Merge tag '9p-for-4.21' of git://github.com/martinetd/linux
[sfrench/cifs-2.6.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33         return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(&leak_lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(&leak_lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65         struct extent_state *state;
66         struct extent_buffer *eb;
67
68         while (!list_empty(&states)) {
69                 state = list_entry(states.next, struct extent_state, leak_list);
70                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71                        state->start, state->end, state->state,
72                        extent_state_in_tree(state),
73                        refcount_read(&state->refs));
74                 list_del(&state->leak_list);
75                 kmem_cache_free(extent_state_cache, state);
76         }
77
78         while (!list_empty(&buffers)) {
79                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
88         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90                 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92         struct inode *inode = tree->private_data;
93         u64 isize;
94
95         if (!inode || !is_data_inode(inode))
96                 return;
97
98         isize = i_size_read(inode);
99         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
102                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103         }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry)     do {} while (0)
108 #define btrfs_leak_debug_check()        do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
110 #endif
111
112 #define BUFFER_LRU_MAX 64
113
114 struct tree_entry {
115         u64 start;
116         u64 end;
117         struct rb_node rb_node;
118 };
119
120 struct extent_page_data {
121         struct bio *bio;
122         struct extent_io_tree *tree;
123         /* tells writepage not to lock the state bits for this range
124          * it still does the unlocking
125          */
126         unsigned int extent_locked:1;
127
128         /* tells the submit_bio code to use REQ_SYNC */
129         unsigned int sync_io:1;
130 };
131
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133                                  struct extent_changeset *changeset,
134                                  int set)
135 {
136         int ret;
137
138         if (!changeset)
139                 return 0;
140         if (set && (state->state & bits) == bits)
141                 return 0;
142         if (!set && (state->state & bits) == 0)
143                 return 0;
144         changeset->bytes_changed += state->end - state->start + 1;
145         ret = ulist_add(&changeset->range_changed, state->start, state->end,
146                         GFP_ATOMIC);
147         return ret;
148 }
149
150 static void flush_write_bio(struct extent_page_data *epd);
151
152 int __init extent_io_init(void)
153 {
154         extent_state_cache = kmem_cache_create("btrfs_extent_state",
155                         sizeof(struct extent_state), 0,
156                         SLAB_MEM_SPREAD, NULL);
157         if (!extent_state_cache)
158                 return -ENOMEM;
159
160         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161                         sizeof(struct extent_buffer), 0,
162                         SLAB_MEM_SPREAD, NULL);
163         if (!extent_buffer_cache)
164                 goto free_state_cache;
165
166         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167                         offsetof(struct btrfs_io_bio, bio),
168                         BIOSET_NEED_BVECS))
169                 goto free_buffer_cache;
170
171         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
172                 goto free_bioset;
173
174         return 0;
175
176 free_bioset:
177         bioset_exit(&btrfs_bioset);
178
179 free_buffer_cache:
180         kmem_cache_destroy(extent_buffer_cache);
181         extent_buffer_cache = NULL;
182
183 free_state_cache:
184         kmem_cache_destroy(extent_state_cache);
185         extent_state_cache = NULL;
186         return -ENOMEM;
187 }
188
189 void __cold extent_io_exit(void)
190 {
191         btrfs_leak_debug_check();
192
193         /*
194          * Make sure all delayed rcu free are flushed before we
195          * destroy caches.
196          */
197         rcu_barrier();
198         kmem_cache_destroy(extent_state_cache);
199         kmem_cache_destroy(extent_buffer_cache);
200         bioset_exit(&btrfs_bioset);
201 }
202
203 void extent_io_tree_init(struct extent_io_tree *tree,
204                          void *private_data)
205 {
206         tree->state = RB_ROOT;
207         tree->ops = NULL;
208         tree->dirty_bytes = 0;
209         spin_lock_init(&tree->lock);
210         tree->private_data = private_data;
211 }
212
213 static struct extent_state *alloc_extent_state(gfp_t mask)
214 {
215         struct extent_state *state;
216
217         /*
218          * The given mask might be not appropriate for the slab allocator,
219          * drop the unsupported bits
220          */
221         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
222         state = kmem_cache_alloc(extent_state_cache, mask);
223         if (!state)
224                 return state;
225         state->state = 0;
226         state->failrec = NULL;
227         RB_CLEAR_NODE(&state->rb_node);
228         btrfs_leak_debug_add(&state->leak_list, &states);
229         refcount_set(&state->refs, 1);
230         init_waitqueue_head(&state->wq);
231         trace_alloc_extent_state(state, mask, _RET_IP_);
232         return state;
233 }
234
235 void free_extent_state(struct extent_state *state)
236 {
237         if (!state)
238                 return;
239         if (refcount_dec_and_test(&state->refs)) {
240                 WARN_ON(extent_state_in_tree(state));
241                 btrfs_leak_debug_del(&state->leak_list);
242                 trace_free_extent_state(state, _RET_IP_);
243                 kmem_cache_free(extent_state_cache, state);
244         }
245 }
246
247 static struct rb_node *tree_insert(struct rb_root *root,
248                                    struct rb_node *search_start,
249                                    u64 offset,
250                                    struct rb_node *node,
251                                    struct rb_node ***p_in,
252                                    struct rb_node **parent_in)
253 {
254         struct rb_node **p;
255         struct rb_node *parent = NULL;
256         struct tree_entry *entry;
257
258         if (p_in && parent_in) {
259                 p = *p_in;
260                 parent = *parent_in;
261                 goto do_insert;
262         }
263
264         p = search_start ? &search_start : &root->rb_node;
265         while (*p) {
266                 parent = *p;
267                 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269                 if (offset < entry->start)
270                         p = &(*p)->rb_left;
271                 else if (offset > entry->end)
272                         p = &(*p)->rb_right;
273                 else
274                         return parent;
275         }
276
277 do_insert:
278         rb_link_node(node, parent, p);
279         rb_insert_color(node, root);
280         return NULL;
281 }
282
283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
284                                       struct rb_node **prev_ret,
285                                       struct rb_node **next_ret,
286                                       struct rb_node ***p_ret,
287                                       struct rb_node **parent_ret)
288 {
289         struct rb_root *root = &tree->state;
290         struct rb_node **n = &root->rb_node;
291         struct rb_node *prev = NULL;
292         struct rb_node *orig_prev = NULL;
293         struct tree_entry *entry;
294         struct tree_entry *prev_entry = NULL;
295
296         while (*n) {
297                 prev = *n;
298                 entry = rb_entry(prev, struct tree_entry, rb_node);
299                 prev_entry = entry;
300
301                 if (offset < entry->start)
302                         n = &(*n)->rb_left;
303                 else if (offset > entry->end)
304                         n = &(*n)->rb_right;
305                 else
306                         return *n;
307         }
308
309         if (p_ret)
310                 *p_ret = n;
311         if (parent_ret)
312                 *parent_ret = prev;
313
314         if (prev_ret) {
315                 orig_prev = prev;
316                 while (prev && offset > prev_entry->end) {
317                         prev = rb_next(prev);
318                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319                 }
320                 *prev_ret = prev;
321                 prev = orig_prev;
322         }
323
324         if (next_ret) {
325                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 while (prev && offset < prev_entry->start) {
327                         prev = rb_prev(prev);
328                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329                 }
330                 *next_ret = prev;
331         }
332         return NULL;
333 }
334
335 static inline struct rb_node *
336 tree_search_for_insert(struct extent_io_tree *tree,
337                        u64 offset,
338                        struct rb_node ***p_ret,
339                        struct rb_node **parent_ret)
340 {
341         struct rb_node *prev = NULL;
342         struct rb_node *ret;
343
344         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
345         if (!ret)
346                 return prev;
347         return ret;
348 }
349
350 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351                                           u64 offset)
352 {
353         return tree_search_for_insert(tree, offset, NULL, NULL);
354 }
355
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static void merge_state(struct extent_io_tree *tree,
366                         struct extent_state *state)
367 {
368         struct extent_state *other;
369         struct rb_node *other_node;
370
371         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
372                 return;
373
374         other_node = rb_prev(&state->rb_node);
375         if (other_node) {
376                 other = rb_entry(other_node, struct extent_state, rb_node);
377                 if (other->end == state->start - 1 &&
378                     other->state == state->state) {
379                         if (tree->private_data &&
380                             is_data_inode(tree->private_data))
381                                 btrfs_merge_delalloc_extent(tree->private_data,
382                                                             state, other);
383                         state->start = other->start;
384                         rb_erase(&other->rb_node, &tree->state);
385                         RB_CLEAR_NODE(&other->rb_node);
386                         free_extent_state(other);
387                 }
388         }
389         other_node = rb_next(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->start == state->end + 1 &&
393                     other->state == state->state) {
394                         if (tree->private_data &&
395                             is_data_inode(tree->private_data))
396                                 btrfs_merge_delalloc_extent(tree->private_data,
397                                                             state, other);
398                         state->end = other->end;
399                         rb_erase(&other->rb_node, &tree->state);
400                         RB_CLEAR_NODE(&other->rb_node);
401                         free_extent_state(other);
402                 }
403         }
404 }
405
406 static void set_state_bits(struct extent_io_tree *tree,
407                            struct extent_state *state, unsigned *bits,
408                            struct extent_changeset *changeset);
409
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421                         struct extent_state *state, u64 start, u64 end,
422                         struct rb_node ***p,
423                         struct rb_node **parent,
424                         unsigned *bits, struct extent_changeset *changeset)
425 {
426         struct rb_node *node;
427
428         if (end < start)
429                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430                        end, start);
431         state->start = start;
432         state->end = end;
433
434         set_state_bits(tree, state, bits, changeset);
435
436         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437         if (node) {
438                 struct extent_state *found;
439                 found = rb_entry(node, struct extent_state, rb_node);
440                 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
441                        found->start, found->end, start, end);
442                 return -EEXIST;
443         }
444         merge_state(tree, state);
445         return 0;
446 }
447
448 /*
449  * split a given extent state struct in two, inserting the preallocated
450  * struct 'prealloc' as the newly created second half.  'split' indicates an
451  * offset inside 'orig' where it should be split.
452  *
453  * Before calling,
454  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
455  * are two extent state structs in the tree:
456  * prealloc: [orig->start, split - 1]
457  * orig: [ split, orig->end ]
458  *
459  * The tree locks are not taken by this function. They need to be held
460  * by the caller.
461  */
462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463                        struct extent_state *prealloc, u64 split)
464 {
465         struct rb_node *node;
466
467         if (tree->private_data && is_data_inode(tree->private_data))
468                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
469
470         prealloc->start = orig->start;
471         prealloc->end = split - 1;
472         prealloc->state = orig->state;
473         orig->start = split;
474
475         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476                            &prealloc->rb_node, NULL, NULL);
477         if (node) {
478                 free_extent_state(prealloc);
479                 return -EEXIST;
480         }
481         return 0;
482 }
483
484 static struct extent_state *next_state(struct extent_state *state)
485 {
486         struct rb_node *next = rb_next(&state->rb_node);
487         if (next)
488                 return rb_entry(next, struct extent_state, rb_node);
489         else
490                 return NULL;
491 }
492
493 /*
494  * utility function to clear some bits in an extent state struct.
495  * it will optionally wake up anyone waiting on this state (wake == 1).
496  *
497  * If no bits are set on the state struct after clearing things, the
498  * struct is freed and removed from the tree
499  */
500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501                                             struct extent_state *state,
502                                             unsigned *bits, int wake,
503                                             struct extent_changeset *changeset)
504 {
505         struct extent_state *next;
506         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
507         int ret;
508
509         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
510                 u64 range = state->end - state->start + 1;
511                 WARN_ON(range > tree->dirty_bytes);
512                 tree->dirty_bytes -= range;
513         }
514
515         if (tree->private_data && is_data_inode(tree->private_data))
516                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
518         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519         BUG_ON(ret < 0);
520         state->state &= ~bits_to_clear;
521         if (wake)
522                 wake_up(&state->wq);
523         if (state->state == 0) {
524                 next = next_state(state);
525                 if (extent_state_in_tree(state)) {
526                         rb_erase(&state->rb_node, &tree->state);
527                         RB_CLEAR_NODE(&state->rb_node);
528                         free_extent_state(state);
529                 } else {
530                         WARN_ON(1);
531                 }
532         } else {
533                 merge_state(tree, state);
534                 next = next_state(state);
535         }
536         return next;
537 }
538
539 static struct extent_state *
540 alloc_extent_state_atomic(struct extent_state *prealloc)
541 {
542         if (!prealloc)
543                 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545         return prealloc;
546 }
547
548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
549 {
550         struct inode *inode = tree->private_data;
551
552         btrfs_panic(btrfs_sb(inode->i_sb), err,
553         "locking error: extent tree was modified by another thread while locked");
554 }
555
556 /*
557  * clear some bits on a range in the tree.  This may require splitting
558  * or inserting elements in the tree, so the gfp mask is used to
559  * indicate which allocations or sleeping are allowed.
560  *
561  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562  * the given range from the tree regardless of state (ie for truncate).
563  *
564  * the range [start, end] is inclusive.
565  *
566  * This takes the tree lock, and returns 0 on success and < 0 on error.
567  */
568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569                               unsigned bits, int wake, int delete,
570                               struct extent_state **cached_state,
571                               gfp_t mask, struct extent_changeset *changeset)
572 {
573         struct extent_state *state;
574         struct extent_state *cached;
575         struct extent_state *prealloc = NULL;
576         struct rb_node *node;
577         u64 last_end;
578         int err;
579         int clear = 0;
580
581         btrfs_debug_check_extent_io_range(tree, start, end);
582
583         if (bits & EXTENT_DELALLOC)
584                 bits |= EXTENT_NORESERVE;
585
586         if (delete)
587                 bits |= ~EXTENT_CTLBITS;
588         bits |= EXTENT_FIRST_DELALLOC;
589
590         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591                 clear = 1;
592 again:
593         if (!prealloc && gfpflags_allow_blocking(mask)) {
594                 /*
595                  * Don't care for allocation failure here because we might end
596                  * up not needing the pre-allocated extent state at all, which
597                  * is the case if we only have in the tree extent states that
598                  * cover our input range and don't cover too any other range.
599                  * If we end up needing a new extent state we allocate it later.
600                  */
601                 prealloc = alloc_extent_state(mask);
602         }
603
604         spin_lock(&tree->lock);
605         if (cached_state) {
606                 cached = *cached_state;
607
608                 if (clear) {
609                         *cached_state = NULL;
610                         cached_state = NULL;
611                 }
612
613                 if (cached && extent_state_in_tree(cached) &&
614                     cached->start <= start && cached->end > start) {
615                         if (clear)
616                                 refcount_dec(&cached->refs);
617                         state = cached;
618                         goto hit_next;
619                 }
620                 if (clear)
621                         free_extent_state(cached);
622         }
623         /*
624          * this search will find the extents that end after
625          * our range starts
626          */
627         node = tree_search(tree, start);
628         if (!node)
629                 goto out;
630         state = rb_entry(node, struct extent_state, rb_node);
631 hit_next:
632         if (state->start > end)
633                 goto out;
634         WARN_ON(state->end < start);
635         last_end = state->end;
636
637         /* the state doesn't have the wanted bits, go ahead */
638         if (!(state->state & bits)) {
639                 state = next_state(state);
640                 goto next;
641         }
642
643         /*
644          *     | ---- desired range ---- |
645          *  | state | or
646          *  | ------------- state -------------- |
647          *
648          * We need to split the extent we found, and may flip
649          * bits on second half.
650          *
651          * If the extent we found extends past our range, we
652          * just split and search again.  It'll get split again
653          * the next time though.
654          *
655          * If the extent we found is inside our range, we clear
656          * the desired bit on it.
657          */
658
659         if (state->start < start) {
660                 prealloc = alloc_extent_state_atomic(prealloc);
661                 BUG_ON(!prealloc);
662                 err = split_state(tree, state, prealloc, start);
663                 if (err)
664                         extent_io_tree_panic(tree, err);
665
666                 prealloc = NULL;
667                 if (err)
668                         goto out;
669                 if (state->end <= end) {
670                         state = clear_state_bit(tree, state, &bits, wake,
671                                                 changeset);
672                         goto next;
673                 }
674                 goto search_again;
675         }
676         /*
677          * | ---- desired range ---- |
678          *                        | state |
679          * We need to split the extent, and clear the bit
680          * on the first half
681          */
682         if (state->start <= end && state->end > end) {
683                 prealloc = alloc_extent_state_atomic(prealloc);
684                 BUG_ON(!prealloc);
685                 err = split_state(tree, state, prealloc, end + 1);
686                 if (err)
687                         extent_io_tree_panic(tree, err);
688
689                 if (wake)
690                         wake_up(&state->wq);
691
692                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
693
694                 prealloc = NULL;
695                 goto out;
696         }
697
698         state = clear_state_bit(tree, state, &bits, wake, changeset);
699 next:
700         if (last_end == (u64)-1)
701                 goto out;
702         start = last_end + 1;
703         if (start <= end && state && !need_resched())
704                 goto hit_next;
705
706 search_again:
707         if (start > end)
708                 goto out;
709         spin_unlock(&tree->lock);
710         if (gfpflags_allow_blocking(mask))
711                 cond_resched();
712         goto again;
713
714 out:
715         spin_unlock(&tree->lock);
716         if (prealloc)
717                 free_extent_state(prealloc);
718
719         return 0;
720
721 }
722
723 static void wait_on_state(struct extent_io_tree *tree,
724                           struct extent_state *state)
725                 __releases(tree->lock)
726                 __acquires(tree->lock)
727 {
728         DEFINE_WAIT(wait);
729         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
730         spin_unlock(&tree->lock);
731         schedule();
732         spin_lock(&tree->lock);
733         finish_wait(&state->wq, &wait);
734 }
735
736 /*
737  * waits for one or more bits to clear on a range in the state tree.
738  * The range [start, end] is inclusive.
739  * The tree lock is taken by this function
740  */
741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742                             unsigned long bits)
743 {
744         struct extent_state *state;
745         struct rb_node *node;
746
747         btrfs_debug_check_extent_io_range(tree, start, end);
748
749         spin_lock(&tree->lock);
750 again:
751         while (1) {
752                 /*
753                  * this search will find all the extents that end after
754                  * our range starts
755                  */
756                 node = tree_search(tree, start);
757 process_node:
758                 if (!node)
759                         break;
760
761                 state = rb_entry(node, struct extent_state, rb_node);
762
763                 if (state->start > end)
764                         goto out;
765
766                 if (state->state & bits) {
767                         start = state->start;
768                         refcount_inc(&state->refs);
769                         wait_on_state(tree, state);
770                         free_extent_state(state);
771                         goto again;
772                 }
773                 start = state->end + 1;
774
775                 if (start > end)
776                         break;
777
778                 if (!cond_resched_lock(&tree->lock)) {
779                         node = rb_next(node);
780                         goto process_node;
781                 }
782         }
783 out:
784         spin_unlock(&tree->lock);
785 }
786
787 static void set_state_bits(struct extent_io_tree *tree,
788                            struct extent_state *state,
789                            unsigned *bits, struct extent_changeset *changeset)
790 {
791         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
792         int ret;
793
794         if (tree->private_data && is_data_inode(tree->private_data))
795                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
796
797         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798                 u64 range = state->end - state->start + 1;
799                 tree->dirty_bytes += range;
800         }
801         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802         BUG_ON(ret < 0);
803         state->state |= bits_to_set;
804 }
805
806 static void cache_state_if_flags(struct extent_state *state,
807                                  struct extent_state **cached_ptr,
808                                  unsigned flags)
809 {
810         if (cached_ptr && !(*cached_ptr)) {
811                 if (!flags || (state->state & flags)) {
812                         *cached_ptr = state;
813                         refcount_inc(&state->refs);
814                 }
815         }
816 }
817
818 static void cache_state(struct extent_state *state,
819                         struct extent_state **cached_ptr)
820 {
821         return cache_state_if_flags(state, cached_ptr,
822                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
823 }
824
825 /*
826  * set some bits on a range in the tree.  This may require allocations or
827  * sleeping, so the gfp mask is used to indicate what is allowed.
828  *
829  * If any of the exclusive bits are set, this will fail with -EEXIST if some
830  * part of the range already has the desired bits set.  The start of the
831  * existing range is returned in failed_start in this case.
832  *
833  * [start, end] is inclusive This takes the tree lock.
834  */
835
836 static int __must_check
837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
838                  unsigned bits, unsigned exclusive_bits,
839                  u64 *failed_start, struct extent_state **cached_state,
840                  gfp_t mask, struct extent_changeset *changeset)
841 {
842         struct extent_state *state;
843         struct extent_state *prealloc = NULL;
844         struct rb_node *node;
845         struct rb_node **p;
846         struct rb_node *parent;
847         int err = 0;
848         u64 last_start;
849         u64 last_end;
850
851         btrfs_debug_check_extent_io_range(tree, start, end);
852
853         bits |= EXTENT_FIRST_DELALLOC;
854 again:
855         if (!prealloc && gfpflags_allow_blocking(mask)) {
856                 /*
857                  * Don't care for allocation failure here because we might end
858                  * up not needing the pre-allocated extent state at all, which
859                  * is the case if we only have in the tree extent states that
860                  * cover our input range and don't cover too any other range.
861                  * If we end up needing a new extent state we allocate it later.
862                  */
863                 prealloc = alloc_extent_state(mask);
864         }
865
866         spin_lock(&tree->lock);
867         if (cached_state && *cached_state) {
868                 state = *cached_state;
869                 if (state->start <= start && state->end > start &&
870                     extent_state_in_tree(state)) {
871                         node = &state->rb_node;
872                         goto hit_next;
873                 }
874         }
875         /*
876          * this search will find all the extents that end after
877          * our range starts.
