Merge tag 'asoc-fix-v4.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[sfrench/cifs-2.6.git] / fs / btrfs / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31
32 #define BITS_PER_BITMAP         (PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34
35 struct btrfs_trim_range {
36         u64 start;
37         u64 bytes;
38         struct list_head list;
39 };
40
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42                            struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44                               struct btrfs_free_space *info);
45
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47                                                struct btrfs_path *path,
48                                                u64 offset)
49 {
50         struct btrfs_key key;
51         struct btrfs_key location;
52         struct btrfs_disk_key disk_key;
53         struct btrfs_free_space_header *header;
54         struct extent_buffer *leaf;
55         struct inode *inode = NULL;
56         int ret;
57
58         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59         key.offset = offset;
60         key.type = 0;
61
62         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63         if (ret < 0)
64                 return ERR_PTR(ret);
65         if (ret > 0) {
66                 btrfs_release_path(path);
67                 return ERR_PTR(-ENOENT);
68         }
69
70         leaf = path->nodes[0];
71         header = btrfs_item_ptr(leaf, path->slots[0],
72                                 struct btrfs_free_space_header);
73         btrfs_free_space_key(leaf, header, &disk_key);
74         btrfs_disk_key_to_cpu(&location, &disk_key);
75         btrfs_release_path(path);
76
77         inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78         if (!inode)
79                 return ERR_PTR(-ENOENT);
80         if (IS_ERR(inode))
81                 return inode;
82         if (is_bad_inode(inode)) {
83                 iput(inode);
84                 return ERR_PTR(-ENOENT);
85         }
86
87         mapping_set_gfp_mask(inode->i_mapping,
88                         mapping_gfp_mask(inode->i_mapping) &
89                         ~(__GFP_FS | __GFP_HIGHMEM));
90
91         return inode;
92 }
93
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95                                       struct btrfs_block_group_cache
96                                       *block_group, struct btrfs_path *path)
97 {
98         struct inode *inode = NULL;
99         u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100
101         spin_lock(&block_group->lock);
102         if (block_group->inode)
103                 inode = igrab(block_group->inode);
104         spin_unlock(&block_group->lock);
105         if (inode)
106                 return inode;
107
108         inode = __lookup_free_space_inode(root, path,
109                                           block_group->key.objectid);
110         if (IS_ERR(inode))
111                 return inode;
112
113         spin_lock(&block_group->lock);
114         if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115                 btrfs_info(root->fs_info,
116                         "Old style space inode found, converting.");
117                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118                         BTRFS_INODE_NODATACOW;
119                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120         }
121
122         if (!block_group->iref) {
123                 block_group->inode = igrab(inode);
124                 block_group->iref = 1;
125         }
126         spin_unlock(&block_group->lock);
127
128         return inode;
129 }
130
131 static int __create_free_space_inode(struct btrfs_root *root,
132                                      struct btrfs_trans_handle *trans,
133                                      struct btrfs_path *path,
134                                      u64 ino, u64 offset)
135 {
136         struct btrfs_key key;
137         struct btrfs_disk_key disk_key;
138         struct btrfs_free_space_header *header;
139         struct btrfs_inode_item *inode_item;
140         struct extent_buffer *leaf;
141         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142         int ret;
143
144         ret = btrfs_insert_empty_inode(trans, root, path, ino);
145         if (ret)
146                 return ret;
147
148         /* We inline crc's for the free disk space cache */
149         if (ino != BTRFS_FREE_INO_OBJECTID)
150                 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152         leaf = path->nodes[0];
153         inode_item = btrfs_item_ptr(leaf, path->slots[0],
154                                     struct btrfs_inode_item);
155         btrfs_item_key(leaf, &disk_key, path->slots[0]);
156         memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157                              sizeof(*inode_item));
158         btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159         btrfs_set_inode_size(leaf, inode_item, 0);
160         btrfs_set_inode_nbytes(leaf, inode_item, 0);
161         btrfs_set_inode_uid(leaf, inode_item, 0);
162         btrfs_set_inode_gid(leaf, inode_item, 0);
163         btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164         btrfs_set_inode_flags(leaf, inode_item, flags);
165         btrfs_set_inode_nlink(leaf, inode_item, 1);
166         btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167         btrfs_set_inode_block_group(leaf, inode_item, offset);
168         btrfs_mark_buffer_dirty(leaf);
169         btrfs_release_path(path);
170
171         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172         key.offset = offset;
173         key.type = 0;
174         ret = btrfs_insert_empty_item(trans, root, path, &key,
175                                       sizeof(struct btrfs_free_space_header));
176         if (ret < 0) {
177                 btrfs_release_path(path);
178                 return ret;
179         }
180
181         leaf = path->nodes[0];
182         header = btrfs_item_ptr(leaf, path->slots[0],
183                                 struct btrfs_free_space_header);
184         memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185         btrfs_set_free_space_key(leaf, header, &disk_key);
186         btrfs_mark_buffer_dirty(leaf);
187         btrfs_release_path(path);
188
189         return 0;
190 }
191
192 int create_free_space_inode(struct btrfs_root *root,
193                             struct btrfs_trans_handle *trans,
194                             struct btrfs_block_group_cache *block_group,
195                             struct btrfs_path *path)
196 {
197         int ret;
198         u64 ino;
199
200         ret = btrfs_find_free_objectid(root, &ino);
201         if (ret < 0)
202                 return ret;
203
204         return __create_free_space_inode(root, trans, path, ino,
205                                          block_group->key.objectid);
206 }
207
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209                                        struct btrfs_block_rsv *rsv)
210 {
211         u64 needed_bytes;
212         int ret;
213
214         /* 1 for slack space, 1 for updating the inode */
215         needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216                 btrfs_calc_trans_metadata_size(root, 1);
217
218         spin_lock(&rsv->lock);
219         if (rsv->reserved < needed_bytes)
220                 ret = -ENOSPC;
221         else
222                 ret = 0;
223         spin_unlock(&rsv->lock);
224         return ret;
225 }
226
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228                                     struct btrfs_trans_handle *trans,
229                                     struct btrfs_block_group_cache *block_group,
230                                     struct inode *inode)
231 {
232         int ret = 0;
233         struct btrfs_path *path = btrfs_alloc_path();
234
235         if (!path) {
236                 ret = -ENOMEM;
237                 goto fail;
238         }
239
240         if (block_group) {
241                 mutex_lock(&trans->transaction->cache_write_mutex);
242                 if (!list_empty(&block_group->io_list)) {
243                         list_del_init(&block_group->io_list);
244
245                         btrfs_wait_cache_io(root, trans, block_group,
246                                             &block_group->io_ctl, path,
247                                             block_group->key.objectid);
248                         btrfs_put_block_group(block_group);
249                 }
250
251                 /*
252                  * now that we've truncated the cache away, its no longer
253                  * setup or written
254                  */
255                 spin_lock(&block_group->lock);
256                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
257                 spin_unlock(&block_group->lock);
258         }
259         btrfs_free_path(path);
260
261         btrfs_i_size_write(inode, 0);
262         truncate_pagecache(inode, 0);
263
264         /*
265          * We don't need an orphan item because truncating the free space cache
266          * will never be split across transactions.
267          * We don't need to check for -EAGAIN because we're a free space
268          * cache inode
269          */
270         ret = btrfs_truncate_inode_items(trans, root, inode,
271                                          0, BTRFS_EXTENT_DATA_KEY);
272         if (ret) {
273                 mutex_unlock(&trans->transaction->cache_write_mutex);
274                 btrfs_abort_transaction(trans, root, ret);
275                 return ret;
276         }
277
278         ret = btrfs_update_inode(trans, root, inode);
279
280         if (block_group)
281                 mutex_unlock(&trans->transaction->cache_write_mutex);
282
283 fail:
284         if (ret)
285                 btrfs_abort_transaction(trans, root, ret);
286
287         return ret;
288 }
289
290 static int readahead_cache(struct inode *inode)
291 {
292         struct file_ra_state *ra;
293         unsigned long last_index;
294
295         ra = kzalloc(sizeof(*ra), GFP_NOFS);
296         if (!ra)
297                 return -ENOMEM;
298
299         file_ra_state_init(ra, inode->i_mapping);
300         last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
301
302         page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
303
304         kfree(ra);
305
306         return 0;
307 }
308
309 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
310                        struct btrfs_root *root, int write)
311 {
312         int num_pages;
313         int check_crcs = 0;
314
315         num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
316
317         if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
318                 check_crcs = 1;
319
320         /* Make sure we can fit our crcs into the first page */
321         if (write && check_crcs &&
322             (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
323                 return -ENOSPC;
324
325         memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
326
327         io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
328         if (!io_ctl->pages)
329                 return -ENOMEM;
330
331         io_ctl->num_pages = num_pages;
332         io_ctl->root = root;
333         io_ctl->check_crcs = check_crcs;
334         io_ctl->inode = inode;
335
336         return 0;
337 }
338
339 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
340 {
341         kfree(io_ctl->pages);
342         io_ctl->pages = NULL;
343 }
344
345 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
346 {
347         if (io_ctl->cur) {
348                 io_ctl->cur = NULL;
349                 io_ctl->orig = NULL;
350         }
351 }
352
353 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
354 {
355         ASSERT(io_ctl->index < io_ctl->num_pages);
356         io_ctl->page = io_ctl->pages[io_ctl->index++];
357         io_ctl->cur = page_address(io_ctl->page);
358         io_ctl->orig = io_ctl->cur;
359         io_ctl->size = PAGE_CACHE_SIZE;
360         if (clear)
361                 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
362 }
363
364 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
365 {
366         int i;
367
368         io_ctl_unmap_page(io_ctl);
369
370         for (i = 0; i < io_ctl->num_pages; i++) {
371                 if (io_ctl->pages[i]) {
372                         ClearPageChecked(io_ctl->pages[i]);
373                         unlock_page(io_ctl->pages[i]);
374                         page_cache_release(io_ctl->pages[i]);
375                 }
376         }
377 }
378
379 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
380                                 int uptodate)
381 {
382         struct page *page;
383         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
384         int i;
385
386         for (i = 0; i < io_ctl->num_pages; i++) {
387                 page = find_or_create_page(inode->i_mapping, i, mask);
388                 if (!page) {
389                         io_ctl_drop_pages(io_ctl);
390                         return -ENOMEM;
391                 }
392                 io_ctl->pages[i] = page;
393                 if (uptodate && !PageUptodate(page)) {
394                         btrfs_readpage(NULL, page);
395                         lock_page(page);
396                         if (!PageUptodate(page)) {
397                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
398                                            "error reading free space cache");
399                                 io_ctl_drop_pages(io_ctl);
400                                 return -EIO;
401                         }
402                 }
403         }
404
405         for (i = 0; i < io_ctl->num_pages; i++) {
406                 clear_page_dirty_for_io(io_ctl->pages[i]);
407                 set_page_extent_mapped(io_ctl->pages[i]);
408         }
409
410         return 0;
411 }
412
413 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
414 {
415         __le64 *val;
416
417         io_ctl_map_page(io_ctl, 1);
418
419         /*
420          * Skip the csum areas.  If we don't check crcs then we just have a
421          * 64bit chunk at the front of the first page.
422          */
423         if (io_ctl->check_crcs) {
424                 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
425                 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
426         } else {
427                 io_ctl->cur += sizeof(u64);
428                 io_ctl->size -= sizeof(u64) * 2;
429         }
430
431         val = io_ctl->cur;
432         *val = cpu_to_le64(generation);
433         io_ctl->cur += sizeof(u64);
434 }
435
436 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
437 {
438         __le64 *gen;
439
440         /*
441          * Skip the crc area.  If we don't check crcs then we just have a 64bit
442          * chunk at the front of the first page.
443          */
444         if (io_ctl->check_crcs) {
445                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
446                 io_ctl->size -= sizeof(u64) +
447                         (sizeof(u32) * io_ctl->num_pages);
448         } else {
449                 io_ctl->cur += sizeof(u64);
450                 io_ctl->size -= sizeof(u64) * 2;
451         }
452
453         gen = io_ctl->cur;
454         if (le64_to_cpu(*gen) != generation) {
455                 printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
456                                    "(%Lu) does not match inode (%Lu)\n", *gen,
457                                    generation);
458                 io_ctl_unmap_page(io_ctl);
459                 return -EIO;
460         }
461         io_ctl->cur += sizeof(u64);
462         return 0;
463 }
464
465 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
466 {
467         u32 *tmp;
468         u32 crc = ~(u32)0;
469         unsigned offset = 0;
470
471         if (!io_ctl->check_crcs) {
472                 io_ctl_unmap_page(io_ctl);
473                 return;
474         }
475
476         if (index == 0)
477                 offset = sizeof(u32) * io_ctl->num_pages;
478
479         crc = btrfs_csum_data(io_ctl->orig + offset, crc,
480                               PAGE_CACHE_SIZE - offset);
481         btrfs_csum_final(crc, (char *)&crc);
482         io_ctl_unmap_page(io_ctl);
483         tmp = page_address(io_ctl->pages[0]);
484         tmp += index;
485         *tmp = crc;
486 }
487
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490         u32 *tmp, val;
491         u32 crc = ~(u32)0;
492         unsigned offset = 0;
493
494         if (!io_ctl->check_crcs) {
495                 io_ctl_map_page(io_ctl, 0);
496                 return 0;
497         }
498
499         if (index == 0)
500                 offset = sizeof(u32) * io_ctl->num_pages;
501
502         tmp = page_address(io_ctl->pages[0]);
503         tmp += index;
504         val = *tmp;
505
506         io_ctl_map_page(io_ctl, 0);
507         crc = btrfs_csum_data(io_ctl->orig + offset, crc,
508                               PAGE_CACHE_SIZE - offset);
509         btrfs_csum_final(crc, (char *)&crc);
510         if (val != crc) {
511                 printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
512                                    "space cache\n");
513                 io_ctl_unmap_page(io_ctl);
514                 return -EIO;
515         }
516
517         return 0;
518 }
519
520 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
521                             void *bitmap)
522 {
523         struct btrfs_free_space_entry *entry;
524
525         if (!io_ctl->cur)
526                 return -ENOSPC;
527
528         entry = io_ctl->cur;
529         entry->offset = cpu_to_le64(offset);
530         entry->bytes = cpu_to_le64(bytes);
531         entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
532                 BTRFS_FREE_SPACE_EXTENT;
533         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
534         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
535
536         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
537                 return 0;
538
539         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
540
541         /* No more pages to map */
542         if (io_ctl->index >= io_ctl->num_pages)
543                 return 0;
544
545         /* map the next page */
546         io_ctl_map_page(io_ctl, 1);
547         return 0;
548 }
549
550 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
551 {
552         if (!io_ctl->cur)
553                 return -ENOSPC;
554
555         /*
556          * If we aren't at the start of the current page, unmap this one and
557          * map the next one if there is any left.
