2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args {
66 struct btrfs_key *location;
67 struct btrfs_root *root;
70 struct btrfs_dio_data {
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
117 static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
147 ClearPagePrivate2(page);
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
154 static int btrfs_dirty_inode(struct inode *inode);
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode *inode)
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
169 err = btrfs_init_acl(trans, inode, dir);
171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
180 static int insert_inline_extent(struct btrfs_trans_handle *trans,
181 struct btrfs_path *path, int extent_inserted,
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
185 struct page **compressed_pages)
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
191 struct btrfs_file_extent_item *ei;
193 size_t cur_size = size;
194 unsigned long offset;
196 if (compressed_size && compressed_pages)
197 cur_size = compressed_size;
199 inode_add_bytes(inode, size);
201 if (!extent_inserted) {
202 struct btrfs_key key;
205 key.objectid = btrfs_ino(BTRFS_I(inode));
207 key.type = BTRFS_EXTENT_DATA_KEY;
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
226 if (compress_type != BTRFS_COMPRESS_NONE) {
229 while (compressed_size > 0) {
230 cpage = compressed_pages[i];
231 cur_size = min_t(unsigned long, compressed_size,
234 kaddr = kmap_atomic(cpage);
235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
236 kunmap_atomic(kaddr);
240 compressed_size -= cur_size;
242 btrfs_set_file_extent_compression(leaf, ei,
245 page = find_get_page(inode->i_mapping,
246 start >> PAGE_SHIFT);
247 btrfs_set_file_extent_compression(leaf, ei, 0);
248 kaddr = kmap_atomic(page);
249 offset = start & (PAGE_SIZE - 1);
250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
251 kunmap_atomic(kaddr);
254 btrfs_mark_buffer_dirty(leaf);
255 btrfs_release_path(path);
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
266 BTRFS_I(inode)->disk_i_size = inode->i_size;
267 ret = btrfs_update_inode(trans, root, inode);
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
279 static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
283 struct page **compressed_pages)
285 struct btrfs_fs_info *fs_info = root->fs_info;
286 struct btrfs_trans_handle *trans;
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
291 u64 data_len = inline_len;
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
298 data_len = compressed_size;
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
306 data_len > fs_info->max_inline) {
310 path = btrfs_alloc_path();
314 trans = btrfs_join_transaction(root);
316 btrfs_free_path(path);
317 return PTR_ERR(trans);
319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
325 extent_item_size = btrfs_file_extent_calc_inline_size(
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
332 btrfs_abort_transaction(trans, ret);
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
338 ret = insert_inline_extent(trans, path, extent_inserted,
340 inline_len, compressed_size,
341 compress_type, compressed_pages);
342 if (ret && ret != -ENOSPC) {
343 btrfs_abort_transaction(trans, ret);
345 } else if (ret == -ENOSPC) {
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
360 btrfs_free_path(path);
361 btrfs_end_transaction(trans);
365 struct async_extent {
370 unsigned long nr_pages;
372 struct list_head list;
377 struct btrfs_root *root;
378 struct page *locked_page;
381 unsigned int write_flags;
382 struct list_head extents;
383 struct btrfs_work work;
386 static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
390 unsigned long nr_pages,
393 struct async_extent *async_extent;
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
396 BUG_ON(!async_extent); /* -ENOMEM */
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
402 async_extent->compress_type = compress_type;
403 list_add_tail(&async_extent->list, &cow->extents);
407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
415 if (BTRFS_I(inode)->defrag_compress)
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
420 if (btrfs_test_opt(fs_info, COMPRESS) ||
421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
422 BTRFS_I(inode)->prop_compress)
423 return btrfs_compress_heuristic(inode, start, end);
427 static inline void inode_should_defrag(struct btrfs_inode *inode,
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
432 (start > 0 || end + 1 < inode->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
450 * are written in the same order that the flusher thread sent them
453 static noinline void compress_file_range(struct inode *inode,
454 struct page *locked_page,
456 struct async_cow *async_cow,
459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
460 struct btrfs_root *root = BTRFS_I(inode)->root;
461 u64 blocksize = fs_info->sectorsize;
463 u64 isize = i_size_read(inode);
465 struct page **pages = NULL;
466 unsigned long nr_pages;
467 unsigned long total_compressed = 0;
468 unsigned long total_in = 0;
471 int compress_type = fs_info->compress_type;
474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
477 actual_end = min_t(u64, isize, end + 1);
480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 nr_pages = min_t(unsigned long, nr_pages,
483 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
495 if (actual_end <= start)
496 goto cleanup_and_bail_uncompressed;
498 total_compressed = actual_end - start;
501 * skip compression for a small file range(<=blocksize) that
502 * isn't an inline extent, since it doesn't save disk space at all.
504 if (total_compressed <= blocksize &&
505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 goto cleanup_and_bail_uncompressed;
508 total_compressed = min_t(unsigned long, total_compressed,
509 BTRFS_MAX_UNCOMPRESSED);
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
518 if (inode_need_compress(inode, start, end)) {
520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
522 /* just bail out to the uncompressed code */
526 if (BTRFS_I(inode)->defrag_compress)
527 compress_type = BTRFS_I(inode)->defrag_compress;
528 else if (BTRFS_I(inode)->prop_compress)
529 compress_type = BTRFS_I(inode)->prop_compress;
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
540 extent_range_clear_dirty_for_io(inode, start, end);
543 /* Compression level is applied here and only here */
544 ret = btrfs_compress_pages(
545 compress_type | (fs_info->compress_level << 4),
546 inode->i_mapping, start,
553 unsigned long offset = total_compressed &
555 struct page *page = pages[nr_pages - 1];
558 /* zero the tail end of the last page, we might be
559 * sending it down to disk
562 kaddr = kmap_atomic(page);
563 memset(kaddr + offset, 0,
565 kunmap_atomic(kaddr);
572 /* lets try to make an inline extent */
573 if (ret || total_in < actual_end) {
574 /* we didn't compress the entire range, try
575 * to make an uncompressed inline extent.
577 ret = cow_file_range_inline(root, inode, start, end,
578 0, BTRFS_COMPRESS_NONE, NULL);
580 /* try making a compressed inline extent */
581 ret = cow_file_range_inline(root, inode, start, end,
583 compress_type, pages);
586 unsigned long clear_flags = EXTENT_DELALLOC |
587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
588 EXTENT_DO_ACCOUNTING;
589 unsigned long page_error_op;
591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
594 * inline extent creation worked or returned error,
595 * we don't need to create any more async work items.
596 * Unlock and free up our temp pages.
598 * We use DO_ACCOUNTING here because we need the
599 * delalloc_release_metadata to be done _after_ we drop
600 * our outstanding extent for clearing delalloc for this
603 extent_clear_unlock_delalloc(inode, start, end, end,
616 * we aren't doing an inline extent round the compressed size
617 * up to a block size boundary so the allocator does sane
620 total_compressed = ALIGN(total_compressed, blocksize);
623 * one last check to make sure the compression is really a
624 * win, compare the page count read with the blocks on disk,
625 * compression must free at least one sector size
627 total_in = ALIGN(total_in, PAGE_SIZE);
628 if (total_compressed + blocksize <= total_in) {
632 * The async work queues will take care of doing actual
633 * allocation on disk for these compressed pages, and
634 * will submit them to the elevator.
636 add_async_extent(async_cow, start, total_in,
637 total_compressed, pages, nr_pages,
640 if (start + total_in < end) {
651 * the compression code ran but failed to make things smaller,
652 * free any pages it allocated and our page pointer array
654 for (i = 0; i < nr_pages; i++) {
655 WARN_ON(pages[i]->mapping);
660 total_compressed = 0;
663 /* flag the file so we don't compress in the future */
664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
665 !(BTRFS_I(inode)->prop_compress)) {
666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
669 cleanup_and_bail_uncompressed:
671 * No compression, but we still need to write the pages in the file
672 * we've been given so far. redirty the locked page if it corresponds
673 * to our extent and set things up for the async work queue to run
674 * cow_file_range to do the normal delalloc dance.
676 if (page_offset(locked_page) >= start &&
677 page_offset(locked_page) <= end)
678 __set_page_dirty_nobuffers(locked_page);
679 /* unlocked later on in the async handlers */
682 extent_range_redirty_for_io(inode, start, end);
683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
684 BTRFS_COMPRESS_NONE);
690 for (i = 0; i < nr_pages; i++) {
691 WARN_ON(pages[i]->mapping);
697 static void free_async_extent_pages(struct async_extent *async_extent)
701 if (!async_extent->pages)
704 for (i = 0; i < async_extent->nr_pages; i++) {
705 WARN_ON(async_extent->pages[i]->mapping);
706 put_page(async_extent->pages[i]);
708 kfree(async_extent->pages);
709 async_extent->nr_pages = 0;
710 async_extent->pages = NULL;
714 * phase two of compressed writeback. This is the ordered portion
715 * of the code, which only gets called in the order the work was
716 * queued. We walk all the async extents created by compress_file_range
717 * and send them down to the disk.
