2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args {
66 struct btrfs_key *location;
67 struct btrfs_root *root;
70 struct btrfs_dio_data {
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
117 static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
147 ClearPagePrivate2(page);
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
154 static int btrfs_dirty_inode(struct inode *inode);
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode *inode)
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
169 err = btrfs_init_acl(trans, inode, dir);
171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
180 static int insert_inline_extent(struct btrfs_trans_handle *trans,
181 struct btrfs_path *path, int extent_inserted,
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
185 struct page **compressed_pages)
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
191 struct btrfs_file_extent_item *ei;
193 size_t cur_size = size;
194 unsigned long offset;
196 if (compressed_size && compressed_pages)
197 cur_size = compressed_size;
199 inode_add_bytes(inode, size);
201 if (!extent_inserted) {
202 struct btrfs_key key;
205 key.objectid = btrfs_ino(BTRFS_I(inode));
207 key.type = BTRFS_EXTENT_DATA_KEY;
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
226 if (compress_type != BTRFS_COMPRESS_NONE) {
229 while (compressed_size > 0) {
230 cpage = compressed_pages[i];
231 cur_size = min_t(unsigned long, compressed_size,
234 kaddr = kmap_atomic(cpage);
235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
236 kunmap_atomic(kaddr);
240 compressed_size -= cur_size;
242 btrfs_set_file_extent_compression(leaf, ei,
245 page = find_get_page(inode->i_mapping,
246 start >> PAGE_SHIFT);
247 btrfs_set_file_extent_compression(leaf, ei, 0);
248 kaddr = kmap_atomic(page);
249 offset = start & (PAGE_SIZE - 1);
250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
251 kunmap_atomic(kaddr);
254 btrfs_mark_buffer_dirty(leaf);
255 btrfs_release_path(path);
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
266 BTRFS_I(inode)->disk_i_size = inode->i_size;
267 ret = btrfs_update_inode(trans, root, inode);
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
279 static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
283 struct page **compressed_pages)
285 struct btrfs_fs_info *fs_info = root->fs_info;
286 struct btrfs_trans_handle *trans;
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
291 u64 data_len = inline_len;
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
298 data_len = compressed_size;
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
306 data_len > fs_info->max_inline) {
310 path = btrfs_alloc_path();
314 trans = btrfs_join_transaction(root);
316 btrfs_free_path(path);
317 return PTR_ERR(trans);
319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
325 extent_item_size = btrfs_file_extent_calc_inline_size(
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
332 btrfs_abort_transaction(trans, ret);
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
338 ret = insert_inline_extent(trans, path, extent_inserted,
340 inline_len, compressed_size,
341 compress_type, compressed_pages);
342 if (ret && ret != -ENOSPC) {
343 btrfs_abort_transaction(trans, ret);
345 } else if (ret == -ENOSPC) {
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
360 btrfs_free_path(path);
361 btrfs_end_transaction(trans);
365 struct async_extent {
370 unsigned long nr_pages;
372 struct list_head list;
377 struct btrfs_root *root;
378 struct page *locked_page;
381 unsigned int write_flags;
382 struct list_head extents;
383 struct btrfs_work work;
386 static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
390 unsigned long nr_pages,
393 struct async_extent *async_extent;
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
396 BUG_ON(!async_extent); /* -ENOMEM */
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
402 async_extent->compress_type = compress_type;
403 list_add_tail(&async_extent->list, &cow->extents);
407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
415 if (BTRFS_I(inode)->defrag_compress)
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
420 if (btrfs_test_opt(fs_info, COMPRESS) ||
421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
422 BTRFS_I(inode)->prop_compress)
423 return btrfs_compress_heuristic(inode, start, end);
427 static inline void inode_should_defrag(struct btrfs_inode *inode,
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
432 (start > 0 || end + 1 < inode->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
450 * are written in the same order that the flusher thread sent them
453 static noinline void compress_file_range(struct inode *inode,
454 struct page *locked_page,
456 struct async_cow *async_cow,
459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
460 struct btrfs_root *root = BTRFS_I(inode)->root;
461 u64 blocksize = fs_info->sectorsize;
463 u64 isize = i_size_read(inode);
465 struct page **pages = NULL;
466 unsigned long nr_pages;
467 unsigned long total_compressed = 0;
468 unsigned long total_in = 0;
471 int compress_type = fs_info->compress_type;
474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
477 actual_end = min_t(u64, isize, end + 1);
480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 nr_pages = min_t(unsigned long, nr_pages,
483 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
495 if (actual_end <= start)
496 goto cleanup_and_bail_uncompressed;
498 total_compressed = actual_end - start;
501 * skip compression for a small file range(<=blocksize) that
502 * isn't an inline extent, since it doesn't save disk space at all.
504 if (total_compressed <= blocksize &&
505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 goto cleanup_and_bail_uncompressed;
508 total_compressed = min_t(unsigned long, total_compressed,
509 BTRFS_MAX_UNCOMPRESSED);
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
518 if (inode_need_compress(inode, start, end)) {
520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
522 /* just bail out to the uncompressed code */
526 if (BTRFS_I(inode)->defrag_compress)
527 compress_type = BTRFS_I(inode)->defrag_compress;
528 else if (BTRFS_I(inode)->prop_compress)
529 compress_type = BTRFS_I(inode)->prop_compress;
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
540 * Note that the remaining part is redirtied, the start pointer
541 * has moved, the end is the original one.
544 extent_range_clear_dirty_for_io(inode, start, end);
548 /* Compression level is applied here and only here */
549 ret = btrfs_compress_pages(
550 compress_type | (fs_info->compress_level << 4),
551 inode->i_mapping, start,
558 unsigned long offset = total_compressed &
560 struct page *page = pages[nr_pages - 1];
563 /* zero the tail end of the last page, we might be
564 * sending it down to disk
567 kaddr = kmap_atomic(page);
568 memset(kaddr + offset, 0,
570 kunmap_atomic(kaddr);
577 /* lets try to make an inline extent */
578 if (ret || total_in < actual_end) {
579 /* we didn't compress the entire range, try
580 * to make an uncompressed inline extent.
582 ret = cow_file_range_inline(root, inode, start, end,
583 0, BTRFS_COMPRESS_NONE, NULL);
585 /* try making a compressed inline extent */
586 ret = cow_file_range_inline(root, inode, start, end,
588 compress_type, pages);
591 unsigned long clear_flags = EXTENT_DELALLOC |
592 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
593 EXTENT_DO_ACCOUNTING;
594 unsigned long page_error_op;
596 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
599 * inline extent creation worked or returned error,
600 * we don't need to create any more async work items.
601 * Unlock and free up our temp pages.
603 * We use DO_ACCOUNTING here because we need the
604 * delalloc_release_metadata to be done _after_ we drop
605 * our outstanding extent for clearing delalloc for this
608 extent_clear_unlock_delalloc(inode, start, end, end,
621 * we aren't doing an inline extent round the compressed size
622 * up to a block size boundary so the allocator does sane
625 total_compressed = ALIGN(total_compressed, blocksize);
628 * one last check to make sure the compression is really a
629 * win, compare the page count read with the blocks on disk,
630 * compression must free at least one sector size
632 total_in = ALIGN(total_in, PAGE_SIZE);
633 if (total_compressed + blocksize <= total_in) {
637 * The async work queues will take care of doing actual
638 * allocation on disk for these compressed pages, and
639 * will submit them to the elevator.
641 add_async_extent(async_cow, start, total_in,
642 total_compressed, pages, nr_pages,
645 if (start + total_in < end) {
656 * the compression code ran but failed to make things smaller,
657 * free any pages it allocated and our page pointer array
659 for (i = 0; i < nr_pages; i++) {
660 WARN_ON(pages[i]->mapping);
665 total_compressed = 0;
668 /* flag the file so we don't compress in the future */
669 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
670 !(BTRFS_I(inode)->prop_compress)) {
671 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
674 cleanup_and_bail_uncompressed:
676 * No compression, but we still need to write the pages in the file
677 * we've been given so far. redirty the locked page if it corresponds
678 * to our extent and set things up for the async work queue to run
679 * cow_file_range to do the normal delalloc dance.
681 if (page_offset(locked_page) >= start &&
682 page_offset(locked_page) <= end)
683 __set_page_dirty_nobuffers(locked_page);
684 /* unlocked later on in the async handlers */
687 extent_range_redirty_for_io(inode, start, end);
688 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
689 BTRFS_COMPRESS_NONE);
695 for (i = 0; i < nr_pages; i++) {
696 WARN_ON(pages[i]->mapping);
702 static void free_async_extent_pages(struct async_extent *async_extent)
706 if (!async_extent->pages)
709 for (i = 0; i < async_extent->nr_pages; i++) {
710 WARN_ON(async_extent->pages[i]->mapping);
711 put_page(async_extent->pages[i]);
713 kfree(async_extent->pages);
714 async_extent->nr_pages = 0;
715 async_extent->pages = NULL;
719 * phase two of compressed writeback. This is the ordered portion
720 * of the code, which only gets called in the order the work was
721 * queued. We walk all the async extents created by compress_file_range
722 * and send them down to the disk.
