Merge tag 'squashfs-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/pkl/squas...
[sfrench/cifs-2.6.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196                                        struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         spin_lock(&fs_info->defrag_inodes_lock);
235         p = fs_info->defrag_inodes.rb_node;
236         while (p) {
237                 parent = p;
238                 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240                 ret = __compare_inode_defrag(&tmp, entry);
241                 if (ret < 0)
242                         p = parent->rb_left;
243                 else if (ret > 0)
244                         p = parent->rb_right;
245                 else
246                         goto out;
247         }
248
249         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                 parent = rb_next(parent);
251                 if (parent)
252                         entry = rb_entry(parent, struct inode_defrag, rb_node);
253                 else
254                         entry = NULL;
255         }
256 out:
257         if (entry)
258                 rb_erase(parent, &fs_info->defrag_inodes);
259         spin_unlock(&fs_info->defrag_inodes_lock);
260         return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265         struct inode_defrag *defrag;
266         struct rb_node *node;
267
268         spin_lock(&fs_info->defrag_inodes_lock);
269         node = rb_first(&fs_info->defrag_inodes);
270         while (node) {
271                 rb_erase(node, &fs_info->defrag_inodes);
272                 defrag = rb_entry(node, struct inode_defrag, rb_node);
273                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275                 if (need_resched()) {
276                         spin_unlock(&fs_info->defrag_inodes_lock);
277                         cond_resched();
278                         spin_lock(&fs_info->defrag_inodes_lock);
279                 }
280
281                 node = rb_first(&fs_info->defrag_inodes);
282         }
283         spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH      1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289                                     struct inode_defrag *defrag)
290 {
291         struct btrfs_root *inode_root;
292         struct inode *inode;
293         struct btrfs_key key;
294         struct btrfs_ioctl_defrag_range_args range;
295         int num_defrag;
296         int index;
297         int ret;
298
299         /* get the inode */
300         key.objectid = defrag->root;
301         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302         key.offset = (u64)-1;
303
304         index = srcu_read_lock(&fs_info->subvol_srcu);
305
306         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307         if (IS_ERR(inode_root)) {
308                 ret = PTR_ERR(inode_root);
309                 goto cleanup;
310         }
311
312         key.objectid = defrag->ino;
313         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314         key.offset = 0;
315         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316         if (IS_ERR(inode)) {
317                 ret = PTR_ERR(inode);
318                 goto cleanup;
319         }
320         srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322         /* do a chunk of defrag */
323         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324         memset(&range, 0, sizeof(range));
325         range.len = (u64)-1;
326         range.start = defrag->last_offset;
327
328         sb_start_write(fs_info->sb);
329         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330                                        BTRFS_DEFRAG_BATCH);
331         sb_end_write(fs_info->sb);
332         /*
333          * if we filled the whole defrag batch, there
334          * must be more work to do.  Queue this defrag
335          * again
336          */
337         if (num_defrag == BTRFS_DEFRAG_BATCH) {
338                 defrag->last_offset = range.start;
339                 btrfs_requeue_inode_defrag(inode, defrag);
340         } else if (defrag->last_offset && !defrag->cycled) {
341                 /*
342                  * we didn't fill our defrag batch, but
343                  * we didn't start at zero.  Make sure we loop
344                  * around to the start of the file.
345                  */
346                 defrag->last_offset = 0;
347                 defrag->cycled = 1;
348                 btrfs_requeue_inode_defrag(inode, defrag);
349         } else {
350                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351         }
352
353         iput(inode);
354         return 0;
355 cleanup:
356         srcu_read_unlock(&fs_info->subvol_srcu, index);
357         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358         return ret;
359 }
360
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367         struct inode_defrag *defrag;
368         u64 first_ino = 0;
369         u64 root_objectid = 0;
370
371         atomic_inc(&fs_info->defrag_running);
372         while (1) {
373                 /* Pause the auto defragger. */
374                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375                              &fs_info->fs_state))
376                         break;
377
378                 if (!__need_auto_defrag(fs_info->tree_root))
379                         break;
380
381                 /* find an inode to defrag */
382                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383                                                  first_ino);
384                 if (!defrag) {
385                         if (root_objectid || first_ino) {
386                                 root_objectid = 0;
387                                 first_ino = 0;
388                                 continue;
389                         } else {
390                                 break;
391                         }
392                 }
393
394                 first_ino = defrag->ino + 1;
395                 root_objectid = defrag->root;
396
397                 __btrfs_run_defrag_inode(fs_info, defrag);
398         }
399         atomic_dec(&fs_info->defrag_running);
400
401         /*
402          * during unmount, we use the transaction_wait queue to
403          * wait for the defragger to stop
404          */
405         wake_up(&fs_info->transaction_wait);
406         return 0;
407 }
408
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413                                          size_t write_bytes,
414                                          struct page **prepared_pages,
415                                          struct iov_iter *i)
416 {
417         size_t copied = 0;
418         size_t total_copied = 0;
419         int pg = 0;
420         int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422         while (write_bytes > 0) {
423                 size_t count = min_t(size_t,
424                                      PAGE_CACHE_SIZE - offset, write_bytes);
425                 struct page *page = prepared_pages[pg];
426                 /*
427                  * Copy data from userspace to the current page
428                  *
429                  * Disable pagefault to avoid recursive lock since
430                  * the pages are already locked
431                  */
432                 pagefault_disable();
433                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434                 pagefault_enable();
435
436                 /* Flush processor's dcache for this page */
437                 flush_dcache_page(page);
438
439                 /*
440                  * if we get a partial write, we can end up with
441                  * partially up to date pages.  These add
442                  * a lot of complexity, so make sure they don't
443                  * happen by forcing this copy to be retried.
444                  *
445                  * The rest of the btrfs_file_write code will fall
446                  * back to page at a time copies after we return 0.
447                  */
448                 if (!PageUptodate(page) && copied < count)
449                         copied = 0;
450
451                 iov_iter_advance(i, copied);
452                 write_bytes -= copied;
453                 total_copied += copied;
454
455                 /* Return to btrfs_file_aio_write to fault page */
456                 if (unlikely(copied == 0))
457                         break;
458
459                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460                         offset += copied;
461                 } else {
462                         pg++;
463                         offset = 0;
464                 }
465         }
466         return total_copied;
467 }
468
469 /*
470  * unlocks pages after btrfs_file_write is done with them
471  */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474         size_t i;
475         for (i = 0; i < num_pages; i++) {
476                 /* page checked is some magic around finding pages that
477                  * have been modified without going through btrfs_set_page_dirty
478                  * clear it here
479                  */
480                 ClearPageChecked(pages[i]);
481                 unlock_page(pages[i]);
482                 mark_page_accessed(pages[i]);
483                 page_cache_release(pages[i]);
484         }
485 }
486
487 /*
488  * after copy_from_user, pages need to be dirtied and we need to make
489  * sure holes are created between the current EOF and the start of
490  * any next extents (if required).
491  *
492  * this also makes the decision about creating an inline extent vs
493  * doing real data extents, marking pages dirty and delalloc as required.
494  */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496                              struct page **pages, size_t num_pages,
497                              loff_t pos, size_t write_bytes,
498                              struct extent_state **cached)
499 {
500         int err = 0;
501         int i;
502         u64 num_bytes;
503         u64 start_pos;
504         u64 end_of_last_block;
505         u64 end_pos = pos + write_bytes;
506         loff_t isize = i_size_read(inode);
507
508         start_pos = pos & ~((u64)root->sectorsize - 1);
509         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510
511         end_of_last_block = start_pos + num_bytes - 1;
512         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513                                         cached);
514         if (err)
515                 return err;
516
517         for (i = 0; i < num_pages; i++) {
518                 struct page *p = pages[i];
519                 SetPageUptodate(p);
520                 ClearPageChecked(p);
521                 set_page_dirty(p);
522         }
523
524         /*
525          * we've only changed i_size in ram, and we haven't updated
526          * the disk i_size.  There is no need to log the inode
527          * at this time.
528          */
529         if (end_pos > isize)
530                 i_size_write(inode, end_pos);
531         return 0;
532 }
533
534 /*
535  * this drops all the extents in the cache that intersect the range
536  * [start, end].  Existing extents are split as required.
