bit and clear bit hooks normally require _irqsave/restore
1840 * but in this case, we are only testing for the DELALLOC
1841 * bit, which is only set or cleared with irqs on
1843 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1844 struct btrfs_root *root = inode->root;
1845 bool do_list = !btrfs_is_free_space_inode(inode);
1847 spin_lock(&inode->lock);
1848 btrfs_mod_outstanding_extents(inode, -num_extents);
1849 spin_unlock(&inode->lock);
1852 * We don't reserve metadata space for space cache inodes so we
1853 * don't need to call dellalloc_release_metadata if there is an
1856 if (*bits & EXTENT_CLEAR_META_RESV &&
1857 root != fs_info->tree_root)
1858 btrfs_delalloc_release_metadata(inode, len, false);
1860 /* For sanity tests. */
1861 if (btrfs_is_testing(fs_info))
1864 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1865 do_list && !(state->state & EXTENT_NORESERVE) &&
1866 (*bits & EXTENT_CLEAR_DATA_RESV))
1867 btrfs_free_reserved_data_space_noquota(
1871 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1872 fs_info->delalloc_batch);
1873 spin_lock(&inode->lock);
1874 inode->delalloc_bytes -= len;
1875 if (do_list && inode->delalloc_bytes == 0 &&
1876 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1877 &inode->runtime_flags))
1878 btrfs_del_delalloc_inode(root, inode);
1879 spin_unlock(&inode->lock);
1882 if ((state->state & EXTENT_DELALLOC_NEW) &&
1883 (*bits & EXTENT_DELALLOC_NEW)) {
1884 spin_lock(&inode->lock);
1885 ASSERT(inode->new_delalloc_bytes >= len);
1886 inode->new_delalloc_bytes -= len;
1887 spin_unlock(&inode->lock);
1892 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1893 * we don't create bios that span stripes or chunks
1895 * return 1 if page cannot be merged to bio
1896 * return 0 if page can be merged to bio
1897 * return error otherwise
1899 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1900 size_t size, struct bio *bio,
1901 unsigned long bio_flags)
1903 struct inode *inode = page->mapping->host;
1904 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1905 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1910 if (bio_flags & EXTENT_BIO_COMPRESSED)
1913 length = bio->bi_iter.bi_size;
1914 map_length = length;
1915 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1919 if (map_length < length + size)
1925 * in order to insert checksums into the metadata in large chunks,
1926 * we wait until bio submission time. All the pages in the bio are
1927 * checksummed and sums are attached onto the ordered extent record.
1929 * At IO completion time the cums attached on the ordered extent record
1930 * are inserted into the btree
1932 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1935 struct inode *inode = private_data;
1936 blk_status_t ret = 0;
1938 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1939 BUG_ON(ret); /* -ENOMEM */
1944 * in order to insert checksums into the metadata in large chunks,
1945 * we wait until bio submission time. All the pages in the bio are
1946 * checksummed and sums are attached onto the ordered extent record.
1948 * At IO completion time the cums attached on the ordered extent record
1949 * are inserted into the btree
1951 static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1954 struct inode *inode = private_data;
1955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1958 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1960 bio->bi_status = ret;
1967 * extent_io.c submission hook. This does the right thing for csum calculation
1968 * on write, or reading the csums from the tree before a read.
1970 * Rules about async/sync submit,
1971 * a) read: sync submit
1973 * b) write without checksum: sync submit
1975 * c) write with checksum:
1976 * c-1) if bio is issued by fsync: sync submit
1977 * (sync_writers != 0)
1979 * c-2) if root is reloc root: sync submit
1980 * (only in case of buffered IO)
1982 * c-3) otherwise: async submit
1984 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1985 int mirror_num, unsigned long bio_flags,
1988 struct inode *inode = private_data;
1989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1990 struct btrfs_root *root = BTRFS_I(inode)->root;
1991 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1992 blk_status_t ret = 0;
1994 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1996 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1998 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1999 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2001 if (bio_op(bio) != REQ_OP_WRITE) {
2002 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2006 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2007 ret = btrfs_submit_compressed_read(inode, bio,
2011 } else if (!skip_sum) {
2012 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2017 } else if (async && !skip_sum) {
2018 /* csum items have already been cloned */
2019 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2021 /* we're doing a write, do the async checksumming */
2022 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2024 btrfs_submit_bio_start,
2025 btrfs_submit_bio_done);
2027 } else if (!skip_sum) {
2028 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2034 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2038 bio->bi_status = ret;
2045 * given a list of ordered sums record them in the inode. This happens
2046 * at IO completion time based on sums calculated at bio submission time.
