1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
40 #include "compression.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
49 struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
54 struct btrfs_dio_data {
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static const struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 struct kmem_cache *btrfs_free_space_cachep;
76 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
87 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, u64 delalloc_end,
92 int *page_started, unsigned long *nr_written,
93 int unlock, struct btrfs_dedupe_hash *hash);
94 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
95 u64 orig_start, u64 block_start,
96 u64 block_len, u64 orig_block_len,
97 u64 ram_bytes, int compress_type,
100 static void __endio_write_update_ordered(struct inode *inode,
101 const u64 offset, const u64 bytes,
102 const bool uptodate);
105 * Cleanup all submitted ordered extents in specified range to handle errors
106 * from the fill_dellaloc() callback.
108 * NOTE: caller must ensure that when an error happens, it can not call
109 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
110 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
111 * to be released, which we want to happen only when finishing the ordered
112 * extent (btrfs_finish_ordered_io()). Also note that the caller of
113 * btrfs_run_delalloc_range already does proper cleanup for the first page of
114 * the range, that is, it invokes the callback writepage_end_io_hook() for the
115 * range of the first page.
117 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
121 unsigned long index = offset >> PAGE_SHIFT;
122 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
125 while (index <= end_index) {
126 page = find_get_page(inode->i_mapping, index);
130 ClearPagePrivate2(page);
133 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
134 bytes - PAGE_SIZE, false);
137 static int btrfs_dirty_inode(struct inode *inode);
139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
140 void btrfs_test_inode_set_ops(struct inode *inode)
142 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
147 struct inode *inode, struct inode *dir,
148 const struct qstr *qstr)
152 err = btrfs_init_acl(trans, inode, dir);
154 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 * this does all the hard work for inserting an inline extent into
160 * the btree. The caller should have done a btrfs_drop_extents so that
161 * no overlapping inline items exist in the btree
163 static int insert_inline_extent(struct btrfs_trans_handle *trans,
164 struct btrfs_path *path, int extent_inserted,
165 struct btrfs_root *root, struct inode *inode,
166 u64 start, size_t size, size_t compressed_size,
168 struct page **compressed_pages)
170 struct extent_buffer *leaf;
171 struct page *page = NULL;
174 struct btrfs_file_extent_item *ei;
176 size_t cur_size = size;
177 unsigned long offset;
179 if (compressed_size && compressed_pages)
180 cur_size = compressed_size;
182 inode_add_bytes(inode, size);
184 if (!extent_inserted) {
185 struct btrfs_key key;
188 key.objectid = btrfs_ino(BTRFS_I(inode));
190 key.type = BTRFS_EXTENT_DATA_KEY;
192 datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 path->leave_spinning = 1;
194 ret = btrfs_insert_empty_item(trans, root, path, &key,
199 leaf = path->nodes[0];
200 ei = btrfs_item_ptr(leaf, path->slots[0],
201 struct btrfs_file_extent_item);
202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 btrfs_set_file_extent_encryption(leaf, ei, 0);
205 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 ptr = btrfs_file_extent_inline_start(ei);
209 if (compress_type != BTRFS_COMPRESS_NONE) {
212 while (compressed_size > 0) {
213 cpage = compressed_pages[i];
214 cur_size = min_t(unsigned long, compressed_size,
217 kaddr = kmap_atomic(cpage);
218 write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 kunmap_atomic(kaddr);
223 compressed_size -= cur_size;
225 btrfs_set_file_extent_compression(leaf, ei,
228 page = find_get_page(inode->i_mapping,
229 start >> PAGE_SHIFT);
230 btrfs_set_file_extent_compression(leaf, ei, 0);
231 kaddr = kmap_atomic(page);
232 offset = start & (PAGE_SIZE - 1);
233 write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 kunmap_atomic(kaddr);
237 btrfs_mark_buffer_dirty(leaf);
238 btrfs_release_path(path);
241 * we're an inline extent, so nobody can
242 * extend the file past i_size without locking
243 * a page we already have locked.
245 * We must do any isize and inode updates
246 * before we unlock the pages. Otherwise we
247 * could end up racing with unlink.
249 BTRFS_I(inode)->disk_i_size = inode->i_size;
250 ret = btrfs_update_inode(trans, root, inode);
258 * conditionally insert an inline extent into the file. This
259 * does the checks required to make sure the data is small enough
260 * to fit as an inline extent.
262 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
263 u64 end, size_t compressed_size,
265 struct page **compressed_pages)
267 struct btrfs_root *root = BTRFS_I(inode)->root;
268 struct btrfs_fs_info *fs_info = root->fs_info;
269 struct btrfs_trans_handle *trans;
270 u64 isize = i_size_read(inode);
271 u64 actual_end = min(end + 1, isize);
272 u64 inline_len = actual_end - start;
273 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
274 u64 data_len = inline_len;
276 struct btrfs_path *path;
277 int extent_inserted = 0;
278 u32 extent_item_size;
281 data_len = compressed_size;
284 actual_end > fs_info->sectorsize ||
285 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289 data_len > fs_info->max_inline) {
293 path = btrfs_alloc_path();
297 trans = btrfs_join_transaction(root);
299 btrfs_free_path(path);
300 return PTR_ERR(trans);
302 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304 if (compressed_size && compressed_pages)
305 extent_item_size = btrfs_file_extent_calc_inline_size(
308 extent_item_size = btrfs_file_extent_calc_inline_size(
311 ret = __btrfs_drop_extents(trans, root, inode, path,
312 start, aligned_end, NULL,
313 1, 1, extent_item_size, &extent_inserted);
315 btrfs_abort_transaction(trans, ret);
319 if (isize > actual_end)
320 inline_len = min_t(u64, isize, actual_end);
321 ret = insert_inline_extent(trans, path, extent_inserted,
323 inline_len, compressed_size,
324 compress_type, compressed_pages);
325 if (ret && ret != -ENOSPC) {
326 btrfs_abort_transaction(trans, ret);
328 } else if (ret == -ENOSPC) {
333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
334 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
337 * Don't forget to free the reserved space, as for inlined extent
338 * it won't count as data extent, free them directly here.
339 * And at reserve time, it's always aligned to page size, so
340 * just free one page here.
342 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
343 btrfs_free_path(path);
344 btrfs_end_transaction(trans);
348 struct async_extent {
353 unsigned long nr_pages;
355 struct list_head list;
360 struct btrfs_root *root;
361 struct page *locked_page;
364 unsigned int write_flags;
365 struct list_head extents;
366 struct btrfs_work work;
369 static noinline int add_async_extent(struct async_cow *cow,
370 u64 start, u64 ram_size,
373 unsigned long nr_pages,
376 struct async_extent *async_extent;
378 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
379 BUG_ON(!async_extent); /* -ENOMEM */
380 async_extent->start = start;
381 async_extent->ram_size = ram_size;
382 async_extent->compressed_size = compressed_size;
383 async_extent->pages = pages;
384 async_extent->nr_pages = nr_pages;
385 async_extent->compress_type = compress_type;
386 list_add_tail(&async_extent->list, &cow->extents);
390 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
395 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
398 if (BTRFS_I(inode)->defrag_compress)
400 /* bad compression ratios */
401 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403 if (btrfs_test_opt(fs_info, COMPRESS) ||
404 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
405 BTRFS_I(inode)->prop_compress)
406 return btrfs_compress_heuristic(inode, start, end);
410 static inline void inode_should_defrag(struct btrfs_inode *inode,
411 u64 start, u64 end, u64 num_bytes, u64 small_write)
413 /* If this is a small write inside eof, kick off a defrag */
414 if (num_bytes < small_write &&
415 (start > 0 || end + 1 < inode->disk_i_size))
416 btrfs_add_inode_defrag(NULL, inode);
420 * we create compressed extents in two phases. The first
421 * phase compresses a range of pages that have already been
422 * locked (both pages and state bits are locked).