724 static noinline void submit_compressed_extents(struct inode *inode,
725 struct async_cow *async_cow)
727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
728 struct async_extent *async_extent;
730 struct btrfs_key ins;
731 struct extent_map *em;
732 struct btrfs_root *root = BTRFS_I(inode)->root;
733 struct extent_io_tree *io_tree;
737 while (!list_empty(&async_cow->extents)) {
738 async_extent = list_entry(async_cow->extents.next,
739 struct async_extent, list);
740 list_del(&async_extent->list);
742 io_tree = &BTRFS_I(inode)->io_tree;
745 /* did the compression code fall back to uncompressed IO? */
746 if (!async_extent->pages) {
747 int page_started = 0;
748 unsigned long nr_written = 0;
750 lock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
754 /* allocate blocks */
755 ret = cow_file_range(inode, async_cow->locked_page,
757 async_extent->start +
758 async_extent->ram_size - 1,
759 async_extent->start +
760 async_extent->ram_size - 1,
761 &page_started, &nr_written, 0,
767 * if page_started, cow_file_range inserted an
768 * inline extent and took care of all the unlocking
769 * and IO for us. Otherwise, we need to submit
770 * all those pages down to the drive.
772 if (!page_started && !ret)
773 extent_write_locked_range(io_tree,
774 inode, async_extent->start,
775 async_extent->start +
776 async_extent->ram_size - 1,
779 unlock_page(async_cow->locked_page);
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
788 ret = btrfs_reserve_extent(root, async_extent->ram_size,
789 async_extent->compressed_size,
790 async_extent->compressed_size,
791 0, alloc_hint, &ins, 1, 1);
793 free_async_extent_pages(async_extent);
795 if (ret == -ENOSPC) {
796 unlock_extent(io_tree, async_extent->start,
797 async_extent->start +
798 async_extent->ram_size - 1);
801 * we need to redirty the pages if we decide to
802 * fallback to uncompressed IO, otherwise we
803 * will not submit these pages down to lower
806 extent_range_redirty_for_io(inode,
808 async_extent->start +
809 async_extent->ram_size - 1);
816 * here we're doing allocation and writeback of the
819 em = create_io_em(inode, async_extent->start,
820 async_extent->ram_size, /* len */
821 async_extent->start, /* orig_start */
822 ins.objectid, /* block_start */
823 ins.offset, /* block_len */
824 ins.offset, /* orig_block_len */
825 async_extent->ram_size, /* ram_bytes */
826 async_extent->compress_type,
827 BTRFS_ORDERED_COMPRESSED);
829 /* ret value is not necessary due to void function */
830 goto out_free_reserve;
833 ret = btrfs_add_ordered_extent_compress(inode,
836 async_extent->ram_size,
838 BTRFS_ORDERED_COMPRESSED,
839 async_extent->compress_type);
841 btrfs_drop_extent_cache(BTRFS_I(inode),
843 async_extent->start +
844 async_extent->ram_size - 1, 0);
845 goto out_free_reserve;
847 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
850 * clear dirty, set writeback and unlock the pages.
852 extent_clear_unlock_delalloc(inode, async_extent->start,
853 async_extent->start +
854 async_extent->ram_size - 1,
855 async_extent->start +
856 async_extent->ram_size - 1,
857 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
860 if (btrfs_submit_compressed_write(inode,
862 async_extent->ram_size,
864 ins.offset, async_extent->pages,
865 async_extent->nr_pages,
866 async_cow->write_flags)) {
867 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
868 struct page *p = async_extent->pages[0];
869 const u64 start = async_extent->start;
870 const u64 end = start + async_extent->ram_size - 1;
872 p->mapping = inode->i_mapping;
873 tree->ops->writepage_end_io_hook(p, start, end,
876 extent_clear_unlock_delalloc(inode, start, end, end,
880 free_async_extent_pages(async_extent);
882 alloc_hint = ins.objectid + ins.offset;
888 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
889 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
891 extent_clear_unlock_delalloc(inode, async_extent->start,
892 async_extent->start +
893 async_extent->ram_size - 1,
894 async_extent->start +
895 async_extent->ram_size - 1,
896 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
897 EXTENT_DELALLOC_NEW |
898 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
899 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
900 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
902 free_async_extent_pages(async_extent);
907 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
910 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
911 struct extent_map *em;
914 read_lock(&em_tree->lock);
915 em = search_extent_mapping(em_tree, start, num_bytes);
918 * if block start isn't an actual block number then find the
919 * first block in this inode and use that as a hint. If that
920 * block is also bogus then just don't worry about it.
922 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
924 em = search_extent_mapping(em_tree, 0, 0);
925 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
926 alloc_hint = em->block_start;
930 alloc_hint = em->block_start;
934 read_unlock(&em_tree->lock);
940 * when extent_io.c finds a delayed allocation range in the file,
941 * the call backs end up in this code. The basic idea is to
942 * allocate extents on disk for the range, and create ordered data structs
943 * in ram to track those extents.
945 * locked_page is the page that writepage had locked already. We use
946 * it to make sure we don't do extra locks or unlocks.
948 * *page_started is set to one if we unlock locked_page and do everything
949 * required to start IO on it. It may be clean and already done with
952 static noinline int cow_file_range(struct inode *inode,
953 struct page *locked_page,
954 u64 start, u64 end, u64 delalloc_end,
955 int *page_started, unsigned long *nr_written,
956 int unlock, struct btrfs_dedupe_hash *hash)
958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
959 struct btrfs_root *root = BTRFS_I(inode)->root;
962 unsigned long ram_size;
964 u64 cur_alloc_size = 0;
965 u64 blocksize = fs_info->sectorsize;
966 struct btrfs_key ins;
967 struct extent_map *em;
969 unsigned long page_ops;
970 bool extent_reserved = false;
973 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
979 num_bytes = ALIGN(end - start + 1, blocksize);
980 num_bytes = max(blocksize, num_bytes);
981 disk_num_bytes = num_bytes;
983 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
986 /* lets try to make an inline extent */
987 ret = cow_file_range_inline(root, inode, start, end, 0,
988 BTRFS_COMPRESS_NONE, NULL);
991 * We use DO_ACCOUNTING here because we need the
992 * delalloc_release_metadata to be run _after_ we drop
993 * our outstanding extent for clearing delalloc for this
996 extent_clear_unlock_delalloc(inode, start, end,
998 EXTENT_LOCKED | EXTENT_DELALLOC |
999 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1000 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1001 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1002 PAGE_END_WRITEBACK);
1003 *nr_written = *nr_written +
1004 (end - start + PAGE_SIZE) / PAGE_SIZE;
1007 } else if (ret < 0) {
1012 BUG_ON(disk_num_bytes >
1013 btrfs_super_total_bytes(fs_info->super_copy));
1015 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1016 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1017 start + num_bytes - 1, 0);
1019 while (disk_num_bytes > 0) {
1020 cur_alloc_size = disk_num_bytes;
1021 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1022 fs_info->sectorsize, 0, alloc_hint,
1026 cur_alloc_size = ins.offset;
1027 extent_reserved = true;
1029 ram_size = ins.offset;
1030 em = create_io_em(inode, start, ins.offset, /* len */
1031 start, /* orig_start */
1032 ins.objectid, /* block_start */
1033 ins.offset, /* block_len */
1034 ins.offset, /* orig_block_len */
1035 ram_size, /* ram_bytes */
1036 BTRFS_COMPRESS_NONE, /* compress_type */
1037 BTRFS_ORDERED_REGULAR /* type */);
1040 free_extent_map(em);
1042 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1043 ram_size, cur_alloc_size, 0);
1045 goto out_drop_extent_cache;
1047 if (root->root_key.objectid ==
1048 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1049 ret = btrfs_reloc_clone_csums(inode, start,
1052 * Only drop cache here, and process as normal.
1054 * We must not allow extent_clear_unlock_delalloc()
1055 * at out_unlock label to free meta of this ordered
1056 * extent, as its meta should be freed by
1057 * btrfs_finish_ordered_io().
1059 * So we must continue until @start is increased to
1060 * skip current ordered extent.
1063 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1064 start + ram_size - 1, 0);
1067 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1069 /* we're not doing compressed IO, don't unlock the first
1070 * page (which the caller expects to stay locked), don't
1071 * clear any dirty bits and don't set any writeback bits
1073 * Do set the Private2 bit so we know this page was properly
1074 * setup for writepage
1076 page_ops = unlock ? PAGE_UNLOCK : 0;
1077 page_ops |= PAGE_SET_PRIVATE2;
1079 extent_clear_unlock_delalloc(inode, start,
1080 start + ram_size - 1,
1081 delalloc_end, locked_page,
1082 EXTENT_LOCKED | EXTENT_DELALLOC,
1084 if (disk_num_bytes < cur_alloc_size)
1087 disk_num_bytes -= cur_alloc_size;
1088 num_bytes -= cur_alloc_size;
1089 alloc_hint = ins.objectid + ins.offset;
1090 start += cur_alloc_size;
1091 extent_reserved = false;
1094 * btrfs_reloc_clone_csums() error, since start is increased
1095 * extent_clear_unlock_delalloc() at out_unlock label won't
1096 * free metadata of current ordered extent, we're OK to exit.