2048 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2049 struct inode *inode, struct list_head *list)
2051 struct btrfs_ordered_sum *sum;
2054 list_for_each_entry(sum, list, list) {
2055 trans->adding_csums = true;
2056 ret = btrfs_csum_file_blocks(trans,
2057 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2058 trans->adding_csums = false;
2065 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2066 unsigned int extra_bits,
2067 struct extent_state **cached_state, int dedupe)
2069 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2070 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2071 extra_bits, cached_state);
2074 /* see btrfs_writepage_start_hook for details on why this is required */
2075 struct btrfs_writepage_fixup {
2077 struct btrfs_work work;
2080 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2082 struct btrfs_writepage_fixup *fixup;
2083 struct btrfs_ordered_extent *ordered;
2084 struct extent_state *cached_state = NULL;
2085 struct extent_changeset *data_reserved = NULL;
2087 struct inode *inode;
2092 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2096 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2097 ClearPageChecked(page);
2101 inode = page->mapping->host;
2102 page_start = page_offset(page);
2103 page_end = page_offset(page) + PAGE_SIZE - 1;
2105 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2108 /* already ordered? We're done */
2109 if (PagePrivate2(page))
2112 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2115 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2116 page_end, &cached_state);
2118 btrfs_start_ordered_extent(inode, ordered, 1);
2119 btrfs_put_ordered_extent(ordered);
2123 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2126 mapping_set_error(page->mapping, ret);
2127 end_extent_writepage(page, ret, page_start, page_end);
2128 ClearPageChecked(page);
2132 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2135 mapping_set_error(page->mapping, ret);
2136 end_extent_writepage(page, ret, page_start, page_end);
2137 ClearPageChecked(page);
2141 ClearPageChecked(page);
2142 set_page_dirty(page);
2143 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2145 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2151 extent_changeset_free(data_reserved);
2155 * There are a few paths in the higher layers of the kernel that directly
2156 * set the page dirty bit without asking the filesystem if it is a
2157 * good idea. This causes problems because we want to make sure COW
2158 * properly happens and the data=ordered rules are followed.
2160 * In our case any range that doesn't have the ORDERED bit set
2161 * hasn't been properly setup for IO. We kick off an async process
2162 * to fix it up. The async helper will wait for ordered extents, set
2163 * the delalloc bit and make it safe to write the page.
2165 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2167 struct inode *inode = page->mapping->host;
2168 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2169 struct btrfs_writepage_fixup *fixup;
2171 /* this page is properly in the ordered list */
2172 if (TestClearPagePrivate2(page))
2175 if (PageChecked(page))
2178 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2182 SetPageChecked(page);
2184 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2185 btrfs_writepage_fixup_worker, NULL, NULL);
2187 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2191 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2192 struct inode *inode, u64 file_pos,
2193 u64 disk_bytenr, u64 disk_num_bytes,
2194 u64 num_bytes, u64 ram_bytes,
2195 u8 compression, u8 encryption,
2196 u16 other_encoding, int extent_type)
2198 struct btrfs_root *root = BTRFS_I(inode)->root;
2199 struct btrfs_file_extent_item *fi;
2200 struct btrfs_path *path;
2201 struct extent_buffer *leaf;
2202 struct btrfs_key ins;
2204 int extent_inserted = 0;
2207 path = btrfs_alloc_path();
2212 * we may be replacing one extent in the tree with another.
2213 * The new extent is pinned in the extent map, and we don't want
2214 * to drop it from the cache until it is completely in the btree.
2216 * So, tell btrfs_drop_extents to leave this extent in the cache.
