Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[sfrench/cifs-2.6.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        state->start, state->end, state->state, state->tree,
65                        atomic_read(&state->refs));
66                 list_del(&state->leak_list);
67                 kmem_cache_free(extent_state_cache, state);
68         }
69
70         while (!list_empty(&buffers)) {
71                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73                        "refs %d\n",
74                        eb->start, eb->len, atomic_read(&eb->refs));
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
81         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83                 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85         struct inode *inode;
86         u64 isize;
87
88         if (!tree->mapping)
89                 return;
90
91         inode = tree->mapping->host;
92         isize = i_size_read(inode);
93         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94                 printk_ratelimited(KERN_DEBUG
95                     "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96                                 caller, btrfs_ino(inode), isize, start, end);
97         }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry)     do {} while (0)
102 #define btrfs_leak_debug_check()        do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109         u64 start;
110         u64 end;
111         struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115         struct bio *bio;
116         struct extent_io_tree *tree;
117         get_extent_t *get_extent;
118         unsigned long bio_flags;
119
120         /* tells writepage not to lock the state bits for this range
121          * it still does the unlocking
122          */
123         unsigned int extent_locked:1;
124
125         /* tells the submit_bio code to use a WRITE_SYNC */
126         unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133         if (!tree->mapping)
134                 return NULL;
135         return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140         extent_state_cache = kmem_cache_create("btrfs_extent_state",
141                         sizeof(struct extent_state), 0,
142                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143         if (!extent_state_cache)
144                 return -ENOMEM;
145
146         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147                         sizeof(struct extent_buffer), 0,
148                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149         if (!extent_buffer_cache)
150                 goto free_state_cache;
151
152         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153                                      offsetof(struct btrfs_io_bio, bio));
154         if (!btrfs_bioset)
155                 goto free_buffer_cache;
156
157         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158                 goto free_bioset;
159
160         return 0;
161
162 free_bioset:
163         bioset_free(btrfs_bioset);
164         btrfs_bioset = NULL;
165
166 free_buffer_cache:
167         kmem_cache_destroy(extent_buffer_cache);
168         extent_buffer_cache = NULL;
169
170 free_state_cache:
171         kmem_cache_destroy(extent_state_cache);
172         extent_state_cache = NULL;
173         return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178         btrfs_leak_debug_check();
179
180         /*
181          * Make sure all delayed rcu free are flushed before we
182          * destroy caches.
183          */
184         rcu_barrier();
185         if (extent_state_cache)
186                 kmem_cache_destroy(extent_state_cache);
187         if (extent_buffer_cache)
188                 kmem_cache_destroy(extent_buffer_cache);
189         if (btrfs_bioset)
190                 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194                          struct address_space *mapping)
195 {
196         tree->state = RB_ROOT;
197         tree->ops = NULL;
198         tree->dirty_bytes = 0;
199         spin_lock_init(&tree->lock);
200         tree->mapping = mapping;
201 }
202
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205         struct extent_state *state;
206
207         state = kmem_cache_alloc(extent_state_cache, mask);
208         if (!state)
209                 return state;
210         state->state = 0;
211         state->private = 0;
212         state->tree = NULL;
213         btrfs_leak_debug_add(&state->leak_list, &states);
214         atomic_set(&state->refs, 1);
215         init_waitqueue_head(&state->wq);
216         trace_alloc_extent_state(state, mask, _RET_IP_);
217         return state;
218 }
219
220 void free_extent_state(struct extent_state *state)
221 {
222         if (!state)
223                 return;
224         if (atomic_dec_and_test(&state->refs)) {
225                 WARN_ON(state->tree);
226                 btrfs_leak_debug_del(&state->leak_list);
227                 trace_free_extent_state(state, _RET_IP_);
228                 kmem_cache_free(extent_state_cache, state);
229         }
230 }
231
232 static struct rb_node *tree_insert(struct rb_root *root,
233                                    struct rb_node *search_start,
234                                    u64 offset,
235                                    struct rb_node *node,
236                                    struct rb_node ***p_in,
237                                    struct rb_node **parent_in)
238 {
239         struct rb_node **p;
240         struct rb_node *parent = NULL;
241         struct tree_entry *entry;
242
243         if (p_in && parent_in) {
244                 p = *p_in;
245                 parent = *parent_in;
246                 goto do_insert;
247         }
248
249         p = search_start ? &search_start : &root->rb_node;
250         while (*p) {
251                 parent = *p;
252                 entry = rb_entry(parent, struct tree_entry, rb_node);
253
254                 if (offset < entry->start)
255                         p = &(*p)->rb_left;
256                 else if (offset > entry->end)
257                         p = &(*p)->rb_right;
258                 else
259                         return parent;
260         }
261
262 do_insert:
263         rb_link_node(node, parent, p);
264         rb_insert_color(node, root);
265         return NULL;
266 }
267
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269                                       struct rb_node **prev_ret,
270                                       struct rb_node **next_ret,
271                                       struct rb_node ***p_ret,
272                                       struct rb_node **parent_ret)
273 {
274         struct rb_root *root = &tree->state;
275         struct rb_node **n = &root->rb_node;
276         struct rb_node *prev = NULL;
277         struct rb_node *orig_prev = NULL;
278         struct tree_entry *entry;
279         struct tree_entry *prev_entry = NULL;
280
281         while (*n) {
282                 prev = *n;
283                 entry = rb_entry(prev, struct tree_entry, rb_node);
284                 prev_entry = entry;
285
286                 if (offset < entry->start)
287                         n = &(*n)->rb_left;
288                 else if (offset > entry->end)
289                         n = &(*n)->rb_right;
290                 else
291                         return *n;
292         }
293
294         if (p_ret)
295                 *p_ret = n;
296         if (parent_ret)
297                 *parent_ret = prev;
298
299         if (prev_ret) {
300                 orig_prev = prev;
301                 while (prev && offset > prev_entry->end) {
302                         prev = rb_next(prev);
303                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304                 }
305                 *prev_ret = prev;
306                 prev = orig_prev;
307         }
308
309         if (next_ret) {
310                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311                 while (prev && offset < prev_entry->start) {
312                         prev = rb_prev(prev);
313                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314                 }
315                 *next_ret = prev;
316         }
317         return NULL;
318 }
319
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322                        u64 offset,
323                        struct rb_node ***p_ret,
324                        struct rb_node **parent_ret)
325 {
326         struct rb_node *prev = NULL;
327         struct rb_node *ret;
328
329         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330         if (!ret)
331                 return prev;
332         return ret;
333 }
334
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336                                           u64 offset)
337 {
338         return tree_search_for_insert(tree, offset, NULL, NULL);
339 }
340
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342                      struct extent_state *other)
343 {
344         if (tree->ops && tree->ops->merge_extent_hook)
345                 tree->ops->merge_extent_hook(tree->mapping->host, new,
346                                              other);
347 }
348
349 /*
350  * utility function to look for merge candidates inside a given range.
351  * Any extents with matching state are merged together into a single
352  * extent in the tree.  Extents with EXTENT_IO in their state field
353  * are not merged because the end_io handlers need to be able to do
354  * operations on them without sleeping (or doing allocations/splits).
355  *
356  * This should be called with the tree lock held.
357  */
358 static void merge_state(struct extent_io_tree *tree,
359                         struct extent_state *state)
360 {
361         struct extent_state *other;
362         struct rb_node *other_node;
363
364         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365                 return;
366
367         other_node = rb_prev(&state->rb_node);
368         if (other_node) {
369                 other = rb_entry(other_node, struct extent_state, rb_node);
370                 if (other->end == state->start - 1 &&
371                     other->state == state->state) {
372                         merge_cb(tree, state, other);
373                         state->start = other->start;
374                         other->tree = NULL;
375                         rb_erase(&other->rb_node, &tree->state);
376                         free_extent_state(other);
377                 }
378         }
379         other_node = rb_next(&state->rb_node);
380         if (other_node) {
381                 other = rb_entry(other_node, struct extent_state, rb_node);
382                 if (other->start == state->end + 1 &&
383                     other->state == state->state) {
384                         merge_cb(tree, state, other);
385                         state->end = other->end;
386                         other->tree = NULL;
387                         rb_erase(&other->rb_node, &tree->state);
388                         free_extent_state(other);
389                 }
390         }
391 }
392
393 static void set_state_cb(struct extent_io_tree *tree,
394                          struct extent_state *state, unsigned long *bits)
395 {
396         if (tree->ops && tree->ops->set_bit_hook)
397                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
398 }
399
400 static void clear_state_cb(struct extent_io_tree *tree,
401                            struct extent_state *state, unsigned long *bits)
402 {
403         if (tree->ops && tree->ops->clear_bit_hook)
404                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
405 }
406
407 static void set_state_bits(struct extent_io_tree *tree,
408                            struct extent_state *state, unsigned long *bits);
409
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421                         struct extent_state *state, u64 start, u64 end,
422                         struct rb_node ***p,
423                         struct rb_node **parent,
424                         unsigned long *bits)
425 {
426         struct rb_node *node;
427
428         if (end < start)
429                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430                        end, start);
431         state->start = start;
432         state->end = end;
433
434         set_state_bits(tree, state, bits);
435
436         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437         if (node) {
438                 struct extent_state *found;
439                 found = rb_entry(node, struct extent_state, rb_node);
440                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441                        "%llu %llu\n",
442                        found->start, found->end, start, end);
443                 return -EEXIST;
444         }
445         state->tree = tree;
446         merge_state(tree, state);
447         return 0;
448 }
449
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451                      u64 split)
452 {
453         if (tree->ops && tree->ops->split_extent_hook)
454                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
455 }
456
457 /*
458  * split a given extent state struct in two, inserting the preallocated
459  * struct 'prealloc' as the newly created second half.  'split' indicates an
460  * offset inside 'orig' where it should be split.
461  *
462  * Before calling,
463  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
464  * are two extent state structs in the tree:
465  * prealloc: [orig->start, split - 1]
466  * orig: [ split, orig->end ]
467  *
468  * The tree locks are not taken by this function. They need to be held
469  * by the caller.
470  */
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472                        struct extent_state *prealloc, u64 split)
473 {
474         struct rb_node *node;
475
476         split_cb(tree, orig, split);
477
478         prealloc->start = orig->start;
479         prealloc->end = split - 1;
480         prealloc->state = orig->state;
481         orig->start = split;
482
483         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484                            &prealloc->rb_node, NULL, NULL);
485         if (node) {
486                 free_extent_state(prealloc);
487                 return -EEXIST;
488         }
489         prealloc->tree = tree;
490         return 0;
491 }
492
493 static struct extent_state *next_state(struct extent_state *state)
494 {
495         struct rb_node *next = rb_next(&state->rb_node);
496         if (next)
497                 return rb_entry(next, struct extent_state, rb_node);
498         else
499                 return NULL;
500 }
501
502 /*
503  * utility function to clear some bits in an extent state struct.
504  * it will optionally wake up any one waiting on this state (wake == 1).
505  *
506  * If no bits are set on the state struct after clearing things, the
507  * struct is freed and removed from the tree
508  */
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510                                             struct extent_state *state,
511                                             unsigned long *bits, int wake)
512 {
513         struct extent_state *next;
514         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
515
516         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517                 u64 range = state->end - state->start + 1;
518                 WARN_ON(range > tree->dirty_bytes);
519                 tree->dirty_bytes -= range;
520         }
521         clear_state_cb(tree, state, bits);
522         state->state &= ~bits_to_clear;
523         if (wake)
524                 wake_up(&state->wq);
525         if (state->state == 0) {
526                 next = next_state(state);
527                 if (state->tree) {
528                         rb_erase(&state->rb_node, &tree->state);
529                         state->tree = NULL;
530                         free_extent_state(state);
531                 } else {
532                         WARN_ON(1);
533                 }
534         } else {
535                 merge_state(tree, state);
536                 next = next_state(state);
537         }
538         return next;
539 }
540
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
543 {
544         if (!prealloc)
545                 prealloc = alloc_extent_state(GFP_ATOMIC);
546
547         return prealloc;
548 }
549
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
551 {
552         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553                     "Extent tree was modified by another "
554                     "thread while locked.");
555 }
556
557 /*
558  * clear some bits on a range in the tree.  This may require splitting
559  * or inserting elements in the tree, so the gfp mask is used to
560  * indicate which allocations or sleeping are allowed.
561  *
562  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563  * the given range from the tree regardless of state (ie for truncate).
564  *
565  * the range [start, end] is inclusive.
566  *
567  * This takes the tree lock, and returns 0 on success and < 0 on error.
568  */
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570                      unsigned long bits, int wake, int delete,
571                      struct extent_state **cached_state,
572                      gfp_t mask)
573 {
574         struct extent_state *state;
575         struct extent_state *cached;
576         struct extent_state *prealloc = NULL;
577         struct rb_node *node;
578         u64 last_end;
579         int err;
580         int clear = 0;
581
582         btrfs_debug_check_extent_io_range(tree, start, end);
583
584         if (bits & EXTENT_DELALLOC)
585                 bits |= EXTENT_NORESERVE;
586
587         if (delete)
588                 bits |= ~EXTENT_CTLBITS;
589         bits |= EXTENT_FIRST_DELALLOC;
590
591         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592                 clear = 1;
593 again:
594         if (!prealloc && (mask & __GFP_WAIT)) {
595                 prealloc = alloc_extent_state(mask);
596                 if (!prealloc)
597                         return -ENOMEM;
598         }
599
600         spin_lock(&tree->lock);
601         if (cached_state) {
602                 cached = *cached_state;
603
604                 if (clear) {
605                         *cached_state = NULL;
606                         cached_state = NULL;
607                 }
608
609                 if (cached && cached->tree && cached->start <= start &&
610                     cached->end > start) {
611                         if (clear)
612                                 atomic_dec(&cached->refs);
613                         state = cached;
614                         goto hit_next;
615                 }
616                 if (clear)
617                         free_extent_state(cached);
618         }
619         /*
620          * this search will find the extents that end after
621          * our range starts
622          */
623         node = tree_search(tree, start);
624         if (!node)
625                 goto out;
626         state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628         if (state->start > end)
629                 goto out;
630         WARN_ON(state->end < start);
631         last_end = state->end;
632
633         /* the state doesn't have the wanted bits, go ahead */
634         if (!(state->state & bits)) {
635                 state = next_state(state);
636                 goto next;
637         }
638
639         /*
640          *     | ---- desired range ---- |
641          *  | state | or
642          *  | ------------- state -------------- |
643          *
644          * We need to split the extent we found, and may flip
645          * bits on second half.
646          *
647          * If the extent we found extends past our range, we
648          * just split and search again.  It'll get split again
649          * the next time though.
650          *
651          * If the extent we found is inside our range, we clear
652          * the desired bit on it.
653          */
654
655         if (state->start < start) {
656                 prealloc = alloc_extent_state_atomic(prealloc);
657                 BUG_ON(!prealloc);
658                 err = split_state(tree, state, prealloc, start);
659                 if (err)
660                         extent_io_tree_panic(tree, err);
661
662                 prealloc = NULL;
663                 if (err)
664                         goto out;
665                 if (state->end <= end) {
666                         state = clear_state_bit(tree, state, &bits, wake);
667                         goto next;
668                 }
669                 goto search_again;
670         }
671         /*
672          * | ---- desired range ---- |
673          *                        | state |
674          * We need to split the extent, and clear the bit
675          * on the first half
676          */
677         if (state->start <= end && state->end > end) {
678                 prealloc = alloc_extent_state_atomic(prealloc);
679                 BUG_ON(!prealloc);
680                 err = split_state(tree, state, prealloc, end + 1);
681                 if (err)
682                         extent_io_tree_panic(tree, err);
683
684                 if (wake)
685                         wake_up(&state->wq);
686
687                 clear_state_bit(tree, prealloc, &bits, wake);
688
689                 prealloc = NULL;
690                 goto out;
691         }
692
693         state = clear_state_bit(tree, state, &bits, wake);
694 next:
695         if (last_end == (u64)-1)
696                 goto out;
697         start = last_end + 1;
698         if (start <= end && state && !need_resched())
699                 goto hit_next;
700         goto search_again;
701
702 out:
703         spin_unlock(&tree->lock);
704         if (prealloc)
705                 free_extent_state(prealloc);
706
707         return 0;
708
709 search_again:
710         if (start > end)
711                 goto out;
712         spin_unlock(&tree->lock);
713         if (mask & __GFP_WAIT)
714                 cond_resched();
715         goto again;
716 }
717
718 static void wait_on_state(struct extent_io_tree *tree,
719                           struct extent_state *state)
720                 __releases(tree->lock)
721                 __acquires(tree->lock)
722 {
723         DEFINE_WAIT(wait);
724         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725         spin_unlock(&tree->lock);
726         schedule();
727         spin_lock(&tree->lock);
728         finish_wait(&state->wq, &wait);
729 }
730
731 /*
732  * waits for one or more bits to clear on a range in the state tree.
733  * The range [start, end] is inclusive.