424 * This is done inside an ordered work queue, and the compression
425 * is spread across many cpus. The actual IO submission is step
426 * two, and the ordered work queue takes care of making sure that
427 * happens in the same order things were put onto the queue by
428 * writepages and friends.
430 * If this code finds it can't get good compression, it puts an
431 * entry onto the work queue to write the uncompressed bytes. This
432 * makes sure that both compressed inodes and uncompressed inodes
433 * are written in the same order that the flusher thread sent them
436 static noinline void compress_file_range(struct inode *inode,
437 struct page *locked_page,
439 struct async_cow *async_cow,
442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
443 u64 blocksize = fs_info->sectorsize;
445 u64 isize = i_size_read(inode);
447 struct page **pages = NULL;
448 unsigned long nr_pages;
449 unsigned long total_compressed = 0;
450 unsigned long total_in = 0;
453 int compress_type = fs_info->compress_type;
456 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
459 actual_end = min_t(u64, isize, end + 1);
462 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
463 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
464 nr_pages = min_t(unsigned long, nr_pages,
465 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
468 * we don't want to send crud past the end of i_size through
469 * compression, that's just a waste of CPU time. So, if the
470 * end of the file is before the start of our current
471 * requested range of bytes, we bail out to the uncompressed
472 * cleanup code that can deal with all of this.
474 * It isn't really the fastest way to fix things, but this is a
475 * very uncommon corner.
477 if (actual_end <= start)
478 goto cleanup_and_bail_uncompressed;
480 total_compressed = actual_end - start;
483 * skip compression for a small file range(<=blocksize) that
484 * isn't an inline extent, since it doesn't save disk space at all.
486 if (total_compressed <= blocksize &&
487 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
488 goto cleanup_and_bail_uncompressed;
490 total_compressed = min_t(unsigned long, total_compressed,
491 BTRFS_MAX_UNCOMPRESSED);
496 * we do compression for mount -o compress and when the
497 * inode has not been flagged as nocompress. This flag can
498 * change at any time if we discover bad compression ratios.
500 if (inode_need_compress(inode, start, end)) {
502 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
504 /* just bail out to the uncompressed code */
509 if (BTRFS_I(inode)->defrag_compress)
510 compress_type = BTRFS_I(inode)->defrag_compress;
511 else if (BTRFS_I(inode)->prop_compress)
512 compress_type = BTRFS_I(inode)->prop_compress;
515 * we need to call clear_page_dirty_for_io on each
516 * page in the range. Otherwise applications with the file
517 * mmap'd can wander in and change the page contents while
518 * we are compressing them.
520 * If the compression fails for any reason, we set the pages
521 * dirty again later on.
523 * Note that the remaining part is redirtied, the start pointer
524 * has moved, the end is the original one.
527 extent_range_clear_dirty_for_io(inode, start, end);
531 /* Compression level is applied here and only here */
532 ret = btrfs_compress_pages(
533 compress_type | (fs_info->compress_level << 4),
534 inode->i_mapping, start,
541 unsigned long offset = total_compressed &
543 struct page *page = pages[nr_pages - 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr = kmap_atomic(page);
551 memset(kaddr + offset, 0,
553 kunmap_atomic(kaddr);
560 /* lets try to make an inline extent */
561 if (ret || total_in < actual_end) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret = cow_file_range_inline(inode, start, end, 0,
566 BTRFS_COMPRESS_NONE, NULL);
568 /* try making a compressed inline extent */
569 ret = cow_file_range_inline(inode, start, end,
571 compress_type, pages);
574 unsigned long clear_flags = EXTENT_DELALLOC |
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 EXTENT_DO_ACCOUNTING;
577 unsigned long page_error_op;
579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 * We use DO_ACCOUNTING here because we need the
587 * delalloc_release_metadata to be done _after_ we drop
588 * our outstanding extent for clearing delalloc for this
591 extent_clear_unlock_delalloc(inode, start, end, end,
604 * we aren't doing an inline extent round the compressed size
605 * up to a block size boundary so the allocator does sane
608 total_compressed = ALIGN(total_compressed, blocksize);
611 * one last check to make sure the compression is really a
612 * win, compare the page count read with the blocks on disk,
613 * compression must free at least one sector size
615 total_in = ALIGN(total_in, PAGE_SIZE);
616 if (total_compressed + blocksize <= total_in) {
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
624 add_async_extent(async_cow, start, total_in,
625 total_compressed, pages, nr_pages,
628 if (start + total_in < end) {
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
642 for (i = 0; i < nr_pages; i++) {
643 WARN_ON(pages[i]->mapping);
648 total_compressed = 0;
651 /* flag the file so we don't compress in the future */
652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 !(BTRFS_I(inode)->prop_compress)) {
654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
657 cleanup_and_bail_uncompressed:
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
664 if (page_offset(locked_page) >= start &&
665 page_offset(locked_page) <= end)
666 __set_page_dirty_nobuffers(locked_page);
667 /* unlocked later on in the async handlers */
670 extent_range_redirty_for_io(inode, start, end);
671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 BTRFS_COMPRESS_NONE);
678 for (i = 0; i < nr_pages; i++) {
679 WARN_ON(pages[i]->mapping);
685 static void free_async_extent_pages(struct async_extent *async_extent)
689 if (!async_extent->pages)
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 put_page(async_extent->pages[i]);
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
707 static noinline void submit_compressed_extents(struct inode *inode,
708 struct async_cow *async_cow)
710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 struct async_extent *async_extent;
713 struct btrfs_key ins;
714 struct extent_map *em;
715 struct btrfs_root *root = BTRFS_I(inode)->root;
716 struct extent_io_tree *io_tree;
720 while (!list_empty(&async_cow->extents)) {
721 async_extent = list_entry(async_cow->extents.next,
722 struct async_extent, list);
723 list_del(&async_extent->list);
725 io_tree = &BTRFS_I(inode)->io_tree;
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent->pages) {
730 int page_started = 0;
731 unsigned long nr_written = 0;
733 lock_extent(io_tree, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1);
737 /* allocate blocks */
738 ret = cow_file_range(inode, async_cow->locked_page,
740 async_extent->start +
741 async_extent->ram_size - 1,
742 async_extent->start +
743 async_extent->ram_size - 1,
744 &page_started, &nr_written, 0,
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
755 if (!page_started && !ret)
756 extent_write_locked_range(inode,
758 async_extent->start +
759 async_extent->ram_size - 1,
762 unlock_page(async_cow->locked_page);
768 lock_extent(io_tree, async_extent->start,
769 async_extent->start + async_extent->ram_size - 1);
771 ret = btrfs_reserve_extent(root, async_extent->ram_size,
772 async_extent->compressed_size,
773 async_extent->compressed_size,
774 0, alloc_hint, &ins, 1, 1);
776 free_async_extent_pages(async_extent);
778 if (ret == -ENOSPC) {
779 unlock_extent(io_tree, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1);
784 * we need to redirty the pages if we decide to
785 * fallback to uncompressed IO, otherwise we
786 * will not submit these pages down to lower
789 extent_range_redirty_for_io(inode,
791 async_extent->start +