2217 * the caller is expected to unpin it and allow it to be merged
2220 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2221 file_pos + num_bytes, NULL, 0,
2222 1, sizeof(*fi), &extent_inserted);
2226 if (!extent_inserted) {
2227 ins.objectid = btrfs_ino(BTRFS_I(inode));
2228 ins.offset = file_pos;
2229 ins.type = BTRFS_EXTENT_DATA_KEY;
2231 path->leave_spinning = 1;
2232 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2237 leaf = path->nodes[0];
2238 fi = btrfs_item_ptr(leaf, path->slots[0],
2239 struct btrfs_file_extent_item);
2240 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2241 btrfs_set_file_extent_type(leaf, fi, extent_type);
2242 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2243 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2244 btrfs_set_file_extent_offset(leaf, fi, 0);
2245 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2246 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2247 btrfs_set_file_extent_compression(leaf, fi, compression);
2248 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2249 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2251 btrfs_mark_buffer_dirty(leaf);
2252 btrfs_release_path(path);
2254 inode_add_bytes(inode, num_bytes);
2256 ins.objectid = disk_bytenr;
2257 ins.offset = disk_num_bytes;
2258 ins.type = BTRFS_EXTENT_ITEM_KEY;
2261 * Release the reserved range from inode dirty range map, as it is
2262 * already moved into delayed_ref_head
2264 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2268 ret = btrfs_alloc_reserved_file_extent(trans, root,
2269 btrfs_ino(BTRFS_I(inode)),
2270 file_pos, qg_released, &ins);
2272 btrfs_free_path(path);
2277 /* snapshot-aware defrag */
2278 struct sa_defrag_extent_backref {
2279 struct rb_node node;
2280 struct old_sa_defrag_extent *old;
2289 struct old_sa_defrag_extent {
2290 struct list_head list;
2291 struct new_sa_defrag_extent *new;
2300 struct new_sa_defrag_extent {
2301 struct rb_root root;
2302 struct list_head head;
2303 struct btrfs_path *path;
2304 struct inode *inode;
2312 static int backref_comp(struct sa_defrag_extent_backref *b1,
2313 struct sa_defrag_extent_backref *b2)
2315 if (b1->root_id < b2->root_id)
2317 else if (b1->root_id > b2->root_id)
2320 if (b1->inum < b2->inum)
2322 else if (b1->inum > b2->inum)
2325 if (b1->file_pos < b2->file_pos)
2327 else if (b1->file_pos > b2->file_pos)
2331 * [------------------------------] ===> (a range of space)
2332 * |<--->| |<---->| =============> (fs/file tree A)
2333 * |<---------------------------->| ===> (fs/file tree B)
2335 * A range of space can refer to two file extents in one tree while
2336 * refer to only one file extent in another tree.
2338 * So we may process a disk offset more than one time(two extents in A)
2339 * and locate at the same extent(one extent in B), then insert two same
2340 * backrefs(both refer to the extent in B).
2345 static void backref_insert(struct rb_root *root,
2346 struct sa_defrag_extent_backref *backref)
2348 struct rb_node **p = &root->rb_node;
2349 struct rb_node *parent = NULL;
2350 struct sa_defrag_extent_backref *entry;
2355 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2357 ret = backref_comp(backref, entry);
2361 p = &(*p)->rb_right;
2364 rb_link_node(&backref->node, parent, p);
2365 rb_insert_color(&backref->node, root);
2369 * Note the backref might has changed, and in this case we just return 0.
2371 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2374 struct btrfs_file_extent_item *extent;
2375 struct old_sa_defrag_extent *old = ctx;
2376 struct new_sa_defrag_extent *new = old->new;
2377 struct btrfs_path *path = new->path;
2378 struct btrfs_key key;
2379 struct btrfs_root *root;
2380 struct sa_defrag_extent_backref *backref;
2381 struct extent_buffer *leaf;
2382 struct inode *inode = new->inode;
2383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2389 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2390 inum == btrfs_ino(BTRFS_I(inode)))
2393 key.objectid = root_id;
2394 key.type = BTRFS_ROOT_ITEM_KEY;
2395 key.offset = (u64)-1;
2397 root = btrfs_read_fs_root_no_name(fs_info, &key);
2399 if (PTR_ERR(root) == -ENOENT)
2402 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2403 inum, offset, root_id);
2404 return PTR_ERR(root);
2407 key.objectid = inum;
2408 key.type = BTRFS_EXTENT_DATA_KEY;
2409 if (offset > (u64)-1 << 32)
2412 key.offset = offset;
2414 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2415 if (WARN_ON(ret < 0))
2422 leaf = path->nodes[0];
2423 slot = path->slots[0];
2425 if (slot >= btrfs_header_nritems(leaf)) {
2426 ret = btrfs_next_leaf(root, path);
2429 } else if (ret > 0) {
2438 btrfs_item_key_to_cpu(leaf, &key, slot);
2440 if (key.objectid > inum)
2443 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2446 extent = btrfs_item_ptr(leaf, slot,
2447 struct btrfs_file_extent_item);
2449 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2453 * 'offset' refers to the exact key.offset,
2454 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2455 * (key.offset - extent_offset).