537  */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539                              int skip_pinned)
540 {
541         struct extent_map *em;
542         struct extent_map *split = NULL;
543         struct extent_map *split2 = NULL;
544         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545         u64 len = end - start + 1;
546         u64 gen;
547         int ret;
548         int testend = 1;
549         unsigned long flags;
550         int compressed = 0;
551         bool modified;
552
553         WARN_ON(end < start);
554         if (end == (u64)-1) {
555                 len = (u64)-1;
556                 testend = 0;
557         }
558         while (1) {
559                 int no_splits = 0;
560
561                 modified = false;
562                 if (!split)
563                         split = alloc_extent_map();
564                 if (!split2)
565                         split2 = alloc_extent_map();
566                 if (!split || !split2)
567                         no_splits = 1;
568
569                 write_lock(&em_tree->lock);
570                 em = lookup_extent_mapping(em_tree, start, len);
571                 if (!em) {
572                         write_unlock(&em_tree->lock);
573                         break;
574                 }
575                 flags = em->flags;
576                 gen = em->generation;
577                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578                         if (testend && em->start + em->len >= start + len) {
579                                 free_extent_map(em);
580                                 write_unlock(&em_tree->lock);
581                                 break;
582                         }
583                         start = em->start + em->len;
584                         if (testend)
585                                 len = start + len - (em->start + em->len);
586                         free_extent_map(em);
587                         write_unlock(&em_tree->lock);
588                         continue;
589                 }
590                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
593                 modified = !list_empty(&em->list);
594                 remove_extent_mapping(em_tree, em);
595                 if (no_splits)
596                         goto next;
597
598                 if (em->start < start) {
599                         split->start = em->start;
600                         split->len = start - em->start;
601
602                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
603                                 split->orig_start = em->orig_start;
604                                 split->block_start = em->block_start;
605
606                                 if (compressed)
607                                         split->block_len = em->block_len;
608                                 else
609                                         split->block_len = split->len;
610                                 split->orig_block_len = max(split->block_len,
611                                                 em->orig_block_len);
612                                 split->ram_bytes = em->ram_bytes;
613                         } else {
614                                 split->orig_start = split->start;
615                                 split->block_len = 0;
616                                 split->block_start = em->block_start;
617                                 split->orig_block_len = 0;
618                                 split->ram_bytes = split->len;
619                         }
620
621                         split->generation = gen;
622                         split->bdev = em->bdev;
623                         split->flags = flags;
624                         split->compress_type = em->compress_type;
625                         ret = add_extent_mapping(em_tree, split, modified);
626                         BUG_ON(ret); /* Logic error */
627                         free_extent_map(split);
628                         split = split2;
629                         split2 = NULL;
630                 }
631                 if (testend && em->start + em->len > start + len) {
632                         u64 diff = start + len - em->start;
633
634                         split->start = start + len;
635                         split->len = em->start + em->len - (start + len);
636                         split->bdev = em->bdev;
637                         split->flags = flags;
638                         split->compress_type = em->compress_type;
639                         split->generation = gen;
640
641                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642                                 split->orig_block_len = max(em->block_len,
643                                                     em->orig_block_len);
644
645                                 split->ram_bytes = em->ram_bytes;
646                                 if (compressed) {
647                                         split->block_len = em->block_len;
648                                         split->block_start = em->block_start;
649                                         split->orig_start = em->orig_start;
650                                 } else {
651                                         split->block_len = split->len;
652                                         split->block_start = em->block_start
653                                                 + diff;
654                                         split->orig_start = em->orig_start;
655                                 }
656                         } else {
657                                 split->ram_bytes = split->len;
658                                 split->orig_start = split->start;
659                                 split->block_len = 0;
660                                 split->block_start = em->block_start;
661                                 split->orig_block_len = 0;
662                         }
663
664                         ret = add_extent_mapping(em_tree, split, modified);
665                         BUG_ON(ret); /* Logic error */
666                         free_extent_map(split);
667                         split = NULL;
668                 }
669 next:
670                 write_unlock(&em_tree->lock);
671
672                 /* once for us */
673                 free_extent_map(em);
674                 /* once for the tree*/
675                 free_extent_map(em);
676         }
677         if (split)
678                 free_extent_map(split);
679         if (split2)
680                 free_extent_map(split2);
681 }
682
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693                          struct btrfs_root *root, struct inode *inode,
694                          struct btrfs_path *path, u64 start, u64 end,
695                          u64 *drop_end, int drop_cache)
696 {
697         struct extent_buffer *leaf;
698         struct btrfs_file_extent_item *fi;
699         struct btrfs_key key;
700         struct btrfs_key new_key;
701         u64 ino = btrfs_ino(inode);
702         u64 search_start = start;
703         u64 disk_bytenr = 0;
704         u64 num_bytes = 0;
705         u64 extent_offset = 0;
706         u64 extent_end = 0;
707         int del_nr = 0;
708         int del_slot = 0;
709         int extent_type;
710         int recow;
711         int ret;
712         int modify_tree = -1;
713         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
714         int found = 0;
715
716         if (drop_cache)
717                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
718
719         if (start >= BTRFS_I(inode)->disk_i_size)
720                 modify_tree = 0;
721
722         while (1) {
723                 recow = 0;
724                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
725                                                search_start, modify_tree);
726                 if (ret < 0)
727                         break;
728                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
729                         leaf = path->nodes[0];
730                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
731                         if (key.objectid == ino &&
732                             key.type == BTRFS_EXTENT_DATA_KEY)
733                                 path->slots[0]--;
734                 }
735                 ret = 0;
736 next_slot:
737                 leaf = path->nodes[0];
738                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
739                         BUG_ON(del_nr > 0);
740                         ret = btrfs_next_leaf(root, path);
741                         if (ret < 0)
742                                 break;
743                         if (ret > 0) {
744                                 ret = 0;
745                                 break;
746                         }
747                         leaf = path->nodes[0];
748                         recow = 1;
749                 }
750
751                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
752                 if (key.objectid > ino ||
753                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
754                         break;
755
756                 fi = btrfs_item_ptr(leaf, path->slots[0],
757                                     struct btrfs_file_extent_item);
758                 extent_type = btrfs_file_extent_type(leaf, fi);
759
760                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
761                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
762                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
763                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
764                         extent_offset = btrfs_file_extent_offset(leaf, fi);
765                         extent_end = key.offset +
766                                 btrfs_file_extent_num_bytes(leaf, fi);
767                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
768                         extent_end = key.offset +
769                                 btrfs_file_extent_inline_len(leaf, fi);
770                 } else {
771                         WARN_ON(1);
772                         extent_end = search_start;
773                 }
774
775                 if (extent_end <= search_start) {
776                         path->slots[0]++;
777                         goto next_slot;
778                 }
779
780                 found = 1;
781                 search_start = max(key.offset, start);
782                 if (recow || !modify_tree) {
783                         modify_tree = -1;
784                         btrfs_release_path(path);
785                         continue;
786                 }
787
788                 /*
789                  *     | - range to drop - |
790                  *  | -------- extent -------- |
791                  */
792                 if (start > key.offset && end < extent_end) {
793                         BUG_ON(del_nr > 0);
794                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
795
796                         memcpy(&new_key, &key, sizeof(new_key));
797                         new_key.offset = start;
798                         ret = btrfs_duplicate_item(trans, root, path,
799                                                    &new_key);
800                         if (ret == -EAGAIN) {
801                                 btrfs_release_path(path);
802                                 continue;
803                         }
804                         if (ret < 0)
805                                 break;
806
807                         leaf = path->nodes[0];
808                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
809                                             struct btrfs_file_extent_item);
810                         btrfs_set_file_extent_num_bytes(leaf, fi,
811                                                         start - key.offset);
812
813                         fi = btrfs_item_ptr(leaf, path->slots[0],
814                                             struct btrfs_file_extent_item);
815
816                         extent_offset += start - key.offset;
817                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
818                         btrfs_set_file_extent_num_bytes(leaf, fi,
819                                                         extent_end - start);
820                         btrfs_mark_buffer_dirty(leaf);
821
822                         if (update_refs && disk_bytenr > 0) {
823                                 ret = btrfs_inc_extent_ref(trans, root,
824                                                 disk_bytenr, num_bytes, 0,
825                                                 root->root_key.objectid,
826                                                 new_key.objectid,
827                                                 start - extent_offset, 0);
828                                 BUG_ON(ret); /* -ENOMEM */
829                         }
830                         key.offset = start;
831                 }
832                 /*
833                  *  | ---- range to drop ----- |
834                  *      | -------- extent -------- |
835                  */
836                 if (start <= key.offset && end < extent_end) {
837                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
838
839                         memcpy(&new_key, &key, sizeof(new_key));