1104 out_drop_extent_cache:
1105 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1107 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1108 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1110 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1111 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1112 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1115 * If we reserved an extent for our delalloc range (or a subrange) and
1116 * failed to create the respective ordered extent, then it means that
1117 * when we reserved the extent we decremented the extent's size from
1118 * the data space_info's bytes_may_use counter and incremented the
1119 * space_info's bytes_reserved counter by the same amount. We must make
1120 * sure extent_clear_unlock_delalloc() does not try to decrement again
1121 * the data space_info's bytes_may_use counter, therefore we do not pass
1122 * it the flag EXTENT_CLEAR_DATA_RESV.
1124 if (extent_reserved) {
1125 extent_clear_unlock_delalloc(inode, start,
1126 start + cur_alloc_size,
1127 start + cur_alloc_size,
1131 start += cur_alloc_size;
1135 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1137 clear_bits | EXTENT_CLEAR_DATA_RESV,
1143 * work queue call back to started compression on a file and pages
1145 static noinline void async_cow_start(struct btrfs_work *work)
1147 struct async_cow *async_cow;
1149 async_cow = container_of(work, struct async_cow, work);
1151 compress_file_range(async_cow->inode, async_cow->locked_page,
1152 async_cow->start, async_cow->end, async_cow,
1154 if (num_added == 0) {
1155 btrfs_add_delayed_iput(async_cow->inode);
1156 async_cow->inode = NULL;
1161 * work queue call back to submit previously compressed pages
1163 static noinline void async_cow_submit(struct btrfs_work *work)
1165 struct btrfs_fs_info *fs_info;
1166 struct async_cow *async_cow;
1167 struct btrfs_root *root;
1168 unsigned long nr_pages;
1170 async_cow = container_of(work, struct async_cow, work);
1172 root = async_cow->root;
1173 fs_info = root->fs_info;
1174 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1178 * atomic_sub_return implies a barrier for waitqueue_active
1180 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1182 waitqueue_active(&fs_info->async_submit_wait))
1183 wake_up(&fs_info->async_submit_wait);
1185 if (async_cow->inode)
1186 submit_compressed_extents(async_cow->inode, async_cow);
1189 static noinline void async_cow_free(struct btrfs_work *work)
1191 struct async_cow *async_cow;
1192 async_cow = container_of(work, struct async_cow, work);
1193 if (async_cow->inode)
1194 btrfs_add_delayed_iput(async_cow->inode);
1198 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1199 u64 start, u64 end, int *page_started,
1200 unsigned long *nr_written,
1201 unsigned int write_flags)
1203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1204 struct async_cow *async_cow;
1205 struct btrfs_root *root = BTRFS_I(inode)->root;
1206 unsigned long nr_pages;
1209 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1211 while (start < end) {
1212 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1213 BUG_ON(!async_cow); /* -ENOMEM */
1214 async_cow->inode = igrab(inode);
1215 async_cow->root = root;
1216 async_cow->locked_page = locked_page;
1217 async_cow->start = start;
1218 async_cow->write_flags = write_flags;
1220 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1221 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1224 cur_end = min(end, start + SZ_512K - 1);
1226 async_cow->end = cur_end;
1227 INIT_LIST_HEAD(&async_cow->extents);
1229 btrfs_init_work(&async_cow->work,
1230 btrfs_delalloc_helper,
1231 async_cow_start, async_cow_submit,
1234 nr_pages = (cur_end - start + PAGE_SIZE) >>
1236 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1238 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1240 *nr_written += nr_pages;
1241 start = cur_end + 1;
1247 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1248 u64 bytenr, u64 num_bytes)
1251 struct btrfs_ordered_sum *sums;
1254 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1255 bytenr + num_bytes - 1, &list, 0);
1256 if (ret == 0 && list_empty(&list))
1259 while (!list_empty(&list)) {
1260 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1261 list_del(&sums->list);
1268 * when nowcow writeback call back. This checks for snapshots or COW copies
1269 * of the extents that exist in the file, and COWs the file as required.
1271 * If no cow copies or snapshots exist, we write directly to the existing
1274 static noinline int run_delalloc_nocow(struct inode *inode,
1275 struct page *locked_page,
1276 u64 start, u64 end, int *page_started, int force,
1277 unsigned long *nr_written)
1279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1280 struct btrfs_root *root = BTRFS_I(inode)->root;
1281 struct extent_buffer *leaf;
1282 struct btrfs_path *path;
1283 struct btrfs_file_extent_item *fi;
1284 struct btrfs_key found_key;
1285 struct extent_map *em;
1300 u64 ino = btrfs_ino(BTRFS_I(inode));
1302 path = btrfs_alloc_path();
1304 extent_clear_unlock_delalloc(inode, start, end, end,
1306 EXTENT_LOCKED | EXTENT_DELALLOC |
1307 EXTENT_DO_ACCOUNTING |
1308 EXTENT_DEFRAG, PAGE_UNLOCK |
1310 PAGE_SET_WRITEBACK |
1311 PAGE_END_WRITEBACK);
1315 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1317 cow_start = (u64)-1;
1320 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1324 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1325 leaf = path->nodes[0];
1326 btrfs_item_key_to_cpu(leaf, &found_key,
1327 path->slots[0] - 1);
1328 if (found_key.objectid == ino &&
1329 found_key.type == BTRFS_EXTENT_DATA_KEY)
1334 leaf = path->nodes[0];
1335 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1336 ret = btrfs_next_leaf(root, path);
1341 leaf = path->nodes[0];
1347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1349 if (found_key.objectid > ino)
1351 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1352 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1356 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1357 found_key.offset > end)
1360 if (found_key.offset > cur_offset) {
1361 extent_end = found_key.offset;
1366 fi = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_file_extent_item);
1368 extent_type = btrfs_file_extent_type(leaf, fi);
1370 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1371 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1372 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1373 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1374 extent_offset = btrfs_file_extent_offset(leaf, fi);
1375 extent_end = found_key.offset +
1376 btrfs_file_extent_num_bytes(leaf, fi);
1378 btrfs_file_extent_disk_num_bytes(leaf, fi);
1379 if (extent_end <= start) {
1383 if (disk_bytenr == 0)
1385 if (btrfs_file_extent_compression(leaf, fi) ||
1386 btrfs_file_extent_encryption(leaf, fi) ||
1387 btrfs_file_extent_other_encoding(leaf, fi))
1389 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1391 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1393 if (btrfs_cross_ref_exist(root, ino,
1395 extent_offset, disk_bytenr))
1397 disk_bytenr += extent_offset;
1398 disk_bytenr += cur_offset - found_key.offset;
1399 num_bytes = min(end + 1, extent_end) - cur_offset;
1401 * if there are pending snapshots for this root,
1402 * we fall into common COW way.
1405 err = btrfs_start_write_no_snapshotting(root);
1410 * force cow if csum exists in the range.
1411 * this ensure that csum for a given extent are
1412 * either valid or do not exist.
1414 if (csum_exist_in_range(fs_info, disk_bytenr,
1417 btrfs_end_write_no_snapshotting(root);
1420 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1422 btrfs_end_write_no_snapshotting(root);
1426 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1427 extent_end = found_key.offset +
1428 btrfs_file_extent_inline_len(leaf,
1429 path->slots[0], fi);
1430 extent_end = ALIGN(extent_end,
1431 fs_info->sectorsize);
1436 if (extent_end <= start) {
1438 if (!nolock && nocow)
1439 btrfs_end_write_no_snapshotting(root);
1441 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1445 if (cow_start == (u64)-1)
1446 cow_start = cur_offset;
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1454 btrfs_release_path(path);
1455 if (cow_start != (u64)-1) {
1456 ret = cow_file_range(inode, locked_page,
1457 cow_start, found_key.offset - 1,
1458 end, page_started, nr_written, 1,
1461 if (!nolock && nocow)
1462 btrfs_end_write_no_snapshotting(root);
1464 btrfs_dec_nocow_writers(fs_info,
1468 cow_start = (u64)-1;
1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472 u64 orig_start = found_key.offset - extent_offset;
1474 em = create_io_em(inode, cur_offset, num_bytes,
1476 disk_bytenr, /* block_start */
1477 num_bytes, /* block_len */
1478 disk_num_bytes, /* orig_block_len */
1479 ram_bytes, BTRFS_COMPRESS_NONE,
1480 BTRFS_ORDERED_PREALLOC);
1482 if (!nolock && nocow)
1483 btrfs_end_write_no_snapshotting(root);
1485 btrfs_dec_nocow_writers(fs_info,
1490 free_extent_map(em);
1493 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1494 type = BTRFS_ORDERED_PREALLOC;
1496 type = BTRFS_ORDERED_NOCOW;
1499 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1500 num_bytes, num_bytes, type);
1502 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1503 BUG_ON(ret); /* -ENOMEM */
1505 if (root->root_key.objectid ==
1506 BTRFS_DATA_RELOC_TREE_OBJECTID)
1508 * Error handled later, as we must prevent
1509 * extent_clear_unlock_delalloc() in error handler
1510 * from freeing metadata of created ordered extent.
1512 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1515 extent_clear_unlock_delalloc(inode, cur_offset,
1516 cur_offset + num_bytes - 1, end,
1517 locked_page, EXTENT_LOCKED |
1519 EXTENT_CLEAR_DATA_RESV,
1520 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1522 if (!nolock && nocow)
1523 btrfs_end_write_no_snapshotting(root);
1524 cur_offset = extent_end;
1527 * btrfs_reloc_clone_csums() error, now we're OK to call error
1528 * handler, as metadata for created ordered extent will only
1529 * be freed by btrfs_finish_ordered_io().