792 async_extent->ram_size - 1);
799 * here we're doing allocation and writeback of the
802 em = create_io_em(inode, async_extent->start,
803 async_extent->ram_size, /* len */
804 async_extent->start, /* orig_start */
805 ins.objectid, /* block_start */
806 ins.offset, /* block_len */
807 ins.offset, /* orig_block_len */
808 async_extent->ram_size, /* ram_bytes */
809 async_extent->compress_type,
810 BTRFS_ORDERED_COMPRESSED);
812 /* ret value is not necessary due to void function */
813 goto out_free_reserve;
816 ret = btrfs_add_ordered_extent_compress(inode,
819 async_extent->ram_size,
821 BTRFS_ORDERED_COMPRESSED,
822 async_extent->compress_type);
824 btrfs_drop_extent_cache(BTRFS_I(inode),
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
828 goto out_free_reserve;
830 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1,
838 async_extent->start +
839 async_extent->ram_size - 1,
840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
843 if (btrfs_submit_compressed_write(inode,
845 async_extent->ram_size,
847 ins.offset, async_extent->pages,
848 async_extent->nr_pages,
849 async_cow->write_flags)) {
850 struct page *p = async_extent->pages[0];
851 const u64 start = async_extent->start;
852 const u64 end = start + async_extent->ram_size - 1;
854 p->mapping = inode->i_mapping;
855 btrfs_writepage_endio_finish_ordered(p, start, end,
859 extent_clear_unlock_delalloc(inode, start, end, end,
863 free_async_extent_pages(async_extent);
865 alloc_hint = ins.objectid + ins.offset;
871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
874 extent_clear_unlock_delalloc(inode, async_extent->start,
875 async_extent->start +
876 async_extent->ram_size - 1,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 EXTENT_DELALLOC_NEW |
881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 free_async_extent_pages(async_extent);
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 struct extent_map *em;
897 read_lock(&em_tree->lock);
898 em = search_extent_mapping(em_tree, start, num_bytes);
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 em = search_extent_mapping(em_tree, 0, 0);
908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 alloc_hint = em->block_start;
913 alloc_hint = em->block_start;
917 read_unlock(&em_tree->lock);
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
935 static noinline int cow_file_range(struct inode *inode,
936 struct page *locked_page,
937 u64 start, u64 end, u64 delalloc_end,
938 int *page_started, unsigned long *nr_written,
939 int unlock, struct btrfs_dedupe_hash *hash)
941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 struct btrfs_root *root = BTRFS_I(inode)->root;
945 unsigned long ram_size;
946 u64 cur_alloc_size = 0;
947 u64 blocksize = fs_info->sectorsize;
948 struct btrfs_key ins;
949 struct extent_map *em;
951 unsigned long page_ops;
952 bool extent_reserved = false;
955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
961 num_bytes = ALIGN(end - start + 1, blocksize);
962 num_bytes = max(blocksize, num_bytes);
963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
968 /* lets try to make an inline extent */
969 ret = cow_file_range_inline(inode, start, end, 0,
970 BTRFS_COMPRESS_NONE, NULL);
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
978 extent_clear_unlock_delalloc(inode, start, end,
980 EXTENT_LOCKED | EXTENT_DELALLOC |
981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
985 *nr_written = *nr_written +
986 (end - start + PAGE_SIZE) / PAGE_SIZE;
989 } else if (ret < 0) {
994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 start + num_bytes - 1, 0);
998 while (num_bytes > 0) {
999 cur_alloc_size = num_bytes;
1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 fs_info->sectorsize, 0, alloc_hint,
1005 cur_alloc_size = ins.offset;
1006 extent_reserved = true;
1008 ram_size = ins.offset;
1009 em = create_io_em(inode, start, ins.offset, /* len */
1010 start, /* orig_start */
1011 ins.objectid, /* block_start */
1012 ins.offset, /* block_len */
1013 ins.offset, /* orig_block_len */
1014 ram_size, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE, /* compress_type */
1016 BTRFS_ORDERED_REGULAR /* type */);
1021 free_extent_map(em);
1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 ram_size, cur_alloc_size, 0);
1026 goto out_drop_extent_cache;
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
1060 extent_clear_unlock_delalloc(inode, start,
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 if (num_bytes < cur_alloc_size)
1068 num_bytes -= cur_alloc_size;
1069 alloc_hint = ins.objectid + ins.offset;
1070 start += cur_alloc_size;
1071 extent_reserved = false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache:
1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved) {
1105 extent_clear_unlock_delalloc(inode, start,
1106 start + cur_alloc_size,
1107 start + cur_alloc_size,
1111 start += cur_alloc_size;
1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 clear_bits | EXTENT_CLEAR_DATA_RESV,
1123 * work queue call back to started compression on a file and pages
1125 static noinline void async_cow_start(struct btrfs_work *work)
1127 struct async_cow *async_cow;
1129 async_cow = container_of(work, struct async_cow, work);
1131 compress_file_range(async_cow->inode, async_cow->locked_page,
1132 async_cow->start, async_cow->end, async_cow,
1134 if (num_added == 0) {
1135 btrfs_add_delayed_iput(async_cow->inode);
1136 async_cow->inode = NULL;
1141 * work queue call back to submit previously compressed pages
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1145 struct btrfs_fs_info *fs_info;
1146 struct async_cow *async_cow;
1147 struct btrfs_root *root;
1148 unsigned long nr_pages;
1150 async_cow = container_of(work, struct async_cow, work);
1152 root = async_cow->root;
1153 fs_info = root->fs_info;
1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 /* atomic_sub_return implies a barrier */
1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1160 cond_wake_up_nomb(&fs_info->async_submit_wait);
1162 if (async_cow->inode)
1163 submit_compressed_extents(async_cow->inode, async_cow);
1166 static noinline void async_cow_free(struct btrfs_work *work)
1168 struct async_cow *async_cow;
1169 async_cow = container_of(work, struct async_cow, work);
1170 if (async_cow->inode)
1171 btrfs_add_delayed_iput(async_cow->inode);
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 u64 start, u64 end, int *page_started,
1177 unsigned long *nr_written,
1178 unsigned int write_flags)
1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 struct async_cow *async_cow;
1182 struct btrfs_root *root = BTRFS_I(inode)->root;
1183 unsigned long nr_pages;
1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 while (start < end) {
1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 BUG_ON(!async_cow); /* -ENOMEM */
1191 async_cow->inode = igrab(inode);
1192 async_cow->root = root;
1193 async_cow->locked_page = locked_page;
1194 async_cow->start = start;
1195 async_cow->write_flags = write_flags;
1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1201 cur_end = min(end, start + SZ_512K - 1);
1203 async_cow->end = cur_end;
1204 INIT_LIST_HEAD(&async_cow->extents);
1206 btrfs_init_work(&async_cow->work,
1207 btrfs_delalloc_helper,
1208 async_cow_start, async_cow_submit,
1211 nr_pages = (cur_end - start + PAGE_SIZE) >>
1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1217 *nr_written += nr_pages;
1218 start = cur_end + 1;
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 u64 bytenr, u64 num_bytes)
1228 struct btrfs_ordered_sum *sums;
1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 bytenr + num_bytes - 1, &list, 0);
1233 if (ret == 0 && list_empty(&list))
1236 while (!list_empty(&list)) {
1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 list_del(&sums->list);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 struct page *locked_page,
1255 u64 start, u64 end, int *page_started, int force,