840                         new_key.offset = end;
841                         btrfs_set_item_key_safe(root, path, &new_key);
842
843                         extent_offset += end - key.offset;
844                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
845                         btrfs_set_file_extent_num_bytes(leaf, fi,
846                                                         extent_end - end);
847                         btrfs_mark_buffer_dirty(leaf);
848                         if (update_refs && disk_bytenr > 0)
849                                 inode_sub_bytes(inode, end - key.offset);
850                         break;
851                 }
852
853                 search_start = extent_end;
854                 /*
855                  *       | ---- range to drop ----- |
856                  *  | -------- extent -------- |
857                  */
858                 if (start > key.offset && end >= extent_end) {
859                         BUG_ON(del_nr > 0);
860                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
861
862                         btrfs_set_file_extent_num_bytes(leaf, fi,
863                                                         start - key.offset);
864                         btrfs_mark_buffer_dirty(leaf);
865                         if (update_refs && disk_bytenr > 0)
866                                 inode_sub_bytes(inode, extent_end - start);
867                         if (end == extent_end)
868                                 break;
869
870                         path->slots[0]++;
871                         goto next_slot;
872                 }
873
874                 /*
875                  *  | ---- range to drop ----- |
876                  *    | ------ extent ------ |
877                  */
878                 if (start <= key.offset && end >= extent_end) {
879                         if (del_nr == 0) {
880                                 del_slot = path->slots[0];
881                                 del_nr = 1;
882                         } else {
883                                 BUG_ON(del_slot + del_nr != path->slots[0]);
884                                 del_nr++;
885                         }
886
887                         if (update_refs &&
888                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
889                                 inode_sub_bytes(inode,
890                                                 extent_end - key.offset);
891                                 extent_end = ALIGN(extent_end,
892                                                    root->sectorsize);
893                         } else if (update_refs && disk_bytenr > 0) {
894                                 ret = btrfs_free_extent(trans, root,
895                                                 disk_bytenr, num_bytes, 0,
896                                                 root->root_key.objectid,
897                                                 key.objectid, key.offset -
898                                                 extent_offset, 0);
899                                 BUG_ON(ret); /* -ENOMEM */
900                                 inode_sub_bytes(inode,
901                                                 extent_end - key.offset);
902                         }
903
904                         if (end == extent_end)
905                                 break;
906
907                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
908                                 path->slots[0]++;
909                                 goto next_slot;
910                         }
911
912                         ret = btrfs_del_items(trans, root, path, del_slot,
913                                               del_nr);
914                         if (ret) {
915                                 btrfs_abort_transaction(trans, root, ret);
916                                 break;
917                         }
918
919                         del_nr = 0;
920                         del_slot = 0;
921
922                         btrfs_release_path(path);
923                         continue;
924                 }
925
926                 BUG_ON(1);
927         }
928
929         if (!ret && del_nr > 0) {
930                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
931                 if (ret)
932                         btrfs_abort_transaction(trans, root, ret);
933         }
934
935         if (drop_end)
936                 *drop_end = found ? min(end, extent_end) : end;
937         btrfs_release_path(path);
938         return ret;
939 }
940
941 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
942                        struct btrfs_root *root, struct inode *inode, u64 start,
943                        u64 end, int drop_cache)
944 {
945         struct btrfs_path *path;
946         int ret;
947
948         path = btrfs_alloc_path();
949         if (!path)
950                 return -ENOMEM;
951         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
952                                    drop_cache);
953         btrfs_free_path(path);
954         return ret;
955 }
956
957 static int extent_mergeable(struct extent_buffer *leaf, int slot,
958                             u64 objectid, u64 bytenr, u64 orig_offset,
959                             u64 *start, u64 *end)
960 {
961         struct btrfs_file_extent_item *fi;
962         struct btrfs_key key;
963         u64 extent_end;
964
965         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
966                 return 0;
967
968         btrfs_item_key_to_cpu(leaf, &key, slot);
969         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
970                 return 0;
971
972         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
973         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
974             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
975             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
976             btrfs_file_extent_compression(leaf, fi) ||
977             btrfs_file_extent_encryption(leaf, fi) ||
978             btrfs_file_extent_other_encoding(leaf, fi))
979                 return 0;
980
981         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
982         if ((*start && *start != key.offset) || (*end && *end != extent_end))
983                 return 0;
984
985         *start = key.offset;
986         *end = extent_end;
987         return 1;
988 }
989
990 /*
991  * Mark extent in the range start - end as written.
992  *
993  * This changes extent type from 'pre-allocated' to 'regular'. If only
994  * part of extent is marked as written, the extent will be split into
995  * two or three.
996  */
997 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
998                               struct inode *inode, u64 start, u64 end)
999 {
1000         struct btrfs_root *root = BTRFS_I(inode)->root;
1001         struct extent_buffer *leaf;
1002         struct btrfs_path *path;
1003         struct btrfs_file_extent_item *fi;
1004         struct btrfs_key key;
1005         struct btrfs_key new_key;
1006         u64 bytenr;
1007         u64 num_bytes;
1008         u64 extent_end;
1009         u64 orig_offset;
1010         u64 other_start;
1011         u64 other_end;
1012         u64 split;
1013         int del_nr = 0;
1014         int del_slot = 0;
1015         int recow;
1016         int ret;
1017         u64 ino = btrfs_ino(inode);
1018
1019         path = btrfs_alloc_path();
1020         if (!path)
1021                 return -ENOMEM;
1022 again:
1023         recow = 0;
1024         split = start;
1025         key.objectid = ino;
1026         key.type = BTRFS_EXTENT_DATA_KEY;
1027         key.offset = split;
1028
1029         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1030         if (ret < 0)
1031                 goto out;
1032         if (ret > 0 && path->slots[0] > 0)
1033                 path->slots[0]--;
1034
1035         leaf = path->nodes[0];
1036         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1037         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1038         fi = btrfs_item_ptr(leaf, path->slots[0],
1039                             struct btrfs_file_extent_item);
1040         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1041                BTRFS_FILE_EXTENT_PREALLOC);
1042         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1043         BUG_ON(key.offset > start || extent_end < end);
1044
1045         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1046         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1047         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1048         memcpy(&new_key, &key, sizeof(new_key));
1049
1050         if (start == key.offset && end < extent_end) {
1051                 other_start = 0;
1052                 other_end = start;
1053                 if (extent_mergeable(leaf, path->slots[0] - 1,
1054                                      ino, bytenr, orig_offset,
1055                                      &other_start, &other_end)) {
1056                         new_key.offset = end;
1057                         btrfs_set_item_key_safe(root, path, &new_key);
1058                         fi = btrfs_item_ptr(leaf, path->slots[0],
1059                                             struct btrfs_file_extent_item);
1060                         btrfs_set_file_extent_generation(leaf, fi,
1061                                                          trans->transid);
1062                         btrfs_set_file_extent_num_bytes(leaf, fi,
1063                                                         extent_end - end);
1064                         btrfs_set_file_extent_offset(leaf, fi,
1065                                                      end - orig_offset);
1066                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1067                                             struct btrfs_file_extent_item);
1068                         btrfs_set_file_extent_generation(leaf, fi,
1069                                                          trans->transid);
1070                         btrfs_set_file_extent_num_bytes(leaf, fi,
1071                                                         end - other_start);
1072                         btrfs_mark_buffer_dirty(leaf);
1073                         goto out;
1074                 }
1075         }
1076
1077         if (start > key.offset && end == extent_end) {
1078                 other_start = end;
1079                 other_end = 0;
1080                 if (extent_mergeable(leaf, path->slots[0] + 1,
1081                                      ino, bytenr, orig_offset,
1082                                      &other_start, &other_end)) {
1083                         fi = btrfs_item_ptr(leaf, path->slots[0],
1084                                             struct btrfs_file_extent_item);
1085                         btrfs_set_file_extent_num_bytes(leaf, fi,
1086                                                         start - key.offset);
1087                         btrfs_set_file_extent_generation(leaf, fi,
1088                                                          trans->transid);
1089                         path->slots[0]++;
1090                         new_key.offset = start;
1091                         btrfs_set_item_key_safe(root, path, &new_key);
1092
1093                         fi = btrfs_item_ptr(leaf, path->slots[0],
1094                                             struct btrfs_file_extent_item);
1095                         btrfs_set_file_extent_generation(leaf, fi,
1096                                                          trans->transid);
1097                         btrfs_set_file_extent_num_bytes(leaf, fi,
1098                                                         other_end - start);
1099                         btrfs_set_file_extent_offset(leaf, fi,
1100                                                      start - orig_offset);
1101                         btrfs_mark_buffer_dirty(leaf);
1102                         goto out;
1103                 }
1104         }
1105
1106         while (start > key.offset || end < extent_end) {
1107                 if (key.offset == start)
1108                         split = end;
1109
1110                 new_key.offset = split;
1111                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1112                 if (ret == -EAGAIN) {
1113                         btrfs_release_path(path);
1114                         goto again;
1115                 }
1116                 if (ret < 0) {
1117                         btrfs_abort_transaction(trans, root, ret);
1118                         goto out;
1119                 }
1120
1121                 leaf = path->nodes[0];
1122                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1123                                     struct btrfs_file_extent_item);
1124                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1125                 btrfs_set_file_extent_num_bytes(leaf, fi,
1126                                                 split - key.offset);
1127
1128                 fi = btrfs_item_ptr(leaf, path->slots[0],
1129                                     struct btrfs_file_extent_item);
1130
1131                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1132                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1133                 btrfs_set_file_extent_num_bytes(leaf, fi,
1134                                                 extent_end - split);