558          */
559         if (io_ctl->cur != io_ctl->orig) {
560                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
561                 if (io_ctl->index >= io_ctl->num_pages)
562                         return -ENOSPC;
563                 io_ctl_map_page(io_ctl, 0);
564         }
565
566         memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
567         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
568         if (io_ctl->index < io_ctl->num_pages)
569                 io_ctl_map_page(io_ctl, 0);
570         return 0;
571 }
572
573 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
574 {
575         /*
576          * If we're not on the boundary we know we've modified the page and we
577          * need to crc the page.
578          */
579         if (io_ctl->cur != io_ctl->orig)
580                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
581         else
582                 io_ctl_unmap_page(io_ctl);
583
584         while (io_ctl->index < io_ctl->num_pages) {
585                 io_ctl_map_page(io_ctl, 1);
586                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
587         }
588 }
589
590 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
591                             struct btrfs_free_space *entry, u8 *type)
592 {
593         struct btrfs_free_space_entry *e;
594         int ret;
595
596         if (!io_ctl->cur) {
597                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
598                 if (ret)
599                         return ret;
600         }
601
602         e = io_ctl->cur;
603         entry->offset = le64_to_cpu(e->offset);
604         entry->bytes = le64_to_cpu(e->bytes);
605         *type = e->type;
606         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
607         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
608
609         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
610                 return 0;
611
612         io_ctl_unmap_page(io_ctl);
613
614         return 0;
615 }
616
617 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
618                               struct btrfs_free_space *entry)
619 {
620         int ret;
621
622         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
623         if (ret)
624                 return ret;
625
626         memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
627         io_ctl_unmap_page(io_ctl);
628
629         return 0;
630 }
631
632 /*
633  * Since we attach pinned extents after the fact we can have contiguous sections
634  * of free space that are split up in entries.  This poses a problem with the
635  * tree logging stuff since it could have allocated across what appears to be 2
636  * entries since we would have merged the entries when adding the pinned extents
637  * back to the free space cache.  So run through the space cache that we just
638  * loaded and merge contiguous entries.  This will make the log replay stuff not
639  * blow up and it will make for nicer allocator behavior.
640  */
641 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
642 {
643         struct btrfs_free_space *e, *prev = NULL;
644         struct rb_node *n;
645
646 again:
647         spin_lock(&ctl->tree_lock);
648         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
649                 e = rb_entry(n, struct btrfs_free_space, offset_index);
650                 if (!prev)
651                         goto next;
652                 if (e->bitmap || prev->bitmap)
653                         goto next;
654                 if (prev->offset + prev->bytes == e->offset) {
655                         unlink_free_space(ctl, prev);
656                         unlink_free_space(ctl, e);
657                         prev->bytes += e->bytes;
658                         kmem_cache_free(btrfs_free_space_cachep, e);
659                         link_free_space(ctl, prev);
660                         prev = NULL;
661                         spin_unlock(&ctl->tree_lock);
662                         goto again;
663                 }
664 next:
665                 prev = e;
666         }
667         spin_unlock(&ctl->tree_lock);
668 }
669
670 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
671                                    struct btrfs_free_space_ctl *ctl,
672                                    struct btrfs_path *path, u64 offset)
673 {
674         struct btrfs_free_space_header *header;
675         struct extent_buffer *leaf;
676         struct btrfs_io_ctl io_ctl;
677         struct btrfs_key key;
678         struct btrfs_free_space *e, *n;
679         LIST_HEAD(bitmaps);
680         u64 num_entries;
681         u64 num_bitmaps;
682         u64 generation;
683         u8 type;
684         int ret = 0;
685
686         /* Nothing in the space cache, goodbye */
687         if (!i_size_read(inode))
688                 return 0;
689
690         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691         key.offset = offset;
692         key.type = 0;
693
694         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695         if (ret < 0)
696                 return 0;
697         else if (ret > 0) {
698                 btrfs_release_path(path);
699                 return 0;
700         }
701
702         ret = -1;
703
704         leaf = path->nodes[0];
705         header = btrfs_item_ptr(leaf, path->slots[0],
706                                 struct btrfs_free_space_header);
707         num_entries = btrfs_free_space_entries(leaf, header);
708         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709         generation = btrfs_free_space_generation(leaf, header);
710         btrfs_release_path(path);
711
712         if (!BTRFS_I(inode)->generation) {
713                 btrfs_info(root->fs_info,
714                            "The free space cache file (%llu) is invalid. skip it\n",
715                            offset);
716                 return 0;
717         }
718
719         if (BTRFS_I(inode)->generation != generation) {
720                 btrfs_err(root->fs_info,
721                         "free space inode generation (%llu) "
722                         "did not match free space cache generation (%llu)",
723                         BTRFS_I(inode)->generation, generation);
724                 return 0;
725         }
726
727         if (!num_entries)
728                 return 0;
729
730         ret = io_ctl_init(&io_ctl, inode, root, 0);
731         if (ret)
732                 return ret;
733
734         ret = readahead_cache(inode);
735         if (ret)
736                 goto out;
737
738         ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
739         if (ret)
740                 goto out;
741
742         ret = io_ctl_check_crc(&io_ctl, 0);
743         if (ret)
744                 goto free_cache;
745
746         ret = io_ctl_check_generation(&io_ctl, generation);
747         if (ret)
748                 goto free_cache;
749
750         while (num_entries) {
751                 e = kmem_cache_zalloc(btrfs_free_space_cachep,
752                                       GFP_NOFS);
753                 if (!e)
754                         goto free_cache;
755
756                 ret = io_ctl_read_entry(&io_ctl, e, &type);
757                 if (ret) {
758                         kmem_cache_free(btrfs_free_space_cachep, e);
759                         goto free_cache;
760                 }
761
762                 if (!e->bytes) {
763                         kmem_cache_free(btrfs_free_space_cachep, e);
764                         goto free_cache;
765                 }
766
767                 if (type == BTRFS_FREE_SPACE_EXTENT) {
768                         spin_lock(&ctl->tree_lock);
769                         ret = link_free_space(ctl, e);
770                         spin_unlock(&ctl->tree_lock);
771                         if (ret) {
772                                 btrfs_err(root->fs_info,
773                                         "Duplicate entries in free space cache, dumping");
774                                 kmem_cache_free(btrfs_free_space_cachep, e);
775                                 goto free_cache;
776                         }
777                 } else {
778                         ASSERT(num_bitmaps);
779                         num_bitmaps--;
780                         e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
781                         if (!e->bitmap) {
782                                 kmem_cache_free(
783                                         btrfs_free_space_cachep, e);
784                                 goto free_cache;
785                         }
786                         spin_lock(&ctl->tree_lock);
787                         ret = link_free_space(ctl, e);
788                         ctl->total_bitmaps++;
789                         ctl->op->recalc_thresholds(ctl);
790                         spin_unlock(&ctl->tree_lock);
791                         if (ret) {
792                                 btrfs_err(root->fs_info,
793                                         "Duplicate entries in free space cache, dumping");
794                                 kmem_cache_free(btrfs_free_space_cachep, e);
795                                 goto free_cache;
796                         }
797                         list_add_tail(&e->list, &bitmaps);
798                 }
799
800                 num_entries--;
801         }
802
803         io_ctl_unmap_page(&io_ctl);
804
805         /*
806          * We add the bitmaps at the end of the entries in order that
807          * the bitmap entries are added to the cache.
808          */
809         list_for_each_entry_safe(e, n, &bitmaps, list) {
810                 list_del_init(&e->list);
811                 ret = io_ctl_read_bitmap(&io_ctl, e);
812                 if (ret)
813                         goto free_cache;
814         }
815
816         io_ctl_drop_pages(&io_ctl);
817         merge_space_tree(ctl);
818         ret = 1;
819 out:
820         io_ctl_free(&io_ctl);
821         return ret;
822 free_cache:
823         io_ctl_drop_pages(&io_ctl);
824         __btrfs_remove_free_space_cache(ctl);
825         goto out;
826 }
827
828 int load_free_space_cache(struct btrfs_fs_info *fs_info,
829                           struct btrfs_block_group_cache *block_group)
830 {
831         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
832         struct btrfs_root *root = fs_info->tree_root;
833         struct inode *inode;
834         struct btrfs_path *path;
835         int ret = 0;
836         bool matched;
837         u64 used = btrfs_block_group_used(&block_group->item);
838
839         /*
840          * If this block group has been marked to be cleared for one reason or
841          * another then we can't trust the on disk cache, so just return.
842          */
843         spin_lock(&block_group->lock);
844         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
845                 spin_unlock(&block_group->lock);
846                 return 0;
847         }
848         spin_unlock(&block_group->lock);
849
850         path = btrfs_alloc_path();
851         if (!path)
852                 return 0;
853         path->search_commit_root = 1;
854         path->skip_locking = 1;
855
856         inode = lookup_free_space_inode(root, block_group, path);
857         if (IS_ERR(inode)) {
858                 btrfs_free_path(path);
859                 return 0;
860         }
861
862         /* We may have converted the inode and made the cache invalid. */
863         spin_lock(&block_group->lock);
864         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
865                 spin_unlock(&block_group->lock);
866                 btrfs_free_path(path);
867                 goto out;
868         }
869         spin_unlock(&block_group->lock);
870
871         ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
872                                       path, block_group->key.objectid);
873         btrfs_free_path(path);
874         if (ret <= 0)
875                 goto out;
876
877         spin_lock(&ctl->tree_lock);
878         matched = (ctl->free_space == (block_group->key.offset - used -
879                                        block_group->bytes_super));
880         spin_unlock(&ctl->tree_lock);
881
882         if (!matched) {
883                 __btrfs_remove_free_space_cache(ctl);
884                 btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
885                         block_group->key.objectid);
886                 ret = -1;
887         }
888 out:
889         if (ret < 0) {
890                 /* This cache is bogus, make sure it gets cleared */
891                 spin_lock(&block_group->lock);
892                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
893                 spin_unlock(&block_group->lock);
894                 ret = 0;
895
896                 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
897                         block_group->key.objectid);
898         }
899
900         iput(inode);
901         return ret;
902 }
903
904 static noinline_for_stack
905 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
906                               struct btrfs_free_space_ctl *ctl,
907                               struct btrfs_block_group_cache *block_group,
908                               int *entries, int *bitmaps,
909                               struct list_head *bitmap_list)
910 {
911         int ret;
912         struct btrfs_free_cluster *cluster = NULL;
913         struct btrfs_free_cluster *cluster_locked = NULL;
914         struct rb_node *node = rb_first(&ctl->free_space_offset);
915         struct btrfs_trim_range *trim_entry;
916
917         /* Get the cluster for this block_group if it exists */
918         if (block_group && !list_empty(&block_group->cluster_list)) {
919                 cluster = list_entry(block_group->cluster_list.next,
920                                      struct btrfs_free_cluster,
921                                      block_group_list);
922         }
923
924         if (!node && cluster) {
925                 cluster_locked = cluster;
926                 spin_lock(&cluster_locked->lock);
927                 node = rb_first(&cluster->root);
928                 cluster = NULL;
929         }
930
931         /* Write out the extent entries */
932         while (node) {
933                 struct btrfs_free_space *e;
934
935                 e = rb_entry(node, struct btrfs_free_space, offset_index);
936                 *entries += 1;
937
938                 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
939                                        e->bitmap);
940                 if (ret)
941                         goto fail;
942
943                 if (e->bitmap) {
944                         list_add_tail(&e->list, bitmap_list);
945                         *bitmaps += 1;
946                 }
947                 node = rb_next(node);
948                 if (!node && cluster) {
949                         node = rb_first(&cluster->root);
950                         cluster_locked = cluster;
951                         spin_lock(&cluster_locked->lock);
952                         cluster = NULL;
953                 }
954         }
955         if (cluster_locked) {
956                 spin_unlock(&cluster_locked->lock);
957                 cluster_locked = NULL;
958         }
959
960         /*
961          * Make sure we don't miss any range that was removed from our rbtree
962          * because trimming is running. Otherwise after a umount+mount (or crash
963          * after committing the transaction) we would leak free space and get
964          * an inconsistent free space cache report from fsck.