2457 if (key.offset != offset)
2460 extent_offset = btrfs_file_extent_offset(leaf, extent);
2461 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2463 if (extent_offset >= old->extent_offset + old->offset +
2464 old->len || extent_offset + num_bytes <=
2465 old->extent_offset + old->offset)
2470 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2476 backref->root_id = root_id;
2477 backref->inum = inum;
2478 backref->file_pos = offset;
2479 backref->num_bytes = num_bytes;
2480 backref->extent_offset = extent_offset;
2481 backref->generation = btrfs_file_extent_generation(leaf, extent);
2483 backref_insert(&new->root, backref);
2486 btrfs_release_path(path);
2491 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2492 struct new_sa_defrag_extent *new)
2494 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2495 struct old_sa_defrag_extent *old, *tmp;
2500 list_for_each_entry_safe(old, tmp, &new->head, list) {
2501 ret = iterate_inodes_from_logical(old->bytenr +
2502 old->extent_offset, fs_info,
2503 path, record_one_backref,
2505 if (ret < 0 && ret != -ENOENT)
2508 /* no backref to be processed for this extent */
2510 list_del(&old->list);
2515 if (list_empty(&new->head))
2521 static int relink_is_mergable(struct extent_buffer *leaf,
2522 struct btrfs_file_extent_item *fi,
2523 struct new_sa_defrag_extent *new)
2525 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2528 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2531 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2534 if (btrfs_file_extent_encryption(leaf, fi) ||
2535 btrfs_file_extent_other_encoding(leaf, fi))
2542 * Note the backref might has changed, and in this case we just return 0.
2544 static noinline int relink_extent_backref(struct btrfs_path *path,
2545 struct sa_defrag_extent_backref *prev,
2546 struct sa_defrag_extent_backref *backref)
2548 struct btrfs_file_extent_item *extent;
2549 struct btrfs_file_extent_item *item;
2550 struct btrfs_ordered_extent *ordered;
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_root *root;
2553 struct btrfs_key key;
2554 struct extent_buffer *leaf;
2555 struct old_sa_defrag_extent *old = backref->old;
2556 struct new_sa_defrag_extent *new = old->new;
2557 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2558 struct inode *inode;
2559 struct extent_state *cached = NULL;
2568 if (prev && prev->root_id == backref->root_id &&
2569 prev->inum == backref->inum &&
2570 prev->file_pos + prev->num_bytes == backref->file_pos)
2573 /* step 1: get root */
2574 key.objectid = backref->root_id;
2575 key.type = BTRFS_ROOT_ITEM_KEY;
2576 key.offset = (u64)-1;
2578 index = srcu_read_lock(&fs_info->subvol_srcu);
2580 root = btrfs_read_fs_root_no_name(fs_info, &key);
2582 srcu_read_unlock(&fs_info->subvol_srcu, index);
2583 if (PTR_ERR(root) == -ENOENT)
2585 return PTR_ERR(root);
2588 if (btrfs_root_readonly(root)) {
2589 srcu_read_unlock(&fs_info->subvol_srcu, index);
2593 /* step 2: get inode */
2594 key.objectid = backref->inum;
2595 key.type = BTRFS_INODE_ITEM_KEY;
2598 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2599 if (IS_ERR(inode)) {
2600 srcu_read_unlock(&fs_info->subvol_srcu, index);
2604 srcu_read_unlock(&fs_info->subvol_srcu, index);
2606 /* step 3: relink backref */
2607 lock_start = backref->file_pos;
2608 lock_end = backref->file_pos + backref->num_bytes - 1;
2609 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2612 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2614 btrfs_put_ordered_extent(ordered);
2618 trans = btrfs_join_transaction(root);
2619 if (IS_ERR(trans)) {
2620 ret = PTR_ERR(trans);
2624 key.objectid = backref->inum;
2625 key.type = BTRFS_EXTENT_DATA_KEY;
2626 key.offset = backref->file_pos;
2628 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2631 } else if (ret > 0) {
2636 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2637 struct btrfs_file_extent_item);
2639 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2640 backref->generation)
2643 btrfs_release_path(path);
2645 start = backref->file_pos;
2646 if (backref->extent_offset < old->extent_offset + old->offset)
2647 start += old->extent_offset + old->offset -
2648 backref->extent_offset;
2650 len = min(backref->extent_offset + backref->num_bytes,
2651 old->extent_offset + old->offset + old->len);
2652 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2654 ret = btrfs_drop_extents(trans, root, inode, start,
2659 key.objectid = btrfs_ino(BTRFS_I(inode));
2660 key.type = BTRFS_EXTENT_DATA_KEY;
2663 path->leave_spinning = 1;
2665 struct btrfs_file_extent_item *fi;
2667 struct btrfs_key found_key;
2669 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2674 leaf = path->nodes[0];
2675 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2677 fi = btrfs_item_ptr(leaf, path->slots[0],
2678 struct btrfs_file_extent_item);
2679 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2681 if (extent_len + found_key.offset == start &&
2682 relink_is_mergable(leaf, fi, new)) {
2683 btrfs_set_file_extent_num_bytes(leaf, fi,
2685 btrfs_mark_buffer_dirty(leaf);
2686 inode_add_bytes(inode, len);
2692 btrfs_release_path(path);
2697 ret = btrfs_insert_empty_item(trans, root, path, &key,
2700 btrfs_abort_transaction(trans, ret);
2704 leaf = path->nodes[0];
2705 item = btrfs_item_ptr(leaf, path->slots[0],
2706 struct btrfs_file_extent_item);
2707 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2708 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2709 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2710 btrfs_set_file_extent_num_bytes(leaf, item, len);