878          */
879         node = tree_search_for_insert(tree, start, &p, &parent);
880         if (!node) {
881                 prealloc = alloc_extent_state_atomic(prealloc);
882                 BUG_ON(!prealloc);
883                 err = insert_state(tree, prealloc, start, end,
884                                    &p, &parent, &bits, changeset);
885                 if (err)
886                         extent_io_tree_panic(tree, err);
887
888                 cache_state(prealloc, cached_state);
889                 prealloc = NULL;
890                 goto out;
891         }
892         state = rb_entry(node, struct extent_state, rb_node);
893 hit_next:
894         last_start = state->start;
895         last_end = state->end;
896
897         /*
898          * | ---- desired range ---- |
899          * | state |
900          *
901          * Just lock what we found and keep going
902          */
903         if (state->start == start && state->end <= end) {
904                 if (state->state & exclusive_bits) {
905                         *failed_start = state->start;
906                         err = -EEXIST;
907                         goto out;
908                 }
909
910                 set_state_bits(tree, state, &bits, changeset);
911                 cache_state(state, cached_state);
912                 merge_state(tree, state);
913                 if (last_end == (u64)-1)
914                         goto out;
915                 start = last_end + 1;
916                 state = next_state(state);
917                 if (start < end && state && state->start == start &&
918                     !need_resched())
919                         goto hit_next;
920                 goto search_again;
921         }
922
923         /*
924          *     | ---- desired range ---- |
925          * | state |
926          *   or
927          * | ------------- state -------------- |
928          *
929          * We need to split the extent we found, and may flip bits on
930          * second half.
931          *
932          * If the extent we found extends past our
933          * range, we just split and search again.  It'll get split
934          * again the next time though.
935          *
936          * If the extent we found is inside our range, we set the
937          * desired bit on it.
938          */
939         if (state->start < start) {
940                 if (state->state & exclusive_bits) {
941                         *failed_start = start;
942                         err = -EEXIST;
943                         goto out;
944                 }
945
946                 prealloc = alloc_extent_state_atomic(prealloc);
947                 BUG_ON(!prealloc);
948                 err = split_state(tree, state, prealloc, start);
949                 if (err)
950                         extent_io_tree_panic(tree, err);
951
952                 prealloc = NULL;
953                 if (err)
954                         goto out;
955                 if (state->end <= end) {
956                         set_state_bits(tree, state, &bits, changeset);
957                         cache_state(state, cached_state);
958                         merge_state(tree, state);
959                         if (last_end == (u64)-1)
960                                 goto out;
961                         start = last_end + 1;
962                         state = next_state(state);
963                         if (start < end && state && state->start == start &&
964                             !need_resched())
965                                 goto hit_next;
966                 }
967                 goto search_again;
968         }
969         /*
970          * | ---- desired range ---- |
971          *     | state | or               | state |
972          *
973          * There's a hole, we need to insert something in it and
974          * ignore the extent we found.
975          */
976         if (state->start > start) {
977                 u64 this_end;
978                 if (end < last_start)
979                         this_end = end;
980                 else
981                         this_end = last_start - 1;
982
983                 prealloc = alloc_extent_state_atomic(prealloc);
984                 BUG_ON(!prealloc);
985
986                 /*
987                  * Avoid to free 'prealloc' if it can be merged with
988                  * the later extent.
989                  */
990                 err = insert_state(tree, prealloc, start, this_end,
991                                    NULL, NULL, &bits, changeset);
992                 if (err)
993                         extent_io_tree_panic(tree, err);
994
995                 cache_state(prealloc, cached_state);
996                 prealloc = NULL;
997                 start = this_end + 1;
998                 goto search_again;
999         }
1000         /*
1001          * | ---- desired range ---- |
1002          *                        | state |
1003          * We need to split the extent, and set the bit
1004          * on the first half
1005          */
1006         if (state->start <= end && state->end > end) {
1007                 if (state->state & exclusive_bits) {
1008                         *failed_start = start;
1009                         err = -EEXIST;
1010                         goto out;
1011                 }
1012
1013                 prealloc = alloc_extent_state_atomic(prealloc);
1014                 BUG_ON(!prealloc);
1015                 err = split_state(tree, state, prealloc, end + 1);
1016                 if (err)
1017                         extent_io_tree_panic(tree, err);
1018
1019                 set_state_bits(tree, prealloc, &bits, changeset);
1020                 cache_state(prealloc, cached_state);
1021                 merge_state(tree, prealloc);
1022                 prealloc = NULL;
1023                 goto out;
1024         }
1025
1026 search_again:
1027         if (start > end)
1028                 goto out;
1029         spin_unlock(&tree->lock);
1030         if (gfpflags_allow_blocking(mask))
1031                 cond_resched();
1032         goto again;
1033
1034 out:
1035         spin_unlock(&tree->lock);
1036         if (prealloc)
1037                 free_extent_state(prealloc);
1038
1039         return err;
1040
1041 }
1042
1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1044                    unsigned bits, u64 * failed_start,
1045                    struct extent_state **cached_state, gfp_t mask)
1046 {
1047         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1048                                 cached_state, mask, NULL);
1049 }
1050
1051
1052 /**
1053  * convert_extent_bit - convert all bits in a given range from one bit to
1054  *                      another
1055  * @tree:       the io tree to search
1056  * @start:      the start offset in bytes
1057  * @end:        the end offset in bytes (inclusive)
1058  * @bits:       the bits to set in this range
1059  * @clear_bits: the bits to clear in this range
1060  * @cached_state:       state that we're going to cache
1061  *
1062  * This will go through and set bits for the given range.  If any states exist
1063  * already in this range they are set with the given bit and cleared of the
1064  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1065  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1066  * boundary bits like LOCK.
1067  *
1068  * All allocations are done with GFP_NOFS.
1069  */
1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1071                        unsigned bits, unsigned clear_bits,
1072                        struct extent_state **cached_state)
1073 {
1074         struct extent_state *state;
1075         struct extent_state *prealloc = NULL;
1076         struct rb_node *node;
1077         struct rb_node **p;
1078         struct rb_node *parent;
1079         int err = 0;
1080         u64 last_start;
1081         u64 last_end;
1082         bool first_iteration = true;
1083
1084         btrfs_debug_check_extent_io_range(tree, start, end);
1085
1086 again:
1087         if (!prealloc) {
1088                 /*
1089                  * Best effort, don't worry if extent state allocation fails
1090                  * here for the first iteration. We might have a cached state
1091                  * that matches exactly the target range, in which case no
1092                  * extent state allocations are needed. We'll only know this
1093                  * after locking the tree.
1094                  */
1095                 prealloc = alloc_extent_state(GFP_NOFS);
1096                 if (!prealloc && !first_iteration)
1097                         return -ENOMEM;
1098         }
1099
1100         spin_lock(&tree->lock);
1101         if (cached_state && *cached_state) {
1102                 state = *cached_state;
1103                 if (state->start <= start && state->end > start &&
1104                     extent_state_in_tree(state)) {
1105                         node = &state->rb_node;
1106                         goto hit_next;
1107                 }
1108         }
1109
1110         /*
1111          * this search will find all the extents that end after
1112          * our range starts.
1113          */
1114         node = tree_search_for_insert(tree, start, &p, &parent);
1115         if (!node) {
1116                 prealloc = alloc_extent_state_atomic(prealloc);
1117                 if (!prealloc) {
1118                         err = -ENOMEM;
1119                         goto out;
1120                 }
1121                 err = insert_state(tree, prealloc, start, end,
1122                                    &p, &parent, &bits, NULL);
1123                 if (err)
1124                         extent_io_tree_panic(tree, err);
1125                 cache_state(prealloc, cached_state);
1126                 prealloc = NULL;
1127                 goto out;
1128         }
1129         state = rb_entry(node, struct extent_state, rb_node);
1130 hit_next:
1131         last_start = state->start;
1132         last_end = state->end;
1133
1134         /*
1135          * | ---- desired range ---- |
1136          * | state |
1137          *
1138          * Just lock what we found and keep going
1139          */
1140         if (state->start == start && state->end <= end) {
1141                 set_state_bits(tree, state, &bits, NULL);
1142                 cache_state(state, cached_state);
1143                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1144                 if (last_end == (u64)-1)
1145                         goto out;
1146                 start = last_end + 1;
1147                 if (start < end && state && state->start == start &&
1148                     !need_resched())
1149                         goto hit_next;
1150                 goto search_again;
1151         }
1152
1153         /*
1154          *     | ---- desired range ---- |
1155          * | state |
1156          *   or
1157          * | ------------- state -------------- |
1158          *
1159          * We need to split the extent we found, and may flip bits on
1160          * second half.
1161          *
1162          * If the extent we found extends past our
1163          * range, we just split and search again.  It'll get split
1164          * again the next time though.
1165          *
1166          * If the extent we found is inside our range, we set the
1167          * desired bit on it.
1168          */
1169         if (state->start < start) {
1170                 prealloc = alloc_extent_state_atomic(prealloc);
1171                 if (!prealloc) {
1172                         err = -ENOMEM;
1173                         goto out;
1174                 }
1175                 err = split_state(tree, state, prealloc, start);
1176                 if (err)
1177                         extent_io_tree_panic(tree, err);
1178                 prealloc = NULL;
1179                 if (err)
1180                         goto out;
1181                 if (state->end <= end) {
1182                         set_state_bits(tree, state, &bits, NULL);
1183                         cache_state(state, cached_state);
1184                         state = clear_state_bit(tree, state, &clear_bits, 0,
1185                                                 NULL);
1186                         if (last_end == (u64)-1)
1187                                 goto out;
1188                         start = last_end + 1;
1189                         if (start < end && state && state->start == start &&
1190                             !need_resched())
1191                                 goto hit_next;
1192                 }
1193                 goto search_again;
1194         }
1195         /*
1196          * | ---- desired range ---- |
1197          *     | state | or               | state |
1198          *
1199          * There's a hole, we need to insert something in it and
1200          * ignore the extent we found.
1201          */
1202         if (state->start > start) {
1203                 u64 this_end;
1204                 if (end < last_start)
1205                         this_end = end;
1206                 else
1207                         this_end = last_start - 1;
1208
1209                 prealloc = alloc_extent_state_atomic(prealloc);
1210                 if (!prealloc) {
1211                         err = -ENOMEM;
1212                         goto out;
1213                 }
1214
1215                 /*
1216                  * Avoid to free 'prealloc' if it can be merged with
1217                  * the later extent.
1218                  */
1219                 err = insert_state(tree, prealloc, start, this_end,
1220                                    NULL, NULL, &bits, NULL);
1221                 if (err)
1222                         extent_io_tree_panic(tree, err);
1223                 cache_state(prealloc, cached_state);
1224                 prealloc = NULL;
1225                 start = this_end + 1;
1226                 goto search_again;
1227         }
1228         /*
1229          * | ---- desired range ---- |
1230          *                        | state |
1231          * We need to split the extent, and set the bit
1232          * on the first half
1233          */
1234         if (state->start <= end && state->end > end) {
1235                 prealloc = alloc_extent_state_atomic(prealloc);
1236                 if (!prealloc) {
1237                         err = -ENOMEM;
1238                         goto out;
1239                 }
1240
1241                 err = split_state(tree, state, prealloc, end + 1);
1242                 if (err)
1243                         extent_io_tree_panic(tree, err);
1244
1245                 set_state_bits(tree, prealloc, &bits, NULL);
1246                 cache_state(prealloc, cached_state);
1247                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1248                 prealloc = NULL;
1249                 goto out;
1250         }
1251
1252 search_again:
1253         if (start > end)
1254                 goto out;
1255         spin_unlock(&tree->lock);
1256         cond_resched();
1257         first_iteration = false;
1258         goto again;
1259
1260 out:
1261         spin_unlock(&tree->lock);
1262         if (prealloc)
1263                 free_extent_state(prealloc);
1264
1265         return err;
1266 }
1267
1268 /* wrappers around set/clear extent bit */
1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1270                            unsigned bits, struct extent_changeset *changeset)
1271 {
1272         /*
1273          * We don't support EXTENT_LOCKED yet, as current changeset will
1274          * record any bits changed, so for EXTENT_LOCKED case, it will
1275          * either fail with -EEXIST or changeset will record the whole
1276          * range.
1277          */
1278         BUG_ON(bits & EXTENT_LOCKED);
1279
1280         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1281                                 changeset);
1282 }
1283
1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285                      unsigned bits, int wake, int delete,
1286                      struct extent_state **cached)
1287 {
1288         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1289                                   cached, GFP_NOFS, NULL);
1290 }
1291
1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1293                 unsigned bits, struct extent_changeset *changeset)
1294 {
1295         /*
1296          * Don't support EXTENT_LOCKED case, same reason as
1297          * set_record_extent_bits().
1298          */
1299         BUG_ON(bits & EXTENT_LOCKED);
1300
1301         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1302                                   changeset);
1303 }
1304
1305 /*
1306  * either insert or lock state struct between start and end use mask to tell
1307  * us if waiting is desired.
1308  */
1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1310                      struct extent_state **cached_state)
1311 {
1312         int err;
1313         u64 failed_start;
1314
1315         while (1) {
1316                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1317                                        EXTENT_LOCKED, &failed_start,
1318                                        cached_state, GFP_NOFS, NULL);
1319                 if (err == -EEXIST) {
1320                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321                         start = failed_start;
1322                 } else
1323                         break;
1324                 WARN_ON(start > end);
1325         }
1326         return err;
1327 }
1328
1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331         int err;
1332         u64 failed_start;
1333
1334         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1335                                &failed_start, NULL, GFP_NOFS, NULL);
1336         if (err == -EEXIST) {
1337                 if (failed_start > start)
1338                         clear_extent_bit(tree, start, failed_start - 1,
1339                                          EXTENT_LOCKED, 1, 0, NULL);
1340                 return 0;
1341         }
1342         return 1;
1343 }
1344
1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1346 {
1347         unsigned long index = start >> PAGE_SHIFT;
1348         unsigned long end_index = end >> PAGE_SHIFT;
1349         struct page *page;
1350
1351         while (index <= end_index) {
1352                 page = find_get_page(inode->i_mapping, index);
1353                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354                 clear_page_dirty_for_io(page);
1355                 put_page(page);
1356                 index++;
1357         }
1358 }
1359
1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362         unsigned long index = start >> PAGE_SHIFT;
1363         unsigned long end_index = end >> PAGE_SHIFT;
1364         struct page *page;
1365
1366         while (index <= end_index) {
1367                 page = find_get_page(inode->i_mapping, index);
1368                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369                 __set_page_dirty_nobuffers(page);
1370                 account_page_redirty(page);
1371                 put_page(page);
1372                 index++;
1373         }
1374 }
1375
1376 /* find the first state struct with 'bits' set after 'start', and
1377  * return it.  tree->lock must be held.  NULL will returned if
1378  * nothing was found after 'start'
1379  */
1380 static struct extent_state *
1381 find_first_extent_bit_state(struct extent_io_tree *tree,
1382                             u64 start, unsigned bits)
1383 {
1384         struct rb_node *node;
1385         struct extent_state *state;
1386
1387         /*
1388          * this search will find all the extents that end after
1389          * our range starts.
1390          */
1391         node = tree_search(tree, start);
1392         if (!node)
1393                 goto out;
1394
1395         while (1) {
1396                 state = rb_entry(node, struct extent_state, rb_node);
1397                 if (state->end >= start && (state->state & bits))
1398                         return state;
1399
1400                 node = rb_next(node);
1401                 if (!node)
1402                         break;
1403         }
1404 out:
1405         return NULL;
1406 }
1407
1408 /*
1409  * find the first offset in the io tree with 'bits' set. zero is
1410  * returned if we find something, and *start_ret and *end_ret are
1411  * set to reflect the state struct that was found.
1412  *
1413  * If nothing was found, 1 is returned. If found something, return 0.
1414  */
1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1416                           u64 *start_ret, u64 *end_ret, unsigned bits,
1417                           struct extent_state **cached_state)
1418 {
1419         struct extent_state *state;
1420         int ret = 1;
1421
1422         spin_lock(&tree->lock);
1423         if (cached_state && *cached_state) {
1424                 state = *cached_state;
1425                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1426                         while ((state = next_state(state)) != NULL) {
1427                                 if (state->state & bits)
1428                                         goto got_it;
1429                         }
1430                         free_extent_state(*cached_state);
1431                         *cached_state = NULL;
1432                         goto out;
1433                 }
1434                 free_extent_state(*cached_state);
1435                 *cached_state = NULL;
1436         }
1437
1438         state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440         if (state) {
1441                 cache_state_if_flags(state, cached_state, 0);
1442                 *start_ret = state->start;
1443                 *end_ret = state->end;
1444                 ret = 0;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return ret;
1449 }
1450
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * true is returned if we find something, false if nothing was in the tree
1456  */
1457 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1458                                         u64 *start, u64 *end, u64 max_bytes,
1459                                         struct extent_state **cached_state)
1460 {
1461         struct rb_node *node;
1462         struct extent_state *state;
1463         u64 cur_start = *start;
1464         bool found = false;
1465         u64 total_bytes = 0;
1466
1467         spin_lock(&tree->lock);
1468
1469         /*
1470          * this search will find all the extents that end after
1471          * our range starts.
1472          */
1473         node = tree_search(tree, cur_start);
1474         if (!node) {
1475                 *end = (u64)-1;
1476                 goto out;
1477         }
1478
1479         while (1) {
1480                 state = rb_entry(node, struct extent_state, rb_node);
1481                 if (found && (state->start != cur_start ||
1482                               (state->state & EXTENT_BOUNDARY))) {
1483                         goto out;
1484                 }
1485                 if (!(state->state & EXTENT_DELALLOC)) {
1486                         if (!found)
1487                                 *end = state->end;
1488                         goto out;
1489                 }
1490                 if (!found) {
1491                         *start = state->start;
1492                         *cached_state = state;
1493                         refcount_inc(&state->refs);
1494                 }
1495                 found = true;
1496                 *end = state->end;
1497                 cur_start = state->end + 1;
1498                 node = rb_next(node);
1499                 total_bytes += state->end - state->start + 1;
1500                 if (total_bytes >= max_bytes)
1501                         break;
1502                 if (!node)
1503                         break;
1504         }
1505 out:
1506         spin_unlock(&tree->lock);
1507         return found;
1508 }
1509
1510 static int __process_pages_contig(struct address_space *mapping,
1511                                   struct page *locked_page,
1512                                   pgoff_t start_index, pgoff_t end_index,
1513                                   unsigned long page_ops, pgoff_t *index_ret);
1514
1515 static noinline void __unlock_for_delalloc(struct inode *inode,
1516                                            struct page *locked_page,
1517                                            u64 start, u64 end)
1518 {
1519         unsigned long index = start >> PAGE_SHIFT;
1520         unsigned long end_index = end >> PAGE_SHIFT;
1521
1522         ASSERT(locked_page);
1523         if (index == locked_page->index && end_index == index)
1524                 return;
1525
1526         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1527                                PAGE_UNLOCK, NULL);
1528 }
1529
1530 static noinline int lock_delalloc_pages(struct inode *inode,
1531                                         struct page *locked_page,
1532                                         u64 delalloc_start,
1533                                         u64 delalloc_end)
1534 {
1535         unsigned long index = delalloc_start >> PAGE_SHIFT;
1536         unsigned long index_ret = index;
1537         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1538         int ret;
1539
1540         ASSERT(locked_page);
1541         if (index == locked_page->index && index == end_index)
1542                 return 0;
1543
1544         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1545                                      end_index, PAGE_LOCK, &index_ret);
1546         if (ret == -EAGAIN)
1547                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1548                                       (u64)index_ret << PAGE_SHIFT);
1549         return ret;
1550 }
1551
1552 /*
1553  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1554  * more than @max_bytes.  @Start and @end are used to return the range,
1555  *
1556  * Return: true if we find something
1557  *         false if nothing was in the tree
1558  */
1559 EXPORT_FOR_TESTS
1560 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1561                                     struct extent_io_tree *tree,
1562                                     struct page *locked_page, u64 *start,
1563                                     u64 *end)
1564 {
1565         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1566         u64 delalloc_start;
1567         u64 delalloc_end;
1568         bool found;
1569         struct extent_state *cached_state = NULL;
1570         int ret;
1571         int loops = 0;
1572
1573 again:
1574         /* step one, find a bunch of delalloc bytes starting at start */
1575         delalloc_start = *start;
1576         delalloc_end = 0;
1577         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1578                                     max_bytes, &cached_state);
1579         if (!found || delalloc_end <= *start) {
1580                 *start = delalloc_start;
1581                 *end = delalloc_end;
1582                 free_extent_state(cached_state);
1583                 return false;
1584         }
1585
1586         /*
1587          * start comes from the offset of locked_page.  We have to lock
1588          * pages in order, so we can't process delalloc bytes before
1589          * locked_page
1590          */
1591         if (delalloc_start < *start)
1592                 delalloc_start = *start;
1593
1594         /*
1595          * make sure to limit the number of pages we try to lock down
1596          */
1597         if (delalloc_end + 1 - delalloc_start > max_bytes)
1598                 delalloc_end = delalloc_start + max_bytes - 1;
1599
1600         /* step two, lock all the pages after the page that has start */
1601         ret = lock_delalloc_pages(inode, locked_page,
1602                                   delalloc_start, delalloc_end);
1603         ASSERT(!ret || ret == -EAGAIN);
1604         if (ret == -EAGAIN) {
1605                 /* some of the pages are gone, lets avoid looping by
1606                  * shortening the size of the delalloc range we're searching
1607                  */
1608                 free_extent_state(cached_state);
1609                 cached_state = NULL;
1610                 if (!loops) {
1611                         max_bytes = PAGE_SIZE;
1612                         loops = 1;
1613                         goto again;
1614                 } else {
1615                         found = false;
1616                         goto out_failed;
1617                 }
1618         }
1619
1620         /* step three, lock the state bits for the whole range */
1621         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1622
1623         /* then test to make sure it is all still delalloc */
1624         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1625                              EXTENT_DELALLOC, 1, cached_state);
1626         if (!ret) {
1627                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1628                                      &cached_state);
1629                 __unlock_for_delalloc(inode, locked_page,
1630                               delalloc_start, delalloc_end);
1631                 cond_resched();
1632                 goto again;
1633         }
1634         free_extent_state(cached_state);
1635         *start = delalloc_start;
1636         *end = delalloc_end;
1637 out_failed:
1638         return found;
1639 }
1640
1641 static int __process_pages_contig(struct address_space *mapping,
1642                                   struct page *locked_page,
1643                                   pgoff_t start_index, pgoff_t end_index,
1644                                   unsigned long page_ops, pgoff_t *index_ret)
1645 {
1646         unsigned long nr_pages = end_index - start_index + 1;
1647         unsigned long pages_locked = 0;
1648         pgoff_t index = start_index;
1649         struct page *pages[16];
1650         unsigned ret;
1651         int err = 0;
1652         int i;
1653
1654         if (page_ops & PAGE_LOCK) {
1655                 ASSERT(page_ops == PAGE_LOCK);
1656                 ASSERT(index_ret && *index_ret == start_index);
1657         }
1658
1659         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1660                 mapping_set_error(mapping, -EIO);
1661
1662         while (nr_pages > 0) {
1663                 ret = find_get_pages_contig(mapping, index,
1664                                      min_t(unsigned long,
1665                                      nr_pages, ARRAY_SIZE(pages)), pages);
1666                 if (ret == 0) {
1667                         /*
1668                          * Only if we're going to lock these pages,
1669                          * can we find nothing at @index.