1533 if (cur_offset > end)
1536 btrfs_release_path(path);
1538 if (cur_offset <= end && cow_start == (u64)-1) {
1539 cow_start = cur_offset;
1543 if (cow_start != (u64)-1) {
1544 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1545 page_started, nr_written, 1, NULL);
1551 if (ret && cur_offset < end)
1552 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1553 locked_page, EXTENT_LOCKED |
1554 EXTENT_DELALLOC | EXTENT_DEFRAG |
1555 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1557 PAGE_SET_WRITEBACK |
1558 PAGE_END_WRITEBACK);
1559 btrfs_free_path(path);
1563 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1566 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1567 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1571 * @defrag_bytes is a hint value, no spinlock held here,
1572 * if is not zero, it means the file is defragging.
1573 * Force cow if given extent needs to be defragged.
1575 if (BTRFS_I(inode)->defrag_bytes &&
1576 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1577 EXTENT_DEFRAG, 0, NULL))
1584 * extent_io.c call back to do delayed allocation processing
1586 static int run_delalloc_range(void *private_data, struct page *locked_page,
1587 u64 start, u64 end, int *page_started,
1588 unsigned long *nr_written,
1589 struct writeback_control *wbc)
1591 struct inode *inode = private_data;
1593 int force_cow = need_force_cow(inode, start, end);
1594 unsigned int write_flags = wbc_to_write_flags(wbc);
1596 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1597 ret = run_delalloc_nocow(inode, locked_page, start, end,
1598 page_started, 1, nr_written);
1599 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1600 ret = run_delalloc_nocow(inode, locked_page, start, end,
1601 page_started, 0, nr_written);
1602 } else if (!inode_need_compress(inode, start, end)) {
1603 ret = cow_file_range(inode, locked_page, start, end, end,
1604 page_started, nr_written, 1, NULL);
1606 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1607 &BTRFS_I(inode)->runtime_flags);
1608 ret = cow_file_range_async(inode, locked_page, start, end,
1609 page_started, nr_written,
1613 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1617 static void btrfs_split_extent_hook(void *private_data,
1618 struct extent_state *orig, u64 split)
1620 struct inode *inode = private_data;
1623 /* not delalloc, ignore it */
1624 if (!(orig->state & EXTENT_DELALLOC))
1627 size = orig->end - orig->start + 1;
1628 if (size > BTRFS_MAX_EXTENT_SIZE) {
1633 * See the explanation in btrfs_merge_extent_hook, the same
1634 * applies here, just in reverse.
1636 new_size = orig->end - split + 1;
1637 num_extents = count_max_extents(new_size);
1638 new_size = split - orig->start;
1639 num_extents += count_max_extents(new_size);
1640 if (count_max_extents(size) >= num_extents)
1644 spin_lock(&BTRFS_I(inode)->lock);
1645 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1646 spin_unlock(&BTRFS_I(inode)->lock);
1650 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1651 * extents so we can keep track of new extents that are just merged onto old
1652 * extents, such as when we are doing sequential writes, so we can properly
1653 * account for the metadata space we'll need.
1655 static void btrfs_merge_extent_hook(void *private_data,
1656 struct extent_state *new,
1657 struct extent_state *other)
1659 struct inode *inode = private_data;
1660 u64 new_size, old_size;
1663 /* not delalloc, ignore it */
1664 if (!(other->state & EXTENT_DELALLOC))
1667 if (new->start > other->start)
1668 new_size = new->end - other->start + 1;
1670 new_size = other->end - new->start + 1;
1672 /* we're not bigger than the max, unreserve the space and go */
1673 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1674 spin_lock(&BTRFS_I(inode)->lock);
1675 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1676 spin_unlock(&BTRFS_I(inode)->lock);
1681 * We have to add up either side to figure out how many extents were
1682 * accounted for before we merged into one big extent. If the number of
1683 * extents we accounted for is <= the amount we need for the new range
1684 * then we can return, otherwise drop. Think of it like this
1688 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1689 * need 2 outstanding extents, on one side we have 1 and the other side
1690 * we have 1 so they are == and we can return. But in this case
1692 * [MAX_SIZE+4k][MAX_SIZE+4k]
1694 * Each range on their own accounts for 2 extents, but merged together
1695 * they are only 3 extents worth of accounting, so we need to drop in
1698 old_size = other->end - other->start + 1;
1699 num_extents = count_max_extents(old_size);
1700 old_size = new->end - new->start + 1;
1701 num_extents += count_max_extents(old_size);
1702 if (count_max_extents(new_size) >= num_extents)
1705 spin_lock(&BTRFS_I(inode)->lock);
1706 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1707 spin_unlock(&BTRFS_I(inode)->lock);
1710 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1711 struct inode *inode)
1713 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1715 spin_lock(&root->delalloc_lock);
1716 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1717 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1718 &root->delalloc_inodes);
1719 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1720 &BTRFS_I(inode)->runtime_flags);
1721 root->nr_delalloc_inodes++;
1722 if (root->nr_delalloc_inodes == 1) {
1723 spin_lock(&fs_info->delalloc_root_lock);
1724 BUG_ON(!list_empty(&root->delalloc_root));
1725 list_add_tail(&root->delalloc_root,
1726 &fs_info->delalloc_roots);
1727 spin_unlock(&fs_info->delalloc_root_lock);
1730 spin_unlock(&root->delalloc_lock);
1733 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1734 struct btrfs_inode *inode)
1736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1738 spin_lock(&root->delalloc_lock);
1739 if (!list_empty(&inode->delalloc_inodes)) {
1740 list_del_init(&inode->delalloc_inodes);
1741 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1742 &inode->runtime_flags);
1743 root->nr_delalloc_inodes--;
1744 if (!root->nr_delalloc_inodes) {
1745 spin_lock(&fs_info->delalloc_root_lock);
1746 BUG_ON(list_empty(&root->delalloc_root));
1747 list_del_init(&root->delalloc_root);
1748 spin_unlock(&fs_info->delalloc_root_lock);
1751 spin_unlock(&root->delalloc_lock);
1755 * extent_io.c set_bit_hook, used to track delayed allocation
1756 * bytes in this file, and to maintain the list of inodes that
1757 * have pending delalloc work to be done.
1759 static void btrfs_set_bit_hook(void *private_data,
1760 struct extent_state *state, unsigned *bits)
1762 struct inode *inode = private_data;
1764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1766 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1769 * set_bit and clear bit hooks normally require _irqsave/restore
1770 * but in this case, we are only testing for the DELALLOC
1771 * bit, which is only set or cleared with irqs on
1773 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1774 struct btrfs_root *root = BTRFS_I(inode)->root;
1775 u64 len = state->end + 1 - state->start;
1776 u32 num_extents = count_max_extents(len);
1777 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1779 spin_lock(&BTRFS_I(inode)->lock);
1780 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1781 spin_unlock(&BTRFS_I(inode)->lock);
1783 /* For sanity tests */
1784 if (btrfs_is_testing(fs_info))
1787 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1788 fs_info->delalloc_batch);
1789 spin_lock(&BTRFS_I(inode)->lock);
1790 BTRFS_I(inode)->delalloc_bytes += len;
1791 if (*bits & EXTENT_DEFRAG)
1792 BTRFS_I(inode)->defrag_bytes += len;
1793 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1794 &BTRFS_I(inode)->runtime_flags))
1795 btrfs_add_delalloc_inodes(root, inode);
1796 spin_unlock(&BTRFS_I(inode)->lock);
1799 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1800 (*bits & EXTENT_DELALLOC_NEW)) {
1801 spin_lock(&BTRFS_I(inode)->lock);
1802 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1804 spin_unlock(&BTRFS_I(inode)->lock);
1809 * extent_io.c clear_bit_hook, see set_bit_hook for why
1811 static void btrfs_clear_bit_hook(void *private_data,
1812 struct extent_state *state,
1815 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1816 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1817 u64 len = state->end + 1 - state->start;
1818 u32 num_extents = count_max_extents(len);
1820 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1821 spin_lock(&inode->lock);
1822 inode->defrag_bytes -= len;
1823 spin_unlock(&inode->lock);
1827 * set_bit and clear bit hooks normally require _irqsave/restore
1828 * but in this case, we are only testing for the DELALLOC
1829 * bit, which is only set or cleared with irqs on
1831 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1832 struct btrfs_root *root = inode->root;
1833 bool do_list = !btrfs_is_free_space_inode(inode);
1835 spin_lock(&inode->lock);
1836 btrfs_mod_outstanding_extents(inode, -num_extents);
1837 spin_unlock(&inode->lock);
1840 * We don't reserve metadata space for space cache inodes so we
1841 * don't need to call dellalloc_release_metadata if there is an
1844 if (*bits & EXTENT_CLEAR_META_RESV &&
1845 root != fs_info->tree_root)
1846 btrfs_delalloc_release_metadata(inode, len);
1848 /* For sanity tests. */
1849 if (btrfs_is_testing(fs_info))
1852 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1853 do_list && !(state->state & EXTENT_NORESERVE) &&
1854 (*bits & EXTENT_CLEAR_DATA_RESV))
1855 btrfs_free_reserved_data_space_noquota(
1859 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1860 fs_info->delalloc_batch);
1861 spin_lock(&inode->lock);
1862 inode->delalloc_bytes -= len;
1863 if (do_list && inode->delalloc_bytes == 0 &&
1864 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1865 &inode->runtime_flags))
1866 btrfs_del_delalloc_inode(root, inode);
1867 spin_unlock(&inode->lock);
1870 if ((state->state & EXTENT_DELALLOC_NEW) &&
1871 (*bits & EXTENT_DELALLOC_NEW)) {
1872 spin_lock(&inode->lock);
1873 ASSERT(inode->new_delalloc_bytes >= len);
1874 inode->new_delalloc_bytes -= len;
1875 spin_unlock(&inode->lock);
1880 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1881 * we don't create bios that span stripes or chunks
1883 * return 1 if page cannot be merged to bio
1884 * return 0 if page can be merged to bio
1885 * return error otherwise
1887 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1888 size_t size, struct bio *bio,
1889 unsigned long bio_flags)
1891 struct inode *inode = page->mapping->host;
1892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1893 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1898 if (bio_flags & EXTENT_BIO_COMPRESSED)
1901 length = bio->bi_iter.bi_size;
1902 map_length = length;
1903 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1907 if (map_length < length + size)
1913 * in order to insert checksums into the metadata in large chunks,
1914 * we wait until bio submission time. All the pages in the bio are
1915 * checksummed and sums are attached onto the ordered extent record.