1135                 btrfs_mark_buffer_dirty(leaf);
1136
1137                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1138                                            root->root_key.objectid,
1139                                            ino, orig_offset, 0);
1140                 BUG_ON(ret); /* -ENOMEM */
1141
1142                 if (split == start) {
1143                         key.offset = start;
1144                 } else {
1145                         BUG_ON(start != key.offset);
1146                         path->slots[0]--;
1147                         extent_end = end;
1148                 }
1149                 recow = 1;
1150         }
1151
1152         other_start = end;
1153         other_end = 0;
1154         if (extent_mergeable(leaf, path->slots[0] + 1,
1155                              ino, bytenr, orig_offset,
1156                              &other_start, &other_end)) {
1157                 if (recow) {
1158                         btrfs_release_path(path);
1159                         goto again;
1160                 }
1161                 extent_end = other_end;
1162                 del_slot = path->slots[0] + 1;
1163                 del_nr++;
1164                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1165                                         0, root->root_key.objectid,
1166                                         ino, orig_offset, 0);
1167                 BUG_ON(ret); /* -ENOMEM */
1168         }
1169         other_start = 0;
1170         other_end = start;
1171         if (extent_mergeable(leaf, path->slots[0] - 1,
1172                              ino, bytenr, orig_offset,
1173                              &other_start, &other_end)) {
1174                 if (recow) {
1175                         btrfs_release_path(path);
1176                         goto again;
1177                 }
1178                 key.offset = other_start;
1179                 del_slot = path->slots[0];
1180                 del_nr++;
1181                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1182                                         0, root->root_key.objectid,
1183                                         ino, orig_offset, 0);
1184                 BUG_ON(ret); /* -ENOMEM */
1185         }
1186         if (del_nr == 0) {
1187                 fi = btrfs_item_ptr(leaf, path->slots[0],
1188                            struct btrfs_file_extent_item);
1189                 btrfs_set_file_extent_type(leaf, fi,
1190                                            BTRFS_FILE_EXTENT_REG);
1191                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1192                 btrfs_mark_buffer_dirty(leaf);
1193         } else {
1194                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1195                            struct btrfs_file_extent_item);
1196                 btrfs_set_file_extent_type(leaf, fi,
1197                                            BTRFS_FILE_EXTENT_REG);
1198                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1199                 btrfs_set_file_extent_num_bytes(leaf, fi,
1200                                                 extent_end - key.offset);
1201                 btrfs_mark_buffer_dirty(leaf);
1202
1203                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1204                 if (ret < 0) {
1205                         btrfs_abort_transaction(trans, root, ret);
1206                         goto out;
1207                 }
1208         }
1209 out:
1210         btrfs_free_path(path);
1211         return 0;
1212 }
1213
1214 /*
1215  * on error we return an unlocked page and the error value
1216  * on success we return a locked page and 0
1217  */
1218 static int prepare_uptodate_page(struct page *page, u64 pos,
1219                                  bool force_uptodate)
1220 {
1221         int ret = 0;
1222
1223         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1224             !PageUptodate(page)) {
1225                 ret = btrfs_readpage(NULL, page);
1226                 if (ret)
1227                         return ret;
1228                 lock_page(page);
1229                 if (!PageUptodate(page)) {
1230                         unlock_page(page);
1231                         return -EIO;
1232                 }
1233         }
1234         return 0;
1235 }
1236
1237 /*
1238  * this gets pages into the page cache and locks them down, it also properly
1239  * waits for data=ordered extents to finish before allowing the pages to be
1240  * modified.
1241  */
1242 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1243                          struct page **pages, size_t num_pages,
1244                          loff_t pos, unsigned long first_index,
1245                          size_t write_bytes, bool force_uptodate)
1246 {
1247         struct extent_state *cached_state = NULL;
1248         int i;
1249         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1250         struct inode *inode = file_inode(file);
1251         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1252         int err = 0;
1253         int faili = 0;
1254         u64 start_pos;
1255         u64 last_pos;
1256
1257         start_pos = pos & ~((u64)root->sectorsize - 1);
1258         last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1259
1260 again:
1261         for (i = 0; i < num_pages; i++) {
1262                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1263                                                mask | __GFP_WRITE);
1264                 if (!pages[i]) {
1265                         faili = i - 1;
1266                         err = -ENOMEM;
1267                         goto fail;
1268                 }
1269
1270                 if (i == 0)
1271                         err = prepare_uptodate_page(pages[i], pos,
1272                                                     force_uptodate);
1273                 if (i == num_pages - 1)
1274                         err = prepare_uptodate_page(pages[i],
1275                                                     pos + write_bytes, false);
1276                 if (err) {
1277                         page_cache_release(pages[i]);
1278                         faili = i - 1;
1279                         goto fail;
1280                 }
1281                 wait_on_page_writeback(pages[i]);
1282         }
1283         faili = num_pages - 1;
1284         err = 0;
1285         if (start_pos < inode->i_size) {
1286                 struct btrfs_ordered_extent *ordered;
1287                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288                                  start_pos, last_pos - 1, 0, &cached_state);
1289                 ordered = btrfs_lookup_first_ordered_extent(inode,
1290                                                             last_pos - 1);
1291                 if (ordered &&
1292                     ordered->file_offset + ordered->len > start_pos &&
1293                     ordered->file_offset < last_pos) {
1294                         btrfs_put_ordered_extent(ordered);
1295                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296                                              start_pos, last_pos - 1,
1297                                              &cached_state, GFP_NOFS);
1298                         for (i = 0; i < num_pages; i++) {
1299                                 unlock_page(pages[i]);
1300                                 page_cache_release(pages[i]);
1301                         }
1302                         err = btrfs_wait_ordered_range(inode, start_pos,
1303                                                        last_pos - start_pos);
1304                         if (err)
1305                                 goto fail;
1306                         goto again;
1307                 }
1308                 if (ordered)
1309                         btrfs_put_ordered_extent(ordered);
1310
1311                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1312                                   last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1313                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1314                                   0, 0, &cached_state, GFP_NOFS);
1315                 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1316                                      start_pos, last_pos - 1, &cached_state,
1317                                      GFP_NOFS);
1318         }
1319         for (i = 0; i < num_pages; i++) {
1320                 if (clear_page_dirty_for_io(pages[i]))
1321                         account_page_redirty(pages[i]);
1322                 set_page_extent_mapped(pages[i]);
1323                 WARN_ON(!PageLocked(pages[i]));
1324         }
1325         return 0;
1326 fail:
1327         while (faili >= 0) {
1328                 unlock_page(pages[faili]);
1329                 page_cache_release(pages[faili]);
1330                 faili--;
1331         }
1332         return err;
1333
1334 }
1335
1336 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1337                                     size_t *write_bytes)
1338 {
1339         struct btrfs_root *root = BTRFS_I(inode)->root;
1340         struct btrfs_ordered_extent *ordered;
1341         u64 lockstart, lockend;
1342         u64 num_bytes;
1343         int ret;
1344
1345         lockstart = round_down(pos, root->sectorsize);
1346         lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1347
1348         while (1) {
1349                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1350                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1351                                                      lockend - lockstart + 1);
1352                 if (!ordered) {
1353                         break;
1354                 }
1355                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1356                 btrfs_start_ordered_extent(inode, ordered, 1);
1357                 btrfs_put_ordered_extent(ordered);
1358         }
1359
1360         num_bytes = lockend - lockstart + 1;
1361         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1362         if (ret <= 0) {
1363                 ret = 0;
1364         } else {
1365                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1366                                  EXTENT_DIRTY | EXTENT_DELALLOC |
1367                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1368                                  NULL, GFP_NOFS);
1369                 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1370         }
1371
1372         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1373
1374         return ret;
1375 }
1376
1377 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1378                                                struct iov_iter *i,
1379                                                loff_t pos)
1380 {
1381         struct inode *inode = file_inode(file);
1382         struct btrfs_root *root = BTRFS_I(inode)->root;
1383         struct page **pages = NULL;
1384         u64 release_bytes = 0;
1385         unsigned long first_index;
1386         size_t num_written = 0;
1387         int nrptrs;
1388         int ret = 0;
1389         bool only_release_metadata = false;
1390         bool force_page_uptodate = false;
1391
1392         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1393                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1394                      (sizeof(struct page *)));
1395         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1396         nrptrs = max(nrptrs, 8);
1397         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1398         if (!pages)
1399                 return -ENOMEM;
1400
1401         first_index = pos >> PAGE_CACHE_SHIFT;
1402
1403         while (iov_iter_count(i) > 0) {
1404                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1405                 size_t write_bytes = min(iov_iter_count(i),
1406                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1407                                          offset);
1408                 size_t num_pages = (write_bytes + offset +
1409                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1410                 size_t reserve_bytes;
1411                 size_t dirty_pages;
1412                 size_t copied;
1413
1414                 WARN_ON(num_pages > nrptrs);
1415
1416                 /*
1417                  * Fault pages before locking them in prepare_pages
1418                  * to avoid recursive lock
1419                  */
1420                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1421                         ret = -EFAULT;
1422                         break;
1423                 }
1424
1425                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1426                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1427                 if (ret == -ENOSPC &&
1428                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1429                                               BTRFS_INODE_PREALLOC))) {
1430                         ret = check_can_nocow(inode, pos, &write_bytes);
1431                         if (ret > 0) {
1432                                 only_release_metadata = true;
1433                                 /*
1434                                  * our prealloc extent may be smaller than
1435                                  * write_bytes, so scale down.