719 static noinline void submit_compressed_extents(struct inode *inode,
720 struct async_cow *async_cow)
722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
723 struct async_extent *async_extent;
725 struct btrfs_key ins;
726 struct extent_map *em;
727 struct btrfs_root *root = BTRFS_I(inode)->root;
728 struct extent_io_tree *io_tree;
732 while (!list_empty(&async_cow->extents)) {
733 async_extent = list_entry(async_cow->extents.next,
734 struct async_extent, list);
735 list_del(&async_extent->list);
737 io_tree = &BTRFS_I(inode)->io_tree;
740 /* did the compression code fall back to uncompressed IO? */
741 if (!async_extent->pages) {
742 int page_started = 0;
743 unsigned long nr_written = 0;
745 lock_extent(io_tree, async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1);
749 /* allocate blocks */
750 ret = cow_file_range(inode, async_cow->locked_page,
752 async_extent->start +
753 async_extent->ram_size - 1,
754 async_extent->start +
755 async_extent->ram_size - 1,
756 &page_started, &nr_written, 0,
762 * if page_started, cow_file_range inserted an
763 * inline extent and took care of all the unlocking
764 * and IO for us. Otherwise, we need to submit
765 * all those pages down to the drive.
767 if (!page_started && !ret)
768 extent_write_locked_range(io_tree,
769 inode, async_extent->start,
770 async_extent->start +
771 async_extent->ram_size - 1,
775 unlock_page(async_cow->locked_page);
781 lock_extent(io_tree, async_extent->start,
782 async_extent->start + async_extent->ram_size - 1);
784 ret = btrfs_reserve_extent(root, async_extent->ram_size,
785 async_extent->compressed_size,
786 async_extent->compressed_size,
787 0, alloc_hint, &ins, 1, 1);
789 free_async_extent_pages(async_extent);
791 if (ret == -ENOSPC) {
792 unlock_extent(io_tree, async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1);
797 * we need to redirty the pages if we decide to
798 * fallback to uncompressed IO, otherwise we
799 * will not submit these pages down to lower
802 extent_range_redirty_for_io(inode,
804 async_extent->start +
805 async_extent->ram_size - 1);
812 * here we're doing allocation and writeback of the
815 em = create_io_em(inode, async_extent->start,
816 async_extent->ram_size, /* len */
817 async_extent->start, /* orig_start */
818 ins.objectid, /* block_start */
819 ins.offset, /* block_len */
820 ins.offset, /* orig_block_len */
821 async_extent->ram_size, /* ram_bytes */
822 async_extent->compress_type,
823 BTRFS_ORDERED_COMPRESSED);
825 /* ret value is not necessary due to void function */
826 goto out_free_reserve;
829 ret = btrfs_add_ordered_extent_compress(inode,
832 async_extent->ram_size,
834 BTRFS_ORDERED_COMPRESSED,
835 async_extent->compress_type);
837 btrfs_drop_extent_cache(BTRFS_I(inode),
839 async_extent->start +
840 async_extent->ram_size - 1, 0);
841 goto out_free_reserve;
843 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
846 * clear dirty, set writeback and unlock the pages.
848 extent_clear_unlock_delalloc(inode, async_extent->start,
849 async_extent->start +
850 async_extent->ram_size - 1,
851 async_extent->start +
852 async_extent->ram_size - 1,
853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
856 if (btrfs_submit_compressed_write(inode,
858 async_extent->ram_size,
860 ins.offset, async_extent->pages,
861 async_extent->nr_pages,
862 async_cow->write_flags)) {
863 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
864 struct page *p = async_extent->pages[0];
865 const u64 start = async_extent->start;
866 const u64 end = start + async_extent->ram_size - 1;
868 p->mapping = inode->i_mapping;
869 tree->ops->writepage_end_io_hook(p, start, end,
872 extent_clear_unlock_delalloc(inode, start, end, end,
876 free_async_extent_pages(async_extent);
878 alloc_hint = ins.objectid + ins.offset;
884 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
885 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
887 extent_clear_unlock_delalloc(inode, async_extent->start,
888 async_extent->start +
889 async_extent->ram_size - 1,
890 async_extent->start +
891 async_extent->ram_size - 1,
892 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
893 EXTENT_DELALLOC_NEW |
894 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
895 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
896 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
898 free_async_extent_pages(async_extent);
903 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 struct extent_map *em;
910 read_lock(&em_tree->lock);
911 em = search_extent_mapping(em_tree, start, num_bytes);
914 * if block start isn't an actual block number then find the
915 * first block in this inode and use that as a hint. If that
916 * block is also bogus then just don't worry about it.
918 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
920 em = search_extent_mapping(em_tree, 0, 0);
921 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
922 alloc_hint = em->block_start;
926 alloc_hint = em->block_start;
930 read_unlock(&em_tree->lock);
936 * when extent_io.c finds a delayed allocation range in the file,
937 * the call backs end up in this code. The basic idea is to
938 * allocate extents on disk for the range, and create ordered data structs
939 * in ram to track those extents.
941 * locked_page is the page that writepage had locked already. We use
942 * it to make sure we don't do extra locks or unlocks.
944 * *page_started is set to one if we unlock locked_page and do everything
945 * required to start IO on it. It may be clean and already done with
948 static noinline int cow_file_range(struct inode *inode,
949 struct page *locked_page,
950 u64 start, u64 end, u64 delalloc_end,
951 int *page_started, unsigned long *nr_written,
952 int unlock, struct btrfs_dedupe_hash *hash)
954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
955 struct btrfs_root *root = BTRFS_I(inode)->root;
958 unsigned long ram_size;
960 u64 cur_alloc_size = 0;
961 u64 blocksize = fs_info->sectorsize;
962 struct btrfs_key ins;
963 struct extent_map *em;
965 unsigned long page_ops;
966 bool extent_reserved = false;
969 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
975 num_bytes = ALIGN(end - start + 1, blocksize);
976 num_bytes = max(blocksize, num_bytes);
977 disk_num_bytes = num_bytes;
979 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
982 /* lets try to make an inline extent */
983 ret = cow_file_range_inline(root, inode, start, end, 0,
984 BTRFS_COMPRESS_NONE, NULL);
987 * We use DO_ACCOUNTING here because we need the
988 * delalloc_release_metadata to be run _after_ we drop
989 * our outstanding extent for clearing delalloc for this
992 extent_clear_unlock_delalloc(inode, start, end,
994 EXTENT_LOCKED | EXTENT_DELALLOC |
995 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
996 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
997 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
999 *nr_written = *nr_written +
1000 (end - start + PAGE_SIZE) / PAGE_SIZE;
1003 } else if (ret < 0) {
1008 BUG_ON(disk_num_bytes >
1009 btrfs_super_total_bytes(fs_info->super_copy));
1011 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1012 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1013 start + num_bytes - 1, 0);
1015 while (disk_num_bytes > 0) {
1016 cur_alloc_size = disk_num_bytes;
1017 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1018 fs_info->sectorsize, 0, alloc_hint,
1022 cur_alloc_size = ins.offset;
1023 extent_reserved = true;
1025 ram_size = ins.offset;
1026 em = create_io_em(inode, start, ins.offset, /* len */
1027 start, /* orig_start */
1028 ins.objectid, /* block_start */
1029 ins.offset, /* block_len */
1030 ins.offset, /* orig_block_len */
1031 ram_size, /* ram_bytes */
1032 BTRFS_COMPRESS_NONE, /* compress_type */
1033 BTRFS_ORDERED_REGULAR /* type */);
1036 free_extent_map(em);
1038 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1039 ram_size, cur_alloc_size, 0);
1041 goto out_drop_extent_cache;
1043 if (root->root_key.objectid ==
1044 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1045 ret = btrfs_reloc_clone_csums(inode, start,
1048 * Only drop cache here, and process as normal.
1050 * We must not allow extent_clear_unlock_delalloc()
1051 * at out_unlock label to free meta of this ordered
1052 * extent, as its meta should be freed by
1053 * btrfs_finish_ordered_io().
1055 * So we must continue until @start is increased to
1056 * skip current ordered extent.
1059 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1060 start + ram_size - 1, 0);
1063 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1065 /* we're not doing compressed IO, don't unlock the first
1066 * page (which the caller expects to stay locked), don't
1067 * clear any dirty bits and don't set any writeback bits
1069 * Do set the Private2 bit so we know this page was properly
1070 * setup for writepage
1072 page_ops = unlock ? PAGE_UNLOCK : 0;
1073 page_ops |= PAGE_SET_PRIVATE2;
1075 extent_clear_unlock_delalloc(inode, start,
1076 start + ram_size - 1,
1077 delalloc_end, locked_page,
1078 EXTENT_LOCKED | EXTENT_DELALLOC,
1080 if (disk_num_bytes < cur_alloc_size)
1083 disk_num_bytes -= cur_alloc_size;
1084 num_bytes -= cur_alloc_size;
1085 alloc_hint = ins.objectid + ins.offset;
1086 start += cur_alloc_size;
1087 extent_reserved = false;
1090 * btrfs_reloc_clone_csums() error, since start is increased
1091 * extent_clear_unlock_delalloc() at out_unlock label won't
1092 * free metadata of current ordered extent, we're OK to exit.