965          */
966         list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
967                 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
968                                        trim_entry->bytes, NULL);
969                 if (ret)
970                         goto fail;
971                 *entries += 1;
972         }
973
974         return 0;
975 fail:
976         if (cluster_locked)
977                 spin_unlock(&cluster_locked->lock);
978         return -ENOSPC;
979 }
980
981 static noinline_for_stack int
982 update_cache_item(struct btrfs_trans_handle *trans,
983                   struct btrfs_root *root,
984                   struct inode *inode,
985                   struct btrfs_path *path, u64 offset,
986                   int entries, int bitmaps)
987 {
988         struct btrfs_key key;
989         struct btrfs_free_space_header *header;
990         struct extent_buffer *leaf;
991         int ret;
992
993         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
994         key.offset = offset;
995         key.type = 0;
996
997         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
998         if (ret < 0) {
999                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1000                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1001                                  GFP_NOFS);
1002                 goto fail;
1003         }
1004         leaf = path->nodes[0];
1005         if (ret > 0) {
1006                 struct btrfs_key found_key;
1007                 ASSERT(path->slots[0]);
1008                 path->slots[0]--;
1009                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1010                 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1011                     found_key.offset != offset) {
1012                         clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1013                                          inode->i_size - 1,
1014                                          EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1015                                          NULL, GFP_NOFS);
1016                         btrfs_release_path(path);
1017                         goto fail;
1018                 }
1019         }
1020
1021         BTRFS_I(inode)->generation = trans->transid;
1022         header = btrfs_item_ptr(leaf, path->slots[0],
1023                                 struct btrfs_free_space_header);
1024         btrfs_set_free_space_entries(leaf, header, entries);
1025         btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1026         btrfs_set_free_space_generation(leaf, header, trans->transid);
1027         btrfs_mark_buffer_dirty(leaf);
1028         btrfs_release_path(path);
1029
1030         return 0;
1031
1032 fail:
1033         return -1;
1034 }
1035
1036 static noinline_for_stack int
1037 write_pinned_extent_entries(struct btrfs_root *root,
1038                             struct btrfs_block_group_cache *block_group,
1039                             struct btrfs_io_ctl *io_ctl,
1040                             int *entries)
1041 {
1042         u64 start, extent_start, extent_end, len;
1043         struct extent_io_tree *unpin = NULL;
1044         int ret;
1045
1046         if (!block_group)
1047                 return 0;
1048
1049         /*
1050          * We want to add any pinned extents to our free space cache
1051          * so we don't leak the space
1052          *
1053          * We shouldn't have switched the pinned extents yet so this is the
1054          * right one
1055          */
1056         unpin = root->fs_info->pinned_extents;
1057
1058         start = block_group->key.objectid;
1059
1060         while (start < block_group->key.objectid + block_group->key.offset) {
1061                 ret = find_first_extent_bit(unpin, start,
1062                                             &extent_start, &extent_end,
1063                                             EXTENT_DIRTY, NULL);
1064                 if (ret)
1065                         return 0;
1066
1067                 /* This pinned extent is out of our range */
1068                 if (extent_start >= block_group->key.objectid +
1069                     block_group->key.offset)
1070                         return 0;
1071
1072                 extent_start = max(extent_start, start);
1073                 extent_end = min(block_group->key.objectid +
1074                                  block_group->key.offset, extent_end + 1);
1075                 len = extent_end - extent_start;
1076
1077                 *entries += 1;
1078                 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1079                 if (ret)
1080                         return -ENOSPC;
1081
1082                 start = extent_end;
1083         }
1084
1085         return 0;
1086 }
1087
1088 static noinline_for_stack int
1089 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1090 {
1091         struct list_head *pos, *n;
1092         int ret;
1093
1094         /* Write out the bitmaps */
1095         list_for_each_safe(pos, n, bitmap_list) {
1096                 struct btrfs_free_space *entry =
1097                         list_entry(pos, struct btrfs_free_space, list);
1098
1099                 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1100                 if (ret)
1101                         return -ENOSPC;
1102                 list_del_init(&entry->list);
1103         }
1104
1105         return 0;
1106 }
1107
1108 static int flush_dirty_cache(struct inode *inode)
1109 {
1110         int ret;
1111
1112         ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1113         if (ret)
1114                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1115                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1116                                  GFP_NOFS);
1117
1118         return ret;
1119 }
1120
1121 static void noinline_for_stack
1122 cleanup_bitmap_list(struct list_head *bitmap_list)
1123 {
1124         struct list_head *pos, *n;
1125
1126         list_for_each_safe(pos, n, bitmap_list) {
1127                 struct btrfs_free_space *entry =
1128                         list_entry(pos, struct btrfs_free_space, list);
1129                 list_del_init(&entry->list);
1130         }
1131 }
1132
1133 static void noinline_for_stack
1134 cleanup_write_cache_enospc(struct inode *inode,
1135                            struct btrfs_io_ctl *io_ctl,
1136                            struct extent_state **cached_state,
1137                            struct list_head *bitmap_list)
1138 {
1139         io_ctl_drop_pages(io_ctl);
1140         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1141                              i_size_read(inode) - 1, cached_state,
1142                              GFP_NOFS);
1143 }
1144
1145 int btrfs_wait_cache_io(struct btrfs_root *root,
1146                         struct btrfs_trans_handle *trans,
1147                         struct btrfs_block_group_cache *block_group,
1148                         struct btrfs_io_ctl *io_ctl,
1149                         struct btrfs_path *path, u64 offset)
1150 {
1151         int ret;
1152         struct inode *inode = io_ctl->inode;
1153
1154         if (!inode)
1155                 return 0;
1156
1157         if (block_group)
1158                 root = root->fs_info->tree_root;
1159
1160         /* Flush the dirty pages in the cache file. */
1161         ret = flush_dirty_cache(inode);
1162         if (ret)
1163                 goto out;
1164
1165         /* Update the cache item to tell everyone this cache file is valid. */
1166         ret = update_cache_item(trans, root, inode, path, offset,
1167                                 io_ctl->entries, io_ctl->bitmaps);
1168 out:
1169         io_ctl_free(io_ctl);
1170         if (ret) {
1171                 invalidate_inode_pages2(inode->i_mapping);
1172                 BTRFS_I(inode)->generation = 0;
1173                 if (block_group) {
1174 #ifdef DEBUG
1175                         btrfs_err(root->fs_info,
1176                                 "failed to write free space cache for block group %llu",
1177                                 block_group->key.objectid);
1178 #endif
1179                 }
1180         }
1181         btrfs_update_inode(trans, root, inode);
1182
1183         if (block_group) {
1184                 /* the dirty list is protected by the dirty_bgs_lock */
1185                 spin_lock(&trans->transaction->dirty_bgs_lock);
1186
1187                 /* the disk_cache_state is protected by the block group lock */
1188                 spin_lock(&block_group->lock);
1189
1190                 /*
1191                  * only mark this as written if we didn't get put back on
1192                  * the dirty list while waiting for IO.   Otherwise our
1193                  * cache state won't be right, and we won't get written again
1194                  */
1195                 if (!ret && list_empty(&block_group->dirty_list))
1196                         block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1197                 else if (ret)
1198                         block_group->disk_cache_state = BTRFS_DC_ERROR;
1199
1200                 spin_unlock(&block_group->lock);
1201                 spin_unlock(&trans->transaction->dirty_bgs_lock);
1202                 io_ctl->inode = NULL;
1203                 iput(inode);
1204         }
1205
1206         return ret;
1207
1208 }
1209
1210 /**
1211  * __btrfs_write_out_cache - write out cached info to an inode
1212  * @root - the root the inode belongs to
1213  * @ctl - the free space cache we are going to write out
1214  * @block_group - the block_group for this cache if it belongs to a block_group
1215  * @trans - the trans handle
1216  * @path - the path to use
1217  * @offset - the offset for the key we'll insert
1218  *
1219  * This function writes out a free space cache struct to disk for quick recovery
1220  * on mount.  This will return 0 if it was successfull in writing the cache out,
1221  * or an errno if it was not.
1222  */
1223 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1224                                    struct btrfs_free_space_ctl *ctl,
1225                                    struct btrfs_block_group_cache *block_group,
1226                                    struct btrfs_io_ctl *io_ctl,
1227                                    struct btrfs_trans_handle *trans,
1228                                    struct btrfs_path *path, u64 offset)
1229 {
1230         struct extent_state *cached_state = NULL;
1231         LIST_HEAD(bitmap_list);
1232         int entries = 0;
1233         int bitmaps = 0;
1234         int ret;
1235         int must_iput = 0;
1236
1237         if (!i_size_read(inode))
1238                 return -EIO;
1239
1240         WARN_ON(io_ctl->pages);
1241         ret = io_ctl_init(io_ctl, inode, root, 1);
1242         if (ret)
1243                 return ret;
1244
1245         if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1246                 down_write(&block_group->data_rwsem);
1247                 spin_lock(&block_group->lock);
1248                 if (block_group->delalloc_bytes) {
1249                         block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1250                         spin_unlock(&block_group->lock);
1251                         up_write(&block_group->data_rwsem);
1252                         BTRFS_I(inode)->generation = 0;
1253                         ret = 0;
1254                         must_iput = 1;
1255                         goto out;
1256                 }
1257                 spin_unlock(&block_group->lock);
1258         }
1259
1260         /* Lock all pages first so we can lock the extent safely. */
1261         ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1262         if (ret)
1263                 goto out;
1264
1265         lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1266                          0, &cached_state);
1267
1268         io_ctl_set_generation(io_ctl, trans->transid);
1269
1270         mutex_lock(&ctl->cache_writeout_mutex);
1271         /* Write out the extent entries in the free space cache */
1272         spin_lock(&ctl->tree_lock);
1273         ret = write_cache_extent_entries(io_ctl, ctl,
1274                                          block_group, &entries, &bitmaps,
1275                                          &bitmap_list);
1276         if (ret)
1277                 goto out_nospc_locked;
1278
1279         /*
1280          * Some spaces that are freed in the current transaction are pinned,
1281          * they will be added into free space cache after the transaction is
1282          * committed, we shouldn't lose them.
1283          *
1284          * If this changes while we are working we'll get added back to
1285          * the dirty list and redo it.  No locking needed
1286          */
1287         ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1288         if (ret)
1289                 goto out_nospc_locked;
1290
1291         /*
1292          * At last, we write out all the bitmaps and keep cache_writeout_mutex
1293          * locked while doing it because a concurrent trim can be manipulating
1294          * or freeing the bitmap.
1295          */
1296         ret = write_bitmap_entries(io_ctl, &bitmap_list);
1297         spin_unlock(&ctl->tree_lock);
1298         mutex_unlock(&ctl->cache_writeout_mutex);
1299         if (ret)
1300                 goto out_nospc;
1301
1302         /* Zero out the rest of the pages just to make sure */
1303         io_ctl_zero_remaining_pages(io_ctl);
1304
1305         /* Everything is written out, now we dirty the pages in the file. */
1306         ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1307                                 0, i_size_read(inode), &cached_state);
1308         if (ret)
1309                 goto out_nospc;
1310
1311         if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1312                 up_write(&block_group->data_rwsem);
1313         /*
1314          * Release the pages and unlock the extent, we will flush
1315          * them out later
1316          */
1317         io_ctl_drop_pages(io_ctl);
1318
1319         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1320                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1321
1322         /*
1323          * at this point the pages are under IO and we're happy,
1324          * The caller is responsible for waiting on them and updating the
1325          * the cache and the inode
1326          */
1327         io_ctl->entries = entries;
1328         io_ctl->bitmaps = bitmaps;
1329
1330         ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1331         if (ret)
1332                 goto out;
1333
1334         return 0;
1335
1336 out:
1337         io_ctl->inode = NULL;
1338         io_ctl_free(io_ctl);
1339         if (ret) {
1340                 invalidate_inode_pages2(inode->i_mapping);
1341                 BTRFS_I(inode)->generation = 0;
1342         }
1343         btrfs_update_inode(trans, root, inode);
1344         if (must_iput)
1345                 iput(inode);
1346         return ret;
1347
1348 out_nospc_locked:
1349         cleanup_bitmap_list(&bitmap_list);
1350         spin_unlock(&ctl->tree_lock);
1351         mutex_unlock(&ctl->cache_writeout_mutex);
1352
1353 out_nospc:
1354         cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1355
1356         if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1357                 up_write(&block_group->data_rwsem);
1358
1359         goto out;
1360 }
1361
1362 int btrfs_write_out_cache(struct btrfs_root *root,
1363                           struct btrfs_trans_handle *trans,
1364                           struct btrfs_block_group_cache *block_group,
1365                           struct btrfs_path *path)
1366 {
1367         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1368         struct inode *inode;
1369         int ret = 0;
1370
1371         root = root->fs_info->tree_root;
1372
1373         spin_lock(&block_group->lock);
1374         if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1375                 spin_unlock(&block_group->lock);
1376                 return 0;
1377         }
1378         spin_unlock(&block_group->lock);
1379
1380         inode = lookup_free_space_inode(root, block_group, path);
1381         if (IS_ERR(inode))
1382                 return 0;
1383
1384         ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1385                                       &block_group->io_ctl, trans,
1386                                       path, block_group->key.objectid);
1387         if (ret) {
1388 #ifdef DEBUG
1389                 btrfs_err(root->fs_info,
1390                         "failed to write free space cache for block group %llu",
1391                         block_group->key.objectid);
1392 #endif
1393                 spin_lock(&block_group->lock);
1394                 block_group->disk_cache_state = BTRFS_DC_ERROR;
1395                 spin_unlock(&block_group->lock);
1396
1397                 block_group->io_ctl.inode = NULL;
1398                 iput(inode);
1399         }
1400
1401         /*
1402          * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1403          * to wait for IO and put the inode
1404          */
1405
1406         return ret;
1407 }
1408
1409 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1410                                           u64 offset)
1411 {
1412         ASSERT(offset >= bitmap_start);
1413         offset -= bitmap_start;
1414         return (unsigned long)(div_u64(offset, unit));
1415 }
1416
1417 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1418 {
1419         return (unsigned long)(div_u64(bytes, unit));
1420 }
1421
1422 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1423                                    u64 offset)
1424 {
1425         u64 bitmap_start;
1426         u32 bytes_per_bitmap;
1427
1428         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1429         bitmap_start = offset - ctl->start;
1430         bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1431         bitmap_start *= bytes_per_bitmap;
1432         bitmap_start += ctl->start;
1433
1434         return bitmap_start;
1435 }
1436
1437 static int tree_insert_offset(struct rb_root *root, u64 offset,
1438                               struct rb_node *node, int bitmap)
1439 {
1440         struct rb_node **p = &root->rb_node;
1441         struct rb_node *parent = NULL;
1442         struct btrfs_free_space *info;
1443
1444         while (*p) {
1445                 parent = *p;
1446                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1447
1448                 if (offset < info->offset) {
1449                         p = &(*p)->rb_left;
1450                 } else if (offset > info->offset) {
1451                         p = &(*p)->rb_right;
1452                 } else {
1453                         /*
1454                          * we could have a bitmap entry and an extent entry
1455                          * share the same offset.  If this is the case, we want
1456                          * the extent entry to always be found first if we do a
1457                          * linear search through the tree, since we want to have
1458                          * the quickest allocation time, and allocating from an
1459                          * extent is faster than allocating from a bitmap.  So
1460                          * if we're inserting a bitmap and we find an entry at
1461                          * this offset, we want to go right, or after this entry
1462                          * logically.  If we are inserting an extent and we've
1463                          * found a bitmap, we want to go left, or before
1464                          * logically.