1670                          */
1671                         ASSERT(page_ops & PAGE_LOCK);
1672                         err = -EAGAIN;
1673                         goto out;
1674                 }
1675
1676                 for (i = 0; i < ret; i++) {
1677                         if (page_ops & PAGE_SET_PRIVATE2)
1678                                 SetPagePrivate2(pages[i]);
1679
1680                         if (pages[i] == locked_page) {
1681                                 put_page(pages[i]);
1682                                 pages_locked++;
1683                                 continue;
1684                         }
1685                         if (page_ops & PAGE_CLEAR_DIRTY)
1686                                 clear_page_dirty_for_io(pages[i]);
1687                         if (page_ops & PAGE_SET_WRITEBACK)
1688                                 set_page_writeback(pages[i]);
1689                         if (page_ops & PAGE_SET_ERROR)
1690                                 SetPageError(pages[i]);
1691                         if (page_ops & PAGE_END_WRITEBACK)
1692                                 end_page_writeback(pages[i]);
1693                         if (page_ops & PAGE_UNLOCK)
1694                                 unlock_page(pages[i]);
1695                         if (page_ops & PAGE_LOCK) {
1696                                 lock_page(pages[i]);
1697                                 if (!PageDirty(pages[i]) ||
1698                                     pages[i]->mapping != mapping) {
1699                                         unlock_page(pages[i]);
1700                                         put_page(pages[i]);
1701                                         err = -EAGAIN;
1702                                         goto out;
1703                                 }
1704                         }
1705                         put_page(pages[i]);
1706                         pages_locked++;
1707                 }
1708                 nr_pages -= ret;
1709                 index += ret;
1710                 cond_resched();
1711         }
1712 out:
1713         if (err && index_ret)
1714                 *index_ret = start_index + pages_locked - 1;
1715         return err;
1716 }
1717
1718 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1719                                  u64 delalloc_end, struct page *locked_page,
1720                                  unsigned clear_bits,
1721                                  unsigned long page_ops)
1722 {
1723         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1724                          NULL);
1725
1726         __process_pages_contig(inode->i_mapping, locked_page,
1727                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1728                                page_ops, NULL);
1729 }
1730
1731 /*
1732  * count the number of bytes in the tree that have a given bit(s)
1733  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1734  * cached.  The total number found is returned.
1735  */
1736 u64 count_range_bits(struct extent_io_tree *tree,
1737                      u64 *start, u64 search_end, u64 max_bytes,
1738                      unsigned bits, int contig)
1739 {
1740         struct rb_node *node;
1741         struct extent_state *state;
1742         u64 cur_start = *start;
1743         u64 total_bytes = 0;
1744         u64 last = 0;
1745         int found = 0;
1746
1747         if (WARN_ON(search_end <= cur_start))
1748                 return 0;
1749
1750         spin_lock(&tree->lock);
1751         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1752                 total_bytes = tree->dirty_bytes;
1753                 goto out;
1754         }
1755         /*
1756          * this search will find all the extents that end after
1757          * our range starts.
1758          */
1759         node = tree_search(tree, cur_start);
1760         if (!node)
1761                 goto out;
1762
1763         while (1) {
1764                 state = rb_entry(node, struct extent_state, rb_node);
1765                 if (state->start > search_end)
1766                         break;
1767                 if (contig && found && state->start > last + 1)
1768                         break;
1769                 if (state->end >= cur_start && (state->state & bits) == bits) {
1770                         total_bytes += min(search_end, state->end) + 1 -
1771                                        max(cur_start, state->start);
1772                         if (total_bytes >= max_bytes)
1773                                 break;
1774                         if (!found) {
1775                                 *start = max(cur_start, state->start);
1776                                 found = 1;
1777                         }
1778                         last = state->end;
1779                 } else if (contig && found) {
1780                         break;
1781                 }
1782                 node = rb_next(node);
1783                 if (!node)
1784                         break;
1785         }
1786 out:
1787         spin_unlock(&tree->lock);
1788         return total_bytes;
1789 }
1790
1791 /*
1792  * set the private field for a given byte offset in the tree.  If there isn't
1793  * an extent_state there already, this does nothing.
1794  */
1795 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1796                 struct io_failure_record *failrec)
1797 {
1798         struct rb_node *node;
1799         struct extent_state *state;
1800         int ret = 0;
1801
1802         spin_lock(&tree->lock);
1803         /*
1804          * this search will find all the extents that end after
1805          * our range starts.
1806          */
1807         node = tree_search(tree, start);
1808         if (!node) {
1809                 ret = -ENOENT;
1810                 goto out;
1811         }
1812         state = rb_entry(node, struct extent_state, rb_node);
1813         if (state->start != start) {
1814                 ret = -ENOENT;
1815                 goto out;
1816         }
1817         state->failrec = failrec;
1818 out:
1819         spin_unlock(&tree->lock);
1820         return ret;
1821 }
1822
1823 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1824                 struct io_failure_record **failrec)
1825 {
1826         struct rb_node *node;
1827         struct extent_state *state;
1828         int ret = 0;
1829
1830         spin_lock(&tree->lock);
1831         /*
1832          * this search will find all the extents that end after
1833          * our range starts.
1834          */
1835         node = tree_search(tree, start);
1836         if (!node) {
1837                 ret = -ENOENT;
1838                 goto out;
1839         }
1840         state = rb_entry(node, struct extent_state, rb_node);
1841         if (state->start != start) {
1842                 ret = -ENOENT;
1843                 goto out;
1844         }
1845         *failrec = state->failrec;
1846 out:
1847         spin_unlock(&tree->lock);
1848         return ret;
1849 }
1850
1851 /*
1852  * searches a range in the state tree for a given mask.
1853  * If 'filled' == 1, this returns 1 only if every extent in the tree
1854  * has the bits set.  Otherwise, 1 is returned if any bit in the
1855  * range is found set.
1856  */
1857 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1858                    unsigned bits, int filled, struct extent_state *cached)
1859 {
1860         struct extent_state *state = NULL;
1861         struct rb_node *node;
1862         int bitset = 0;
1863
1864         spin_lock(&tree->lock);
1865         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1866             cached->end > start)
1867                 node = &cached->rb_node;
1868         else
1869                 node = tree_search(tree, start);
1870         while (node && start <= end) {
1871                 state = rb_entry(node, struct extent_state, rb_node);
1872
1873                 if (filled && state->start > start) {
1874                         bitset = 0;
1875                         break;
1876                 }
1877
1878                 if (state->start > end)
1879                         break;
1880
1881                 if (state->state & bits) {
1882                         bitset = 1;
1883                         if (!filled)
1884                                 break;
1885                 } else if (filled) {
1886                         bitset = 0;
1887                         break;
1888                 }
1889
1890                 if (state->end == (u64)-1)
1891                         break;
1892
1893                 start = state->end + 1;
1894                 if (start > end)
1895                         break;
1896                 node = rb_next(node);
1897                 if (!node) {
1898                         if (filled)
1899                                 bitset = 0;
1900                         break;
1901                 }
1902         }
1903         spin_unlock(&tree->lock);
1904         return bitset;
1905 }
1906
1907 /*
1908  * helper function to set a given page up to date if all the
1909  * extents in the tree for that page are up to date
1910  */
1911 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1912 {
1913         u64 start = page_offset(page);
1914         u64 end = start + PAGE_SIZE - 1;
1915         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1916                 SetPageUptodate(page);
1917 }
1918
1919 int free_io_failure(struct extent_io_tree *failure_tree,
1920                     struct extent_io_tree *io_tree,
1921                     struct io_failure_record *rec)
1922 {
1923         int ret;
1924         int err = 0;
1925
1926         set_state_failrec(failure_tree, rec->start, NULL);
1927         ret = clear_extent_bits(failure_tree, rec->start,
1928                                 rec->start + rec->len - 1,
1929                                 EXTENT_LOCKED | EXTENT_DIRTY);
1930         if (ret)
1931                 err = ret;
1932
1933         ret = clear_extent_bits(io_tree, rec->start,
1934                                 rec->start + rec->len - 1,
1935                                 EXTENT_DAMAGED);
1936         if (ret && !err)
1937                 err = ret;
1938
1939         kfree(rec);
1940         return err;
1941 }
1942
1943 /*
1944  * this bypasses the standard btrfs submit functions deliberately, as
1945  * the standard behavior is to write all copies in a raid setup. here we only
1946  * want to write the one bad copy. so we do the mapping for ourselves and issue
1947  * submit_bio directly.
1948  * to avoid any synchronization issues, wait for the data after writing, which
1949  * actually prevents the read that triggered the error from finishing.
1950  * currently, there can be no more than two copies of every data bit. thus,
1951  * exactly one rewrite is required.
1952  */
1953 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1954                       u64 length, u64 logical, struct page *page,
1955                       unsigned int pg_offset, int mirror_num)
1956 {
1957         struct bio *bio;
1958         struct btrfs_device *dev;
1959         u64 map_length = 0;
1960         u64 sector;
1961         struct btrfs_bio *bbio = NULL;
1962         int ret;
1963
1964         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1965         BUG_ON(!mirror_num);
1966
1967         bio = btrfs_io_bio_alloc(1);
1968         bio->bi_iter.bi_size = 0;
1969         map_length = length;
1970
1971         /*
1972          * Avoid races with device replace and make sure our bbio has devices
1973          * associated to its stripes that don't go away while we are doing the
1974          * read repair operation.
1975          */
1976         btrfs_bio_counter_inc_blocked(fs_info);
1977         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1978                 /*
1979                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1980                  * to update all raid stripes, but here we just want to correct
1981                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1982                  * stripe's dev and sector.
1983                  */
1984                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1985                                       &map_length, &bbio, 0);
1986                 if (ret) {
1987                         btrfs_bio_counter_dec(fs_info);
1988                         bio_put(bio);
1989                         return -EIO;
1990                 }
1991                 ASSERT(bbio->mirror_num == 1);
1992         } else {
1993                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1994                                       &map_length, &bbio, mirror_num);
1995                 if (ret) {
1996                         btrfs_bio_counter_dec(fs_info);
1997                         bio_put(bio);
1998                         return -EIO;
1999                 }
2000                 BUG_ON(mirror_num != bbio->mirror_num);
2001         }
2002
2003         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2004         bio->bi_iter.bi_sector = sector;
2005         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2006         btrfs_put_bbio(bbio);
2007         if (!dev || !dev->bdev ||
2008             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2009                 btrfs_bio_counter_dec(fs_info);
2010                 bio_put(bio);
2011                 return -EIO;
2012         }
2013         bio_set_dev(bio, dev->bdev);
2014         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2015         bio_add_page(bio, page, length, pg_offset);
2016
2017         if (btrfsic_submit_bio_wait(bio)) {
2018                 /* try to remap that extent elsewhere? */
2019                 btrfs_bio_counter_dec(fs_info);
2020                 bio_put(bio);
2021                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2022                 return -EIO;
2023         }
2024
2025         btrfs_info_rl_in_rcu(fs_info,
2026                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2027                                   ino, start,
2028                                   rcu_str_deref(dev->name), sector);
2029         btrfs_bio_counter_dec(fs_info);
2030         bio_put(bio);
2031         return 0;
2032 }
2033
2034 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2035                          struct extent_buffer *eb, int mirror_num)
2036 {
2037         u64 start = eb->start;
2038         int i, num_pages = num_extent_pages(eb);
2039         int ret = 0;
2040
2041         if (sb_rdonly(fs_info->sb))
2042                 return -EROFS;
2043
2044         for (i = 0; i < num_pages; i++) {
2045                 struct page *p = eb->pages[i];
2046
2047                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2048                                         start - page_offset(p), mirror_num);
2049                 if (ret)
2050                         break;
2051                 start += PAGE_SIZE;
2052         }
2053
2054         return ret;
2055 }
2056
2057 /*
2058  * each time an IO finishes, we do a fast check in the IO failure tree
2059  * to see if we need to process or clean up an io_failure_record
2060  */
2061 int clean_io_failure(struct btrfs_fs_info *fs_info,
2062                      struct extent_io_tree *failure_tree,
2063                      struct extent_io_tree *io_tree, u64 start,
2064                      struct page *page, u64 ino, unsigned int pg_offset)
2065 {
2066         u64 private;
2067         struct io_failure_record *failrec;
2068         struct extent_state *state;
2069         int num_copies;
2070         int ret;
2071
2072         private = 0;
2073         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2074                                EXTENT_DIRTY, 0);
2075         if (!ret)
2076                 return 0;
2077
2078         ret = get_state_failrec(failure_tree, start, &failrec);
2079         if (ret)
2080                 return 0;
2081
2082         BUG_ON(!failrec->this_mirror);
2083
2084         if (failrec->in_validation) {
2085                 /* there was no real error, just free the record */
2086                 btrfs_debug(fs_info,
2087                         "clean_io_failure: freeing dummy error at %llu",
2088                         failrec->start);
2089                 goto out;
2090         }
2091         if (sb_rdonly(fs_info->sb))
2092                 goto out;
2093
2094         spin_lock(&io_tree->lock);
2095         state = find_first_extent_bit_state(io_tree,
2096                                             failrec->start,
2097                                             EXTENT_LOCKED);
2098         spin_unlock(&io_tree->lock);
2099
2100         if (state && state->start <= failrec->start &&
2101             state->end >= failrec->start + failrec->len - 1) {
2102                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103                                               failrec->len);
2104                 if (num_copies > 1)  {
2105                         repair_io_failure(fs_info, ino, start, failrec->len,
2106                                           failrec->logical, page, pg_offset,
2107                                           failrec->failed_mirror);
2108                 }
2109         }
2110
2111 out:
2112         free_io_failure(failure_tree, io_tree, failrec);
2113
2114         return 0;
2115 }
2116
2117 /*
2118  * Can be called when
2119  * - hold extent lock
2120  * - under ordered extent
2121  * - the inode is freeing
2122  */
2123 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2124 {
2125         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2126         struct io_failure_record *failrec;
2127         struct extent_state *state, *next;
2128
2129         if (RB_EMPTY_ROOT(&failure_tree->state))
2130                 return;
2131
2132         spin_lock(&failure_tree->lock);
2133         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2134         while (state) {
2135                 if (state->start > end)
2136                         break;
2137
2138                 ASSERT(state->end <= end);
2139
2140                 next = next_state(state);
2141
2142                 failrec = state->failrec;
2143                 free_extent_state(state);
2144                 kfree(failrec);
2145
2146                 state = next;
2147         }
2148         spin_unlock(&failure_tree->lock);
2149 }
2150
2151 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2152                 struct io_failure_record **failrec_ret)
2153 {
2154         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2155         struct io_failure_record *failrec;
2156         struct extent_map *em;
2157         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2158         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2159         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2160         int ret;
2161         u64 logical;
2162
2163         ret = get_state_failrec(failure_tree, start, &failrec);
2164         if (ret) {
2165                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2166                 if (!failrec)
2167                         return -ENOMEM;
2168
2169                 failrec->start = start;
2170                 failrec->len = end - start + 1;
2171                 failrec->this_mirror = 0;
2172                 failrec->bio_flags = 0;
2173                 failrec->in_validation = 0;
2174
2175                 read_lock(&em_tree->lock);
2176                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2177                 if (!em) {
2178                         read_unlock(&em_tree->lock);
2179                         kfree(failrec);
2180                         return -EIO;
2181                 }
2182
2183                 if (em->start > start || em->start + em->len <= start) {
2184                         free_extent_map(em);
2185                         em = NULL;
2186                 }
2187                 read_unlock(&em_tree->lock);
2188                 if (!em) {
2189                         kfree(failrec);
2190                         return -EIO;
2191                 }
2192
2193                 logical = start - em->start;
2194                 logical = em->block_start + logical;
2195                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2196                         logical = em->block_start;
2197                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2198                         extent_set_compress_type(&failrec->bio_flags,
2199                                                  em->compress_type);
2200                 }
2201
2202                 btrfs_debug(fs_info,
2203                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2204                         logical, start, failrec->len);
2205
2206                 failrec->logical = logical;
2207                 free_extent_map(em);
2208
2209                 /* set the bits in the private failure tree */
2210                 ret = set_extent_bits(failure_tree, start, end,
2211                                         EXTENT_LOCKED | EXTENT_DIRTY);
2212                 if (ret >= 0)
2213                         ret = set_state_failrec(failure_tree, start, failrec);
2214                 /* set the bits in the inode's tree */
2215                 if (ret >= 0)
2216                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2217                 if (ret < 0) {
2218                         kfree(failrec);
2219                         return ret;
2220                 }
2221         } else {
2222                 btrfs_debug(fs_info,
2223                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2224                         failrec->logical, failrec->start, failrec->len,
2225                         failrec->in_validation);
2226                 /*
2227                  * when data can be on disk more than twice, add to failrec here
2228                  * (e.g. with a list for failed_mirror) to make
2229                  * clean_io_failure() clean all those errors at once.
2230                  */
2231         }
2232
2233         *failrec_ret = failrec;
2234
2235         return 0;
2236 }
2237
2238 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2239                            struct io_failure_record *failrec, int failed_mirror)
2240 {
2241         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2242         int num_copies;
2243
2244         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2245         if (num_copies == 1) {
2246                 /*
2247                  * we only have a single copy of the data, so don't bother with
2248                  * all the retry and error correction code that follows. no
2249                  * matter what the error is, it is very likely to persist.
2250                  */
2251                 btrfs_debug(fs_info,
2252                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2253                         num_copies, failrec->this_mirror, failed_mirror);
2254                 return false;
2255         }
2256
2257         /*
2258          * there are two premises:
2259          *      a) deliver good data to the caller
2260          *      b) correct the bad sectors on disk
2261          */
2262         if (failed_bio_pages > 1) {
2263                 /*
2264                  * to fulfill b), we need to know the exact failing sectors, as
2265                  * we don't want to rewrite any more than the failed ones. thus,
2266                  * we need separate read requests for the failed bio
2267                  *
2268                  * if the following BUG_ON triggers, our validation request got
2269                  * merged. we need separate requests for our algorithm to work.
2270                  */
2271                 BUG_ON(failrec->in_validation);
2272                 failrec->in_validation = 1;
2273                 failrec->this_mirror = failed_mirror;
2274         } else {
2275                 /*
2276                  * we're ready to fulfill a) and b) alongside. get a good copy
2277                  * of the failed sector and if we succeed, we have setup
2278                  * everything for repair_io_failure to do the rest for us.