1100 out_drop_extent_cache:
1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1104 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1106 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1107 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1108 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1111 * If we reserved an extent for our delalloc range (or a subrange) and
1112 * failed to create the respective ordered extent, then it means that
1113 * when we reserved the extent we decremented the extent's size from
1114 * the data space_info's bytes_may_use counter and incremented the
1115 * space_info's bytes_reserved counter by the same amount. We must make
1116 * sure extent_clear_unlock_delalloc() does not try to decrement again
1117 * the data space_info's bytes_may_use counter, therefore we do not pass
1118 * it the flag EXTENT_CLEAR_DATA_RESV.
1120 if (extent_reserved) {
1121 extent_clear_unlock_delalloc(inode, start,
1122 start + cur_alloc_size,
1123 start + cur_alloc_size,
1127 start += cur_alloc_size;
1131 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1133 clear_bits | EXTENT_CLEAR_DATA_RESV,
1139 * work queue call back to started compression on a file and pages
1141 static noinline void async_cow_start(struct btrfs_work *work)
1143 struct async_cow *async_cow;
1145 async_cow = container_of(work, struct async_cow, work);
1147 compress_file_range(async_cow->inode, async_cow->locked_page,
1148 async_cow->start, async_cow->end, async_cow,
1150 if (num_added == 0) {
1151 btrfs_add_delayed_iput(async_cow->inode);
1152 async_cow->inode = NULL;
1157 * work queue call back to submit previously compressed pages
1159 static noinline void async_cow_submit(struct btrfs_work *work)
1161 struct btrfs_fs_info *fs_info;
1162 struct async_cow *async_cow;
1163 struct btrfs_root *root;
1164 unsigned long nr_pages;
1166 async_cow = container_of(work, struct async_cow, work);
1168 root = async_cow->root;
1169 fs_info = root->fs_info;
1170 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1174 * atomic_sub_return implies a barrier for waitqueue_active
1176 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1178 waitqueue_active(&fs_info->async_submit_wait))
1179 wake_up(&fs_info->async_submit_wait);
1181 if (async_cow->inode)
1182 submit_compressed_extents(async_cow->inode, async_cow);
1185 static noinline void async_cow_free(struct btrfs_work *work)
1187 struct async_cow *async_cow;
1188 async_cow = container_of(work, struct async_cow, work);
1189 if (async_cow->inode)
1190 btrfs_add_delayed_iput(async_cow->inode);
1194 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1195 u64 start, u64 end, int *page_started,
1196 unsigned long *nr_written,
1197 unsigned int write_flags)
1199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1200 struct async_cow *async_cow;
1201 struct btrfs_root *root = BTRFS_I(inode)->root;
1202 unsigned long nr_pages;
1205 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1207 while (start < end) {
1208 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1209 BUG_ON(!async_cow); /* -ENOMEM */
1210 async_cow->inode = igrab(inode);
1211 async_cow->root = root;
1212 async_cow->locked_page = locked_page;
1213 async_cow->start = start;
1214 async_cow->write_flags = write_flags;
1216 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1217 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1220 cur_end = min(end, start + SZ_512K - 1);
1222 async_cow->end = cur_end;
1223 INIT_LIST_HEAD(&async_cow->extents);
1225 btrfs_init_work(&async_cow->work,
1226 btrfs_delalloc_helper,
1227 async_cow_start, async_cow_submit,
1230 nr_pages = (cur_end - start + PAGE_SIZE) >>
1232 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1234 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1236 *nr_written += nr_pages;
1237 start = cur_end + 1;
1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1244 u64 bytenr, u64 num_bytes)
1247 struct btrfs_ordered_sum *sums;
1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1251 bytenr + num_bytes - 1, &list, 0);
1252 if (ret == 0 && list_empty(&list))
1255 while (!list_empty(&list)) {
1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1257 list_del(&sums->list);
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1267 * If no cow copies or snapshots exist, we write directly to the existing
1270 static noinline int run_delalloc_nocow(struct inode *inode,
1271 struct page *locked_page,
1272 u64 start, u64 end, int *page_started, int force,
1273 unsigned long *nr_written)
1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 struct extent_buffer *leaf;
1278 struct btrfs_path *path;
1279 struct btrfs_file_extent_item *fi;
1280 struct btrfs_key found_key;
1281 struct extent_map *em;
1296 u64 ino = btrfs_ino(BTRFS_I(inode));
1298 path = btrfs_alloc_path();
1300 extent_clear_unlock_delalloc(inode, start, end, end,
1302 EXTENT_LOCKED | EXTENT_DELALLOC |
1303 EXTENT_DO_ACCOUNTING |
1304 EXTENT_DEFRAG, PAGE_UNLOCK |
1306 PAGE_SET_WRITEBACK |
1307 PAGE_END_WRITEBACK);
1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1313 cow_start = (u64)-1;
1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1320 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 leaf = path->nodes[0];
1322 btrfs_item_key_to_cpu(leaf, &found_key,
1323 path->slots[0] - 1);
1324 if (found_key.objectid == ino &&
1325 found_key.type == BTRFS_EXTENT_DATA_KEY)
1330 leaf = path->nodes[0];
1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 ret = btrfs_next_leaf(root, path);
1337 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1345 if (found_key.objectid > ino)
1347 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1348 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1353 found_key.offset > end)
1356 if (found_key.offset > cur_offset) {
1357 extent_end = found_key.offset;
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
1364 extent_type = btrfs_file_extent_type(leaf, fi);
1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1367 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1370 extent_offset = btrfs_file_extent_offset(leaf, fi);
1371 extent_end = found_key.offset +
1372 btrfs_file_extent_num_bytes(leaf, fi);
1374 btrfs_file_extent_disk_num_bytes(leaf, fi);
1375 if (extent_end <= start) {
1379 if (disk_bytenr == 0)
1381 if (btrfs_file_extent_compression(leaf, fi) ||
1382 btrfs_file_extent_encryption(leaf, fi) ||
1383 btrfs_file_extent_other_encoding(leaf, fi))
1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1387 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1389 if (btrfs_cross_ref_exist(root, ino,
1391 extent_offset, disk_bytenr))
1393 disk_bytenr += extent_offset;
1394 disk_bytenr += cur_offset - found_key.offset;
1395 num_bytes = min(end + 1, extent_end) - cur_offset;
1397 * if there are pending snapshots for this root,
1398 * we fall into common COW way.
1401 err = btrfs_start_write_no_snapshotting(root);
1406 * force cow if csum exists in the range.
1407 * this ensure that csum for a given extent are
1408 * either valid or do not exist.
1410 if (csum_exist_in_range(fs_info, disk_bytenr,
1413 btrfs_end_write_no_snapshotting(root);
1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1418 btrfs_end_write_no_snapshotting(root);
1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 extent_end = found_key.offset +
1424 btrfs_file_extent_inline_len(leaf,
1425 path->slots[0], fi);
1426 extent_end = ALIGN(extent_end,
1427 fs_info->sectorsize);
1432 if (extent_end <= start) {
1434 if (!nolock && nocow)
1435 btrfs_end_write_no_snapshotting(root);
1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1441 if (cow_start == (u64)-1)
1442 cow_start = cur_offset;
1443 cur_offset = extent_end;
1444 if (cur_offset > end)
1450 btrfs_release_path(path);
1451 if (cow_start != (u64)-1) {
1452 ret = cow_file_range(inode, locked_page,
1453 cow_start, found_key.offset - 1,
1454 end, page_started, nr_written, 1,
1457 if (!nolock && nocow)
1458 btrfs_end_write_no_snapshotting(root);
1460 btrfs_dec_nocow_writers(fs_info,
1464 cow_start = (u64)-1;
1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1468 u64 orig_start = found_key.offset - extent_offset;
1470 em = create_io_em(inode, cur_offset, num_bytes,
1472 disk_bytenr, /* block_start */
1473 num_bytes, /* block_len */
1474 disk_num_bytes, /* orig_block_len */
1475 ram_bytes, BTRFS_COMPRESS_NONE,
1476 BTRFS_ORDERED_PREALLOC);
1478 if (!nolock && nocow)
1479 btrfs_end_write_no_snapshotting(root);
1481 btrfs_dec_nocow_writers(fs_info,
1486 free_extent_map(em);
1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1490 type = BTRFS_ORDERED_PREALLOC;
1492 type = BTRFS_ORDERED_NOCOW;
1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1496 num_bytes, num_bytes, type);
1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1499 BUG_ON(ret); /* -ENOMEM */
1501 if (root->root_key.objectid ==
1502 BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 * Error handled later, as we must prevent
1505 * extent_clear_unlock_delalloc() in error handler
1506 * from freeing metadata of created ordered extent.
1508 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1511 extent_clear_unlock_delalloc(inode, cur_offset,
1512 cur_offset + num_bytes - 1, end,
1513 locked_page, EXTENT_LOCKED |
1515 EXTENT_CLEAR_DATA_RESV,
1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1518 if (!nolock && nocow)
1519 btrfs_end_write_no_snapshotting(root);
1520 cur_offset = extent_end;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset > end)
1532 btrfs_release_path(path);
1534 if (cur_offset <= end && cow_start == (u64)-1) {
1535 cow_start = cur_offset;
1539 if (cow_start != (u64)-1) {
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
1547 if (ret && cur_offset < end)
1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 locked_page, EXTENT_LOCKED |
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
1555 btrfs_free_path(path);
1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1580 * extent_io.c call back to do delayed allocation processing
1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 u64 start, u64 end, int *page_started,
1584 unsigned long *nr_written,
1585 struct writeback_control *wbc)
1587 struct inode *inode = private_data;
1589 int force_cow = need_force_cow(inode, start, end);
1590 unsigned int write_flags = wbc_to_write_flags(wbc);
1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1593 ret = run_delalloc_nocow(inode, locked_page, start, end,
1594 page_started, 1, nr_written);
1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1596 ret = run_delalloc_nocow(inode, locked_page, start, end,
1597 page_started, 0, nr_written);
1598 } else if (!inode_need_compress(inode, start, end)) {
1599 ret = cow_file_range(inode, locked_page, start, end, end,
1600 page_started, nr_written, 1, NULL);
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags);
1604 ret = cow_file_range_async(inode, locked_page, start, end,
1605 page_started, nr_written,
1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1613 static void btrfs_split_extent_hook(void *private_data,
1614 struct extent_state *orig, u64 split)
1616 struct inode *inode = private_data;
1619 /* not delalloc, ignore it */
1620 if (!(orig->state & EXTENT_DELALLOC))
1623 size = orig->end - orig->start + 1;
1624 if (size > BTRFS_MAX_EXTENT_SIZE) {
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
1632 new_size = orig->end - split + 1;
1633 num_extents = count_max_extents(new_size);
1634 new_size = split - orig->start;
1635 num_extents += count_max_extents(new_size);
1636 if (count_max_extents(size) >= num_extents)
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1642 spin_unlock(&BTRFS_I(inode)->lock);
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1651 static void btrfs_merge_extent_hook(void *private_data,
1652 struct extent_state *new,
1653 struct extent_state *other)
1655 struct inode *inode = private_data;
1656 u64 new_size, old_size;
1659 /* not delalloc, ignore it */
1660 if (!(other->state & EXTENT_DELALLOC))
1663 if (new->start > other->start)
1664 new_size = new->end - other->start + 1;
1666 new_size = other->end - new->start + 1;
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 spin_lock(&BTRFS_I(inode)->lock);
1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1672 spin_unlock(&BTRFS_I(inode)->lock);
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1694 old_size = other->end - other->start + 1;
1695 num_extents = count_max_extents(old_size);
1696 old_size = new->end - new->start + 1;
1697 num_extents += count_max_extents(old_size);
1698 if (count_max_extents(new_size) >= num_extents)
1701 spin_lock(&BTRFS_I(inode)->lock);
1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1703 spin_unlock(&BTRFS_I(inode)->lock);
1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 struct inode *inode)
1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1711 spin_lock(&root->delalloc_lock);
1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 &root->delalloc_inodes);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 &BTRFS_I(inode)->runtime_flags);
1717 root->nr_delalloc_inodes++;
1718 if (root->nr_delalloc_inodes == 1) {
1719 spin_lock(&fs_info->delalloc_root_lock);
1720 BUG_ON(!list_empty(&root->delalloc_root));
1721 list_add_tail(&root->delalloc_root,
1722 &fs_info->delalloc_roots);
1723 spin_unlock(&fs_info->delalloc_root_lock);
1726 spin_unlock(&root->delalloc_lock);
1729 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1730 struct btrfs_inode *inode)
1732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1734 spin_lock(&root->delalloc_lock);
1735 if (!list_empty(&inode->delalloc_inodes)) {
1736 list_del_init(&inode->delalloc_inodes);
1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 &inode->runtime_flags);
1739 root->nr_delalloc_inodes--;
1740 if (!root->nr_delalloc_inodes) {
1741 spin_lock(&fs_info->delalloc_root_lock);
1742 BUG_ON(list_empty(&root->delalloc_root));
1743 list_del_init(&root->delalloc_root);
1744 spin_unlock(&fs_info->delalloc_root_lock);
1747 spin_unlock(&root->delalloc_lock);
1751 * extent_io.c set_bit_hook, used to track delayed allocation
1752 * bytes in this file, and to maintain the list of inodes that
1753 * have pending delalloc work to be done.
1755 static void btrfs_set_bit_hook(void *private_data,
1756 struct extent_state *state, unsigned *bits)
1758 struct inode *inode = private_data;
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1765 * set_bit and clear bit hooks normally require _irqsave/restore
1766 * but in this case, we are only testing for the DELALLOC
1767 * bit, which is only set or cleared with irqs on
1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 u64 len = state->end + 1 - state->start;
1772 u32 num_extents = count_max_extents(len);
1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1775 spin_lock(&BTRFS_I(inode)->lock);
1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1777 spin_unlock(&BTRFS_I(inode)->lock);
1779 /* For sanity tests */
1780 if (btrfs_is_testing(fs_info))
1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 fs_info->delalloc_batch);
1785 spin_lock(&BTRFS_I(inode)->lock);
1786 BTRFS_I(inode)->delalloc_bytes += len;
1787 if (*bits & EXTENT_DEFRAG)
1788 BTRFS_I(inode)->defrag_bytes += len;
1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1790 &BTRFS_I(inode)->runtime_flags))
1791 btrfs_add_delalloc_inodes(root, inode);
1792 spin_unlock(&BTRFS_I(inode)->lock);
1795 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 (*bits & EXTENT_DELALLOC_NEW)) {
1797 spin_lock(&BTRFS_I(inode)->lock);
1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1800 spin_unlock(&BTRFS_I(inode)->lock);
1805 * extent_io.c clear_bit_hook, see set_bit_hook for why
1807 static void btrfs_clear_bit_hook(void *private_data,
1808 struct extent_state *state,
1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1813 u64 len = state->end + 1 - state->start;
1814 u32 num_extents = count_max_extents(len);
1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 spin_lock(&inode->lock);
1818 inode->defrag_bytes -= len;
1819 spin_unlock(&inode->lock);
1823 * set_bit and clear bit hooks normally require _irqsave/restore
1824 * but in this case, we are only testing for the DELALLOC
1825 * bit, which is only set or cleared with irqs on
1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 struct btrfs_root *root = inode->root;
1829 bool do_list = !btrfs_is_free_space_inode(inode);
1831 spin_lock(&inode->lock);
1832 btrfs_mod_outstanding_extents(inode, -num_extents);
1833 spin_unlock(&inode->lock);
1836 * We don't reserve metadata space for space cache inodes so we
1837 * don't need to call dellalloc_release_metadata if there is an
1840 if (*bits & EXTENT_CLEAR_META_RESV &&
1841 root != fs_info->tree_root)
1842 btrfs_delalloc_release_metadata(inode, len);
1844 /* For sanity tests. */
1845 if (btrfs_is_testing(fs_info))
1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1849 do_list && !(state->state & EXTENT_NORESERVE) &&
1850 (*bits & EXTENT_CLEAR_DATA_RESV))
1851 btrfs_free_reserved_data_space_noquota(
1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1856 fs_info->delalloc_batch);
1857 spin_lock(&inode->lock);
1858 inode->delalloc_bytes -= len;
1859 if (do_list && inode->delalloc_bytes == 0 &&
1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1861 &inode->runtime_flags))
1862 btrfs_del_delalloc_inode(root, inode);
1863 spin_unlock(&inode->lock);
1866 if ((state->state & EXTENT_DELALLOC_NEW) &&
1867 (*bits & EXTENT_DELALLOC_NEW)) {
1868 spin_lock(&inode->lock);
1869 ASSERT(inode->new_delalloc_bytes >= len);
1870 inode->new_delalloc_bytes -= len;
1871 spin_unlock(&inode->lock);
1876 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1877 * we don't create bios that span stripes or chunks
1879 * return 1 if page cannot be merged to bio
1880 * return 0 if page can be merged to bio
1881 * return error otherwise
1883 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1884 size_t size, struct bio *bio,
1885 unsigned long bio_flags)
1887 struct inode *inode = page->mapping->host;
1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1894 if (bio_flags & EXTENT_BIO_COMPRESSED)
1897 length = bio->bi_iter.bi_size;
1898 map_length = length;
1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1903 if (map_length < length + size)
1909 * in order to insert checksums into the metadata in large chunks,
1910 * we wait until bio submission time. All the pages in the bio are
1911 * checksummed and sums are attached onto the ordered extent record.