1465                          */
1466                         if (bitmap) {
1467                                 if (info->bitmap) {
1468                                         WARN_ON_ONCE(1);
1469                                         return -EEXIST;
1470                                 }
1471                                 p = &(*p)->rb_right;
1472                         } else {
1473                                 if (!info->bitmap) {
1474                                         WARN_ON_ONCE(1);
1475                                         return -EEXIST;
1476                                 }
1477                                 p = &(*p)->rb_left;
1478                         }
1479                 }
1480         }
1481
1482         rb_link_node(node, parent, p);
1483         rb_insert_color(node, root);
1484
1485         return 0;
1486 }
1487
1488 /*
1489  * searches the tree for the given offset.
1490  *
1491  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1492  * want a section that has at least bytes size and comes at or after the given
1493  * offset.
1494  */
1495 static struct btrfs_free_space *
1496 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1497                    u64 offset, int bitmap_only, int fuzzy)
1498 {
1499         struct rb_node *n = ctl->free_space_offset.rb_node;
1500         struct btrfs_free_space *entry, *prev = NULL;
1501
1502         /* find entry that is closest to the 'offset' */
1503         while (1) {
1504                 if (!n) {
1505                         entry = NULL;
1506                         break;
1507                 }
1508
1509                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1510                 prev = entry;
1511
1512                 if (offset < entry->offset)
1513                         n = n->rb_left;
1514                 else if (offset > entry->offset)
1515                         n = n->rb_right;
1516                 else
1517                         break;
1518         }
1519
1520         if (bitmap_only) {
1521                 if (!entry)
1522                         return NULL;
1523                 if (entry->bitmap)
1524                         return entry;
1525
1526                 /*
1527                  * bitmap entry and extent entry may share same offset,
1528                  * in that case, bitmap entry comes after extent entry.
1529                  */
1530                 n = rb_next(n);
1531                 if (!n)
1532                         return NULL;
1533                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1534                 if (entry->offset != offset)
1535                         return NULL;
1536
1537                 WARN_ON(!entry->bitmap);
1538                 return entry;
1539         } else if (entry) {
1540                 if (entry->bitmap) {
1541                         /*
1542                          * if previous extent entry covers the offset,
1543                          * we should return it instead of the bitmap entry
1544                          */
1545                         n = rb_prev(&entry->offset_index);
1546                         if (n) {
1547                                 prev = rb_entry(n, struct btrfs_free_space,
1548                                                 offset_index);
1549                                 if (!prev->bitmap &&
1550                                     prev->offset + prev->bytes > offset)
1551                                         entry = prev;
1552                         }
1553                 }
1554                 return entry;
1555         }
1556
1557         if (!prev)
1558                 return NULL;
1559
1560         /* find last entry before the 'offset' */
1561         entry = prev;
1562         if (entry->offset > offset) {
1563                 n = rb_prev(&entry->offset_index);
1564                 if (n) {
1565                         entry = rb_entry(n, struct btrfs_free_space,
1566                                         offset_index);
1567                         ASSERT(entry->offset <= offset);
1568                 } else {
1569                         if (fuzzy)
1570                                 return entry;
1571                         else
1572                                 return NULL;
1573                 }
1574         }
1575
1576         if (entry->bitmap) {
1577                 n = rb_prev(&entry->offset_index);
1578                 if (n) {
1579                         prev = rb_entry(n, struct btrfs_free_space,
1580                                         offset_index);
1581                         if (!prev->bitmap &&
1582                             prev->offset + prev->bytes > offset)
1583                                 return prev;
1584                 }
1585                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1586                         return entry;
1587         } else if (entry->offset + entry->bytes > offset)
1588                 return entry;
1589
1590         if (!fuzzy)
1591                 return NULL;
1592
1593         while (1) {
1594                 if (entry->bitmap) {
1595                         if (entry->offset + BITS_PER_BITMAP *
1596                             ctl->unit > offset)
1597                                 break;
1598                 } else {
1599                         if (entry->offset + entry->bytes > offset)
1600                                 break;
1601                 }
1602
1603                 n = rb_next(&entry->offset_index);
1604                 if (!n)
1605                         return NULL;
1606                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1607         }
1608         return entry;
1609 }
1610
1611 static inline void
1612 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1613                     struct btrfs_free_space *info)
1614 {
1615         rb_erase(&info->offset_index, &ctl->free_space_offset);
1616         ctl->free_extents--;
1617 }
1618
1619 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1620                               struct btrfs_free_space *info)
1621 {
1622         __unlink_free_space(ctl, info);
1623         ctl->free_space -= info->bytes;
1624 }
1625
1626 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1627                            struct btrfs_free_space *info)
1628 {
1629         int ret = 0;
1630
1631         ASSERT(info->bytes || info->bitmap);
1632         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1633                                  &info->offset_index, (info->bitmap != NULL));
1634         if (ret)
1635                 return ret;
1636
1637         ctl->free_space += info->bytes;
1638         ctl->free_extents++;
1639         return ret;
1640 }
1641
1642 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1643 {
1644         struct btrfs_block_group_cache *block_group = ctl->private;
1645         u64 max_bytes;
1646         u64 bitmap_bytes;
1647         u64 extent_bytes;
1648         u64 size = block_group->key.offset;
1649         u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1650         u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1651
1652         max_bitmaps = max_t(u32, max_bitmaps, 1);
1653
1654         ASSERT(ctl->total_bitmaps <= max_bitmaps);
1655
1656         /*
1657          * The goal is to keep the total amount of memory used per 1gb of space
1658          * at or below 32k, so we need to adjust how much memory we allow to be
1659          * used by extent based free space tracking
1660          */
1661         if (size < 1024 * 1024 * 1024)
1662                 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1663         else
1664                 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1665                         div_u64(size, 1024 * 1024 * 1024);
1666
1667         /*
1668          * we want to account for 1 more bitmap than what we have so we can make
1669          * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1670          * we add more bitmaps.
1671          */
1672         bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1673
1674         if (bitmap_bytes >= max_bytes) {
1675                 ctl->extents_thresh = 0;
1676                 return;
1677         }
1678
1679         /*
1680          * we want the extent entry threshold to always be at most 1/2 the max
1681          * bytes we can have, or whatever is less than that.
1682          */
1683         extent_bytes = max_bytes - bitmap_bytes;
1684         extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1685
1686         ctl->extents_thresh =
1687                 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1688 }
1689
1690 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1691                                        struct btrfs_free_space *info,
1692                                        u64 offset, u64 bytes)
1693 {
1694         unsigned long start, count;
1695
1696         start = offset_to_bit(info->offset, ctl->unit, offset);
1697         count = bytes_to_bits(bytes, ctl->unit);
1698         ASSERT(start + count <= BITS_PER_BITMAP);
1699
1700         bitmap_clear(info->bitmap, start, count);
1701
1702         info->bytes -= bytes;
1703 }
1704
1705 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1706                               struct btrfs_free_space *info, u64 offset,
1707                               u64 bytes)
1708 {
1709         __bitmap_clear_bits(ctl, info, offset, bytes);
1710         ctl->free_space -= bytes;
1711 }
1712
1713 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1714                             struct btrfs_free_space *info, u64 offset,
1715                             u64 bytes)
1716 {
1717         unsigned long start, count;
1718
1719         start = offset_to_bit(info->offset, ctl->unit, offset);
1720         count = bytes_to_bits(bytes, ctl->unit);
1721         ASSERT(start + count <= BITS_PER_BITMAP);
1722
1723         bitmap_set(info->bitmap, start, count);
1724
1725         info->bytes += bytes;
1726         ctl->free_space += bytes;
1727 }
1728
1729 /*
1730  * If we can not find suitable extent, we will use bytes to record
1731  * the size of the max extent.
1732  */
1733 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1734                          struct btrfs_free_space *bitmap_info, u64 *offset,
1735                          u64 *bytes)
1736 {
1737         unsigned long found_bits = 0;
1738         unsigned long max_bits = 0;
1739         unsigned long bits, i;
1740         unsigned long next_zero;
1741         unsigned long extent_bits;
1742
1743         i = offset_to_bit(bitmap_info->offset, ctl->unit,
1744                           max_t(u64, *offset, bitmap_info->offset));
1745         bits = bytes_to_bits(*bytes, ctl->unit);
1746
1747         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1748                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1749                                                BITS_PER_BITMAP, i);
1750                 extent_bits = next_zero - i;
1751                 if (extent_bits >= bits) {
1752                         found_bits = extent_bits;
1753                         break;
1754                 } else if (extent_bits > max_bits) {
1755                         max_bits = extent_bits;
1756                 }
1757                 i = next_zero;
1758         }
1759
1760         if (found_bits) {
1761                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1762                 *bytes = (u64)(found_bits) * ctl->unit;
1763                 return 0;
1764         }
1765
1766         *bytes = (u64)(max_bits) * ctl->unit;
1767         return -1;
1768 }
1769
1770 /* Cache the size of the max extent in bytes */
1771 static struct btrfs_free_space *
1772 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1773                 unsigned long align, u64 *max_extent_size)
1774 {
1775         struct btrfs_free_space *entry;
1776         struct rb_node *node;
1777         u64 tmp;
1778         u64 align_off;
1779         int ret;
1780
1781         if (!ctl->free_space_offset.rb_node)
1782                 goto out;
1783
1784         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1785         if (!entry)
1786                 goto out;
1787
1788         for (node = &entry->offset_index; node; node = rb_next(node)) {
1789                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1790                 if (entry->bytes < *bytes) {
1791                         if (entry->bytes > *max_extent_size)
1792                                 *max_extent_size = entry->bytes;
1793                         continue;
1794                 }
1795
1796                 /* make sure the space returned is big enough
1797                  * to match our requested alignment
1798                  */
1799                 if (*bytes >= align) {
1800                         tmp = entry->offset - ctl->start + align - 1;
1801                         tmp = div64_u64(tmp, align);
1802                         tmp = tmp * align + ctl->start;
1803                         align_off = tmp - entry->offset;
1804                 } else {
1805                         align_off = 0;
1806                         tmp = entry->offset;
1807                 }
1808
1809                 if (entry->bytes < *bytes + align_off) {
1810                         if (entry->bytes > *max_extent_size)
1811                                 *max_extent_size = entry->bytes;
1812                         continue;
1813                 }
1814
1815                 if (entry->bitmap) {
1816                         u64 size = *bytes;
1817
1818                         ret = search_bitmap(ctl, entry, &tmp, &size);
1819                         if (!ret) {
1820                                 *offset = tmp;
1821                                 *bytes = size;
1822                                 return entry;
1823                         } else if (size > *max_extent_size) {
1824                                 *max_extent_size = size;
1825                         }
1826                         continue;
1827                 }
1828
1829                 *offset = tmp;
1830                 *bytes = entry->bytes - align_off;
1831                 return entry;
1832         }
1833 out:
1834         return NULL;
1835 }
1836
1837 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1838                            struct btrfs_free_space *info, u64 offset)
1839 {
1840         info->offset = offset_to_bitmap(ctl, offset);
1841         info->bytes = 0;
1842         INIT_LIST_HEAD(&info->list);
1843         link_free_space(ctl, info);
1844         ctl->total_bitmaps++;
1845
1846         ctl->op->recalc_thresholds(ctl);
1847 }
1848
1849 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1850                         struct btrfs_free_space *bitmap_info)
1851 {
1852         unlink_free_space(ctl, bitmap_info);
1853         kfree(bitmap_info->bitmap);
1854         kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1855         ctl->total_bitmaps--;
1856         ctl->op->recalc_thresholds(ctl);
1857 }
1858
1859 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1860                               struct btrfs_free_space *bitmap_info,
1861                               u64 *offset, u64 *bytes)
1862 {
1863         u64 end;
1864         u64 search_start, search_bytes;
1865         int ret;
1866
1867 again:
1868         end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1869
1870         /*
1871          * We need to search for bits in this bitmap.  We could only cover some
1872          * of the extent in this bitmap thanks to how we add space, so we need
1873          * to search for as much as it as we can and clear that amount, and then
1874          * go searching for the next bit.
1875          */
1876         search_start = *offset;
1877         search_bytes = ctl->unit;
1878         search_bytes = min(search_bytes, end - search_start + 1);
1879         ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1880         if (ret < 0 || search_start != *offset)
1881                 return -EINVAL;
1882
1883         /* We may have found more bits than what we need */
1884         search_bytes = min(search_bytes, *bytes);
1885
1886         /* Cannot clear past the end of the bitmap */
1887         search_bytes = min(search_bytes, end - search_start + 1);
1888
1889         bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1890         *offset += search_bytes;
1891         *bytes -= search_bytes;
1892
1893         if (*bytes) {
1894                 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1895                 if (!bitmap_info->bytes)
1896                         free_bitmap(ctl, bitmap_info);
1897
1898                 /*
1899                  * no entry after this bitmap, but we still have bytes to
1900                  * remove, so something has gone wrong.