1436                                  */
1437                                 num_pages = (write_bytes + offset +
1438                                              PAGE_CACHE_SIZE - 1) >>
1439                                         PAGE_CACHE_SHIFT;
1440                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1441                                 ret = 0;
1442                         } else {
1443                                 ret = -ENOSPC;
1444                         }
1445                 }
1446
1447                 if (ret)
1448                         break;
1449
1450                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1451                 if (ret) {
1452                         if (!only_release_metadata)
1453                                 btrfs_free_reserved_data_space(inode,
1454                                                                reserve_bytes);
1455                         break;
1456                 }
1457
1458                 release_bytes = reserve_bytes;
1459
1460                 /*
1461                  * This is going to setup the pages array with the number of
1462                  * pages we want, so we don't really need to worry about the
1463                  * contents of pages from loop to loop
1464                  */
1465                 ret = prepare_pages(root, file, pages, num_pages,
1466                                     pos, first_index, write_bytes,
1467                                     force_page_uptodate);
1468                 if (ret)
1469                         break;
1470
1471                 copied = btrfs_copy_from_user(pos, num_pages,
1472                                            write_bytes, pages, i);
1473
1474                 /*
1475                  * if we have trouble faulting in the pages, fall
1476                  * back to one page at a time
1477                  */
1478                 if (copied < write_bytes)
1479                         nrptrs = 1;
1480
1481                 if (copied == 0) {
1482                         force_page_uptodate = true;
1483                         dirty_pages = 0;
1484                 } else {
1485                         force_page_uptodate = false;
1486                         dirty_pages = (copied + offset +
1487                                        PAGE_CACHE_SIZE - 1) >>
1488                                        PAGE_CACHE_SHIFT;
1489                 }
1490
1491                 /*
1492                  * If we had a short copy we need to release the excess delaloc
1493                  * bytes we reserved.  We need to increment outstanding_extents
1494                  * because btrfs_delalloc_release_space will decrement it, but
1495                  * we still have an outstanding extent for the chunk we actually
1496                  * managed to copy.
1497                  */
1498                 if (num_pages > dirty_pages) {
1499                         release_bytes = (num_pages - dirty_pages) <<
1500                                 PAGE_CACHE_SHIFT;
1501                         if (copied > 0) {
1502                                 spin_lock(&BTRFS_I(inode)->lock);
1503                                 BTRFS_I(inode)->outstanding_extents++;
1504                                 spin_unlock(&BTRFS_I(inode)->lock);
1505                         }
1506                         if (only_release_metadata)
1507                                 btrfs_delalloc_release_metadata(inode,
1508                                                                 release_bytes);
1509                         else
1510                                 btrfs_delalloc_release_space(inode,
1511                                                              release_bytes);
1512                 }
1513
1514                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1515                 if (copied > 0) {
1516                         ret = btrfs_dirty_pages(root, inode, pages,
1517                                                 dirty_pages, pos, copied,
1518                                                 NULL);
1519                         if (ret) {
1520                                 btrfs_drop_pages(pages, num_pages);
1521                                 break;
1522                         }
1523                 }
1524
1525                 release_bytes = 0;
1526                 btrfs_drop_pages(pages, num_pages);
1527
1528                 if (only_release_metadata && copied > 0) {
1529                         u64 lockstart = round_down(pos, root->sectorsize);
1530                         u64 lockend = lockstart +
1531                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1532
1533                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1534                                        lockend, EXTENT_NORESERVE, NULL,
1535                                        NULL, GFP_NOFS);
1536                         only_release_metadata = false;
1537                 }
1538
1539                 cond_resched();
1540
1541                 balance_dirty_pages_ratelimited(inode->i_mapping);
1542                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1543                         btrfs_btree_balance_dirty(root);
1544
1545                 pos += copied;
1546                 num_written += copied;
1547         }
1548
1549         kfree(pages);
1550
1551         if (release_bytes) {
1552                 if (only_release_metadata)
1553                         btrfs_delalloc_release_metadata(inode, release_bytes);
1554                 else
1555                         btrfs_delalloc_release_space(inode, release_bytes);
1556         }
1557
1558         return num_written ? num_written : ret;
1559 }
1560
1561 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1562                                     const struct iovec *iov,
1563                                     unsigned long nr_segs, loff_t pos,
1564                                     loff_t *ppos, size_t count, size_t ocount)
1565 {
1566         struct file *file = iocb->ki_filp;
1567         struct iov_iter i;
1568         ssize_t written;
1569         ssize_t written_buffered;
1570         loff_t endbyte;
1571         int err;
1572
1573         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1574                                             count, ocount);
1575
1576         if (written < 0 || written == count)
1577                 return written;
1578
1579         pos += written;
1580         count -= written;
1581         iov_iter_init(&i, iov, nr_segs, count, written);
1582         written_buffered = __btrfs_buffered_write(file, &i, pos);
1583         if (written_buffered < 0) {
1584                 err = written_buffered;
1585                 goto out;
1586         }
1587         endbyte = pos + written_buffered - 1;
1588         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1589         if (err)
1590                 goto out;
1591         written += written_buffered;
1592         *ppos = pos + written_buffered;
1593         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1594                                  endbyte >> PAGE_CACHE_SHIFT);
1595 out:
1596         return written ? written : err;
1597 }
1598
1599 static void update_time_for_write(struct inode *inode)
1600 {
1601         struct timespec now;
1602
1603         if (IS_NOCMTIME(inode))
1604                 return;
1605
1606         now = current_fs_time(inode->i_sb);
1607         if (!timespec_equal(&inode->i_mtime, &now))
1608                 inode->i_mtime = now;
1609
1610         if (!timespec_equal(&inode->i_ctime, &now))
1611                 inode->i_ctime = now;
1612
1613         if (IS_I_VERSION(inode))
1614                 inode_inc_iversion(inode);
1615 }
1616
1617 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1618                                     const struct iovec *iov,
1619                                     unsigned long nr_segs, loff_t pos)
1620 {
1621         struct file *file = iocb->ki_filp;
1622         struct inode *inode = file_inode(file);
1623         struct btrfs_root *root = BTRFS_I(inode)->root;
1624         loff_t *ppos = &iocb->ki_pos;
1625         u64 start_pos;
1626         ssize_t num_written = 0;
1627         ssize_t err = 0;
1628         size_t count, ocount;
1629         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1630
1631         mutex_lock(&inode->i_mutex);
1632
1633         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1634         if (err) {
1635                 mutex_unlock(&inode->i_mutex);
1636                 goto out;
1637         }
1638         count = ocount;
1639
1640         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1641         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1642         if (err) {
1643                 mutex_unlock(&inode->i_mutex);
1644                 goto out;
1645         }
1646
1647         if (count == 0) {
1648                 mutex_unlock(&inode->i_mutex);
1649                 goto out;
1650         }
1651
1652         err = file_remove_suid(file);
1653         if (err) {
1654                 mutex_unlock(&inode->i_mutex);
1655                 goto out;
1656         }
1657
1658         /*
1659          * If BTRFS flips readonly due to some impossible error
1660          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1661          * although we have opened a file as writable, we have
1662          * to stop this write operation to ensure FS consistency.
1663          */
1664         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1665                 mutex_unlock(&inode->i_mutex);
1666                 err = -EROFS;
1667                 goto out;
1668         }
1669
1670         /*
1671          * We reserve space for updating the inode when we reserve space for the
1672          * extent we are going to write, so we will enospc out there.  We don't
1673          * need to start yet another transaction to update the inode as we will
1674          * update the inode when we finish writing whatever data we write.