1917 * At IO completion time the cums attached on the ordered extent record
1918 * are inserted into the btree
1920 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1921 int mirror_num, unsigned long bio_flags,
1924 struct inode *inode = private_data;
1925 blk_status_t ret = 0;
1927 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1928 BUG_ON(ret); /* -ENOMEM */
1933 * in order to insert checksums into the metadata in large chunks,
1934 * we wait until bio submission time. All the pages in the bio are
1935 * checksummed and sums are attached onto the ordered extent record.
1937 * At IO completion time the cums attached on the ordered extent record
1938 * are inserted into the btree
1940 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1941 int mirror_num, unsigned long bio_flags,
1944 struct inode *inode = private_data;
1945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1950 bio->bi_status = ret;
1957 * extent_io.c submission hook. This does the right thing for csum calculation
1958 * on write, or reading the csums from the tree before a read.
1960 * Rules about async/sync submit,
1961 * a) read: sync submit
1963 * b) write without checksum: sync submit
1965 * c) write with checksum:
1966 * c-1) if bio is issued by fsync: sync submit
1967 * (sync_writers != 0)
1969 * c-2) if root is reloc root: sync submit
1970 * (only in case of buffered IO)
1972 * c-3) otherwise: async submit
1974 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1975 int mirror_num, unsigned long bio_flags,
1978 struct inode *inode = private_data;
1979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1980 struct btrfs_root *root = BTRFS_I(inode)->root;
1981 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1982 blk_status_t ret = 0;
1984 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1986 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1988 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1989 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1991 if (bio_op(bio) != REQ_OP_WRITE) {
1992 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1996 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1997 ret = btrfs_submit_compressed_read(inode, bio,
2001 } else if (!skip_sum) {
2002 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2007 } else if (async && !skip_sum) {
2008 /* csum items have already been cloned */
2009 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2011 /* we're doing a write, do the async checksumming */
2012 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2014 __btrfs_submit_bio_start,
2015 __btrfs_submit_bio_done);
2017 } else if (!skip_sum) {
2018 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2024 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2028 bio->bi_status = ret;
2035 * given a list of ordered sums record them in the inode. This happens
2036 * at IO completion time based on sums calculated at bio submission time.
2038 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2039 struct inode *inode, struct list_head *list)
2041 struct btrfs_ordered_sum *sum;
2043 list_for_each_entry(sum, list, list) {
2044 trans->adding_csums = true;
2045 btrfs_csum_file_blocks(trans,
2046 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2047 trans->adding_csums = false;
2052 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2053 unsigned int extra_bits,
2054 struct extent_state **cached_state, int dedupe)
2056 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2057 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2058 extra_bits, cached_state);
2061 /* see btrfs_writepage_start_hook for details on why this is required */
2062 struct btrfs_writepage_fixup {
2064 struct btrfs_work work;
2067 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2069 struct btrfs_writepage_fixup *fixup;
2070 struct btrfs_ordered_extent *ordered;
2071 struct extent_state *cached_state = NULL;
2072 struct extent_changeset *data_reserved = NULL;
2074 struct inode *inode;
2079 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2083 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2084 ClearPageChecked(page);
2088 inode = page->mapping->host;
2089 page_start = page_offset(page);
2090 page_end = page_offset(page) + PAGE_SIZE - 1;
2092 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2095 /* already ordered? We're done */
2096 if (PagePrivate2(page))
2099 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2102 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2103 page_end, &cached_state, GFP_NOFS);
2105 btrfs_start_ordered_extent(inode, ordered, 1);
2106 btrfs_put_ordered_extent(ordered);
2110 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2113 mapping_set_error(page->mapping, ret);
2114 end_extent_writepage(page, ret, page_start, page_end);
2115 ClearPageChecked(page);
2119 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
2121 ClearPageChecked(page);
2122 set_page_dirty(page);
2123 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2125 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2126 &cached_state, GFP_NOFS);
2131 extent_changeset_free(data_reserved);
2135 * There are a few paths in the higher layers of the kernel that directly
2136 * set the page dirty bit without asking the filesystem if it is a
2137 * good idea. This causes problems because we want to make sure COW
2138 * properly happens and the data=ordered rules are followed.
2140 * In our case any range that doesn't have the ORDERED bit set
2141 * hasn't been properly setup for IO. We kick off an async process
2142 * to fix it up. The async helper will wait for ordered extents, set
2143 * the delalloc bit and make it safe to write the page.
2145 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2147 struct inode *inode = page->mapping->host;
2148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2149 struct btrfs_writepage_fixup *fixup;
2151 /* this page is properly in the ordered list */
2152 if (TestClearPagePrivate2(page))
2155 if (PageChecked(page))
2158 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2162 SetPageChecked(page);
2164 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2165 btrfs_writepage_fixup_worker, NULL, NULL);
2167 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2171 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2172 struct inode *inode, u64 file_pos,
2173 u64 disk_bytenr, u64 disk_num_bytes,
2174 u64 num_bytes, u64 ram_bytes,
2175 u8 compression, u8 encryption,
2176 u16 other_encoding, int extent_type)
2178 struct btrfs_root *root = BTRFS_I(inode)->root;
2179 struct btrfs_file_extent_item *fi;
2180 struct btrfs_path *path;
2181 struct extent_buffer *leaf;
2182 struct btrfs_key ins;
2184 int extent_inserted = 0;
2187 path = btrfs_alloc_path();
2192 * we may be replacing one extent in the tree with another.
2193 * The new extent is pinned in the extent map, and we don't want
2194 * to drop it from the cache until it is completely in the btree.
2196 * So, tell btrfs_drop_extents to leave this extent in the cache.
2197 * the caller is expected to unpin it and allow it to be merged
2200 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2201 file_pos + num_bytes, NULL, 0,
2202 1, sizeof(*fi), &extent_inserted);
2206 if (!extent_inserted) {
2207 ins.objectid = btrfs_ino(BTRFS_I(inode));
2208 ins.offset = file_pos;
2209 ins.type = BTRFS_EXTENT_DATA_KEY;
2211 path->leave_spinning = 1;
2212 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2217 leaf = path->nodes[0];
2218 fi = btrfs_item_ptr(leaf, path->slots[0],
2219 struct btrfs_file_extent_item);
2220 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2221 btrfs_set_file_extent_type(leaf, fi, extent_type);
2222 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2223 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2224 btrfs_set_file_extent_offset(leaf, fi, 0);
2225 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2226 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2227 btrfs_set_file_extent_compression(leaf, fi, compression);
2228 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2229 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2231 btrfs_mark_buffer_dirty(leaf);
2232 btrfs_release_path(path);
2234 inode_add_bytes(inode, num_bytes);
2236 ins.objectid = disk_bytenr;
2237 ins.offset = disk_num_bytes;
2238 ins.type = BTRFS_EXTENT_ITEM_KEY;
2241 * Release the reserved range from inode dirty range map, as it is
2242 * already moved into delayed_ref_head
2244 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2248 ret = btrfs_alloc_reserved_file_extent(trans, root,
2249 btrfs_ino(BTRFS_I(inode)),
2250 file_pos, qg_released, &ins);
2252 btrfs_free_path(path);
2257 /* snapshot-aware defrag */
2258 struct sa_defrag_extent_backref {
2259 struct rb_node node;
2260 struct old_sa_defrag_extent *old;
2269 struct old_sa_defrag_extent {
2270 struct list_head list;
2271 struct new_sa_defrag_extent *new;
2280 struct new_sa_defrag_extent {
2281 struct rb_root root;
2282 struct list_head head;
2283 struct btrfs_path *path;
2284 struct inode *inode;
2292 static int backref_comp(struct sa_defrag_extent_backref *b1,
2293 struct sa_defrag_extent_backref *b2)
2295 if (b1->root_id < b2->root_id)
2297 else if (b1->root_id > b2->root_id)
2300 if (b1->inum < b2->inum)
2302 else if (b1->inum > b2->inum)
2305 if (b1->file_pos < b2->file_pos)
2307 else if (b1->file_pos > b2->file_pos)
2311 * [------------------------------] ===> (a range of space)
2312 * |<--->| |<---->| =============> (fs/file tree A)
2313 * |<---------------------------->| ===> (fs/file tree B)
2315 * A range of space can refer to two file extents in one tree while
2316 * refer to only one file extent in another tree.
2318 * So we may process a disk offset more than one time(two extents in A)
2319 * and locate at the same extent(one extent in B), then insert two same
2320 * backrefs(both refer to the extent in B).
2325 static void backref_insert(struct rb_root *root,
2326 struct sa_defrag_extent_backref *backref)
2328 struct rb_node **p = &root->rb_node;
2329 struct rb_node *parent = NULL;
2330 struct sa_defrag_extent_backref *entry;
2335 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2337 ret = backref_comp(backref, entry);
2341 p = &(*p)->rb_right;
2344 rb_link_node(&backref->node, parent, p);
2345 rb_insert_color(&backref->node, root);
2349 * Note the backref might has changed, and in this case we just return 0.
2351 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2354 struct btrfs_file_extent_item *extent;
2355 struct old_sa_defrag_extent *old = ctx;
2356 struct new_sa_defrag_extent *new = old->new;
2357 struct btrfs_path *path = new->path;
2358 struct btrfs_key key;
2359 struct btrfs_root *root;
2360 struct sa_defrag_extent_backref *backref;
2361 struct extent_buffer *leaf;
2362 struct inode *inode = new->inode;
2363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2369 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2370 inum == btrfs_ino(BTRFS_I(inode)))
2373 key.objectid = root_id;
2374 key.type = BTRFS_ROOT_ITEM_KEY;
2375 key.offset = (u64)-1;
2377 root = btrfs_read_fs_root_no_name(fs_info, &key);
2379 if (PTR_ERR(root) == -ENOENT)
2382 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2383 inum, offset, root_id);
2384 return PTR_ERR(root);
2387 key.objectid = inum;
2388 key.type = BTRFS_EXTENT_DATA_KEY;
2389 if (offset > (u64)-1 << 32)
2392 key.offset = offset;
2394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2395 if (WARN_ON(ret < 0))
2402 leaf = path->nodes[0];
2403 slot = path->slots[0];
2405 if (slot >= btrfs_header_nritems(leaf)) {
2406 ret = btrfs_next_leaf(root, path);
2409 } else if (ret > 0) {
2418 btrfs_item_key_to_cpu(leaf, &key, slot);
2420 if (key.objectid > inum)
2423 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2426 extent = btrfs_item_ptr(leaf, slot,
2427 struct btrfs_file_extent_item);
2429 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2433 * 'offset' refers to the exact key.offset,
2434 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2435 * (key.offset - extent_offset).
2437 if (key.offset != offset)
2440 extent_offset = btrfs_file_extent_offset(leaf, extent);
2441 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2443 if (extent_offset >= old->extent_offset + old->offset +
2444 old->len || extent_offset + num_bytes <=
2445 old->extent_offset + old->offset)
2450 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2456 backref->root_id = root_id;
2457 backref->inum = inum;
2458 backref->file_pos = offset;
2459 backref->num_bytes = num_bytes;
2460 backref->extent_offset = extent_offset;
2461 backref->generation = btrfs_file_extent_generation(leaf, extent);
2463 backref_insert(&new->root, backref);
2466 btrfs_release_path(path);
2471 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2472 struct new_sa_defrag_extent *new)
2474 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2475 struct old_sa_defrag_extent *old, *tmp;
2480 list_for_each_entry_safe(old, tmp, &new->head, list) {
2481 ret = iterate_inodes_from_logical(old->bytenr +
2482 old->extent_offset, fs_info,
2483 path, record_one_backref,
2485 if (ret < 0 && ret != -ENOENT)
2488 /* no backref to be processed for this extent */
2490 list_del(&old->list);
2495 if (list_empty(&new->head))
2501 static int relink_is_mergable(struct extent_buffer *leaf,
2502 struct btrfs_file_extent_item *fi,
2503 struct new_sa_defrag_extent *new)
2505 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2508 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2511 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2514 if (btrfs_file_extent_encryption(leaf, fi) ||
2515 btrfs_file_extent_other_encoding(leaf, fi))
2522 * Note the backref might has changed, and in this case we just return 0.
2524 static noinline int relink_extent_backref(struct btrfs_path *path,
2525 struct sa_defrag_extent_backref *prev,
2526 struct sa_defrag_extent_backref *backref)
2528 struct btrfs_file_extent_item *extent;
2529 struct btrfs_file_extent_item *item;
2530 struct btrfs_ordered_extent *ordered;
2531 struct btrfs_trans_handle *trans;
2532 struct btrfs_root *root;
2533 struct btrfs_key key;
2534 struct extent_buffer *leaf;
2535 struct old_sa_defrag_extent *old = backref->old;
2536 struct new_sa_defrag_extent *new = old->new;
2537 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2538 struct inode *inode;
2539 struct extent_state *cached = NULL;
2548 if (prev && prev->root_id == backref->root_id &&
2549 prev->inum == backref->inum &&
2550 prev->file_pos + prev->num_bytes == backref->file_pos)
2553 /* step 1: get root */
2554 key.objectid = backref->root_id;
2555 key.type = BTRFS_ROOT_ITEM_KEY;
2556 key.offset = (u64)-1;
2558 index = srcu_read_lock(&fs_info->subvol_srcu);
2560 root = btrfs_read_fs_root_no_name(fs_info, &key);
2562 srcu_read_unlock(&fs_info->subvol_srcu, index);
2563 if (PTR_ERR(root) == -ENOENT)
2565 return PTR_ERR(root);
2568 if (btrfs_root_readonly(root)) {
2569 srcu_read_unlock(&fs_info->subvol_srcu, index);
2573 /* step 2: get inode */
2574 key.objectid = backref->inum;
2575 key.type = BTRFS_INODE_ITEM_KEY;
2578 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2579 if (IS_ERR(inode)) {
2580 srcu_read_unlock(&fs_info->subvol_srcu, index);
2584 srcu_read_unlock(&fs_info->subvol_srcu, index);
2586 /* step 3: relink backref */
2587 lock_start = backref->file_pos;
2588 lock_end = backref->file_pos + backref->num_bytes - 1;
2589 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2592 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2594 btrfs_put_ordered_extent(ordered);
2598 trans = btrfs_join_transaction(root);
2599 if (IS_ERR(trans)) {
2600 ret = PTR_ERR(trans);
2604 key.objectid = backref->inum;
2605 key.type = BTRFS_EXTENT_DATA_KEY;
2606 key.offset = backref->file_pos;
2608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2611 } else if (ret > 0) {
2616 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2617 struct btrfs_file_extent_item);
2619 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2620 backref->generation)
2623 btrfs_release_path(path);
2625 start = backref->file_pos;
2626 if (backref->extent_offset < old->extent_offset + old->offset)
2627 start += old->extent_offset + old->offset -
2628 backref->extent_offset;
2630 len = min(backref->extent_offset + backref->num_bytes,
2631 old->extent_offset + old->offset + old->len);
2632 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2634 ret = btrfs_drop_extents(trans, root, inode, start,
2639 key.objectid = btrfs_ino(BTRFS_I(inode));
2640 key.type = BTRFS_EXTENT_DATA_KEY;
2643 path->leave_spinning = 1;
2645 struct btrfs_file_extent_item *fi;
2647 struct btrfs_key found_key;
2649 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654 leaf = path->nodes[0];
2655 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2657 fi = btrfs_item_ptr(leaf, path->slots[0],
2658 struct btrfs_file_extent_item);
2659 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2661 if (extent_len + found_key.offset == start &&
2662 relink_is_mergable(leaf, fi, new)) {
2663 btrfs_set_file_extent_num_bytes(leaf, fi,
2665 btrfs_mark_buffer_dirty(leaf);
2666 inode_add_bytes(inode, len);
2672 btrfs_release_path(path);
2677 ret = btrfs_insert_empty_item(trans, root, path, &key,
2680 btrfs_abort_transaction(trans, ret);
2684 leaf = path->nodes[0];
2685 item = btrfs_item_ptr(leaf, path->slots[0],
2686 struct btrfs_file_extent_item);
2687 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2688 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2689 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2690 btrfs_set_file_extent_num_bytes(leaf, item, len);
2691 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2692 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2693 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2694 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2695 btrfs_set_file_extent_encryption(leaf, item, 0);
2696 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2698 btrfs_mark_buffer_dirty(leaf);
2699 inode_add_bytes(inode, len);
2700 btrfs_release_path(path);
2702 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2704 backref->root_id, backref->inum,
2705 new->file_pos); /* start - extent_offset */
2707 btrfs_abort_transaction(trans, ret);
2713 btrfs_release_path(path);
2714 path->leave_spinning = 0;
2715 btrfs_end_transaction(trans);
2717 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2723 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2725 struct old_sa_defrag_extent *old, *tmp;
2730 list_for_each_entry_safe(old, tmp, &new->head, list) {
2736 static void relink_file_extents(struct new_sa_defrag_extent *new)
2738 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2739 struct btrfs_path *path;
2740 struct sa_defrag_extent_backref *backref;
2741 struct sa_defrag_extent_backref *prev = NULL;
2742 struct inode *inode;
2743 struct btrfs_root *root;
2744 struct rb_node *node;
2748 root = BTRFS_I(inode)->root;
2750 path = btrfs_alloc_path();
2754 if (!record_extent_backrefs(path, new)) {
2755 btrfs_free_path(path);
2758 btrfs_release_path(path);
2761 node = rb_first(&new->root);
2764 rb_erase(node, &new->root);
2766 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2768 ret = relink_extent_backref(path, prev, backref);
2781 btrfs_free_path(path);
2783 free_sa_defrag_extent(new);
2785 atomic_dec(&fs_info->defrag_running);
2786 wake_up(&fs_info->transaction_wait);
2789 static struct new_sa_defrag_extent *
2790 record_old_file_extents(struct inode *inode,
2791 struct btrfs_ordered_extent *ordered)
2793 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2794 struct btrfs_root *root = BTRFS_I(inode)->root;
2795 struct btrfs_path *path;
2796 struct btrfs_key key;
2797 struct old_sa_defrag_extent *old;
2798 struct new_sa_defrag_extent *new;
2801 new = kmalloc(sizeof(*new), GFP_NOFS);
2806 new->file_pos = ordered->file_offset;
2807 new->len = ordered->len;
2808 new->bytenr = ordered->start;
2809 new->disk_len = ordered->disk_len;
2810 new->compress_type = ordered->compress_type;
2811 new->root = RB_ROOT;
2812 INIT_LIST_HEAD(&new->head);
2814 path = btrfs_alloc_path();
2818 key.objectid = btrfs_ino(BTRFS_I(inode));
2819 key.type = BTRFS_EXTENT_DATA_KEY;
2820 key.offset = new->file_pos;
2822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2825 if (ret > 0 && path->slots[0] > 0)
2828 /* find out all the old extents for the file range */
2830 struct btrfs_file_extent_item *extent;
2831 struct extent_buffer *l;
2840 slot = path->slots[0];
2842 if (slot >= btrfs_header_nritems(l)) {
2843 ret = btrfs_next_leaf(root, path);
2851 btrfs_item_key_to_cpu(l, &key, slot);
2853 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2855 if (key.type != BTRFS_EXTENT_DATA_KEY)
2857 if (key.offset >= new->file_pos + new->len)
2860 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2862 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2863 if (key.offset + num_bytes < new->file_pos)
2866 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2870 extent_offset = btrfs_file_extent_offset(l, extent);
2872 old = kmalloc(sizeof(*old), GFP_NOFS);
2876 offset = max(new->file_pos, key.offset);
2877 end = min(new->file_pos + new->len, key.offset + num_bytes);
2879 old->bytenr = disk_bytenr;
2880 old->extent_offset = extent_offset;
2881 old->offset = offset - key.offset;
2882 old->len = end - offset;
2885 list_add_tail(&old->list, &new->head);
2891 btrfs_free_path(path);
2892 atomic_inc(&fs_info->defrag_running);
2897 btrfs_free_path(path);
2899 free_sa_defrag_extent(new);
2903 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2906 struct btrfs_block_group_cache *cache;
2908 cache = btrfs_lookup_block_group(fs_info, start);
2911 spin_lock(&cache->lock);
2912 cache->delalloc_bytes -= len;
2913 spin_unlock(&cache->lock);
2915 btrfs_put_block_group(cache);
2918 /* as ordered data IO finishes, this gets called so we can finish
2919 * an ordered extent if the range of bytes in the file it covers are
2922 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2924 struct inode *inode = ordered_extent->inode;
2925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2926 struct btrfs_root *root = BTRFS_I(inode)->root;
2927 struct btrfs_trans_handle *trans = NULL;
2928 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2929 struct extent_state *cached_state = NULL;
2930 struct new_sa_defrag_extent *new = NULL;
2931 int compress_type = 0;
2933 u64 logical_len = ordered_extent->len;
2935 bool truncated = false;
2936 bool range_locked = false;
2937 bool clear_new_delalloc_bytes = false;
2939 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2940 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2941 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2942 clear_new_delalloc_bytes = true;
2944 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2946 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2951 btrfs_free_io_failure_record(BTRFS_I(inode),
2952 ordered_extent->file_offset,
2953 ordered_extent->file_offset +
2954 ordered_extent->len - 1);
2956 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2958 logical_len = ordered_extent->truncated_len;
2959 /* Truncated the entire extent, don't bother adding */
2964 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2965 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2968 * For mwrite(mmap + memset to write) case, we still reserve
2969 * space for NOCOW range.
2970 * As NOCOW won't cause a new delayed ref, just free the space
2972 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2973 ordered_extent->len);
2974 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2976 trans = btrfs_join_transaction_nolock(root);
2978 trans = btrfs_join_transaction(root);
2979 if (IS_ERR(trans)) {
2980 ret = PTR_ERR(trans);
2984 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2985 ret = btrfs_update_inode_fallback(trans, root, inode);
2986 if (ret) /* -ENOMEM or corruption */
2987 btrfs_abort_transaction(trans, ret);
2991 range_locked = true;
2992 lock_extent_bits(io_tree, ordered_extent->file_offset,
2993 ordered_extent->file_offset + ordered_extent->len - 1,
2996 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2997 ordered_extent->file_offset + ordered_extent->len - 1,
2998 EXTENT_DEFRAG, 0, cached_state);
3000 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3001 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3002 /* the inode is shared */
3003 new = record_old_file_extents(inode, ordered_extent);
3005 clear_extent_bit(io_tree, ordered_extent->file_offset,
3006 ordered_extent->file_offset + ordered_extent->len - 1,
3007 EXTENT_DEFRAG, 0, 0, &cached_state);
3011 trans = btrfs_join_transaction_nolock(root);
3013 trans = btrfs_join_transaction(root);
3014 if (IS_ERR(trans)) {
3015 ret = PTR_ERR(trans);
3020 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3022 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3023 compress_type = ordered_extent->compress_type;
3024 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3025 BUG_ON(compress_type);
3026 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3027 ordered_extent->len);
3028 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3029 ordered_extent->file_offset,
3030 ordered_extent->file_offset +
3033 BUG_ON(root == fs_info->tree_root);
3034 ret = insert_reserved_file_extent(trans, inode,
3035 ordered_extent->file_offset,
3036 ordered_extent->start,
3037 ordered_extent->disk_len,
3038 logical_len, logical_len,
3039 compress_type, 0, 0,
3040 BTRFS_FILE_EXTENT_REG);
3042 btrfs_release_delalloc_bytes(fs_info,
3043 ordered_extent->start,
3044 ordered_extent->disk_len);
3046 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3047 ordered_extent->file_offset, ordered_extent->len,
3050 btrfs_abort_transaction(trans, ret);
3054 add_pending_csums(trans, inode, &ordered_extent->list);
3056 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3057 ret = btrfs_update_inode_fallback(trans, root, inode);
3058 if (ret) { /* -ENOMEM or corruption */
3059 btrfs_abort_transaction(trans, ret);
3064 if (range_locked || clear_new_delalloc_bytes) {
3065 unsigned int clear_bits = 0;
3068 clear_bits |= EXTENT_LOCKED;
3069 if (clear_new_delalloc_bytes)
3070 clear_bits |= EXTENT_DELALLOC_NEW;
3071 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3072 ordered_extent->file_offset,
3073 ordered_extent->file_offset +
3074 ordered_extent->len - 1,
3076 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3081 btrfs_end_transaction(trans);
3083 if (ret || truncated) {
3087 start = ordered_extent->file_offset + logical_len;
3089 start = ordered_extent->file_offset;
3090 end = ordered_extent->file_offset + ordered_extent->len - 1;
3091 clear_extent_uptodate(io_tree, start, end, NULL);
3093 /* Drop the cache for the part of the extent we didn't write. */
3094 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3097 * If the ordered extent had an IOERR or something else went
3098 * wrong we need to return the space for this ordered extent
3099 * back to the allocator. We only free the extent in the
3100 * truncated case if we didn't write out the extent at all.
3102 if ((ret || !logical_len) &&
3103 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3104 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3105 btrfs_free_reserved_extent(fs_info,
3106 ordered_extent->start,
3107 ordered_extent->disk_len, 1);
3112 * This needs to be done to make sure anybody waiting knows we are done
3113 * updating everything for this ordered extent.