1901                  */
1902                 if (!next)
1903                         return -EINVAL;
1904
1905                 bitmap_info = rb_entry(next, struct btrfs_free_space,
1906                                        offset_index);
1907
1908                 /*
1909                  * if the next entry isn't a bitmap we need to return to let the
1910                  * extent stuff do its work.
1911                  */
1912                 if (!bitmap_info->bitmap)
1913                         return -EAGAIN;
1914
1915                 /*
1916                  * Ok the next item is a bitmap, but it may not actually hold
1917                  * the information for the rest of this free space stuff, so
1918                  * look for it, and if we don't find it return so we can try
1919                  * everything over again.
1920                  */
1921                 search_start = *offset;
1922                 search_bytes = ctl->unit;
1923                 ret = search_bitmap(ctl, bitmap_info, &search_start,
1924                                     &search_bytes);
1925                 if (ret < 0 || search_start != *offset)
1926                         return -EAGAIN;
1927
1928                 goto again;
1929         } else if (!bitmap_info->bytes)
1930                 free_bitmap(ctl, bitmap_info);
1931
1932         return 0;
1933 }
1934
1935 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1936                                struct btrfs_free_space *info, u64 offset,
1937                                u64 bytes)
1938 {
1939         u64 bytes_to_set = 0;
1940         u64 end;
1941
1942         end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1943
1944         bytes_to_set = min(end - offset, bytes);
1945
1946         bitmap_set_bits(ctl, info, offset, bytes_to_set);
1947
1948         return bytes_to_set;
1949
1950 }
1951
1952 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1953                       struct btrfs_free_space *info)
1954 {
1955         struct btrfs_block_group_cache *block_group = ctl->private;
1956
1957         /*
1958          * If we are below the extents threshold then we can add this as an
1959          * extent, and don't have to deal with the bitmap
1960          */
1961         if (ctl->free_extents < ctl->extents_thresh) {
1962                 /*
1963                  * If this block group has some small extents we don't want to
1964                  * use up all of our free slots in the cache with them, we want
1965                  * to reserve them to larger extents, however if we have plent
1966                  * of cache left then go ahead an dadd them, no sense in adding
1967                  * the overhead of a bitmap if we don't have to.
1968                  */
1969                 if (info->bytes <= block_group->sectorsize * 4) {
1970                         if (ctl->free_extents * 2 <= ctl->extents_thresh)
1971                                 return false;
1972                 } else {
1973                         return false;
1974                 }
1975         }
1976
1977         /*
1978          * The original block groups from mkfs can be really small, like 8
1979          * megabytes, so don't bother with a bitmap for those entries.  However
1980          * some block groups can be smaller than what a bitmap would cover but
1981          * are still large enough that they could overflow the 32k memory limit,
1982          * so allow those block groups to still be allowed to have a bitmap
1983          * entry.
1984          */
1985         if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1986                 return false;
1987
1988         return true;
1989 }
1990
1991 static struct btrfs_free_space_op free_space_op = {
1992         .recalc_thresholds      = recalculate_thresholds,
1993         .use_bitmap             = use_bitmap,
1994 };
1995
1996 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1997                               struct btrfs_free_space *info)
1998 {
1999         struct btrfs_free_space *bitmap_info;
2000         struct btrfs_block_group_cache *block_group = NULL;
2001         int added = 0;
2002         u64 bytes, offset, bytes_added;
2003         int ret;
2004
2005         bytes = info->bytes;
2006         offset = info->offset;
2007
2008         if (!ctl->op->use_bitmap(ctl, info))
2009                 return 0;
2010
2011         if (ctl->op == &free_space_op)
2012                 block_group = ctl->private;
2013 again:
2014         /*
2015          * Since we link bitmaps right into the cluster we need to see if we
2016          * have a cluster here, and if so and it has our bitmap we need to add
2017          * the free space to that bitmap.
2018          */
2019         if (block_group && !list_empty(&block_group->cluster_list)) {
2020                 struct btrfs_free_cluster *cluster;
2021                 struct rb_node *node;
2022                 struct btrfs_free_space *entry;
2023
2024                 cluster = list_entry(block_group->cluster_list.next,
2025                                      struct btrfs_free_cluster,
2026                                      block_group_list);
2027                 spin_lock(&cluster->lock);
2028                 node = rb_first(&cluster->root);
2029                 if (!node) {
2030                         spin_unlock(&cluster->lock);
2031                         goto no_cluster_bitmap;
2032                 }
2033
2034                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2035                 if (!entry->bitmap) {
2036                         spin_unlock(&cluster->lock);
2037                         goto no_cluster_bitmap;
2038                 }
2039
2040                 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2041                         bytes_added = add_bytes_to_bitmap(ctl, entry,
2042                                                           offset, bytes);
2043                         bytes -= bytes_added;
2044                         offset += bytes_added;
2045                 }
2046                 spin_unlock(&cluster->lock);
2047                 if (!bytes) {
2048                         ret = 1;
2049                         goto out;
2050                 }
2051         }
2052
2053 no_cluster_bitmap:
2054         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2055                                          1, 0);
2056         if (!bitmap_info) {
2057                 ASSERT(added == 0);
2058                 goto new_bitmap;
2059         }
2060
2061         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2062         bytes -= bytes_added;
2063         offset += bytes_added;
2064         added = 0;
2065
2066         if (!bytes) {
2067                 ret = 1;
2068                 goto out;
2069         } else
2070                 goto again;
2071
2072 new_bitmap:
2073         if (info && info->bitmap) {
2074                 add_new_bitmap(ctl, info, offset);
2075                 added = 1;
2076                 info = NULL;
2077                 goto again;
2078         } else {
2079                 spin_unlock(&ctl->tree_lock);
2080
2081                 /* no pre-allocated info, allocate a new one */
2082                 if (!info) {
2083                         info = kmem_cache_zalloc(btrfs_free_space_cachep,
2084                                                  GFP_NOFS);
2085                         if (!info) {
2086                                 spin_lock(&ctl->tree_lock);
2087                                 ret = -ENOMEM;
2088                                 goto out;
2089                         }
2090                 }
2091
2092                 /* allocate the bitmap */
2093                 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2094                 spin_lock(&ctl->tree_lock);
2095                 if (!info->bitmap) {
2096                         ret = -ENOMEM;
2097                         goto out;
2098                 }
2099                 goto again;
2100         }
2101
2102 out:
2103         if (info) {
2104                 if (info->bitmap)
2105                         kfree(info->bitmap);
2106                 kmem_cache_free(btrfs_free_space_cachep, info);
2107         }
2108
2109         return ret;
2110 }
2111
2112 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2113                           struct btrfs_free_space *info, bool update_stat)
2114 {
2115         struct btrfs_free_space *left_info;
2116         struct btrfs_free_space *right_info;
2117         bool merged = false;
2118         u64 offset = info->offset;
2119         u64 bytes = info->bytes;
2120
2121         /*
2122          * first we want to see if there is free space adjacent to the range we
2123          * are adding, if there is remove that struct and add a new one to
2124          * cover the entire range
2125          */
2126         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2127         if (right_info && rb_prev(&right_info->offset_index))
2128                 left_info = rb_entry(rb_prev(&right_info->offset_index),
2129                                      struct btrfs_free_space, offset_index);
2130         else
2131                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2132
2133         if (right_info && !right_info->bitmap) {
2134                 if (update_stat)
2135                         unlink_free_space(ctl, right_info);
2136                 else
2137                         __unlink_free_space(ctl, right_info);
2138                 info->bytes += right_info->bytes;
2139                 kmem_cache_free(btrfs_free_space_cachep, right_info);
2140                 merged = true;
2141         }
2142
2143         if (left_info && !left_info->bitmap &&
2144             left_info->offset + left_info->bytes == offset) {
2145                 if (update_stat)
2146                         unlink_free_space(ctl, left_info);
2147                 else
2148                         __unlink_free_space(ctl, left_info);
2149                 info->offset = left_info->offset;
2150                 info->bytes += left_info->bytes;
2151                 kmem_cache_free(btrfs_free_space_cachep, left_info);
2152                 merged = true;
2153         }
2154
2155         return merged;
2156 }
2157
2158 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2159                                      struct btrfs_free_space *info,
2160                                      bool update_stat)
2161 {
2162         struct btrfs_free_space *bitmap;
2163         unsigned long i;
2164         unsigned long j;
2165         const u64 end = info->offset + info->bytes;
2166         const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2167         u64 bytes;
2168
2169         bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2170         if (!bitmap)
2171                 return false;
2172
2173         i = offset_to_bit(bitmap->offset, ctl->unit, end);
2174         j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2175         if (j == i)
2176                 return false;
2177         bytes = (j - i) * ctl->unit;
2178         info->bytes += bytes;
2179
2180         if (update_stat)
2181                 bitmap_clear_bits(ctl, bitmap, end, bytes);
2182         else
2183                 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2184
2185         if (!bitmap->bytes)
2186                 free_bitmap(ctl, bitmap);
2187
2188         return true;
2189 }
2190
2191 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2192                                        struct btrfs_free_space *info,
2193                                        bool update_stat)
2194 {
2195         struct btrfs_free_space *bitmap;
2196         u64 bitmap_offset;
2197         unsigned long i;
2198         unsigned long j;
2199         unsigned long prev_j;
2200         u64 bytes;
2201
2202         bitmap_offset = offset_to_bitmap(ctl, info->offset);
2203         /* If we're on a boundary, try the previous logical bitmap. */
2204         if (bitmap_offset == info->offset) {
2205                 if (info->offset == 0)
2206                         return false;
2207                 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2208         }
2209
2210         bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2211         if (!bitmap)
2212                 return false;
2213
2214         i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2215         j = 0;
2216         prev_j = (unsigned long)-1;
2217         for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2218                 if (j > i)
2219                         break;
2220                 prev_j = j;
2221         }
2222         if (prev_j == i)
2223                 return false;
2224
2225         if (prev_j == (unsigned long)-1)
2226                 bytes = (i + 1) * ctl->unit;
2227         else
2228                 bytes = (i - prev_j) * ctl->unit;
2229
2230         info->offset -= bytes;
2231         info->bytes += bytes;
2232
2233         if (update_stat)
2234                 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2235         else
2236                 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2237
2238         if (!bitmap->bytes)
2239                 free_bitmap(ctl, bitmap);
2240
2241         return true;
2242 }
2243
2244 /*
2245  * We prefer always to allocate from extent entries, both for clustered and
2246  * non-clustered allocation requests. So when attempting to add a new extent
2247  * entry, try to see if there's adjacent free space in bitmap entries, and if
2248  * there is, migrate that space from the bitmaps to the extent.
2249  * Like this we get better chances of satisfying space allocation requests
2250  * because we attempt to satisfy them based on a single cache entry, and never
2251  * on 2 or more entries - even if the entries represent a contiguous free space
2252  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2253  * ends).
2254  */
2255 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2256                               struct btrfs_free_space *info,
2257                               bool update_stat)
2258 {
2259         /*
2260          * Only work with disconnected entries, as we can change their offset,
2261          * and must be extent entries.
2262          */
2263         ASSERT(!info->bitmap);
2264         ASSERT(RB_EMPTY_NODE(&info->offset_index));
2265
2266         if (ctl->total_bitmaps > 0) {
2267                 bool stole_end;
2268                 bool stole_front = false;
2269
2270                 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2271                 if (ctl->total_bitmaps > 0)
2272                         stole_front = steal_from_bitmap_to_front(ctl, info,
2273                                                                  update_stat);
2274
2275                 if (stole_end || stole_front)
2276                         try_merge_free_space(ctl, info, update_stat);
2277         }
2278 }
2279
2280 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2281                            u64 offset, u64 bytes)
2282 {
2283         struct btrfs_free_space *info;
2284         int ret = 0;
2285
2286         info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2287         if (!info)
2288                 return -ENOMEM;
2289
2290         info->offset = offset;
2291         info->bytes = bytes;
2292         RB_CLEAR_NODE(&info->offset_index);
2293
2294         spin_lock(&ctl->tree_lock);
2295
2296         if (try_merge_free_space(ctl, info, true))
2297                 goto link;
2298
2299         /*
2300          * There was no extent directly to the left or right of this new
2301          * extent then we know we're going to have to allocate a new extent, so
2302          * before we do that see if we need to drop this into a bitmap
2303          */
2304         ret = insert_into_bitmap(ctl, info);
2305         if (ret < 0) {
2306                 goto out;
2307         } else if (ret) {
2308                 ret = 0;
2309                 goto out;
2310         }
2311 link:
2312         /*
2313          * Only steal free space from adjacent bitmaps if we're sure we're not
2314          * going to add the new free space to existing bitmap entries - because
2315          * that would mean unnecessary work that would be reverted. Therefore
2316          * attempt to steal space from bitmaps if we're adding an extent entry.
2317          */
2318         steal_from_bitmap(ctl, info, true);
2319
2320         ret = link_free_space(ctl, info);
2321         if (ret)
2322                 kmem_cache_free(btrfs_free_space_cachep, info);
2323 out:
2324         spin_unlock(&ctl->tree_lock);
2325
2326         if (ret) {
2327                 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2328                 ASSERT(ret != -EEXIST);
2329         }
2330
2331         return ret;
2332 }
2333
2334 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2335                             u64 offset, u64 bytes)
2336 {
2337         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2338         struct btrfs_free_space *info;
2339         int ret;
2340         bool re_search = false;
2341
2342         spin_lock(&ctl->tree_lock);
2343
2344 again:
2345         ret = 0;
2346         if (!bytes)
2347                 goto out_lock;
2348
2349         info = tree_search_offset(ctl, offset, 0, 0);
2350         if (!info) {
2351                 /*
2352                  * oops didn't find an extent that matched the space we wanted
2353                  * to remove, look for a bitmap instead
2354                  */
2355                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2356                                           1, 0);
2357                 if (!info) {
2358                         /*
2359                          * If we found a partial bit of our free space in a
2360                          * bitmap but then couldn't find the other part this may
2361                          * be a problem, so WARN about it.