734  * The tree lock is taken by this function
735  */
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737                             unsigned long bits)
738 {
739         struct extent_state *state;
740         struct rb_node *node;
741
742         btrfs_debug_check_extent_io_range(tree, start, end);
743
744         spin_lock(&tree->lock);
745 again:
746         while (1) {
747                 /*
748                  * this search will find all the extents that end after
749                  * our range starts
750                  */
751                 node = tree_search(tree, start);
752 process_node:
753                 if (!node)
754                         break;
755
756                 state = rb_entry(node, struct extent_state, rb_node);
757
758                 if (state->start > end)
759                         goto out;
760
761                 if (state->state & bits) {
762                         start = state->start;
763                         atomic_inc(&state->refs);
764                         wait_on_state(tree, state);
765                         free_extent_state(state);
766                         goto again;
767                 }
768                 start = state->end + 1;
769
770                 if (start > end)
771                         break;
772
773                 if (!cond_resched_lock(&tree->lock)) {
774                         node = rb_next(node);
775                         goto process_node;
776                 }
777         }
778 out:
779         spin_unlock(&tree->lock);
780 }
781
782 static void set_state_bits(struct extent_io_tree *tree,
783                            struct extent_state *state,
784                            unsigned long *bits)
785 {
786         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
787
788         set_state_cb(tree, state, bits);
789         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
790                 u64 range = state->end - state->start + 1;
791                 tree->dirty_bytes += range;
792         }
793         state->state |= bits_to_set;
794 }
795
796 static void cache_state(struct extent_state *state,
797                         struct extent_state **cached_ptr)
798 {
799         if (cached_ptr && !(*cached_ptr)) {
800                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801                         *cached_ptr = state;
802                         atomic_inc(&state->refs);
803                 }
804         }
805 }
806
807 /*
808  * set some bits on a range in the tree.  This may require allocations or
809  * sleeping, so the gfp mask is used to indicate what is allowed.
810  *
811  * If any of the exclusive bits are set, this will fail with -EEXIST if some
812  * part of the range already has the desired bits set.  The start of the
813  * existing range is returned in failed_start in this case.
814  *
815  * [start, end] is inclusive This takes the tree lock.
816  */
817
818 static int __must_check
819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
820                  unsigned long bits, unsigned long exclusive_bits,
821                  u64 *failed_start, struct extent_state **cached_state,
822                  gfp_t mask)
823 {
824         struct extent_state *state;
825         struct extent_state *prealloc = NULL;
826         struct rb_node *node;
827         struct rb_node **p;
828         struct rb_node *parent;
829         int err = 0;
830         u64 last_start;
831         u64 last_end;
832
833         btrfs_debug_check_extent_io_range(tree, start, end);
834
835         bits |= EXTENT_FIRST_DELALLOC;
836 again:
837         if (!prealloc && (mask & __GFP_WAIT)) {
838                 prealloc = alloc_extent_state(mask);
839                 BUG_ON(!prealloc);
840         }
841
842         spin_lock(&tree->lock);
843         if (cached_state && *cached_state) {
844                 state = *cached_state;
845                 if (state->start <= start && state->end > start &&
846                     state->tree) {
847                         node = &state->rb_node;
848                         goto hit_next;
849                 }
850         }
851         /*
852          * this search will find all the extents that end after
853          * our range starts.
854          */
855         node = tree_search_for_insert(tree, start, &p, &parent);
856         if (!node) {
857                 prealloc = alloc_extent_state_atomic(prealloc);
858                 BUG_ON(!prealloc);
859                 err = insert_state(tree, prealloc, start, end,
860                                    &p, &parent, &bits);
861                 if (err)
862                         extent_io_tree_panic(tree, err);
863
864                 cache_state(prealloc, cached_state);
865                 prealloc = NULL;
866                 goto out;
867         }
868         state = rb_entry(node, struct extent_state, rb_node);
869 hit_next:
870         last_start = state->start;
871         last_end = state->end;
872
873         /*
874          * | ---- desired range ---- |
875          * | state |
876          *
877          * Just lock what we found and keep going
878          */
879         if (state->start == start && state->end <= end) {
880                 if (state->state & exclusive_bits) {
881                         *failed_start = state->start;
882                         err = -EEXIST;
883                         goto out;
884                 }
885
886                 set_state_bits(tree, state, &bits);
887                 cache_state(state, cached_state);
888                 merge_state(tree, state);
889                 if (last_end == (u64)-1)
890                         goto out;
891                 start = last_end + 1;
892                 state = next_state(state);
893                 if (start < end && state && state->start == start &&
894                     !need_resched())
895                         goto hit_next;
896                 goto search_again;
897         }
898
899         /*
900          *     | ---- desired range ---- |
901          * | state |
902          *   or
903          * | ------------- state -------------- |
904          *
905          * We need to split the extent we found, and may flip bits on
906          * second half.
907          *
908          * If the extent we found extends past our
909          * range, we just split and search again.  It'll get split
910          * again the next time though.
911          *
912          * If the extent we found is inside our range, we set the
913          * desired bit on it.
914          */
915         if (state->start < start) {
916                 if (state->state & exclusive_bits) {
917                         *failed_start = start;
918                         err = -EEXIST;
919                         goto out;
920                 }
921
922                 prealloc = alloc_extent_state_atomic(prealloc);
923                 BUG_ON(!prealloc);
924                 err = split_state(tree, state, prealloc, start);
925                 if (err)
926                         extent_io_tree_panic(tree, err);
927
928                 prealloc = NULL;
929                 if (err)
930                         goto out;
931                 if (state->end <= end) {
932                         set_state_bits(tree, state, &bits);
933                         cache_state(state, cached_state);
934                         merge_state(tree, state);
935                         if (last_end == (u64)-1)
936                                 goto out;
937                         start = last_end + 1;
938                         state = next_state(state);
939                         if (start < end && state && state->start == start &&
940                             !need_resched())
941                                 goto hit_next;
942                 }
943                 goto search_again;
944         }
945         /*
946          * | ---- desired range ---- |
947          *     | state | or               | state |
948          *
949          * There's a hole, we need to insert something in it and
950          * ignore the extent we found.
951          */
952         if (state->start > start) {
953                 u64 this_end;
954                 if (end < last_start)
955                         this_end = end;
956                 else
957                         this_end = last_start - 1;
958
959                 prealloc = alloc_extent_state_atomic(prealloc);
960                 BUG_ON(!prealloc);
961
962                 /*
963                  * Avoid to free 'prealloc' if it can be merged with
964                  * the later extent.
965                  */
966                 err = insert_state(tree, prealloc, start, this_end,
967                                    NULL, NULL, &bits);
968                 if (err)
969                         extent_io_tree_panic(tree, err);
970
971                 cache_state(prealloc, cached_state);
972                 prealloc = NULL;
973                 start = this_end + 1;
974                 goto search_again;
975         }
976         /*
977          * | ---- desired range ---- |
978          *                        | state |
979          * We need to split the extent, and set the bit
980          * on the first half
981          */
982         if (state->start <= end && state->end > end) {
983                 if (state->state & exclusive_bits) {
984                         *failed_start = start;
985                         err = -EEXIST;
986                         goto out;
987                 }
988
989                 prealloc = alloc_extent_state_atomic(prealloc);
990                 BUG_ON(!prealloc);
991                 err = split_state(tree, state, prealloc, end + 1);
992                 if (err)
993                         extent_io_tree_panic(tree, err);
994
995                 set_state_bits(tree, prealloc, &bits);
996                 cache_state(prealloc, cached_state);
997                 merge_state(tree, prealloc);
998                 prealloc = NULL;
999                 goto out;
1000         }
1001
1002         goto search_again;
1003
1004 out:
1005         spin_unlock(&tree->lock);
1006         if (prealloc)
1007                 free_extent_state(prealloc);
1008
1009         return err;
1010
1011 search_again:
1012         if (start > end)
1013                 goto out;
1014         spin_unlock(&tree->lock);
1015         if (mask & __GFP_WAIT)
1016                 cond_resched();
1017         goto again;
1018 }
1019
1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021                    unsigned long bits, u64 * failed_start,
1022                    struct extent_state **cached_state, gfp_t mask)
1023 {
1024         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025                                 cached_state, mask);
1026 }
1027
1028
1029 /**
1030  * convert_extent_bit - convert all bits in a given range from one bit to
1031  *                      another
1032  * @tree:       the io tree to search
1033  * @start:      the start offset in bytes
1034  * @end:        the end offset in bytes (inclusive)
1035  * @bits:       the bits to set in this range
1036  * @clear_bits: the bits to clear in this range
1037  * @cached_state:       state that we're going to cache
1038  * @mask:       the allocation mask
1039  *
1040  * This will go through and set bits for the given range.  If any states exist
1041  * already in this range they are set with the given bit and cleared of the
1042  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1043  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1044  * boundary bits like LOCK.
1045  */
1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047                        unsigned long bits, unsigned long clear_bits,
1048                        struct extent_state **cached_state, gfp_t mask)
1049 {
1050         struct extent_state *state;
1051         struct extent_state *prealloc = NULL;
1052         struct rb_node *node;
1053         struct rb_node **p;
1054         struct rb_node *parent;
1055         int err = 0;
1056         u64 last_start;
1057         u64 last_end;
1058
1059         btrfs_debug_check_extent_io_range(tree, start, end);
1060
1061 again:
1062         if (!prealloc && (mask & __GFP_WAIT)) {
1063                 prealloc = alloc_extent_state(mask);
1064                 if (!prealloc)
1065                         return -ENOMEM;
1066         }
1067
1068         spin_lock(&tree->lock);
1069         if (cached_state && *cached_state) {
1070                 state = *cached_state;
1071                 if (state->start <= start && state->end > start &&
1072                     state->tree) {
1073                         node = &state->rb_node;
1074                         goto hit_next;
1075                 }
1076         }
1077
1078         /*
1079          * this search will find all the extents that end after
1080          * our range starts.
1081          */
1082         node = tree_search_for_insert(tree, start, &p, &parent);
1083         if (!node) {
1084                 prealloc = alloc_extent_state_atomic(prealloc);
1085                 if (!prealloc) {
1086                         err = -ENOMEM;
1087                         goto out;
1088                 }
1089                 err = insert_state(tree, prealloc, start, end,
1090                                    &p, &parent, &bits);
1091                 if (err)
1092                         extent_io_tree_panic(tree, err);
1093                 cache_state(prealloc, cached_state);
1094                 prealloc = NULL;
1095                 goto out;
1096         }
1097         state = rb_entry(node, struct extent_state, rb_node);
1098 hit_next:
1099         last_start = state->start;
1100         last_end = state->end;
1101
1102         /*
1103          * | ---- desired range ---- |
1104          * | state |
1105          *
1106          * Just lock what we found and keep going
1107          */
1108         if (state->start == start && state->end <= end) {
1109                 set_state_bits(tree, state, &bits);
1110                 cache_state(state, cached_state);
1111                 state = clear_state_bit(tree, state, &clear_bits, 0);
1112                 if (last_end == (u64)-1)
1113                         goto out;
1114                 start = last_end + 1;
1115                 if (start < end && state && state->start == start &&
1116                     !need_resched())
1117                         goto hit_next;
1118                 goto search_again;
1119         }
1120
1121         /*
1122          *     | ---- desired range ---- |
1123          * | state |
1124          *   or
1125          * | ------------- state -------------- |
1126          *
1127          * We need to split the extent we found, and may flip bits on
1128          * second half.
1129          *
1130          * If the extent we found extends past our
1131          * range, we just split and search again.  It'll get split
1132          * again the next time though.
1133          *
1134          * If the extent we found is inside our range, we set the
1135          * desired bit on it.
1136          */
1137         if (state->start < start) {
1138                 prealloc = alloc_extent_state_atomic(prealloc);
1139                 if (!prealloc) {
1140                         err = -ENOMEM;
1141                         goto out;
1142                 }
1143                 err = split_state(tree, state, prealloc, start);
1144                 if (err)
1145                         extent_io_tree_panic(tree, err);
1146                 prealloc = NULL;
1147                 if (err)
1148                         goto out;
1149                 if (state->end <= end) {
1150                         set_state_bits(tree, state, &bits);
1151                         cache_state(state, cached_state);
1152                         state = clear_state_bit(tree, state, &clear_bits, 0);
1153                         if (last_end == (u64)-1)
1154                                 goto out;
1155                         start = last_end + 1;
1156                         if (start < end && state && state->start == start &&
1157                             !need_resched())
1158                                 goto hit_next;
1159                 }
1160                 goto search_again;
1161         }
1162         /*
1163          * | ---- desired range ---- |
1164          *     | state | or               | state |
1165          *
1166          * There's a hole, we need to insert something in it and
1167          * ignore the extent we found.
1168          */
1169         if (state->start > start) {
1170                 u64 this_end;
1171                 if (end < last_start)
1172                         this_end = end;
1173                 else
1174                         this_end = last_start - 1;
1175
1176                 prealloc = alloc_extent_state_atomic(prealloc);
1177                 if (!prealloc) {
1178                         err = -ENOMEM;
1179                         goto out;
1180                 }
1181
1182                 /*
1183                  * Avoid to free 'prealloc' if it can be merged with
1184                  * the later extent.
1185                  */
1186                 err = insert_state(tree, prealloc, start, this_end,
1187                                    NULL, NULL, &bits);
1188                 if (err)
1189                         extent_io_tree_panic(tree, err);
1190                 cache_state(prealloc, cached_state);
1191                 prealloc = NULL;
1192                 start = this_end + 1;
1193                 goto search_again;
1194         }
1195         /*
1196          * | ---- desired range ---- |
1197          *                        | state |
1198          * We need to split the extent, and set the bit
1199          * on the first half
1200          */
1201         if (state->start <= end && state->end > end) {
1202                 prealloc = alloc_extent_state_atomic(prealloc);
1203                 if (!prealloc) {
1204                         err = -ENOMEM;
1205                         goto out;
1206                 }
1207
1208                 err = split_state(tree, state, prealloc, end + 1);
1209                 if (err)
1210                         extent_io_tree_panic(tree, err);
1211
1212                 set_state_bits(tree, prealloc, &bits);
1213                 cache_state(prealloc, cached_state);
1214                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1215                 prealloc = NULL;
1216                 goto out;
1217         }
1218
1219         goto search_again;
1220
1221 out:
1222         spin_unlock(&tree->lock);
1223         if (prealloc)
1224                 free_extent_state(prealloc);
1225
1226         return err;
1227
1228 search_again:
1229         if (start > end)
1230                 goto out;
1231         spin_unlock(&tree->lock);
1232         if (mask & __GFP_WAIT)
1233                 cond_resched();
1234         goto again;
1235 }
1236
1237 /* wrappers around set/clear extent bit */
1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239                      gfp_t mask)
1240 {
1241         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242                               NULL, mask);
1243 }
1244
1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246                     unsigned long bits, gfp_t mask)
1247 {
1248         return set_extent_bit(tree, start, end, bits, NULL,
1249                               NULL, mask);
1250 }
1251
1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253                       unsigned long bits, gfp_t mask)
1254 {
1255         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1256 }
1257
1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259                         struct extent_state **cached_state, gfp_t mask)
1260 {
1261         return set_extent_bit(tree, start, end,
1262                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1263                               NULL, cached_state, mask);
1264 }
1265
1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267                       struct extent_state **cached_state, gfp_t mask)
1268 {
1269         return set_extent_bit(tree, start, end,
1270                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271                               NULL, cached_state, mask);
1272 }
1273
1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275                        gfp_t mask)
1276 {
1277         return clear_extent_bit(tree, start, end,
1278                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1279                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1280 }
1281
1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283                      gfp_t mask)
1284 {
1285         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286                               NULL, mask);
1287 }
1288
1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290                         struct extent_state **cached_state, gfp_t mask)
1291 {
1292         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293                               cached_state, mask);
1294 }
1295
1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297                           struct extent_state **cached_state, gfp_t mask)
1298 {
1299         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300                                 cached_state, mask);
1301 }
1302
1303 /*
1304  * either insert or lock state struct between start and end use mask to tell
1305  * us if waiting is desired.