3115 btrfs_remove_ordered_extent(inode, ordered_extent);
3117 /* for snapshot-aware defrag */
3120 free_sa_defrag_extent(new);
3121 atomic_dec(&fs_info->defrag_running);
3123 relink_file_extents(new);
3128 btrfs_put_ordered_extent(ordered_extent);
3129 /* once for the tree */
3130 btrfs_put_ordered_extent(ordered_extent);
3135 static void finish_ordered_fn(struct btrfs_work *work)
3137 struct btrfs_ordered_extent *ordered_extent;
3138 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3139 btrfs_finish_ordered_io(ordered_extent);
3142 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3143 struct extent_state *state, int uptodate)
3145 struct inode *inode = page->mapping->host;
3146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3147 struct btrfs_ordered_extent *ordered_extent = NULL;
3148 struct btrfs_workqueue *wq;
3149 btrfs_work_func_t func;
3151 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3153 ClearPagePrivate2(page);
3154 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3155 end - start + 1, uptodate))
3158 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3159 wq = fs_info->endio_freespace_worker;
3160 func = btrfs_freespace_write_helper;
3162 wq = fs_info->endio_write_workers;
3163 func = btrfs_endio_write_helper;
3166 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3168 btrfs_queue_work(wq, &ordered_extent->work);
3171 static int __readpage_endio_check(struct inode *inode,
3172 struct btrfs_io_bio *io_bio,
3173 int icsum, struct page *page,
3174 int pgoff, u64 start, size_t len)
3180 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3182 kaddr = kmap_atomic(page);
3183 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3184 btrfs_csum_final(csum, (u8 *)&csum);
3185 if (csum != csum_expected)
3188 kunmap_atomic(kaddr);
3191 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3192 io_bio->mirror_num);
3193 memset(kaddr + pgoff, 1, len);
3194 flush_dcache_page(page);
3195 kunmap_atomic(kaddr);
3200 * when reads are done, we need to check csums to verify the data is correct
3201 * if there's a match, we allow the bio to finish. If not, the code in
3202 * extent_io.c will try to find good copies for us.
3204 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3205 u64 phy_offset, struct page *page,
3206 u64 start, u64 end, int mirror)
3208 size_t offset = start - page_offset(page);
3209 struct inode *inode = page->mapping->host;
3210 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3211 struct btrfs_root *root = BTRFS_I(inode)->root;
3213 if (PageChecked(page)) {
3214 ClearPageChecked(page);
3218 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3221 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3222 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3223 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3227 phy_offset >>= inode->i_sb->s_blocksize_bits;
3228 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3229 start, (size_t)(end - start + 1));
3232 void btrfs_add_delayed_iput(struct inode *inode)
3234 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3235 struct btrfs_inode *binode = BTRFS_I(inode);
3237 if (atomic_add_unless(&inode->i_count, -1, 1))
3240 spin_lock(&fs_info->delayed_iput_lock);
3241 if (binode->delayed_iput_count == 0) {
3242 ASSERT(list_empty(&binode->delayed_iput));
3243 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3245 binode->delayed_iput_count++;
3247 spin_unlock(&fs_info->delayed_iput_lock);
3250 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3253 spin_lock(&fs_info->delayed_iput_lock);
3254 while (!list_empty(&fs_info->delayed_iputs)) {
3255 struct btrfs_inode *inode;
3257 inode = list_first_entry(&fs_info->delayed_iputs,
3258 struct btrfs_inode, delayed_iput);
3259 if (inode->delayed_iput_count) {
3260 inode->delayed_iput_count--;
3261 list_move_tail(&inode->delayed_iput,
3262 &fs_info->delayed_iputs);
3264 list_del_init(&inode->delayed_iput);
3266 spin_unlock(&fs_info->delayed_iput_lock);
3267 iput(&inode->vfs_inode);
3268 spin_lock(&fs_info->delayed_iput_lock);
3270 spin_unlock(&fs_info->delayed_iput_lock);
3274 * This is called in transaction commit time. If there are no orphan
3275 * files in the subvolume, it removes orphan item and frees block_rsv
3278 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *root)
3281 struct btrfs_fs_info *fs_info = root->fs_info;
3282 struct btrfs_block_rsv *block_rsv;
3285 if (atomic_read(&root->orphan_inodes) ||
3286 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3289 spin_lock(&root->orphan_lock);
3290 if (atomic_read(&root->orphan_inodes)) {
3291 spin_unlock(&root->orphan_lock);
3295 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3296 spin_unlock(&root->orphan_lock);
3300 block_rsv = root->orphan_block_rsv;
3301 root->orphan_block_rsv = NULL;
3302 spin_unlock(&root->orphan_lock);
3304 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3305 btrfs_root_refs(&root->root_item) > 0) {
3306 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3307 root->root_key.objectid);
3309 btrfs_abort_transaction(trans, ret);
3311 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3316 WARN_ON(block_rsv->size > 0);
3317 btrfs_free_block_rsv(fs_info, block_rsv);
3322 * This creates an orphan entry for the given inode in case something goes
3323 * wrong in the middle of an unlink/truncate.
3325 * NOTE: caller of this function should reserve 5 units of metadata for
3328 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3329 struct btrfs_inode *inode)
3331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3332 struct btrfs_root *root = inode->root;
3333 struct btrfs_block_rsv *block_rsv = NULL;
3338 if (!root->orphan_block_rsv) {
3339 block_rsv = btrfs_alloc_block_rsv(fs_info,
3340 BTRFS_BLOCK_RSV_TEMP);
3345 spin_lock(&root->orphan_lock);
3346 if (!root->orphan_block_rsv) {
3347 root->orphan_block_rsv = block_rsv;
3348 } else if (block_rsv) {
3349 btrfs_free_block_rsv(fs_info, block_rsv);
3353 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3354 &inode->runtime_flags)) {
3357 * For proper ENOSPC handling, we should do orphan
3358 * cleanup when mounting. But this introduces backward
3359 * compatibility issue.
3361 if (!xchg(&root->orphan_item_inserted, 1))
3367 atomic_inc(&root->orphan_inodes);
3370 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3371 &inode->runtime_flags))
3373 spin_unlock(&root->orphan_lock);
3375 /* grab metadata reservation from transaction handle */
3377 ret = btrfs_orphan_reserve_metadata(trans, inode);
3380 atomic_dec(&root->orphan_inodes);
3381 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3382 &inode->runtime_flags);
3384 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3385 &inode->runtime_flags);
3390 /* insert an orphan item to track this unlinked/truncated file */
3392 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3394 atomic_dec(&root->orphan_inodes);
3396 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3397 &inode->runtime_flags);
3398 btrfs_orphan_release_metadata(inode);
3400 if (ret != -EEXIST) {
3401 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3402 &inode->runtime_flags);
3403 btrfs_abort_transaction(trans, ret);
3410 /* insert an orphan item to track subvolume contains orphan files */
3412 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3413 root->root_key.objectid);
3414 if (ret && ret != -EEXIST) {
3415 btrfs_abort_transaction(trans, ret);
3423 * We have done the truncate/delete so we can go ahead and remove the orphan
3424 * item for this particular inode.
3426 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3427 struct btrfs_inode *inode)
3429 struct btrfs_root *root = inode->root;
3430 int delete_item = 0;
3431 int release_rsv = 0;
3434 spin_lock(&root->orphan_lock);
3435 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3436 &inode->runtime_flags))
3439 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3440 &inode->runtime_flags))
3442 spin_unlock(&root->orphan_lock);
3445 atomic_dec(&root->orphan_inodes);
3447 ret = btrfs_del_orphan_item(trans, root,
3452 btrfs_orphan_release_metadata(inode);
3458 * this cleans up any orphans that may be left on the list from the last use
3461 int btrfs_orphan_cleanup(struct btrfs_root *root)
3463 struct btrfs_fs_info *fs_info = root->fs_info;
3464 struct btrfs_path *path;
3465 struct extent_buffer *leaf;
3466 struct btrfs_key key, found_key;
3467 struct btrfs_trans_handle *trans;
3468 struct inode *inode;
3469 u64 last_objectid = 0;
3470 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3472 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3475 path = btrfs_alloc_path();
3480 path->reada = READA_BACK;
3482 key.objectid = BTRFS_ORPHAN_OBJECTID;
3483 key.type = BTRFS_ORPHAN_ITEM_KEY;
3484 key.offset = (u64)-1;
3487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3492 * if ret == 0 means we found what we were searching for, which
3493 * is weird, but possible, so only screw with path if we didn't
3494 * find the key and see if we have stuff that matches
3498 if (path->slots[0] == 0)
3503 /* pull out the item */
3504 leaf = path->nodes[0];
3505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3507 /* make sure the item matches what we want */
3508 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3510 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3513 /* release the path since we're done with it */
3514 btrfs_release_path(path);
3517 * this is where we are basically btrfs_lookup, without the
3518 * crossing root thing. we store the inode number in the
3519 * offset of the orphan item.
3522 if (found_key.offset == last_objectid) {
3524 "Error removing orphan entry, stopping orphan cleanup");
3529 last_objectid = found_key.offset;
3531 found_key.objectid = found_key.offset;
3532 found_key.type = BTRFS_INODE_ITEM_KEY;
3533 found_key.offset = 0;
3534 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3535 ret = PTR_ERR_OR_ZERO(inode);
3536 if (ret && ret != -ENOENT)
3539 if (ret == -ENOENT && root == fs_info->tree_root) {
3540 struct btrfs_root *dead_root;
3541 struct btrfs_fs_info *fs_info = root->fs_info;
3542 int is_dead_root = 0;
3545 * this is an orphan in the tree root. Currently these
3546 * could come from 2 sources:
3547 * a) a snapshot deletion in progress
3548 * b) a free space cache inode
3549 * We need to distinguish those two, as the snapshot
3550 * orphan must not get deleted.