2711 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2712 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2713 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2714 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2715 btrfs_set_file_extent_encryption(leaf, item, 0);
2716 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2718 btrfs_mark_buffer_dirty(leaf);
2719 inode_add_bytes(inode, len);
2720 btrfs_release_path(path);
2722 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2724 backref->root_id, backref->inum,
2725 new->file_pos); /* start - extent_offset */
2727 btrfs_abort_transaction(trans, ret);
2733 btrfs_release_path(path);
2734 path->leave_spinning = 0;
2735 btrfs_end_transaction(trans);
2737 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2743 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2745 struct old_sa_defrag_extent *old, *tmp;
2750 list_for_each_entry_safe(old, tmp, &new->head, list) {
2756 static void relink_file_extents(struct new_sa_defrag_extent *new)
2758 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2759 struct btrfs_path *path;
2760 struct sa_defrag_extent_backref *backref;
2761 struct sa_defrag_extent_backref *prev = NULL;
2762 struct inode *inode;
2763 struct rb_node *node;
2768 path = btrfs_alloc_path();
2772 if (!record_extent_backrefs(path, new)) {
2773 btrfs_free_path(path);
2776 btrfs_release_path(path);
2779 node = rb_first(&new->root);
2782 rb_erase(node, &new->root);
2784 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2786 ret = relink_extent_backref(path, prev, backref);
2799 btrfs_free_path(path);
2801 free_sa_defrag_extent(new);
2803 atomic_dec(&fs_info->defrag_running);
2804 wake_up(&fs_info->transaction_wait);
2807 static struct new_sa_defrag_extent *
2808 record_old_file_extents(struct inode *inode,
2809 struct btrfs_ordered_extent *ordered)
2811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2812 struct btrfs_root *root = BTRFS_I(inode)->root;
2813 struct btrfs_path *path;
2814 struct btrfs_key key;
2815 struct old_sa_defrag_extent *old;
2816 struct new_sa_defrag_extent *new;
2819 new = kmalloc(sizeof(*new), GFP_NOFS);
2824 new->file_pos = ordered->file_offset;
2825 new->len = ordered->len;
2826 new->bytenr = ordered->start;
2827 new->disk_len = ordered->disk_len;
2828 new->compress_type = ordered->compress_type;
2829 new->root = RB_ROOT;
2830 INIT_LIST_HEAD(&new->head);
2832 path = btrfs_alloc_path();
2836 key.objectid = btrfs_ino(BTRFS_I(inode));
2837 key.type = BTRFS_EXTENT_DATA_KEY;
2838 key.offset = new->file_pos;
2840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2843 if (ret > 0 && path->slots[0] > 0)
2846 /* find out all the old extents for the file range */
2848 struct btrfs_file_extent_item *extent;
2849 struct extent_buffer *l;
2858 slot = path->slots[0];
2860 if (slot >= btrfs_header_nritems(l)) {
2861 ret = btrfs_next_leaf(root, path);
2869 btrfs_item_key_to_cpu(l, &key, slot);
2871 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2873 if (key.type != BTRFS_EXTENT_DATA_KEY)
2875 if (key.offset >= new->file_pos + new->len)
2878 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2880 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2881 if (key.offset + num_bytes < new->file_pos)
2884 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2888 extent_offset = btrfs_file_extent_offset(l, extent);
2890 old = kmalloc(sizeof(*old), GFP_NOFS);
2894 offset = max(new->file_pos, key.offset);
2895 end = min(new->file_pos + new->len, key.offset + num_bytes);
2897 old->bytenr = disk_bytenr;
2898 old->extent_offset = extent_offset;
2899 old->offset = offset - key.offset;
2900 old->len = end - offset;
2903 list_add_tail(&old->list, &new->head);
2909 btrfs_free_path(path);
2910 atomic_inc(&fs_info->defrag_running);
2915 btrfs_free_path(path);
2917 free_sa_defrag_extent(new);
2921 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2924 struct btrfs_block_group_cache *cache;
2926 cache = btrfs_lookup_block_group(fs_info, start);
2929 spin_lock(&cache->lock);
2930 cache->delalloc_bytes -= len;
2931 spin_unlock(&cache->lock);
2933 btrfs_put_block_group(cache);
2936 /* as ordered data IO finishes, this gets called so we can finish
2937 * an ordered extent if the range of bytes in the file it covers are
2940 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2942 struct inode *inode = ordered_extent->inode;
2943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2944 struct btrfs_root *root = BTRFS_I(inode)->root;
2945 struct btrfs_trans_handle *trans = NULL;
2946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2947 struct extent_state *cached_state = NULL;
2948 struct new_sa_defrag_extent *new = NULL;
2949 int compress_type = 0;
2951 u64 logical_len = ordered_extent->len;
2953 bool truncated = false;
2954 bool range_locked = false;
2955 bool clear_new_delalloc_bytes = false;
2957 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2958 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2959 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2960 clear_new_delalloc_bytes = true;
2962 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2964 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2969 btrfs_free_io_failure_record(BTRFS_I(inode),
2970 ordered_extent->file_offset,
2971 ordered_extent->file_offset +
2972 ordered_extent->len - 1);
2974 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2976 logical_len = ordered_extent->truncated_len;
2977 /* Truncated the entire extent, don't bother adding */
2982 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2983 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2986 * For mwrite(mmap + memset to write) case, we still reserve
2987 * space for NOCOW range.