1256 unsigned long *nr_written)
1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 struct extent_buffer *leaf;
1261 struct btrfs_path *path;
1262 struct btrfs_file_extent_item *fi;
1263 struct btrfs_key found_key;
1264 struct extent_map *em;
1279 u64 ino = btrfs_ino(BTRFS_I(inode));
1281 path = btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode, start, end, end,
1285 EXTENT_LOCKED | EXTENT_DELALLOC |
1286 EXTENT_DO_ACCOUNTING |
1287 EXTENT_DEFRAG, PAGE_UNLOCK |
1289 PAGE_SET_WRITEBACK |
1290 PAGE_END_WRITEBACK);
1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1296 cow_start = (u64)-1;
1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1303 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &found_key,
1306 path->slots[0] - 1);
1307 if (found_key.objectid == ino &&
1308 found_key.type == BTRFS_EXTENT_DATA_KEY)
1313 leaf = path->nodes[0];
1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 ret = btrfs_next_leaf(root, path);
1317 if (cow_start != (u64)-1)
1318 cur_offset = cow_start;
1323 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1331 if (found_key.objectid > ino)
1333 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 found_key.offset > end)
1342 if (found_key.offset > cur_offset) {
1343 extent_end = found_key.offset;
1348 fi = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_file_extent_item);
1350 extent_type = btrfs_file_extent_type(leaf, fi);
1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 extent_end = found_key.offset +
1358 btrfs_file_extent_num_bytes(leaf, fi);
1360 btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 if (extent_end <= start) {
1365 if (disk_bytenr == 0)
1367 if (btrfs_file_extent_compression(leaf, fi) ||
1368 btrfs_file_extent_encryption(leaf, fi) ||
1369 btrfs_file_extent_other_encoding(leaf, fi))
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1375 if (btrfs_file_extent_generation(leaf, fi) <=
1376 btrfs_root_last_snapshot(&root->root_item))
1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1380 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1382 ret = btrfs_cross_ref_exist(root, ino,
1384 extent_offset, disk_bytenr);
1387 * ret could be -EIO if the above fails to read
1391 if (cow_start != (u64)-1)
1392 cur_offset = cow_start;
1396 WARN_ON_ONCE(nolock);
1399 disk_bytenr += extent_offset;
1400 disk_bytenr += cur_offset - found_key.offset;
1401 num_bytes = min(end + 1, extent_end) - cur_offset;
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1406 if (!nolock && atomic_read(&root->snapshot_force_cow))
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1413 ret = csum_exist_in_range(fs_info, disk_bytenr,
1417 * ret could be -EIO if the above fails to read
1421 if (cow_start != (u64)-1)
1422 cur_offset = cow_start;
1425 WARN_ON_ONCE(nolock);
1428 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1431 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432 extent_end = found_key.offset +
1433 btrfs_file_extent_ram_bytes(leaf, fi);
1434 extent_end = ALIGN(extent_end,
1435 fs_info->sectorsize);
1440 if (extent_end <= start) {
1443 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1447 if (cow_start == (u64)-1)
1448 cow_start = cur_offset;
1449 cur_offset = extent_end;
1450 if (cur_offset > end)
1456 btrfs_release_path(path);
1457 if (cow_start != (u64)-1) {
1458 ret = cow_file_range(inode, locked_page,
1459 cow_start, found_key.offset - 1,
1460 end, page_started, nr_written, 1,
1464 btrfs_dec_nocow_writers(fs_info,
1468 cow_start = (u64)-1;
1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472 u64 orig_start = found_key.offset - extent_offset;
1474 em = create_io_em(inode, cur_offset, num_bytes,
1476 disk_bytenr, /* block_start */
1477 num_bytes, /* block_len */
1478 disk_num_bytes, /* orig_block_len */
1479 ram_bytes, BTRFS_COMPRESS_NONE,
1480 BTRFS_ORDERED_PREALLOC);
1483 btrfs_dec_nocow_writers(fs_info,
1488 free_extent_map(em);
1491 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1492 type = BTRFS_ORDERED_PREALLOC;
1494 type = BTRFS_ORDERED_NOCOW;
1497 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1498 num_bytes, num_bytes, type);
1500 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1501 BUG_ON(ret); /* -ENOMEM */
1503 if (root->root_key.objectid ==
1504 BTRFS_DATA_RELOC_TREE_OBJECTID)
1506 * Error handled later, as we must prevent
1507 * extent_clear_unlock_delalloc() in error handler
1508 * from freeing metadata of created ordered extent.
1510 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1513 extent_clear_unlock_delalloc(inode, cur_offset,
1514 cur_offset + num_bytes - 1, end,
1515 locked_page, EXTENT_LOCKED |
1517 EXTENT_CLEAR_DATA_RESV,
1518 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1520 cur_offset = extent_end;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset > end)
1532 btrfs_release_path(path);
1534 if (cur_offset <= end && cow_start == (u64)-1)
1535 cow_start = cur_offset;
1537 if (cow_start != (u64)-1) {
1539 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1540 page_started, nr_written, 1, NULL);
1546 if (ret && cur_offset < end)
1547 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1548 locked_page, EXTENT_LOCKED |
1549 EXTENT_DELALLOC | EXTENT_DEFRAG |
1550 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_SET_WRITEBACK |
1553 PAGE_END_WRITEBACK);
1554 btrfs_free_path(path);
1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1561 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1562 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1566 * @defrag_bytes is a hint value, no spinlock held here,
1567 * if is not zero, it means the file is defragging.
1568 * Force cow if given extent needs to be defragged.
1570 if (BTRFS_I(inode)->defrag_bytes &&
1571 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1572 EXTENT_DEFRAG, 0, NULL))
1579 * Function to process delayed allocation (create CoW) for ranges which are
1580 * being touched for the first time.
1582 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1583 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1584 struct writeback_control *wbc)
1586 struct inode *inode = private_data;
1588 int force_cow = need_force_cow(inode, start, end);
1589 unsigned int write_flags = wbc_to_write_flags(wbc);
1591 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1592 ret = run_delalloc_nocow(inode, locked_page, start, end,
1593 page_started, 1, nr_written);
1594 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1595 ret = run_delalloc_nocow(inode, locked_page, start, end,
1596 page_started, 0, nr_written);
1597 } else if (!inode_need_compress(inode, start, end)) {
1598 ret = cow_file_range(inode, locked_page, start, end, end,
1599 page_started, nr_written, 1, NULL);
1601 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1602 &BTRFS_I(inode)->runtime_flags);
1603 ret = cow_file_range_async(inode, locked_page, start, end,
1604 page_started, nr_written,
1608 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1612 void btrfs_split_delalloc_extent(struct inode *inode,
1613 struct extent_state *orig, u64 split)
1617 /* not delalloc, ignore it */
1618 if (!(orig->state & EXTENT_DELALLOC))
1621 size = orig->end - orig->start + 1;
1622 if (size > BTRFS_MAX_EXTENT_SIZE) {
1627 * See the explanation in btrfs_merge_delalloc_extent, the same
1628 * applies here, just in reverse.
1630 new_size = orig->end - split + 1;
1631 num_extents = count_max_extents(new_size);
1632 new_size = split - orig->start;
1633 num_extents += count_max_extents(new_size);
1634 if (count_max_extents(size) >= num_extents)
1638 spin_lock(&BTRFS_I(inode)->lock);
1639 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1640 spin_unlock(&BTRFS_I(inode)->lock);
1644 * Handle merged delayed allocation extents so we can keep track of new extents
1645 * that are just merged onto old extents, such as when we are doing sequential
1646 * writes, so we can properly account for the metadata space we'll need.