2362                          */
2363                         WARN_ON(re_search);
2364                         goto out_lock;
2365                 }
2366         }
2367
2368         re_search = false;
2369         if (!info->bitmap) {
2370                 unlink_free_space(ctl, info);
2371                 if (offset == info->offset) {
2372                         u64 to_free = min(bytes, info->bytes);
2373
2374                         info->bytes -= to_free;
2375                         info->offset += to_free;
2376                         if (info->bytes) {
2377                                 ret = link_free_space(ctl, info);
2378                                 WARN_ON(ret);
2379                         } else {
2380                                 kmem_cache_free(btrfs_free_space_cachep, info);
2381                         }
2382
2383                         offset += to_free;
2384                         bytes -= to_free;
2385                         goto again;
2386                 } else {
2387                         u64 old_end = info->bytes + info->offset;
2388
2389                         info->bytes = offset - info->offset;
2390                         ret = link_free_space(ctl, info);
2391                         WARN_ON(ret);
2392                         if (ret)
2393                                 goto out_lock;
2394
2395                         /* Not enough bytes in this entry to satisfy us */
2396                         if (old_end < offset + bytes) {
2397                                 bytes -= old_end - offset;
2398                                 offset = old_end;
2399                                 goto again;
2400                         } else if (old_end == offset + bytes) {
2401                                 /* all done */
2402                                 goto out_lock;
2403                         }
2404                         spin_unlock(&ctl->tree_lock);
2405
2406                         ret = btrfs_add_free_space(block_group, offset + bytes,
2407                                                    old_end - (offset + bytes));
2408                         WARN_ON(ret);
2409                         goto out;
2410                 }
2411         }
2412
2413         ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2414         if (ret == -EAGAIN) {
2415                 re_search = true;
2416                 goto again;
2417         }
2418 out_lock:
2419         spin_unlock(&ctl->tree_lock);
2420 out:
2421         return ret;
2422 }
2423
2424 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2425                            u64 bytes)
2426 {
2427         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2428         struct btrfs_free_space *info;
2429         struct rb_node *n;
2430         int count = 0;
2431
2432         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2433                 info = rb_entry(n, struct btrfs_free_space, offset_index);
2434                 if (info->bytes >= bytes && !block_group->ro)
2435                         count++;
2436                 btrfs_crit(block_group->fs_info,
2437                            "entry offset %llu, bytes %llu, bitmap %s",
2438                            info->offset, info->bytes,
2439                        (info->bitmap) ? "yes" : "no");
2440         }
2441         btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2442                list_empty(&block_group->cluster_list) ? "no" : "yes");
2443         btrfs_info(block_group->fs_info,
2444                    "%d blocks of free space at or bigger than bytes is", count);
2445 }
2446
2447 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2448 {
2449         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2450
2451         spin_lock_init(&ctl->tree_lock);
2452         ctl->unit = block_group->sectorsize;
2453         ctl->start = block_group->key.objectid;
2454         ctl->private = block_group;
2455         ctl->op = &free_space_op;
2456         INIT_LIST_HEAD(&ctl->trimming_ranges);
2457         mutex_init(&ctl->cache_writeout_mutex);
2458
2459         /*
2460          * we only want to have 32k of ram per block group for keeping
2461          * track of free space, and if we pass 1/2 of that we want to
2462          * start converting things over to using bitmaps
2463          */
2464         ctl->extents_thresh = ((1024 * 32) / 2) /
2465                                 sizeof(struct btrfs_free_space);
2466 }
2467
2468 /*
2469  * for a given cluster, put all of its extents back into the free
2470  * space cache.  If the block group passed doesn't match the block group
2471  * pointed to by the cluster, someone else raced in and freed the
2472  * cluster already.  In that case, we just return without changing anything
2473  */
2474 static int
2475 __btrfs_return_cluster_to_free_space(
2476                              struct btrfs_block_group_cache *block_group,
2477                              struct btrfs_free_cluster *cluster)
2478 {
2479         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2480         struct btrfs_free_space *entry;
2481         struct rb_node *node;
2482
2483         spin_lock(&cluster->lock);
2484         if (cluster->block_group != block_group)
2485                 goto out;
2486
2487         cluster->block_group = NULL;
2488         cluster->window_start = 0;
2489         list_del_init(&cluster->block_group_list);
2490
2491         node = rb_first(&cluster->root);
2492         while (node) {
2493                 bool bitmap;
2494
2495                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2496                 node = rb_next(&entry->offset_index);
2497                 rb_erase(&entry->offset_index, &cluster->root);
2498                 RB_CLEAR_NODE(&entry->offset_index);
2499
2500                 bitmap = (entry->bitmap != NULL);
2501                 if (!bitmap) {
2502                         try_merge_free_space(ctl, entry, false);
2503                         steal_from_bitmap(ctl, entry, false);
2504                 }
2505                 tree_insert_offset(&ctl->free_space_offset,
2506                                    entry->offset, &entry->offset_index, bitmap);
2507         }
2508         cluster->root = RB_ROOT;
2509
2510 out:
2511         spin_unlock(&cluster->lock);
2512         btrfs_put_block_group(block_group);
2513         return 0;
2514 }
2515
2516 static void __btrfs_remove_free_space_cache_locked(
2517                                 struct btrfs_free_space_ctl *ctl)
2518 {
2519         struct btrfs_free_space *info;
2520         struct rb_node *node;
2521
2522         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2523                 info = rb_entry(node, struct btrfs_free_space, offset_index);
2524                 if (!info->bitmap) {
2525                         unlink_free_space(ctl, info);
2526                         kmem_cache_free(btrfs_free_space_cachep, info);
2527                 } else {
2528                         free_bitmap(ctl, info);
2529                 }
2530
2531                 cond_resched_lock(&ctl->tree_lock);
2532         }
2533 }
2534
2535 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2536 {
2537         spin_lock(&ctl->tree_lock);
2538         __btrfs_remove_free_space_cache_locked(ctl);
2539         spin_unlock(&ctl->tree_lock);
2540 }
2541
2542 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2543 {
2544         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545         struct btrfs_free_cluster *cluster;
2546         struct list_head *head;
2547
2548         spin_lock(&ctl->tree_lock);
2549         while ((head = block_group->cluster_list.next) !=
2550                &block_group->cluster_list) {
2551                 cluster = list_entry(head, struct btrfs_free_cluster,
2552                                      block_group_list);
2553
2554                 WARN_ON(cluster->block_group != block_group);
2555                 __btrfs_return_cluster_to_free_space(block_group, cluster);
2556
2557                 cond_resched_lock(&ctl->tree_lock);
2558         }
2559         __btrfs_remove_free_space_cache_locked(ctl);
2560         spin_unlock(&ctl->tree_lock);
2561
2562 }
2563
2564 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2565                                u64 offset, u64 bytes, u64 empty_size,
2566                                u64 *max_extent_size)
2567 {
2568         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2569         struct btrfs_free_space *entry = NULL;
2570         u64 bytes_search = bytes + empty_size;
2571         u64 ret = 0;
2572         u64 align_gap = 0;
2573         u64 align_gap_len = 0;
2574
2575         spin_lock(&ctl->tree_lock);
2576         entry = find_free_space(ctl, &offset, &bytes_search,
2577                                 block_group->full_stripe_len, max_extent_size);
2578         if (!entry)
2579                 goto out;
2580
2581         ret = offset;
2582         if (entry->bitmap) {
2583                 bitmap_clear_bits(ctl, entry, offset, bytes);
2584                 if (!entry->bytes)
2585                         free_bitmap(ctl, entry);
2586         } else {
2587                 unlink_free_space(ctl, entry);
2588                 align_gap_len = offset - entry->offset;
2589                 align_gap = entry->offset;
2590
2591                 entry->offset = offset + bytes;
2592                 WARN_ON(entry->bytes < bytes + align_gap_len);
2593
2594                 entry->bytes -= bytes + align_gap_len;
2595                 if (!entry->bytes)
2596                         kmem_cache_free(btrfs_free_space_cachep, entry);
2597                 else
2598                         link_free_space(ctl, entry);
2599         }
2600 out:
2601         spin_unlock(&ctl->tree_lock);
2602
2603         if (align_gap_len)
2604                 __btrfs_add_free_space(ctl, align_gap, align_gap_len);
2605         return ret;
2606 }
2607
2608 /*
2609  * given a cluster, put all of its extents back into the free space
2610  * cache.  If a block group is passed, this function will only free
2611  * a cluster that belongs to the passed block group.
2612  *
2613  * Otherwise, it'll get a reference on the block group pointed to by the
2614  * cluster and remove the cluster from it.
2615  */
2616 int btrfs_return_cluster_to_free_space(
2617                                struct btrfs_block_group_cache *block_group,
2618                                struct btrfs_free_cluster *cluster)
2619 {
2620         struct btrfs_free_space_ctl *ctl;
2621         int ret;
2622
2623         /* first, get a safe pointer to the block group */
2624         spin_lock(&cluster->lock);
2625         if (!block_group) {
2626                 block_group = cluster->block_group;
2627                 if (!block_group) {
2628                         spin_unlock(&cluster->lock);
2629                         return 0;
2630                 }
2631         } else if (cluster->block_group != block_group) {
2632                 /* someone else has already freed it don't redo their work */
2633                 spin_unlock(&cluster->lock);
2634                 return 0;
2635         }
2636         atomic_inc(&block_group->count);
2637         spin_unlock(&cluster->lock);
2638
2639         ctl = block_group->free_space_ctl;
2640
2641         /* now return any extents the cluster had on it */
2642         spin_lock(&ctl->tree_lock);
2643         ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2644         spin_unlock(&ctl->tree_lock);
2645
2646         /* finally drop our ref */
2647         btrfs_put_block_group(block_group);
2648         return ret;
2649 }
2650
2651 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2652                                    struct btrfs_free_cluster *cluster,
2653                                    struct btrfs_free_space *entry,
2654                                    u64 bytes, u64 min_start,
2655                                    u64 *max_extent_size)
2656 {
2657         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2658         int err;
2659         u64 search_start = cluster->window_start;
2660         u64 search_bytes = bytes;
2661         u64 ret = 0;
2662
2663         search_start = min_start;
2664         search_bytes = bytes;
2665
2666         err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2667         if (err) {
2668                 if (search_bytes > *max_extent_size)
2669                         *max_extent_size = search_bytes;
2670                 return 0;
2671         }
2672
2673         ret = search_start;
2674         __bitmap_clear_bits(ctl, entry, ret, bytes);
2675
2676         return ret;
2677 }
2678
2679 /*
2680  * given a cluster, try to allocate 'bytes' from it, returns 0
2681  * if it couldn't find anything suitably large, or a logical disk offset
2682  * if things worked out
2683  */
2684 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2685                              struct btrfs_free_cluster *cluster, u64 bytes,
2686                              u64 min_start, u64 *max_extent_size)
2687 {
2688         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2689         struct btrfs_free_space *entry = NULL;
2690         struct rb_node *node;
2691         u64 ret = 0;
2692
2693         spin_lock(&cluster->lock);
2694         if (bytes > cluster->max_size)
2695                 goto out;
2696
2697         if (cluster->block_group != block_group)
2698                 goto out;
2699
2700         node = rb_first(&cluster->root);
2701         if (!node)
2702                 goto out;
2703
2704         entry = rb_entry(node, struct btrfs_free_space, offset_index);
2705         while (1) {
2706                 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2707                         *max_extent_size = entry->bytes;
2708
2709                 if (entry->bytes < bytes ||
2710                     (!entry->bitmap && entry->offset < min_start)) {
2711                         node = rb_next(&entry->offset_index);
2712                         if (!node)
2713                                 break;
2714                         entry = rb_entry(node, struct btrfs_free_space,
2715                                          offset_index);
2716                         continue;
2717                 }
2718
2719                 if (entry->bitmap) {
2720                         ret = btrfs_alloc_from_bitmap(block_group,
2721                                                       cluster, entry, bytes,
2722                                                       cluster->window_start,
2723                                                       max_extent_size);
2724                         if (ret == 0) {
2725                                 node = rb_next(&entry->offset_index);
2726                                 if (!node)
2727                                         break;
2728                                 entry = rb_entry(node, struct btrfs_free_space,
2729                                                  offset_index);
2730                                 continue;
2731                         }
2732                         cluster->window_start += bytes;
2733                 } else {
2734                         ret = entry->offset;
2735
2736                         entry->offset += bytes;
2737                         entry->bytes -= bytes;
2738                 }
2739
2740                 if (entry->bytes == 0)
2741                         rb_erase(&entry->offset_index, &cluster->root);
2742                 break;
2743         }
2744 out:
2745         spin_unlock(&cluster->lock);
2746
2747         if (!ret)
2748                 return 0;
2749
2750         spin_lock(&ctl->tree_lock);
2751
2752         ctl->free_space -= bytes;
2753         if (entry->bytes == 0) {
2754                 ctl->free_extents--;
2755                 if (entry->bitmap) {
2756                         kfree(entry->bitmap);
2757                         ctl->total_bitmaps--;
2758                         ctl->op->recalc_thresholds(ctl);
2759                 }
2760                 kmem_cache_free(btrfs_free_space_cachep, entry);
2761         }
2762
2763         spin_unlock(&ctl->tree_lock);
2764
2765         return ret;
2766 }
2767
2768 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2769                                 struct btrfs_free_space *entry,
2770                                 struct btrfs_free_cluster *cluster,
2771                                 u64 offset, u64 bytes,
2772                                 u64 cont1_bytes, u64 min_bytes)
2773 {
2774         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2775         unsigned long next_zero;
2776         unsigned long i;
2777         unsigned long want_bits;
2778         unsigned long min_bits;
2779         unsigned long found_bits;
2780         unsigned long start = 0;
2781         unsigned long total_found = 0;
2782         int ret;
2783
2784         i = offset_to_bit(entry->offset, ctl->unit,
2785                           max_t(u64, offset, entry->offset));
2786         want_bits = bytes_to_bits(bytes, ctl->unit);
2787         min_bits = bytes_to_bits(min_bytes, ctl->unit);
2788
2789 again:
2790         found_bits = 0;
2791         for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2792                 next_zero = find_next_zero_bit(entry->bitmap,
2793                                                BITS_PER_BITMAP, i);
2794                 if (next_zero - i >= min_bits) {
2795                         found_bits = next_zero - i;
2796                         break;
2797                 }
2798                 i = next_zero;
2799         }
2800
2801         if (!found_bits)
2802                 return -ENOSPC;
2803
2804         if (!total_found) {
2805                 start = i;
2806                 cluster->max_size = 0;
2807         }
2808
2809         total_found += found_bits;
2810
2811         if (cluster->max_size < found_bits * ctl->unit)
2812                 cluster->max_size = found_bits * ctl->unit;
2813
2814         if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2815                 i = next_zero + 1;
2816                 goto again;
2817         }
2818
2819         cluster->window_start = start * ctl->unit + entry->offset;
2820         rb_erase(&entry->offset_index, &ctl->free_space_offset);
2821         ret = tree_insert_offset(&cluster->root, entry->offset,
2822                                  &entry->offset_index, 1);
2823         ASSERT(!ret); /* -EEXIST; Logic error */
2824
2825         trace_btrfs_setup_cluster(block_group, cluster,
2826                                   total_found * ctl->unit, 1);
2827         return 0;
2828 }
2829
2830 /*
2831  * This searches the block group for just extents to fill the cluster with.