2988 * As NOCOW won't cause a new delayed ref, just free the space
2990 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2991 ordered_extent->len);
2992 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2994 trans = btrfs_join_transaction_nolock(root);
2996 trans = btrfs_join_transaction(root);
2997 if (IS_ERR(trans)) {
2998 ret = PTR_ERR(trans);
3002 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3003 ret = btrfs_update_inode_fallback(trans, root, inode);
3004 if (ret) /* -ENOMEM or corruption */
3005 btrfs_abort_transaction(trans, ret);
3009 range_locked = true;
3010 lock_extent_bits(io_tree, ordered_extent->file_offset,
3011 ordered_extent->file_offset + ordered_extent->len - 1,
3014 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3015 ordered_extent->file_offset + ordered_extent->len - 1,
3016 EXTENT_DEFRAG, 0, cached_state);
3018 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3019 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3020 /* the inode is shared */
3021 new = record_old_file_extents(inode, ordered_extent);
3023 clear_extent_bit(io_tree, ordered_extent->file_offset,
3024 ordered_extent->file_offset + ordered_extent->len - 1,
3025 EXTENT_DEFRAG, 0, 0, &cached_state);
3029 trans = btrfs_join_transaction_nolock(root);
3031 trans = btrfs_join_transaction(root);
3032 if (IS_ERR(trans)) {
3033 ret = PTR_ERR(trans);
3038 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3040 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3041 compress_type = ordered_extent->compress_type;
3042 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3043 BUG_ON(compress_type);
3044 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3045 ordered_extent->len);
3046 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3047 ordered_extent->file_offset,
3048 ordered_extent->file_offset +
3051 BUG_ON(root == fs_info->tree_root);
3052 ret = insert_reserved_file_extent(trans, inode,
3053 ordered_extent->file_offset,
3054 ordered_extent->start,
3055 ordered_extent->disk_len,
3056 logical_len, logical_len,
3057 compress_type, 0, 0,
3058 BTRFS_FILE_EXTENT_REG);
3060 btrfs_release_delalloc_bytes(fs_info,
3061 ordered_extent->start,
3062 ordered_extent->disk_len);
3064 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3065 ordered_extent->file_offset, ordered_extent->len,
3068 btrfs_abort_transaction(trans, ret);
3072 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3074 btrfs_abort_transaction(trans, ret);
3078 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3079 ret = btrfs_update_inode_fallback(trans, root, inode);
3080 if (ret) { /* -ENOMEM or corruption */
3081 btrfs_abort_transaction(trans, ret);
3086 if (range_locked || clear_new_delalloc_bytes) {
3087 unsigned int clear_bits = 0;
3090 clear_bits |= EXTENT_LOCKED;
3091 if (clear_new_delalloc_bytes)
3092 clear_bits |= EXTENT_DELALLOC_NEW;
3093 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3094 ordered_extent->file_offset,
3095 ordered_extent->file_offset +
3096 ordered_extent->len - 1,
3098 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3103 btrfs_end_transaction(trans);
3105 if (ret || truncated) {
3109 start = ordered_extent->file_offset + logical_len;
3111 start = ordered_extent->file_offset;
3112 end = ordered_extent->file_offset + ordered_extent->len - 1;
3113 clear_extent_uptodate(io_tree, start, end, NULL);
3115 /* Drop the cache for the part of the extent we didn't write. */
3116 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3119 * If the ordered extent had an IOERR or something else went
3120 * wrong we need to return the space for this ordered extent
3121 * back to the allocator. We only free the extent in the
3122 * truncated case if we didn't write out the extent at all.
3124 if ((ret || !logical_len) &&
3125 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3126 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3127 btrfs_free_reserved_extent(fs_info,
3128 ordered_extent->start,
3129 ordered_extent->disk_len, 1);
3134 * This needs to be done to make sure anybody waiting knows we are done
3135 * updating everything for this ordered extent.