1648 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1649 struct extent_state *other)
1651 u64 new_size, old_size;
1654 /* not delalloc, ignore it */
1655 if (!(other->state & EXTENT_DELALLOC))
1658 if (new->start > other->start)
1659 new_size = new->end - other->start + 1;
1661 new_size = other->end - new->start + 1;
1663 /* we're not bigger than the max, unreserve the space and go */
1664 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1665 spin_lock(&BTRFS_I(inode)->lock);
1666 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1667 spin_unlock(&BTRFS_I(inode)->lock);
1672 * We have to add up either side to figure out how many extents were
1673 * accounted for before we merged into one big extent. If the number of
1674 * extents we accounted for is <= the amount we need for the new range
1675 * then we can return, otherwise drop. Think of it like this
1679 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1680 * need 2 outstanding extents, on one side we have 1 and the other side
1681 * we have 1 so they are == and we can return. But in this case
1683 * [MAX_SIZE+4k][MAX_SIZE+4k]
1685 * Each range on their own accounts for 2 extents, but merged together
1686 * they are only 3 extents worth of accounting, so we need to drop in
1689 old_size = other->end - other->start + 1;
1690 num_extents = count_max_extents(old_size);
1691 old_size = new->end - new->start + 1;
1692 num_extents += count_max_extents(old_size);
1693 if (count_max_extents(new_size) >= num_extents)
1696 spin_lock(&BTRFS_I(inode)->lock);
1697 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1698 spin_unlock(&BTRFS_I(inode)->lock);
1701 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1702 struct inode *inode)
1704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1706 spin_lock(&root->delalloc_lock);
1707 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1708 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1709 &root->delalloc_inodes);
1710 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1711 &BTRFS_I(inode)->runtime_flags);
1712 root->nr_delalloc_inodes++;
1713 if (root->nr_delalloc_inodes == 1) {
1714 spin_lock(&fs_info->delalloc_root_lock);
1715 BUG_ON(!list_empty(&root->delalloc_root));
1716 list_add_tail(&root->delalloc_root,
1717 &fs_info->delalloc_roots);
1718 spin_unlock(&fs_info->delalloc_root_lock);
1721 spin_unlock(&root->delalloc_lock);
1725 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1726 struct btrfs_inode *inode)
1728 struct btrfs_fs_info *fs_info = root->fs_info;
1730 if (!list_empty(&inode->delalloc_inodes)) {
1731 list_del_init(&inode->delalloc_inodes);
1732 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1733 &inode->runtime_flags);
1734 root->nr_delalloc_inodes--;
1735 if (!root->nr_delalloc_inodes) {
1736 ASSERT(list_empty(&root->delalloc_inodes));
1737 spin_lock(&fs_info->delalloc_root_lock);
1738 BUG_ON(list_empty(&root->delalloc_root));
1739 list_del_init(&root->delalloc_root);
1740 spin_unlock(&fs_info->delalloc_root_lock);
1745 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1746 struct btrfs_inode *inode)
1748 spin_lock(&root->delalloc_lock);
1749 __btrfs_del_delalloc_inode(root, inode);
1750 spin_unlock(&root->delalloc_lock);
1754 * Properly track delayed allocation bytes in the inode and to maintain the
1755 * list of inodes that have pending delalloc work to be done.
1757 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1765 * set_bit and clear bit hooks normally require _irqsave/restore
1766 * but in this case, we are only testing for the DELALLOC
1767 * bit, which is only set or cleared with irqs on
1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 u64 len = state->end + 1 - state->start;
1772 u32 num_extents = count_max_extents(len);
1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1775 spin_lock(&BTRFS_I(inode)->lock);
1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1777 spin_unlock(&BTRFS_I(inode)->lock);
1779 /* For sanity tests */
1780 if (btrfs_is_testing(fs_info))
1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 fs_info->delalloc_batch);
1785 spin_lock(&BTRFS_I(inode)->lock);
1786 BTRFS_I(inode)->delalloc_bytes += len;
1787 if (*bits & EXTENT_DEFRAG)
1788 BTRFS_I(inode)->defrag_bytes += len;
1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1790 &BTRFS_I(inode)->runtime_flags))
1791 btrfs_add_delalloc_inodes(root, inode);
1792 spin_unlock(&BTRFS_I(inode)->lock);
1795 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 (*bits & EXTENT_DELALLOC_NEW)) {
1797 spin_lock(&BTRFS_I(inode)->lock);
1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1800 spin_unlock(&BTRFS_I(inode)->lock);
1805 * Once a range is no longer delalloc this function ensures that proper
1806 * accounting happens.
1808 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1809 struct extent_state *state, unsigned *bits)
1811 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1812 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1813 u64 len = state->end + 1 - state->start;
1814 u32 num_extents = count_max_extents(len);
1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 spin_lock(&inode->lock);
1818 inode->defrag_bytes -= len;
1819 spin_unlock(&inode->lock);
1823 * set_bit and clear bit hooks normally require _irqsave/restore
1824 * but in this case, we are only testing for the DELALLOC
1825 * bit, which is only set or cleared with irqs on
1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 struct btrfs_root *root = inode->root;
1829 bool do_list = !btrfs_is_free_space_inode(inode);
1831 spin_lock(&inode->lock);
1832 btrfs_mod_outstanding_extents(inode, -num_extents);
1833 spin_unlock(&inode->lock);
1836 * We don't reserve metadata space for space cache inodes so we
1837 * don't need to call dellalloc_release_metadata if there is an
1840 if (*bits & EXTENT_CLEAR_META_RESV &&
1841 root != fs_info->tree_root)
1842 btrfs_delalloc_release_metadata(inode, len, false);
1844 /* For sanity tests. */
1845 if (btrfs_is_testing(fs_info))
1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1849 do_list && !(state->state & EXTENT_NORESERVE) &&
1850 (*bits & EXTENT_CLEAR_DATA_RESV))
1851 btrfs_free_reserved_data_space_noquota(
1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1856 fs_info->delalloc_batch);
1857 spin_lock(&inode->lock);
1858 inode->delalloc_bytes -= len;
1859 if (do_list && inode->delalloc_bytes == 0 &&
1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1861 &inode->runtime_flags))
1862 btrfs_del_delalloc_inode(root, inode);
1863 spin_unlock(&inode->lock);
1866 if ((state->state & EXTENT_DELALLOC_NEW) &&
1867 (*bits & EXTENT_DELALLOC_NEW)) {
1868 spin_lock(&inode->lock);
1869 ASSERT(inode->new_delalloc_bytes >= len);
1870 inode->new_delalloc_bytes -= len;
1871 spin_unlock(&inode->lock);
1876 * Merge bio hook, this must check the chunk tree to make sure we don't create
1877 * bios that span stripes or chunks
1879 * return 1 if page cannot be merged to bio
1880 * return 0 if page can be merged to bio
1881 * return error otherwise
1883 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1884 size_t size, struct bio *bio,
1885 unsigned long bio_flags)
1887 struct inode *inode = page->mapping->host;
1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1894 if (bio_flags & EXTENT_BIO_COMPRESSED)
1897 length = bio->bi_iter.bi_size;
1898 map_length = length;
1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1903 if (map_length < length + size)
1909 * in order to insert checksums into the metadata in large chunks,
1910 * we wait until bio submission time. All the pages in the bio are
1911 * checksummed and sums are attached onto the ordered extent record.
1913 * At IO completion time the cums attached on the ordered extent record
1914 * are inserted into the btree
1916 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1919 struct inode *inode = private_data;
1920 blk_status_t ret = 0;
1922 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1923 BUG_ON(ret); /* -ENOMEM */
1928 * in order to insert checksums into the metadata in large chunks,
1929 * we wait until bio submission time. All the pages in the bio are
1930 * checksummed and sums are attached onto the ordered extent record.
1932 * At IO completion time the cums attached on the ordered extent record
1933 * are inserted into the btree
1935 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1938 struct inode *inode = private_data;
1939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1942 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1944 bio->bi_status = ret;
1951 * extent_io.c submission hook. This does the right thing for csum calculation
1952 * on write, or reading the csums from the tree before a read.
1954 * Rules about async/sync submit,
1955 * a) read: sync submit
1957 * b) write without checksum: sync submit
1959 * c) write with checksum:
1960 * c-1) if bio is issued by fsync: sync submit
1961 * (sync_writers != 0)
1963 * c-2) if root is reloc root: sync submit
1964 * (only in case of buffered IO)
1966 * c-3) otherwise: async submit
1968 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1969 int mirror_num, unsigned long bio_flags,
1972 struct inode *inode = private_data;
1973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1974 struct btrfs_root *root = BTRFS_I(inode)->root;
1975 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1976 blk_status_t ret = 0;
1978 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1980 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1982 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1983 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1985 if (bio_op(bio) != REQ_OP_WRITE) {
1986 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1990 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1991 ret = btrfs_submit_compressed_read(inode, bio,
1995 } else if (!skip_sum) {
1996 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2001 } else if (async && !skip_sum) {
2002 /* csum items have already been cloned */
2003 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2005 /* we're doing a write, do the async checksumming */
2006 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2008 btrfs_submit_bio_start);
2010 } else if (!skip_sum) {
2011 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2017 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2021 bio->bi_status = ret;
2028 * given a list of ordered sums record them in the inode. This happens
2029 * at IO completion time based on sums calculated at bio submission time.
2031 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2032 struct inode *inode, struct list_head *list)
2034 struct btrfs_ordered_sum *sum;
2037 list_for_each_entry(sum, list, list) {
2038 trans->adding_csums = true;
2039 ret = btrfs_csum_file_blocks(trans,
2040 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2041 trans->adding_csums = false;
2048 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2049 unsigned int extra_bits,
2050 struct extent_state **cached_state, int dedupe)
2052 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2053 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2054 extra_bits, cached_state);
2057 /* see btrfs_writepage_start_hook for details on why this is required */
2058 struct btrfs_writepage_fixup {
2060 struct btrfs_work work;
2063 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2065 struct btrfs_writepage_fixup *fixup;
2066 struct btrfs_ordered_extent *ordered;
2067 struct extent_state *cached_state = NULL;
2068 struct extent_changeset *data_reserved = NULL;
2070 struct inode *inode;
2075 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2079 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2080 ClearPageChecked(page);
2084 inode = page->mapping->host;
2085 page_start = page_offset(page);
2086 page_end = page_offset(page) + PAGE_SIZE - 1;
2088 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2091 /* already ordered? We're done */
2092 if (PagePrivate2(page))
2095 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2098 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2099 page_end, &cached_state);
2101 btrfs_start_ordered_extent(inode, ordered, 1);
2102 btrfs_put_ordered_extent(ordered);
2106 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2109 mapping_set_error(page->mapping, ret);
2110 end_extent_writepage(page, ret, page_start, page_end);
2111 ClearPageChecked(page);
2115 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2118 mapping_set_error(page->mapping, ret);
2119 end_extent_writepage(page, ret, page_start, page_end);
2120 ClearPageChecked(page);
2124 ClearPageChecked(page);
2125 set_page_dirty(page);
2126 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2128 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2134 extent_changeset_free(data_reserved);
2138 * There are a few paths in the higher layers of the kernel that directly
2139 * set the page dirty bit without asking the filesystem if it is a
2140 * good idea. This causes problems because we want to make sure COW
2141 * properly happens and the data=ordered rules are followed.
2143 * In our case any range that doesn't have the ORDERED bit set
2144 * hasn't been properly setup for IO. We kick off an async process
2145 * to fix it up. The async helper will wait for ordered extents, set
2146 * the delalloc bit and make it safe to write the page.
2148 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2150 struct inode *inode = page->mapping->host;
2151 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2152 struct btrfs_writepage_fixup *fixup;
2154 /* this page is properly in the ordered list */
2155 if (TestClearPagePrivate2(page))
2158 if (PageChecked(page))
2161 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2165 SetPageChecked(page);
2167 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2168 btrfs_writepage_fixup_worker, NULL, NULL);
2170 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2174 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2175 struct inode *inode, u64 file_pos,
2176 u64 disk_bytenr, u64 disk_num_bytes,
2177 u64 num_bytes, u64 ram_bytes,
2178 u8 compression, u8 encryption,
2179 u16 other_encoding, int extent_type)
2181 struct btrfs_root *root = BTRFS_I(inode)->root;
2182 struct btrfs_file_extent_item *fi;
2183 struct btrfs_path *path;
2184 struct extent_buffer *leaf;
2185 struct btrfs_key ins;
2187 int extent_inserted = 0;
2190 path = btrfs_alloc_path();
2195 * we may be replacing one extent in the tree with another.
2196 * The new extent is pinned in the extent map, and we don't want
2197 * to drop it from the cache until it is completely in the btree.
2199 * So, tell btrfs_drop_extents to leave this extent in the cache.
2200 * the caller is expected to unpin it and allow it to be merged
2203 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2204 file_pos + num_bytes, NULL, 0,
2205 1, sizeof(*fi), &extent_inserted);
2209 if (!extent_inserted) {
2210 ins.objectid = btrfs_ino(BTRFS_I(inode));
2211 ins.offset = file_pos;
2212 ins.type = BTRFS_EXTENT_DATA_KEY;
2214 path->leave_spinning = 1;
2215 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2220 leaf = path->nodes[0];
2221 fi = btrfs_item_ptr(leaf, path->slots[0],
2222 struct btrfs_file_extent_item);
2223 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2224 btrfs_set_file_extent_type(leaf, fi, extent_type);
2225 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2226 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2227 btrfs_set_file_extent_offset(leaf, fi, 0);
2228 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2229 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2230 btrfs_set_file_extent_compression(leaf, fi, compression);
2231 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2232 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2234 btrfs_mark_buffer_dirty(leaf);
2235 btrfs_release_path(path);
2237 inode_add_bytes(inode, num_bytes);
2239 ins.objectid = disk_bytenr;
2240 ins.offset = disk_num_bytes;
2241 ins.type = BTRFS_EXTENT_ITEM_KEY;
2244 * Release the reserved range from inode dirty range map, as it is
2245 * already moved into delayed_ref_head
2247 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2251 ret = btrfs_alloc_reserved_file_extent(trans, root,
2252 btrfs_ino(BTRFS_I(inode)),
2253 file_pos, qg_released, &ins);
2255 btrfs_free_path(path);
2260 /* snapshot-aware defrag */
2261 struct sa_defrag_extent_backref {
2262 struct rb_node node;
2263 struct old_sa_defrag_extent *old;
2272 struct old_sa_defrag_extent {
2273 struct list_head list;
2274 struct new_sa_defrag_extent *new;
2283 struct new_sa_defrag_extent {
2284 struct rb_root root;
2285 struct list_head head;
2286 struct btrfs_path *path;
2287 struct inode *inode;
2295 static int backref_comp(struct sa_defrag_extent_backref *b1,
2296 struct sa_defrag_extent_backref *b2)
2298 if (b1->root_id < b2->root_id)
2300 else if (b1->root_id > b2->root_id)
2303 if (b1->inum < b2->inum)
2305 else if (b1->inum > b2->inum)
2308 if (b1->file_pos < b2->file_pos)
2310 else if (b1->file_pos > b2->file_pos)
2314 * [------------------------------] ===> (a range of space)
2315 * |<--->| |<---->| =============> (fs/file tree A)
2316 * |<---------------------------->| ===> (fs/file tree B)
2318 * A range of space can refer to two file extents in one tree while
2319 * refer to only one file extent in another tree.
2321 * So we may process a disk offset more than one time(two extents in A)
2322 * and locate at the same extent(one extent in B), then insert two same
2323 * backrefs(both refer to the extent in B).
2328 static void backref_insert(struct rb_root *root,
2329 struct sa_defrag_extent_backref *backref)
2331 struct rb_node **p = &root->rb_node;
2332 struct rb_node *parent = NULL;
2333 struct sa_defrag_extent_backref *entry;
2338 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2340 ret = backref_comp(backref, entry);
2344 p = &(*p)->rb_right;
2347 rb_link_node(&backref->node, parent, p);
2348 rb_insert_color(&backref->node, root);
2352 * Note the backref might has changed, and in this case we just return 0.
2354 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2357 struct btrfs_file_extent_item *extent;
2358 struct old_sa_defrag_extent *old = ctx;
2359 struct new_sa_defrag_extent *new = old->new;
2360 struct btrfs_path *path = new->path;
2361 struct btrfs_key key;
2362 struct btrfs_root *root;
2363 struct sa_defrag_extent_backref *backref;
2364 struct extent_buffer *leaf;
2365 struct inode *inode = new->inode;
2366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2372 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2373 inum == btrfs_ino(BTRFS_I(inode)))
2376 key.objectid = root_id;
2377 key.type = BTRFS_ROOT_ITEM_KEY;
2378 key.offset = (u64)-1;
2380 root = btrfs_read_fs_root_no_name(fs_info, &key);
2382 if (PTR_ERR(root) == -ENOENT)
2385 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2386 inum, offset, root_id);
2387 return PTR_ERR(root);
2390 key.objectid = inum;
2391 key.type = BTRFS_EXTENT_DATA_KEY;
2392 if (offset > (u64)-1 << 32)
2395 key.offset = offset;
2397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2398 if (WARN_ON(ret < 0))
2405 leaf = path->nodes[0];
2406 slot = path->slots[0];
2408 if (slot >= btrfs_header_nritems(leaf)) {
2409 ret = btrfs_next_leaf(root, path);
2412 } else if (ret > 0) {
2421 btrfs_item_key_to_cpu(leaf, &key, slot);
2423 if (key.objectid > inum)
2426 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2429 extent = btrfs_item_ptr(leaf, slot,
2430 struct btrfs_file_extent_item);
2432 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2436 * 'offset' refers to the exact key.offset,
2437 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2438 * (key.offset - extent_offset).
2440 if (key.offset != offset)
2443 extent_offset = btrfs_file_extent_offset(leaf, extent);
2444 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2446 if (extent_offset >= old->extent_offset + old->offset +
2447 old->len || extent_offset + num_bytes <=
2448 old->extent_offset + old->offset)
2453 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2459 backref->root_id = root_id;
2460 backref->inum = inum;
2461 backref->file_pos = offset;
2462 backref->num_bytes = num_bytes;
2463 backref->extent_offset = extent_offset;
2464 backref->generation = btrfs_file_extent_generation(leaf, extent);
2466 backref_insert(&new->root, backref);
2469 btrfs_release_path(path);
2474 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2475 struct new_sa_defrag_extent *new)
2477 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2478 struct old_sa_defrag_extent *old, *tmp;
2483 list_for_each_entry_safe(old, tmp, &new->head, list) {
2484 ret = iterate_inodes_from_logical(old->bytenr +
2485 old->extent_offset, fs_info,
2486 path, record_one_backref,
2488 if (ret < 0 && ret != -ENOENT)
2491 /* no backref to be processed for this extent */
2493 list_del(&old->list);
2498 if (list_empty(&new->head))
2504 static int relink_is_mergable(struct extent_buffer *leaf,
2505 struct btrfs_file_extent_item *fi,
2506 struct new_sa_defrag_extent *new)
2508 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2511 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2514 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2517 if (btrfs_file_extent_encryption(leaf, fi) ||
2518 btrfs_file_extent_other_encoding(leaf, fi))
2525 * Note the backref might has changed, and in this case we just return 0.
2527 static noinline int relink_extent_backref(struct btrfs_path *path,
2528 struct sa_defrag_extent_backref *prev,
2529 struct sa_defrag_extent_backref *backref)
2531 struct btrfs_file_extent_item *extent;
2532 struct btrfs_file_extent_item *item;
2533 struct btrfs_ordered_extent *ordered;
2534 struct btrfs_trans_handle *trans;
2535 struct btrfs_root *root;
2536 struct btrfs_key key;
2537 struct extent_buffer *leaf;
2538 struct old_sa_defrag_extent *old = backref->old;
2539 struct new_sa_defrag_extent *new = old->new;
2540 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2541 struct inode *inode;
2542 struct extent_state *cached = NULL;
2551 if (prev && prev->root_id == backref->root_id &&
2552 prev->inum == backref->inum &&
2553 prev->file_pos + prev->num_bytes == backref->file_pos)
2556 /* step 1: get root */
2557 key.objectid = backref->root_id;
2558 key.type = BTRFS_ROOT_ITEM_KEY;
2559 key.offset = (u64)-1;
2561 index = srcu_read_lock(&fs_info->subvol_srcu);
2563 root = btrfs_read_fs_root_no_name(fs_info, &key);
2565 srcu_read_unlock(&fs_info->subvol_srcu, index);
2566 if (PTR_ERR(root) == -ENOENT)
2568 return PTR_ERR(root);
2571 if (btrfs_root_readonly(root)) {
2572 srcu_read_unlock(&fs_info->subvol_srcu, index);
2576 /* step 2: get inode */
2577 key.objectid = backref->inum;
2578 key.type = BTRFS_INODE_ITEM_KEY;
2581 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2582 if (IS_ERR(inode)) {
2583 srcu_read_unlock(&fs_info->subvol_srcu, index);
2587 srcu_read_unlock(&fs_info->subvol_srcu, index);
2589 /* step 3: relink backref */
2590 lock_start = backref->file_pos;
2591 lock_end = backref->file_pos + backref->num_bytes - 1;
2592 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2595 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2597 btrfs_put_ordered_extent(ordered);
2601 trans = btrfs_join_transaction(root);
2602 if (IS_ERR(trans)) {
2603 ret = PTR_ERR(trans);
2607 key.objectid = backref->inum;
2608 key.type = BTRFS_EXTENT_DATA_KEY;
2609 key.offset = backref->file_pos;
2611 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2614 } else if (ret > 0) {
2619 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2620 struct btrfs_file_extent_item);
2622 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2623 backref->generation)
2626 btrfs_release_path(path);
2628 start = backref->file_pos;
2629 if (backref->extent_offset < old->extent_offset + old->offset)
2630 start += old->extent_offset + old->offset -
2631 backref->extent_offset;
2633 len = min(backref->extent_offset + backref->num_bytes,
2634 old->extent_offset + old->offset + old->len);
2635 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2637 ret = btrfs_drop_extents(trans, root, inode, start,
2642 key.objectid = btrfs_ino(BTRFS_I(inode));
2643 key.type = BTRFS_EXTENT_DATA_KEY;
2646 path->leave_spinning = 1;
2648 struct btrfs_file_extent_item *fi;
2650 struct btrfs_key found_key;
2652 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2657 leaf = path->nodes[0];
2658 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2660 fi = btrfs_item_ptr(leaf, path->slots[0],
2661 struct btrfs_file_extent_item);
2662 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2664 if (extent_len + found_key.offset == start &&
2665 relink_is_mergable(leaf, fi, new)) {
2666 btrfs_set_file_extent_num_bytes(leaf, fi,
2668 btrfs_mark_buffer_dirty(leaf);
2669 inode_add_bytes(inode, len);
2675 btrfs_release_path(path);
2680 ret = btrfs_insert_empty_item(trans, root, path, &key,
2683 btrfs_abort_transaction(trans, ret);
2687 leaf = path->nodes[0];
2688 item = btrfs_item_ptr(leaf, path->slots[0],
2689 struct btrfs_file_extent_item);
2690 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2691 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2692 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2693 btrfs_set_file_extent_num_bytes(leaf, item, len);
2694 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2695 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2696 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2697 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2698 btrfs_set_file_extent_encryption(leaf, item, 0);
2699 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2701 btrfs_mark_buffer_dirty(leaf);
2702 inode_add_bytes(inode, len);
2703 btrfs_release_path(path);
2705 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2707 backref->root_id, backref->inum,
2708 new->file_pos); /* start - extent_offset */
2710 btrfs_abort_transaction(trans, ret);
2716 btrfs_release_path(path);