2279                  */
2280                 if (failrec->in_validation) {
2281                         BUG_ON(failrec->this_mirror != failed_mirror);
2282                         failrec->in_validation = 0;
2283                         failrec->this_mirror = 0;
2284                 }
2285                 failrec->failed_mirror = failed_mirror;
2286                 failrec->this_mirror++;
2287                 if (failrec->this_mirror == failed_mirror)
2288                         failrec->this_mirror++;
2289         }
2290
2291         if (failrec->this_mirror > num_copies) {
2292                 btrfs_debug(fs_info,
2293                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2294                         num_copies, failrec->this_mirror, failed_mirror);
2295                 return false;
2296         }
2297
2298         return true;
2299 }
2300
2301
2302 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2303                                     struct io_failure_record *failrec,
2304                                     struct page *page, int pg_offset, int icsum,
2305                                     bio_end_io_t *endio_func, void *data)
2306 {
2307         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2308         struct bio *bio;
2309         struct btrfs_io_bio *btrfs_failed_bio;
2310         struct btrfs_io_bio *btrfs_bio;
2311
2312         bio = btrfs_io_bio_alloc(1);
2313         bio->bi_end_io = endio_func;
2314         bio->bi_iter.bi_sector = failrec->logical >> 9;
2315         bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2316         bio->bi_iter.bi_size = 0;
2317         bio->bi_private = data;
2318
2319         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320         if (btrfs_failed_bio->csum) {
2321                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322
2323                 btrfs_bio = btrfs_io_bio(bio);
2324                 btrfs_bio->csum = btrfs_bio->csum_inline;
2325                 icsum *= csum_size;
2326                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2327                        csum_size);
2328         }
2329
2330         bio_add_page(bio, page, failrec->len, pg_offset);
2331
2332         return bio;
2333 }
2334
2335 /*
2336  * This is a generic handler for readpage errors. If other copies exist, read
2337  * those and write back good data to the failed position. Does not investigate
2338  * in remapping the failed extent elsewhere, hoping the device will be smart
2339  * enough to do this as needed
2340  */
2341 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2342                               struct page *page, u64 start, u64 end,
2343                               int failed_mirror)
2344 {
2345         struct io_failure_record *failrec;
2346         struct inode *inode = page->mapping->host;
2347         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2348         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2349         struct bio *bio;
2350         int read_mode = 0;
2351         blk_status_t status;
2352         int ret;
2353         unsigned failed_bio_pages = bio_pages_all(failed_bio);
2354
2355         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2356
2357         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2358         if (ret)
2359                 return ret;
2360
2361         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2362                                     failed_mirror)) {
2363                 free_io_failure(failure_tree, tree, failrec);
2364                 return -EIO;
2365         }
2366
2367         if (failed_bio_pages > 1)
2368                 read_mode |= REQ_FAILFAST_DEV;
2369
2370         phy_offset >>= inode->i_sb->s_blocksize_bits;
2371         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2372                                       start - page_offset(page),
2373                                       (int)phy_offset, failed_bio->bi_end_io,
2374                                       NULL);
2375         bio->bi_opf = REQ_OP_READ | read_mode;
2376
2377         btrfs_debug(btrfs_sb(inode->i_sb),
2378                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2379                 read_mode, failrec->this_mirror, failrec->in_validation);
2380
2381         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2382                                          failrec->bio_flags, 0);
2383         if (status) {
2384                 free_io_failure(failure_tree, tree, failrec);
2385                 bio_put(bio);
2386                 ret = blk_status_to_errno(status);
2387         }
2388
2389         return ret;
2390 }
2391
2392 /* lots and lots of room for performance fixes in the end_bio funcs */
2393
2394 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2395 {
2396         int uptodate = (err == 0);
2397         int ret = 0;
2398
2399         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2400
2401         if (!uptodate) {
2402                 ClearPageUptodate(page);
2403                 SetPageError(page);
2404                 ret = err < 0 ? err : -EIO;
2405                 mapping_set_error(page->mapping, ret);
2406         }
2407 }
2408
2409 /*
2410  * after a writepage IO is done, we need to:
2411  * clear the uptodate bits on error
2412  * clear the writeback bits in the extent tree for this IO
2413  * end_page_writeback if the page has no more pending IO
2414  *
2415  * Scheduling is not allowed, so the extent state tree is expected
2416  * to have one and only one object corresponding to this IO.
2417  */
2418 static void end_bio_extent_writepage(struct bio *bio)
2419 {
2420         int error = blk_status_to_errno(bio->bi_status);
2421         struct bio_vec *bvec;
2422         u64 start;
2423         u64 end;
2424         int i;
2425
2426         ASSERT(!bio_flagged(bio, BIO_CLONED));
2427         bio_for_each_segment_all(bvec, bio, i) {
2428                 struct page *page = bvec->bv_page;
2429                 struct inode *inode = page->mapping->host;
2430                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2431
2432                 /* We always issue full-page reads, but if some block
2433                  * in a page fails to read, blk_update_request() will
2434                  * advance bv_offset and adjust bv_len to compensate.
2435                  * Print a warning for nonzero offsets, and an error
2436                  * if they don't add up to a full page.  */
2437                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2438                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2439                                 btrfs_err(fs_info,
2440                                    "partial page write in btrfs with offset %u and length %u",
2441                                         bvec->bv_offset, bvec->bv_len);
2442                         else
2443                                 btrfs_info(fs_info,
2444                                    "incomplete page write in btrfs with offset %u and length %u",
2445                                         bvec->bv_offset, bvec->bv_len);
2446                 }
2447
2448                 start = page_offset(page);
2449                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2450
2451                 end_extent_writepage(page, error, start, end);
2452                 end_page_writeback(page);
2453         }
2454
2455         bio_put(bio);
2456 }
2457
2458 static void
2459 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2460                               int uptodate)
2461 {
2462         struct extent_state *cached = NULL;
2463         u64 end = start + len - 1;
2464
2465         if (uptodate && tree->track_uptodate)
2466                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2467         unlock_extent_cached_atomic(tree, start, end, &cached);
2468 }
2469
2470 /*
2471  * after a readpage IO is done, we need to:
2472  * clear the uptodate bits on error
2473  * set the uptodate bits if things worked
2474  * set the page up to date if all extents in the tree are uptodate
2475  * clear the lock bit in the extent tree
2476  * unlock the page if there are no other extents locked for it
2477  *
2478  * Scheduling is not allowed, so the extent state tree is expected
2479  * to have one and only one object corresponding to this IO.
2480  */
2481 static void end_bio_extent_readpage(struct bio *bio)
2482 {
2483         struct bio_vec *bvec;
2484         int uptodate = !bio->bi_status;
2485         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2486         struct extent_io_tree *tree, *failure_tree;
2487         u64 offset = 0;
2488         u64 start;
2489         u64 end;
2490         u64 len;
2491         u64 extent_start = 0;
2492         u64 extent_len = 0;
2493         int mirror;
2494         int ret;
2495         int i;
2496
2497         ASSERT(!bio_flagged(bio, BIO_CLONED));
2498         bio_for_each_segment_all(bvec, bio, i) {
2499                 struct page *page = bvec->bv_page;
2500                 struct inode *inode = page->mapping->host;
2501                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2502                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2503                         != BTRFS_BTREE_INODE_OBJECTID;
2504
2505                 btrfs_debug(fs_info,
2506                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2507                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2508                         io_bio->mirror_num);
2509                 tree = &BTRFS_I(inode)->io_tree;
2510                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2511
2512                 /* We always issue full-page reads, but if some block
2513                  * in a page fails to read, blk_update_request() will
2514                  * advance bv_offset and adjust bv_len to compensate.
2515                  * Print a warning for nonzero offsets, and an error
2516                  * if they don't add up to a full page.  */
2517                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2518                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2519                                 btrfs_err(fs_info,
2520                                         "partial page read in btrfs with offset %u and length %u",
2521                                         bvec->bv_offset, bvec->bv_len);
2522                         else
2523                                 btrfs_info(fs_info,
2524                                         "incomplete page read in btrfs with offset %u and length %u",
2525                                         bvec->bv_offset, bvec->bv_len);
2526                 }
2527
2528                 start = page_offset(page);
2529                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2530                 len = bvec->bv_len;
2531
2532                 mirror = io_bio->mirror_num;
2533                 if (likely(uptodate)) {
2534                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2535                                                               page, start, end,
2536                                                               mirror);
2537                         if (ret)
2538                                 uptodate = 0;
2539                         else
2540                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2541                                                  failure_tree, tree, start,
2542                                                  page,
2543                                                  btrfs_ino(BTRFS_I(inode)), 0);
2544                 }
2545
2546                 if (likely(uptodate))
2547                         goto readpage_ok;
2548
2549                 if (data_inode) {
2550
2551                         /*
2552                          * The generic bio_readpage_error handles errors the
2553                          * following way: If possible, new read requests are
2554                          * created and submitted and will end up in
2555                          * end_bio_extent_readpage as well (if we're lucky,
2556                          * not in the !uptodate case). In that case it returns
2557                          * 0 and we just go on with the next page in our bio.
2558                          * If it can't handle the error it will return -EIO and
2559                          * we remain responsible for that page.
2560                          */
2561                         ret = bio_readpage_error(bio, offset, page, start, end,
2562                                                  mirror);
2563                         if (ret == 0) {
2564                                 uptodate = !bio->bi_status;
2565                                 offset += len;
2566                                 continue;
2567                         }
2568                 } else {
2569                         struct extent_buffer *eb;
2570
2571                         eb = (struct extent_buffer *)page->private;
2572                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2573                         eb->read_mirror = mirror;
2574                         atomic_dec(&eb->io_pages);
2575                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2576                                                &eb->bflags))
2577                                 btree_readahead_hook(eb, -EIO);
2578
2579                         ret = -EIO;
2580                 }
2581 readpage_ok:
2582                 if (likely(uptodate)) {
2583                         loff_t i_size = i_size_read(inode);
2584                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2585                         unsigned off;
2586
2587                         /* Zero out the end if this page straddles i_size */
2588                         off = offset_in_page(i_size);
2589                         if (page->index == end_index && off)
2590                                 zero_user_segment(page, off, PAGE_SIZE);
2591                         SetPageUptodate(page);
2592                 } else {
2593                         ClearPageUptodate(page);
2594                         SetPageError(page);
2595                 }
2596                 unlock_page(page);
2597                 offset += len;
2598
2599                 if (unlikely(!uptodate)) {
2600                         if (extent_len) {
2601                                 endio_readpage_release_extent(tree,
2602                                                               extent_start,
2603                                                               extent_len, 1);
2604                                 extent_start = 0;
2605                                 extent_len = 0;
2606                         }
2607                         endio_readpage_release_extent(tree, start,
2608                                                       end - start + 1, 0);
2609                 } else if (!extent_len) {
2610                         extent_start = start;
2611                         extent_len = end + 1 - start;
2612                 } else if (extent_start + extent_len == start) {
2613                         extent_len += end + 1 - start;
2614                 } else {
2615                         endio_readpage_release_extent(tree, extent_start,
2616                                                       extent_len, uptodate);
2617                         extent_start = start;
2618                         extent_len = end + 1 - start;
2619                 }
2620         }
2621
2622         if (extent_len)
2623                 endio_readpage_release_extent(tree, extent_start, extent_len,
2624                                               uptodate);
2625         btrfs_io_bio_free_csum(io_bio);
2626         bio_put(bio);
2627 }
2628
2629 /*
2630  * Initialize the members up to but not including 'bio'. Use after allocating a
2631  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2632  * 'bio' because use of __GFP_ZERO is not supported.
2633  */
2634 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2635 {
2636         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2637 }
2638
2639 /*
2640  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2641  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2642  * for the appropriate container_of magic
2643  */
2644 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2645 {
2646         struct bio *bio;
2647
2648         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2649         bio_set_dev(bio, bdev);
2650         bio->bi_iter.bi_sector = first_byte >> 9;
2651         btrfs_io_bio_init(btrfs_io_bio(bio));
2652         return bio;
2653 }
2654
2655 struct bio *btrfs_bio_clone(struct bio *bio)
2656 {
2657         struct btrfs_io_bio *btrfs_bio;
2658         struct bio *new;
2659
2660         /* Bio allocation backed by a bioset does not fail */
2661         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2662         btrfs_bio = btrfs_io_bio(new);
2663         btrfs_io_bio_init(btrfs_bio);
2664         btrfs_bio->iter = bio->bi_iter;
2665         return new;
2666 }
2667
2668 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2669 {
2670         struct bio *bio;
2671
2672         /* Bio allocation backed by a bioset does not fail */
2673         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2674         btrfs_io_bio_init(btrfs_io_bio(bio));
2675         return bio;
2676 }
2677
2678 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2679 {
2680         struct bio *bio;
2681         struct btrfs_io_bio *btrfs_bio;
2682
2683         /* this will never fail when it's backed by a bioset */
2684         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2685         ASSERT(bio);
2686
2687         btrfs_bio = btrfs_io_bio(bio);
2688         btrfs_io_bio_init(btrfs_bio);
2689
2690         bio_trim(bio, offset >> 9, size >> 9);
2691         btrfs_bio->iter = bio->bi_iter;
2692         return bio;
2693 }
2694
2695 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2696                                        unsigned long bio_flags)
2697 {
2698         blk_status_t ret = 0;
2699         struct bio_vec *bvec = bio_last_bvec_all(bio);
2700         struct page *page = bvec->bv_page;
2701         struct extent_io_tree *tree = bio->bi_private;
2702         u64 start;
2703
2704         start = page_offset(page) + bvec->bv_offset;
2705
2706         bio->bi_private = NULL;
2707
2708         if (tree->ops)
2709                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2710                                            mirror_num, bio_flags, start);
2711         else
2712                 btrfsic_submit_bio(bio);
2713
2714         return blk_status_to_errno(ret);
2715 }
2716
2717 /*
2718  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2719  * @tree:       tree so we can call our merge_bio hook
2720  * @wbc:        optional writeback control for io accounting
2721  * @page:       page to add to the bio
2722  * @pg_offset:  offset of the new bio or to check whether we are adding
2723  *              a contiguous page to the previous one
2724  * @size:       portion of page that we want to write
2725  * @offset:     starting offset in the page
2726  * @bdev:       attach newly created bios to this bdev
2727  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2728  * @end_io_func:     end_io callback for new bio
2729  * @mirror_num:      desired mirror to read/write
2730  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2731  * @bio_flags:  flags of the current bio to see if we can merge them
2732  */
2733 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2734                               struct writeback_control *wbc,
2735                               struct page *page, u64 offset,
2736                               size_t size, unsigned long pg_offset,
2737                               struct block_device *bdev,
2738                               struct bio **bio_ret,
2739                               bio_end_io_t end_io_func,
2740                               int mirror_num,
2741                               unsigned long prev_bio_flags,
2742                               unsigned long bio_flags,
2743                               bool force_bio_submit)
2744 {
2745         int ret = 0;
2746         struct bio *bio;
2747         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2748         sector_t sector = offset >> 9;
2749
2750         ASSERT(bio_ret);
2751
2752         if (*bio_ret) {
2753                 bool contig;
2754                 bool can_merge = true;
2755
2756                 bio = *bio_ret;
2757                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2758                         contig = bio->bi_iter.bi_sector == sector;
2759                 else
2760                         contig = bio_end_sector(bio) == sector;
2761
2762                 ASSERT(tree->ops);
2763                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2764                         can_merge = false;
2765
2766                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2767                     force_bio_submit ||
2768                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2769                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2770                         if (ret < 0) {
2771                                 *bio_ret = NULL;
2772                                 return ret;
2773                         }
2774                         bio = NULL;
2775                 } else {
2776                         if (wbc)
2777                                 wbc_account_io(wbc, page, page_size);
2778                         return 0;
2779                 }
2780         }
2781
2782         bio = btrfs_bio_alloc(bdev, offset);
2783         bio_add_page(bio, page, page_size, pg_offset);
2784         bio->bi_end_io = end_io_func;
2785         bio->bi_private = tree;
2786         bio->bi_write_hint = page->mapping->host->i_write_hint;
2787         bio->bi_opf = opf;
2788         if (wbc) {
2789                 wbc_init_bio(wbc, bio);
2790                 wbc_account_io(wbc, page, page_size);
2791         }
2792
2793         *bio_ret = bio;
2794
2795         return ret;
2796 }
2797
2798 static void attach_extent_buffer_page(struct extent_buffer *eb,
2799                                       struct page *page)
2800 {
2801         if (!PagePrivate(page)) {
2802                 SetPagePrivate(page);
2803                 get_page(page);
2804                 set_page_private(page, (unsigned long)eb);
2805         } else {
2806                 WARN_ON(page->private != (unsigned long)eb);
2807         }
2808 }
2809
2810 void set_page_extent_mapped(struct page *page)
2811 {
2812         if (!PagePrivate(page)) {
2813                 SetPagePrivate(page);
2814                 get_page(page);
2815                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2816         }
2817 }
2818
2819 static struct extent_map *
2820 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2821                  u64 start, u64 len, get_extent_t *get_extent,
2822                  struct extent_map **em_cached)
2823 {
2824         struct extent_map *em;
2825
2826         if (em_cached && *em_cached) {
2827                 em = *em_cached;
2828                 if (extent_map_in_tree(em) && start >= em->start &&
2829                     start < extent_map_end(em)) {
2830                         refcount_inc(&em->refs);
2831                         return em;
2832                 }
2833
2834                 free_extent_map(em);
2835                 *em_cached = NULL;
2836         }
2837
2838         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2839         if (em_cached && !IS_ERR_OR_NULL(em)) {
2840                 BUG_ON(*em_cached);
2841                 refcount_inc(&em->refs);
2842                 *em_cached = em;
2843         }
2844         return em;
2845 }
2846 /*
2847  * basic readpage implementation.  Locked extent state structs are inserted
2848  * into the tree that are removed when the IO is done (by the end_io
2849  * handlers)
2850  * XXX JDM: This needs looking at to ensure proper page locking
2851  * return 0 on success, otherwise return error
2852  */
2853 static int __do_readpage(struct extent_io_tree *tree,
2854                          struct page *page,
2855                          get_extent_t *get_extent,
2856                          struct extent_map **em_cached,
2857                          struct bio **bio, int mirror_num,
2858                          unsigned long *bio_flags, unsigned int read_flags,
2859                          u64 *prev_em_start)
2860 {
2861         struct inode *inode = page->mapping->host;
2862         u64 start = page_offset(page);
2863         const u64 end = start + PAGE_SIZE - 1;
2864         u64 cur = start;
2865         u64 extent_offset;
2866         u64 last_byte = i_size_read(inode);
2867         u64 block_start;
2868         u64 cur_end;
2869         struct extent_map *em;
2870         struct block_device *bdev;
2871         int ret = 0;
2872         int nr = 0;
2873         size_t pg_offset = 0;
2874         size_t iosize;
2875         size_t disk_io_size;
2876         size_t blocksize = inode->i_sb->s_blocksize;
2877         unsigned long this_bio_flag = 0;
2878
2879         set_page_extent_mapped(page);
2880
2881         if (!PageUptodate(page)) {
2882                 if (cleancache_get_page(page) == 0) {
2883                         BUG_ON(blocksize != PAGE_SIZE);
2884                         unlock_extent(tree, start, end);
2885                         goto out;
2886                 }
2887         }
2888
2889         if (page->index == last_byte >> PAGE_SHIFT) {
2890                 char *userpage;
2891                 size_t zero_offset = offset_in_page(last_byte);
2892
2893                 if (zero_offset) {
2894                         iosize = PAGE_SIZE - zero_offset;
2895                         userpage = kmap_atomic(page);
2896                         memset(userpage + zero_offset, 0, iosize);
2897                         flush_dcache_page(page);
2898                         kunmap_atomic(userpage);
2899                 }
2900         }
2901         while (cur <= end) {
2902                 bool force_bio_submit = false;
2903                 u64 offset;
2904
2905                 if (cur >= last_byte) {
2906                         char *userpage;
2907                         struct extent_state *cached = NULL;
2908
2909                         iosize = PAGE_SIZE - pg_offset;
2910                         userpage = kmap_atomic(page);
2911                         memset(userpage + pg_offset, 0, iosize);
2912                         flush_dcache_page(page);
2913                         kunmap_atomic(userpage);
2914                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2915                                             &cached, GFP_NOFS);
2916                         unlock_extent_cached(tree, cur,
2917                                              cur + iosize - 1, &cached);
2918                         break;
2919                 }
2920                 em = __get_extent_map(inode, page, pg_offset, cur,
2921                                       end - cur + 1, get_extent, em_cached);
2922                 if (IS_ERR_OR_NULL(em)) {
2923                         SetPageError(page);
2924                         unlock_extent(tree, cur, end);
2925                         break;
2926                 }
2927                 extent_offset = cur - em->start;
2928                 BUG_ON(extent_map_end(em) <= cur);
2929                 BUG_ON(end < cur);
2930
2931                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2932                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2933                         extent_set_compress_type(&this_bio_flag,
2934                                                  em->compress_type);
2935                 }
2936
2937                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2938                 cur_end = min(extent_map_end(em) - 1, end);
2939                 iosize = ALIGN(iosize, blocksize);
2940                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2941                         disk_io_size = em->block_len;
2942                         offset = em->block_start;
2943                 } else {
2944                         offset = em->block_start + extent_offset;
2945                         disk_io_size = iosize;
2946                 }
2947                 bdev = em->bdev;
2948                 block_start = em->block_start;
2949                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2950                         block_start = EXTENT_MAP_HOLE;
2951
2952                 /*
2953                  * If we have a file range that points to a compressed extent
2954                  * and it's followed by a consecutive file range that points to
2955                  * to the same compressed extent (possibly with a different
2956                  * offset and/or length, so it either points to the whole extent
2957                  * or only part of it), we must make sure we do not submit a
2958                  * single bio to populate the pages for the 2 ranges because
2959                  * this makes the compressed extent read zero out the pages
2960                  * belonging to the 2nd range. Imagine the following scenario:
2961                  *
2962                  *  File layout
2963                  *  [0 - 8K]                     [8K - 24K]
2964                  *    |                               |
2965                  *    |                               |
2966                  * points to extent X,         points to extent X,
2967                  * offset 4K, length of 8K     offset 0, length 16K
2968                  *
2969                  * [extent X, compressed length = 4K uncompressed length = 16K]
2970                  *
2971                  * If the bio to read the compressed extent covers both ranges,
2972                  * it will decompress extent X into the pages belonging to the
2973                  * first range and then it will stop, zeroing out the remaining
2974                  * pages that belong to the other range that points to extent X.
2975                  * So here we make sure we submit 2 bios, one for the first
2976                  * range and another one for the third range. Both will target
2977                  * the same physical extent from disk, but we can't currently
2978                  * make the compressed bio endio callback populate the pages
2979                  * for both ranges because each compressed bio is tightly
2980                  * coupled with a single extent map, and each range can have
2981                  * an extent map with a different offset value relative to the
2982                  * uncompressed data of our extent and different lengths. This
2983                  * is a corner case so we prioritize correctness over
2984                  * non-optimal behavior (submitting 2 bios for the same extent).