3137 btrfs_remove_ordered_extent(inode, ordered_extent);
3139 /* for snapshot-aware defrag */
3142 free_sa_defrag_extent(new);
3143 atomic_dec(&fs_info->defrag_running);
3145 relink_file_extents(new);
3150 btrfs_put_ordered_extent(ordered_extent);
3151 /* once for the tree */
3152 btrfs_put_ordered_extent(ordered_extent);
3157 static void finish_ordered_fn(struct btrfs_work *work)
3159 struct btrfs_ordered_extent *ordered_extent;
3160 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3161 btrfs_finish_ordered_io(ordered_extent);
3164 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3165 struct extent_state *state, int uptodate)
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3169 struct btrfs_ordered_extent *ordered_extent = NULL;
3170 struct btrfs_workqueue *wq;
3171 btrfs_work_func_t func;
3173 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3175 ClearPagePrivate2(page);
3176 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3177 end - start + 1, uptodate))
3180 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3181 wq = fs_info->endio_freespace_worker;
3182 func = btrfs_freespace_write_helper;
3184 wq = fs_info->endio_write_workers;
3185 func = btrfs_endio_write_helper;
3188 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3190 btrfs_queue_work(wq, &ordered_extent->work);
3193 static int __readpage_endio_check(struct inode *inode,
3194 struct btrfs_io_bio *io_bio,
3195 int icsum, struct page *page,
3196 int pgoff, u64 start, size_t len)
3202 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3204 kaddr = kmap_atomic(page);
3205 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3206 btrfs_csum_final(csum, (u8 *)&csum);
3207 if (csum != csum_expected)
3210 kunmap_atomic(kaddr);
3213 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3214 io_bio->mirror_num);
3215 memset(kaddr + pgoff, 1, len);
3216 flush_dcache_page(page);
3217 kunmap_atomic(kaddr);
3222 * when reads are done, we need to check csums to verify the data is correct
3223 * if there's a match, we allow the bio to finish. If not, the code in
3224 * extent_io.c will try to find good copies for us.
3226 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3227 u64 phy_offset, struct page *page,
3228 u64 start, u64 end, int mirror)
3230 size_t offset = start - page_offset(page);
3231 struct inode *inode = page->mapping->host;
3232 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3233 struct btrfs_root *root = BTRFS_I(inode)->root;
3235 if (PageChecked(page)) {
3236 ClearPageChecked(page);
3240 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3243 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3244 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3245 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3249 phy_offset >>= inode->i_sb->s_blocksize_bits;
3250 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3251 start, (size_t)(end - start + 1));
3255 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3257 * @inode: The inode we want to perform iput on
3259 * This function uses the generic vfs_inode::i_count to track whether we should
3260 * just decrement it (in case it's > 1) or if this is the last iput then link
3261 * the inode to the delayed iput machinery. Delayed iputs are processed at
3262 * transaction commit time/superblock commit/cleaner kthread.
3264 void btrfs_add_delayed_iput(struct inode *inode)
3266 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3267 struct btrfs_inode *binode = BTRFS_I(inode);
3269 if (atomic_add_unless(&inode->i_count, -1, 1))
3272 spin_lock(&fs_info->delayed_iput_lock);
3273 ASSERT(list_empty(&binode->delayed_iput));
3274 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3275 spin_unlock(&fs_info->delayed_iput_lock);
3278 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3281 spin_lock(&fs_info->delayed_iput_lock);
3282 while (!list_empty(&fs_info->delayed_iputs)) {
3283 struct btrfs_inode *inode;
3285 inode = list_first_entry(&fs_info->delayed_iputs,
3286 struct btrfs_inode, delayed_iput);
3287 list_del_init(&inode->delayed_iput);
3288 spin_unlock(&fs_info->delayed_iput_lock);
3289 iput(&inode->vfs_inode);
3290 spin_lock(&fs_info->delayed_iput_lock);
3292 spin_unlock(&fs_info->delayed_iput_lock);
3296 * This is called in transaction commit time. If there are no orphan
3297 * files in the subvolume, it removes orphan item and frees block_rsv
3300 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3301 struct btrfs_root *root)
3303 struct btrfs_fs_info *fs_info = root->fs_info;
3304 struct btrfs_block_rsv *block_rsv;
3307 if (atomic_read(&root->orphan_inodes) ||
3308 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3311 spin_lock(&root->orphan_lock);
3312 if (atomic_read(&root->orphan_inodes)) {
3313 spin_unlock(&root->orphan_lock);
3317 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3318 spin_unlock(&root->orphan_lock);
3322 block_rsv = root->orphan_block_rsv;
3323 root->orphan_block_rsv = NULL;
3324 spin_unlock(&root->orphan_lock);
3326 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3327 btrfs_root_refs(&root->root_item) > 0) {
3328 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3329 root->root_key.objectid);
3331 btrfs_abort_transaction(trans, ret);
3333 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3338 WARN_ON(block_rsv->size > 0);
3339 btrfs_free_block_rsv(fs_info, block_rsv);
3344 * This creates an orphan entry for the given inode in case something goes
3345 * wrong in the middle of an unlink/truncate.