1675          */
1676         update_time_for_write(inode);
1677
1678         start_pos = round_down(pos, root->sectorsize);
1679         if (start_pos > i_size_read(inode)) {
1680                 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1681                 if (err) {
1682                         mutex_unlock(&inode->i_mutex);
1683                         goto out;
1684                 }
1685         }
1686
1687         if (sync)
1688                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1689
1690         if (unlikely(file->f_flags & O_DIRECT)) {
1691                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1692                                                    pos, ppos, count, ocount);
1693         } else {
1694                 struct iov_iter i;
1695
1696                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1697
1698                 num_written = __btrfs_buffered_write(file, &i, pos);
1699                 if (num_written > 0)
1700                         *ppos = pos + num_written;
1701         }
1702
1703         mutex_unlock(&inode->i_mutex);
1704
1705         /*
1706          * we want to make sure fsync finds this change
1707          * but we haven't joined a transaction running right now.
1708          *
1709          * Later on, someone is sure to update the inode and get the
1710          * real transid recorded.
1711          *
1712          * We set last_trans now to the fs_info generation + 1,
1713          * this will either be one more than the running transaction
1714          * or the generation used for the next transaction if there isn't
1715          * one running right now.
1716          *
1717          * We also have to set last_sub_trans to the current log transid,
1718          * otherwise subsequent syncs to a file that's been synced in this
1719          * transaction will appear to have already occured.
1720          */
1721         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1722         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1723         if (num_written > 0) {
1724                 err = generic_write_sync(file, pos, num_written);
1725                 if (err < 0 && num_written > 0)
1726                         num_written = err;
1727         }
1728
1729         if (sync)
1730                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1731 out:
1732         current->backing_dev_info = NULL;
1733         return num_written ? num_written : err;
1734 }
1735
1736 int btrfs_release_file(struct inode *inode, struct file *filp)
1737 {
1738         /*
1739          * ordered_data_close is set by settattr when we are about to truncate
1740          * a file from a non-zero size to a zero size.  This tries to
1741          * flush down new bytes that may have been written if the
1742          * application were using truncate to replace a file in place.
1743          */
1744         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1745                                &BTRFS_I(inode)->runtime_flags)) {
1746                 struct btrfs_trans_handle *trans;
1747                 struct btrfs_root *root = BTRFS_I(inode)->root;
1748
1749                 /*
1750                  * We need to block on a committing transaction to keep us from
1751                  * throwing a ordered operation on to the list and causing
1752                  * something like sync to deadlock trying to flush out this
1753                  * inode.
1754                  */
1755                 trans = btrfs_start_transaction(root, 0);
1756                 if (IS_ERR(trans))
1757                         return PTR_ERR(trans);
1758                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1759                 btrfs_end_transaction(trans, root);
1760                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1761                         filemap_flush(inode->i_mapping);
1762         }
1763         if (filp->private_data)
1764                 btrfs_ioctl_trans_end(filp);
1765         return 0;
1766 }
1767
1768 /*
1769  * fsync call for both files and directories.  This logs the inode into
1770  * the tree log instead of forcing full commits whenever possible.
1771  *
1772  * It needs to call filemap_fdatawait so that all ordered extent updates are
1773  * in the metadata btree are up to date for copying to the log.
1774  *
1775  * It drops the inode mutex before doing the tree log commit.  This is an
1776  * important optimization for directories because holding the mutex prevents
1777  * new operations on the dir while we write to disk.
1778  */
1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1780 {
1781         struct dentry *dentry = file->f_path.dentry;
1782         struct inode *inode = dentry->d_inode;
1783         struct btrfs_root *root = BTRFS_I(inode)->root;
1784         int ret = 0;
1785         struct btrfs_trans_handle *trans;
1786         bool full_sync = 0;
1787
1788         trace_btrfs_sync_file(file, datasync);
1789
1790         /*
1791          * We write the dirty pages in the range and wait until they complete
1792          * out of the ->i_mutex. If so, we can flush the dirty pages by
1793          * multi-task, and make the performance up.  See
1794          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1795          */
1796         atomic_inc(&BTRFS_I(inode)->sync_writers);
1797         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1798         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1799                              &BTRFS_I(inode)->runtime_flags))
1800                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1801         atomic_dec(&BTRFS_I(inode)->sync_writers);
1802         if (ret)
1803                 return ret;
1804
1805         mutex_lock(&inode->i_mutex);
1806
1807         /*
1808          * We flush the dirty pages again to avoid some dirty pages in the
1809          * range being left.
1810          */
1811         atomic_inc(&root->log_batch);
1812         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1813                              &BTRFS_I(inode)->runtime_flags);
1814         if (full_sync) {
1815                 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1816                 if (ret) {
1817                         mutex_unlock(&inode->i_mutex);
1818                         goto out;
1819                 }
1820         }
1821         atomic_inc(&root->log_batch);
1822
1823         /*
1824          * check the transaction that last modified this inode
1825          * and see if its already been committed
1826          */
1827         if (!BTRFS_I(inode)->last_trans) {
1828                 mutex_unlock(&inode->i_mutex);
1829                 goto out;
1830         }
1831
1832         /*
1833          * if the last transaction that changed this file was before
1834          * the current transaction, we can bail out now without any
1835          * syncing
1836          */
1837         smp_mb();
1838         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1839             BTRFS_I(inode)->last_trans <=
1840             root->fs_info->last_trans_committed) {
1841                 BTRFS_I(inode)->last_trans = 0;
1842
1843                 /*
1844                  * We'v had everything committed since the last time we were
1845                  * modified so clear this flag in case it was set for whatever
1846                  * reason, it's no longer relevant.
1847                  */
1848                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1849                           &BTRFS_I(inode)->runtime_flags);
1850                 mutex_unlock(&inode->i_mutex);
1851                 goto out;
1852         }
1853
1854         /*
1855          * ok we haven't committed the transaction yet, lets do a commit
1856          */
1857         if (file->private_data)
1858                 btrfs_ioctl_trans_end(file);
1859
1860         trans = btrfs_start_transaction(root, 0);
1861         if (IS_ERR(trans)) {
1862                 ret = PTR_ERR(trans);
1863                 mutex_unlock(&inode->i_mutex);
1864                 goto out;
1865         }
1866
1867         ret = btrfs_log_dentry_safe(trans, root, dentry);
1868         if (ret < 0) {
1869                 /* Fallthrough and commit/free transaction. */
1870                 ret = 1;
1871         }
1872
1873         /* we've logged all the items and now have a consistent
1874          * version of the file in the log.  It is possible that
1875          * someone will come in and modify the file, but that's
1876          * fine because the log is consistent on disk, and we
1877          * have references to all of the file's extents
1878          *
1879          * It is possible that someone will come in and log the
1880          * file again, but that will end up using the synchronization
1881          * inside btrfs_sync_log to keep things safe.