2985                  */
2986                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2987                     prev_em_start && *prev_em_start != (u64)-1 &&
2988                     *prev_em_start != em->orig_start)
2989                         force_bio_submit = true;
2990
2991                 if (prev_em_start)
2992                         *prev_em_start = em->orig_start;
2993
2994                 free_extent_map(em);
2995                 em = NULL;
2996
2997                 /* we've found a hole, just zero and go on */
2998                 if (block_start == EXTENT_MAP_HOLE) {
2999                         char *userpage;
3000                         struct extent_state *cached = NULL;
3001
3002                         userpage = kmap_atomic(page);
3003                         memset(userpage + pg_offset, 0, iosize);
3004                         flush_dcache_page(page);
3005                         kunmap_atomic(userpage);
3006
3007                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3008                                             &cached, GFP_NOFS);
3009                         unlock_extent_cached(tree, cur,
3010                                              cur + iosize - 1, &cached);
3011                         cur = cur + iosize;
3012                         pg_offset += iosize;
3013                         continue;
3014                 }
3015                 /* the get_extent function already copied into the page */
3016                 if (test_range_bit(tree, cur, cur_end,
3017                                    EXTENT_UPTODATE, 1, NULL)) {
3018                         check_page_uptodate(tree, page);
3019                         unlock_extent(tree, cur, cur + iosize - 1);
3020                         cur = cur + iosize;
3021                         pg_offset += iosize;
3022                         continue;
3023                 }
3024                 /* we have an inline extent but it didn't get marked up
3025                  * to date.  Error out
3026                  */
3027                 if (block_start == EXTENT_MAP_INLINE) {
3028                         SetPageError(page);
3029                         unlock_extent(tree, cur, cur + iosize - 1);
3030                         cur = cur + iosize;
3031                         pg_offset += iosize;
3032                         continue;
3033                 }
3034
3035                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3036                                          page, offset, disk_io_size,
3037                                          pg_offset, bdev, bio,
3038                                          end_bio_extent_readpage, mirror_num,
3039                                          *bio_flags,
3040                                          this_bio_flag,
3041                                          force_bio_submit);
3042                 if (!ret) {
3043                         nr++;
3044                         *bio_flags = this_bio_flag;
3045                 } else {
3046                         SetPageError(page);
3047                         unlock_extent(tree, cur, cur + iosize - 1);
3048                         goto out;
3049                 }
3050                 cur = cur + iosize;
3051                 pg_offset += iosize;
3052         }
3053 out:
3054         if (!nr) {
3055                 if (!PageError(page))
3056                         SetPageUptodate(page);
3057                 unlock_page(page);
3058         }
3059         return ret;
3060 }
3061
3062 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3063                                              struct page *pages[], int nr_pages,
3064                                              u64 start, u64 end,
3065                                              struct extent_map **em_cached,
3066                                              struct bio **bio,
3067                                              unsigned long *bio_flags,
3068                                              u64 *prev_em_start)
3069 {
3070         struct inode *inode;
3071         struct btrfs_ordered_extent *ordered;
3072         int index;
3073
3074         inode = pages[0]->mapping->host;
3075         while (1) {
3076                 lock_extent(tree, start, end);
3077                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3078                                                      end - start + 1);
3079                 if (!ordered)
3080                         break;
3081                 unlock_extent(tree, start, end);
3082                 btrfs_start_ordered_extent(inode, ordered, 1);
3083                 btrfs_put_ordered_extent(ordered);
3084         }
3085
3086         for (index = 0; index < nr_pages; index++) {
3087                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3088                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3089                 put_page(pages[index]);
3090         }
3091 }
3092
3093 static void __extent_readpages(struct extent_io_tree *tree,
3094                                struct page *pages[],
3095                                int nr_pages,
3096                                struct extent_map **em_cached,
3097                                struct bio **bio, unsigned long *bio_flags,
3098                                u64 *prev_em_start)
3099 {
3100         u64 start = 0;
3101         u64 end = 0;
3102         u64 page_start;
3103         int index;
3104         int first_index = 0;
3105
3106         for (index = 0; index < nr_pages; index++) {
3107                 page_start = page_offset(pages[index]);
3108                 if (!end) {
3109                         start = page_start;
3110                         end = start + PAGE_SIZE - 1;
3111                         first_index = index;
3112                 } else if (end + 1 == page_start) {
3113                         end += PAGE_SIZE;
3114                 } else {
3115                         __do_contiguous_readpages(tree, &pages[first_index],
3116                                                   index - first_index, start,
3117                                                   end, em_cached,
3118                                                   bio, bio_flags,
3119                                                   prev_em_start);
3120                         start = page_start;
3121                         end = start + PAGE_SIZE - 1;
3122                         first_index = index;
3123                 }
3124         }
3125
3126         if (end)
3127                 __do_contiguous_readpages(tree, &pages[first_index],
3128                                           index - first_index, start,
3129                                           end, em_cached, bio,
3130                                           bio_flags, prev_em_start);
3131 }
3132
3133 static int __extent_read_full_page(struct extent_io_tree *tree,
3134                                    struct page *page,
3135                                    get_extent_t *get_extent,
3136                                    struct bio **bio, int mirror_num,
3137                                    unsigned long *bio_flags,
3138                                    unsigned int read_flags)
3139 {
3140         struct inode *inode = page->mapping->host;
3141         struct btrfs_ordered_extent *ordered;
3142         u64 start = page_offset(page);
3143         u64 end = start + PAGE_SIZE - 1;
3144         int ret;
3145
3146         while (1) {
3147                 lock_extent(tree, start, end);
3148                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3149                                                 PAGE_SIZE);
3150                 if (!ordered)
3151                         break;
3152                 unlock_extent(tree, start, end);
3153                 btrfs_start_ordered_extent(inode, ordered, 1);
3154                 btrfs_put_ordered_extent(ordered);
3155         }
3156
3157         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3158                             bio_flags, read_flags, NULL);
3159         return ret;
3160 }
3161
3162 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3163                             get_extent_t *get_extent, int mirror_num)
3164 {
3165         struct bio *bio = NULL;
3166         unsigned long bio_flags = 0;
3167         int ret;
3168
3169         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3170                                       &bio_flags, 0);
3171         if (bio)
3172                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3173         return ret;
3174 }
3175
3176 static void update_nr_written(struct writeback_control *wbc,
3177                               unsigned long nr_written)
3178 {
3179         wbc->nr_to_write -= nr_written;
3180 }
3181
3182 /*
3183  * helper for __extent_writepage, doing all of the delayed allocation setup.
3184  *
3185  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3186  * to write the page (copy into inline extent).  In this case the IO has
3187  * been started and the page is already unlocked.
3188  *
3189  * This returns 0 if all went well (page still locked)
3190  * This returns < 0 if there were errors (page still locked)
3191  */
3192 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3193                 struct page *page, struct writeback_control *wbc,
3194                 u64 delalloc_start, unsigned long *nr_written)
3195 {
3196         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3197         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3198         bool found;
3199         u64 delalloc_to_write = 0;
3200         u64 delalloc_end = 0;
3201         int ret;
3202         int page_started = 0;
3203
3204
3205         while (delalloc_end < page_end) {
3206                 found = find_lock_delalloc_range(inode, tree,
3207                                                page,
3208                                                &delalloc_start,
3209                                                &delalloc_end);
3210                 if (!found) {
3211                         delalloc_start = delalloc_end + 1;
3212                         continue;
3213                 }
3214                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3215                                 delalloc_end, &page_started, nr_written, wbc);
3216                 /* File system has been set read-only */
3217                 if (ret) {
3218                         SetPageError(page);
3219                         /*
3220                          * btrfs_run_delalloc_range should return < 0 for error
3221                          * but just in case, we use > 0 here meaning the IO is
3222                          * started, so we don't want to return > 0 unless
3223                          * things are going well.
3224                          */
3225                         ret = ret < 0 ? ret : -EIO;
3226                         goto done;
3227                 }
3228                 /*
3229                  * delalloc_end is already one less than the total length, so
3230                  * we don't subtract one from PAGE_SIZE
3231                  */
3232                 delalloc_to_write += (delalloc_end - delalloc_start +
3233                                       PAGE_SIZE) >> PAGE_SHIFT;
3234                 delalloc_start = delalloc_end + 1;
3235         }
3236         if (wbc->nr_to_write < delalloc_to_write) {
3237                 int thresh = 8192;
3238
3239                 if (delalloc_to_write < thresh * 2)
3240                         thresh = delalloc_to_write;
3241                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3242                                          thresh);
3243         }
3244
3245         /* did the fill delalloc function already unlock and start
3246          * the IO?
3247          */
3248         if (page_started) {
3249                 /*
3250                  * we've unlocked the page, so we can't update
3251                  * the mapping's writeback index, just update
3252                  * nr_to_write.
3253                  */
3254                 wbc->nr_to_write -= *nr_written;
3255                 return 1;
3256         }
3257
3258         ret = 0;
3259
3260 done:
3261         return ret;
3262 }
3263
3264 /*
3265  * helper for __extent_writepage.  This calls the writepage start hooks,
3266  * and does the loop to map the page into extents and bios.
3267  *
3268  * We return 1 if the IO is started and the page is unlocked,
3269  * 0 if all went well (page still locked)
3270  * < 0 if there were errors (page still locked)
3271  */
3272 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3273                                  struct page *page,
3274                                  struct writeback_control *wbc,
3275                                  struct extent_page_data *epd,
3276                                  loff_t i_size,
3277                                  unsigned long nr_written,
3278                                  unsigned int write_flags, int *nr_ret)
3279 {
3280         struct extent_io_tree *tree = epd->tree;
3281         u64 start = page_offset(page);
3282         u64 page_end = start + PAGE_SIZE - 1;
3283         u64 end;
3284         u64 cur = start;
3285         u64 extent_offset;
3286         u64 block_start;
3287         u64 iosize;
3288         struct extent_map *em;
3289         struct block_device *bdev;
3290         size_t pg_offset = 0;
3291         size_t blocksize;
3292         int ret = 0;
3293         int nr = 0;
3294         bool compressed;
3295
3296         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3297         if (ret) {
3298                 /* Fixup worker will requeue */
3299                 if (ret == -EBUSY)
3300                         wbc->pages_skipped++;
3301                 else
3302                         redirty_page_for_writepage(wbc, page);
3303
3304                 update_nr_written(wbc, nr_written);
3305                 unlock_page(page);
3306                 return 1;
3307         }
3308
3309         /*
3310          * we don't want to touch the inode after unlocking the page,
3311          * so we update the mapping writeback index now
3312          */
3313         update_nr_written(wbc, nr_written + 1);
3314
3315         end = page_end;
3316         if (i_size <= start) {
3317                 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3318                 goto done;
3319         }
3320
3321         blocksize = inode->i_sb->s_blocksize;
3322
3323         while (cur <= end) {
3324                 u64 em_end;
3325                 u64 offset;
3326
3327                 if (cur >= i_size) {
3328                         btrfs_writepage_endio_finish_ordered(page, cur,
3329                                                              page_end, 1);
3330                         break;
3331                 }
3332                 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3333                                      end - cur + 1, 1);
3334                 if (IS_ERR_OR_NULL(em)) {
3335                         SetPageError(page);
3336                         ret = PTR_ERR_OR_ZERO(em);
3337                         break;
3338                 }
3339
3340                 extent_offset = cur - em->start;
3341                 em_end = extent_map_end(em);
3342                 BUG_ON(em_end <= cur);
3343                 BUG_ON(end < cur);
3344                 iosize = min(em_end - cur, end - cur + 1);
3345                 iosize = ALIGN(iosize, blocksize);
3346                 offset = em->block_start + extent_offset;
3347                 bdev = em->bdev;
3348                 block_start = em->block_start;
3349                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3350                 free_extent_map(em);
3351                 em = NULL;
3352
3353                 /*
3354                  * compressed and inline extents are written through other
3355                  * paths in the FS
3356                  */
3357                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3358                     block_start == EXTENT_MAP_INLINE) {
3359                         /*
3360                          * end_io notification does not happen here for
3361                          * compressed extents
3362                          */
3363                         if (!compressed)
3364                                 btrfs_writepage_endio_finish_ordered(page, cur,
3365                                                             cur + iosize - 1,
3366                                                             1);
3367                         else if (compressed) {
3368                                 /* we don't want to end_page_writeback on
3369                                  * a compressed extent.  this happens
3370                                  * elsewhere
3371                                  */
3372                                 nr++;
3373                         }
3374
3375                         cur += iosize;
3376                         pg_offset += iosize;
3377                         continue;
3378                 }
3379
3380                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3381                 if (!PageWriteback(page)) {
3382                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3383                                    "page %lu not writeback, cur %llu end %llu",
3384                                page->index, cur, end);
3385                 }
3386
3387                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3388                                          page, offset, iosize, pg_offset,
3389                                          bdev, &epd->bio,
3390                                          end_bio_extent_writepage,
3391                                          0, 0, 0, false);
3392                 if (ret) {
3393                         SetPageError(page);
3394                         if (PageWriteback(page))
3395                                 end_page_writeback(page);
3396                 }
3397
3398                 cur = cur + iosize;
3399                 pg_offset += iosize;
3400                 nr++;
3401         }
3402 done:
3403         *nr_ret = nr;
3404         return ret;
3405 }
3406
3407 /*
3408  * the writepage semantics are similar to regular writepage.  extent
3409  * records are inserted to lock ranges in the tree, and as dirty areas
3410  * are found, they are marked writeback.  Then the lock bits are removed
3411  * and the end_io handler clears the writeback ranges
3412  */
3413 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3414                               struct extent_page_data *epd)
3415 {
3416         struct inode *inode = page->mapping->host;
3417         u64 start = page_offset(page);
3418         u64 page_end = start + PAGE_SIZE - 1;
3419         int ret;
3420         int nr = 0;
3421         size_t pg_offset = 0;
3422         loff_t i_size = i_size_read(inode);
3423         unsigned long end_index = i_size >> PAGE_SHIFT;
3424         unsigned int write_flags = 0;
3425         unsigned long nr_written = 0;
3426
3427         write_flags = wbc_to_write_flags(wbc);
3428
3429         trace___extent_writepage(page, inode, wbc);
3430
3431         WARN_ON(!PageLocked(page));
3432
3433         ClearPageError(page);
3434
3435         pg_offset = offset_in_page(i_size);
3436         if (page->index > end_index ||
3437            (page->index == end_index && !pg_offset)) {
3438                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3439                 unlock_page(page);
3440                 return 0;
3441         }
3442
3443         if (page->index == end_index) {
3444                 char *userpage;
3445
3446                 userpage = kmap_atomic(page);
3447                 memset(userpage + pg_offset, 0,
3448                        PAGE_SIZE - pg_offset);
3449                 kunmap_atomic(userpage);
3450                 flush_dcache_page(page);
3451         }
3452
3453         pg_offset = 0;
3454
3455         set_page_extent_mapped(page);
3456
3457         if (!epd->extent_locked) {
3458                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3459                 if (ret == 1)
3460                         goto done_unlocked;
3461                 if (ret)
3462                         goto done;
3463         }
3464
3465         ret = __extent_writepage_io(inode, page, wbc, epd,
3466                                     i_size, nr_written, write_flags, &nr);
3467         if (ret == 1)
3468                 goto done_unlocked;
3469
3470 done:
3471         if (nr == 0) {
3472                 /* make sure the mapping tag for page dirty gets cleared */
3473                 set_page_writeback(page);
3474                 end_page_writeback(page);
3475         }
3476         if (PageError(page)) {
3477                 ret = ret < 0 ? ret : -EIO;
3478                 end_extent_writepage(page, ret, start, page_end);
3479         }
3480         unlock_page(page);
3481         return ret;
3482
3483 done_unlocked:
3484         return 0;
3485 }
3486
3487 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3488 {
3489         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3490                        TASK_UNINTERRUPTIBLE);
3491 }
3492
3493 static noinline_for_stack int
3494 lock_extent_buffer_for_io(struct extent_buffer *eb,
3495                           struct btrfs_fs_info *fs_info,
3496                           struct extent_page_data *epd)
3497 {
3498         int i, num_pages;
3499         int flush = 0;
3500         int ret = 0;
3501
3502         if (!btrfs_try_tree_write_lock(eb)) {
3503                 flush = 1;
3504                 flush_write_bio(epd);
3505                 btrfs_tree_lock(eb);
3506         }
3507
3508         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3509                 btrfs_tree_unlock(eb);
3510                 if (!epd->sync_io)
3511                         return 0;
3512                 if (!flush) {
3513                         flush_write_bio(epd);
3514                         flush = 1;
3515                 }
3516                 while (1) {
3517                         wait_on_extent_buffer_writeback(eb);
3518                         btrfs_tree_lock(eb);
3519                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3520                                 break;
3521                         btrfs_tree_unlock(eb);
3522                 }
3523         }
3524
3525         /*
3526          * We need to do this to prevent races in people who check if the eb is
3527          * under IO since we can end up having no IO bits set for a short period
3528          * of time.
3529          */
3530         spin_lock(&eb->refs_lock);
3531         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3532                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3533                 spin_unlock(&eb->refs_lock);
3534                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3535                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3536                                          -eb->len,
3537                                          fs_info->dirty_metadata_batch);
3538                 ret = 1;
3539         } else {
3540                 spin_unlock(&eb->refs_lock);
3541         }
3542
3543         btrfs_tree_unlock(eb);
3544
3545         if (!ret)
3546                 return ret;
3547
3548         num_pages = num_extent_pages(eb);
3549         for (i = 0; i < num_pages; i++) {
3550                 struct page *p = eb->pages[i];
3551
3552                 if (!trylock_page(p)) {
3553                         if (!flush) {
3554                                 flush_write_bio(epd);
3555                                 flush = 1;
3556                         }
3557                         lock_page(p);
3558                 }
3559         }
3560
3561         return ret;
3562 }
3563
3564 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3565 {
3566         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3567         smp_mb__after_atomic();
3568         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3569 }
3570
3571 static void set_btree_ioerr(struct page *page)
3572 {
3573         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3574
3575         SetPageError(page);
3576         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3577                 return;
3578
3579         /*
3580          * If writeback for a btree extent that doesn't belong to a log tree
3581          * failed, increment the counter transaction->eb_write_errors.
3582          * We do this because while the transaction is running and before it's
3583          * committing (when we call filemap_fdata[write|wait]_range against
3584          * the btree inode), we might have
3585          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3586          * returns an error or an error happens during writeback, when we're
3587          * committing the transaction we wouldn't know about it, since the pages
3588          * can be no longer dirty nor marked anymore for writeback (if a
3589          * subsequent modification to the extent buffer didn't happen before the
3590          * transaction commit), which makes filemap_fdata[write|wait]_range not
3591          * able to find the pages tagged with SetPageError at transaction
3592          * commit time. So if this happens we must abort the transaction,
3593          * otherwise we commit a super block with btree roots that point to
3594          * btree nodes/leafs whose content on disk is invalid - either garbage
3595          * or the content of some node/leaf from a past generation that got
3596          * cowed or deleted and is no longer valid.
3597          *
3598          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3599          * not be enough - we need to distinguish between log tree extents vs
3600          * non-log tree extents, and the next filemap_fdatawait_range() call
3601          * will catch and clear such errors in the mapping - and that call might
3602          * be from a log sync and not from a transaction commit. Also, checking
3603          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3604          * not done and would not be reliable - the eb might have been released
3605          * from memory and reading it back again means that flag would not be
3606          * set (since it's a runtime flag, not persisted on disk).
3607          *
3608          * Using the flags below in the btree inode also makes us achieve the
3609          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3610          * writeback for all dirty pages and before filemap_fdatawait_range()
3611          * is called, the writeback for all dirty pages had already finished
3612          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3613          * filemap_fdatawait_range() would return success, as it could not know
3614          * that writeback errors happened (the pages were no longer tagged for
3615          * writeback).