3347 * NOTE: caller of this function should reserve 5 units of metadata for
3350 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3351 struct btrfs_inode *inode)
3353 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3354 struct btrfs_root *root = inode->root;
3355 struct btrfs_block_rsv *block_rsv = NULL;
3357 bool insert = false;
3360 if (!root->orphan_block_rsv) {
3361 block_rsv = btrfs_alloc_block_rsv(fs_info,
3362 BTRFS_BLOCK_RSV_TEMP);
3367 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3368 &inode->runtime_flags))
3371 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3372 &inode->runtime_flags))
3375 spin_lock(&root->orphan_lock);
3376 /* If someone has created ->orphan_block_rsv, be happy to use it. */
3377 if (!root->orphan_block_rsv) {
3378 root->orphan_block_rsv = block_rsv;
3379 } else if (block_rsv) {
3380 btrfs_free_block_rsv(fs_info, block_rsv);
3385 atomic_inc(&root->orphan_inodes);
3386 spin_unlock(&root->orphan_lock);
3388 /* grab metadata reservation from transaction handle */
3390 ret = btrfs_orphan_reserve_metadata(trans, inode);
3394 * dec doesn't need spin_lock as ->orphan_block_rsv
3395 * would be released only if ->orphan_inodes is
3398 atomic_dec(&root->orphan_inodes);
3399 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3400 &inode->runtime_flags);
3402 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3403 &inode->runtime_flags);
3408 /* insert an orphan item to track this unlinked/truncated file */
3410 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3413 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3414 &inode->runtime_flags);
3415 btrfs_orphan_release_metadata(inode);
3418 * btrfs_orphan_commit_root may race with us and set
3419 * ->orphan_block_rsv to zero, in order to avoid that,
3420 * decrease ->orphan_inodes after everything is done.
3422 atomic_dec(&root->orphan_inodes);
3423 if (ret != -EEXIST) {
3424 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3425 &inode->runtime_flags);
3426 btrfs_abort_transaction(trans, ret);
3437 * We have done the truncate/delete so we can go ahead and remove the orphan
3438 * item for this particular inode.
3440 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3441 struct btrfs_inode *inode)
3443 struct btrfs_root *root = inode->root;
3444 int delete_item = 0;
3447 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3448 &inode->runtime_flags))
3451 if (delete_item && trans)
3452 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3454 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3455 &inode->runtime_flags))
3456 btrfs_orphan_release_metadata(inode);
3459 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3460 * to zero, in order to avoid that, decrease ->orphan_inodes after
3461 * everything is done.
3464 atomic_dec(&root->orphan_inodes);
3470 * this cleans up any orphans that may be left on the list from the last use
3473 int btrfs_orphan_cleanup(struct btrfs_root *root)
3475 struct btrfs_fs_info *fs_info = root->fs_info;
3476 struct btrfs_path *path;
3477 struct extent_buffer *leaf;
3478 struct btrfs_key key, found_key;
3479 struct btrfs_trans_handle *trans;
3480 struct inode *inode;
3481 u64 last_objectid = 0;
3482 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3484 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3487 path = btrfs_alloc_path();
3492 path->reada = READA_BACK;
3494 key.objectid = BTRFS_ORPHAN_OBJECTID;
3495 key.type = BTRFS_ORPHAN_ITEM_KEY;
3496 key.offset = (u64)-1;
3499 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504 * if ret == 0 means we found what we were searching for, which
3505 * is weird, but possible, so only screw with path if we didn't
3506 * find the key and see if we have stuff that matches
3510 if (path->slots[0] == 0)
3515 /* pull out the item */
3516 leaf = path->nodes[0];
3517 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3519 /* make sure the item matches what we want */
3520 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3522 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3525 /* release the path since we're done with it */
3526 btrfs_release_path(path);
3529 * this is where we are basically btrfs_lookup, without the
3530 * crossing root thing. we store the inode number in the
3531 * offset of the orphan item.
3534 if (found_key.offset == last_objectid) {
3536 "Error removing orphan entry, stopping orphan cleanup");
3541 last_objectid = found_key.offset;
3543 found_key.objectid = found_key.offset;
3544 found_key.type = BTRFS_INODE_ITEM_KEY;
3545 found_key.offset = 0;
3546 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);