1882          */
1883         mutex_unlock(&inode->i_mutex);
1884
1885         if (ret != BTRFS_NO_LOG_SYNC) {
1886                 if (!ret) {
1887                         ret = btrfs_sync_log(trans, root);
1888                         if (!ret) {
1889                                 ret = btrfs_end_transaction(trans, root);
1890                                 goto out;
1891                         }
1892                 }
1893                 if (!full_sync) {
1894                         ret = btrfs_wait_ordered_range(inode, start,
1895                                                        end - start + 1);
1896                         if (ret)
1897                                 goto out;
1898                 }
1899                 ret = btrfs_commit_transaction(trans, root);
1900         } else {
1901                 ret = btrfs_end_transaction(trans, root);
1902         }
1903 out:
1904         return ret > 0 ? -EIO : ret;
1905 }
1906
1907 static const struct vm_operations_struct btrfs_file_vm_ops = {
1908         .fault          = filemap_fault,
1909         .page_mkwrite   = btrfs_page_mkwrite,
1910         .remap_pages    = generic_file_remap_pages,
1911 };
1912
1913 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
1914 {
1915         struct address_space *mapping = filp->f_mapping;
1916
1917         if (!mapping->a_ops->readpage)
1918                 return -ENOEXEC;
1919
1920         file_accessed(filp);
1921         vma->vm_ops = &btrfs_file_vm_ops;
1922
1923         return 0;
1924 }
1925
1926 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1927                           int slot, u64 start, u64 end)
1928 {
1929         struct btrfs_file_extent_item *fi;
1930         struct btrfs_key key;
1931
1932         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1933                 return 0;
1934
1935         btrfs_item_key_to_cpu(leaf, &key, slot);
1936         if (key.objectid != btrfs_ino(inode) ||
1937             key.type != BTRFS_EXTENT_DATA_KEY)
1938                 return 0;
1939
1940         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1941
1942         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1943                 return 0;
1944
1945         if (btrfs_file_extent_disk_bytenr(leaf, fi))
1946                 return 0;
1947
1948         if (key.offset == end)
1949                 return 1;
1950         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1951                 return 1;
1952         return 0;
1953 }
1954
1955 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1956                       struct btrfs_path *path, u64 offset, u64 end)
1957 {
1958         struct btrfs_root *root = BTRFS_I(inode)->root;
1959         struct extent_buffer *leaf;
1960         struct btrfs_file_extent_item *fi;
1961         struct extent_map *hole_em;
1962         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1963         struct btrfs_key key;
1964         int ret;
1965
1966         key.objectid = btrfs_ino(inode);
1967         key.type = BTRFS_EXTENT_DATA_KEY;
1968         key.offset = offset;
1969
1970
1971         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1972         if (ret < 0)
1973                 return ret;
1974         BUG_ON(!ret);
1975
1976         leaf = path->nodes[0];
1977         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1978                 u64 num_bytes;
1979
1980                 path->slots[0]--;
1981                 fi = btrfs_item_ptr(leaf, path->slots[0],
1982                                     struct btrfs_file_extent_item);
1983                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1984                         end - offset;
1985                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1986                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1987                 btrfs_set_file_extent_offset(leaf, fi, 0);
1988                 btrfs_mark_buffer_dirty(leaf);
1989                 goto out;
1990         }
1991
1992         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1993                 u64 num_bytes;
1994
1995                 path->slots[0]++;
1996                 key.offset = offset;
1997                 btrfs_set_item_key_safe(root, path, &key);
1998                 fi = btrfs_item_ptr(leaf, path->slots[0],
1999                                     struct btrfs_file_extent_item);
2000                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2001                         offset;
2002                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2003                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2004                 btrfs_set_file_extent_offset(leaf, fi, 0);
2005                 btrfs_mark_buffer_dirty(leaf);
2006                 goto out;
2007         }
2008         btrfs_release_path(path);
2009
2010         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2011                                        0, 0, end - offset, 0, end - offset,
2012                                        0, 0, 0);
2013         if (ret)
2014                 return ret;
2015
2016 out:
2017         btrfs_release_path(path);
2018
2019         hole_em = alloc_extent_map();
2020         if (!hole_em) {
2021                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2022                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2023                         &BTRFS_I(inode)->runtime_flags);
2024         } else {
2025                 hole_em->start = offset;
2026                 hole_em->len = end - offset;
2027                 hole_em->ram_bytes = hole_em->len;
2028                 hole_em->orig_start = offset;
2029
2030                 hole_em->block_start = EXTENT_MAP_HOLE;
2031                 hole_em->block_len = 0;
2032                 hole_em->orig_block_len = 0;
2033                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2034                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2035                 hole_em->generation = trans->transid;
2036
2037                 do {
2038                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2039                         write_lock(&em_tree->lock);
2040                         ret = add_extent_mapping(em_tree, hole_em, 1);
2041                         write_unlock(&em_tree->lock);
2042                 } while (ret == -EEXIST);
2043                 free_extent_map(hole_em);
2044                 if (ret)
2045                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2046                                 &BTRFS_I(inode)->runtime_flags);
2047         }
2048
2049         return 0;
2050 }
2051
2052 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2053 {
2054         struct btrfs_root *root = BTRFS_I(inode)->root;
2055         struct extent_state *cached_state = NULL;
2056         struct btrfs_path *path;
2057         struct btrfs_block_rsv *rsv;
2058         struct btrfs_trans_handle *trans;
2059         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2060         u64 lockend = round_down(offset + len,
2061                                  BTRFS_I(inode)->root->sectorsize) - 1;
2062         u64 cur_offset = lockstart;
2063         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2064         u64 drop_end;
2065         int ret = 0;
2066         int err = 0;
2067         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2068                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2069
2070         ret = btrfs_wait_ordered_range(inode, offset, len);
2071         if (ret)
2072                 return ret;
2073
2074         mutex_lock(&inode->i_mutex);
2075         /*
2076          * We needn't truncate any page which is beyond the end of the file
2077          * because we are sure there is no data there.
2078          */
2079         /*
2080          * Only do this if we are in the same page and we aren't doing the
2081          * entire page.
2082          */
2083         if (same_page && len < PAGE_CACHE_SIZE) {
2084                 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2085                         ret = btrfs_truncate_page(inode, offset, len, 0);
2086                 mutex_unlock(&inode->i_mutex);
2087                 return ret;
2088         }
2089
2090         /* zero back part of the first page */
2091         if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2092                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2093                 if (ret) {
2094                         mutex_unlock(&inode->i_mutex);
2095                         return ret;
2096                 }
2097         }
2098
2099         /* zero the front end of the last page */
2100         if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2101                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2102                 if (ret) {
2103                         mutex_unlock(&inode->i_mutex);
2104                         return ret;
2105                 }
2106         }
2107
2108         if (lockend < lockstart) {
2109                 mutex_unlock(&inode->i_mutex);
2110                 return 0;
2111         }
2112
2113         while (1) {
2114                 struct btrfs_ordered_extent *ordered;
2115
2116                 truncate_pagecache_range(inode, lockstart, lockend);
2117
2118                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2119                                  0, &cached_state);
2120                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2121
2122                 /*
2123                  * We need to make sure we have no ordered extents in this range
2124                  * and nobody raced in and read a page in this range, if we did
2125                  * we need to try again.
2126                  */
2127                 if ((!ordered ||
2128                     (ordered->file_offset + ordered->len < lockstart ||
2129                      ordered->file_offset > lockend)) &&
2130                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2131                                      lockend, EXTENT_UPTODATE, 0,
2132                                      cached_state)) {
2133                         if (ordered)
2134                                 btrfs_put_ordered_extent(ordered);
2135                         break;
2136                 }
2137                 if (ordered)
2138                         btrfs_put_ordered_extent(ordered);
2139                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2140                                      lockend, &cached_state, GFP_NOFS);
2141                 ret = btrfs_wait_ordered_range(inode, lockstart,
2142                                                lockend - lockstart + 1);
2143                 if (ret) {
2144                         mutex_unlock(&inode->i_mutex);
2145                         return ret;
2146                 }
2147         }
2148
2149         path = btrfs_alloc_path();
2150         if (!path) {
2151                 ret = -ENOMEM;
2152                 goto out;
2153         }
2154
2155         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2156         if (!rsv) {
2157                 ret = -ENOMEM;
2158                 goto out_free;
2159         }
2160         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2161         rsv->failfast = 1;
2162
2163         /*
2164          * 1 - update the inode
2165          * 1 - removing the extents in the range
2166          * 1 - adding the hole extent
2167          */
2168         trans = btrfs_start_transaction(root, 3);
2169         if (IS_ERR(trans)) {
2170                 err = PTR_ERR(trans);
2171                 goto out_free;
2172         }
2173
2174         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2175                                       min_size);
2176         BUG_ON(ret);
2177         trans->block_rsv = rsv;
2178
2179         while (cur_offset < lockend) {
2180                 ret = __btrfs_drop_extents(trans, root, inode, path,
2181                                            cur_offset, lockend + 1,
2182                                            &drop_end, 1);
2183                 if (ret != -ENOSPC)
2184                         break;
2185
2186                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2187
2188                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2189                 if (ret) {
2190                         err = ret;
2191                         break;
2192                 }
2193
2194                 cur_offset = drop_end;
2195
2196                 ret = btrfs_update_inode(trans, root, inode);
2197                 if (ret) {
2198                         err = ret;
2199                         break;
2200                 }
2201
2202                 btrfs_end_transaction(trans, root);
2203                 btrfs_btree_balance_dirty(root);
2204
2205                 trans = btrfs_start_transaction(root, 3);
2206                 if (IS_ERR(trans)) {
2207                         ret = PTR_ERR(trans);
2208                         trans = NULL;
2209                         break;
2210                 }
2211
2212                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2213                                               rsv, min_size);
2214                 BUG_ON(ret);    /* shouldn't happen */
2215                 trans->block_rsv = rsv;
2216         }
2217
2218         if (ret) {
2219                 err = ret;
2220                 goto out_trans;
2221         }
2222
2223         trans->block_rsv = &root->fs_info->trans_block_rsv;
2224         ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2225         if (ret) {
2226                 err = ret;
2227                 goto out_trans;
2228         }
2229
2230 out_trans:
2231         if (!trans)
2232                 goto out_free;
2233
2234         inode_inc_iversion(inode);
2235         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2236
2237         trans->block_rsv = &root->fs_info->trans_block_rsv;
2238         ret = btrfs_update_inode(trans, root, inode);
2239         btrfs_end_transaction(trans, root);
2240         btrfs_btree_balance_dirty(root);
2241 out_free:
2242         btrfs_free_path(path);
2243         btrfs_free_block_rsv(root, rsv);
2244 out:
2245         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2246                              &cached_state, GFP_NOFS);
2247         mutex_unlock(&inode->i_mutex);
2248         if (ret && !err)
2249                 err = ret;
2250         return err;
2251 }
2252
2253 static long btrfs_fallocate(struct file *file, int mode,
2254                             loff_t offset, loff_t len)
2255 {
2256         struct inode *inode = file_inode(file);
2257         struct extent_state *cached_state = NULL;
2258         struct btrfs_root *root = BTRFS_I(inode)->root;
2259         u64 cur_offset;
2260         u64 last_byte;
2261         u64 alloc_start;
2262         u64 alloc_end;
2263         u64 alloc_hint = 0;
2264         u64 locked_end;
2265         struct extent_map *em;
2266         int blocksize = BTRFS_I(inode)->root->sectorsize;
2267         int ret;
2268
2269         alloc_start = round_down(offset, blocksize);
2270         alloc_end = round_up(offset + len, blocksize);
2271
2272         /* Make sure we aren't being give some crap mode */
2273         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2274                 return -EOPNOTSUPP;
2275
2276         if (mode & FALLOC_FL_PUNCH_HOLE)
2277                 return btrfs_punch_hole(inode, offset, len);
2278
2279         /*
2280          * Make sure we have enough space before we do the
2281          * allocation.