2832  * Try to find a cluster with at least bytes total bytes, at least one
2833  * extent of cont1_bytes, and other clusters of at least min_bytes.
2834  */
2835 static noinline int
2836 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2837                         struct btrfs_free_cluster *cluster,
2838                         struct list_head *bitmaps, u64 offset, u64 bytes,
2839                         u64 cont1_bytes, u64 min_bytes)
2840 {
2841         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2842         struct btrfs_free_space *first = NULL;
2843         struct btrfs_free_space *entry = NULL;
2844         struct btrfs_free_space *last;
2845         struct rb_node *node;
2846         u64 window_free;
2847         u64 max_extent;
2848         u64 total_size = 0;
2849
2850         entry = tree_search_offset(ctl, offset, 0, 1);
2851         if (!entry)
2852                 return -ENOSPC;
2853
2854         /*
2855          * We don't want bitmaps, so just move along until we find a normal
2856          * extent entry.
2857          */
2858         while (entry->bitmap || entry->bytes < min_bytes) {
2859                 if (entry->bitmap && list_empty(&entry->list))
2860                         list_add_tail(&entry->list, bitmaps);
2861                 node = rb_next(&entry->offset_index);
2862                 if (!node)
2863                         return -ENOSPC;
2864                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2865         }
2866
2867         window_free = entry->bytes;
2868         max_extent = entry->bytes;
2869         first = entry;
2870         last = entry;
2871
2872         for (node = rb_next(&entry->offset_index); node;
2873              node = rb_next(&entry->offset_index)) {
2874                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2875
2876                 if (entry->bitmap) {
2877                         if (list_empty(&entry->list))
2878                                 list_add_tail(&entry->list, bitmaps);
2879                         continue;
2880                 }
2881
2882                 if (entry->bytes < min_bytes)
2883                         continue;
2884
2885                 last = entry;
2886                 window_free += entry->bytes;
2887                 if (entry->bytes > max_extent)
2888                         max_extent = entry->bytes;
2889         }
2890
2891         if (window_free < bytes || max_extent < cont1_bytes)
2892                 return -ENOSPC;
2893
2894         cluster->window_start = first->offset;
2895
2896         node = &first->offset_index;
2897
2898         /*
2899          * now we've found our entries, pull them out of the free space
2900          * cache and put them into the cluster rbtree
2901          */
2902         do {
2903                 int ret;
2904
2905                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2906                 node = rb_next(&entry->offset_index);
2907                 if (entry->bitmap || entry->bytes < min_bytes)
2908                         continue;
2909
2910                 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2911                 ret = tree_insert_offset(&cluster->root, entry->offset,
2912                                          &entry->offset_index, 0);
2913                 total_size += entry->bytes;
2914                 ASSERT(!ret); /* -EEXIST; Logic error */
2915         } while (node && entry != last);
2916
2917         cluster->max_size = max_extent;
2918         trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2919         return 0;
2920 }
2921
2922 /*
2923  * This specifically looks for bitmaps that may work in the cluster, we assume
2924  * that we have already failed to find extents that will work.
2925  */
2926 static noinline int
2927 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2928                      struct btrfs_free_cluster *cluster,
2929                      struct list_head *bitmaps, u64 offset, u64 bytes,
2930                      u64 cont1_bytes, u64 min_bytes)
2931 {
2932         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2933         struct btrfs_free_space *entry;
2934         int ret = -ENOSPC;
2935         u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2936
2937         if (ctl->total_bitmaps == 0)
2938                 return -ENOSPC;
2939
2940         /*
2941          * The bitmap that covers offset won't be in the list unless offset
2942          * is just its start offset.
2943          */
2944         entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2945         if (entry->offset != bitmap_offset) {
2946                 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2947                 if (entry && list_empty(&entry->list))
2948                         list_add(&entry->list, bitmaps);
2949         }
2950
2951         list_for_each_entry(entry, bitmaps, list) {
2952                 if (entry->bytes < bytes)
2953                         continue;
2954                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2955                                            bytes, cont1_bytes, min_bytes);
2956                 if (!ret)
2957                         return 0;
2958         }
2959
2960         /*
2961          * The bitmaps list has all the bitmaps that record free space
2962          * starting after offset, so no more search is required.
2963          */
2964         return -ENOSPC;
2965 }
2966
2967 /*
2968  * here we try to find a cluster of blocks in a block group.  The goal
2969  * is to find at least bytes+empty_size.
2970  * We might not find them all in one contiguous area.
2971  *
2972  * returns zero and sets up cluster if things worked out, otherwise
2973  * it returns -enospc
2974  */
2975 int btrfs_find_space_cluster(struct btrfs_root *root,
2976                              struct btrfs_block_group_cache *block_group,
2977                              struct btrfs_free_cluster *cluster,
2978                              u64 offset, u64 bytes, u64 empty_size)
2979 {
2980         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2981         struct btrfs_free_space *entry, *tmp;
2982         LIST_HEAD(bitmaps);
2983         u64 min_bytes;
2984         u64 cont1_bytes;
2985         int ret;
2986
2987         /*
2988          * Choose the minimum extent size we'll require for this
2989          * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2990          * For metadata, allow allocates with smaller extents.  For
2991          * data, keep it dense.
2992          */
2993         if (btrfs_test_opt(root, SSD_SPREAD)) {
2994                 cont1_bytes = min_bytes = bytes + empty_size;
2995         } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2996                 cont1_bytes = bytes;
2997                 min_bytes = block_group->sectorsize;
2998         } else {
2999                 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3000                 min_bytes = block_group->sectorsize;
3001         }
3002
3003         spin_lock(&ctl->tree_lock);
3004
3005         /*
3006          * If we know we don't have enough space to make a cluster don't even
3007          * bother doing all the work to try and find one.
3008          */
3009         if (ctl->free_space < bytes) {
3010                 spin_unlock(&ctl->tree_lock);
3011                 return -ENOSPC;
3012         }
3013
3014         spin_lock(&cluster->lock);
3015
3016         /* someone already found a cluster, hooray */
3017         if (cluster->block_group) {
3018                 ret = 0;
3019                 goto out;
3020         }
3021
3022         trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3023                                  min_bytes);
3024
3025         ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3026                                       bytes + empty_size,
3027                                       cont1_bytes, min_bytes);
3028         if (ret)
3029                 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3030                                            offset, bytes + empty_size,
3031                                            cont1_bytes, min_bytes);
3032
3033         /* Clear our temporary list */
3034         list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3035                 list_del_init(&entry->list);
3036
3037         if (!ret) {
3038                 atomic_inc(&block_group->count);
3039                 list_add_tail(&cluster->block_group_list,
3040                               &block_group->cluster_list);
3041                 cluster->block_group = block_group;
3042         } else {
3043                 trace_btrfs_failed_cluster_setup(block_group);
3044         }
3045 out:
3046         spin_unlock(&cluster->lock);
3047         spin_unlock(&ctl->tree_lock);
3048
3049         return ret;
3050 }
3051
3052 /*
3053  * simple code to zero out a cluster
3054  */
3055 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3056 {
3057         spin_lock_init(&cluster->lock);
3058         spin_lock_init(&cluster->refill_lock);
3059         cluster->root = RB_ROOT;
3060         cluster->max_size = 0;
3061         INIT_LIST_HEAD(&cluster->block_group_list);
3062         cluster->block_group = NULL;
3063 }
3064
3065 static int do_trimming(struct btrfs_block_group_cache *block_group,
3066                        u64 *total_trimmed, u64 start, u64 bytes,
3067                        u64 reserved_start, u64 reserved_bytes,
3068                        struct btrfs_trim_range *trim_entry)
3069 {
3070         struct btrfs_space_info *space_info = block_group->space_info;
3071         struct btrfs_fs_info *fs_info = block_group->fs_info;
3072         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3073         int ret;
3074         int update = 0;
3075         u64 trimmed = 0;
3076
3077         spin_lock(&space_info->lock);
3078         spin_lock(&block_group->lock);
3079         if (!block_group->ro) {
3080                 block_group->reserved += reserved_bytes;
3081                 space_info->bytes_reserved += reserved_bytes;
3082                 update = 1;
3083         }
3084         spin_unlock(&block_group->lock);
3085         spin_unlock(&space_info->lock);
3086
3087         ret = btrfs_discard_extent(fs_info->extent_root,
3088                                    start, bytes, &trimmed);
3089         if (!ret)
3090                 *total_trimmed += trimmed;
3091
3092         mutex_lock(&ctl->cache_writeout_mutex);
3093         btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3094         list_del(&trim_entry->list);
3095         mutex_unlock(&ctl->cache_writeout_mutex);
3096
3097         if (update) {
3098                 spin_lock(&space_info->lock);
3099                 spin_lock(&block_group->lock);
3100                 if (block_group->ro)
3101                         space_info->bytes_readonly += reserved_bytes;
3102                 block_group->reserved -= reserved_bytes;
3103                 space_info->bytes_reserved -= reserved_bytes;
3104                 spin_unlock(&space_info->lock);
3105                 spin_unlock(&block_group->lock);
3106         }
3107
3108         return ret;
3109 }
3110
3111 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3112                           u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3113 {
3114         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3115         struct btrfs_free_space *entry;
3116         struct rb_node *node;
3117         int ret = 0;
3118         u64 extent_start;
3119         u64 extent_bytes;
3120         u64 bytes;
3121
3122         while (start < end) {
3123                 struct btrfs_trim_range trim_entry;
3124
3125                 mutex_lock(&ctl->cache_writeout_mutex);
3126                 spin_lock(&ctl->tree_lock);
3127
3128                 if (ctl->free_space < minlen) {
3129                         spin_unlock(&ctl->tree_lock);
3130                         mutex_unlock(&ctl->cache_writeout_mutex);
3131                         break;
3132                 }
3133
3134                 entry = tree_search_offset(ctl, start, 0, 1);
3135                 if (!entry) {
3136                         spin_unlock(&ctl->tree_lock);
3137                         mutex_unlock(&ctl->cache_writeout_mutex);
3138                         break;
3139                 }
3140
3141                 /* skip bitmaps */
3142                 while (entry->bitmap) {
3143                         node = rb_next(&entry->offset_index);
3144                         if (!node) {
3145                                 spin_unlock(&ctl->tree_lock);
3146                                 mutex_unlock(&ctl->cache_writeout_mutex);
3147                                 goto out;
3148                         }
3149                         entry = rb_entry(node, struct btrfs_free_space,
3150                                          offset_index);
3151                 }
3152
3153                 if (entry->offset >= end) {
3154                         spin_unlock(&ctl->tree_lock);
3155                         mutex_unlock(&ctl->cache_writeout_mutex);
3156                         break;
3157                 }
3158
3159                 extent_start = entry->offset;
3160                 extent_bytes = entry->bytes;
3161                 start = max(start, extent_start);
3162                 bytes = min(extent_start + extent_bytes, end) - start;
3163                 if (bytes < minlen) {
3164                         spin_unlock(&ctl->tree_lock);
3165                         mutex_unlock(&ctl->cache_writeout_mutex);
3166                         goto next;
3167                 }
3168
3169                 unlink_free_space(ctl, entry);
3170                 kmem_cache_free(btrfs_free_space_cachep, entry);
3171
3172                 spin_unlock(&ctl->tree_lock);
3173                 trim_entry.start = extent_start;
3174                 trim_entry.bytes = extent_bytes;
3175                 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3176                 mutex_unlock(&ctl->cache_writeout_mutex);
3177
3178                 ret = do_trimming(block_group, total_trimmed, start, bytes,
3179                                   extent_start, extent_bytes, &trim_entry);
3180                 if (ret)
3181                         break;
3182 next:
3183                 start += bytes;
3184
3185                 if (fatal_signal_pending(current)) {
3186                         ret = -ERESTARTSYS;
3187                         break;
3188                 }
3189
3190                 cond_resched();
3191         }
3192 out:
3193         return ret;
3194 }
3195
3196 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3197                         u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3198 {
3199         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3200         struct btrfs_free_space *entry;
3201         int ret = 0;
3202         int ret2;
3203         u64 bytes;
3204         u64 offset = offset_to_bitmap(ctl, start);
3205
3206         while (offset < end) {
3207                 bool next_bitmap = false;
3208                 struct btrfs_trim_range trim_entry;
3209
3210                 mutex_lock(&ctl->cache_writeout_mutex);
3211                 spin_lock(&ctl->tree_lock);
3212
3213                 if (ctl->free_space < minlen) {
3214                         spin_unlock(&ctl->tree_lock);
3215                         mutex_unlock(&ctl->cache_writeout_mutex);
3216                         break;
3217                 }
3218
3219                 entry = tree_search_offset(ctl, offset, 1, 0);
3220                 if (!entry) {
3221                         spin_unlock(&ctl->tree_lock);
3222                         mutex_unlock(&ctl->cache_writeout_mutex);
3223                         next_bitmap = true;
3224                         goto next;
3225                 }
3226
3227                 bytes = minlen;
3228                 ret2 = search_bitmap(ctl, entry, &start, &bytes);
3229                 if (ret2 || start >= end) {
3230                         spin_unlock(&ctl->tree_lock);
3231                         mutex_unlock(&ctl->cache_writeout_mutex);
3232                         next_bitmap = true;
3233                         goto next;
3234                 }
3235
3236                 bytes = min(bytes, end - start);
3237                 if (bytes < minlen) {
3238                         spin_unlock(&ctl->tree_lock);
3239                         mutex_unlock(&ctl->cache_writeout_mutex);
3240                         goto next;
3241                 }
3242
3243                 bitmap_clear_bits(ctl, entry, start, bytes);
3244                 if (entry->bytes == 0)
3245                         free_bitmap(ctl, entry);
3246
3247                 spin_unlock(&ctl->tree_lock);
3248                 trim_entry.start = start;
3249                 trim_entry.bytes = bytes;
3250                 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3251                 mutex_unlock(&ctl->cache_writeout_mutex);
3252
3253                 ret = do_trimming(block_group, total_trimmed, start, bytes,
3254                                   start, bytes, &trim_entry);
3255                 if (ret)
3256                         break;
3257 next:
3258                 if (next_bitmap) {
3259                         offset += BITS_PER_BITMAP * ctl->unit;
3260                 } else {
3261                         start += bytes;
3262                         if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3263                                 offset += BITS_PER_BITMAP * ctl->unit;
3264                 }
3265
3266                 if (fatal_signal_pending(current)) {
3267                         ret = -ERESTARTSYS;
3268                         break;
3269                 }
3270
3271                 cond_resched();
3272         }
3273
3274         return ret;
3275 }
3276
3277 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3278                            u64 *trimmed, u64 start, u64 end, u64 minlen)
3279 {
3280         int ret;
3281
3282         *trimmed = 0;
3283
3284         spin_lock(&block_group->lock);
3285         if (block_group->removed) {
3286                 spin_unlock(&block_group->lock);
3287                 return 0;
3288         }
3289         atomic_inc(&block_group->trimming);
3290         spin_unlock(&block_group->lock);
3291
3292         ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3293         if (ret)
3294                 goto out;
3295
3296         ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3297 out:
3298         spin_lock(&block_group->lock);
3299         if (atomic_dec_and_test(&block_group->trimming) &&
3300             block_group->removed) {
3301                 struct extent_map_tree *em_tree;
3302                 struct extent_map *em;
3303
3304                 spin_unlock(&block_group->lock);
3305
3306                 lock_chunks(block_group->fs_info->chunk_root);
3307                 em_tree = &block_group->fs_info->mapping_tree.map_tree;
3308                 write_lock(&em_tree->lock);
3309                 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3310                                            1);
3311                 BUG_ON(!em); /* logic error, can't happen */
3312                 /*
3313                  * remove_extent_mapping() will delete us from the pinned_chunks
3314                  * list, which is protected by the chunk mutex.