1306  */
1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308                      unsigned long bits, struct extent_state **cached_state)
1309 {
1310         int err;
1311         u64 failed_start;
1312         while (1) {
1313                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314                                        EXTENT_LOCKED, &failed_start,
1315                                        cached_state, GFP_NOFS);
1316                 if (err == -EEXIST) {
1317                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318                         start = failed_start;
1319                 } else
1320                         break;
1321                 WARN_ON(start > end);
1322         }
1323         return err;
1324 }
1325
1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1327 {
1328         return lock_extent_bits(tree, start, end, 0, NULL);
1329 }
1330
1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1332 {
1333         int err;
1334         u64 failed_start;
1335
1336         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337                                &failed_start, NULL, GFP_NOFS);
1338         if (err == -EEXIST) {
1339                 if (failed_start > start)
1340                         clear_extent_bit(tree, start, failed_start - 1,
1341                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342                 return 0;
1343         }
1344         return 1;
1345 }
1346
1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348                          struct extent_state **cached, gfp_t mask)
1349 {
1350         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351                                 mask);
1352 }
1353
1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355 {
1356         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357                                 GFP_NOFS);
1358 }
1359
1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362         unsigned long index = start >> PAGE_CACHE_SHIFT;
1363         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364         struct page *page;
1365
1366         while (index <= end_index) {
1367                 page = find_get_page(inode->i_mapping, index);
1368                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369                 clear_page_dirty_for_io(page);
1370                 page_cache_release(page);
1371                 index++;
1372         }
1373         return 0;
1374 }
1375
1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377 {
1378         unsigned long index = start >> PAGE_CACHE_SHIFT;
1379         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380         struct page *page;
1381
1382         while (index <= end_index) {
1383                 page = find_get_page(inode->i_mapping, index);
1384                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385                 account_page_redirty(page);
1386                 __set_page_dirty_nobuffers(page);
1387                 page_cache_release(page);
1388                 index++;
1389         }
1390         return 0;
1391 }
1392
1393 /*
1394  * helper function to set both pages and extents in the tree writeback
1395  */
1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1397 {
1398         unsigned long index = start >> PAGE_CACHE_SHIFT;
1399         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400         struct page *page;
1401
1402         while (index <= end_index) {
1403                 page = find_get_page(tree->mapping, index);
1404                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405                 set_page_writeback(page);
1406                 page_cache_release(page);
1407                 index++;
1408         }
1409         return 0;
1410 }
1411
1412 /* find the first state struct with 'bits' set after 'start', and
1413  * return it.  tree->lock must be held.  NULL will returned if
1414  * nothing was found after 'start'
1415  */
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418                             u64 start, unsigned long bits)
1419 {
1420         struct rb_node *node;
1421         struct extent_state *state;
1422
1423         /*
1424          * this search will find all the extents that end after
1425          * our range starts.
1426          */
1427         node = tree_search(tree, start);
1428         if (!node)
1429                 goto out;
1430
1431         while (1) {
1432                 state = rb_entry(node, struct extent_state, rb_node);
1433                 if (state->end >= start && (state->state & bits))
1434                         return state;
1435
1436                 node = rb_next(node);
1437                 if (!node)
1438                         break;
1439         }
1440 out:
1441         return NULL;
1442 }
1443
1444 /*
1445  * find the first offset in the io tree with 'bits' set. zero is
1446  * returned if we find something, and *start_ret and *end_ret are
1447  * set to reflect the state struct that was found.
1448  *
1449  * If nothing was found, 1 is returned. If found something, return 0.
1450  */
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1453                           struct extent_state **cached_state)
1454 {
1455         struct extent_state *state;
1456         struct rb_node *n;
1457         int ret = 1;
1458
1459         spin_lock(&tree->lock);
1460         if (cached_state && *cached_state) {
1461                 state = *cached_state;
1462                 if (state->end == start - 1 && state->tree) {
1463                         n = rb_next(&state->rb_node);
1464                         while (n) {
1465                                 state = rb_entry(n, struct extent_state,
1466                                                  rb_node);
1467                                 if (state->state & bits)
1468                                         goto got_it;
1469                                 n = rb_next(n);
1470                         }
1471                         free_extent_state(*cached_state);
1472                         *cached_state = NULL;
1473                         goto out;
1474                 }
1475                 free_extent_state(*cached_state);
1476                 *cached_state = NULL;
1477         }
1478
1479         state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481         if (state) {
1482                 cache_state(state, cached_state);
1483                 *start_ret = state->start;
1484                 *end_ret = state->end;
1485                 ret = 0;
1486         }
1487 out:
1488         spin_unlock(&tree->lock);
1489         return ret;
1490 }
1491
1492 /*
1493  * find a contiguous range of bytes in the file marked as delalloc, not
1494  * more than 'max_bytes'.  start and end are used to return the range,
1495  *
1496  * 1 is returned if we find something, 0 if nothing was in the tree
1497  */
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499                                         u64 *start, u64 *end, u64 max_bytes,
1500                                         struct extent_state **cached_state)
1501 {
1502         struct rb_node *node;
1503         struct extent_state *state;
1504         u64 cur_start = *start;
1505         u64 found = 0;
1506         u64 total_bytes = 0;
1507
1508         spin_lock(&tree->lock);
1509
1510         /*
1511          * this search will find all the extents that end after
1512          * our range starts.
1513          */
1514         node = tree_search(tree, cur_start);
1515         if (!node) {
1516                 if (!found)
1517                         *end = (u64)-1;
1518                 goto out;
1519         }
1520
1521         while (1) {
1522                 state = rb_entry(node, struct extent_state, rb_node);
1523                 if (found && (state->start != cur_start ||
1524                               (state->state & EXTENT_BOUNDARY))) {
1525                         goto out;
1526                 }
1527                 if (!(state->state & EXTENT_DELALLOC)) {
1528                         if (!found)
1529                                 *end = state->end;
1530                         goto out;
1531                 }
1532                 if (!found) {
1533                         *start = state->start;
1534                         *cached_state = state;
1535                         atomic_inc(&state->refs);
1536                 }
1537                 found++;
1538                 *end = state->end;
1539                 cur_start = state->end + 1;
1540                 node = rb_next(node);
1541                 total_bytes += state->end - state->start + 1;
1542                 if (total_bytes >= max_bytes)
1543                         break;
1544                 if (!node)
1545                         break;
1546         }
1547 out:
1548         spin_unlock(&tree->lock);
1549         return found;
1550 }
1551
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553                                            struct page *locked_page,
1554                                            u64 start, u64 end)
1555 {
1556         int ret;
1557         struct page *pages[16];
1558         unsigned long index = start >> PAGE_CACHE_SHIFT;
1559         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560         unsigned long nr_pages = end_index - index + 1;
1561         int i;
1562
1563         if (index == locked_page->index && end_index == index)
1564                 return;
1565
1566         while (nr_pages > 0) {
1567                 ret = find_get_pages_contig(inode->i_mapping, index,
1568                                      min_t(unsigned long, nr_pages,
1569                                      ARRAY_SIZE(pages)), pages);
1570                 for (i = 0; i < ret; i++) {
1571                         if (pages[i] != locked_page)
1572                                 unlock_page(pages[i]);
1573                         page_cache_release(pages[i]);
1574                 }
1575                 nr_pages -= ret;
1576                 index += ret;
1577                 cond_resched();
1578         }
1579 }
1580
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582                                         struct page *locked_page,
1583                                         u64 delalloc_start,
1584                                         u64 delalloc_end)
1585 {
1586         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587         unsigned long start_index = index;
1588         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589         unsigned long pages_locked = 0;
1590         struct page *pages[16];
1591         unsigned long nrpages;
1592         int ret;
1593         int i;
1594
1595         /* the caller is responsible for locking the start index */
1596         if (index == locked_page->index && index == end_index)
1597                 return 0;
1598
1599         /* skip the page at the start index */
1600         nrpages = end_index - index + 1;
1601         while (nrpages > 0) {
1602                 ret = find_get_pages_contig(inode->i_mapping, index,
1603                                      min_t(unsigned long,
1604                                      nrpages, ARRAY_SIZE(pages)), pages);
1605                 if (ret == 0) {
1606                         ret = -EAGAIN;
1607                         goto done;
1608                 }
1609                 /* now we have an array of pages, lock them all */
1610                 for (i = 0; i < ret; i++) {
1611                         /*
1612                          * the caller is taking responsibility for
1613                          * locked_page
1614                          */
1615                         if (pages[i] != locked_page) {
1616                                 lock_page(pages[i]);
1617                                 if (!PageDirty(pages[i]) ||
1618                                     pages[i]->mapping != inode->i_mapping) {
1619                                         ret = -EAGAIN;
1620                                         unlock_page(pages[i]);
1621                                         page_cache_release(pages[i]);
1622                                         goto done;
1623                                 }
1624                         }
1625                         page_cache_release(pages[i]);
1626                         pages_locked++;
1627                 }
1628                 nrpages -= ret;
1629                 index += ret;
1630                 cond_resched();
1631         }
1632         ret = 0;
1633 done:
1634         if (ret && pages_locked) {
1635                 __unlock_for_delalloc(inode, locked_page,
1636                               delalloc_start,
1637                               ((u64)(start_index + pages_locked - 1)) <<
1638                               PAGE_CACHE_SHIFT);
1639         }
1640         return ret;
1641 }
1642
1643 /*
1644  * find a contiguous range of bytes in the file marked as delalloc, not
1645  * more than 'max_bytes'.  start and end are used to return the range,
1646  *
1647  * 1 is returned if we find something, 0 if nothing was in the tree
1648  */
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650                                     struct extent_io_tree *tree,
1651                                     struct page *locked_page, u64 *start,
1652                                     u64 *end, u64 max_bytes)
1653 {
1654         u64 delalloc_start;
1655         u64 delalloc_end;
1656         u64 found;
1657         struct extent_state *cached_state = NULL;
1658         int ret;
1659         int loops = 0;
1660
1661 again:
1662         /* step one, find a bunch of delalloc bytes starting at start */
1663         delalloc_start = *start;
1664         delalloc_end = 0;
1665         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666                                     max_bytes, &cached_state);
1667         if (!found || delalloc_end <= *start) {
1668                 *start = delalloc_start;
1669                 *end = delalloc_end;
1670                 free_extent_state(cached_state);
1671                 return 0;
1672         }
1673
1674         /*
1675          * start comes from the offset of locked_page.  We have to lock
1676          * pages in order, so we can't process delalloc bytes before
1677          * locked_page
1678          */
1679         if (delalloc_start < *start)
1680                 delalloc_start = *start;
1681
1682         /*
1683          * make sure to limit the number of pages we try to lock down
1684          */
1685         if (delalloc_end + 1 - delalloc_start > max_bytes)
1686                 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688         /* step two, lock all the pages after the page that has start */
1689         ret = lock_delalloc_pages(inode, locked_page,
1690                                   delalloc_start, delalloc_end);
1691         if (ret == -EAGAIN) {
1692                 /* some of the pages are gone, lets avoid looping by
1693                  * shortening the size of the delalloc range we're searching
1694                  */
1695                 free_extent_state(cached_state);
1696                 cached_state = NULL;
1697                 if (!loops) {
1698                         max_bytes = PAGE_CACHE_SIZE;
1699                         loops = 1;
1700                         goto again;
1701                 } else {
1702                         found = 0;
1703                         goto out_failed;
1704                 }
1705         }
1706         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708         /* step three, lock the state bits for the whole range */
1709         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1710
1711         /* then test to make sure it is all still delalloc */
1712         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713                              EXTENT_DELALLOC, 1, cached_state);
1714         if (!ret) {
1715                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716                                      &cached_state, GFP_NOFS);
1717                 __unlock_for_delalloc(inode, locked_page,
1718                               delalloc_start, delalloc_end);
1719                 cond_resched();
1720                 goto again;
1721         }
1722         free_extent_state(cached_state);
1723         *start = delalloc_start;
1724         *end = delalloc_end;
1725 out_failed:
1726         return found;
1727 }
1728
1729 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730                                  struct page *locked_page,
1731                                  unsigned long clear_bits,
1732                                  unsigned long page_ops)
1733 {
1734         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735         int ret;
1736         struct page *pages[16];
1737         unsigned long index = start >> PAGE_CACHE_SHIFT;
1738         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1739         unsigned long nr_pages = end_index - index + 1;
1740         int i;
1741
1742         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743         if (page_ops == 0)
1744                 return 0;
1745
1746         while (nr_pages > 0) {
1747                 ret = find_get_pages_contig(inode->i_mapping, index,
1748                                      min_t(unsigned long,
1749                                      nr_pages, ARRAY_SIZE(pages)), pages);
1750                 for (i = 0; i < ret; i++) {
1751
1752                         if (page_ops & PAGE_SET_PRIVATE2)
1753                                 SetPagePrivate2(pages[i]);
1754
1755                         if (pages[i] == locked_page) {
1756                                 page_cache_release(pages[i]);
1757                                 continue;
1758                         }
1759                         if (page_ops & PAGE_CLEAR_DIRTY)
1760                                 clear_page_dirty_for_io(pages[i]);
1761                         if (page_ops & PAGE_SET_WRITEBACK)
1762                                 set_page_writeback(pages[i]);
1763                         if (page_ops & PAGE_END_WRITEBACK)
1764                                 end_page_writeback(pages[i]);
1765                         if (page_ops & PAGE_UNLOCK)
1766                                 unlock_page(pages[i]);
1767                         page_cache_release(pages[i]);
1768                 }
1769                 nr_pages -= ret;
1770                 index += ret;
1771                 cond_resched();
1772         }
1773         return 0;
1774 }
1775
1776 /*
1777  * count the number of bytes in the tree that have a given bit(s)
1778  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1779  * cached.  The total number found is returned.
1780  */
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782                      u64 *start, u64 search_end, u64 max_bytes,
1783                      unsigned long bits, int contig)
1784 {
1785         struct rb_node *node;
1786         struct extent_state *state;
1787         u64 cur_start = *start;
1788         u64 total_bytes = 0;
1789         u64 last = 0;
1790         int found = 0;
1791
1792         if (WARN_ON(search_end <= cur_start))
1793                 return 0;
1794
1795         spin_lock(&tree->lock);
1796         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797                 total_bytes = tree->dirty_bytes;
1798                 goto out;
1799         }
1800         /*
1801          * this search will find all the extents that end after
1802          * our range starts.
1803          */
1804         node = tree_search(tree, cur_start);
1805         if (!node)
1806                 goto out;
1807
1808         while (1) {
1809                 state = rb_entry(node, struct extent_state, rb_node);
1810                 if (state->start > search_end)
1811                         break;
1812                 if (contig && found && state->start > last + 1)
1813                         break;
1814                 if (state->end >= cur_start && (state->state & bits) == bits) {
1815                         total_bytes += min(search_end, state->end) + 1 -
1816                                        max(cur_start, state->start);
1817                         if (total_bytes >= max_bytes)
1818                                 break;
1819                         if (!found) {
1820                                 *start = max(cur_start, state->start);
1821                                 found = 1;
1822                         }
1823                         last = state->end;
1824                 } else if (contig && found) {
1825                         break;
1826                 }
1827                 node = rb_next(node);
1828                 if (!node)
1829                         break;
1830         }
1831 out:
1832         spin_unlock(&tree->lock);
1833         return total_bytes;
1834 }
1835
1836 /*
1837  * set the private field for a given byte offset in the tree.  If there isn't
1838  * an extent_state there already, this does nothing.
1839  */
1840 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1841 {
1842         struct rb_node *node;
1843         struct extent_state *state;
1844         int ret = 0;
1845
1846         spin_lock(&tree->lock);
1847         /*
1848          * this search will find all the extents that end after
1849          * our range starts.
1850          */
1851         node = tree_search(tree, start);
1852         if (!node) {
1853                 ret = -ENOENT;
1854                 goto out;
1855         }
1856         state = rb_entry(node, struct extent_state, rb_node);
1857         if (state->start != start) {
1858                 ret = -ENOENT;
1859                 goto out;
1860         }
1861         state->private = private;
1862 out:
1863         spin_unlock(&tree->lock);
1864         return ret;
1865 }
1866
1867 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1868 {
1869         struct rb_node *node;
1870         struct extent_state *state;
1871         int ret = 0;
1872
1873         spin_lock(&tree->lock);
1874         /*
1875          * this search will find all the extents that end after
1876          * our range starts.
1877          */
1878         node = tree_search(tree, start);
1879         if (!node) {
1880                 ret = -ENOENT;
1881                 goto out;
1882         }
1883         state = rb_entry(node, struct extent_state, rb_node);
1884         if (state->start != start) {
1885                 ret = -ENOENT;
1886                 goto out;
1887         }
1888         *private = state->private;
1889 out:
1890         spin_unlock(&tree->lock);
1891         return ret;
1892 }
1893
1894 /*
1895  * searches a range in the state tree for a given mask.
1896  * If 'filled' == 1, this returns 1 only if every extent in the tree
1897  * has the bits set.  Otherwise, 1 is returned if any bit in the
1898  * range is found set.
1899  */
1900 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1901                    unsigned long bits, int filled, struct extent_state *cached)
1902 {
1903         struct extent_state *state = NULL;
1904         struct rb_node *node;
1905         int bitset = 0;
1906
1907         spin_lock(&tree->lock);
1908         if (cached && cached->tree && cached->start <= start &&
1909             cached->end > start)
1910                 node = &cached->rb_node;
1911         else
1912                 node = tree_search(tree, start);
1913         while (node && start <= end) {
1914                 state = rb_entry(node, struct extent_state, rb_node);
1915
1916                 if (filled && state->start > start) {
1917                         bitset = 0;
1918                         break;
1919                 }
1920
1921                 if (state->start > end)
1922                         break;
1923
1924                 if (state->state & bits) {
1925                         bitset = 1;
1926                         if (!filled)
1927                                 break;
1928                 } else if (filled) {
1929                         bitset = 0;
1930                         break;
1931                 }
1932
1933                 if (state->end == (u64)-1)
1934                         break;
1935
1936                 start = state->end + 1;
1937                 if (start > end)
1938                         break;
1939                 node = rb_next(node);
1940                 if (!node) {
1941                         if (filled)
1942                                 bitset = 0;
1943                         break;
1944                 }
1945         }
1946         spin_unlock(&tree->lock);
1947         return bitset;
1948 }
1949
1950 /*
1951  * helper function to set a given page up to date if all the
1952  * extents in the tree for that page are up to date
1953  */
1954 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1955 {
1956         u64 start = page_offset(page);
1957         u64 end = start + PAGE_CACHE_SIZE - 1;
1958         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1959                 SetPageUptodate(page);
1960 }
1961
1962 /*
1963  * When IO fails, either with EIO or csum verification fails, we
1964  * try other mirrors that might have a good copy of the data.  This
1965  * io_failure_record is used to record state as we go through all the
1966  * mirrors.  If another mirror has good data, the page is set up to date
1967  * and things continue.  If a good mirror can't be found, the original
1968  * bio end_io callback is called to indicate things have failed.