3616          */
3617         switch (eb->log_index) {
3618         case -1:
3619                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3620                 break;
3621         case 0:
3622                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3623                 break;
3624         case 1:
3625                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3626                 break;
3627         default:
3628                 BUG(); /* unexpected, logic error */
3629         }
3630 }
3631
3632 static void end_bio_extent_buffer_writepage(struct bio *bio)
3633 {
3634         struct bio_vec *bvec;
3635         struct extent_buffer *eb;
3636         int i, done;
3637
3638         ASSERT(!bio_flagged(bio, BIO_CLONED));
3639         bio_for_each_segment_all(bvec, bio, i) {
3640                 struct page *page = bvec->bv_page;
3641
3642                 eb = (struct extent_buffer *)page->private;
3643                 BUG_ON(!eb);
3644                 done = atomic_dec_and_test(&eb->io_pages);
3645
3646                 if (bio->bi_status ||
3647                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3648                         ClearPageUptodate(page);
3649                         set_btree_ioerr(page);
3650                 }
3651
3652                 end_page_writeback(page);
3653
3654                 if (!done)
3655                         continue;
3656
3657                 end_extent_buffer_writeback(eb);
3658         }
3659
3660         bio_put(bio);
3661 }
3662
3663 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3664                         struct btrfs_fs_info *fs_info,
3665                         struct writeback_control *wbc,
3666                         struct extent_page_data *epd)
3667 {
3668         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3669         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3670         u64 offset = eb->start;
3671         u32 nritems;
3672         int i, num_pages;
3673         unsigned long start, end;
3674         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3675         int ret = 0;
3676
3677         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3678         num_pages = num_extent_pages(eb);
3679         atomic_set(&eb->io_pages, num_pages);
3680
3681         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3682         nritems = btrfs_header_nritems(eb);
3683         if (btrfs_header_level(eb) > 0) {
3684                 end = btrfs_node_key_ptr_offset(nritems);
3685
3686                 memzero_extent_buffer(eb, end, eb->len - end);
3687         } else {
3688                 /*
3689                  * leaf:
3690                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3691                  */
3692                 start = btrfs_item_nr_offset(nritems);
3693                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3694                 memzero_extent_buffer(eb, start, end - start);
3695         }
3696
3697         for (i = 0; i < num_pages; i++) {
3698                 struct page *p = eb->pages[i];
3699
3700                 clear_page_dirty_for_io(p);
3701                 set_page_writeback(p);
3702                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3703                                          p, offset, PAGE_SIZE, 0, bdev,
3704                                          &epd->bio,
3705                                          end_bio_extent_buffer_writepage,
3706                                          0, 0, 0, false);
3707                 if (ret) {
3708                         set_btree_ioerr(p);
3709                         if (PageWriteback(p))
3710                                 end_page_writeback(p);
3711                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3712                                 end_extent_buffer_writeback(eb);
3713                         ret = -EIO;
3714                         break;
3715                 }
3716                 offset += PAGE_SIZE;
3717                 update_nr_written(wbc, 1);
3718                 unlock_page(p);
3719         }
3720
3721         if (unlikely(ret)) {
3722                 for (; i < num_pages; i++) {
3723                         struct page *p = eb->pages[i];
3724                         clear_page_dirty_for_io(p);
3725                         unlock_page(p);
3726                 }
3727         }
3728
3729         return ret;
3730 }
3731
3732 int btree_write_cache_pages(struct address_space *mapping,
3733                                    struct writeback_control *wbc)
3734 {
3735         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3736         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3737         struct extent_buffer *eb, *prev_eb = NULL;
3738         struct extent_page_data epd = {
3739                 .bio = NULL,
3740                 .tree = tree,
3741                 .extent_locked = 0,
3742                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3743         };
3744         int ret = 0;
3745         int done = 0;
3746         int nr_to_write_done = 0;
3747         struct pagevec pvec;
3748         int nr_pages;
3749         pgoff_t index;
3750         pgoff_t end;            /* Inclusive */
3751         int scanned = 0;
3752         xa_mark_t tag;
3753
3754         pagevec_init(&pvec);
3755         if (wbc->range_cyclic) {
3756                 index = mapping->writeback_index; /* Start from prev offset */
3757                 end = -1;
3758         } else {
3759                 index = wbc->range_start >> PAGE_SHIFT;
3760                 end = wbc->range_end >> PAGE_SHIFT;
3761                 scanned = 1;
3762         }
3763         if (wbc->sync_mode == WB_SYNC_ALL)
3764                 tag = PAGECACHE_TAG_TOWRITE;
3765         else
3766                 tag = PAGECACHE_TAG_DIRTY;
3767 retry:
3768         if (wbc->sync_mode == WB_SYNC_ALL)
3769                 tag_pages_for_writeback(mapping, index, end);
3770         while (!done && !nr_to_write_done && (index <= end) &&
3771                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3772                         tag))) {
3773                 unsigned i;
3774
3775                 scanned = 1;
3776                 for (i = 0; i < nr_pages; i++) {
3777                         struct page *page = pvec.pages[i];
3778
3779                         if (!PagePrivate(page))
3780                                 continue;
3781
3782                         spin_lock(&mapping->private_lock);
3783                         if (!PagePrivate(page)) {
3784                                 spin_unlock(&mapping->private_lock);
3785                                 continue;
3786                         }
3787
3788                         eb = (struct extent_buffer *)page->private;
3789
3790                         /*
3791                          * Shouldn't happen and normally this would be a BUG_ON
3792                          * but no sense in crashing the users box for something
3793                          * we can survive anyway.
3794                          */
3795                         if (WARN_ON(!eb)) {
3796                                 spin_unlock(&mapping->private_lock);
3797                                 continue;
3798                         }
3799
3800                         if (eb == prev_eb) {
3801                                 spin_unlock(&mapping->private_lock);
3802                                 continue;
3803                         }
3804
3805                         ret = atomic_inc_not_zero(&eb->refs);
3806                         spin_unlock(&mapping->private_lock);
3807                         if (!ret)
3808                                 continue;
3809
3810                         prev_eb = eb;
3811                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3812                         if (!ret) {
3813                                 free_extent_buffer(eb);
3814                                 continue;
3815                         }
3816
3817                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3818                         if (ret) {
3819                                 done = 1;
3820                                 free_extent_buffer(eb);
3821                                 break;
3822                         }
3823                         free_extent_buffer(eb);
3824
3825                         /*
3826                          * the filesystem may choose to bump up nr_to_write.
3827                          * We have to make sure to honor the new nr_to_write
3828                          * at any time
3829                          */
3830                         nr_to_write_done = wbc->nr_to_write <= 0;
3831                 }
3832                 pagevec_release(&pvec);
3833                 cond_resched();
3834         }
3835         if (!scanned && !done) {
3836                 /*
3837                  * We hit the last page and there is more work to be done: wrap
3838                  * back to the start of the file
3839                  */
3840                 scanned = 1;
3841                 index = 0;
3842                 goto retry;
3843         }
3844         flush_write_bio(&epd);
3845         return ret;
3846 }
3847
3848 /**
3849  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3850  * @mapping: address space structure to write
3851  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3852  * @data: data passed to __extent_writepage function
3853  *
3854  * If a page is already under I/O, write_cache_pages() skips it, even
3855  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3856  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3857  * and msync() need to guarantee that all the data which was dirty at the time
3858  * the call was made get new I/O started against them.  If wbc->sync_mode is
3859  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3860  * existing IO to complete.
3861  */
3862 static int extent_write_cache_pages(struct address_space *mapping,
3863                              struct writeback_control *wbc,
3864                              struct extent_page_data *epd)
3865 {
3866         struct inode *inode = mapping->host;
3867         int ret = 0;
3868         int done = 0;
3869         int nr_to_write_done = 0;
3870         struct pagevec pvec;
3871         int nr_pages;
3872         pgoff_t index;
3873         pgoff_t end;            /* Inclusive */
3874         pgoff_t done_index;
3875         int range_whole = 0;
3876         int scanned = 0;
3877         xa_mark_t tag;
3878
3879         /*
3880          * We have to hold onto the inode so that ordered extents can do their
3881          * work when the IO finishes.  The alternative to this is failing to add
3882          * an ordered extent if the igrab() fails there and that is a huge pain
3883          * to deal with, so instead just hold onto the inode throughout the
3884          * writepages operation.  If it fails here we are freeing up the inode
3885          * anyway and we'd rather not waste our time writing out stuff that is
3886          * going to be truncated anyway.
3887          */
3888         if (!igrab(inode))
3889                 return 0;
3890
3891         pagevec_init(&pvec);
3892         if (wbc->range_cyclic) {
3893                 index = mapping->writeback_index; /* Start from prev offset */
3894                 end = -1;
3895         } else {
3896                 index = wbc->range_start >> PAGE_SHIFT;
3897                 end = wbc->range_end >> PAGE_SHIFT;
3898                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3899                         range_whole = 1;
3900                 scanned = 1;
3901         }
3902
3903         /*
3904          * We do the tagged writepage as long as the snapshot flush bit is set
3905          * and we are the first one who do the filemap_flush() on this inode.
3906          *
3907          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3908          * not race in and drop the bit.
3909          */
3910         if (range_whole && wbc->nr_to_write == LONG_MAX &&
3911             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3912                                &BTRFS_I(inode)->runtime_flags))
3913                 wbc->tagged_writepages = 1;
3914
3915         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3916                 tag = PAGECACHE_TAG_TOWRITE;
3917         else
3918                 tag = PAGECACHE_TAG_DIRTY;
3919 retry:
3920         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3921                 tag_pages_for_writeback(mapping, index, end);
3922         done_index = index;
3923         while (!done && !nr_to_write_done && (index <= end) &&
3924                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3925                                                 &index, end, tag))) {
3926                 unsigned i;
3927
3928                 scanned = 1;
3929                 for (i = 0; i < nr_pages; i++) {
3930                         struct page *page = pvec.pages[i];
3931
3932                         done_index = page->index;
3933                         /*
3934                          * At this point we hold neither the i_pages lock nor
3935                          * the page lock: the page may be truncated or
3936                          * invalidated (changing page->mapping to NULL),
3937                          * or even swizzled back from swapper_space to
3938                          * tmpfs file mapping
3939                          */
3940                         if (!trylock_page(page)) {
3941                                 flush_write_bio(epd);
3942                                 lock_page(page);
3943                         }
3944
3945                         if (unlikely(page->mapping != mapping)) {
3946                                 unlock_page(page);
3947                                 continue;
3948                         }
3949
3950                         if (wbc->sync_mode != WB_SYNC_NONE) {
3951                                 if (PageWriteback(page))
3952                                         flush_write_bio(epd);
3953                                 wait_on_page_writeback(page);
3954                         }
3955
3956                         if (PageWriteback(page) ||
3957                             !clear_page_dirty_for_io(page)) {
3958                                 unlock_page(page);
3959                                 continue;
3960                         }
3961
3962                         ret = __extent_writepage(page, wbc, epd);
3963
3964                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3965                                 unlock_page(page);
3966                                 ret = 0;
3967                         }
3968                         if (ret < 0) {
3969                                 /*
3970                                  * done_index is set past this page,
3971                                  * so media errors will not choke
3972                                  * background writeout for the entire
3973                                  * file. This has consequences for
3974                                  * range_cyclic semantics (ie. it may
3975                                  * not be suitable for data integrity
3976                                  * writeout).
3977                                  */
3978                                 done_index = page->index + 1;
3979                                 done = 1;
3980                                 break;
3981                         }
3982
3983                         /*
3984                          * the filesystem may choose to bump up nr_to_write.
3985                          * We have to make sure to honor the new nr_to_write
3986                          * at any time
3987                          */
3988                         nr_to_write_done = wbc->nr_to_write <= 0;
3989                 }
3990                 pagevec_release(&pvec);
3991                 cond_resched();
3992         }
3993         if (!scanned && !done) {
3994                 /*
3995                  * We hit the last page and there is more work to be done: wrap
3996                  * back to the start of the file
3997                  */
3998                 scanned = 1;
3999                 index = 0;
4000                 goto retry;
4001         }
4002
4003         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4004                 mapping->writeback_index = done_index;
4005
4006         btrfs_add_delayed_iput(inode);
4007         return ret;
4008 }
4009
4010 static void flush_write_bio(struct extent_page_data *epd)
4011 {
4012         if (epd->bio) {
4013                 int ret;
4014
4015                 ret = submit_one_bio(epd->bio, 0, 0);
4016                 BUG_ON(ret < 0); /* -ENOMEM */
4017                 epd->bio = NULL;
4018         }
4019 }
4020
4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4022 {
4023         int ret;
4024         struct extent_page_data epd = {
4025                 .bio = NULL,
4026                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4027                 .extent_locked = 0,
4028                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4029         };
4030
4031         ret = __extent_writepage(page, wbc, &epd);
4032
4033         flush_write_bio(&epd);
4034         return ret;
4035 }
4036
4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4038                               int mode)
4039 {
4040         int ret = 0;
4041         struct address_space *mapping = inode->i_mapping;
4042         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4043         struct page *page;
4044         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4045                 PAGE_SHIFT;
4046
4047         struct extent_page_data epd = {
4048                 .bio = NULL,
4049                 .tree = tree,
4050                 .extent_locked = 1,
4051                 .sync_io = mode == WB_SYNC_ALL,
4052         };
4053         struct writeback_control wbc_writepages = {
4054                 .sync_mode      = mode,
4055                 .nr_to_write    = nr_pages * 2,
4056                 .range_start    = start,
4057                 .range_end      = end + 1,
4058         };
4059
4060         while (start <= end) {
4061                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4062                 if (clear_page_dirty_for_io(page))
4063                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4064                 else {
4065                         btrfs_writepage_endio_finish_ordered(page, start,
4066                                                     start + PAGE_SIZE - 1, 1);
4067                         unlock_page(page);
4068                 }
4069                 put_page(page);
4070                 start += PAGE_SIZE;
4071         }
4072
4073         flush_write_bio(&epd);
4074         return ret;
4075 }
4076
4077 int extent_writepages(struct address_space *mapping,
4078                       struct writeback_control *wbc)
4079 {
4080         int ret = 0;
4081         struct extent_page_data epd = {
4082                 .bio = NULL,
4083                 .tree = &BTRFS_I(mapping->host)->io_tree,
4084                 .extent_locked = 0,
4085                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086         };
4087
4088         ret = extent_write_cache_pages(mapping, wbc, &epd);
4089         flush_write_bio(&epd);
4090         return ret;
4091 }
4092
4093 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4094                      unsigned nr_pages)
4095 {
4096         struct bio *bio = NULL;
4097         unsigned long bio_flags = 0;
4098         struct page *pagepool[16];
4099         struct extent_map *em_cached = NULL;
4100         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4101         int nr = 0;
4102         u64 prev_em_start = (u64)-1;
4103
4104         while (!list_empty(pages)) {
4105                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4106                         struct page *page = list_entry(pages->prev,
4107                                                        struct page, lru);
4108
4109                         prefetchw(&page->flags);
4110                         list_del(&page->lru);
4111                         if (add_to_page_cache_lru(page, mapping, page->index,
4112                                                 readahead_gfp_mask(mapping))) {
4113                                 put_page(page);
4114                                 continue;
4115                         }
4116
4117                         pagepool[nr++] = page;
4118                 }
4119
4120                 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4121                                    &bio_flags, &prev_em_start);
4122         }
4123
4124         if (em_cached)
4125                 free_extent_map(em_cached);
4126
4127         if (bio)
4128                 return submit_one_bio(bio, 0, bio_flags);
4129         return 0;
4130 }
4131
4132 /*
4133  * basic invalidatepage code, this waits on any locked or writeback
4134  * ranges corresponding to the page, and then deletes any extent state
4135  * records from the tree
4136  */
4137 int extent_invalidatepage(struct extent_io_tree *tree,
4138                           struct page *page, unsigned long offset)
4139 {
4140         struct extent_state *cached_state = NULL;
4141         u64 start = page_offset(page);
4142         u64 end = start + PAGE_SIZE - 1;
4143         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4144
4145         start += ALIGN(offset, blocksize);
4146         if (start > end)
4147                 return 0;
4148
4149         lock_extent_bits(tree, start, end, &cached_state);
4150         wait_on_page_writeback(page);
4151         clear_extent_bit(tree, start, end,
4152                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4153                          EXTENT_DO_ACCOUNTING,
4154                          1, 1, &cached_state);
4155         return 0;
4156 }
4157
4158 /*
4159  * a helper for releasepage, this tests for areas of the page that
4160  * are locked or under IO and drops the related state bits if it is safe
4161  * to drop the page.
4162  */
4163 static int try_release_extent_state(struct extent_io_tree *tree,
4164                                     struct page *page, gfp_t mask)
4165 {
4166         u64 start = page_offset(page);
4167         u64 end = start + PAGE_SIZE - 1;
4168         int ret = 1;
4169
4170         if (test_range_bit(tree, start, end,
4171                            EXTENT_IOBITS, 0, NULL))
4172                 ret = 0;
4173         else {
4174                 /*
4175                  * at this point we can safely clear everything except the
4176                  * locked bit and the nodatasum bit
4177                  */
4178                 ret = __clear_extent_bit(tree, start, end,
4179                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4180                                  0, 0, NULL, mask, NULL);
4181
4182                 /* if clear_extent_bit failed for enomem reasons,
4183                  * we can't allow the release to continue.
4184                  */
4185                 if (ret < 0)
4186                         ret = 0;
4187                 else
4188                         ret = 1;
4189         }
4190         return ret;
4191 }
4192
4193 /*
4194  * a helper for releasepage.  As long as there are no locked extents
4195  * in the range corresponding to the page, both state records and extent
4196  * map records are removed
4197  */
4198 int try_release_extent_mapping(struct page *page, gfp_t mask)
4199 {
4200         struct extent_map *em;
4201         u64 start = page_offset(page);
4202         u64 end = start + PAGE_SIZE - 1;
4203         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4204         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4205         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4206
4207         if (gfpflags_allow_blocking(mask) &&
4208             page->mapping->host->i_size > SZ_16M) {
4209                 u64 len;
4210                 while (start <= end) {
4211                         len = end - start + 1;
4212                         write_lock(&map->lock);
4213                         em = lookup_extent_mapping(map, start, len);
4214                         if (!em) {
4215                                 write_unlock(&map->lock);
4216                                 break;
4217                         }
4218                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4219                             em->start != start) {
4220                                 write_unlock(&map->lock);
4221                                 free_extent_map(em);
4222                                 break;
4223                         }
4224                         if (!test_range_bit(tree, em->start,
4225                                             extent_map_end(em) - 1,
4226                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4227                                             0, NULL)) {
4228                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4229                                         &btrfs_inode->runtime_flags);
4230                                 remove_extent_mapping(map, em);
4231                                 /* once for the rb tree */
4232                                 free_extent_map(em);
4233                         }
4234                         start = extent_map_end(em);
4235                         write_unlock(&map->lock);
4236
4237                         /* once for us */
4238                         free_extent_map(em);
4239                 }
4240         }
4241         return try_release_extent_state(tree, page, mask);
4242 }
4243
4244 /*
4245  * helper function for fiemap, which doesn't want to see any holes.
4246  * This maps until we find something past 'last'
4247  */
4248 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4249                                                 u64 offset, u64 last)
4250 {
4251         u64 sectorsize = btrfs_inode_sectorsize(inode);
4252         struct extent_map *em;
4253         u64 len;
4254
4255         if (offset >= last)
4256                 return NULL;
4257
4258         while (1) {
4259                 len = last - offset;
4260                 if (len == 0)
4261                         break;
4262                 len = ALIGN(len, sectorsize);
4263                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4264                                 len, 0);
4265                 if (IS_ERR_OR_NULL(em))
4266                         return em;
4267
4268                 /* if this isn't a hole return it */
4269                 if (em->block_start != EXTENT_MAP_HOLE)
4270                         return em;
4271
4272                 /* this is a hole, advance to the next extent */
4273                 offset = extent_map_end(em);
4274                 free_extent_map(em);
4275                 if (offset >= last)
4276                         break;
4277         }
4278         return NULL;
4279 }
4280
4281 /*
4282  * To cache previous fiemap extent
4283  *
4284  * Will be used for merging fiemap extent
4285  */
4286 struct fiemap_cache {
4287         u64 offset;
4288         u64 phys;
4289         u64 len;
4290         u32 flags;
4291         bool cached;
4292 };
4293
4294 /*
4295  * Helper to submit fiemap extent.
4296  *
4297  * Will try to merge current fiemap extent specified by @offset, @phys,
4298  * @len and @flags with cached one.
4299  * And only when we fails to merge, cached one will be submitted as
4300  * fiemap extent.
4301  *
4302  * Return value is the same as fiemap_fill_next_extent().
4303  */
4304 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4305                                 struct fiemap_cache *cache,
4306                                 u64 offset, u64 phys, u64 len, u32 flags)
4307 {
4308         int ret = 0;
4309
4310         if (!cache->cached)
4311                 goto assign;
4312
4313         /*
4314          * Sanity check, extent_fiemap() should have ensured that new
4315          * fiemap extent won't overlap with cached one.
4316          * Not recoverable.
4317          *
4318          * NOTE: Physical address can overlap, due to compression
4319          */
4320         if (cache->offset + cache->len > offset) {
4321                 WARN_ON(1);
4322                 return -EINVAL;
4323         }
4324
4325         /*
4326          * Only merges fiemap extents if
4327          * 1) Their logical addresses are continuous
4328          *
4329          * 2) Their physical addresses are continuous
4330          *    So truly compressed (physical size smaller than logical size)
4331          *    extents won't get merged with each other
4332          *
4333          * 3) Share same flags except FIEMAP_EXTENT_LAST
4334          *    So regular extent won't get merged with prealloc extent
4335          */
4336         if (cache->offset + cache->len  == offset &&
4337             cache->phys + cache->len == phys  &&
4338             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4339                         (flags & ~FIEMAP_EXTENT_LAST)) {
4340                 cache->len += len;
4341                 cache->flags |= flags;
4342                 goto try_submit_last;
4343         }
4344
4345         /* Not mergeable, need to submit cached one */
4346         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4347                                       cache->len, cache->flags);
4348         cache->cached = false;
4349         if (ret)
4350                 return ret;
4351 assign:
4352         cache->cached = true;
4353         cache->offset = offset;
4354         cache->phys = phys;
4355         cache->len = len;
4356         cache->flags = flags;
4357 try_submit_last:
4358         if (cache->flags & FIEMAP_EXTENT_LAST) {
4359                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4360                                 cache->phys, cache->len, cache->flags);
4361                 cache->cached = false;
4362         }
4363         return ret;
4364 }
4365
4366 /*
4367  * Emit last fiemap cache
4368  *
4369  * The last fiemap cache may still be cached in the following case:
4370  * 0                  4k                    8k
4371  * |<- Fiemap range ->|
4372  * |<------------  First extent ----------->|
4373  *
4374  * In this case, the first extent range will be cached but not emitted.
4375  * So we must emit it before ending extent_fiemap().