2717 path->leave_spinning = 0;
2718 btrfs_end_transaction(trans);
2720 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2726 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2728 struct old_sa_defrag_extent *old, *tmp;
2733 list_for_each_entry_safe(old, tmp, &new->head, list) {
2739 static void relink_file_extents(struct new_sa_defrag_extent *new)
2741 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2742 struct btrfs_path *path;
2743 struct sa_defrag_extent_backref *backref;
2744 struct sa_defrag_extent_backref *prev = NULL;
2745 struct rb_node *node;
2748 path = btrfs_alloc_path();
2752 if (!record_extent_backrefs(path, new)) {
2753 btrfs_free_path(path);
2756 btrfs_release_path(path);
2759 node = rb_first(&new->root);
2762 rb_erase(node, &new->root);
2764 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2766 ret = relink_extent_backref(path, prev, backref);
2779 btrfs_free_path(path);
2781 free_sa_defrag_extent(new);
2783 atomic_dec(&fs_info->defrag_running);
2784 wake_up(&fs_info->transaction_wait);
2787 static struct new_sa_defrag_extent *
2788 record_old_file_extents(struct inode *inode,
2789 struct btrfs_ordered_extent *ordered)
2791 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2792 struct btrfs_root *root = BTRFS_I(inode)->root;
2793 struct btrfs_path *path;
2794 struct btrfs_key key;
2795 struct old_sa_defrag_extent *old;
2796 struct new_sa_defrag_extent *new;
2799 new = kmalloc(sizeof(*new), GFP_NOFS);
2804 new->file_pos = ordered->file_offset;
2805 new->len = ordered->len;
2806 new->bytenr = ordered->start;
2807 new->disk_len = ordered->disk_len;
2808 new->compress_type = ordered->compress_type;
2809 new->root = RB_ROOT;
2810 INIT_LIST_HEAD(&new->head);
2812 path = btrfs_alloc_path();
2816 key.objectid = btrfs_ino(BTRFS_I(inode));
2817 key.type = BTRFS_EXTENT_DATA_KEY;
2818 key.offset = new->file_pos;
2820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2823 if (ret > 0 && path->slots[0] > 0)
2826 /* find out all the old extents for the file range */
2828 struct btrfs_file_extent_item *extent;
2829 struct extent_buffer *l;
2838 slot = path->slots[0];
2840 if (slot >= btrfs_header_nritems(l)) {
2841 ret = btrfs_next_leaf(root, path);
2849 btrfs_item_key_to_cpu(l, &key, slot);
2851 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2853 if (key.type != BTRFS_EXTENT_DATA_KEY)
2855 if (key.offset >= new->file_pos + new->len)
2858 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2860 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2861 if (key.offset + num_bytes < new->file_pos)
2864 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2868 extent_offset = btrfs_file_extent_offset(l, extent);
2870 old = kmalloc(sizeof(*old), GFP_NOFS);
2874 offset = max(new->file_pos, key.offset);
2875 end = min(new->file_pos + new->len, key.offset + num_bytes);
2877 old->bytenr = disk_bytenr;
2878 old->extent_offset = extent_offset;
2879 old->offset = offset - key.offset;
2880 old->len = end - offset;
2883 list_add_tail(&old->list, &new->head);
2889 btrfs_free_path(path);
2890 atomic_inc(&fs_info->defrag_running);
2895 btrfs_free_path(path);
2897 free_sa_defrag_extent(new);
2901 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2904 struct btrfs_block_group_cache *cache;
2906 cache = btrfs_lookup_block_group(fs_info, start);
2909 spin_lock(&cache->lock);
2910 cache->delalloc_bytes -= len;
2911 spin_unlock(&cache->lock);
2913 btrfs_put_block_group(cache);
2916 /* as ordered data IO finishes, this gets called so we can finish
2917 * an ordered extent if the range of bytes in the file it covers are
2920 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2922 struct inode *inode = ordered_extent->inode;
2923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2924 struct btrfs_root *root = BTRFS_I(inode)->root;
2925 struct btrfs_trans_handle *trans = NULL;
2926 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2927 struct extent_state *cached_state = NULL;
2928 struct new_sa_defrag_extent *new = NULL;
2929 int compress_type = 0;
2931 u64 logical_len = ordered_extent->len;
2933 bool truncated = false;
2934 bool range_locked = false;
2935 bool clear_new_delalloc_bytes = false;
2936 bool clear_reserved_extent = true;
2938 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2939 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2940 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2941 clear_new_delalloc_bytes = true;
2943 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2945 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2950 btrfs_free_io_failure_record(BTRFS_I(inode),
2951 ordered_extent->file_offset,
2952 ordered_extent->file_offset +
2953 ordered_extent->len - 1);
2955 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2957 logical_len = ordered_extent->truncated_len;
2958 /* Truncated the entire extent, don't bother adding */
2963 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2964 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2967 * For mwrite(mmap + memset to write) case, we still reserve
2968 * space for NOCOW range.
2969 * As NOCOW won't cause a new delayed ref, just free the space
2971 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2972 ordered_extent->len);
2973 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2975 trans = btrfs_join_transaction_nolock(root);
2977 trans = btrfs_join_transaction(root);
2978 if (IS_ERR(trans)) {
2979 ret = PTR_ERR(trans);
2983 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2984 ret = btrfs_update_inode_fallback(trans, root, inode);
2985 if (ret) /* -ENOMEM or corruption */
2986 btrfs_abort_transaction(trans, ret);
2990 range_locked = true;
2991 lock_extent_bits(io_tree, ordered_extent->file_offset,
2992 ordered_extent->file_offset + ordered_extent->len - 1,
2995 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2996 ordered_extent->file_offset + ordered_extent->len - 1,
2997 EXTENT_DEFRAG, 0, cached_state);
2999 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3000 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3001 /* the inode is shared */
3002 new = record_old_file_extents(inode, ordered_extent);
3004 clear_extent_bit(io_tree, ordered_extent->file_offset,
3005 ordered_extent->file_offset + ordered_extent->len - 1,
3006 EXTENT_DEFRAG, 0, 0, &cached_state);
3010 trans = btrfs_join_transaction_nolock(root);
3012 trans = btrfs_join_transaction(root);
3013 if (IS_ERR(trans)) {
3014 ret = PTR_ERR(trans);
3019 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3021 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3022 compress_type = ordered_extent->compress_type;
3023 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3024 BUG_ON(compress_type);
3025 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3026 ordered_extent->len);
3027 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3028 ordered_extent->file_offset,
3029 ordered_extent->file_offset +
3032 BUG_ON(root == fs_info->tree_root);
3033 ret = insert_reserved_file_extent(trans, inode,
3034 ordered_extent->file_offset,
3035 ordered_extent->start,
3036 ordered_extent->disk_len,
3037 logical_len, logical_len,
3038 compress_type, 0, 0,
3039 BTRFS_FILE_EXTENT_REG);
3041 clear_reserved_extent = false;
3042 btrfs_release_delalloc_bytes(fs_info,
3043 ordered_extent->start,
3044 ordered_extent->disk_len);
3047 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3048 ordered_extent->file_offset, ordered_extent->len,
3051 btrfs_abort_transaction(trans, ret);
3055 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3057 btrfs_abort_transaction(trans, ret);
3061 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3062 ret = btrfs_update_inode_fallback(trans, root, inode);
3063 if (ret) { /* -ENOMEM or corruption */
3064 btrfs_abort_transaction(trans, ret);
3069 if (range_locked || clear_new_delalloc_bytes) {
3070 unsigned int clear_bits = 0;