1969  */
1970 struct io_failure_record {
1971         struct page *page;
1972         u64 start;
1973         u64 len;
1974         u64 logical;
1975         unsigned long bio_flags;
1976         int this_mirror;
1977         int failed_mirror;
1978         int in_validation;
1979 };
1980
1981 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1982                                 int did_repair)
1983 {
1984         int ret;
1985         int err = 0;
1986         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987
1988         set_state_private(failure_tree, rec->start, 0);
1989         ret = clear_extent_bits(failure_tree, rec->start,
1990                                 rec->start + rec->len - 1,
1991                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1992         if (ret)
1993                 err = ret;
1994
1995         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1996                                 rec->start + rec->len - 1,
1997                                 EXTENT_DAMAGED, GFP_NOFS);
1998         if (ret && !err)
1999                 err = ret;
2000
2001         kfree(rec);
2002         return err;
2003 }
2004
2005 /*
2006  * this bypasses the standard btrfs submit functions deliberately, as
2007  * the standard behavior is to write all copies in a raid setup. here we only
2008  * want to write the one bad copy. so we do the mapping for ourselves and issue
2009  * submit_bio directly.
2010  * to avoid any synchronization issues, wait for the data after writing, which
2011  * actually prevents the read that triggered the error from finishing.
2012  * currently, there can be no more than two copies of every data bit. thus,
2013  * exactly one rewrite is required.
2014  */
2015 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2016                         u64 length, u64 logical, struct page *page,
2017                         int mirror_num)
2018 {
2019         struct bio *bio;
2020         struct btrfs_device *dev;
2021         u64 map_length = 0;
2022         u64 sector;
2023         struct btrfs_bio *bbio = NULL;
2024         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2025         int ret;
2026
2027         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2028         BUG_ON(!mirror_num);
2029
2030         /* we can't repair anything in raid56 yet */
2031         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2032                 return 0;
2033
2034         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2035         if (!bio)
2036                 return -EIO;
2037         bio->bi_iter.bi_size = 0;
2038         map_length = length;
2039
2040         ret = btrfs_map_block(fs_info, WRITE, logical,
2041                               &map_length, &bbio, mirror_num);
2042         if (ret) {
2043                 bio_put(bio);
2044                 return -EIO;
2045         }
2046         BUG_ON(mirror_num != bbio->mirror_num);
2047         sector = bbio->stripes[mirror_num-1].physical >> 9;
2048         bio->bi_iter.bi_sector = sector;
2049         dev = bbio->stripes[mirror_num-1].dev;
2050         kfree(bbio);
2051         if (!dev || !dev->bdev || !dev->writeable) {
2052                 bio_put(bio);
2053                 return -EIO;
2054         }
2055         bio->bi_bdev = dev->bdev;
2056         bio_add_page(bio, page, length, start - page_offset(page));
2057
2058         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2059                 /* try to remap that extent elsewhere? */
2060                 bio_put(bio);
2061                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2062                 return -EIO;
2063         }
2064
2065         printk_ratelimited_in_rcu(KERN_INFO
2066                         "BTRFS: read error corrected: ino %lu off %llu "
2067                     "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2068                     start, rcu_str_deref(dev->name), sector);
2069
2070         bio_put(bio);
2071         return 0;
2072 }
2073
2074 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2075                          int mirror_num)
2076 {
2077         u64 start = eb->start;
2078         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2079         int ret = 0;
2080
2081         if (root->fs_info->sb->s_flags & MS_RDONLY)
2082                 return -EROFS;
2083
2084         for (i = 0; i < num_pages; i++) {
2085                 struct page *p = extent_buffer_page(eb, i);
2086                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2087                                         start, p, mirror_num);
2088                 if (ret)
2089                         break;
2090                 start += PAGE_CACHE_SIZE;
2091         }
2092
2093         return ret;
2094 }
2095
2096 /*
2097  * each time an IO finishes, we do a fast check in the IO failure tree
2098  * to see if we need to process or clean up an io_failure_record
2099  */
2100 static int clean_io_failure(u64 start, struct page *page)
2101 {
2102         u64 private;
2103         u64 private_failure;
2104         struct io_failure_record *failrec;
2105         struct inode *inode = page->mapping->host;
2106         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2107         struct extent_state *state;
2108         int num_copies;
2109         int did_repair = 0;
2110         int ret;
2111
2112         private = 0;
2113         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2114                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2115         if (!ret)
2116                 return 0;
2117
2118         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2119                                 &private_failure);
2120         if (ret)
2121                 return 0;
2122
2123         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2124         BUG_ON(!failrec->this_mirror);
2125
2126         if (failrec->in_validation) {
2127                 /* there was no real error, just free the record */
2128                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2129                          failrec->start);
2130                 did_repair = 1;
2131                 goto out;
2132         }
2133         if (fs_info->sb->s_flags & MS_RDONLY)
2134                 goto out;
2135
2136         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2137         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2138                                             failrec->start,
2139                                             EXTENT_LOCKED);
2140         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2141
2142         if (state && state->start <= failrec->start &&
2143             state->end >= failrec->start + failrec->len - 1) {
2144                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2145                                               failrec->len);
2146                 if (num_copies > 1)  {
2147                         ret = repair_io_failure(fs_info, start, failrec->len,
2148                                                 failrec->logical, page,
2149                                                 failrec->failed_mirror);
2150                         did_repair = !ret;
2151                 }
2152                 ret = 0;
2153         }
2154
2155 out:
2156         if (!ret)
2157                 ret = free_io_failure(inode, failrec, did_repair);
2158
2159         return ret;
2160 }
2161
2162 /*
2163  * this is a generic handler for readpage errors (default
2164  * readpage_io_failed_hook). if other copies exist, read those and write back
2165  * good data to the failed position. does not investigate in remapping the
2166  * failed extent elsewhere, hoping the device will be smart enough to do this as
2167  * needed
2168  */
2169
2170 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2171                               struct page *page, u64 start, u64 end,
2172                               int failed_mirror)
2173 {
2174         struct io_failure_record *failrec = NULL;
2175         u64 private;
2176         struct extent_map *em;
2177         struct inode *inode = page->mapping->host;
2178         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2179         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2180         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2181         struct bio *bio;
2182         struct btrfs_io_bio *btrfs_failed_bio;
2183         struct btrfs_io_bio *btrfs_bio;
2184         int num_copies;
2185         int ret;
2186         int read_mode;
2187         u64 logical;
2188
2189         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2190
2191         ret = get_state_private(failure_tree, start, &private);
2192         if (ret) {
2193                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194                 if (!failrec)
2195                         return -ENOMEM;
2196                 failrec->start = start;
2197                 failrec->len = end - start + 1;
2198                 failrec->this_mirror = 0;
2199                 failrec->bio_flags = 0;
2200                 failrec->in_validation = 0;
2201
2202                 read_lock(&em_tree->lock);
2203                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204                 if (!em) {
2205                         read_unlock(&em_tree->lock);
2206                         kfree(failrec);
2207                         return -EIO;
2208                 }
2209
2210                 if (em->start > start || em->start + em->len <= start) {
2211                         free_extent_map(em);
2212                         em = NULL;
2213                 }
2214                 read_unlock(&em_tree->lock);
2215
2216                 if (!em) {
2217                         kfree(failrec);
2218                         return -EIO;
2219                 }
2220                 logical = start - em->start;
2221                 logical = em->block_start + logical;
2222                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223                         logical = em->block_start;
2224                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225                         extent_set_compress_type(&failrec->bio_flags,
2226                                                  em->compress_type);
2227                 }
2228                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2229                          "len=%llu\n", logical, start, failrec->len);
2230                 failrec->logical = logical;
2231                 free_extent_map(em);
2232
2233                 /* set the bits in the private failure tree */
2234                 ret = set_extent_bits(failure_tree, start, end,
2235                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236                 if (ret >= 0)
2237                         ret = set_state_private(failure_tree, start,
2238                                                 (u64)(unsigned long)failrec);
2239                 /* set the bits in the inode's tree */
2240                 if (ret >= 0)
2241                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2242                                                 GFP_NOFS);
2243                 if (ret < 0) {
2244                         kfree(failrec);
2245                         return ret;
2246                 }
2247         } else {
2248                 failrec = (struct io_failure_record *)(unsigned long)private;
2249                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2250                          "start=%llu, len=%llu, validation=%d\n",
2251                          failrec->logical, failrec->start, failrec->len,
2252                          failrec->in_validation);
2253                 /*
2254                  * when data can be on disk more than twice, add to failrec here
2255                  * (e.g. with a list for failed_mirror) to make
2256                  * clean_io_failure() clean all those errors at once.
2257                  */
2258         }
2259         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2260                                       failrec->logical, failrec->len);
2261         if (num_copies == 1) {
2262                 /*
2263                  * we only have a single copy of the data, so don't bother with
2264                  * all the retry and error correction code that follows. no
2265                  * matter what the error is, it is very likely to persist.
2266                  */
2267                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2268                          num_copies, failrec->this_mirror, failed_mirror);
2269                 free_io_failure(inode, failrec, 0);
2270                 return -EIO;
2271         }
2272
2273         /*
2274          * there are two premises:
2275          *      a) deliver good data to the caller
2276          *      b) correct the bad sectors on disk
2277          */
2278         if (failed_bio->bi_vcnt > 1) {
2279                 /*
2280                  * to fulfill b), we need to know the exact failing sectors, as
2281                  * we don't want to rewrite any more than the failed ones. thus,
2282                  * we need separate read requests for the failed bio
2283                  *
2284                  * if the following BUG_ON triggers, our validation request got
2285                  * merged. we need separate requests for our algorithm to work.
2286                  */
2287                 BUG_ON(failrec->in_validation);
2288                 failrec->in_validation = 1;
2289                 failrec->this_mirror = failed_mirror;
2290                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2291         } else {
2292                 /*
2293                  * we're ready to fulfill a) and b) alongside. get a good copy
2294                  * of the failed sector and if we succeed, we have setup
2295                  * everything for repair_io_failure to do the rest for us.
2296                  */
2297                 if (failrec->in_validation) {
2298                         BUG_ON(failrec->this_mirror != failed_mirror);
2299                         failrec->in_validation = 0;
2300                         failrec->this_mirror = 0;
2301                 }
2302                 failrec->failed_mirror = failed_mirror;
2303                 failrec->this_mirror++;
2304                 if (failrec->this_mirror == failed_mirror)
2305                         failrec->this_mirror++;
2306                 read_mode = READ_SYNC;
2307         }
2308
2309         if (failrec->this_mirror > num_copies) {
2310                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2311                          num_copies, failrec->this_mirror, failed_mirror);
2312                 free_io_failure(inode, failrec, 0);
2313                 return -EIO;
2314         }
2315
2316         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2317         if (!bio) {
2318                 free_io_failure(inode, failrec, 0);
2319                 return -EIO;
2320         }
2321         bio->bi_end_io = failed_bio->bi_end_io;
2322         bio->bi_iter.bi_sector = failrec->logical >> 9;
2323         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2324         bio->bi_iter.bi_size = 0;
2325
2326         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2327         if (btrfs_failed_bio->csum) {
2328                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2329                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2330
2331                 btrfs_bio = btrfs_io_bio(bio);
2332                 btrfs_bio->csum = btrfs_bio->csum_inline;
2333                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2334                 phy_offset *= csum_size;
2335                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2336                        csum_size);
2337         }
2338
2339         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2340
2341         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2342                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2343                  failrec->this_mirror, num_copies, failrec->in_validation);
2344
2345         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2346                                          failrec->this_mirror,
2347                                          failrec->bio_flags, 0);
2348         return ret;
2349 }
2350
2351 /* lots and lots of room for performance fixes in the end_bio funcs */
2352
2353 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2354 {
2355         int uptodate = (err == 0);
2356         struct extent_io_tree *tree;
2357         int ret = 0;
2358
2359         tree = &BTRFS_I(page->mapping->host)->io_tree;
2360
2361         if (tree->ops && tree->ops->writepage_end_io_hook) {
2362                 ret = tree->ops->writepage_end_io_hook(page, start,
2363                                                end, NULL, uptodate);
2364                 if (ret)
2365                         uptodate = 0;
2366         }
2367
2368         if (!uptodate) {
2369                 ClearPageUptodate(page);
2370                 SetPageError(page);
2371                 ret = ret < 0 ? ret : -EIO;
2372                 mapping_set_error(page->mapping, ret);
2373         }
2374         return 0;
2375 }
2376
2377 /*
2378  * after a writepage IO is done, we need to:
2379  * clear the uptodate bits on error
2380  * clear the writeback bits in the extent tree for this IO
2381  * end_page_writeback if the page has no more pending IO
2382  *
2383  * Scheduling is not allowed, so the extent state tree is expected
2384  * to have one and only one object corresponding to this IO.
2385  */
2386 static void end_bio_extent_writepage(struct bio *bio, int err)
2387 {
2388         struct bio_vec *bvec;
2389         u64 start;
2390         u64 end;
2391         int i;
2392
2393         bio_for_each_segment_all(bvec, bio, i) {
2394                 struct page *page = bvec->bv_page;
2395
2396                 /* We always issue full-page reads, but if some block
2397                  * in a page fails to read, blk_update_request() will
2398                  * advance bv_offset and adjust bv_len to compensate.
2399                  * Print a warning for nonzero offsets, and an error
2400                  * if they don't add up to a full page.  */
2401                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2402                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2403                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2404                                    "partial page write in btrfs with offset %u and length %u",
2405                                         bvec->bv_offset, bvec->bv_len);
2406                         else
2407                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2408                                    "incomplete page write in btrfs with offset %u and "
2409                                    "length %u",
2410                                         bvec->bv_offset, bvec->bv_len);
2411                 }
2412
2413                 start = page_offset(page);
2414                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2415
2416                 if (end_extent_writepage(page, err, start, end))
2417                         continue;
2418
2419                 end_page_writeback(page);
2420         }
2421
2422         bio_put(bio);
2423 }
2424
2425 static void
2426 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2427                               int uptodate)
2428 {
2429         struct extent_state *cached = NULL;
2430         u64 end = start + len - 1;
2431
2432         if (uptodate && tree->track_uptodate)
2433                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2434         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2435 }
2436
2437 /*
2438  * after a readpage IO is done, we need to:
2439  * clear the uptodate bits on error
2440  * set the uptodate bits if things worked
2441  * set the page up to date if all extents in the tree are uptodate
2442  * clear the lock bit in the extent tree
2443  * unlock the page if there are no other extents locked for it
2444  *
2445  * Scheduling is not allowed, so the extent state tree is expected
2446  * to have one and only one object corresponding to this IO.
2447  */
2448 static void end_bio_extent_readpage(struct bio *bio, int err)
2449 {
2450         struct bio_vec *bvec;
2451         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2452         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453         struct extent_io_tree *tree;
2454         u64 offset = 0;
2455         u64 start;
2456         u64 end;
2457         u64 len;
2458         u64 extent_start = 0;
2459         u64 extent_len = 0;
2460         int mirror;
2461         int ret;
2462         int i;
2463
2464         if (err)
2465                 uptodate = 0;
2466
2467         bio_for_each_segment_all(bvec, bio, i) {
2468                 struct page *page = bvec->bv_page;
2469                 struct inode *inode = page->mapping->host;
2470
2471                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2472                          "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2473                          io_bio->mirror_num);
2474                 tree = &BTRFS_I(inode)->io_tree;
2475
2476                 /* We always issue full-page reads, but if some block
2477                  * in a page fails to read, blk_update_request() will
2478                  * advance bv_offset and adjust bv_len to compensate.
2479                  * Print a warning for nonzero offsets, and an error
2480                  * if they don't add up to a full page.  */
2481                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2482                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2483                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2484                                    "partial page read in btrfs with offset %u and length %u",
2485                                         bvec->bv_offset, bvec->bv_len);
2486                         else
2487                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2488                                    "incomplete page read in btrfs with offset %u and "
2489                                    "length %u",
2490                                         bvec->bv_offset, bvec->bv_len);
2491                 }
2492
2493                 start = page_offset(page);
2494                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2495                 len = bvec->bv_len;
2496
2497                 mirror = io_bio->mirror_num;
2498                 if (likely(uptodate && tree->ops &&
2499                            tree->ops->readpage_end_io_hook)) {
2500                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2501                                                               page, start, end,
2502                                                               mirror);
2503                         if (ret)
2504                                 uptodate = 0;
2505                         else
2506                                 clean_io_failure(start, page);
2507                 }
2508
2509                 if (likely(uptodate))
2510                         goto readpage_ok;
2511
2512                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2513                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2514                         if (!ret && !err &&
2515                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2516                                 uptodate = 1;
2517                 } else {
2518                         /*
2519                          * The generic bio_readpage_error handles errors the
2520                          * following way: If possible, new read requests are
2521                          * created and submitted and will end up in
2522                          * end_bio_extent_readpage as well (if we're lucky, not
2523                          * in the !uptodate case). In that case it returns 0 and
2524                          * we just go on with the next page in our bio. If it
2525                          * can't handle the error it will return -EIO and we
2526                          * remain responsible for that page.