4376  */
4377 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4378                                   struct fiemap_extent_info *fieinfo,
4379                                   struct fiemap_cache *cache)
4380 {
4381         int ret;
4382
4383         if (!cache->cached)
4384                 return 0;
4385
4386         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387                                       cache->len, cache->flags);
4388         cache->cached = false;
4389         if (ret > 0)
4390                 ret = 0;
4391         return ret;
4392 }
4393
4394 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4395                 __u64 start, __u64 len)
4396 {
4397         int ret = 0;
4398         u64 off = start;
4399         u64 max = start + len;
4400         u32 flags = 0;
4401         u32 found_type;
4402         u64 last;
4403         u64 last_for_get_extent = 0;
4404         u64 disko = 0;
4405         u64 isize = i_size_read(inode);
4406         struct btrfs_key found_key;
4407         struct extent_map *em = NULL;
4408         struct extent_state *cached_state = NULL;
4409         struct btrfs_path *path;
4410         struct btrfs_root *root = BTRFS_I(inode)->root;
4411         struct fiemap_cache cache = { 0 };
4412         int end = 0;
4413         u64 em_start = 0;
4414         u64 em_len = 0;
4415         u64 em_end = 0;
4416
4417         if (len == 0)
4418                 return -EINVAL;
4419
4420         path = btrfs_alloc_path();
4421         if (!path)
4422                 return -ENOMEM;
4423         path->leave_spinning = 1;
4424
4425         start = round_down(start, btrfs_inode_sectorsize(inode));
4426         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4427
4428         /*
4429          * lookup the last file extent.  We're not using i_size here
4430          * because there might be preallocation past i_size
4431          */
4432         ret = btrfs_lookup_file_extent(NULL, root, path,
4433                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4434         if (ret < 0) {
4435                 btrfs_free_path(path);
4436                 return ret;
4437         } else {
4438                 WARN_ON(!ret);
4439                 if (ret == 1)
4440                         ret = 0;
4441         }
4442
4443         path->slots[0]--;
4444         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4445         found_type = found_key.type;
4446
4447         /* No extents, but there might be delalloc bits */
4448         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4449             found_type != BTRFS_EXTENT_DATA_KEY) {
4450                 /* have to trust i_size as the end */
4451                 last = (u64)-1;
4452                 last_for_get_extent = isize;
4453         } else {
4454                 /*
4455                  * remember the start of the last extent.  There are a
4456                  * bunch of different factors that go into the length of the
4457                  * extent, so its much less complex to remember where it started
4458                  */
4459                 last = found_key.offset;
4460                 last_for_get_extent = last + 1;
4461         }
4462         btrfs_release_path(path);
4463
4464         /*
4465          * we might have some extents allocated but more delalloc past those
4466          * extents.  so, we trust isize unless the start of the last extent is
4467          * beyond isize
4468          */
4469         if (last < isize) {
4470                 last = (u64)-1;
4471                 last_for_get_extent = isize;
4472         }
4473
4474         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4475                          &cached_state);
4476
4477         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4478         if (!em)
4479                 goto out;
4480         if (IS_ERR(em)) {
4481                 ret = PTR_ERR(em);
4482                 goto out;
4483         }
4484
4485         while (!end) {
4486                 u64 offset_in_extent = 0;
4487
4488                 /* break if the extent we found is outside the range */
4489                 if (em->start >= max || extent_map_end(em) < off)
4490                         break;
4491
4492                 /*
4493                  * get_extent may return an extent that starts before our
4494                  * requested range.  We have to make sure the ranges
4495                  * we return to fiemap always move forward and don't
4496                  * overlap, so adjust the offsets here
4497                  */
4498                 em_start = max(em->start, off);
4499
4500                 /*
4501                  * record the offset from the start of the extent
4502                  * for adjusting the disk offset below.  Only do this if the
4503                  * extent isn't compressed since our in ram offset may be past
4504                  * what we have actually allocated on disk.
4505                  */
4506                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4507                         offset_in_extent = em_start - em->start;
4508                 em_end = extent_map_end(em);
4509                 em_len = em_end - em_start;
4510                 flags = 0;
4511                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4512                         disko = em->block_start + offset_in_extent;
4513                 else
4514                         disko = 0;
4515
4516                 /*
4517                  * bump off for our next call to get_extent
4518                  */
4519                 off = extent_map_end(em);
4520                 if (off >= max)
4521                         end = 1;
4522
4523                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4524                         end = 1;
4525                         flags |= FIEMAP_EXTENT_LAST;
4526                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4527                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4528                                   FIEMAP_EXTENT_NOT_ALIGNED);
4529                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4530                         flags |= (FIEMAP_EXTENT_DELALLOC |
4531                                   FIEMAP_EXTENT_UNKNOWN);
4532                 } else if (fieinfo->fi_extents_max) {
4533                         u64 bytenr = em->block_start -
4534                                 (em->start - em->orig_start);
4535
4536                         /*
4537                          * As btrfs supports shared space, this information
4538                          * can be exported to userspace tools via
4539                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4540                          * then we're just getting a count and we can skip the
4541                          * lookup stuff.
4542                          */
4543                         ret = btrfs_check_shared(root,
4544                                                  btrfs_ino(BTRFS_I(inode)),
4545                                                  bytenr);
4546                         if (ret < 0)
4547                                 goto out_free;
4548                         if (ret)
4549                                 flags |= FIEMAP_EXTENT_SHARED;
4550                         ret = 0;
4551                 }
4552                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4553                         flags |= FIEMAP_EXTENT_ENCODED;
4554                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4555                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4556
4557                 free_extent_map(em);
4558                 em = NULL;
4559                 if ((em_start >= last) || em_len == (u64)-1 ||
4560                    (last == (u64)-1 && isize <= em_end)) {
4561                         flags |= FIEMAP_EXTENT_LAST;
4562                         end = 1;
4563                 }
4564
4565                 /* now scan forward to see if this is really the last extent. */
4566                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4567                 if (IS_ERR(em)) {
4568                         ret = PTR_ERR(em);
4569                         goto out;
4570                 }
4571                 if (!em) {
4572                         flags |= FIEMAP_EXTENT_LAST;
4573                         end = 1;
4574                 }
4575                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4576                                            em_len, flags);
4577                 if (ret) {
4578                         if (ret == 1)
4579                                 ret = 0;
4580                         goto out_free;
4581                 }
4582         }
4583 out_free:
4584         if (!ret)
4585                 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4586         free_extent_map(em);
4587 out:
4588         btrfs_free_path(path);
4589         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4590                              &cached_state);
4591         return ret;
4592 }
4593
4594 static void __free_extent_buffer(struct extent_buffer *eb)
4595 {
4596         btrfs_leak_debug_del(&eb->leak_list);
4597         kmem_cache_free(extent_buffer_cache, eb);
4598 }
4599
4600 int extent_buffer_under_io(struct extent_buffer *eb)
4601 {
4602         return (atomic_read(&eb->io_pages) ||
4603                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4604                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4605 }
4606
4607 /*
4608  * Release all pages attached to the extent buffer.
4609  */
4610 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4611 {
4612         int i;
4613         int num_pages;
4614         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4615
4616         BUG_ON(extent_buffer_under_io(eb));
4617
4618         num_pages = num_extent_pages(eb);
4619         for (i = 0; i < num_pages; i++) {
4620                 struct page *page = eb->pages[i];
4621
4622                 if (!page)
4623                         continue;
4624                 if (mapped)
4625                         spin_lock(&page->mapping->private_lock);
4626                 /*
4627                  * We do this since we'll remove the pages after we've
4628                  * removed the eb from the radix tree, so we could race
4629                  * and have this page now attached to the new eb.  So
4630                  * only clear page_private if it's still connected to
4631                  * this eb.
4632                  */
4633                 if (PagePrivate(page) &&
4634                     page->private == (unsigned long)eb) {
4635                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4636                         BUG_ON(PageDirty(page));
4637                         BUG_ON(PageWriteback(page));
4638                         /*
4639                          * We need to make sure we haven't be attached
4640                          * to a new eb.
4641                          */
4642                         ClearPagePrivate(page);
4643                         set_page_private(page, 0);
4644                         /* One for the page private */
4645                         put_page(page);
4646                 }
4647
4648                 if (mapped)
4649                         spin_unlock(&page->mapping->private_lock);
4650
4651                 /* One for when we allocated the page */
4652                 put_page(page);
4653         }
4654 }
4655
4656 /*
4657  * Helper for releasing the extent buffer.
4658  */
4659 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4660 {
4661         btrfs_release_extent_buffer_pages(eb);
4662         __free_extent_buffer(eb);
4663 }
4664
4665 static struct extent_buffer *
4666 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4667                       unsigned long len)
4668 {
4669         struct extent_buffer *eb = NULL;
4670
4671         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4672         eb->start = start;
4673         eb->len = len;
4674         eb->fs_info = fs_info;
4675         eb->bflags = 0;
4676         rwlock_init(&eb->lock);
4677         atomic_set(&eb->write_locks, 0);
4678         atomic_set(&eb->read_locks, 0);
4679         atomic_set(&eb->blocking_readers, 0);
4680         atomic_set(&eb->blocking_writers, 0);
4681         atomic_set(&eb->spinning_readers, 0);
4682         atomic_set(&eb->spinning_writers, 0);
4683         eb->lock_nested = 0;
4684         init_waitqueue_head(&eb->write_lock_wq);
4685         init_waitqueue_head(&eb->read_lock_wq);
4686
4687         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4688
4689         spin_lock_init(&eb->refs_lock);
4690         atomic_set(&eb->refs, 1);
4691         atomic_set(&eb->io_pages, 0);
4692
4693         /*
4694          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4695          */
4696         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4697                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4698         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4699
4700         return eb;
4701 }
4702
4703 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4704 {
4705         int i;
4706         struct page *p;
4707         struct extent_buffer *new;
4708         int num_pages = num_extent_pages(src);
4709
4710         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4711         if (new == NULL)
4712                 return NULL;
4713
4714         for (i = 0; i < num_pages; i++) {
4715                 p = alloc_page(GFP_NOFS);
4716                 if (!p) {
4717                         btrfs_release_extent_buffer(new);
4718                         return NULL;
4719                 }
4720                 attach_extent_buffer_page(new, p);
4721                 WARN_ON(PageDirty(p));
4722                 SetPageUptodate(p);
4723                 new->pages[i] = p;
4724                 copy_page(page_address(p), page_address(src->pages[i]));
4725         }
4726
4727         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4728         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4729
4730         return new;
4731 }
4732
4733 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4734                                                   u64 start, unsigned long len)
4735 {
4736         struct extent_buffer *eb;
4737         int num_pages;
4738         int i;
4739
4740         eb = __alloc_extent_buffer(fs_info, start, len);
4741         if (!eb)
4742                 return NULL;
4743
4744         num_pages = num_extent_pages(eb);
4745         for (i = 0; i < num_pages; i++) {
4746                 eb->pages[i] = alloc_page(GFP_NOFS);
4747                 if (!eb->pages[i])
4748                         goto err;
4749         }
4750         set_extent_buffer_uptodate(eb);
4751         btrfs_set_header_nritems(eb, 0);
4752         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4753
4754         return eb;
4755 err:
4756         for (; i > 0; i--)
4757                 __free_page(eb->pages[i - 1]);
4758         __free_extent_buffer(eb);
4759         return NULL;
4760 }
4761
4762 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4763                                                 u64 start)
4764 {
4765         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4766 }
4767
4768 static void check_buffer_tree_ref(struct extent_buffer *eb)
4769 {
4770         int refs;
4771         /* the ref bit is tricky.  We have to make sure it is set
4772          * if we have the buffer dirty.   Otherwise the
4773          * code to free a buffer can end up dropping a dirty
4774          * page
4775          *
4776          * Once the ref bit is set, it won't go away while the
4777          * buffer is dirty or in writeback, and it also won't
4778          * go away while we have the reference count on the
4779          * eb bumped.
4780          *
4781          * We can't just set the ref bit without bumping the
4782          * ref on the eb because free_extent_buffer might
4783          * see the ref bit and try to clear it.  If this happens
4784          * free_extent_buffer might end up dropping our original
4785          * ref by mistake and freeing the page before we are able
4786          * to add one more ref.
4787          *
4788          * So bump the ref count first, then set the bit.  If someone
4789          * beat us to it, drop the ref we added.
4790          */
4791         refs = atomic_read(&eb->refs);
4792         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4793                 return;
4794
4795         spin_lock(&eb->refs_lock);
4796         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4797                 atomic_inc(&eb->refs);
4798         spin_unlock(&eb->refs_lock);
4799 }
4800
4801 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4802                 struct page *accessed)
4803 {
4804         int num_pages, i;
4805
4806         check_buffer_tree_ref(eb);
4807
4808         num_pages = num_extent_pages(eb);
4809         for (i = 0; i < num_pages; i++) {
4810                 struct page *p = eb->pages[i];
4811
4812                 if (p != accessed)
4813                         mark_page_accessed(p);
4814         }
4815 }
4816
4817 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4818                                          u64 start)
4819 {
4820         struct extent_buffer *eb;
4821
4822         rcu_read_lock();
4823         eb = radix_tree_lookup(&fs_info->buffer_radix,
4824                                start >> PAGE_SHIFT);
4825         if (eb && atomic_inc_not_zero(&eb->refs)) {
4826                 rcu_read_unlock();
4827                 /*
4828                  * Lock our eb's refs_lock to avoid races with
4829                  * free_extent_buffer. When we get our eb it might be flagged
4830                  * with EXTENT_BUFFER_STALE and another task running
4831                  * free_extent_buffer might have seen that flag set,
4832                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4833                  * writeback flags not set) and it's still in the tree (flag
4834                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4835                  * of decrementing the extent buffer's reference count twice.
4836                  * So here we could race and increment the eb's reference count,
4837                  * clear its stale flag, mark it as dirty and drop our reference
4838                  * before the other task finishes executing free_extent_buffer,
4839                  * which would later result in an attempt to free an extent
4840                  * buffer that is dirty.
4841                  */
4842                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4843                         spin_lock(&eb->refs_lock);
4844                         spin_unlock(&eb->refs_lock);
4845                 }
4846                 mark_extent_buffer_accessed(eb, NULL);
4847                 return eb;
4848         }
4849         rcu_read_unlock();
4850
4851         return NULL;
4852 }
4853
4854 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4855 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4856                                         u64 start)
4857 {
4858         struct extent_buffer *eb, *exists = NULL;
4859         int ret;
4860
4861         eb = find_extent_buffer(fs_info, start);
4862         if (eb)
4863                 return eb;
4864         eb = alloc_dummy_extent_buffer(fs_info, start);
4865         if (!eb)
4866                 return NULL;
4867         eb->fs_info = fs_info;
4868 again:
4869         ret = radix_tree_preload(GFP_NOFS);
4870         if (ret)
4871                 goto free_eb;
4872         spin_lock(&fs_info->buffer_lock);
4873         ret = radix_tree_insert(&fs_info->buffer_radix,
4874                                 start >> PAGE_SHIFT, eb);
4875         spin_unlock(&fs_info->buffer_lock);
4876         radix_tree_preload_end();
4877         if (ret == -EEXIST) {
4878                 exists = find_extent_buffer(fs_info, start);
4879                 if (exists)
4880                         goto free_eb;
4881                 else
4882                         goto again;
4883         }
4884         check_buffer_tree_ref(eb);
4885         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4886
4887         return eb;
4888 free_eb:
4889         btrfs_release_extent_buffer(eb);
4890         return exists;
4891 }
4892 #endif
4893
4894 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4895                                           u64 start)
4896 {
4897         unsigned long len = fs_info->nodesize;
4898         int num_pages;
4899         int i;
4900         unsigned long index = start >> PAGE_SHIFT;
4901         struct extent_buffer *eb;
4902         struct extent_buffer *exists = NULL;
4903         struct page *p;
4904         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4905         int uptodate = 1;
4906         int ret;
4907
4908         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4909                 btrfs_err(fs_info, "bad tree block start %llu", start);
4910                 return ERR_PTR(-EINVAL);
4911         }
4912
4913         eb = find_extent_buffer(fs_info, start);
4914         if (eb)
4915                 return eb;
4916
4917         eb = __alloc_extent_buffer(fs_info, start, len);
4918         if (!eb)
4919                 return ERR_PTR(-ENOMEM);
4920
4921         num_pages = num_extent_pages(eb);
4922         for (i = 0; i < num_pages; i++, index++) {
4923                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4924                 if (!p) {
4925                         exists = ERR_PTR(-ENOMEM);
4926                         goto free_eb;
4927                 }
4928
4929                 spin_lock(&mapping->private_lock);
4930                 if (PagePrivate(p)) {
4931                         /*
4932                          * We could have already allocated an eb for this page
4933                          * and attached one so lets see if we can get a ref on
4934                          * the existing eb, and if we can we know it's good and
4935                          * we can just return that one, else we know we can just
4936                          * overwrite page->private.
4937                          */
4938                         exists = (struct extent_buffer *)p->private;
4939                         if (atomic_inc_not_zero(&exists->refs)) {
4940                                 spin_unlock(&mapping->private_lock);
4941                                 unlock_page(p);
4942                                 put_page(p);
4943                                 mark_extent_buffer_accessed(exists, p);
4944                                 goto free_eb;
4945                         }
4946                         exists = NULL;
4947
4948                         /*
4949                          * Do this so attach doesn't complain and we need to
4950                          * drop the ref the old guy had.
4951                          */
4952                         ClearPagePrivate(p);
4953                         WARN_ON(PageDirty(p));
4954                         put_page(p);
4955                 }
4956                 attach_extent_buffer_page(eb, p);
4957                 spin_unlock(&mapping->private_lock);
4958                 WARN_ON(PageDirty(p));
4959                 eb->pages[i] = p;
4960                 if (!PageUptodate(p))
4961                         uptodate = 0;
4962
4963                 /*
4964                  * We can't unlock the pages just yet since the extent buffer
4965                  * hasn't been properly inserted in the radix tree, this
4966                  * opens a race with btree_releasepage which can free a page
4967                  * while we are still filling in all pages for the buffer and
4968                  * we could crash.
4969                  */
4970         }
4971         if (uptodate)
4972                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4973 again:
4974         ret = radix_tree_preload(GFP_NOFS);
4975         if (ret) {
4976                 exists = ERR_PTR(ret);
4977                 goto free_eb;
4978         }
4979
4980         spin_lock(&fs_info->buffer_lock);
4981         ret = radix_tree_insert(&fs_info->buffer_radix,
4982                                 start >> PAGE_SHIFT, eb);
4983         spin_unlock(&fs_info->buffer_lock);
4984         radix_tree_preload_end();
4985         if (ret == -EEXIST) {
4986                 exists = find_extent_buffer(fs_info, start);
4987                 if (exists)
4988                         goto free_eb;
4989                 else
4990                         goto again;
4991         }
4992         /* add one reference for the tree */
4993         check_buffer_tree_ref(eb);
4994         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4995
4996         /*
4997          * Now it's safe to unlock the pages because any calls to
4998          * btree_releasepage will correctly detect that a page belongs to a
4999          * live buffer and won't free them prematurely.
5000          */
5001         for (i = 0; i < num_pages; i++)
5002                 unlock_page(eb->pages[i]);
5003         return eb;
5004
5005 free_eb:
5006         WARN_ON(!atomic_dec_and_test(&eb->refs));
5007         for (i = 0; i < num_pages; i++) {
5008                 if (eb->pages[i])
5009                         unlock_page(eb->pages[i]);
5010         }
5011
5012         btrfs_release_extent_buffer(eb);
5013         return exists;
5014 }
5015
5016 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5017 {
5018         struct extent_buffer *eb =
5019                         container_of(head, struct extent_buffer, rcu_head);
5020
5021         __free_extent_buffer(eb);
5022 }
5023
5024 static int release_extent_buffer(struct extent_buffer *eb)
5025 {
5026         lockdep_assert_held(&eb->refs_lock);
5027
5028         WARN_ON(atomic_read(&eb->refs) == 0);
5029         if (atomic_dec_and_test(&eb->refs)) {
5030                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5031                         struct btrfs_fs_info *fs_info = eb->fs_info;
5032
5033                         spin_unlock(&eb->refs_lock);
5034
5035                         spin_lock(&fs_info->buffer_lock);
5036                         radix_tree_delete(&fs_info->buffer_radix,
5037                                           eb->start >> PAGE_SHIFT);
5038                         spin_unlock(&fs_info->buffer_lock);
5039                 } else {
5040                         spin_unlock(&eb->refs_lock);
5041                 }
5042
5043                 /* Should be safe to release our pages at this point */
5044                 btrfs_release_extent_buffer_pages(eb);
5045 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5046                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5047                         __free_extent_buffer(eb);
5048                         return 1;
5049                 }
5050 #endif
5051                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5052                 return 1;
5053         }
5054         spin_unlock(&eb->refs_lock);
5055
5056         return 0;
5057 }
5058
5059 void free_extent_buffer(struct extent_buffer *eb)
5060 {
5061         int refs;
5062         int old;
5063         if (!eb)
5064                 return;
5065
5066         while (1) {
5067                 refs = atomic_read(&eb->refs);
5068                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5069                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5070                         refs == 1))
5071                         break;
5072                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5073                 if (old == refs)
5074                         return;
5075         }
5076
5077         spin_lock(&eb->refs_lock);
5078         if (atomic_read(&eb->refs) == 2 &&
5079             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5080             !extent_buffer_under_io(eb) &&
5081             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5082                 atomic_dec(&eb->refs);
5083
5084         /*
5085          * I know this is terrible, but it's temporary until we stop tracking
5086          * the uptodate bits and such for the extent buffers.