1913 * At IO completion time the cums attached on the ordered extent record
1914 * are inserted into the btree
1916 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1917 int mirror_num, unsigned long bio_flags,
1920 struct inode *inode = private_data;
1921 blk_status_t ret = 0;
1923 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1924 BUG_ON(ret); /* -ENOMEM */
1929 * in order to insert checksums into the metadata in large chunks,
1930 * we wait until bio submission time. All the pages in the bio are
1931 * checksummed and sums are attached onto the ordered extent record.
1933 * At IO completion time the cums attached on the ordered extent record
1934 * are inserted into the btree
1936 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1937 int mirror_num, unsigned long bio_flags,
1940 struct inode *inode = private_data;
1941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1946 bio->bi_status = ret;
1953 * extent_io.c submission hook. This does the right thing for csum calculation
1954 * on write, or reading the csums from the tree before a read.
1956 * Rules about async/sync submit,
1957 * a) read: sync submit
1959 * b) write without checksum: sync submit
1961 * c) write with checksum:
1962 * c-1) if bio is issued by fsync: sync submit
1963 * (sync_writers != 0)
1965 * c-2) if root is reloc root: sync submit
1966 * (only in case of buffered IO)
1968 * c-3) otherwise: async submit
1970 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1971 int mirror_num, unsigned long bio_flags,
1974 struct inode *inode = private_data;
1975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1976 struct btrfs_root *root = BTRFS_I(inode)->root;
1977 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1978 blk_status_t ret = 0;
1980 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1982 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1984 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1985 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1987 if (bio_op(bio) != REQ_OP_WRITE) {
1988 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1992 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1993 ret = btrfs_submit_compressed_read(inode, bio,
1997 } else if (!skip_sum) {
1998 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2003 } else if (async && !skip_sum) {
2004 /* csum items have already been cloned */
2005 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2007 /* we're doing a write, do the async checksumming */
2008 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2010 __btrfs_submit_bio_start,
2011 __btrfs_submit_bio_done);
2013 } else if (!skip_sum) {
2014 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2020 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2024 bio->bi_status = ret;
2031 * given a list of ordered sums record them in the inode. This happens
2032 * at IO completion time based on sums calculated at bio submission time.
2034 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2035 struct inode *inode, struct list_head *list)
2037 struct btrfs_ordered_sum *sum;
2039 list_for_each_entry(sum, list, list) {
2040 trans->adding_csums = 1;
2041 btrfs_csum_file_blocks(trans,
2042 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2043 trans->adding_csums = 0;
2048 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2049 unsigned int extra_bits,
2050 struct extent_state **cached_state, int dedupe)
2052 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2053 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2054 extra_bits, cached_state);
2057 /* see btrfs_writepage_start_hook for details on why this is required */
2058 struct btrfs_writepage_fixup {
2060 struct btrfs_work work;
2063 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2065 struct btrfs_writepage_fixup *fixup;
2066 struct btrfs_ordered_extent *ordered;
2067 struct extent_state *cached_state = NULL;
2068 struct extent_changeset *data_reserved = NULL;
2070 struct inode *inode;
2075 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2079 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2080 ClearPageChecked(page);
2084 inode = page->mapping->host;
2085 page_start = page_offset(page);
2086 page_end = page_offset(page) + PAGE_SIZE - 1;
2088 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2091 /* already ordered? We're done */
2092 if (PagePrivate2(page))
2095 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2098 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2099 page_end, &cached_state, GFP_NOFS);
2101 btrfs_start_ordered_extent(inode, ordered, 1);
2102 btrfs_put_ordered_extent(ordered);
2106 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2109 mapping_set_error(page->mapping, ret);
2110 end_extent_writepage(page, ret, page_start, page_end);
2111 ClearPageChecked(page);
2115 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
2117 ClearPageChecked(page);
2118 set_page_dirty(page);
2119 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2121 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2122 &cached_state, GFP_NOFS);
2127 extent_changeset_free(data_reserved);
2131 * There are a few paths in the higher layers of the kernel that directly
2132 * set the page dirty bit without asking the filesystem if it is a
2133 * good idea. This causes problems because we want to make sure COW
2134 * properly happens and the data=ordered rules are followed.
2136 * In our case any range that doesn't have the ORDERED bit set
2137 * hasn't been properly setup for IO. We kick off an async process
2138 * to fix it up. The async helper will wait for ordered extents, set
2139 * the delalloc bit and make it safe to write the page.
2141 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2143 struct inode *inode = page->mapping->host;
2144 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2145 struct btrfs_writepage_fixup *fixup;
2147 /* this page is properly in the ordered list */
2148 if (TestClearPagePrivate2(page))
2151 if (PageChecked(page))
2154 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2158 SetPageChecked(page);
2160 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2161 btrfs_writepage_fixup_worker, NULL, NULL);
2163 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2167 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2168 struct inode *inode, u64 file_pos,
2169 u64 disk_bytenr, u64 disk_num_bytes,
2170 u64 num_bytes, u64 ram_bytes,
2171 u8 compression, u8 encryption,
2172 u16 other_encoding, int extent_type)
2174 struct btrfs_root *root = BTRFS_I(inode)->root;
2175 struct btrfs_file_extent_item *fi;
2176 struct btrfs_path *path;
2177 struct extent_buffer *leaf;
2178 struct btrfs_key ins;
2180 int extent_inserted = 0;
2183 path = btrfs_alloc_path();
2188 * we may be replacing one extent in the tree with another.
2189 * The new extent is pinned in the extent map, and we don't want
2190 * to drop it from the cache until it is completely in the btree.
2192 * So, tell btrfs_drop_extents to leave this extent in the cache.
2193 * the caller is expected to unpin it and allow it to be merged
2196 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2197 file_pos + num_bytes, NULL, 0,
2198 1, sizeof(*fi), &extent_inserted);
2202 if (!extent_inserted) {
2203 ins.objectid = btrfs_ino(BTRFS_I(inode));
2204 ins.offset = file_pos;
2205 ins.type = BTRFS_EXTENT_DATA_KEY;
2207 path->leave_spinning = 1;
2208 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2213 leaf = path->nodes[0];
2214 fi = btrfs_item_ptr(leaf, path->slots[0],
2215 struct btrfs_file_extent_item);
2216 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2217 btrfs_set_file_extent_type(leaf, fi, extent_type);
2218 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2219 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2220 btrfs_set_file_extent_offset(leaf, fi, 0);
2221 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2222 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2223 btrfs_set_file_extent_compression(leaf, fi, compression);
2224 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2225 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2227 btrfs_mark_buffer_dirty(leaf);
2228 btrfs_release_path(path);
2230 inode_add_bytes(inode, num_bytes);
2232 ins.objectid = disk_bytenr;
2233 ins.offset = disk_num_bytes;
2234 ins.type = BTRFS_EXTENT_ITEM_KEY;
2237 * Release the reserved range from inode dirty range map, as it is
2238 * already moved into delayed_ref_head
2240 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2244 ret = btrfs_alloc_reserved_file_extent(trans, root,
2245 btrfs_ino(BTRFS_I(inode)),
2246 file_pos, qg_released, &ins);
2248 btrfs_free_path(path);
2253 /* snapshot-aware defrag */
2254 struct sa_defrag_extent_backref {
2255 struct rb_node node;
2256 struct old_sa_defrag_extent *old;
2265 struct old_sa_defrag_extent {
2266 struct list_head list;
2267 struct new_sa_defrag_extent *new;
2276 struct new_sa_defrag_extent {
2277 struct rb_root root;
2278 struct list_head head;
2279 struct btrfs_path *path;
2280 struct inode *inode;
2288 static int backref_comp(struct sa_defrag_extent_backref *b1,
2289 struct sa_defrag_extent_backref *b2)
2291 if (b1->root_id < b2->root_id)
2293 else if (b1->root_id > b2->root_id)
2296 if (b1->inum < b2->inum)
2298 else if (b1->inum > b2->inum)
2301 if (b1->file_pos < b2->file_pos)
2303 else if (b1->file_pos > b2->file_pos)
2307 * [------------------------------] ===> (a range of space)
2308 * |<--->| |<---->| =============> (fs/file tree A)
2309 * |<---------------------------->| ===> (fs/file tree B)
2311 * A range of space can refer to two file extents in one tree while
2312 * refer to only one file extent in another tree.
2314 * So we may process a disk offset more than one time(two extents in A)
2315 * and locate at the same extent(one extent in B), then insert two same
2316 * backrefs(both refer to the extent in B).
2321 static void backref_insert(struct rb_root *root,
2322 struct sa_defrag_extent_backref *backref)
2324 struct rb_node **p = &root->rb_node;
2325 struct rb_node *parent = NULL;
2326 struct sa_defrag_extent_backref *entry;
2331 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2333 ret = backref_comp(backref, entry);
2337 p = &(*p)->rb_right;
2340 rb_link_node(&backref->node, parent, p);
2341 rb_insert_color(&backref->node, root);
2345 * Note the backref might has changed, and in this case we just return 0.