2527                          */
2528                         ret = bio_readpage_error(bio, offset, page, start, end,
2529                                                  mirror);
2530                         if (ret == 0) {
2531                                 uptodate =
2532                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2533                                 if (err)
2534                                         uptodate = 0;
2535                                 continue;
2536                         }
2537                 }
2538 readpage_ok:
2539                 if (likely(uptodate)) {
2540                         loff_t i_size = i_size_read(inode);
2541                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2542                         unsigned offset;
2543
2544                         /* Zero out the end if this page straddles i_size */
2545                         offset = i_size & (PAGE_CACHE_SIZE-1);
2546                         if (page->index == end_index && offset)
2547                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2548                         SetPageUptodate(page);
2549                 } else {
2550                         ClearPageUptodate(page);
2551                         SetPageError(page);
2552                 }
2553                 unlock_page(page);
2554                 offset += len;
2555
2556                 if (unlikely(!uptodate)) {
2557                         if (extent_len) {
2558                                 endio_readpage_release_extent(tree,
2559                                                               extent_start,
2560                                                               extent_len, 1);
2561                                 extent_start = 0;
2562                                 extent_len = 0;
2563                         }
2564                         endio_readpage_release_extent(tree, start,
2565                                                       end - start + 1, 0);
2566                 } else if (!extent_len) {
2567                         extent_start = start;
2568                         extent_len = end + 1 - start;
2569                 } else if (extent_start + extent_len == start) {
2570                         extent_len += end + 1 - start;
2571                 } else {
2572                         endio_readpage_release_extent(tree, extent_start,
2573                                                       extent_len, uptodate);
2574                         extent_start = start;
2575                         extent_len = end + 1 - start;
2576                 }
2577         }
2578
2579         if (extent_len)
2580                 endio_readpage_release_extent(tree, extent_start, extent_len,
2581                                               uptodate);
2582         if (io_bio->end_io)
2583                 io_bio->end_io(io_bio, err);
2584         bio_put(bio);
2585 }
2586
2587 /*
2588  * this allocates from the btrfs_bioset.  We're returning a bio right now
2589  * but you can call btrfs_io_bio for the appropriate container_of magic
2590  */
2591 struct bio *
2592 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2593                 gfp_t gfp_flags)
2594 {
2595         struct btrfs_io_bio *btrfs_bio;
2596         struct bio *bio;
2597
2598         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2599
2600         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2601                 while (!bio && (nr_vecs /= 2)) {
2602                         bio = bio_alloc_bioset(gfp_flags,
2603                                                nr_vecs, btrfs_bioset);
2604                 }
2605         }
2606
2607         if (bio) {
2608                 bio->bi_bdev = bdev;
2609                 bio->bi_iter.bi_sector = first_sector;
2610                 btrfs_bio = btrfs_io_bio(bio);
2611                 btrfs_bio->csum = NULL;
2612                 btrfs_bio->csum_allocated = NULL;
2613                 btrfs_bio->end_io = NULL;
2614         }
2615         return bio;
2616 }
2617
2618 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2619 {
2620         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2621 }
2622
2623
2624 /* this also allocates from the btrfs_bioset */
2625 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2626 {
2627         struct btrfs_io_bio *btrfs_bio;
2628         struct bio *bio;
2629
2630         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2631         if (bio) {
2632                 btrfs_bio = btrfs_io_bio(bio);
2633                 btrfs_bio->csum = NULL;
2634                 btrfs_bio->csum_allocated = NULL;
2635                 btrfs_bio->end_io = NULL;
2636         }
2637         return bio;
2638 }
2639
2640
2641 static int __must_check submit_one_bio(int rw, struct bio *bio,
2642                                        int mirror_num, unsigned long bio_flags)
2643 {
2644         int ret = 0;
2645         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2646         struct page *page = bvec->bv_page;
2647         struct extent_io_tree *tree = bio->bi_private;
2648         u64 start;
2649
2650         start = page_offset(page) + bvec->bv_offset;
2651
2652         bio->bi_private = NULL;
2653
2654         bio_get(bio);
2655
2656         if (tree->ops && tree->ops->submit_bio_hook)
2657                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2658                                            mirror_num, bio_flags, start);
2659         else
2660                 btrfsic_submit_bio(rw, bio);
2661
2662         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2663                 ret = -EOPNOTSUPP;
2664         bio_put(bio);
2665         return ret;
2666 }
2667
2668 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2669                      unsigned long offset, size_t size, struct bio *bio,
2670                      unsigned long bio_flags)
2671 {
2672         int ret = 0;
2673         if (tree->ops && tree->ops->merge_bio_hook)
2674                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2675                                                 bio_flags);
2676         BUG_ON(ret < 0);
2677         return ret;
2678
2679 }
2680
2681 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2682                               struct page *page, sector_t sector,
2683                               size_t size, unsigned long offset,
2684                               struct block_device *bdev,
2685                               struct bio **bio_ret,
2686                               unsigned long max_pages,
2687                               bio_end_io_t end_io_func,
2688                               int mirror_num,
2689                               unsigned long prev_bio_flags,
2690                               unsigned long bio_flags)
2691 {
2692         int ret = 0;
2693         struct bio *bio;
2694         int nr;
2695         int contig = 0;
2696         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2697         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2698         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2699
2700         if (bio_ret && *bio_ret) {
2701                 bio = *bio_ret;
2702                 if (old_compressed)
2703                         contig = bio->bi_iter.bi_sector == sector;
2704                 else
2705                         contig = bio_end_sector(bio) == sector;
2706
2707                 if (prev_bio_flags != bio_flags || !contig ||
2708                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2709                     bio_add_page(bio, page, page_size, offset) < page_size) {
2710                         ret = submit_one_bio(rw, bio, mirror_num,
2711                                              prev_bio_flags);
2712                         if (ret < 0)
2713                                 return ret;
2714                         bio = NULL;
2715                 } else {
2716                         return 0;
2717                 }
2718         }
2719         if (this_compressed)
2720                 nr = BIO_MAX_PAGES;
2721         else
2722                 nr = bio_get_nr_vecs(bdev);
2723
2724         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2725         if (!bio)
2726                 return -ENOMEM;
2727
2728         bio_add_page(bio, page, page_size, offset);
2729         bio->bi_end_io = end_io_func;
2730         bio->bi_private = tree;
2731
2732         if (bio_ret)
2733                 *bio_ret = bio;
2734         else
2735                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2736
2737         return ret;
2738 }
2739
2740 static void attach_extent_buffer_page(struct extent_buffer *eb,
2741                                       struct page *page)
2742 {
2743         if (!PagePrivate(page)) {
2744                 SetPagePrivate(page);
2745                 page_cache_get(page);
2746                 set_page_private(page, (unsigned long)eb);
2747         } else {
2748                 WARN_ON(page->private != (unsigned long)eb);
2749         }
2750 }
2751
2752 void set_page_extent_mapped(struct page *page)
2753 {
2754         if (!PagePrivate(page)) {
2755                 SetPagePrivate(page);
2756                 page_cache_get(page);
2757                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2758         }
2759 }
2760
2761 static struct extent_map *
2762 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2763                  u64 start, u64 len, get_extent_t *get_extent,
2764                  struct extent_map **em_cached)
2765 {
2766         struct extent_map *em;
2767
2768         if (em_cached && *em_cached) {
2769                 em = *em_cached;
2770                 if (extent_map_in_tree(em) && start >= em->start &&
2771                     start < extent_map_end(em)) {
2772                         atomic_inc(&em->refs);
2773                         return em;
2774                 }
2775
2776                 free_extent_map(em);
2777                 *em_cached = NULL;
2778         }
2779
2780         em = get_extent(inode, page, pg_offset, start, len, 0);
2781         if (em_cached && !IS_ERR_OR_NULL(em)) {
2782                 BUG_ON(*em_cached);
2783                 atomic_inc(&em->refs);
2784                 *em_cached = em;
2785         }
2786         return em;
2787 }
2788 /*
2789  * basic readpage implementation.  Locked extent state structs are inserted
2790  * into the tree that are removed when the IO is done (by the end_io
2791  * handlers)
2792  * XXX JDM: This needs looking at to ensure proper page locking
2793  */
2794 static int __do_readpage(struct extent_io_tree *tree,
2795                          struct page *page,
2796                          get_extent_t *get_extent,
2797                          struct extent_map **em_cached,
2798                          struct bio **bio, int mirror_num,
2799                          unsigned long *bio_flags, int rw)
2800 {
2801         struct inode *inode = page->mapping->host;
2802         u64 start = page_offset(page);
2803         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2804         u64 end;
2805         u64 cur = start;
2806         u64 extent_offset;
2807         u64 last_byte = i_size_read(inode);
2808         u64 block_start;
2809         u64 cur_end;
2810         sector_t sector;
2811         struct extent_map *em;
2812         struct block_device *bdev;
2813         int ret;
2814         int nr = 0;
2815         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2816         size_t pg_offset = 0;
2817         size_t iosize;
2818         size_t disk_io_size;
2819         size_t blocksize = inode->i_sb->s_blocksize;
2820         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2821
2822         set_page_extent_mapped(page);
2823
2824         end = page_end;
2825         if (!PageUptodate(page)) {
2826                 if (cleancache_get_page(page) == 0) {
2827                         BUG_ON(blocksize != PAGE_SIZE);
2828                         unlock_extent(tree, start, end);
2829                         goto out;
2830                 }
2831         }
2832
2833         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2834                 char *userpage;
2835                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2836
2837                 if (zero_offset) {
2838                         iosize = PAGE_CACHE_SIZE - zero_offset;
2839                         userpage = kmap_atomic(page);
2840                         memset(userpage + zero_offset, 0, iosize);
2841                         flush_dcache_page(page);
2842                         kunmap_atomic(userpage);
2843                 }
2844         }
2845         while (cur <= end) {
2846                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2847
2848                 if (cur >= last_byte) {
2849                         char *userpage;
2850                         struct extent_state *cached = NULL;
2851
2852                         iosize = PAGE_CACHE_SIZE - pg_offset;
2853                         userpage = kmap_atomic(page);
2854                         memset(userpage + pg_offset, 0, iosize);
2855                         flush_dcache_page(page);
2856                         kunmap_atomic(userpage);
2857                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2858                                             &cached, GFP_NOFS);
2859                         if (!parent_locked)
2860                                 unlock_extent_cached(tree, cur,
2861                                                      cur + iosize - 1,
2862                                                      &cached, GFP_NOFS);
2863                         break;
2864                 }
2865                 em = __get_extent_map(inode, page, pg_offset, cur,
2866                                       end - cur + 1, get_extent, em_cached);
2867                 if (IS_ERR_OR_NULL(em)) {
2868                         SetPageError(page);
2869                         if (!parent_locked)
2870                                 unlock_extent(tree, cur, end);
2871                         break;
2872                 }
2873                 extent_offset = cur - em->start;
2874                 BUG_ON(extent_map_end(em) <= cur);
2875                 BUG_ON(end < cur);
2876
2877                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2878                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2879                         extent_set_compress_type(&this_bio_flag,
2880                                                  em->compress_type);
2881                 }
2882
2883                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2884                 cur_end = min(extent_map_end(em) - 1, end);
2885                 iosize = ALIGN(iosize, blocksize);
2886                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2887                         disk_io_size = em->block_len;
2888                         sector = em->block_start >> 9;
2889                 } else {
2890                         sector = (em->block_start + extent_offset) >> 9;
2891                         disk_io_size = iosize;
2892                 }
2893                 bdev = em->bdev;
2894                 block_start = em->block_start;
2895                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2896                         block_start = EXTENT_MAP_HOLE;
2897                 free_extent_map(em);
2898                 em = NULL;
2899
2900                 /* we've found a hole, just zero and go on */
2901                 if (block_start == EXTENT_MAP_HOLE) {
2902                         char *userpage;
2903                         struct extent_state *cached = NULL;
2904
2905                         userpage = kmap_atomic(page);
2906                         memset(userpage + pg_offset, 0, iosize);
2907                         flush_dcache_page(page);
2908                         kunmap_atomic(userpage);
2909
2910                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2911                                             &cached, GFP_NOFS);
2912                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2913                                              &cached, GFP_NOFS);
2914                         cur = cur + iosize;
2915                         pg_offset += iosize;
2916                         continue;
2917                 }
2918                 /* the get_extent function already copied into the page */
2919                 if (test_range_bit(tree, cur, cur_end,
2920                                    EXTENT_UPTODATE, 1, NULL)) {
2921                         check_page_uptodate(tree, page);
2922                         if (!parent_locked)
2923                                 unlock_extent(tree, cur, cur + iosize - 1);
2924                         cur = cur + iosize;
2925                         pg_offset += iosize;
2926                         continue;
2927                 }
2928                 /* we have an inline extent but it didn't get marked up
2929                  * to date.  Error out
2930                  */
2931                 if (block_start == EXTENT_MAP_INLINE) {
2932                         SetPageError(page);
2933                         if (!parent_locked)
2934                                 unlock_extent(tree, cur, cur + iosize - 1);
2935                         cur = cur + iosize;
2936                         pg_offset += iosize;
2937                         continue;
2938                 }
2939
2940                 pnr -= page->index;
2941                 ret = submit_extent_page(rw, tree, page,
2942                                          sector, disk_io_size, pg_offset,
2943                                          bdev, bio, pnr,
2944                                          end_bio_extent_readpage, mirror_num,
2945                                          *bio_flags,
2946                                          this_bio_flag);
2947                 if (!ret) {
2948                         nr++;
2949                         *bio_flags = this_bio_flag;
2950                 } else {
2951                         SetPageError(page);
2952                         if (!parent_locked)
2953                                 unlock_extent(tree, cur, cur + iosize - 1);
2954                 }
2955                 cur = cur + iosize;
2956                 pg_offset += iosize;
2957         }
2958 out:
2959         if (!nr) {
2960                 if (!PageError(page))
2961                         SetPageUptodate(page);
2962                 unlock_page(page);
2963         }
2964         return 0;
2965 }
2966
2967 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2968                                              struct page *pages[], int nr_pages,
2969                                              u64 start, u64 end,
2970                                              get_extent_t *get_extent,
2971                                              struct extent_map **em_cached,
2972                                              struct bio **bio, int mirror_num,
2973                                              unsigned long *bio_flags, int rw)
2974 {
2975         struct inode *inode;
2976         struct btrfs_ordered_extent *ordered;
2977         int index;
2978
2979         inode = pages[0]->mapping->host;
2980         while (1) {
2981                 lock_extent(tree, start, end);
2982                 ordered = btrfs_lookup_ordered_range(inode, start,
2983                                                      end - start + 1);
2984                 if (!ordered)
2985                         break;
2986                 unlock_extent(tree, start, end);
2987                 btrfs_start_ordered_extent(inode, ordered, 1);
2988                 btrfs_put_ordered_extent(ordered);
2989         }
2990
2991         for (index = 0; index < nr_pages; index++) {
2992                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2993                               mirror_num, bio_flags, rw);
2994                 page_cache_release(pages[index]);
2995         }
2996 }
2997
2998 static void __extent_readpages(struct extent_io_tree *tree,
2999                                struct page *pages[],
3000                                int nr_pages, get_extent_t *get_extent,
3001                                struct extent_map **em_cached,
3002                                struct bio **bio, int mirror_num,
3003                                unsigned long *bio_flags, int rw)
3004 {
3005         u64 start = 0;
3006         u64 end = 0;
3007         u64 page_start;
3008         int index;
3009         int first_index = 0;
3010
3011         for (index = 0; index < nr_pages; index++) {
3012                 page_start = page_offset(pages[index]);
3013                 if (!end) {
3014                         start = page_start;
3015                         end = start + PAGE_CACHE_SIZE - 1;
3016                         first_index = index;
3017                 } else if (end + 1 == page_start) {
3018                         end += PAGE_CACHE_SIZE;
3019                 } else {
3020                         __do_contiguous_readpages(tree, &pages[first_index],
3021                                                   index - first_index, start,
3022                                                   end, get_extent, em_cached,
3023                                                   bio, mirror_num, bio_flags,
3024                                                   rw);
3025                         start = page_start;
3026                         end = start + PAGE_CACHE_SIZE - 1;
3027                         first_index = index;
3028                 }
3029         }
3030
3031         if (end)
3032                 __do_contiguous_readpages(tree, &pages[first_index],
3033                                           index - first_index, start,
3034                                           end, get_extent, em_cached, bio,
3035                                           mirror_num, bio_flags, rw);
3036 }
3037
3038 static int __extent_read_full_page(struct extent_io_tree *tree,
3039                                    struct page *page,
3040                                    get_extent_t *get_extent,
3041                                    struct bio **bio, int mirror_num,
3042                                    unsigned long *bio_flags, int rw)
3043 {
3044         struct inode *inode = page->mapping->host;
3045         struct btrfs_ordered_extent *ordered;
3046         u64 start = page_offset(page);
3047         u64 end = start + PAGE_CACHE_SIZE - 1;
3048         int ret;
3049
3050         while (1) {
3051                 lock_extent(tree, start, end);
3052                 ordered = btrfs_lookup_ordered_extent(inode, start);
3053                 if (!ordered)
3054                         break;
3055                 unlock_extent(tree, start, end);
3056                 btrfs_start_ordered_extent(inode, ordered, 1);
3057                 btrfs_put_ordered_extent(ordered);
3058         }
3059
3060         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3061                             bio_flags, rw);
3062         return ret;
3063 }
3064
3065 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3066                             get_extent_t *get_extent, int mirror_num)
3067 {
3068         struct bio *bio = NULL;
3069         unsigned long bio_flags = 0;
3070         int ret;
3071
3072         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3073                                       &bio_flags, READ);
3074         if (bio)
3075                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3076         return ret;
3077 }
3078
3079 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3080                                  get_extent_t *get_extent, int mirror_num)
3081 {
3082         struct bio *bio = NULL;
3083         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3084         int ret;
3085
3086         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3087                                       &bio_flags, READ);
3088         if (bio)
3089                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3090         return ret;
3091 }
3092
3093 static noinline void update_nr_written(struct page *page,
3094                                       struct writeback_control *wbc,
3095                                       unsigned long nr_written)
3096 {
3097         wbc->nr_to_write -= nr_written;
3098         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3099             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3100                 page->mapping->writeback_index = page->index + nr_written;
3101 }
3102
3103 /*
3104  * helper for __extent_writepage, doing all of the delayed allocation setup.
3105  *
3106  * This returns 1 if our fill_delalloc function did all the work required
3107  * to write the page (copy into inline extent).  In this case the IO has
3108  * been started and the page is already unlocked.
3109  *
3110  * This returns 0 if all went well (page still locked)
3111  * This returns < 0 if there were errors (page still locked)
3112  */
3113 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3114                               struct page *page, struct writeback_control *wbc,
3115                               struct extent_page_data *epd,
3116                               u64 delalloc_start,
3117                               unsigned long *nr_written)
3118 {
3119         struct extent_io_tree *tree = epd->tree;
3120         u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3121         u64 nr_delalloc;
3122         u64 delalloc_to_write = 0;
3123         u64 delalloc_end = 0;
3124         int ret;
3125         int page_started = 0;
3126
3127         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3128                 return 0;
3129
3130         while (delalloc_end < page_end) {
3131                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3132                                                page,
3133                                                &delalloc_start,
3134                                                &delalloc_end,
3135                                                128 * 1024 * 1024);
3136                 if (nr_delalloc == 0) {
3137                         delalloc_start = delalloc_end + 1;
3138                         continue;
3139                 }
3140                 ret = tree->ops->fill_delalloc(inode, page,
3141                                                delalloc_start,
3142                                                delalloc_end,
3143                                                &page_started,
3144                                                nr_written);
3145                 /* File system has been set read-only */
3146                 if (ret) {
3147                         SetPageError(page);
3148                         /* fill_delalloc should be return < 0 for error
3149                          * but just in case, we use > 0 here meaning the
3150                          * IO is started, so we don't want to return > 0
3151                          * unless things are going well.
3152                          */
3153                         ret = ret < 0 ? ret : -EIO;
3154                         goto done;
3155                 }
3156                 /*
3157                  * delalloc_end is already one less than the total
3158                  * length, so we don't subtract one from
3159                  * PAGE_CACHE_SIZE
3160                  */
3161                 delalloc_to_write += (delalloc_end - delalloc_start +
3162                                       PAGE_CACHE_SIZE) >>
3163                                       PAGE_CACHE_SHIFT;
3164                 delalloc_start = delalloc_end + 1;
3165         }
3166         if (wbc->nr_to_write < delalloc_to_write) {
3167                 int thresh = 8192;
3168
3169                 if (delalloc_to_write < thresh * 2)
3170                         thresh = delalloc_to_write;
3171                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3172                                          thresh);
3173         }
3174
3175         /* did the fill delalloc function already unlock and start
3176          * the IO?
3177          */
3178         if (page_started) {
3179                 /*
3180                  * we've unlocked the page, so we can't update
3181                  * the mapping's writeback index, just update
3182                  * nr_to_write.
3183                  */
3184                 wbc->nr_to_write -= *nr_written;
3185                 return 1;
3186         }
3187
3188         ret = 0;
3189
3190 done:
3191         return ret;
3192 }
3193
3194 /*
3195  * helper for __extent_writepage.  This calls the writepage start hooks,
3196  * and does the loop to map the page into extents and bios.
3197  *
3198  * We return 1 if the IO is started and the page is unlocked,
3199  * 0 if all went well (page still locked)
3200  * < 0 if there were errors (page still locked)
3201  */
3202 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3203                                  struct page *page,
3204                                  struct writeback_control *wbc,
3205                                  struct extent_page_data *epd,
3206                                  loff_t i_size,
3207                                  unsigned long nr_written,
3208                                  int write_flags, int *nr_ret)
3209 {
3210         struct extent_io_tree *tree = epd->tree;
3211         u64 start = page_offset(page);
3212         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3213         u64 end;
3214         u64 cur = start;
3215         u64 extent_offset;
3216         u64 block_start;
3217         u64 iosize;
3218         sector_t sector;
3219         struct extent_state *cached_state = NULL;
3220         struct extent_map *em;
3221         struct block_device *bdev;
3222         size_t pg_offset = 0;
3223         size_t blocksize;
3224         int ret = 0;
3225         int nr = 0;
3226         bool compressed;
3227
3228         if (tree->ops && tree->ops->writepage_start_hook) {
3229                 ret = tree->ops->writepage_start_hook(page, start,
3230                                                       page_end);
3231                 if (ret) {
3232                         /* Fixup worker will requeue */
3233                         if (ret == -EBUSY)
3234                                 wbc->pages_skipped++;
3235                         else
3236                                 redirty_page_for_writepage(wbc, page);
3237
3238                         update_nr_written(page, wbc, nr_written);
3239                         unlock_page(page);
3240                         ret = 1;
3241                         goto done_unlocked;
3242                 }
3243         }
3244
3245         /*
3246          * we don't want to touch the inode after unlocking the page,
3247          * so we update the mapping writeback index now
3248          */
3249         update_nr_written(page, wbc, nr_written + 1);
3250
3251         end = page_end;
3252         if (i_size <= start) {
3253                 if (tree->ops && tree->ops->writepage_end_io_hook)
3254                         tree->ops->writepage_end_io_hook(page, start,
3255                                                          page_end, NULL, 1);
3256                 goto done;
3257         }
3258
3259         blocksize = inode->i_sb->s_blocksize;
3260
3261         while (cur <= end) {
3262                 u64 em_end;
3263                 if (cur >= i_size) {
3264                         if (tree->ops && tree->ops->writepage_end_io_hook)
3265                                 tree->ops->writepage_end_io_hook(page, cur,
3266                                                          page_end, NULL, 1);
3267                         break;
3268                 }
3269                 em = epd->get_extent(inode, page, pg_offset, cur,
3270                                      end - cur + 1, 1);
3271                 if (IS_ERR_OR_NULL(em)) {
3272                         SetPageError(page);
3273                         ret = PTR_ERR_OR_ZERO(em);
3274                         break;
3275                 }
3276
3277                 extent_offset = cur - em->start;
3278                 em_end = extent_map_end(em);
3279                 BUG_ON(em_end <= cur);
3280                 BUG_ON(end < cur);
3281                 iosize = min(em_end - cur, end - cur + 1);
3282                 iosize = ALIGN(iosize, blocksize);
3283                 sector = (em->block_start + extent_offset) >> 9;
3284                 bdev = em->bdev;
3285                 block_start = em->block_start;
3286                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3287                 free_extent_map(em);
3288                 em = NULL;
3289
3290                 /*
3291                  * compressed and inline extents are written through other
3292                  * paths in the FS
3293                  */
3294                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3295                     block_start == EXTENT_MAP_INLINE) {
3296                         /*
3297                          * end_io notification does not happen here for
3298                          * compressed extents
3299                          */
3300                         if (!compressed && tree->ops &&
3301                             tree->ops->writepage_end_io_hook)
3302                                 tree->ops->writepage_end_io_hook(page, cur,
3303                                                          cur + iosize - 1,
3304                                                          NULL, 1);
3305                         else if (compressed) {
3306                                 /* we don't want to end_page_writeback on
3307                                  * a compressed extent.  this happens
3308                                  * elsewhere
3309                                  */
3310                                 nr++;
3311                         }
3312
3313                         cur += iosize;
3314                         pg_offset += iosize;
3315                         continue;
3316                 }
3317
3318                 if (tree->ops && tree->ops->writepage_io_hook) {
3319                         ret = tree->ops->writepage_io_hook(page, cur,
3320                                                 cur + iosize - 1);
3321                 } else {
3322                         ret = 0;
3323                 }
3324                 if (ret) {
3325                         SetPageError(page);
3326                 } else {
3327                         unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3328
3329                         set_range_writeback(tree, cur, cur + iosize - 1);
3330                         if (!PageWriteback(page)) {
3331                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3332                                            "page %lu not writeback, cur %llu end %llu",
3333                                        page->index, cur, end);
3334                         }
3335
3336                         ret = submit_extent_page(write_flags, tree, page,
3337                                                  sector, iosize, pg_offset,
3338                                                  bdev, &epd->bio, max_nr,
3339                                                  end_bio_extent_writepage,
3340                                                  0, 0, 0);
3341                         if (ret)
3342                                 SetPageError(page);
3343                 }
3344                 cur = cur + iosize;
3345                 pg_offset += iosize;
3346                 nr++;
3347         }
3348 done:
3349         *nr_ret = nr;
3350
3351 done_unlocked:
3352
3353         /* drop our reference on any cached states */
3354         free_extent_state(cached_state);
3355         return ret;
3356 }
3357
3358 /*
3359  * the writepage semantics are similar to regular writepage.  extent
3360  * records are inserted to lock ranges in the tree, and as dirty areas
3361  * are found, they are marked writeback.  Then the lock bits are removed
3362  * and the end_io handler clears the writeback ranges
3363  */
3364 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3365                               void *data)
3366 {
3367         struct inode *inode = page->mapping->host;
3368         struct extent_page_data *epd = data;
3369         u64 start = page_offset(page);
3370         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3371         int ret;
3372         int nr = 0;
3373         size_t pg_offset = 0;
3374         loff_t i_size = i_size_read(inode);
3375         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3376         int write_flags;
3377         unsigned long nr_written = 0;
3378
3379         if (wbc->sync_mode == WB_SYNC_ALL)
3380                 write_flags = WRITE_SYNC;
3381         else
3382                 write_flags = WRITE;
3383
3384         trace___extent_writepage(page, inode, wbc);
3385
3386         WARN_ON(!PageLocked(page));
3387
3388         ClearPageError(page);
3389
3390         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3391         if (page->index > end_index ||
3392            (page->index == end_index && !pg_offset)) {
3393                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3394                 unlock_page(page);
3395                 return 0;
3396         }
3397
3398         if (page->index == end_index) {
3399                 char *userpage;
3400
3401                 userpage = kmap_atomic(page);
3402                 memset(userpage + pg_offset, 0,
3403                        PAGE_CACHE_SIZE - pg_offset);
3404                 kunmap_atomic(userpage);
3405                 flush_dcache_page(page);
3406         }
3407
3408         pg_offset = 0;
3409
3410         set_page_extent_mapped(page);
3411
3412         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3413         if (ret == 1)
3414                 goto done_unlocked;
3415         if (ret)
3416                 goto done;
3417
3418         ret = __extent_writepage_io(inode, page, wbc, epd,
3419                                     i_size, nr_written, write_flags, &nr);
3420         if (ret == 1)
3421                 goto done_unlocked;
3422
3423 done:
3424         if (nr == 0) {
3425                 /* make sure the mapping tag for page dirty gets cleared */
3426                 set_page_writeback(page);
3427                 end_page_writeback(page);
3428         }
3429         if (PageError(page)) {
3430                 ret = ret < 0 ? ret : -EIO;
3431                 end_extent_writepage(page, ret, start, page_end);
3432         }
3433         unlock_page(page);
3434         return ret;
3435
3436 done_unlocked:
3437         return 0;
3438 }
3439
3440 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3441 {
3442         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3443                        TASK_UNINTERRUPTIBLE);
3444 }
3445
3446 static noinline_for_stack int
3447 lock_extent_buffer_for_io(struct extent_buffer *eb,
3448                           struct btrfs_fs_info *fs_info,
3449                           struct extent_page_data *epd)
3450 {
3451         unsigned long i, num_pages;
3452         int flush = 0;
3453         int ret = 0;
3454
3455         if (!btrfs_try_tree_write_lock(eb)) {
3456                 flush = 1;
3457                 flush_write_bio(epd);
3458                 btrfs_tree_lock(eb);
3459         }
3460
3461         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3462                 btrfs_tree_unlock(eb);
3463                 if (!epd->sync_io)
3464                         return 0;
3465                 if (!flush) {
3466                         flush_write_bio(epd);
3467                         flush = 1;
3468                 }
3469                 while (1) {
3470                         wait_on_extent_buffer_writeback(eb);
3471                         btrfs_tree_lock(eb);
3472                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3473                                 break;
3474                         btrfs_tree_unlock(eb);
3475                 }
3476         }
3477
3478         /*
3479          * We need to do this to prevent races in people who check if the eb is
3480          * under IO since we can end up having no IO bits set for a short period
3481          * of time.
3482          */
3483         spin_lock(&eb->refs_lock);
3484         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3485                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3486                 spin_unlock(&eb->refs_lock);
3487                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3488                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3489                                      -eb->len,
3490                                      fs_info->dirty_metadata_batch);
3491                 ret = 1;
3492         } else {
3493                 spin_unlock(&eb->refs_lock);
3494         }
3495
3496         btrfs_tree_unlock(eb);
3497
3498         if (!ret)
3499                 return ret;
3500
3501         num_pages = num_extent_pages(eb->start, eb->len);
3502         for (i = 0; i < num_pages; i++) {
3503                 struct page *p = extent_buffer_page(eb, i);
3504
3505                 if (!trylock_page(p)) {
3506                         if (!flush) {
3507                                 flush_write_bio(epd);
3508                                 flush = 1;
3509                         }
3510                         lock_page(p);
3511                 }
3512         }
3513
3514         return ret;
3515 }
3516
3517 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3518 {
3519         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3520         smp_mb__after_atomic();
3521         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3522 }
3523
3524 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3525 {
3526         struct bio_vec *bvec;
3527         struct extent_buffer *eb;
3528         int i, done;
3529
3530         bio_for_each_segment_all(bvec, bio, i) {
3531                 struct page *page = bvec->bv_page;
3532
3533                 eb = (struct extent_buffer *)page->private;
3534                 BUG_ON(!eb);
3535                 done = atomic_dec_and_test(&eb->io_pages);
3536
3537                 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3538                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3539                         ClearPageUptodate(page);
3540                         SetPageError(page);
3541                 }
3542
3543                 end_page_writeback(page);
3544
3545                 if (!done)
3546                         continue;
3547
3548                 end_extent_buffer_writeback(eb);
3549         }
3550
3551         bio_put(bio);
3552 }
3553
3554 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3555                         struct btrfs_fs_info *fs_info,
3556                         struct writeback_control *wbc,
3557                         struct extent_page_data *epd)
3558 {
3559         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3560         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3561         u64 offset = eb->start;
3562         unsigned long i, num_pages;
3563         unsigned long bio_flags = 0;
3564         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3565         int ret = 0;
3566
3567         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3568         num_pages = num_extent_pages(eb->start, eb->len);
3569         atomic_set(&eb->io_pages, num_pages);
3570         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3571                 bio_flags = EXTENT_BIO_TREE_LOG;
3572
3573         for (i = 0; i < num_pages; i++) {
3574                 struct page *p = extent_buffer_page(eb, i);
3575
3576                 clear_page_dirty_for_io(p);
3577                 set_page_writeback(p);
3578                 ret = submit_extent_page(rw, tree, p, offset >> 9,
3579                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3580                                          -1, end_bio_extent_buffer_writepage,
3581                                          0, epd->bio_flags, bio_flags);
3582                 epd->bio_flags = bio_flags;
3583                 if (ret) {
3584                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3585                         SetPageError(p);
3586                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3587                                 end_extent_buffer_writeback(eb);
3588                         ret = -EIO;
3589                         break;
3590                 }
3591                 offset += PAGE_CACHE_SIZE;
3592                 update_nr_written(p, wbc, 1);
3593                 unlock_page(p);
3594         }
3595
3596         if (unlikely(ret)) {
3597                 for (; i < num_pages; i++) {
3598                         struct page *p = extent_buffer_page(eb, i);
3599                         unlock_page(p);
3600                 }
3601         }
3602
3603         return ret;
3604 }
3605
3606 int btree_write_cache_pages(struct address_space *mapping,
3607                                    struct writeback_control *wbc)
3608 {
3609         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3610         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3611         struct extent_buffer *eb, *prev_eb = NULL;
3612         struct extent_page_data epd = {
3613                 .bio = NULL,
3614                 .tree = tree,
3615                 .extent_locked = 0,
3616                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3617                 .bio_flags = 0,
3618         };
3619         int ret = 0;
3620         int done = 0;
3621         int nr_to_write_done = 0;
3622         struct pagevec pvec;
3623         int nr_pages;
3624         pgoff_t index;
3625         pgoff_t end;            /* Inclusive */
3626         int scanned = 0;
3627         int tag;
3628
3629         pagevec_init(&pvec, 0);
3630         if (wbc->range_cyclic) {
3631                 index = mapping->writeback_index; /* Start from prev offset */
3632                 end = -1;
3633         } else {
3634                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3635                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3636                 scanned = 1;
3637         }
3638         if (wbc->sync_mode == WB_SYNC_ALL)
3639                 tag = PAGECACHE_TAG_TOWRITE;
3640         else
3641                 tag = PAGECACHE_TAG_DIRTY;
3642 retry:
3643         if (wbc->sync_mode == WB_SYNC_ALL)
3644                 tag_pages_for_writeback(mapping, index, end);
3645         while (!done && !nr_to_write_done && (index <= end) &&
3646                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3647                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3648                 unsigned i;
3649
3650                 scanned = 1;
3651                 for (i = 0; i < nr_pages; i++) {
3652                         struct page *page = pvec.pages[i];
3653
3654                         if (!PagePrivate(page))
3655                                 continue;
3656
3657                         if (!wbc->range_cyclic && page->index > end) {
3658                                 done = 1;
3659                                 break;
3660                         }
3661
3662                         spin_lock(&mapping->private_lock);
3663                         if (!PagePrivate(page)) {
3664                                 spin_unlock(&mapping->private_lock);
3665                                 continue;
3666                         }
3667
3668                         eb = (struct extent_buffer *)page->private;
3669
3670                         /*
3671                          * Shouldn't happen and normally this would be a BUG_ON
3672                          * but no sense in crashing the users box for something
3673                          * we can survive anyway.
3674                          */
3675                         if (WARN_ON(!eb)) {
3676                                 spin_unlock(&mapping->private_lock);
3677                                 continue;
3678                         }
3679
3680                         if (eb == prev_eb) {
3681                                 spin_unlock(&mapping->private_lock);
3682                                 continue;
3683                         }
3684
3685                         ret = atomic_inc_not_zero(&eb->refs);
3686                         spin_unlock(&mapping->private_lock);
3687                         if (!ret)
3688                                 continue;
3689
3690                         prev_eb = eb;
3691                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3692                         if (!ret) {
3693                                 free_extent_buffer(eb);
3694                                 continue;
3695                         }
3696
3697                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3698                         if (ret) {
3699                                 done = 1;
3700                                 free_extent_buffer(eb);
3701                                 break;
3702                         }
3703                         free_extent_buffer(eb);
3704
3705                         /*
3706                          * the filesystem may choose to bump up nr_to_write.
3707                          * We have to make sure to honor the new nr_to_write
3708                          * at any time
3709                          */
3710                         nr_to_write_done = wbc->nr_to_write <= 0;
3711                 }
3712                 pagevec_release(&pvec);
3713                 cond_resched();
3714         }
3715         if (!scanned && !done) {
3716                 /*
3717                  * We hit the last page and there is more work to be done: wrap
3718                  * back to the start of the file
3719                  */
3720                 scanned = 1;
3721                 index = 0;
3722                 goto retry;
3723         }
3724         flush_write_bio(&epd);
3725         return ret;
3726 }
3727
3728 /**
3729  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3730  * @mapping: address space structure to write
3731  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3732  * @writepage: function called for each page
3733  * @data: data passed to writepage function
3734  *
3735  * If a page is already under I/O, write_cache_pages() skips it, even
3736  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3737  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3738  * and msync() need to guarantee that all the data which was dirty at the time
3739  * the call was made get new I/O started against them.  If wbc->sync_mode is
3740  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3741  * existing IO to complete.
3742  */
3743 static int extent_write_cache_pages(struct extent_io_tree *tree,
3744                              struct address_space *mapping,
3745                              struct writeback_control *wbc,
3746                              writepage_t writepage, void *data,
3747                              void (*flush_fn)(void *))
3748 {
3749         struct inode *inode = mapping->host;
3750         int ret = 0;
3751         int done = 0;
3752         int err = 0;
3753         int nr_to_write_done = 0;
3754         struct pagevec pvec;
3755         int nr_pages;
3756         pgoff_t index;
3757         pgoff_t end;            /* Inclusive */
3758         int scanned = 0;
3759         int tag;
3760
3761         /*
3762          * We have to hold onto the inode so that ordered extents can do their
3763          * work when the IO finishes.  The alternative to this is failing to add
3764          * an ordered extent if the igrab() fails there and that is a huge pain
3765          * to deal with, so instead just hold onto the inode throughout the
3766          * writepages operation.  If it fails here we are freeing up the inode
3767          * anyway and we'd rather not waste our time writing out stuff that is
3768          * going to be truncated anyway.
3769          */
3770         if (!igrab(inode))
3771                 return 0;
3772
3773         pagevec_init(&pvec, 0);
3774         if (wbc->range_cyclic) {
3775                 index = mapping->writeback_index; /* Start from prev offset */
3776                 end = -1;
3777         } else {
3778                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3779                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3780                 scanned = 1;
3781         }
3782         if (wbc->sync_mode == WB_SYNC_ALL)
3783                 tag = PAGECACHE_TAG_TOWRITE;
3784         else
3785                 tag = PAGECACHE_TAG_DIRTY;
3786 retry:
3787         if (wbc->sync_mode == WB_SYNC_ALL)
3788                 tag_pages_for_writeback(mapping, index, end);
3789         while (!done && !nr_to_write_done && (index <= end) &&
3790                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3791                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3792                 unsigned i;
3793
3794                 scanned = 1;
3795                 for (i = 0; i < nr_pages; i++) {
3796                         struct page *page = pvec.pages[i];
3797
3798                         /*
3799                          * At this point we hold neither mapping->tree_lock nor
3800                          * lock on the page itself: the page may be truncated or
3801                          * invalidated (changing page->mapping to NULL), or even
3802                          * swizzled back from swapper_space to tmpfs file
3803                          * mapping
3804                          */
3805                         if (!trylock_page(page)) {
3806                                 flush_fn(data);
3807                                 lock_page(page);
3808                         }
3809
3810                         if (unlikely(page->mapping != mapping)) {
3811                                 unlock_page(page);
3812                                 continue;
3813                         }
3814
3815                         if (!wbc->range_cyclic && page->index > end) {
3816                                 done = 1;
3817                                 unlock_page(page);
3818                                 continue;
3819                         }
3820
3821                         if (wbc->sync_mode != WB_SYNC_NONE) {
3822                                 if (PageWriteback(page))
3823                                         flush_fn(data);
3824                                 wait_on_page_writeback(page);
3825                         }
3826
3827                         if (PageWriteback(page) ||
3828                             !clear_page_dirty_for_io(page)) {
3829                                 unlock_page(page);
3830                                 continue;
3831                         }
3832
3833                         ret = (*writepage)(page, wbc, data);
3834
3835                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3836                                 unlock_page(page);
3837                                 ret = 0;
3838                         }
3839                         if (!err && ret < 0)
3840                                 err = ret;
3841
3842                         /*
3843                          * the filesystem may choose to bump up nr_to_write.
3844                          * We have to make sure to honor the new nr_to_write
3845                          * at any time
3846                          */
3847                         nr_to_write_done = wbc->nr_to_write <= 0;
3848                 }
3849                 pagevec_release(&pvec);
3850                 cond_resched();
3851         }
3852         if (!scanned && !done && !err) {
3853                 /*
3854                  * We hit the last page and there is more work to be done: wrap
3855                  * back to the start of the file
3856                  */
3857                 scanned = 1;
3858                 index = 0;
3859                 goto retry;
3860         }
3861         btrfs_add_delayed_iput(inode);
3862         return err;
3863 }
3864
3865 static void flush_epd_write_bio(struct extent_page_data *epd)
3866 {
3867         if (epd->bio) {
3868                 int rw = WRITE;
3869                 int ret;
3870
3871                 if (epd->sync_io)
3872                         rw = WRITE_SYNC;
3873
3874                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3875                 BUG_ON(ret < 0); /* -ENOMEM */
3876                 epd->bio = NULL;
3877         }
3878 }
3879
3880 static noinline void flush_write_bio(void *data)
3881 {
3882         struct extent_page_data *epd = data;
3883         flush_epd_write_bio(epd);
3884 }
3885
3886 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3887                           get_extent_t *get_extent,
3888                           struct writeback_control *wbc)
3889 {
3890         int ret;
3891         struct extent_page_data epd = {
3892                 .bio = NULL,
3893                 .tree = tree,
3894                 .get_extent = get_extent,
3895                 .extent_locked = 0,
3896                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3897                 .bio_flags = 0,
3898         };
3899
3900         ret = __extent_writepage(page, wbc, &epd);
3901
3902         flush_epd_write_bio(&epd);
3903         return ret;
3904 }
3905
3906 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3907                               u64 start, u64 end, get_extent_t *get_extent,
3908                               int mode)
3909 {
3910         int ret = 0;
3911         struct address_space *mapping = inode->i_mapping;
3912         struct page *page;
3913         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3914                 PAGE_CACHE_SHIFT;
3915
3916         struct extent_page_data epd = {
3917                 .bio = NULL,
3918                 .tree = tree,
3919                 .get_extent = get_extent,
3920                 .extent_locked = 1,
3921                 .sync_io = mode == WB_SYNC_ALL,
3922                 .bio_flags = 0,
3923         };
3924         struct writeback_control wbc_writepages = {
3925                 .sync_mode      = mode,
3926                 .nr_to_write    = nr_pages * 2,
3927                 .range_start    = start,
3928                 .range_end      = end + 1,
3929         };
3930
3931         while (start <= end) {
3932                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3933                 if (clear_page_dirty_for_io(page))
3934                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3935                 else {
3936                         if (tree->ops && tree->ops->writepage_end_io_hook)
3937                                 tree->ops->writepage_end_io_hook(page, start,
3938                                                  start + PAGE_CACHE_SIZE - 1,
3939                                                  NULL, 1);
3940                         unlock_page(page);
3941                 }
3942                 page_cache_release(page);
3943                 start += PAGE_CACHE_SIZE;
3944         }
3945
3946         flush_epd_write_bio(&epd);
3947         return ret;
3948 }
3949
3950 int extent_writepages(struct extent_io_tree *tree,
3951                       struct address_space *mapping,
3952                       get_extent_t *get_extent,
3953                       struct writeback_control *wbc)
3954 {
3955         int ret = 0;
3956         struct extent_page_data epd = {
3957                 .bio = NULL,
3958                 .tree = tree,
3959                 .get_extent = get_extent,
3960                 .extent_locked = 0,
3961                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3962                 .bio_flags = 0,
3963         };
3964
3965         ret = extent_write_cache_pages(tree, mapping, wbc,
3966                                        __extent_writepage, &epd,
3967                                        flush_write_bio);
3968         flush_epd_write_bio(&epd);
3969         return ret;
3970 }
3971
3972 int extent_readpages(struct extent_io_tree *tree,
3973                      struct address_space *mapping,
3974                      struct list_head *pages, unsigned nr_pages,
3975                      get_extent_t get_extent)
3976 {
3977         struct bio *bio = NULL;
3978         unsigned page_idx;
3979         unsigned long bio_flags = 0;
3980         struct page *pagepool[16];
3981         struct page *page;
3982         struct extent_map *em_cached = NULL;
3983         int nr = 0;
3984
3985         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3986                 page = list_entry(pages->prev, struct page, lru);
3987
3988                 prefetchw(&page->flags);
3989                 list_del(&page->lru);
3990                 if (add_to_page_cache_lru(page, mapping,
3991                                         page->index, GFP_NOFS)) {
3992                         page_cache_release(page);
3993                         continue;
3994                 }
3995
3996                 pagepool[nr++] = page;
3997                 if (nr < ARRAY_SIZE(pagepool))
3998                         continue;
3999                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4000                                    &bio, 0, &bio_flags, READ);
4001                 nr = 0;
4002         }
4003         if (nr)
4004                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4005                                    &bio, 0, &bio_flags, READ);
4006
4007         if (em_cached)
4008                 free_extent_map(em_cached);
4009
4010         BUG_ON(!list_empty(pages));
4011         if (bio)
4012                 return submit_one_bio(READ, bio, 0, bio_flags);
4013         return 0;
4014 }
4015
4016 /*
4017  * basic invalidatepage code, this waits on any locked or writeback
4018  * ranges corresponding to the page, and then deletes any extent state
4019  * records from the tree
4020  */
4021 int extent_invalidatepage(struct extent_io_tree *tree,
4022                           struct page *page, unsigned long offset)
4023 {
4024         struct extent_state *cached_state = NULL;
4025         u64 start = page_offset(page);
4026         u64 end = start + PAGE_CACHE_SIZE - 1;
4027         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4028
4029         start += ALIGN(offset, blocksize);
4030         if (start > end)
4031                 return 0;
4032
4033         lock_extent_bits(tree, start, end, 0, &cached_state);
4034         wait_on_page_writeback(page);
4035         clear_extent_bit(tree, start, end,
4036                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4037                          EXTENT_DO_ACCOUNTING,
4038                          1, 1, &cached_state, GFP_NOFS);
4039         return 0;
4040 }
4041
4042 /*
4043  * a helper for releasepage, this tests for areas of the page that
4044  * are locked or under IO and drops the related state bits if it is safe
4045  * to drop the page.
4046  */
4047 static int try_release_extent_state(struct extent_map_tree *map,
4048                                     struct extent_io_tree *tree,
4049                                     struct page *page, gfp_t mask)
4050 {
4051         u64 start = page_offset(page);
4052         u64 end = start + PAGE_CACHE_SIZE - 1;
4053         int ret = 1;
4054
4055         if (test_range_bit(tree, start, end,
4056                            EXTENT_IOBITS, 0, NULL))
4057                 ret = 0;
4058         else {
4059                 if ((mask & GFP_NOFS) == GFP_NOFS)
4060                         mask = GFP_NOFS;
4061                 /*
4062                  * at this point we can safely clear everything except the
4063                  * locked bit and the nodatasum bit
4064                  */
4065                 ret = clear_extent_bit(tree, start, end,
4066                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4067                                  0, 0, NULL, mask);
4068
4069                 /* if clear_extent_bit failed for enomem reasons,
4070                  * we can't allow the release to continue.
4071                  */
4072                 if (ret < 0)
4073                         ret = 0;
4074                 else
4075                         ret = 1;
4076         }
4077         return ret;
4078 }
4079
4080 /*
4081  * a helper for releasepage.  As long as there are no locked extents
4082  * in the range corresponding to the page, both state records and extent
4083  * map records are removed
4084  */
4085 int try_release_extent_mapping(struct extent_map_tree *map,
4086                                struct extent_io_tree *tree, struct page *page,
4087                                gfp_t mask)
4088 {
4089         struct extent_map *em;
4090         u64 start = page_offset(page);
4091         u64 end = start + PAGE_CACHE_SIZE - 1;
4092
4093         if ((mask & __GFP_WAIT) &&
4094             page->mapping->host->i_size > 16 * 1024 * 1024) {
4095                 u64 len;
4096                 while (start <= end) {
4097                         len = end - start + 1;
4098                         write_lock(&map->lock);
4099                         em = lookup_extent_mapping(map, start, len);
4100                         if (!em) {
4101                                 write_unlock(&map->lock);
4102                                 break;
4103                         }
4104                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4105                             em->start != start) {
4106                                 write_unlock(&map->lock);
4107                                 free_extent_map(em);
4108                                 break;
4109                         }
4110                         if (!test_range_bit(tree, em->start,
4111                                             extent_map_end(em) - 1,
4112                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4113                                             0, NULL)) {
4114                                 remove_extent_mapping(map, em);
4115                                 /* once for the rb tree */
4116                                 free_extent_map(em);
4117                         }
4118                         start = extent_map_end(em);
4119                         write_unlock(&map->lock);
4120
4121                         /* once for us */
4122                         free_extent_map(em);
4123                 }
4124         }
4125         return try_release_extent_state(map, tree, page, mask);
4126 }
4127
4128 /*
4129  * helper function for fiemap, which doesn't want to see any holes.