2282          */
2283         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2284         if (ret)
2285                 return ret;
2286         if (root->fs_info->quota_enabled) {
2287                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2288                 if (ret)
2289                         goto out_reserve_fail;
2290         }
2291
2292         mutex_lock(&inode->i_mutex);
2293         ret = inode_newsize_ok(inode, alloc_end);
2294         if (ret)
2295                 goto out;
2296
2297         if (alloc_start > inode->i_size) {
2298                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2299                                         alloc_start);
2300                 if (ret)
2301                         goto out;
2302         } else {
2303                 /*
2304                  * If we are fallocating from the end of the file onward we
2305                  * need to zero out the end of the page if i_size lands in the
2306                  * middle of a page.
2307                  */
2308                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2309                 if (ret)
2310                         goto out;
2311         }
2312
2313         /*
2314          * wait for ordered IO before we have any locks.  We'll loop again
2315          * below with the locks held.
2316          */
2317         ret = btrfs_wait_ordered_range(inode, alloc_start,
2318                                        alloc_end - alloc_start);
2319         if (ret)
2320                 goto out;
2321
2322         locked_end = alloc_end - 1;
2323         while (1) {
2324                 struct btrfs_ordered_extent *ordered;
2325
2326                 /* the extent lock is ordered inside the running
2327                  * transaction
2328                  */
2329                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2330                                  locked_end, 0, &cached_state);
2331                 ordered = btrfs_lookup_first_ordered_extent(inode,
2332                                                             alloc_end - 1);
2333                 if (ordered &&
2334                     ordered->file_offset + ordered->len > alloc_start &&
2335                     ordered->file_offset < alloc_end) {
2336                         btrfs_put_ordered_extent(ordered);
2337                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2338                                              alloc_start, locked_end,
2339                                              &cached_state, GFP_NOFS);
2340                         /*
2341                          * we can't wait on the range with the transaction
2342                          * running or with the extent lock held
2343                          */
2344                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2345                                                        alloc_end - alloc_start);
2346                         if (ret)
2347                                 goto out;
2348                 } else {
2349                         if (ordered)
2350                                 btrfs_put_ordered_extent(ordered);
2351                         break;
2352                 }
2353         }
2354
2355         cur_offset = alloc_start;
2356         while (1) {
2357                 u64 actual_end;
2358
2359                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2360                                       alloc_end - cur_offset, 0);
2361                 if (IS_ERR_OR_NULL(em)) {
2362                         if (!em)
2363                                 ret = -ENOMEM;
2364                         else
2365                                 ret = PTR_ERR(em);
2366                         break;
2367                 }
2368                 last_byte = min(extent_map_end(em), alloc_end);
2369                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2370                 last_byte = ALIGN(last_byte, blocksize);
2371
2372                 if (em->block_start == EXTENT_MAP_HOLE ||
2373                     (cur_offset >= inode->i_size &&
2374                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2375                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2376                                                         last_byte - cur_offset,
2377                                                         1 << inode->i_blkbits,
2378                                                         offset + len,
2379                                                         &alloc_hint);
2380
2381                         if (ret < 0) {
2382                                 free_extent_map(em);
2383                                 break;
2384                         }
2385                 } else if (actual_end > inode->i_size &&
2386                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2387                         /*
2388                          * We didn't need to allocate any more space, but we
2389                          * still extended the size of the file so we need to
2390                          * update i_size.
2391                          */
2392                         inode->i_ctime = CURRENT_TIME;
2393                         i_size_write(inode, actual_end);
2394                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2395                 }
2396                 free_extent_map(em);
2397
2398                 cur_offset = last_byte;
2399                 if (cur_offset >= alloc_end) {
2400                         ret = 0;
2401                         break;
2402                 }
2403         }
2404         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2405                              &cached_state, GFP_NOFS);
2406 out:
2407         mutex_unlock(&inode->i_mutex);
2408         if (root->fs_info->quota_enabled)
2409                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2410 out_reserve_fail:
2411         /* Let go of our reservation. */
2412         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2413         return ret;
2414 }
2415
2416 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2417 {
2418         struct btrfs_root *root = BTRFS_I(inode)->root;
2419         struct extent_map *em = NULL;
2420         struct extent_state *cached_state = NULL;
2421         u64 lockstart = *offset;
2422         u64 lockend = i_size_read(inode);
2423         u64 start = *offset;
2424         u64 len = i_size_read(inode);
2425         int ret = 0;
2426
2427         lockend = max_t(u64, root->sectorsize, lockend);
2428         if (lockend <= lockstart)
2429                 lockend = lockstart + root->sectorsize;
2430
2431         lockend--;
2432         len = lockend - lockstart + 1;
2433
2434         len = max_t(u64, len, root->sectorsize);
2435         if (inode->i_size == 0)
2436                 return -ENXIO;
2437
2438         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2439                          &cached_state);
2440
2441         while (start < inode->i_size) {
2442                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2443                 if (IS_ERR(em)) {
2444                         ret = PTR_ERR(em);
2445                         em = NULL;
2446                         break;
2447                 }
2448
2449                 if (whence == SEEK_HOLE &&
2450                     (em->block_start == EXTENT_MAP_HOLE ||
2451                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2452                         break;
2453                 else if (whence == SEEK_DATA &&
2454                            (em->block_start != EXTENT_MAP_HOLE &&
2455                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2456                         break;
2457
2458                 start = em->start + em->len;
2459                 free_extent_map(em);
2460                 em = NULL;
2461                 cond_resched();
2462         }
2463         free_extent_map(em);
2464         if (!ret) {
2465                 if (whence == SEEK_DATA && start >= inode->i_size)
2466                         ret = -ENXIO;
2467                 else
2468                         *offset = min_t(loff_t, start, inode->i_size);
2469         }
2470         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2471                              &cached_state, GFP_NOFS);
2472         return ret;
2473 }
2474
2475 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2476 {
2477         struct inode *inode = file->f_mapping->host;
2478         int ret;
2479
2480         mutex_lock(&inode->i_mutex);
2481         switch (whence) {
2482         case SEEK_END:
2483         case SEEK_CUR:
2484                 offset = generic_file_llseek(file, offset, whence);
2485                 goto out;
2486         case SEEK_DATA:
2487         case SEEK_HOLE:
2488                 if (offset >= i_size_read(inode)) {
2489                         mutex_unlock(&inode->i_mutex);
2490                         return -ENXIO;
2491                 }
2492
2493                 ret = find_desired_extent(inode, &offset, whence);
2494                 if (ret) {
2495                         mutex_unlock(&inode->i_mutex);
2496                         return ret;
2497                 }
2498         }
2499
2500         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2501 out:
2502         mutex_unlock(&inode->i_mutex);
2503         return offset;
2504 }
2505
2506 const struct file_operations btrfs_file_operations = {
2507         .llseek         = btrfs_file_llseek,
2508         .read           = do_sync_read,
2509         .write          = do_sync_write,
2510         .aio_read       = generic_file_aio_read,
2511         .splice_read    = generic_file_splice_read,
2512         .aio_write      = btrfs_file_aio_write,
2513         .mmap           = btrfs_file_mmap,
2514         .open           = generic_file_open,
2515         .release        = btrfs_release_file,
2516         .fsync          = btrfs_sync_file,
2517         .fallocate      = btrfs_fallocate,
2518         .unlocked_ioctl = btrfs_ioctl,
2519 #ifdef CONFIG_COMPAT
2520         .compat_ioctl   = btrfs_ioctl,
2521 #endif
2522 };
2523
2524 void btrfs_auto_defrag_exit(void)
2525 {
2526         if (btrfs_inode_defrag_cachep)
2527                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2528 }
2529
2530 int btrfs_auto_defrag_init(void)
2531 {
2532         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2533                                         sizeof(struct inode_defrag), 0,
2534                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2535                                         NULL);
2536         if (!btrfs_inode_defrag_cachep)
2537                 return -ENOMEM;
2538
2539         return 0;
2540 }