3315                  */
3316                 remove_extent_mapping(em_tree, em);
3317                 write_unlock(&em_tree->lock);
3318                 unlock_chunks(block_group->fs_info->chunk_root);
3319
3320                 /* once for us and once for the tree */
3321                 free_extent_map(em);
3322                 free_extent_map(em);
3323
3324                 /*
3325                  * We've left one free space entry and other tasks trimming
3326                  * this block group have left 1 entry each one. Free them.
3327                  */
3328                 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3329         } else {
3330                 spin_unlock(&block_group->lock);
3331         }
3332
3333         return ret;
3334 }
3335
3336 /*
3337  * Find the left-most item in the cache tree, and then return the
3338  * smallest inode number in the item.
3339  *
3340  * Note: the returned inode number may not be the smallest one in
3341  * the tree, if the left-most item is a bitmap.
3342  */
3343 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3344 {
3345         struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3346         struct btrfs_free_space *entry = NULL;
3347         u64 ino = 0;
3348
3349         spin_lock(&ctl->tree_lock);
3350
3351         if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3352                 goto out;
3353
3354         entry = rb_entry(rb_first(&ctl->free_space_offset),
3355                          struct btrfs_free_space, offset_index);
3356
3357         if (!entry->bitmap) {
3358                 ino = entry->offset;
3359
3360                 unlink_free_space(ctl, entry);
3361                 entry->offset++;
3362                 entry->bytes--;
3363                 if (!entry->bytes)
3364                         kmem_cache_free(btrfs_free_space_cachep, entry);
3365                 else
3366                         link_free_space(ctl, entry);
3367         } else {
3368                 u64 offset = 0;
3369                 u64 count = 1;
3370                 int ret;
3371
3372                 ret = search_bitmap(ctl, entry, &offset, &count);
3373                 /* Logic error; Should be empty if it can't find anything */
3374                 ASSERT(!ret);
3375
3376                 ino = offset;
3377                 bitmap_clear_bits(ctl, entry, offset, 1);
3378                 if (entry->bytes == 0)
3379                         free_bitmap(ctl, entry);
3380         }
3381 out:
3382         spin_unlock(&ctl->tree_lock);
3383
3384         return ino;
3385 }
3386
3387 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3388                                     struct btrfs_path *path)
3389 {
3390         struct inode *inode = NULL;
3391
3392         spin_lock(&root->ino_cache_lock);
3393         if (root->ino_cache_inode)
3394                 inode = igrab(root->ino_cache_inode);
3395         spin_unlock(&root->ino_cache_lock);
3396         if (inode)
3397                 return inode;
3398
3399         inode = __lookup_free_space_inode(root, path, 0);
3400         if (IS_ERR(inode))
3401                 return inode;
3402
3403         spin_lock(&root->ino_cache_lock);
3404         if (!btrfs_fs_closing(root->fs_info))
3405                 root->ino_cache_inode = igrab(inode);
3406         spin_unlock(&root->ino_cache_lock);
3407
3408         return inode;
3409 }
3410
3411 int create_free_ino_inode(struct btrfs_root *root,
3412                           struct btrfs_trans_handle *trans,
3413                           struct btrfs_path *path)
3414 {
3415         return __create_free_space_inode(root, trans, path,
3416                                          BTRFS_FREE_INO_OBJECTID, 0);
3417 }
3418
3419 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3420 {
3421         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3422         struct btrfs_path *path;
3423         struct inode *inode;
3424         int ret = 0;
3425         u64 root_gen = btrfs_root_generation(&root->root_item);
3426
3427         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3428                 return 0;
3429
3430         /*
3431          * If we're unmounting then just return, since this does a search on the
3432          * normal root and not the commit root and we could deadlock.
3433          */
3434         if (btrfs_fs_closing(fs_info))
3435                 return 0;
3436
3437         path = btrfs_alloc_path();
3438         if (!path)
3439                 return 0;
3440
3441         inode = lookup_free_ino_inode(root, path);
3442         if (IS_ERR(inode))
3443                 goto out;
3444
3445         if (root_gen != BTRFS_I(inode)->generation)
3446                 goto out_put;
3447
3448         ret = __load_free_space_cache(root, inode, ctl, path, 0);
3449
3450         if (ret < 0)
3451                 btrfs_err(fs_info,
3452                         "failed to load free ino cache for root %llu",
3453                         root->root_key.objectid);
3454 out_put:
3455         iput(inode);
3456 out:
3457         btrfs_free_path(path);
3458         return ret;
3459 }
3460
3461 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3462                               struct btrfs_trans_handle *trans,
3463                               struct btrfs_path *path,
3464                               struct inode *inode)
3465 {
3466         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3467         int ret;
3468         struct btrfs_io_ctl io_ctl;
3469
3470         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3471                 return 0;
3472
3473         memset(&io_ctl, 0, sizeof(io_ctl));
3474         ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3475                                       trans, path, 0);
3476         if (!ret)
3477                 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3478
3479         if (ret) {
3480                 btrfs_delalloc_release_metadata(inode, inode->i_size);
3481 #ifdef DEBUG
3482                 btrfs_err(root->fs_info,
3483                         "failed to write free ino cache for root %llu",
3484                         root->root_key.objectid);
3485 #endif
3486         }
3487
3488         return ret;
3489 }
3490
3491 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3492 /*
3493  * Use this if you need to make a bitmap or extent entry specifically, it
3494  * doesn't do any of the merging that add_free_space does, this acts a lot like
3495  * how the free space cache loading stuff works, so you can get really weird
3496  * configurations.
3497  */
3498 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3499                               u64 offset, u64 bytes, bool bitmap)
3500 {
3501         struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3502         struct btrfs_free_space *info = NULL, *bitmap_info;
3503         void *map = NULL;
3504         u64 bytes_added;
3505         int ret;
3506
3507 again:
3508         if (!info) {
3509                 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3510                 if (!info)
3511                         return -ENOMEM;
3512         }
3513
3514         if (!bitmap) {
3515                 spin_lock(&ctl->tree_lock);
3516                 info->offset = offset;
3517                 info->bytes = bytes;
3518                 ret = link_free_space(ctl, info);
3519                 spin_unlock(&ctl->tree_lock);
3520                 if (ret)
3521                         kmem_cache_free(btrfs_free_space_cachep, info);
3522                 return ret;
3523         }
3524
3525         if (!map) {
3526                 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3527                 if (!map) {
3528                         kmem_cache_free(btrfs_free_space_cachep, info);
3529                         return -ENOMEM;
3530                 }
3531         }
3532
3533         spin_lock(&ctl->tree_lock);
3534         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3535                                          1, 0);
3536         if (!bitmap_info) {
3537                 info->bitmap = map;
3538                 map = NULL;
3539                 add_new_bitmap(ctl, info, offset);
3540                 bitmap_info = info;
3541                 info = NULL;
3542         }
3543
3544         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3545         bytes -= bytes_added;
3546         offset += bytes_added;
3547         spin_unlock(&ctl->tree_lock);
3548
3549         if (bytes)
3550                 goto again;
3551
3552         if (info)
3553                 kmem_cache_free(btrfs_free_space_cachep, info);
3554         if (map)
3555                 kfree(map);
3556         return 0;
3557 }
3558
3559 /*
3560  * Checks to see if the given range is in the free space cache.  This is really
3561  * just used to check the absence of space, so if there is free space in the
3562  * range at all we will return 1.
3563  */
3564 int test_check_exists(struct btrfs_block_group_cache *cache,
3565                       u64 offset, u64 bytes)
3566 {
3567         struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3568         struct btrfs_free_space *info;
3569         int ret = 0;
3570
3571         spin_lock(&ctl->tree_lock);
3572         info = tree_search_offset(ctl, offset, 0, 0);
3573         if (!info) {
3574                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3575                                           1, 0);
3576                 if (!info)
3577                         goto out;
3578         }
3579
3580 have_info:
3581         if (info->bitmap) {
3582                 u64 bit_off, bit_bytes;
3583                 struct rb_node *n;
3584                 struct btrfs_free_space *tmp;
3585
3586                 bit_off = offset;
3587                 bit_bytes = ctl->unit;
3588                 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3589                 if (!ret) {
3590                         if (bit_off == offset) {
3591                                 ret = 1;
3592                                 goto out;
3593                         } else if (bit_off > offset &&
3594                                    offset + bytes > bit_off) {
3595                                 ret = 1;
3596                                 goto out;
3597                         }
3598                 }
3599
3600                 n = rb_prev(&info->offset_index);
3601                 while (n) {
3602                         tmp = rb_entry(n, struct btrfs_free_space,
3603                                        offset_index);
3604                         if (tmp->offset + tmp->bytes < offset)
3605                                 break;
3606                         if (offset + bytes < tmp->offset) {
3607                                 n = rb_prev(&info->offset_index);
3608                                 continue;
3609                         }
3610                         info = tmp;
3611                         goto have_info;
3612                 }
3613
3614                 n = rb_next(&info->offset_index);
3615                 while (n) {
3616                         tmp = rb_entry(n, struct btrfs_free_space,
3617                                        offset_index);
3618                         if (offset + bytes < tmp->offset)
3619                                 break;
3620                         if (tmp->offset + tmp->bytes < offset) {
3621                                 n = rb_next(&info->offset_index);
3622                                 continue;
3623                         }
3624                         info = tmp;
3625                         goto have_info;
3626                 }
3627
3628                 ret = 0;
3629                 goto out;
3630         }
3631
3632         if (info->offset == offset) {
3633                 ret = 1;
3634                 goto out;
3635         }
3636
3637         if (offset > info->offset && offset < info->offset + info->bytes)
3638                 ret = 1;
3639 out:
3640         spin_unlock(&ctl->tree_lock);
3641         return ret;
3642 }
3643 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */