1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <asm/unaligned.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "ordered-data.h"
41 #include "compression.h"
43 #include "free-space-cache.h"
44 #include "inode-map.h"
50 struct btrfs_iget_args {
51 struct btrfs_key *location;
52 struct btrfs_root *root;
55 struct btrfs_dio_data {
57 u64 unsubmitted_oe_range_start;
58 u64 unsubmitted_oe_range_end;
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
101 static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
113 * extent (btrfs_finish_ordered_io()). Also note that the caller of
114 * btrfs_run_delalloc_range already does proper cleanup for the first page of
115 * the range, that is, it invokes the callback writepage_end_io_hook() for the
116 * range of the first page.
118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
122 unsigned long index = offset >> PAGE_SHIFT;
123 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
131 ClearPagePrivate2(page);
134 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 bytes - PAGE_SIZE, false);
138 static int btrfs_dirty_inode(struct inode *inode);
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
153 err = btrfs_init_acl(trans, inode, dir);
155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 struct btrfs_path *path, int extent_inserted,
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
169 struct page **compressed_pages)
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
175 struct btrfs_file_extent_item *ei;
177 size_t cur_size = size;
178 unsigned long offset;
180 if (compressed_size && compressed_pages)
181 cur_size = compressed_size;
183 inode_add_bytes(inode, size);
185 if (!extent_inserted) {
186 struct btrfs_key key;
189 key.objectid = btrfs_ino(BTRFS_I(inode));
191 key.type = BTRFS_EXTENT_DATA_KEY;
193 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 path->leave_spinning = 1;
195 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 leaf = path->nodes[0];
201 ei = btrfs_item_ptr(leaf, path->slots[0],
202 struct btrfs_file_extent_item);
203 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 btrfs_set_file_extent_encryption(leaf, ei, 0);
206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 ptr = btrfs_file_extent_inline_start(ei);
210 if (compress_type != BTRFS_COMPRESS_NONE) {
213 while (compressed_size > 0) {
214 cpage = compressed_pages[i];
215 cur_size = min_t(unsigned long, compressed_size,
218 kaddr = kmap_atomic(cpage);
219 write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 kunmap_atomic(kaddr);
224 compressed_size -= cur_size;
226 btrfs_set_file_extent_compression(leaf, ei,
229 page = find_get_page(inode->i_mapping,
230 start >> PAGE_SHIFT);
231 btrfs_set_file_extent_compression(leaf, ei, 0);
232 kaddr = kmap_atomic(page);
233 offset = start & (PAGE_SIZE - 1);
234 write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 kunmap_atomic(kaddr);
238 btrfs_mark_buffer_dirty(leaf);
239 btrfs_release_path(path);
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
250 BTRFS_I(inode)->disk_i_size = inode->i_size;
251 ret = btrfs_update_inode(trans, root, inode);
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 u64 end, size_t compressed_size,
266 struct page **compressed_pages)
268 struct btrfs_root *root = BTRFS_I(inode)->root;
269 struct btrfs_fs_info *fs_info = root->fs_info;
270 struct btrfs_trans_handle *trans;
271 u64 isize = i_size_read(inode);
272 u64 actual_end = min(end + 1, isize);
273 u64 inline_len = actual_end - start;
274 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 u64 data_len = inline_len;
277 struct btrfs_path *path;
278 int extent_inserted = 0;
279 u32 extent_item_size;
282 data_len = compressed_size;
285 actual_end > fs_info->sectorsize ||
286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
288 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
290 data_len > fs_info->max_inline) {
294 path = btrfs_alloc_path();
298 trans = btrfs_join_transaction(root);
300 btrfs_free_path(path);
301 return PTR_ERR(trans);
303 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
305 if (compressed_size && compressed_pages)
306 extent_item_size = btrfs_file_extent_calc_inline_size(
309 extent_item_size = btrfs_file_extent_calc_inline_size(
312 ret = __btrfs_drop_extents(trans, root, inode, path,
313 start, aligned_end, NULL,
314 1, 1, extent_item_size, &extent_inserted);
316 btrfs_abort_transaction(trans, ret);
320 if (isize > actual_end)
321 inline_len = min_t(u64, isize, actual_end);
322 ret = insert_inline_extent(trans, path, extent_inserted,
324 inline_len, compressed_size,
325 compress_type, compressed_pages);
326 if (ret && ret != -ENOSPC) {
327 btrfs_abort_transaction(trans, ret);
329 } else if (ret == -ENOSPC) {
334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 btrfs_free_path(path);
345 btrfs_end_transaction(trans);
349 struct async_extent {
354 unsigned long nr_pages;
356 struct list_head list;
361 struct btrfs_root *root;
362 struct page *locked_page;
365 unsigned int write_flags;
366 struct list_head extents;
367 struct btrfs_work work;
370 static noinline int add_async_extent(struct async_cow *cow,
371 u64 start, u64 ram_size,
374 unsigned long nr_pages,
377 struct async_extent *async_extent;
379 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380 BUG_ON(!async_extent); /* -ENOMEM */
381 async_extent->start = start;
382 async_extent->ram_size = ram_size;
383 async_extent->compressed_size = compressed_size;
384 async_extent->pages = pages;
385 async_extent->nr_pages = nr_pages;
386 async_extent->compress_type = compress_type;
387 list_add_tail(&async_extent->list, &cow->extents);
391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
396 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
399 if (BTRFS_I(inode)->defrag_compress)
401 /* bad compression ratios */
402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
404 if (btrfs_test_opt(fs_info, COMPRESS) ||
405 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406 BTRFS_I(inode)->prop_compress)
407 return btrfs_compress_heuristic(inode, start, end);
411 static inline void inode_should_defrag(struct btrfs_inode *inode,
412 u64 start, u64 end, u64 num_bytes, u64 small_write)
414 /* If this is a small write inside eof, kick off a defrag */
415 if (num_bytes < small_write &&
416 (start > 0 || end + 1 < inode->disk_i_size))
417 btrfs_add_inode_defrag(NULL, inode);
421 * we create compressed extents in two phases. The first
422 * phase compresses a range of pages that have already been
423 * locked (both pages and state bits are locked).
425 * This is done inside an ordered work queue, and the compression
426 * is spread across many cpus. The actual IO submission is step
427 * two, and the ordered work queue takes care of making sure that
428 * happens in the same order things were put onto the queue by
429 * writepages and friends.
431 * If this code finds it can't get good compression, it puts an
432 * entry onto the work queue to write the uncompressed bytes. This
433 * makes sure that both compressed inodes and uncompressed inodes
434 * are written in the same order that the flusher thread sent them
437 static noinline void compress_file_range(struct inode *inode,
438 struct page *locked_page,
440 struct async_cow *async_cow,
443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444 u64 blocksize = fs_info->sectorsize;
446 u64 isize = i_size_read(inode);
448 struct page **pages = NULL;
449 unsigned long nr_pages;
450 unsigned long total_compressed = 0;
451 unsigned long total_in = 0;
454 int compress_type = fs_info->compress_type;
457 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
460 actual_end = min_t(u64, isize, end + 1);
463 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 nr_pages = min_t(unsigned long, nr_pages,
466 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
469 * we don't want to send crud past the end of i_size through
470 * compression, that's just a waste of CPU time. So, if the
471 * end of the file is before the start of our current
472 * requested range of bytes, we bail out to the uncompressed
473 * cleanup code that can deal with all of this.
475 * It isn't really the fastest way to fix things, but this is a
476 * very uncommon corner.
478 if (actual_end <= start)
479 goto cleanup_and_bail_uncompressed;
481 total_compressed = actual_end - start;
484 * skip compression for a small file range(<=blocksize) that
485 * isn't an inline extent, since it doesn't save disk space at all.
487 if (total_compressed <= blocksize &&
488 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 goto cleanup_and_bail_uncompressed;
491 total_compressed = min_t(unsigned long, total_compressed,
492 BTRFS_MAX_UNCOMPRESSED);
497 * we do compression for mount -o compress and when the
498 * inode has not been flagged as nocompress. This flag can
499 * change at any time if we discover bad compression ratios.
501 if (inode_need_compress(inode, start, end)) {
503 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
505 /* just bail out to the uncompressed code */
510 if (BTRFS_I(inode)->defrag_compress)
511 compress_type = BTRFS_I(inode)->defrag_compress;
512 else if (BTRFS_I(inode)->prop_compress)
513 compress_type = BTRFS_I(inode)->prop_compress;
516 * we need to call clear_page_dirty_for_io on each
517 * page in the range. Otherwise applications with the file
518 * mmap'd can wander in and change the page contents while
519 * we are compressing them.
521 * If the compression fails for any reason, we set the pages
522 * dirty again later on.
524 * Note that the remaining part is redirtied, the start pointer
525 * has moved, the end is the original one.
528 extent_range_clear_dirty_for_io(inode, start, end);
532 /* Compression level is applied here and only here */
533 ret = btrfs_compress_pages(
534 compress_type | (fs_info->compress_level << 4),
535 inode->i_mapping, start,
542 unsigned long offset = total_compressed &
544 struct page *page = pages[nr_pages - 1];
547 /* zero the tail end of the last page, we might be
548 * sending it down to disk
551 kaddr = kmap_atomic(page);
552 memset(kaddr + offset, 0,
554 kunmap_atomic(kaddr);
561 /* lets try to make an inline extent */
562 if (ret || total_in < actual_end) {
563 /* we didn't compress the entire range, try
564 * to make an uncompressed inline extent.
566 ret = cow_file_range_inline(inode, start, end, 0,
567 BTRFS_COMPRESS_NONE, NULL);
569 /* try making a compressed inline extent */
570 ret = cow_file_range_inline(inode, start, end,
572 compress_type, pages);
575 unsigned long clear_flags = EXTENT_DELALLOC |
576 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
577 EXTENT_DO_ACCOUNTING;
578 unsigned long page_error_op;
580 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
583 * inline extent creation worked or returned error,
584 * we don't need to create any more async work items.
585 * Unlock and free up our temp pages.
587 * We use DO_ACCOUNTING here because we need the
588 * delalloc_release_metadata to be done _after_ we drop
589 * our outstanding extent for clearing delalloc for this
592 extent_clear_unlock_delalloc(inode, start, end, end,
605 * we aren't doing an inline extent round the compressed size
606 * up to a block size boundary so the allocator does sane
609 total_compressed = ALIGN(total_compressed, blocksize);
612 * one last check to make sure the compression is really a
613 * win, compare the page count read with the blocks on disk,
614 * compression must free at least one sector size
616 total_in = ALIGN(total_in, PAGE_SIZE);
617 if (total_compressed + blocksize <= total_in) {
621 * The async work queues will take care of doing actual
622 * allocation on disk for these compressed pages, and
623 * will submit them to the elevator.
625 add_async_extent(async_cow, start, total_in,
626 total_compressed, pages, nr_pages,
629 if (start + total_in < end) {
640 * the compression code ran but failed to make things smaller,
641 * free any pages it allocated and our page pointer array
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
649 total_compressed = 0;
652 /* flag the file so we don't compress in the future */
653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
654 !(BTRFS_I(inode)->prop_compress)) {
655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
658 cleanup_and_bail_uncompressed:
660 * No compression, but we still need to write the pages in the file
661 * we've been given so far. redirty the locked page if it corresponds
662 * to our extent and set things up for the async work queue to run
663 * cow_file_range to do the normal delalloc dance.
665 if (page_offset(locked_page) >= start &&
666 page_offset(locked_page) <= end)
667 __set_page_dirty_nobuffers(locked_page);
668 /* unlocked later on in the async handlers */
671 extent_range_redirty_for_io(inode, start, end);
672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 BTRFS_COMPRESS_NONE);
679 for (i = 0; i < nr_pages; i++) {
680 WARN_ON(pages[i]->mapping);
686 static void free_async_extent_pages(struct async_extent *async_extent)
690 if (!async_extent->pages)
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
695 put_page(async_extent->pages[i]);
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
703 * phase two of compressed writeback. This is the ordered portion
704 * of the code, which only gets called in the order the work was
705 * queued. We walk all the async extents created by compress_file_range
706 * and send them down to the disk.
708 static noinline void submit_compressed_extents(struct inode *inode,
709 struct async_cow *async_cow)
711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
712 struct async_extent *async_extent;
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct btrfs_root *root = BTRFS_I(inode)->root;
717 struct extent_io_tree *io_tree;
721 while (!list_empty(&async_cow->extents)) {
722 async_extent = list_entry(async_cow->extents.next,
723 struct async_extent, list);
724 list_del(&async_extent->list);
726 io_tree = &BTRFS_I(inode)->io_tree;
729 /* did the compression code fall back to uncompressed IO? */
730 if (!async_extent->pages) {
731 int page_started = 0;
732 unsigned long nr_written = 0;
734 lock_extent(io_tree, async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
738 /* allocate blocks */
739 ret = cow_file_range(inode, async_cow->locked_page,
741 async_extent->start +
742 async_extent->ram_size - 1,
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
756 if (!page_started && !ret)
757 extent_write_locked_range(inode,
759 async_extent->start +
760 async_extent->ram_size - 1,
763 unlock_page(async_cow->locked_page);
769 lock_extent(io_tree, async_extent->start,
770 async_extent->start + async_extent->ram_size - 1);
772 ret = btrfs_reserve_extent(root, async_extent->ram_size,
773 async_extent->compressed_size,
774 async_extent->compressed_size,
775 0, alloc_hint, &ins, 1, 1);
777 free_async_extent_pages(async_extent);
779 if (ret == -ENOSPC) {
780 unlock_extent(io_tree, async_extent->start,
781 async_extent->start +
782 async_extent->ram_size - 1);
785 * we need to redirty the pages if we decide to
786 * fallback to uncompressed IO, otherwise we
787 * will not submit these pages down to lower
790 extent_range_redirty_for_io(inode,
792 async_extent->start +
793 async_extent->ram_size - 1);
800 * here we're doing allocation and writeback of the
803 em = create_io_em(inode, async_extent->start,
804 async_extent->ram_size, /* len */
805 async_extent->start, /* orig_start */
806 ins.objectid, /* block_start */
807 ins.offset, /* block_len */
808 ins.offset, /* orig_block_len */
809 async_extent->ram_size, /* ram_bytes */
810 async_extent->compress_type,
811 BTRFS_ORDERED_COMPRESSED);
813 /* ret value is not necessary due to void function */
814 goto out_free_reserve;
817 ret = btrfs_add_ordered_extent_compress(inode,
820 async_extent->ram_size,
822 BTRFS_ORDERED_COMPRESSED,
823 async_extent->compress_type);
825 btrfs_drop_extent_cache(BTRFS_I(inode),
827 async_extent->start +
828 async_extent->ram_size - 1, 0);
829 goto out_free_reserve;
831 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
834 * clear dirty, set writeback and unlock the pages.
836 extent_clear_unlock_delalloc(inode, async_extent->start,
837 async_extent->start +
838 async_extent->ram_size - 1,
839 async_extent->start +
840 async_extent->ram_size - 1,
841 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
842 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
844 if (btrfs_submit_compressed_write(inode,
846 async_extent->ram_size,
848 ins.offset, async_extent->pages,
849 async_extent->nr_pages,
850 async_cow->write_flags)) {
851 struct page *p = async_extent->pages[0];
852 const u64 start = async_extent->start;
853 const u64 end = start + async_extent->ram_size - 1;
855 p->mapping = inode->i_mapping;
856 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
859 extent_clear_unlock_delalloc(inode, start, end, end,
863 free_async_extent_pages(async_extent);
865 alloc_hint = ins.objectid + ins.offset;
871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
874 extent_clear_unlock_delalloc(inode, async_extent->start,
875 async_extent->start +
876 async_extent->ram_size - 1,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 EXTENT_DELALLOC_NEW |
881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 free_async_extent_pages(async_extent);
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 struct extent_map *em;
897 read_lock(&em_tree->lock);
898 em = search_extent_mapping(em_tree, start, num_bytes);
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 em = search_extent_mapping(em_tree, 0, 0);
908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 alloc_hint = em->block_start;
913 alloc_hint = em->block_start;
917 read_unlock(&em_tree->lock);
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
935 static noinline int cow_file_range(struct inode *inode,
936 struct page *locked_page,
937 u64 start, u64 end, u64 delalloc_end,
938 int *page_started, unsigned long *nr_written,
939 int unlock, struct btrfs_dedupe_hash *hash)
941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 struct btrfs_root *root = BTRFS_I(inode)->root;
945 unsigned long ram_size;
946 u64 cur_alloc_size = 0;
947 u64 blocksize = fs_info->sectorsize;
948 struct btrfs_key ins;
949 struct extent_map *em;
951 unsigned long page_ops;
952 bool extent_reserved = false;
955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
961 num_bytes = ALIGN(end - start + 1, blocksize);
962 num_bytes = max(blocksize, num_bytes);
963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
968 /* lets try to make an inline extent */
969 ret = cow_file_range_inline(inode, start, end, 0,
970 BTRFS_COMPRESS_NONE, NULL);
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
978 extent_clear_unlock_delalloc(inode, start, end,
980 EXTENT_LOCKED | EXTENT_DELALLOC |
981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
985 *nr_written = *nr_written +
986 (end - start + PAGE_SIZE) / PAGE_SIZE;
989 } else if (ret < 0) {
994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 start + num_bytes - 1, 0);
998 while (num_bytes > 0) {
999 cur_alloc_size = num_bytes;
1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 fs_info->sectorsize, 0, alloc_hint,
1005 cur_alloc_size = ins.offset;
1006 extent_reserved = true;
1008 ram_size = ins.offset;
1009 em = create_io_em(inode, start, ins.offset, /* len */
1010 start, /* orig_start */
1011 ins.objectid, /* block_start */
1012 ins.offset, /* block_len */
1013 ins.offset, /* orig_block_len */
1014 ram_size, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE, /* compress_type */
1016 BTRFS_ORDERED_REGULAR /* type */);
1021 free_extent_map(em);
1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 ram_size, cur_alloc_size, 0);
1026 goto out_drop_extent_cache;
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
1060 extent_clear_unlock_delalloc(inode, start,
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 if (num_bytes < cur_alloc_size)
1068 num_bytes -= cur_alloc_size;
1069 alloc_hint = ins.objectid + ins.offset;
1070 start += cur_alloc_size;
1071 extent_reserved = false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache:
1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved) {
1105 extent_clear_unlock_delalloc(inode, start,
1106 start + cur_alloc_size,
1107 start + cur_alloc_size,
1111 start += cur_alloc_size;
1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 clear_bits | EXTENT_CLEAR_DATA_RESV,
1123 * work queue call back to started compression on a file and pages
1125 static noinline void async_cow_start(struct btrfs_work *work)
1127 struct async_cow *async_cow;
1129 async_cow = container_of(work, struct async_cow, work);
1131 compress_file_range(async_cow->inode, async_cow->locked_page,
1132 async_cow->start, async_cow->end, async_cow,
1134 if (num_added == 0) {
1135 btrfs_add_delayed_iput(async_cow->inode);
1136 async_cow->inode = NULL;
1141 * work queue call back to submit previously compressed pages
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1145 struct btrfs_fs_info *fs_info;
1146 struct async_cow *async_cow;
1147 struct btrfs_root *root;
1148 unsigned long nr_pages;
1150 async_cow = container_of(work, struct async_cow, work);
1152 root = async_cow->root;
1153 fs_info = root->fs_info;
1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 /* atomic_sub_return implies a barrier */
1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1160 cond_wake_up_nomb(&fs_info->async_submit_wait);
1162 if (async_cow->inode)
1163 submit_compressed_extents(async_cow->inode, async_cow);
1166 static noinline void async_cow_free(struct btrfs_work *work)
1168 struct async_cow *async_cow;
1169 async_cow = container_of(work, struct async_cow, work);
1170 if (async_cow->inode)
1171 btrfs_add_delayed_iput(async_cow->inode);
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 u64 start, u64 end, int *page_started,
1177 unsigned long *nr_written,
1178 unsigned int write_flags)
1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 struct async_cow *async_cow;
1182 struct btrfs_root *root = BTRFS_I(inode)->root;
1183 unsigned long nr_pages;
1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 while (start < end) {
1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 BUG_ON(!async_cow); /* -ENOMEM */
1191 async_cow->inode = igrab(inode);
1192 async_cow->root = root;
1193 async_cow->locked_page = locked_page;
1194 async_cow->start = start;
1195 async_cow->write_flags = write_flags;
1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1201 cur_end = min(end, start + SZ_512K - 1);
1203 async_cow->end = cur_end;
1204 INIT_LIST_HEAD(&async_cow->extents);
1206 btrfs_init_work(&async_cow->work,
1207 btrfs_delalloc_helper,
1208 async_cow_start, async_cow_submit,
1211 nr_pages = (cur_end - start + PAGE_SIZE) >>
1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1217 *nr_written += nr_pages;
1218 start = cur_end + 1;
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 u64 bytenr, u64 num_bytes)
1228 struct btrfs_ordered_sum *sums;
1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 bytenr + num_bytes - 1, &list, 0);
1233 if (ret == 0 && list_empty(&list))
1236 while (!list_empty(&list)) {
1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 list_del(&sums->list);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 struct page *locked_page,
1255 u64 start, u64 end, int *page_started, int force,
1256 unsigned long *nr_written)
1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 struct extent_buffer *leaf;
1261 struct btrfs_path *path;
1262 struct btrfs_file_extent_item *fi;
1263 struct btrfs_key found_key;
1264 struct extent_map *em;
1279 u64 ino = btrfs_ino(BTRFS_I(inode));
1281 path = btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode, start, end, end,
1285 EXTENT_LOCKED | EXTENT_DELALLOC |
1286 EXTENT_DO_ACCOUNTING |
1287 EXTENT_DEFRAG, PAGE_UNLOCK |
1289 PAGE_SET_WRITEBACK |
1290 PAGE_END_WRITEBACK);
1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1296 cow_start = (u64)-1;
1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1303 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &found_key,
1306 path->slots[0] - 1);
1307 if (found_key.objectid == ino &&
1308 found_key.type == BTRFS_EXTENT_DATA_KEY)
1313 leaf = path->nodes[0];
1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 ret = btrfs_next_leaf(root, path);
1317 if (cow_start != (u64)-1)
1318 cur_offset = cow_start;
1323 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1331 if (found_key.objectid > ino)
1333 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 found_key.offset > end)
1342 if (found_key.offset > cur_offset) {
1343 extent_end = found_key.offset;
1348 fi = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_file_extent_item);
1350 extent_type = btrfs_file_extent_type(leaf, fi);
1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 extent_end = found_key.offset +
1358 btrfs_file_extent_num_bytes(leaf, fi);
1360 btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 if (extent_end <= start) {
1365 if (disk_bytenr == 0)
1367 if (btrfs_file_extent_compression(leaf, fi) ||
1368 btrfs_file_extent_encryption(leaf, fi) ||
1369 btrfs_file_extent_other_encoding(leaf, fi))
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1375 if (btrfs_file_extent_generation(leaf, fi) <=
1376 btrfs_root_last_snapshot(&root->root_item))
1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1380 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1382 ret = btrfs_cross_ref_exist(root, ino,
1384 extent_offset, disk_bytenr);
1387 * ret could be -EIO if the above fails to read
1391 if (cow_start != (u64)-1)
1392 cur_offset = cow_start;
1396 WARN_ON_ONCE(nolock);
1399 disk_bytenr += extent_offset;
1400 disk_bytenr += cur_offset - found_key.offset;
1401 num_bytes = min(end + 1, extent_end) - cur_offset;
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1406 if (!nolock && atomic_read(&root->snapshot_force_cow))
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1413 ret = csum_exist_in_range(fs_info, disk_bytenr,
1417 * ret could be -EIO if the above fails to read
1421 if (cow_start != (u64)-1)
1422 cur_offset = cow_start;
1425 WARN_ON_ONCE(nolock);
1428 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1431 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432 extent_end = found_key.offset +
1433 btrfs_file_extent_ram_bytes(leaf, fi);
1434 extent_end = ALIGN(extent_end,
1435 fs_info->sectorsize);
1440 if (extent_end <= start) {
1443 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1447 if (cow_start == (u64)-1)
1448 cow_start = cur_offset;
1449 cur_offset = extent_end;
1450 if (cur_offset > end)
1456 btrfs_release_path(path);
1457 if (cow_start != (u64)-1) {
1458 ret = cow_file_range(inode, locked_page,
1459 cow_start, found_key.offset - 1,
1460 end, page_started, nr_written, 1,
1464 btrfs_dec_nocow_writers(fs_info,
1468 cow_start = (u64)-1;
1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472 u64 orig_start = found_key.offset - extent_offset;
1474 em = create_io_em(inode, cur_offset, num_bytes,
1476 disk_bytenr, /* block_start */
1477 num_bytes, /* block_len */
1478 disk_num_bytes, /* orig_block_len */
1479 ram_bytes, BTRFS_COMPRESS_NONE,
1480 BTRFS_ORDERED_PREALLOC);
1483 btrfs_dec_nocow_writers(fs_info,
1488 free_extent_map(em);
1491 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1492 type = BTRFS_ORDERED_PREALLOC;
1494 type = BTRFS_ORDERED_NOCOW;
1497 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1498 num_bytes, num_bytes, type);
1500 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1501 BUG_ON(ret); /* -ENOMEM */
1503 if (root->root_key.objectid ==
1504 BTRFS_DATA_RELOC_TREE_OBJECTID)
1506 * Error handled later, as we must prevent
1507 * extent_clear_unlock_delalloc() in error handler
1508 * from freeing metadata of created ordered extent.
1510 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1513 extent_clear_unlock_delalloc(inode, cur_offset,
1514 cur_offset + num_bytes - 1, end,
1515 locked_page, EXTENT_LOCKED |
1517 EXTENT_CLEAR_DATA_RESV,
1518 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1520 cur_offset = extent_end;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset > end)
1532 btrfs_release_path(path);
1534 if (cur_offset <= end && cow_start == (u64)-1)
1535 cow_start = cur_offset;
1537 if (cow_start != (u64)-1) {
1539 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1540 page_started, nr_written, 1, NULL);
1546 if (ret && cur_offset < end)
1547 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1548 locked_page, EXTENT_LOCKED |
1549 EXTENT_DELALLOC | EXTENT_DEFRAG |
1550 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_SET_WRITEBACK |
1553 PAGE_END_WRITEBACK);
1554 btrfs_free_path(path);
1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1561 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1562 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1566 * @defrag_bytes is a hint value, no spinlock held here,
1567 * if is not zero, it means the file is defragging.
1568 * Force cow if given extent needs to be defragged.
1570 if (BTRFS_I(inode)->defrag_bytes &&
1571 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1572 EXTENT_DEFRAG, 0, NULL))
1579 * Function to process delayed allocation (create CoW) for ranges which are
1580 * being touched for the first time.
1582 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1583 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1584 struct writeback_control *wbc)
1586 struct inode *inode = private_data;
1588 int force_cow = need_force_cow(inode, start, end);
1589 unsigned int write_flags = wbc_to_write_flags(wbc);
1591 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1592 ret = run_delalloc_nocow(inode, locked_page, start, end,
1593 page_started, 1, nr_written);
1594 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1595 ret = run_delalloc_nocow(inode, locked_page, start, end,
1596 page_started, 0, nr_written);
1597 } else if (!inode_need_compress(inode, start, end)) {
1598 ret = cow_file_range(inode, locked_page, start, end, end,
1599 page_started, nr_written, 1, NULL);
1601 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1602 &BTRFS_I(inode)->runtime_flags);
1603 ret = cow_file_range_async(inode, locked_page, start, end,
1604 page_started, nr_written,
1608 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1612 void btrfs_split_delalloc_extent(struct inode *inode,
1613 struct extent_state *orig, u64 split)
1617 /* not delalloc, ignore it */
1618 if (!(orig->state & EXTENT_DELALLOC))
1621 size = orig->end - orig->start + 1;
1622 if (size > BTRFS_MAX_EXTENT_SIZE) {
1627 * See the explanation in btrfs_merge_delalloc_extent, the same
1628 * applies here, just in reverse.
1630 new_size = orig->end - split + 1;
1631 num_extents = count_max_extents(new_size);
1632 new_size = split - orig->start;
1633 num_extents += count_max_extents(new_size);
1634 if (count_max_extents(size) >= num_extents)
1638 spin_lock(&BTRFS_I(inode)->lock);
1639 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1640 spin_unlock(&BTRFS_I(inode)->lock);
1644 * Handle merged delayed allocation extents so we can keep track of new extents
1645 * that are just merged onto old extents, such as when we are doing sequential
1646 * writes, so we can properly account for the metadata space we'll need.
1648 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1649 struct extent_state *other)
1651 u64 new_size, old_size;
1654 /* not delalloc, ignore it */
1655 if (!(other->state & EXTENT_DELALLOC))
1658 if (new->start > other->start)
1659 new_size = new->end - other->start + 1;
1661 new_size = other->end - new->start + 1;
1663 /* we're not bigger than the max, unreserve the space and go */
1664 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1665 spin_lock(&BTRFS_I(inode)->lock);
1666 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1667 spin_unlock(&BTRFS_I(inode)->lock);
1672 * We have to add up either side to figure out how many extents were
1673 * accounted for before we merged into one big extent. If the number of
1674 * extents we accounted for is <= the amount we need for the new range
1675 * then we can return, otherwise drop. Think of it like this
1679 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1680 * need 2 outstanding extents, on one side we have 1 and the other side
1681 * we have 1 so they are == and we can return. But in this case
1683 * [MAX_SIZE+4k][MAX_SIZE+4k]
1685 * Each range on their own accounts for 2 extents, but merged together
1686 * they are only 3 extents worth of accounting, so we need to drop in
1689 old_size = other->end - other->start + 1;
1690 num_extents = count_max_extents(old_size);
1691 old_size = new->end - new->start + 1;
1692 num_extents += count_max_extents(old_size);
1693 if (count_max_extents(new_size) >= num_extents)
1696 spin_lock(&BTRFS_I(inode)->lock);
1697 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1698 spin_unlock(&BTRFS_I(inode)->lock);
1701 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1702 struct inode *inode)
1704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1706 spin_lock(&root->delalloc_lock);
1707 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1708 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1709 &root->delalloc_inodes);
1710 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1711 &BTRFS_I(inode)->runtime_flags);
1712 root->nr_delalloc_inodes++;
1713 if (root->nr_delalloc_inodes == 1) {
1714 spin_lock(&fs_info->delalloc_root_lock);
1715 BUG_ON(!list_empty(&root->delalloc_root));
1716 list_add_tail(&root->delalloc_root,
1717 &fs_info->delalloc_roots);
1718 spin_unlock(&fs_info->delalloc_root_lock);
1721 spin_unlock(&root->delalloc_lock);
1725 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1726 struct btrfs_inode *inode)
1728 struct btrfs_fs_info *fs_info = root->fs_info;
1730 if (!list_empty(&inode->delalloc_inodes)) {
1731 list_del_init(&inode->delalloc_inodes);
1732 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1733 &inode->runtime_flags);
1734 root->nr_delalloc_inodes--;
1735 if (!root->nr_delalloc_inodes) {
1736 ASSERT(list_empty(&root->delalloc_inodes));
1737 spin_lock(&fs_info->delalloc_root_lock);
1738 BUG_ON(list_empty(&root->delalloc_root));
1739 list_del_init(&root->delalloc_root);
1740 spin_unlock(&fs_info->delalloc_root_lock);
1745 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1746 struct btrfs_inode *inode)
1748 spin_lock(&root->delalloc_lock);
1749 __btrfs_del_delalloc_inode(root, inode);
1750 spin_unlock(&root->delalloc_lock);
1754 * Properly track delayed allocation bytes in the inode and to maintain the
1755 * list of inodes that have pending delalloc work to be done.
1757 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1765 * set_bit and clear bit hooks normally require _irqsave/restore
1766 * but in this case, we are only testing for the DELALLOC
1767 * bit, which is only set or cleared with irqs on
1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 u64 len = state->end + 1 - state->start;
1772 u32 num_extents = count_max_extents(len);
1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1775 spin_lock(&BTRFS_I(inode)->lock);
1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1777 spin_unlock(&BTRFS_I(inode)->lock);
1779 /* For sanity tests */
1780 if (btrfs_is_testing(fs_info))
1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 fs_info->delalloc_batch);
1785 spin_lock(&BTRFS_I(inode)->lock);
1786 BTRFS_I(inode)->delalloc_bytes += len;
1787 if (*bits & EXTENT_DEFRAG)
1788 BTRFS_I(inode)->defrag_bytes += len;
1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1790 &BTRFS_I(inode)->runtime_flags))
1791 btrfs_add_delalloc_inodes(root, inode);
1792 spin_unlock(&BTRFS_I(inode)->lock);
1795 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 (*bits & EXTENT_DELALLOC_NEW)) {
1797 spin_lock(&BTRFS_I(inode)->lock);
1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1800 spin_unlock(&BTRFS_I(inode)->lock);
1805 * Once a range is no longer delalloc this function ensures that proper
1806 * accounting happens.
1808 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1809 struct extent_state *state, unsigned *bits)
1811 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1812 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1813 u64 len = state->end + 1 - state->start;
1814 u32 num_extents = count_max_extents(len);
1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 spin_lock(&inode->lock);
1818 inode->defrag_bytes -= len;
1819 spin_unlock(&inode->lock);
1823 * set_bit and clear bit hooks normally require _irqsave/restore
1824 * but in this case, we are only testing for the DELALLOC
1825 * bit, which is only set or cleared with irqs on
1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 struct btrfs_root *root = inode->root;
1829 bool do_list = !btrfs_is_free_space_inode(inode);
1831 spin_lock(&inode->lock);
1832 btrfs_mod_outstanding_extents(inode, -num_extents);
1833 spin_unlock(&inode->lock);
1836 * We don't reserve metadata space for space cache inodes so we
1837 * don't need to call dellalloc_release_metadata if there is an
1840 if (*bits & EXTENT_CLEAR_META_RESV &&
1841 root != fs_info->tree_root)
1842 btrfs_delalloc_release_metadata(inode, len, false);
1844 /* For sanity tests. */
1845 if (btrfs_is_testing(fs_info))
1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1849 do_list && !(state->state & EXTENT_NORESERVE) &&
1850 (*bits & EXTENT_CLEAR_DATA_RESV))
1851 btrfs_free_reserved_data_space_noquota(
1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1856 fs_info->delalloc_batch);
1857 spin_lock(&inode->lock);
1858 inode->delalloc_bytes -= len;
1859 if (do_list && inode->delalloc_bytes == 0 &&
1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1861 &inode->runtime_flags))
1862 btrfs_del_delalloc_inode(root, inode);
1863 spin_unlock(&inode->lock);
1866 if ((state->state & EXTENT_DELALLOC_NEW) &&
1867 (*bits & EXTENT_DELALLOC_NEW)) {
1868 spin_lock(&inode->lock);
1869 ASSERT(inode->new_delalloc_bytes >= len);
1870 inode->new_delalloc_bytes -= len;
1871 spin_unlock(&inode->lock);
1876 * Merge bio hook, this must check the chunk tree to make sure we don't create
1877 * bios that span stripes or chunks
1879 * return 1 if page cannot be merged to bio
1880 * return 0 if page can be merged to bio
1881 * return error otherwise
1883 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1884 size_t size, struct bio *bio,
1885 unsigned long bio_flags)
1887 struct inode *inode = page->mapping->host;
1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1894 if (bio_flags & EXTENT_BIO_COMPRESSED)
1897 length = bio->bi_iter.bi_size;
1898 map_length = length;
1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1903 if (map_length < length + size)
1909 * in order to insert checksums into the metadata in large chunks,
1910 * we wait until bio submission time. All the pages in the bio are
1911 * checksummed and sums are attached onto the ordered extent record.
1913 * At IO completion time the cums attached on the ordered extent record
1914 * are inserted into the btree
1916 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1919 struct inode *inode = private_data;
1920 blk_status_t ret = 0;
1922 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1923 BUG_ON(ret); /* -ENOMEM */
1928 * extent_io.c submission hook. This does the right thing for csum calculation
1929 * on write, or reading the csums from the tree before a read.
1931 * Rules about async/sync submit,
1932 * a) read: sync submit
1934 * b) write without checksum: sync submit
1936 * c) write with checksum:
1937 * c-1) if bio is issued by fsync: sync submit
1938 * (sync_writers != 0)
1940 * c-2) if root is reloc root: sync submit
1941 * (only in case of buffered IO)
1943 * c-3) otherwise: async submit
1945 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1946 int mirror_num, unsigned long bio_flags,
1949 struct inode *inode = private_data;
1950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1951 struct btrfs_root *root = BTRFS_I(inode)->root;
1952 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1953 blk_status_t ret = 0;
1955 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1957 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1959 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1960 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1962 if (bio_op(bio) != REQ_OP_WRITE) {
1963 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1967 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1968 ret = btrfs_submit_compressed_read(inode, bio,
1972 } else if (!skip_sum) {
1973 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1978 } else if (async && !skip_sum) {
1979 /* csum items have already been cloned */
1980 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1982 /* we're doing a write, do the async checksumming */
1983 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1985 btrfs_submit_bio_start);
1987 } else if (!skip_sum) {
1988 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1994 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1998 bio->bi_status = ret;
2005 * given a list of ordered sums record them in the inode. This happens
2006 * at IO completion time based on sums calculated at bio submission time.
2008 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2009 struct inode *inode, struct list_head *list)
2011 struct btrfs_ordered_sum *sum;
2014 list_for_each_entry(sum, list, list) {
2015 trans->adding_csums = true;
2016 ret = btrfs_csum_file_blocks(trans,
2017 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2018 trans->adding_csums = false;
2025 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2026 unsigned int extra_bits,
2027 struct extent_state **cached_state, int dedupe)
2029 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2030 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2031 extra_bits, cached_state);
2034 /* see btrfs_writepage_start_hook for details on why this is required */
2035 struct btrfs_writepage_fixup {
2037 struct btrfs_work work;
2040 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2042 struct btrfs_writepage_fixup *fixup;
2043 struct btrfs_ordered_extent *ordered;
2044 struct extent_state *cached_state = NULL;
2045 struct extent_changeset *data_reserved = NULL;
2047 struct inode *inode;
2052 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2056 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2057 ClearPageChecked(page);
2061 inode = page->mapping->host;
2062 page_start = page_offset(page);
2063 page_end = page_offset(page) + PAGE_SIZE - 1;
2065 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2068 /* already ordered? We're done */
2069 if (PagePrivate2(page))
2072 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2075 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2076 page_end, &cached_state);
2078 btrfs_start_ordered_extent(inode, ordered, 1);
2079 btrfs_put_ordered_extent(ordered);
2083 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2086 mapping_set_error(page->mapping, ret);
2087 end_extent_writepage(page, ret, page_start, page_end);
2088 ClearPageChecked(page);
2092 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2095 mapping_set_error(page->mapping, ret);
2096 end_extent_writepage(page, ret, page_start, page_end);
2097 ClearPageChecked(page);
2101 ClearPageChecked(page);
2102 set_page_dirty(page);
2103 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2105 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2111 extent_changeset_free(data_reserved);
2115 * There are a few paths in the higher layers of the kernel that directly
2116 * set the page dirty bit without asking the filesystem if it is a
2117 * good idea. This causes problems because we want to make sure COW
2118 * properly happens and the data=ordered rules are followed.
2120 * In our case any range that doesn't have the ORDERED bit set
2121 * hasn't been properly setup for IO. We kick off an async process
2122 * to fix it up. The async helper will wait for ordered extents, set
2123 * the delalloc bit and make it safe to write the page.
2125 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2127 struct inode *inode = page->mapping->host;
2128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2129 struct btrfs_writepage_fixup *fixup;
2131 /* this page is properly in the ordered list */
2132 if (TestClearPagePrivate2(page))
2135 if (PageChecked(page))
2138 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2142 SetPageChecked(page);
2144 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2145 btrfs_writepage_fixup_worker, NULL, NULL);
2147 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2151 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2152 struct inode *inode, u64 file_pos,
2153 u64 disk_bytenr, u64 disk_num_bytes,
2154 u64 num_bytes, u64 ram_bytes,
2155 u8 compression, u8 encryption,
2156 u16 other_encoding, int extent_type)
2158 struct btrfs_root *root = BTRFS_I(inode)->root;
2159 struct btrfs_file_extent_item *fi;
2160 struct btrfs_path *path;
2161 struct extent_buffer *leaf;
2162 struct btrfs_key ins;
2164 int extent_inserted = 0;
2167 path = btrfs_alloc_path();
2172 * we may be replacing one extent in the tree with another.
2173 * The new extent is pinned in the extent map, and we don't want
2174 * to drop it from the cache until it is completely in the btree.
2176 * So, tell btrfs_drop_extents to leave this extent in the cache.
2177 * the caller is expected to unpin it and allow it to be merged
2180 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2181 file_pos + num_bytes, NULL, 0,
2182 1, sizeof(*fi), &extent_inserted);
2186 if (!extent_inserted) {
2187 ins.objectid = btrfs_ino(BTRFS_I(inode));
2188 ins.offset = file_pos;
2189 ins.type = BTRFS_EXTENT_DATA_KEY;
2191 path->leave_spinning = 1;
2192 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2197 leaf = path->nodes[0];
2198 fi = btrfs_item_ptr(leaf, path->slots[0],
2199 struct btrfs_file_extent_item);
2200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2201 btrfs_set_file_extent_type(leaf, fi, extent_type);
2202 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2203 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2204 btrfs_set_file_extent_offset(leaf, fi, 0);
2205 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2206 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2207 btrfs_set_file_extent_compression(leaf, fi, compression);
2208 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2209 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2211 btrfs_mark_buffer_dirty(leaf);
2212 btrfs_release_path(path);
2214 inode_add_bytes(inode, num_bytes);
2216 ins.objectid = disk_bytenr;
2217 ins.offset = disk_num_bytes;
2218 ins.type = BTRFS_EXTENT_ITEM_KEY;
2221 * Release the reserved range from inode dirty range map, as it is
2222 * already moved into delayed_ref_head
2224 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2228 ret = btrfs_alloc_reserved_file_extent(trans, root,
2229 btrfs_ino(BTRFS_I(inode)),
2230 file_pos, qg_released, &ins);
2232 btrfs_free_path(path);
2237 /* snapshot-aware defrag */
2238 struct sa_defrag_extent_backref {
2239 struct rb_node node;
2240 struct old_sa_defrag_extent *old;
2249 struct old_sa_defrag_extent {
2250 struct list_head list;
2251 struct new_sa_defrag_extent *new;
2260 struct new_sa_defrag_extent {
2261 struct rb_root root;
2262 struct list_head head;
2263 struct btrfs_path *path;
2264 struct inode *inode;
2272 static int backref_comp(struct sa_defrag_extent_backref *b1,
2273 struct sa_defrag_extent_backref *b2)
2275 if (b1->root_id < b2->root_id)
2277 else if (b1->root_id > b2->root_id)
2280 if (b1->inum < b2->inum)
2282 else if (b1->inum > b2->inum)
2285 if (b1->file_pos < b2->file_pos)
2287 else if (b1->file_pos > b2->file_pos)
2291 * [------------------------------] ===> (a range of space)
2292 * |<--->| |<---->| =============> (fs/file tree A)
2293 * |<---------------------------->| ===> (fs/file tree B)
2295 * A range of space can refer to two file extents in one tree while
2296 * refer to only one file extent in another tree.
2298 * So we may process a disk offset more than one time(two extents in A)
2299 * and locate at the same extent(one extent in B), then insert two same
2300 * backrefs(both refer to the extent in B).
2305 static void backref_insert(struct rb_root *root,
2306 struct sa_defrag_extent_backref *backref)
2308 struct rb_node **p = &root->rb_node;
2309 struct rb_node *parent = NULL;
2310 struct sa_defrag_extent_backref *entry;
2315 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2317 ret = backref_comp(backref, entry);
2321 p = &(*p)->rb_right;
2324 rb_link_node(&backref->node, parent, p);
2325 rb_insert_color(&backref->node, root);
2329 * Note the backref might has changed, and in this case we just return 0.
2331 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2334 struct btrfs_file_extent_item *extent;
2335 struct old_sa_defrag_extent *old = ctx;
2336 struct new_sa_defrag_extent *new = old->new;
2337 struct btrfs_path *path = new->path;
2338 struct btrfs_key key;
2339 struct btrfs_root *root;
2340 struct sa_defrag_extent_backref *backref;
2341 struct extent_buffer *leaf;
2342 struct inode *inode = new->inode;
2343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2349 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2350 inum == btrfs_ino(BTRFS_I(inode)))
2353 key.objectid = root_id;
2354 key.type = BTRFS_ROOT_ITEM_KEY;
2355 key.offset = (u64)-1;
2357 root = btrfs_read_fs_root_no_name(fs_info, &key);
2359 if (PTR_ERR(root) == -ENOENT)
2362 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2363 inum, offset, root_id);
2364 return PTR_ERR(root);
2367 key.objectid = inum;
2368 key.type = BTRFS_EXTENT_DATA_KEY;
2369 if (offset > (u64)-1 << 32)
2372 key.offset = offset;
2374 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2375 if (WARN_ON(ret < 0))
2382 leaf = path->nodes[0];
2383 slot = path->slots[0];
2385 if (slot >= btrfs_header_nritems(leaf)) {
2386 ret = btrfs_next_leaf(root, path);
2389 } else if (ret > 0) {
2398 btrfs_item_key_to_cpu(leaf, &key, slot);
2400 if (key.objectid > inum)
2403 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2406 extent = btrfs_item_ptr(leaf, slot,
2407 struct btrfs_file_extent_item);
2409 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2413 * 'offset' refers to the exact key.offset,
2414 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2415 * (key.offset - extent_offset).
2417 if (key.offset != offset)
2420 extent_offset = btrfs_file_extent_offset(leaf, extent);
2421 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2423 if (extent_offset >= old->extent_offset + old->offset +
2424 old->len || extent_offset + num_bytes <=
2425 old->extent_offset + old->offset)
2430 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2436 backref->root_id = root_id;
2437 backref->inum = inum;
2438 backref->file_pos = offset;
2439 backref->num_bytes = num_bytes;
2440 backref->extent_offset = extent_offset;
2441 backref->generation = btrfs_file_extent_generation(leaf, extent);
2443 backref_insert(&new->root, backref);
2446 btrfs_release_path(path);
2451 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2452 struct new_sa_defrag_extent *new)
2454 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2455 struct old_sa_defrag_extent *old, *tmp;
2460 list_for_each_entry_safe(old, tmp, &new->head, list) {
2461 ret = iterate_inodes_from_logical(old->bytenr +
2462 old->extent_offset, fs_info,
2463 path, record_one_backref,
2465 if (ret < 0 && ret != -ENOENT)
2468 /* no backref to be processed for this extent */
2470 list_del(&old->list);
2475 if (list_empty(&new->head))
2481 static int relink_is_mergable(struct extent_buffer *leaf,
2482 struct btrfs_file_extent_item *fi,
2483 struct new_sa_defrag_extent *new)
2485 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2488 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2491 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2494 if (btrfs_file_extent_encryption(leaf, fi) ||
2495 btrfs_file_extent_other_encoding(leaf, fi))
2502 * Note the backref might has changed, and in this case we just return 0.
2504 static noinline int relink_extent_backref(struct btrfs_path *path,
2505 struct sa_defrag_extent_backref *prev,
2506 struct sa_defrag_extent_backref *backref)
2508 struct btrfs_file_extent_item *extent;
2509 struct btrfs_file_extent_item *item;
2510 struct btrfs_ordered_extent *ordered;
2511 struct btrfs_trans_handle *trans;
2512 struct btrfs_root *root;
2513 struct btrfs_key key;
2514 struct extent_buffer *leaf;
2515 struct old_sa_defrag_extent *old = backref->old;
2516 struct new_sa_defrag_extent *new = old->new;
2517 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2518 struct inode *inode;
2519 struct extent_state *cached = NULL;
2528 if (prev && prev->root_id == backref->root_id &&
2529 prev->inum == backref->inum &&
2530 prev->file_pos + prev->num_bytes == backref->file_pos)
2533 /* step 1: get root */
2534 key.objectid = backref->root_id;
2535 key.type = BTRFS_ROOT_ITEM_KEY;
2536 key.offset = (u64)-1;
2538 index = srcu_read_lock(&fs_info->subvol_srcu);
2540 root = btrfs_read_fs_root_no_name(fs_info, &key);
2542 srcu_read_unlock(&fs_info->subvol_srcu, index);
2543 if (PTR_ERR(root) == -ENOENT)
2545 return PTR_ERR(root);
2548 if (btrfs_root_readonly(root)) {
2549 srcu_read_unlock(&fs_info->subvol_srcu, index);
2553 /* step 2: get inode */
2554 key.objectid = backref->inum;
2555 key.type = BTRFS_INODE_ITEM_KEY;
2558 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2559 if (IS_ERR(inode)) {
2560 srcu_read_unlock(&fs_info->subvol_srcu, index);
2564 srcu_read_unlock(&fs_info->subvol_srcu, index);
2566 /* step 3: relink backref */
2567 lock_start = backref->file_pos;
2568 lock_end = backref->file_pos + backref->num_bytes - 1;
2569 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2572 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2574 btrfs_put_ordered_extent(ordered);
2578 trans = btrfs_join_transaction(root);
2579 if (IS_ERR(trans)) {
2580 ret = PTR_ERR(trans);
2584 key.objectid = backref->inum;
2585 key.type = BTRFS_EXTENT_DATA_KEY;
2586 key.offset = backref->file_pos;
2588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2591 } else if (ret > 0) {
2596 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2597 struct btrfs_file_extent_item);
2599 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2600 backref->generation)
2603 btrfs_release_path(path);
2605 start = backref->file_pos;
2606 if (backref->extent_offset < old->extent_offset + old->offset)
2607 start += old->extent_offset + old->offset -
2608 backref->extent_offset;
2610 len = min(backref->extent_offset + backref->num_bytes,
2611 old->extent_offset + old->offset + old->len);
2612 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2614 ret = btrfs_drop_extents(trans, root, inode, start,
2619 key.objectid = btrfs_ino(BTRFS_I(inode));
2620 key.type = BTRFS_EXTENT_DATA_KEY;
2623 path->leave_spinning = 1;
2625 struct btrfs_file_extent_item *fi;
2627 struct btrfs_key found_key;
2629 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2634 leaf = path->nodes[0];
2635 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2637 fi = btrfs_item_ptr(leaf, path->slots[0],
2638 struct btrfs_file_extent_item);
2639 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2641 if (extent_len + found_key.offset == start &&
2642 relink_is_mergable(leaf, fi, new)) {
2643 btrfs_set_file_extent_num_bytes(leaf, fi,
2645 btrfs_mark_buffer_dirty(leaf);
2646 inode_add_bytes(inode, len);
2652 btrfs_release_path(path);
2657 ret = btrfs_insert_empty_item(trans, root, path, &key,
2660 btrfs_abort_transaction(trans, ret);
2664 leaf = path->nodes[0];
2665 item = btrfs_item_ptr(leaf, path->slots[0],
2666 struct btrfs_file_extent_item);
2667 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2668 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2669 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2670 btrfs_set_file_extent_num_bytes(leaf, item, len);
2671 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2672 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2673 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2674 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2675 btrfs_set_file_extent_encryption(leaf, item, 0);
2676 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2678 btrfs_mark_buffer_dirty(leaf);
2679 inode_add_bytes(inode, len);
2680 btrfs_release_path(path);
2682 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2684 backref->root_id, backref->inum,
2685 new->file_pos); /* start - extent_offset */
2687 btrfs_abort_transaction(trans, ret);
2693 btrfs_release_path(path);
2694 path->leave_spinning = 0;
2695 btrfs_end_transaction(trans);
2697 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2703 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2705 struct old_sa_defrag_extent *old, *tmp;
2710 list_for_each_entry_safe(old, tmp, &new->head, list) {
2716 static void relink_file_extents(struct new_sa_defrag_extent *new)
2718 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2719 struct btrfs_path *path;
2720 struct sa_defrag_extent_backref *backref;
2721 struct sa_defrag_extent_backref *prev = NULL;
2722 struct rb_node *node;
2725 path = btrfs_alloc_path();
2729 if (!record_extent_backrefs(path, new)) {
2730 btrfs_free_path(path);
2733 btrfs_release_path(path);
2736 node = rb_first(&new->root);
2739 rb_erase(node, &new->root);
2741 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2743 ret = relink_extent_backref(path, prev, backref);
2756 btrfs_free_path(path);
2758 free_sa_defrag_extent(new);
2760 atomic_dec(&fs_info->defrag_running);
2761 wake_up(&fs_info->transaction_wait);
2764 static struct new_sa_defrag_extent *
2765 record_old_file_extents(struct inode *inode,
2766 struct btrfs_ordered_extent *ordered)
2768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2769 struct btrfs_root *root = BTRFS_I(inode)->root;
2770 struct btrfs_path *path;
2771 struct btrfs_key key;
2772 struct old_sa_defrag_extent *old;
2773 struct new_sa_defrag_extent *new;
2776 new = kmalloc(sizeof(*new), GFP_NOFS);
2781 new->file_pos = ordered->file_offset;
2782 new->len = ordered->len;
2783 new->bytenr = ordered->start;
2784 new->disk_len = ordered->disk_len;
2785 new->compress_type = ordered->compress_type;
2786 new->root = RB_ROOT;
2787 INIT_LIST_HEAD(&new->head);
2789 path = btrfs_alloc_path();
2793 key.objectid = btrfs_ino(BTRFS_I(inode));
2794 key.type = BTRFS_EXTENT_DATA_KEY;
2795 key.offset = new->file_pos;
2797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2800 if (ret > 0 && path->slots[0] > 0)
2803 /* find out all the old extents for the file range */
2805 struct btrfs_file_extent_item *extent;
2806 struct extent_buffer *l;
2815 slot = path->slots[0];
2817 if (slot >= btrfs_header_nritems(l)) {
2818 ret = btrfs_next_leaf(root, path);
2826 btrfs_item_key_to_cpu(l, &key, slot);
2828 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2830 if (key.type != BTRFS_EXTENT_DATA_KEY)
2832 if (key.offset >= new->file_pos + new->len)
2835 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2837 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2838 if (key.offset + num_bytes < new->file_pos)
2841 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2845 extent_offset = btrfs_file_extent_offset(l, extent);
2847 old = kmalloc(sizeof(*old), GFP_NOFS);
2851 offset = max(new->file_pos, key.offset);
2852 end = min(new->file_pos + new->len, key.offset + num_bytes);
2854 old->bytenr = disk_bytenr;
2855 old->extent_offset = extent_offset;
2856 old->offset = offset - key.offset;
2857 old->len = end - offset;
2860 list_add_tail(&old->list, &new->head);
2866 btrfs_free_path(path);
2867 atomic_inc(&fs_info->defrag_running);
2872 btrfs_free_path(path);
2874 free_sa_defrag_extent(new);
2878 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2881 struct btrfs_block_group_cache *cache;
2883 cache = btrfs_lookup_block_group(fs_info, start);
2886 spin_lock(&cache->lock);
2887 cache->delalloc_bytes -= len;
2888 spin_unlock(&cache->lock);
2890 btrfs_put_block_group(cache);
2893 /* as ordered data IO finishes, this gets called so we can finish
2894 * an ordered extent if the range of bytes in the file it covers are
2897 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2899 struct inode *inode = ordered_extent->inode;
2900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2901 struct btrfs_root *root = BTRFS_I(inode)->root;
2902 struct btrfs_trans_handle *trans = NULL;
2903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2904 struct extent_state *cached_state = NULL;
2905 struct new_sa_defrag_extent *new = NULL;
2906 int compress_type = 0;
2908 u64 logical_len = ordered_extent->len;
2910 bool truncated = false;
2911 bool range_locked = false;
2912 bool clear_new_delalloc_bytes = false;
2913 bool clear_reserved_extent = true;
2915 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2916 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2917 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2918 clear_new_delalloc_bytes = true;
2920 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2922 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2927 btrfs_free_io_failure_record(BTRFS_I(inode),
2928 ordered_extent->file_offset,
2929 ordered_extent->file_offset +
2930 ordered_extent->len - 1);
2932 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2934 logical_len = ordered_extent->truncated_len;
2935 /* Truncated the entire extent, don't bother adding */
2940 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2941 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2944 * For mwrite(mmap + memset to write) case, we still reserve
2945 * space for NOCOW range.
2946 * As NOCOW won't cause a new delayed ref, just free the space
2948 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2949 ordered_extent->len);
2950 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2952 trans = btrfs_join_transaction_nolock(root);
2954 trans = btrfs_join_transaction(root);
2955 if (IS_ERR(trans)) {
2956 ret = PTR_ERR(trans);
2960 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2961 ret = btrfs_update_inode_fallback(trans, root, inode);
2962 if (ret) /* -ENOMEM or corruption */
2963 btrfs_abort_transaction(trans, ret);
2967 range_locked = true;
2968 lock_extent_bits(io_tree, ordered_extent->file_offset,
2969 ordered_extent->file_offset + ordered_extent->len - 1,
2972 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2973 ordered_extent->file_offset + ordered_extent->len - 1,
2974 EXTENT_DEFRAG, 0, cached_state);
2976 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2977 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2978 /* the inode is shared */
2979 new = record_old_file_extents(inode, ordered_extent);
2981 clear_extent_bit(io_tree, ordered_extent->file_offset,
2982 ordered_extent->file_offset + ordered_extent->len - 1,
2983 EXTENT_DEFRAG, 0, 0, &cached_state);
2987 trans = btrfs_join_transaction_nolock(root);
2989 trans = btrfs_join_transaction(root);
2990 if (IS_ERR(trans)) {
2991 ret = PTR_ERR(trans);
2996 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2998 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2999 compress_type = ordered_extent->compress_type;
3000 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3001 BUG_ON(compress_type);
3002 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3003 ordered_extent->len);
3004 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3005 ordered_extent->file_offset,
3006 ordered_extent->file_offset +
3009 BUG_ON(root == fs_info->tree_root);
3010 ret = insert_reserved_file_extent(trans, inode,
3011 ordered_extent->file_offset,
3012 ordered_extent->start,
3013 ordered_extent->disk_len,
3014 logical_len, logical_len,
3015 compress_type, 0, 0,
3016 BTRFS_FILE_EXTENT_REG);
3018 clear_reserved_extent = false;
3019 btrfs_release_delalloc_bytes(fs_info,
3020 ordered_extent->start,
3021 ordered_extent->disk_len);
3024 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3025 ordered_extent->file_offset, ordered_extent->len,
3028 btrfs_abort_transaction(trans, ret);
3032 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3034 btrfs_abort_transaction(trans, ret);
3038 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3039 ret = btrfs_update_inode_fallback(trans, root, inode);
3040 if (ret) { /* -ENOMEM or corruption */
3041 btrfs_abort_transaction(trans, ret);
3046 if (range_locked || clear_new_delalloc_bytes) {
3047 unsigned int clear_bits = 0;
3050 clear_bits |= EXTENT_LOCKED;
3051 if (clear_new_delalloc_bytes)
3052 clear_bits |= EXTENT_DELALLOC_NEW;
3053 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3054 ordered_extent->file_offset,
3055 ordered_extent->file_offset +
3056 ordered_extent->len - 1,
3058 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3063 btrfs_end_transaction(trans);
3065 if (ret || truncated) {
3069 start = ordered_extent->file_offset + logical_len;
3071 start = ordered_extent->file_offset;
3072 end = ordered_extent->file_offset + ordered_extent->len - 1;
3073 clear_extent_uptodate(io_tree, start, end, NULL);
3075 /* Drop the cache for the part of the extent we didn't write. */
3076 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3079 * If the ordered extent had an IOERR or something else went
3080 * wrong we need to return the space for this ordered extent
3081 * back to the allocator. We only free the extent in the
3082 * truncated case if we didn't write out the extent at all.
3084 * If we made it past insert_reserved_file_extent before we
3085 * errored out then we don't need to do this as the accounting
3086 * has already been done.
3088 if ((ret || !logical_len) &&
3089 clear_reserved_extent &&
3090 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3091 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3092 btrfs_free_reserved_extent(fs_info,
3093 ordered_extent->start,
3094 ordered_extent->disk_len, 1);
3099 * This needs to be done to make sure anybody waiting knows we are done
3100 * updating everything for this ordered extent.
3102 btrfs_remove_ordered_extent(inode, ordered_extent);
3104 /* for snapshot-aware defrag */
3107 free_sa_defrag_extent(new);
3108 atomic_dec(&fs_info->defrag_running);
3110 relink_file_extents(new);
3115 btrfs_put_ordered_extent(ordered_extent);
3116 /* once for the tree */
3117 btrfs_put_ordered_extent(ordered_extent);
3119 /* Try to release some metadata so we don't get an OOM but don't wait */
3120 btrfs_btree_balance_dirty_nodelay(fs_info);
3125 static void finish_ordered_fn(struct btrfs_work *work)
3127 struct btrfs_ordered_extent *ordered_extent;
3128 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3129 btrfs_finish_ordered_io(ordered_extent);
3132 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3133 u64 end, int uptodate)
3135 struct inode *inode = page->mapping->host;
3136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3137 struct btrfs_ordered_extent *ordered_extent = NULL;
3138 struct btrfs_workqueue *wq;
3139 btrfs_work_func_t func;
3141 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3143 ClearPagePrivate2(page);
3144 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3145 end - start + 1, uptodate))
3148 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3149 wq = fs_info->endio_freespace_worker;
3150 func = btrfs_freespace_write_helper;
3152 wq = fs_info->endio_write_workers;
3153 func = btrfs_endio_write_helper;
3156 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3158 btrfs_queue_work(wq, &ordered_extent->work);
3161 static int __readpage_endio_check(struct inode *inode,
3162 struct btrfs_io_bio *io_bio,
3163 int icsum, struct page *page,
3164 int pgoff, u64 start, size_t len)
3170 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3172 kaddr = kmap_atomic(page);
3173 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3174 btrfs_csum_final(csum, (u8 *)&csum);
3175 if (csum != csum_expected)
3178 kunmap_atomic(kaddr);
3181 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3182 io_bio->mirror_num);
3183 memset(kaddr + pgoff, 1, len);
3184 flush_dcache_page(page);
3185 kunmap_atomic(kaddr);
3190 * when reads are done, we need to check csums to verify the data is correct
3191 * if there's a match, we allow the bio to finish. If not, the code in
3192 * extent_io.c will try to find good copies for us.
3194 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3195 u64 phy_offset, struct page *page,
3196 u64 start, u64 end, int mirror)
3198 size_t offset = start - page_offset(page);
3199 struct inode *inode = page->mapping->host;
3200 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3201 struct btrfs_root *root = BTRFS_I(inode)->root;
3203 if (PageChecked(page)) {
3204 ClearPageChecked(page);
3208 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3211 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3212 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3213 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3217 phy_offset >>= inode->i_sb->s_blocksize_bits;
3218 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3219 start, (size_t)(end - start + 1));
3223 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3225 * @inode: The inode we want to perform iput on
3227 * This function uses the generic vfs_inode::i_count to track whether we should
3228 * just decrement it (in case it's > 1) or if this is the last iput then link
3229 * the inode to the delayed iput machinery. Delayed iputs are processed at
3230 * transaction commit time/superblock commit/cleaner kthread.
3232 void btrfs_add_delayed_iput(struct inode *inode)
3234 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3235 struct btrfs_inode *binode = BTRFS_I(inode);
3237 if (atomic_add_unless(&inode->i_count, -1, 1))
3240 spin_lock(&fs_info->delayed_iput_lock);
3241 ASSERT(list_empty(&binode->delayed_iput));
3242 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3243 spin_unlock(&fs_info->delayed_iput_lock);
3246 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3249 spin_lock(&fs_info->delayed_iput_lock);
3250 while (!list_empty(&fs_info->delayed_iputs)) {
3251 struct btrfs_inode *inode;
3253 inode = list_first_entry(&fs_info->delayed_iputs,
3254 struct btrfs_inode, delayed_iput);
3255 list_del_init(&inode->delayed_iput);
3256 spin_unlock(&fs_info->delayed_iput_lock);
3257 iput(&inode->vfs_inode);
3258 spin_lock(&fs_info->delayed_iput_lock);
3260 spin_unlock(&fs_info->delayed_iput_lock);
3264 * This creates an orphan entry for the given inode in case something goes wrong
3265 * in the middle of an unlink.
3267 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3268 struct btrfs_inode *inode)
3272 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3273 if (ret && ret != -EEXIST) {
3274 btrfs_abort_transaction(trans, ret);
3282 * We have done the delete so we can go ahead and remove the orphan item for
3283 * this particular inode.
3285 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3286 struct btrfs_inode *inode)
3288 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3292 * this cleans up any orphans that may be left on the list from the last use
3295 int btrfs_orphan_cleanup(struct btrfs_root *root)
3297 struct btrfs_fs_info *fs_info = root->fs_info;
3298 struct btrfs_path *path;
3299 struct extent_buffer *leaf;
3300 struct btrfs_key key, found_key;
3301 struct btrfs_trans_handle *trans;
3302 struct inode *inode;
3303 u64 last_objectid = 0;
3304 int ret = 0, nr_unlink = 0;
3306 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3309 path = btrfs_alloc_path();
3314 path->reada = READA_BACK;
3316 key.objectid = BTRFS_ORPHAN_OBJECTID;
3317 key.type = BTRFS_ORPHAN_ITEM_KEY;
3318 key.offset = (u64)-1;
3321 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3326 * if ret == 0 means we found what we were searching for, which
3327 * is weird, but possible, so only screw with path if we didn't
3328 * find the key and see if we have stuff that matches
3332 if (path->slots[0] == 0)
3337 /* pull out the item */
3338 leaf = path->nodes[0];
3339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3341 /* make sure the item matches what we want */
3342 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3344 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3347 /* release the path since we're done with it */
3348 btrfs_release_path(path);
3351 * this is where we are basically btrfs_lookup, without the
3352 * crossing root thing. we store the inode number in the
3353 * offset of the orphan item.
3356 if (found_key.offset == last_objectid) {
3358 "Error removing orphan entry, stopping orphan cleanup");
3363 last_objectid = found_key.offset;
3365 found_key.objectid = found_key.offset;
3366 found_key.type = BTRFS_INODE_ITEM_KEY;
3367 found_key.offset = 0;
3368 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3369 ret = PTR_ERR_OR_ZERO(inode);
3370 if (ret && ret != -ENOENT)
3373 if (ret == -ENOENT && root == fs_info->tree_root) {
3374 struct btrfs_root *dead_root;
3375 struct btrfs_fs_info *fs_info = root->fs_info;
3376 int is_dead_root = 0;
3379 * this is an orphan in the tree root. Currently these
3380 * could come from 2 sources:
3381 * a) a snapshot deletion in progress
3382 * b) a free space cache inode
3383 * We need to distinguish those two, as the snapshot
3384 * orphan must not get deleted.
3385 * find_dead_roots already ran before us, so if this
3386 * is a snapshot deletion, we should find the root
3387 * in the dead_roots list
3389 spin_lock(&fs_info->trans_lock);
3390 list_for_each_entry(dead_root, &fs_info->dead_roots,
3392 if (dead_root->root_key.objectid ==
3393 found_key.objectid) {
3398 spin_unlock(&fs_info->trans_lock);
3400 /* prevent this orphan from being found again */
3401 key.offset = found_key.objectid - 1;
3408 * If we have an inode with links, there are a couple of
3409 * possibilities. Old kernels (before v3.12) used to create an
3410 * orphan item for truncate indicating that there were possibly
3411 * extent items past i_size that needed to be deleted. In v3.12,
3412 * truncate was changed to update i_size in sync with the extent
3413 * items, but the (useless) orphan item was still created. Since
3414 * v4.18, we don't create the orphan item for truncate at all.
3416 * So, this item could mean that we need to do a truncate, but
3417 * only if this filesystem was last used on a pre-v3.12 kernel
3418 * and was not cleanly unmounted. The odds of that are quite
3419 * slim, and it's a pain to do the truncate now, so just delete
3422 * It's also possible that this orphan item was supposed to be
3423 * deleted but wasn't. The inode number may have been reused,
3424 * but either way, we can delete the orphan item.
3426 if (ret == -ENOENT || inode->i_nlink) {
3429 trans = btrfs_start_transaction(root, 1);
3430 if (IS_ERR(trans)) {
3431 ret = PTR_ERR(trans);
3434 btrfs_debug(fs_info, "auto deleting %Lu",
3435 found_key.objectid);
3436 ret = btrfs_del_orphan_item(trans, root,
3437 found_key.objectid);
3438 btrfs_end_transaction(trans);
3446 /* this will do delete_inode and everything for us */
3449 /* release the path since we're done with it */
3450 btrfs_release_path(path);
3452 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3454 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3455 trans = btrfs_join_transaction(root);
3457 btrfs_end_transaction(trans);
3461 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3465 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3466 btrfs_free_path(path);
3471 * very simple check to peek ahead in the leaf looking for xattrs. If we
3472 * don't find any xattrs, we know there can't be any acls.
3474 * slot is the slot the inode is in, objectid is the objectid of the inode
3476 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3477 int slot, u64 objectid,
3478 int *first_xattr_slot)
3480 u32 nritems = btrfs_header_nritems(leaf);
3481 struct btrfs_key found_key;
3482 static u64 xattr_access = 0;
3483 static u64 xattr_default = 0;
3486 if (!xattr_access) {
3487 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3488 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3489 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3490 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3494 *first_xattr_slot = -1;
3495 while (slot < nritems) {
3496 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3498 /* we found a different objectid, there must not be acls */
3499 if (found_key.objectid != objectid)
3502 /* we found an xattr, assume we've got an acl */
3503 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3504 if (*first_xattr_slot == -1)
3505 *first_xattr_slot = slot;
3506 if (found_key.offset == xattr_access ||
3507 found_key.offset == xattr_default)
3512 * we found a key greater than an xattr key, there can't
3513 * be any acls later on
3515 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3522 * it goes inode, inode backrefs, xattrs, extents,
3523 * so if there are a ton of hard links to an inode there can
3524 * be a lot of backrefs. Don't waste time searching too hard,
3525 * this is just an optimization
3530 /* we hit the end of the leaf before we found an xattr or
3531 * something larger than an xattr. We have to assume the inode