2347 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2350 struct btrfs_file_extent_item *extent;
2351 struct old_sa_defrag_extent *old = ctx;
2352 struct new_sa_defrag_extent *new = old->new;
2353 struct btrfs_path *path = new->path;
2354 struct btrfs_key key;
2355 struct btrfs_root *root;
2356 struct sa_defrag_extent_backref *backref;
2357 struct extent_buffer *leaf;
2358 struct inode *inode = new->inode;
2359 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2365 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2366 inum == btrfs_ino(BTRFS_I(inode)))
2369 key.objectid = root_id;
2370 key.type = BTRFS_ROOT_ITEM_KEY;
2371 key.offset = (u64)-1;
2373 root = btrfs_read_fs_root_no_name(fs_info, &key);
2375 if (PTR_ERR(root) == -ENOENT)
2378 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2379 inum, offset, root_id);
2380 return PTR_ERR(root);
2383 key.objectid = inum;
2384 key.type = BTRFS_EXTENT_DATA_KEY;
2385 if (offset > (u64)-1 << 32)
2388 key.offset = offset;
2390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2391 if (WARN_ON(ret < 0))
2398 leaf = path->nodes[0];
2399 slot = path->slots[0];
2401 if (slot >= btrfs_header_nritems(leaf)) {
2402 ret = btrfs_next_leaf(root, path);
2405 } else if (ret > 0) {
2414 btrfs_item_key_to_cpu(leaf, &key, slot);
2416 if (key.objectid > inum)
2419 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2422 extent = btrfs_item_ptr(leaf, slot,
2423 struct btrfs_file_extent_item);
2425 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2429 * 'offset' refers to the exact key.offset,
2430 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2431 * (key.offset - extent_offset).
2433 if (key.offset != offset)
2436 extent_offset = btrfs_file_extent_offset(leaf, extent);
2437 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2439 if (extent_offset >= old->extent_offset + old->offset +
2440 old->len || extent_offset + num_bytes <=
2441 old->extent_offset + old->offset)
2446 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2452 backref->root_id = root_id;
2453 backref->inum = inum;
2454 backref->file_pos = offset;
2455 backref->num_bytes = num_bytes;
2456 backref->extent_offset = extent_offset;
2457 backref->generation = btrfs_file_extent_generation(leaf, extent);
2459 backref_insert(&new->root, backref);
2462 btrfs_release_path(path);
2467 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2468 struct new_sa_defrag_extent *new)
2470 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2471 struct old_sa_defrag_extent *old, *tmp;
2476 list_for_each_entry_safe(old, tmp, &new->head, list) {
2477 ret = iterate_inodes_from_logical(old->bytenr +
2478 old->extent_offset, fs_info,
2479 path, record_one_backref,
2481 if (ret < 0 && ret != -ENOENT)
2484 /* no backref to be processed for this extent */
2486 list_del(&old->list);
2491 if (list_empty(&new->head))
2497 static int relink_is_mergable(struct extent_buffer *leaf,
2498 struct btrfs_file_extent_item *fi,
2499 struct new_sa_defrag_extent *new)
2501 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2504 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2507 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2510 if (btrfs_file_extent_encryption(leaf, fi) ||
2511 btrfs_file_extent_other_encoding(leaf, fi))
2518 * Note the backref might has changed, and in this case we just return 0.
2520 static noinline int relink_extent_backref(struct btrfs_path *path,
2521 struct sa_defrag_extent_backref *prev,
2522 struct sa_defrag_extent_backref *backref)
2524 struct btrfs_file_extent_item *extent;
2525 struct btrfs_file_extent_item *item;
2526 struct btrfs_ordered_extent *ordered;
2527 struct btrfs_trans_handle *trans;
2528 struct btrfs_root *root;
2529 struct btrfs_key key;
2530 struct extent_buffer *leaf;
2531 struct old_sa_defrag_extent *old = backref->old;
2532 struct new_sa_defrag_extent *new = old->new;
2533 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2534 struct inode *inode;
2535 struct extent_state *cached = NULL;
2544 if (prev && prev->root_id == backref->root_id &&
2545 prev->inum == backref->inum &&
2546 prev->file_pos + prev->num_bytes == backref->file_pos)
2549 /* step 1: get root */
2550 key.objectid = backref->root_id;
2551 key.type = BTRFS_ROOT_ITEM_KEY;
2552 key.offset = (u64)-1;
2554 index = srcu_read_lock(&fs_info->subvol_srcu);
2556 root = btrfs_read_fs_root_no_name(fs_info, &key);
2558 srcu_read_unlock(&fs_info->subvol_srcu, index);
2559 if (PTR_ERR(root) == -ENOENT)
2561 return PTR_ERR(root);
2564 if (btrfs_root_readonly(root)) {
2565 srcu_read_unlock(&fs_info->subvol_srcu, index);
2569 /* step 2: get inode */
2570 key.objectid = backref->inum;
2571 key.type = BTRFS_INODE_ITEM_KEY;
2574 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2575 if (IS_ERR(inode)) {
2576 srcu_read_unlock(&fs_info->subvol_srcu, index);
2580 srcu_read_unlock(&fs_info->subvol_srcu, index);
2582 /* step 3: relink backref */
2583 lock_start = backref->file_pos;
2584 lock_end = backref->file_pos + backref->num_bytes - 1;
2585 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2588 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2590 btrfs_put_ordered_extent(ordered);
2594 trans = btrfs_join_transaction(root);
2595 if (IS_ERR(trans)) {
2596 ret = PTR_ERR(trans);
2600 key.objectid = backref->inum;
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2602 key.offset = backref->file_pos;
2604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2607 } else if (ret > 0) {
2612 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2613 struct btrfs_file_extent_item);
2615 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2616 backref->generation)
2619 btrfs_release_path(path);
2621 start = backref->file_pos;
2622 if (backref->extent_offset < old->extent_offset + old->offset)
2623 start += old->extent_offset + old->offset -
2624 backref->extent_offset;
2626 len = min(backref->extent_offset + backref->num_bytes,
2627 old->extent_offset + old->offset + old->len);
2628 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2630 ret = btrfs_drop_extents(trans, root, inode, start,
2635 key.objectid = btrfs_ino(BTRFS_I(inode));
2636 key.type = BTRFS_EXTENT_DATA_KEY;
2639 path->leave_spinning = 1;
2641 struct btrfs_file_extent_item *fi;
2643 struct btrfs_key found_key;
2645 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2650 leaf = path->nodes[0];
2651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2653 fi = btrfs_item_ptr(leaf, path->slots[0],
2654 struct btrfs_file_extent_item);
2655 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2657 if (extent_len + found_key.offset == start &&
2658 relink_is_mergable(leaf, fi, new)) {
2659 btrfs_set_file_extent_num_bytes(leaf, fi,
2661 btrfs_mark_buffer_dirty(leaf);
2662 inode_add_bytes(inode, len);
2668 btrfs_release_path(path);
2673 ret = btrfs_insert_empty_item(trans, root, path, &key,
2676 btrfs_abort_transaction(trans, ret);
2680 leaf = path->nodes[0];
2681 item = btrfs_item_ptr(leaf, path->slots[0],
2682 struct btrfs_file_extent_item);
2683 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2684 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2685 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2686 btrfs_set_file_extent_num_bytes(leaf, item, len);
2687 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2688 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2689 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2690 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2691 btrfs_set_file_extent_encryption(leaf, item, 0);
2692 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2694 btrfs_mark_buffer_dirty(leaf);
2695 inode_add_bytes(inode, len);
2696 btrfs_release_path(path);
2698 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2700 backref->root_id, backref->inum,
2701 new->file_pos); /* start - extent_offset */
2703 btrfs_abort_transaction(trans, ret);
2709 btrfs_release_path(path);
2710 path->leave_spinning = 0;
2711 btrfs_end_transaction(trans);
2713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2719 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2721 struct old_sa_defrag_extent *old, *tmp;
2726 list_for_each_entry_safe(old, tmp, &new->head, list) {
2732 static void relink_file_extents(struct new_sa_defrag_extent *new)
2734 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2735 struct btrfs_path *path;
2736 struct sa_defrag_extent_backref *backref;
2737 struct sa_defrag_extent_backref *prev = NULL;
2738 struct inode *inode;
2739 struct btrfs_root *root;
2740 struct rb_node *node;
2744 root = BTRFS_I(inode)->root;
2746 path = btrfs_alloc_path();
2750 if (!record_extent_backrefs(path, new)) {
2751 btrfs_free_path(path);
2754 btrfs_release_path(path);
2757 node = rb_first(&new->root);
2760 rb_erase(node, &new->root);
2762 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2764 ret = relink_extent_backref(path, prev, backref);
2777 btrfs_free_path(path);
2779 free_sa_defrag_extent(new);
2781 atomic_dec(&fs_info->defrag_running);
2782 wake_up(&fs_info->transaction_wait);
2785 static struct new_sa_defrag_extent *
2786 record_old_file_extents(struct inode *inode,
2787 struct btrfs_ordered_extent *ordered)
2789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2790 struct btrfs_root *root = BTRFS_I(inode)->root;
2791 struct btrfs_path *path;
2792 struct btrfs_key key;
2793 struct old_sa_defrag_extent *old;
2794 struct new_sa_defrag_extent *new;
2797 new = kmalloc(sizeof(*new), GFP_NOFS);
2802 new->file_pos = ordered->file_offset;
2803 new->len = ordered->len;
2804 new->bytenr = ordered->start;
2805 new->disk_len = ordered->disk_len;
2806 new->compress_type = ordered->compress_type;