5087          */
5088         release_extent_buffer(eb);
5089 }
5090
5091 void free_extent_buffer_stale(struct extent_buffer *eb)
5092 {
5093         if (!eb)
5094                 return;
5095
5096         spin_lock(&eb->refs_lock);
5097         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5098
5099         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5100             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5101                 atomic_dec(&eb->refs);
5102         release_extent_buffer(eb);
5103 }
5104
5105 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5106 {
5107         int i;
5108         int num_pages;
5109         struct page *page;
5110
5111         num_pages = num_extent_pages(eb);
5112
5113         for (i = 0; i < num_pages; i++) {
5114                 page = eb->pages[i];
5115                 if (!PageDirty(page))
5116                         continue;
5117
5118                 lock_page(page);
5119                 WARN_ON(!PagePrivate(page));
5120
5121                 clear_page_dirty_for_io(page);
5122                 xa_lock_irq(&page->mapping->i_pages);
5123                 if (!PageDirty(page))
5124                         __xa_clear_mark(&page->mapping->i_pages,
5125                                         page_index(page), PAGECACHE_TAG_DIRTY);
5126                 xa_unlock_irq(&page->mapping->i_pages);
5127                 ClearPageError(page);
5128                 unlock_page(page);
5129         }
5130         WARN_ON(atomic_read(&eb->refs) == 0);
5131 }
5132
5133 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5134 {
5135         int i;
5136         int num_pages;
5137         bool was_dirty;
5138
5139         check_buffer_tree_ref(eb);
5140
5141         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5142
5143         num_pages = num_extent_pages(eb);
5144         WARN_ON(atomic_read(&eb->refs) == 0);
5145         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5146
5147         if (!was_dirty)
5148                 for (i = 0; i < num_pages; i++)
5149                         set_page_dirty(eb->pages[i]);
5150
5151 #ifdef CONFIG_BTRFS_DEBUG
5152         for (i = 0; i < num_pages; i++)
5153                 ASSERT(PageDirty(eb->pages[i]));
5154 #endif
5155
5156         return was_dirty;
5157 }
5158
5159 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5160 {
5161         int i;
5162         struct page *page;
5163         int num_pages;
5164
5165         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5166         num_pages = num_extent_pages(eb);
5167         for (i = 0; i < num_pages; i++) {
5168                 page = eb->pages[i];
5169                 if (page)
5170                         ClearPageUptodate(page);
5171         }
5172 }
5173
5174 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5175 {
5176         int i;
5177         struct page *page;
5178         int num_pages;
5179
5180         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181         num_pages = num_extent_pages(eb);
5182         for (i = 0; i < num_pages; i++) {
5183                 page = eb->pages[i];
5184                 SetPageUptodate(page);
5185         }
5186 }
5187
5188 int read_extent_buffer_pages(struct extent_io_tree *tree,
5189                              struct extent_buffer *eb, int wait, int mirror_num)
5190 {
5191         int i;
5192         struct page *page;
5193         int err;
5194         int ret = 0;
5195         int locked_pages = 0;
5196         int all_uptodate = 1;
5197         int num_pages;
5198         unsigned long num_reads = 0;
5199         struct bio *bio = NULL;
5200         unsigned long bio_flags = 0;
5201
5202         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5203                 return 0;
5204
5205         num_pages = num_extent_pages(eb);
5206         for (i = 0; i < num_pages; i++) {
5207                 page = eb->pages[i];
5208                 if (wait == WAIT_NONE) {
5209                         if (!trylock_page(page))
5210                                 goto unlock_exit;
5211                 } else {
5212                         lock_page(page);
5213                 }
5214                 locked_pages++;
5215         }
5216         /*
5217          * We need to firstly lock all pages to make sure that
5218          * the uptodate bit of our pages won't be affected by
5219          * clear_extent_buffer_uptodate().
5220          */
5221         for (i = 0; i < num_pages; i++) {
5222                 page = eb->pages[i];
5223                 if (!PageUptodate(page)) {
5224                         num_reads++;
5225                         all_uptodate = 0;
5226                 }
5227         }
5228
5229         if (all_uptodate) {
5230                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5231                 goto unlock_exit;
5232         }
5233
5234         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5235         eb->read_mirror = 0;
5236         atomic_set(&eb->io_pages, num_reads);
5237         for (i = 0; i < num_pages; i++) {
5238                 page = eb->pages[i];
5239
5240                 if (!PageUptodate(page)) {
5241                         if (ret) {
5242                                 atomic_dec(&eb->io_pages);
5243                                 unlock_page(page);
5244                                 continue;
5245                         }
5246
5247                         ClearPageError(page);
5248                         err = __extent_read_full_page(tree, page,
5249                                                       btree_get_extent, &bio,
5250                                                       mirror_num, &bio_flags,
5251                                                       REQ_META);
5252                         if (err) {
5253                                 ret = err;
5254                                 /*
5255                                  * We use &bio in above __extent_read_full_page,
5256                                  * so we ensure that if it returns error, the
5257                                  * current page fails to add itself to bio and
5258                                  * it's been unlocked.
5259                                  *
5260                                  * We must dec io_pages by ourselves.
5261                                  */
5262                                 atomic_dec(&eb->io_pages);
5263                         }
5264                 } else {
5265                         unlock_page(page);
5266                 }
5267         }
5268
5269         if (bio) {
5270                 err = submit_one_bio(bio, mirror_num, bio_flags);
5271                 if (err)
5272                         return err;
5273         }
5274
5275         if (ret || wait != WAIT_COMPLETE)
5276                 return ret;
5277
5278         for (i = 0; i < num_pages; i++) {
5279                 page = eb->pages[i];
5280                 wait_on_page_locked(page);
5281                 if (!PageUptodate(page))
5282                         ret = -EIO;
5283         }
5284
5285         return ret;
5286
5287 unlock_exit:
5288         while (locked_pages > 0) {
5289                 locked_pages--;
5290                 page = eb->pages[locked_pages];
5291                 unlock_page(page);
5292         }
5293         return ret;
5294 }
5295
5296 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5297                         unsigned long start, unsigned long len)
5298 {
5299         size_t cur;
5300         size_t offset;
5301         struct page *page;
5302         char *kaddr;
5303         char *dst = (char *)dstv;
5304         size_t start_offset = offset_in_page(eb->start);
5305         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5306
5307         if (start + len > eb->len) {
5308                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5309                      eb->start, eb->len, start, len);
5310                 memset(dst, 0, len);
5311                 return;
5312         }
5313
5314         offset = offset_in_page(start_offset + start);
5315
5316         while (len > 0) {
5317                 page = eb->pages[i];
5318
5319                 cur = min(len, (PAGE_SIZE - offset));
5320                 kaddr = page_address(page);
5321                 memcpy(dst, kaddr + offset, cur);
5322
5323                 dst += cur;
5324                 len -= cur;
5325                 offset = 0;
5326                 i++;
5327         }
5328 }
5329
5330 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5331                                void __user *dstv,
5332                                unsigned long start, unsigned long len)
5333 {
5334         size_t cur;
5335         size_t offset;
5336         struct page *page;
5337         char *kaddr;
5338         char __user *dst = (char __user *)dstv;
5339         size_t start_offset = offset_in_page(eb->start);
5340         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5341         int ret = 0;
5342
5343         WARN_ON(start > eb->len);
5344         WARN_ON(start + len > eb->start + eb->len);
5345
5346         offset = offset_in_page(start_offset + start);
5347
5348         while (len > 0) {
5349                 page = eb->pages[i];
5350
5351                 cur = min(len, (PAGE_SIZE - offset));
5352                 kaddr = page_address(page);
5353                 if (copy_to_user(dst, kaddr + offset, cur)) {
5354                         ret = -EFAULT;
5355                         break;
5356                 }
5357
5358                 dst += cur;
5359                 len -= cur;
5360                 offset = 0;
5361                 i++;
5362         }
5363
5364         return ret;
5365 }
5366
5367 /*
5368  * return 0 if the item is found within a page.
5369  * return 1 if the item spans two pages.
5370  * return -EINVAL otherwise.
5371  */
5372 int map_private_extent_buffer(const struct extent_buffer *eb,
5373                               unsigned long start, unsigned long min_len,
5374                               char **map, unsigned long *map_start,
5375                               unsigned long *map_len)
5376 {
5377         size_t offset;
5378         char *kaddr;
5379         struct page *p;
5380         size_t start_offset = offset_in_page(eb->start);
5381         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5382         unsigned long end_i = (start_offset + start + min_len - 1) >>
5383                 PAGE_SHIFT;
5384
5385         if (start + min_len > eb->len) {
5386                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5387                        eb->start, eb->len, start, min_len);
5388                 return -EINVAL;
5389         }
5390
5391         if (i != end_i)
5392                 return 1;
5393
5394         if (i == 0) {
5395                 offset = start_offset;
5396                 *map_start = 0;
5397         } else {
5398                 offset = 0;
5399                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5400         }
5401
5402         p = eb->pages[i];
5403         kaddr = page_address(p);
5404         *map = kaddr + offset;
5405         *map_len = PAGE_SIZE - offset;
5406         return 0;
5407 }
5408
5409 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5410                          unsigned long start, unsigned long len)
5411 {
5412         size_t cur;
5413         size_t offset;
5414         struct page *page;
5415         char *kaddr;
5416         char *ptr = (char *)ptrv;
5417         size_t start_offset = offset_in_page(eb->start);
5418         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5419         int ret = 0;
5420
5421         WARN_ON(start > eb->len);
5422         WARN_ON(start + len > eb->start + eb->len);
5423
5424         offset = offset_in_page(start_offset + start);
5425
5426         while (len > 0) {
5427                 page = eb->pages[i];
5428
5429                 cur = min(len, (PAGE_SIZE - offset));
5430
5431                 kaddr = page_address(page);
5432                 ret = memcmp(ptr, kaddr + offset, cur);
5433                 if (ret)
5434                         break;
5435
5436                 ptr += cur;
5437                 len -= cur;
5438                 offset = 0;
5439                 i++;
5440         }
5441         return ret;
5442 }
5443
5444 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5445                 const void *srcv)
5446 {
5447         char *kaddr;
5448
5449         WARN_ON(!PageUptodate(eb->pages[0]));
5450         kaddr = page_address(eb->pages[0]);
5451         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5452                         BTRFS_FSID_SIZE);
5453 }
5454
5455 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5456 {
5457         char *kaddr;
5458
5459         WARN_ON(!PageUptodate(eb->pages[0]));
5460         kaddr = page_address(eb->pages[0]);
5461         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5462                         BTRFS_FSID_SIZE);
5463 }
5464
5465 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5466                          unsigned long start, unsigned long len)
5467 {
5468         size_t cur;
5469         size_t offset;
5470         struct page *page;
5471         char *kaddr;
5472         char *src = (char *)srcv;
5473         size_t start_offset = offset_in_page(eb->start);
5474         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5475
5476         WARN_ON(start > eb->len);
5477         WARN_ON(start + len > eb->start + eb->len);
5478
5479         offset = offset_in_page(start_offset + start);
5480
5481         while (len > 0) {
5482                 page = eb->pages[i];
5483                 WARN_ON(!PageUptodate(page));
5484
5485                 cur = min(len, PAGE_SIZE - offset);
5486                 kaddr = page_address(page);
5487                 memcpy(kaddr + offset, src, cur);
5488
5489                 src += cur;
5490                 len -= cur;
5491                 offset = 0;
5492                 i++;
5493         }
5494 }
5495
5496 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5497                 unsigned long len)
5498 {
5499         size_t cur;
5500         size_t offset;
5501         struct page *page;
5502         char *kaddr;
5503         size_t start_offset = offset_in_page(eb->start);
5504         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5505
5506         WARN_ON(start > eb->len);
5507         WARN_ON(start + len > eb->start + eb->len);
5508
5509         offset = offset_in_page(start_offset + start);
5510
5511         while (len > 0) {
5512                 page = eb->pages[i];
5513                 WARN_ON(!PageUptodate(page));
5514
5515                 cur = min(len, PAGE_SIZE - offset);
5516                 kaddr = page_address(page);
5517                 memset(kaddr + offset, 0, cur);
5518
5519                 len -= cur;
5520                 offset = 0;
5521                 i++;
5522         }
5523 }
5524
5525 void copy_extent_buffer_full(struct extent_buffer *dst,
5526                              struct extent_buffer *src)
5527 {
5528         int i;
5529         int num_pages;
5530
5531         ASSERT(dst->len == src->len);
5532
5533         num_pages = num_extent_pages(dst);
5534         for (i = 0; i < num_pages; i++)
5535                 copy_page(page_address(dst->pages[i]),
5536                                 page_address(src->pages[i]));
5537 }
5538
5539 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5540                         unsigned long dst_offset, unsigned long src_offset,
5541                         unsigned long len)
5542 {
5543         u64 dst_len = dst->len;
5544         size_t cur;
5545         size_t offset;
5546         struct page *page;
5547         char *kaddr;
5548         size_t start_offset = offset_in_page(dst->start);
5549         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5550
5551         WARN_ON(src->len != dst_len);
5552
5553         offset = offset_in_page(start_offset + dst_offset);
5554
5555         while (len > 0) {
5556                 page = dst->pages[i];
5557                 WARN_ON(!PageUptodate(page));
5558
5559                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5560
5561                 kaddr = page_address(page);
5562                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5563
5564                 src_offset += cur;
5565                 len -= cur;
5566                 offset = 0;
5567                 i++;
5568         }
5569 }
5570
5571 /*
5572  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5573  * given bit number
5574  * @eb: the extent buffer
5575  * @start: offset of the bitmap item in the extent buffer
5576  * @nr: bit number
5577  * @page_index: return index of the page in the extent buffer that contains the
5578  * given bit number
5579  * @page_offset: return offset into the page given by page_index
5580  *
5581  * This helper hides the ugliness of finding the byte in an extent buffer which
5582  * contains a given bit.
5583  */
5584 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5585                                     unsigned long start, unsigned long nr,
5586                                     unsigned long *page_index,
5587                                     size_t *page_offset)
5588 {
5589         size_t start_offset = offset_in_page(eb->start);
5590         size_t byte_offset = BIT_BYTE(nr);
5591         size_t offset;
5592
5593         /*
5594          * The byte we want is the offset of the extent buffer + the offset of
5595          * the bitmap item in the extent buffer + the offset of the byte in the
5596          * bitmap item.
5597          */
5598         offset = start_offset + start + byte_offset;
5599
5600         *page_index = offset >> PAGE_SHIFT;
5601         *page_offset = offset_in_page(offset);
5602 }
5603
5604 /**
5605  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5606  * @eb: the extent buffer
5607  * @start: offset of the bitmap item in the extent buffer
5608  * @nr: bit number to test
5609  */
5610 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5611                            unsigned long nr)
5612 {
5613         u8 *kaddr;
5614         struct page *page;
5615         unsigned long i;
5616         size_t offset;
5617
5618         eb_bitmap_offset(eb, start, nr, &i, &offset);
5619         page = eb->pages[i];
5620         WARN_ON(!PageUptodate(page));
5621         kaddr = page_address(page);
5622         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5623 }
5624
5625 /**
5626  * extent_buffer_bitmap_set - set an area of a bitmap
5627  * @eb: the extent buffer
5628  * @start: offset of the bitmap item in the extent buffer
5629  * @pos: bit number of the first bit
5630  * @len: number of bits to set
5631  */
5632 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5633                               unsigned long pos, unsigned long len)
5634 {
5635         u8 *kaddr;
5636         struct page *page;
5637         unsigned long i;
5638         size_t offset;
5639         const unsigned int size = pos + len;
5640         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5641         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5642
5643         eb_bitmap_offset(eb, start, pos, &i, &offset);
5644         page = eb->pages[i];
5645         WARN_ON(!PageUptodate(page));
5646         kaddr = page_address(page);
5647
5648         while (len >= bits_to_set) {
5649                 kaddr[offset] |= mask_to_set;
5650                 len -= bits_to_set;
5651                 bits_to_set = BITS_PER_BYTE;
5652                 mask_to_set = ~0;
5653                 if (++offset >= PAGE_SIZE && len > 0) {
5654                         offset = 0;
5655                         page = eb->pages[++i];
5656                         WARN_ON(!PageUptodate(page));
5657                         kaddr = page_address(page);
5658                 }
5659         }
5660         if (len) {
5661                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5662                 kaddr[offset] |= mask_to_set;
5663         }
5664 }
5665
5666
5667 /**
5668  * extent_buffer_bitmap_clear - clear an area of a bitmap
5669  * @eb: the extent buffer
5670  * @start: offset of the bitmap item in the extent buffer
5671  * @pos: bit number of the first bit
5672  * @len: number of bits to clear
5673  */
5674 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5675                                 unsigned long pos, unsigned long len)
5676 {
5677         u8 *kaddr;
5678         struct page *page;
5679         unsigned long i;
5680         size_t offset;
5681         const unsigned int size = pos + len;
5682         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5683         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5684
5685         eb_bitmap_offset(eb, start, pos, &i, &offset);
5686         page = eb->pages[i];
5687         WARN_ON(!PageUptodate(page));
5688         kaddr = page_address(page);
5689
5690         while (len >= bits_to_clear) {
5691                 kaddr[offset] &= ~mask_to_clear;
5692                 len -= bits_to_clear;
5693                 bits_to_clear = BITS_PER_BYTE;
5694                 mask_to_clear = ~0;
5695                 if (++offset >= PAGE_SIZE && len > 0) {
5696                         offset = 0;
5697                         page = eb->pages[++i];
5698                         WARN_ON(!PageUptodate(page));
5699                         kaddr = page_address(page);
5700                 }
5701         }
5702         if (len) {
5703                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5704                 kaddr[offset] &= ~mask_to_clear;
5705         }
5706 }
5707
5708 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5709 {
5710         unsigned long distance = (src > dst) ? src - dst : dst - src;
5711         return distance < len;
5712 }
5713
5714 static void copy_pages(struct page *dst_page, struct page *src_page,
5715                        unsigned long dst_off, unsigned long src_off,
5716                        unsigned long len)
5717 {
5718         char *dst_kaddr = page_address(dst_page);
5719         char *src_kaddr;
5720         int must_memmove = 0;
5721
5722         if (dst_page != src_page) {
5723                 src_kaddr = page_address(src_page);
5724         } else {
5725                 src_kaddr = dst_kaddr;
5726                 if (areas_overlap(src_off, dst_off, len))
5727                         must_memmove = 1;
5728         }
5729
5730         if (must_memmove)
5731                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5732         else
5733                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5734 }
5735
5736 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5737                            unsigned long src_offset, unsigned long len)
5738 {
5739         struct btrfs_fs_info *fs_info = dst->fs_info;
5740         size_t cur;
5741         size_t dst_off_in_page;
5742         size_t src_off_in_page;
5743         size_t start_offset = offset_in_page(dst->start);
5744         unsigned long dst_i;
5745         unsigned long src_i;
5746
5747         if (src_offset + len > dst->len) {
5748                 btrfs_err(fs_info,
5749                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5750                          src_offset, len, dst->len);
5751                 BUG_ON(1);
5752         }
5753         if (dst_offset + len > dst->len) {
5754                 btrfs_err(fs_info,
5755                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5756                          dst_offset, len, dst->len);
5757                 BUG_ON(1);
5758         }
5759
5760         while (len > 0) {
5761                 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5762                 src_off_in_page = offset_in_page(start_offset + src_offset);
5763
5764                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5765                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5766
5767                 cur = min(len, (unsigned long)(PAGE_SIZE -
5768                                                src_off_in_page));
5769                 cur = min_t(unsigned long, cur,
5770                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5771
5772                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5773                            dst_off_in_page, src_off_in_page, cur);
5774
5775                 src_offset += cur;
5776                 dst_offset += cur;
5777                 len -= cur;
5778         }
5779 }
5780
5781 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5782                            unsigned long src_offset, unsigned long len)
5783 {
5784         struct btrfs_fs_info *fs_info = dst->fs_info;
5785         size_t cur;
5786         size_t dst_off_in_page;
5787         size_t src_off_in_page;
5788         unsigned long dst_end = dst_offset + len - 1;
5789         unsigned long src_end = src_offset + len - 1;
5790         size_t start_offset = offset_in_page(dst->start);
5791         unsigned long dst_i;
5792         unsigned long src_i;
5793
5794         if (src_offset + len > dst->len) {
5795                 btrfs_err(fs_info,
5796                           "memmove bogus src_offset %lu move len %lu len %lu",
5797                           src_offset, len, dst->len);
5798                 BUG_ON(1);
5799         }
5800         if (dst_offset + len > dst->len) {
5801                 btrfs_err(fs_info,
5802                           "memmove bogus dst_offset %lu move len %lu len %lu",
5803                           dst_offset, len, dst->len);
5804                 BUG_ON(1);
5805         }
5806         if (dst_offset < src_offset) {
5807                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5808                 return;
5809         }
5810         while (len > 0) {
5811                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5812                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5813
5814                 dst_off_in_page = offset_in_page(start_offset + dst_end);
5815                 src_off_in_page = offset_in_page(start_offset + src_end);
5816
5817                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5818                 cur = min(cur, dst_off_in_page + 1);
5819                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5820                            dst_off_in_page - cur + 1,
5821                            src_off_in_page - cur + 1, cur);
5822
5823                 dst_end -= cur;
5824                 src_end -= cur;
5825                 len -= cur;
5826         }
5827 }
5828
5829 int try_release_extent_buffer(struct page *page)
5830 {
5831         struct extent_buffer *eb;
5832
5833         /*
5834          * We need to make sure nobody is attaching this page to an eb right
5835          * now.
5836          */
5837         spin_lock(&page->mapping->private_lock);
5838         if (!PagePrivate(page)) {
5839                 spin_unlock(&page->mapping->private_lock);
5840                 return 1;
5841         }
5842
5843         eb = (struct extent_buffer *)page->private;
5844         BUG_ON(!eb);
5845
5846         /*
5847          * This is a little awful but should be ok, we need to make sure that
5848          * the eb doesn't disappear out from under us while we're looking at
5849          * this page.
5850          */
5851         spin_lock(&eb->refs_lock);
5852         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5853                 spin_unlock(&eb->refs_lock);
5854                 spin_unlock(&page->mapping->private_lock);
5855                 return 0;
5856         }
5857         spin_unlock(&page->mapping->private_lock);
5858
5859         /*
5860          * If tree ref isn't set then we know the ref on this eb is a real ref,
5861          * so just return, this page will likely be freed soon anyway.
5862          */
5863         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5864                 spin_unlock(&eb->refs_lock);
5865                 return 0;
5866         }
5867
5868         return release_extent_buffer(eb);
5869 }