2807 new->root = RB_ROOT;
2808 INIT_LIST_HEAD(&new->head);
2810 path = btrfs_alloc_path();
2814 key.objectid = btrfs_ino(BTRFS_I(inode));
2815 key.type = BTRFS_EXTENT_DATA_KEY;
2816 key.offset = new->file_pos;
2818 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2821 if (ret > 0 && path->slots[0] > 0)
2824 /* find out all the old extents for the file range */
2826 struct btrfs_file_extent_item *extent;
2827 struct extent_buffer *l;
2836 slot = path->slots[0];
2838 if (slot >= btrfs_header_nritems(l)) {
2839 ret = btrfs_next_leaf(root, path);
2847 btrfs_item_key_to_cpu(l, &key, slot);
2849 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2851 if (key.type != BTRFS_EXTENT_DATA_KEY)
2853 if (key.offset >= new->file_pos + new->len)
2856 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2858 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2859 if (key.offset + num_bytes < new->file_pos)
2862 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2866 extent_offset = btrfs_file_extent_offset(l, extent);
2868 old = kmalloc(sizeof(*old), GFP_NOFS);
2872 offset = max(new->file_pos, key.offset);
2873 end = min(new->file_pos + new->len, key.offset + num_bytes);
2875 old->bytenr = disk_bytenr;
2876 old->extent_offset = extent_offset;
2877 old->offset = offset - key.offset;
2878 old->len = end - offset;
2881 list_add_tail(&old->list, &new->head);
2887 btrfs_free_path(path);
2888 atomic_inc(&fs_info->defrag_running);
2893 btrfs_free_path(path);
2895 free_sa_defrag_extent(new);
2899 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2902 struct btrfs_block_group_cache *cache;
2904 cache = btrfs_lookup_block_group(fs_info, start);
2907 spin_lock(&cache->lock);
2908 cache->delalloc_bytes -= len;
2909 spin_unlock(&cache->lock);
2911 btrfs_put_block_group(cache);
2914 /* as ordered data IO finishes, this gets called so we can finish
2915 * an ordered extent if the range of bytes in the file it covers are
2918 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2920 struct inode *inode = ordered_extent->inode;
2921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2922 struct btrfs_root *root = BTRFS_I(inode)->root;
2923 struct btrfs_trans_handle *trans = NULL;
2924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2925 struct extent_state *cached_state = NULL;
2926 struct new_sa_defrag_extent *new = NULL;
2927 int compress_type = 0;
2929 u64 logical_len = ordered_extent->len;
2931 bool truncated = false;
2932 bool range_locked = false;
2933 bool clear_new_delalloc_bytes = false;
2935 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2936 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2937 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2938 clear_new_delalloc_bytes = true;
2940 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2942 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2947 btrfs_free_io_failure_record(BTRFS_I(inode),
2948 ordered_extent->file_offset,
2949 ordered_extent->file_offset +
2950 ordered_extent->len - 1);
2952 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2954 logical_len = ordered_extent->truncated_len;
2955 /* Truncated the entire extent, don't bother adding */
2960 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2961 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2964 * For mwrite(mmap + memset to write) case, we still reserve
2965 * space for NOCOW range.
2966 * As NOCOW won't cause a new delayed ref, just free the space
2968 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2969 ordered_extent->len);
2970 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2972 trans = btrfs_join_transaction_nolock(root);
2974 trans = btrfs_join_transaction(root);
2975 if (IS_ERR(trans)) {
2976 ret = PTR_ERR(trans);
2980 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2981 ret = btrfs_update_inode_fallback(trans, root, inode);
2982 if (ret) /* -ENOMEM or corruption */
2983 btrfs_abort_transaction(trans, ret);
2987 range_locked = true;
2988 lock_extent_bits(io_tree, ordered_extent->file_offset,
2989 ordered_extent->file_offset + ordered_extent->len - 1,
2992 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2993 ordered_extent->file_offset + ordered_extent->len - 1,
2994 EXTENT_DEFRAG, 0, cached_state);
2996 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2997 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2998 /* the inode is shared */
2999 new = record_old_file_extents(inode, ordered_extent);
3001 clear_extent_bit(io_tree, ordered_extent->file_offset,
3002 ordered_extent->file_offset + ordered_extent->len - 1,
3003 EXTENT_DEFRAG, 0, 0, &cached_state);
3007 trans = btrfs_join_transaction_nolock(root);
3009 trans = btrfs_join_transaction(root);
3010 if (IS_ERR(trans)) {
3011 ret = PTR_ERR(trans);
3016 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3018 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3019 compress_type = ordered_extent->compress_type;
3020 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3021 BUG_ON(compress_type);
3022 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3023 ordered_extent->len);
3024 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3025 ordered_extent->file_offset,
3026 ordered_extent->file_offset +
3029 BUG_ON(root == fs_info->tree_root);
3030 ret = insert_reserved_file_extent(trans, inode,
3031 ordered_extent->file_offset,
3032 ordered_extent->start,
3033 ordered_extent->disk_len,
3034 logical_len, logical_len,
3035 compress_type, 0, 0,
3036 BTRFS_FILE_EXTENT_REG);
3038 btrfs_release_delalloc_bytes(fs_info,
3039 ordered_extent->start,
3040 ordered_extent->disk_len);
3042 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3043 ordered_extent->file_offset, ordered_extent->len,
3046 btrfs_abort_transaction(trans, ret);
3050 add_pending_csums(trans, inode, &ordered_extent->list);
3052 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3053 ret = btrfs_update_inode_fallback(trans, root, inode);
3054 if (ret) { /* -ENOMEM or corruption */
3055 btrfs_abort_transaction(trans, ret);
3060 if (range_locked || clear_new_delalloc_bytes) {
3061 unsigned int clear_bits = 0;
3064 clear_bits |= EXTENT_LOCKED;
3065 if (clear_new_delalloc_bytes)
3066 clear_bits |= EXTENT_DELALLOC_NEW;
3067 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3068 ordered_extent->file_offset,
3069 ordered_extent->file_offset +
3070 ordered_extent->len - 1,
3072 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3077 btrfs_end_transaction(trans);
3079 if (ret || truncated) {
3083 start = ordered_extent->file_offset + logical_len;
3085 start = ordered_extent->file_offset;
3086 end = ordered_extent->file_offset + ordered_extent->len - 1;
3087 clear_extent_uptodate(io_tree, start, end, NULL);
3089 /* Drop the cache for the part of the extent we didn't write. */
3090 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3093 * If the ordered extent had an IOERR or something else went
3094 * wrong we need to return the space for this ordered extent
3095 * back to the allocator. We only free the extent in the
3096 * truncated case if we didn't write out the extent at all.
3098 if ((ret || !logical_len) &&
3099 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3100 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3101 btrfs_free_reserved_extent(fs_info,
3102 ordered_extent->start,
3103 ordered_extent->disk_len, 1);
3108 * This needs to be done to make sure anybody waiting knows we are done
3109 * updating everything for this ordered extent.
3111 btrfs_remove_ordered_extent(inode, ordered_extent);
3113 /* for snapshot-aware defrag */
3116 free_sa_defrag_extent(new);
3117 atomic_dec(&fs_info->defrag_running);
3119 relink_file_extents(new);
3124 btrfs_put_ordered_extent(ordered_extent);
3125 /* once for the tree */
3126 btrfs_put_ordered_extent(ordered_extent);
3131 static void finish_ordered_fn(struct btrfs_work *work)
3133 struct btrfs_ordered_extent *ordered_extent;
3134 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3135 btrfs_finish_ordered_io(ordered_extent);
3138 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3139 struct extent_state *state, int uptodate)
3141 struct inode *inode = page->mapping->host;
3142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3143 struct btrfs_ordered_extent *ordered_extent = NULL;
3144 struct btrfs_workqueue *wq;
3145 btrfs_work_func_t func;
3147 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3149 ClearPagePrivate2(page);
3150 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3151 end - start + 1, uptodate))
3154 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3155 wq = fs_info->endio_freespace_worker;
3156 func = btrfs_freespace_write_helper;
3158 wq = fs_info->endio_write_workers;
3159 func = btrfs_endio_write_helper;
3162 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3164 btrfs_queue_work(wq, &ordered_extent->work);
3167 static int __readpage_endio_check(struct inode *inode,
3168 struct btrfs_io_bio *io_bio,
3169 int icsum, struct page *page,
3170 int pgoff, u64 start, size_t len)
3176 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3178 kaddr = kmap_atomic(page);
3179 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3180 btrfs_csum_final(csum, (u8 *)&csum);
3181 if (csum != csum_expected)
3184 kunmap_atomic(kaddr);
3187 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3188 io_bio->mirror_num);
3189 memset(kaddr + pgoff, 1, len);
3190 flush_dcache_page(page);
3191 kunmap_atomic(kaddr);
3196 * when reads are done, we need to check csums to verify the data is correct
3197 * if there's a match, we allow the bio to finish. If not, the code in
3198 * extent_io.c will try to find good copies for us.
3200 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3201 u64 phy_offset, struct page *page,
3202 u64 start, u64 end, int mirror)
3204 size_t offset = start - page_offset(page);
3205 struct inode *inode = page->mapping->host;
3206 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3207 struct btrfs_root *root = BTRFS_I(inode)->root;
3209 if (PageChecked(page)) {
3210 ClearPageChecked(page);
3214 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3217 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3218 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3219 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3223 phy_offset >>= inode->i_sb->s_blocksize_bits;
3224 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3225 start, (size_t)(end - start + 1));
3228 void btrfs_add_delayed_iput(struct inode *inode)
3230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3231 struct btrfs_inode *binode = BTRFS_I(inode);
3233 if (atomic_add_unless(&inode->i_count, -1, 1))
3236 spin_lock(&fs_info->delayed_iput_lock);
3237 if (binode->delayed_iput_count == 0) {
3238 ASSERT(list_empty(&binode->delayed_iput));
3239 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3241 binode->delayed_iput_count++;
3243 spin_unlock(&fs_info->delayed_iput_lock);
3246 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3249 spin_lock(&fs_info->delayed_iput_lock);
3250 while (!list_empty(&fs_info->delayed_iputs)) {
3251 struct btrfs_inode *inode;
3253 inode = list_first_entry(&fs_info->delayed_iputs,
3254 struct btrfs_inode, delayed_iput);
3255 if (inode->delayed_iput_count) {
3256 inode->delayed_iput_count--;
3257 list_move_tail(&inode->delayed_iput,
3258 &fs_info->delayed_iputs);
3260 list_del_init(&inode->delayed_iput);
3262 spin_unlock(&fs_info->delayed_iput_lock);
3263 iput(&inode->vfs_inode);
3264 spin_lock(&fs_info->delayed_iput_lock);
3266 spin_unlock(&fs_info->delayed_iput_lock);
3270 * This is called in transaction commit time. If there are no orphan
3271 * files in the subvolume, it removes orphan item and frees block_rsv
3274 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3275 struct btrfs_root *root)
3277 struct btrfs_fs_info *fs_info = root->fs_info;
3278 struct btrfs_block_rsv *block_rsv;
3281 if (atomic_read(&root->orphan_inodes) ||
3282 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3285 spin_lock(&root->orphan_lock);
3286 if (atomic_read(&root->orphan_inodes)) {
3287 spin_unlock(&root->orphan_lock);
3291 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3292 spin_unlock(&root->orphan_lock);
3296 block_rsv = root->orphan_block_rsv;
3297 root->orphan_block_rsv = NULL;
3298 spin_unlock(&root->orphan_lock);
3300 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3301 btrfs_root_refs(&root->root_item) > 0) {
3302 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3303 root->root_key.objectid);
3305 btrfs_abort_transaction(trans, ret);
3307 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3312 WARN_ON(block_rsv->size > 0);
3313 btrfs_free_block_rsv(fs_info, block_rsv);
3318 * This creates an orphan entry for the given inode in case something goes
3319 * wrong in the middle of an unlink/truncate.
3321 * NOTE: caller of this function should reserve 5 units of metadata for
3324 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3325 struct btrfs_inode *inode)
3327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3328 struct btrfs_root *root = inode->root;
3329 struct btrfs_block_rsv *block_rsv = NULL;
3334 if (!root->orphan_block_rsv) {
3335 block_rsv = btrfs_alloc_block_rsv(fs_info,
3336 BTRFS_BLOCK_RSV_TEMP);
3341 spin_lock(&root->orphan_lock);
3342 if (!root->orphan_block_rsv) {
3343 root->orphan_block_rsv = block_rsv;
3344 } else if (block_rsv) {
3345 btrfs_free_block_rsv(fs_info, block_rsv);
3349 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3350 &inode->runtime_flags)) {
3353 * For proper ENOSPC handling, we should do orphan
3354 * cleanup when mounting. But this introduces backward
3355 * compatibility issue.
3357 if (!xchg(&root->orphan_item_inserted, 1))
3363 atomic_inc(&root->orphan_inodes);
3366 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3367 &inode->runtime_flags))
3369 spin_unlock(&root->orphan_lock);
3371 /* grab metadata reservation from transaction handle */
3373 ret = btrfs_orphan_reserve_metadata(trans, inode);
3376 atomic_dec(&root->orphan_inodes);
3377 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3378 &inode->runtime_flags);
3380 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3381 &inode->runtime_flags);
3386 /* insert an orphan item to track this unlinked/truncated file */
3388 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3390 atomic_dec(&root->orphan_inodes);
3392 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3393 &inode->runtime_flags);
3394 btrfs_orphan_release_metadata(inode);
3396 if (ret != -EEXIST) {
3397 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3398 &inode->runtime_flags);
3399 btrfs_abort_transaction(trans, ret);
3406 /* insert an orphan item to track subvolume contains orphan files */
3408 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3409 root->root_key.objectid);
3410 if (ret && ret != -EEXIST) {
3411 btrfs_abort_transaction(trans, ret);
3419 * We have done the truncate/delete so we can go ahead and remove the orphan
3420 * item for this particular inode.
3422 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3423 struct btrfs_inode *inode)
3425 struct btrfs_root *root = inode->root;
3426 int delete_item = 0;
3427 int release_rsv = 0;
3430 spin_lock(&root->orphan_lock);
3431 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3432 &inode->runtime_flags))
3435 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3436 &inode->runtime_flags))
3438 spin_unlock(&root->orphan_lock);
3441 atomic_dec(&root->orphan_inodes);
3443 ret = btrfs_del_orphan_item(trans, root,
3448 btrfs_orphan_release_metadata(inode);
3454 * this cleans up any orphans that may be left on the list from the last use
3457 int btrfs_orphan_cleanup(struct btrfs_root *root)
3459 struct btrfs_fs_info *fs_info = root->fs_info;
3460 struct btrfs_path *path;
3461 struct extent_buffer *leaf;
3462 struct btrfs_key key, found_key;
3463 struct btrfs_trans_handle *trans;
3464 struct inode *inode;
3465 u64 last_objectid = 0;
3466 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3468 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3471 path = btrfs_alloc_path();
3476 path->reada = READA_BACK;
3478 key.objectid = BTRFS_ORPHAN_OBJECTID;
3479 key.type = BTRFS_ORPHAN_ITEM_KEY;
3480 key.offset = (u64)-1;
3483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3488 * if ret == 0 means we found what we were searching for, which
3489 * is weird, but possible, so only screw with path if we didn't
3490 * find the key and see if we have stuff that matches
3494 if (path->slots[0] == 0)
3499 /* pull out the item */
3500 leaf = path->nodes[0];
3501 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3503 /* make sure the item matches what we want */
3504 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3506 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3509 /* release the path since we're done with it */
3510 btrfs_release_path(path);
3513 * this is where we are basically btrfs_lookup, without the
3514 * crossing root thing. we store the inode number in the
3515 * offset of the orphan item.
3518 if (found_key.offset == last_objectid) {
3520 "Error removing orphan entry, stopping orphan cleanup");
3525 last_objectid = found_key.offset;
3527 found_key.objectid = found_key.offset;
3528 found_key.type = BTRFS_INODE_ITEM_KEY;
3529 found_key.offset = 0;
3530 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3531 ret = PTR_ERR_OR_ZERO(inode);
3532 if (ret && ret != -ENOENT)
3535 if (ret == -ENOENT && root == fs_info->tree_root) {
3536 struct btrfs_root *dead_root;
3537 struct btrfs_fs_info *fs_info = root->fs_info;
3538 int is_dead_root = 0;
3541 * this is an orphan in the tree root. Currently these
3542 * could come from 2 sources:
3543 * a) a snapshot deletion in progress
3544 * b) a free space cache inode
3545 * We need to distinguish those two, as the snapshot
3546 * orphan must not get deleted.
3547 * find_dead_roots already ran before us, so if this
3548 * is a snapshot deletion, we should find the root
3549 * in the dead_roots list