4130  * This maps until we find something past 'last'
4131  */
4132 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4133                                                 u64 offset,
4134                                                 u64 last,
4135                                                 get_extent_t *get_extent)
4136 {
4137         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4138         struct extent_map *em;
4139         u64 len;
4140
4141         if (offset >= last)
4142                 return NULL;
4143
4144         while (1) {
4145                 len = last - offset;
4146                 if (len == 0)
4147                         break;
4148                 len = ALIGN(len, sectorsize);
4149                 em = get_extent(inode, NULL, 0, offset, len, 0);
4150                 if (IS_ERR_OR_NULL(em))
4151                         return em;
4152
4153                 /* if this isn't a hole return it */
4154                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4155                     em->block_start != EXTENT_MAP_HOLE) {
4156                         return em;
4157                 }
4158
4159                 /* this is a hole, advance to the next extent */
4160                 offset = extent_map_end(em);
4161                 free_extent_map(em);
4162                 if (offset >= last)
4163                         break;
4164         }
4165         return NULL;
4166 }
4167
4168 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4169 {
4170         unsigned long cnt = *((unsigned long *)ctx);
4171
4172         cnt++;
4173         *((unsigned long *)ctx) = cnt;
4174
4175         /* Now we're sure that the extent is shared. */
4176         if (cnt > 1)
4177                 return 1;
4178         return 0;
4179 }
4180
4181 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4182                 __u64 start, __u64 len, get_extent_t *get_extent)
4183 {
4184         int ret = 0;
4185         u64 off = start;
4186         u64 max = start + len;
4187         u32 flags = 0;
4188         u32 found_type;
4189         u64 last;
4190         u64 last_for_get_extent = 0;
4191         u64 disko = 0;
4192         u64 isize = i_size_read(inode);
4193         struct btrfs_key found_key;
4194         struct extent_map *em = NULL;
4195         struct extent_state *cached_state = NULL;
4196         struct btrfs_path *path;
4197         int end = 0;
4198         u64 em_start = 0;
4199         u64 em_len = 0;
4200         u64 em_end = 0;
4201
4202         if (len == 0)
4203                 return -EINVAL;
4204
4205         path = btrfs_alloc_path();
4206         if (!path)
4207                 return -ENOMEM;
4208         path->leave_spinning = 1;
4209
4210         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4211         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4212
4213         /*
4214          * lookup the last file extent.  We're not using i_size here
4215          * because there might be preallocation past i_size
4216          */
4217         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4218                                        path, btrfs_ino(inode), -1, 0);
4219         if (ret < 0) {
4220                 btrfs_free_path(path);
4221                 return ret;
4222         }
4223         WARN_ON(!ret);
4224         path->slots[0]--;
4225         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4226         found_type = btrfs_key_type(&found_key);
4227
4228         /* No extents, but there might be delalloc bits */
4229         if (found_key.objectid != btrfs_ino(inode) ||
4230             found_type != BTRFS_EXTENT_DATA_KEY) {
4231                 /* have to trust i_size as the end */
4232                 last = (u64)-1;
4233                 last_for_get_extent = isize;
4234         } else {
4235                 /*
4236                  * remember the start of the last extent.  There are a
4237                  * bunch of different factors that go into the length of the
4238                  * extent, so its much less complex to remember where it started
4239                  */
4240                 last = found_key.offset;
4241                 last_for_get_extent = last + 1;
4242         }
4243         btrfs_release_path(path);
4244
4245         /*
4246          * we might have some extents allocated but more delalloc past those
4247          * extents.  so, we trust isize unless the start of the last extent is
4248          * beyond isize
4249          */
4250         if (last < isize) {
4251                 last = (u64)-1;
4252                 last_for_get_extent = isize;
4253         }
4254
4255         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4256                          &cached_state);
4257
4258         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4259                                    get_extent);
4260         if (!em)
4261                 goto out;
4262         if (IS_ERR(em)) {
4263                 ret = PTR_ERR(em);
4264                 goto out;
4265         }
4266
4267         while (!end) {
4268                 u64 offset_in_extent = 0;
4269
4270                 /* break if the extent we found is outside the range */
4271                 if (em->start >= max || extent_map_end(em) < off)
4272                         break;
4273
4274                 /*
4275                  * get_extent may return an extent that starts before our
4276                  * requested range.  We have to make sure the ranges
4277                  * we return to fiemap always move forward and don't
4278                  * overlap, so adjust the offsets here
4279                  */
4280                 em_start = max(em->start, off);
4281
4282                 /*
4283                  * record the offset from the start of the extent
4284                  * for adjusting the disk offset below.  Only do this if the
4285                  * extent isn't compressed since our in ram offset may be past
4286                  * what we have actually allocated on disk.
4287                  */
4288                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4289                         offset_in_extent = em_start - em->start;
4290                 em_end = extent_map_end(em);
4291                 em_len = em_end - em_start;
4292                 disko = 0;
4293                 flags = 0;
4294
4295                 /*
4296                  * bump off for our next call to get_extent
4297                  */
4298                 off = extent_map_end(em);
4299                 if (off >= max)
4300                         end = 1;
4301
4302                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4303                         end = 1;
4304                         flags |= FIEMAP_EXTENT_LAST;
4305                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4306                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4307                                   FIEMAP_EXTENT_NOT_ALIGNED);
4308                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4309                         flags |= (FIEMAP_EXTENT_DELALLOC |
4310                                   FIEMAP_EXTENT_UNKNOWN);
4311                 } else {
4312                         unsigned long ref_cnt = 0;
4313
4314                         disko = em->block_start + offset_in_extent;
4315
4316                         /*
4317                          * As btrfs supports shared space, this information
4318                          * can be exported to userspace tools via
4319                          * flag FIEMAP_EXTENT_SHARED.
4320                          */
4321                         ret = iterate_inodes_from_logical(
4322                                         em->block_start,
4323                                         BTRFS_I(inode)->root->fs_info,
4324                                         path, count_ext_ref, &ref_cnt);
4325                         if (ret < 0 && ret != -ENOENT)
4326                                 goto out_free;
4327
4328                         if (ref_cnt > 1)
4329                                 flags |= FIEMAP_EXTENT_SHARED;
4330                 }
4331                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4332                         flags |= FIEMAP_EXTENT_ENCODED;
4333
4334                 free_extent_map(em);
4335                 em = NULL;
4336                 if ((em_start >= last) || em_len == (u64)-1 ||
4337                    (last == (u64)-1 && isize <= em_end)) {
4338                         flags |= FIEMAP_EXTENT_LAST;
4339                         end = 1;
4340                 }
4341
4342                 /* now scan forward to see if this is really the last extent. */
4343                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4344                                            get_extent);
4345                 if (IS_ERR(em)) {
4346                         ret = PTR_ERR(em);
4347                         goto out;
4348                 }
4349                 if (!em) {
4350                         flags |= FIEMAP_EXTENT_LAST;
4351                         end = 1;
4352                 }
4353                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4354                                               em_len, flags);
4355                 if (ret)
4356                         goto out_free;
4357         }
4358 out_free:
4359         free_extent_map(em);
4360 out:
4361         btrfs_free_path(path);
4362         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4363                              &cached_state, GFP_NOFS);
4364         return ret;
4365 }
4366
4367 static void __free_extent_buffer(struct extent_buffer *eb)
4368 {
4369         btrfs_leak_debug_del(&eb->leak_list);
4370         kmem_cache_free(extent_buffer_cache, eb);
4371 }
4372
4373 int extent_buffer_under_io(struct extent_buffer *eb)
4374 {
4375         return (atomic_read(&eb->io_pages) ||
4376                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4377                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4378 }
4379
4380 /*
4381  * Helper for releasing extent buffer page.
4382  */
4383 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4384                                                 unsigned long start_idx)
4385 {
4386         unsigned long index;
4387         unsigned long num_pages;
4388         struct page *page;
4389         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4390
4391         BUG_ON(extent_buffer_under_io(eb));
4392
4393         num_pages = num_extent_pages(eb->start, eb->len);
4394         index = start_idx + num_pages;
4395         if (start_idx >= index)
4396                 return;
4397
4398         do {
4399                 index--;
4400                 page = extent_buffer_page(eb, index);
4401                 if (page && mapped) {
4402                         spin_lock(&page->mapping->private_lock);
4403                         /*
4404                          * We do this since we'll remove the pages after we've
4405                          * removed the eb from the radix tree, so we could race
4406                          * and have this page now attached to the new eb.  So
4407                          * only clear page_private if it's still connected to
4408                          * this eb.
4409                          */
4410                         if (PagePrivate(page) &&
4411                             page->private == (unsigned long)eb) {
4412                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4413                                 BUG_ON(PageDirty(page));
4414                                 BUG_ON(PageWriteback(page));
4415                                 /*
4416                                  * We need to make sure we haven't be attached
4417                                  * to a new eb.
4418                                  */
4419                                 ClearPagePrivate(page);
4420                                 set_page_private(page, 0);
4421                                 /* One for the page private */
4422                                 page_cache_release(page);
4423                         }
4424                         spin_unlock(&page->mapping->private_lock);
4425
4426                 }
4427                 if (page) {
4428                         /* One for when we alloced the page */
4429                         page_cache_release(page);
4430                 }
4431         } while (index != start_idx);
4432 }
4433
4434 /*
4435  * Helper for releasing the extent buffer.
4436  */
4437 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4438 {
4439         btrfs_release_extent_buffer_page(eb, 0);
4440         __free_extent_buffer(eb);
4441 }
4442
4443 static struct extent_buffer *
4444 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4445                       unsigned long len, gfp_t mask)
4446 {
4447         struct extent_buffer *eb = NULL;
4448
4449         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4450         if (eb == NULL)
4451                 return NULL;
4452         eb->start = start;
4453         eb->len = len;
4454         eb->fs_info = fs_info;
4455         eb->bflags = 0;
4456         rwlock_init(&eb->lock);
4457         atomic_set(&eb->write_locks, 0);
4458         atomic_set(&eb->read_locks, 0);
4459         atomic_set(&eb->blocking_readers, 0);
4460         atomic_set(&eb->blocking_writers, 0);
4461         atomic_set(&eb->spinning_readers, 0);
4462         atomic_set(&eb->spinning_writers, 0);
4463         eb->lock_nested = 0;
4464         init_waitqueue_head(&eb->write_lock_wq);
4465         init_waitqueue_head(&eb->read_lock_wq);
4466
4467         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4468
4469         spin_lock_init(&eb->refs_lock);
4470         atomic_set(&eb->refs, 1);
4471         atomic_set(&eb->io_pages, 0);
4472
4473         /*
4474          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4475          */
4476         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4477                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4478         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4479
4480         return eb;
4481 }
4482
4483 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4484 {
4485         unsigned long i;
4486         struct page *p;
4487         struct extent_buffer *new;
4488         unsigned long num_pages = num_extent_pages(src->start, src->len);
4489
4490         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4491         if (new == NULL)
4492                 return NULL;
4493
4494         for (i = 0; i < num_pages; i++) {
4495                 p = alloc_page(GFP_NOFS);
4496                 if (!p) {
4497                         btrfs_release_extent_buffer(new);
4498                         return NULL;
4499                 }
4500                 attach_extent_buffer_page(new, p);
4501                 WARN_ON(PageDirty(p));
4502                 SetPageUptodate(p);
4503                 new->pages[i] = p;
4504         }
4505
4506         copy_extent_buffer(new, src, 0, 0, src->len);
4507         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4508         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4509
4510         return new;
4511 }
4512
4513 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4514 {
4515         struct extent_buffer *eb;
4516         unsigned long num_pages = num_extent_pages(0, len);
4517         unsigned long i;
4518
4519         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4520         if (!eb)
4521                 return NULL;
4522
4523         for (i = 0; i < num_pages; i++) {
4524                 eb->pages[i] = alloc_page(GFP_NOFS);
4525                 if (!eb->pages[i])
4526                         goto err;
4527         }
4528         set_extent_buffer_uptodate(eb);
4529         btrfs_set_header_nritems(eb, 0);
4530         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4531
4532         return eb;
4533 err:
4534         for (; i > 0; i--)
4535                 __free_page(eb->pages[i - 1]);
4536         __free_extent_buffer(eb);
4537         return NULL;
4538 }
4539
4540 static void check_buffer_tree_ref(struct extent_buffer *eb)
4541 {
4542         int refs;
4543         /* the ref bit is tricky.  We have to make sure it is set
4544          * if we have the buffer dirty.   Otherwise the
4545          * code to free a buffer can end up dropping a dirty
4546          * page
4547          *
4548          * Once the ref bit is set, it won't go away while the
4549          * buffer is dirty or in writeback, and it also won't
4550          * go away while we have the reference count on the
4551          * eb bumped.
4552          *
4553          * We can't just set the ref bit without bumping the
4554          * ref on the eb because free_extent_buffer might
4555          * see the ref bit and try to clear it.  If this happens
4556          * free_extent_buffer might end up dropping our original
4557          * ref by mistake and freeing the page before we are able
4558          * to add one more ref.
4559          *
4560          * So bump the ref count first, then set the bit.  If someone
4561          * beat us to it, drop the ref we added.
4562          */
4563         refs = atomic_read(&eb->refs);
4564         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4565                 return;
4566
4567         spin_lock(&eb->refs_lock);
4568         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4569                 atomic_inc(&eb->refs);
4570         spin_unlock(&eb->refs_lock);
4571 }
4572
4573 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4574                 struct page *accessed)
4575 {
4576         unsigned long num_pages, i;
4577
4578         check_buffer_tree_ref(eb);
4579
4580         num_pages = num_extent_pages(eb->start, eb->len);
4581         for (i = 0; i < num_pages; i++) {
4582                 struct page *p = extent_buffer_page(eb, i);
4583                 if (p != accessed)
4584                         mark_page_accessed(p);
4585         }
4586 }
4587
4588 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4589                                          u64 start)
4590 {
4591         struct extent_buffer *eb;
4592
4593         rcu_read_lock();
4594         eb = radix_tree_lookup(&fs_info->buffer_radix,
4595                                start >> PAGE_CACHE_SHIFT);
4596         if (eb && atomic_inc_not_zero(&eb->refs)) {
4597                 rcu_read_unlock();
4598                 mark_extent_buffer_accessed(eb, NULL);
4599                 return eb;
4600         }
4601         rcu_read_unlock();
4602
4603         return NULL;
4604 }
4605
4606 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4607 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4608                                                u64 start, unsigned long len)
4609 {
4610         struct extent_buffer *eb, *exists = NULL;
4611         int ret;
4612
4613         eb = find_extent_buffer(fs_info, start);
4614         if (eb)
4615                 return eb;
4616         eb = alloc_dummy_extent_buffer(start, len);
4617         if (!eb)
4618                 return NULL;
4619         eb->fs_info = fs_info;
4620 again:
4621         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4622         if (ret)
4623                 goto free_eb;
4624         spin_lock(&fs_info->buffer_lock);
4625         ret = radix_tree_insert(&fs_info->buffer_radix,
4626                                 start >> PAGE_CACHE_SHIFT, eb);
4627         spin_unlock(&fs_info->buffer_lock);
4628         radix_tree_preload_end();
4629         if (ret == -EEXIST) {
4630                 exists = find_extent_buffer(fs_info, start);
4631                 if (exists)
4632                         goto free_eb;
4633                 else
4634                         goto again;
4635         }
4636         check_buffer_tree_ref(eb);
4637         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4638
4639         /*
4640          * We will free dummy extent buffer's if they come into
4641          * free_extent_buffer with a ref count of 2, but if we are using this we
4642          * want the buffers to stay in memory until we're done with them, so
4643          * bump the ref count again.
4644          */
4645         atomic_inc(&eb->refs);
4646         return eb;
4647 free_eb:
4648         btrfs_release_extent_buffer(eb);
4649         return exists;
4650 }
4651 #endif
4652
4653 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4654                                           u64 start, unsigned long len)
4655 {
4656         unsigned long num_pages = num_extent_pages(start, len);
4657         unsigned long i;
4658         unsigned long index = start >> PAGE_CACHE_SHIFT;
4659         struct extent_buffer *eb;
4660         struct extent_buffer *exists = NULL;
4661         struct page *p;
4662         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4663         int uptodate = 1;
4664         int ret;
4665
4666         eb = find_extent_buffer(fs_info, start);
4667         if (eb)
4668                 return eb;
4669
4670         eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4671         if (!eb)
4672                 return NULL;
4673
4674         for (i = 0; i < num_pages; i++, index++) {
4675                 p = find_or_create_page(mapping, index, GFP_NOFS);
4676                 if (!p)
4677                         goto free_eb;
4678
4679                 spin_lock(&mapping->private_lock);
4680                 if (PagePrivate(p)) {
4681                         /*
4682                          * We could have already allocated an eb for this page
4683                          * and attached one so lets see if we can get a ref on
4684                          * the existing eb, and if we can we know it's good and
4685                          * we can just return that one, else we know we can just
4686                          * overwrite page->private.
4687                          */
4688                         exists = (struct extent_buffer *)p->private;
4689                         if (atomic_inc_not_zero(&exists->refs)) {
4690                                 spin_unlock(&mapping->private_lock);
4691                                 unlock_page(p);
4692                                 page_cache_release(p);
4693                                 mark_extent_buffer_accessed(exists, p);
4694                                 goto free_eb;
4695                         }
4696
4697                         /*
4698                          * Do this so attach doesn't complain and we need to
4699                          * drop the ref the old guy had.
4700                          */
4701                         ClearPagePrivate(p);
4702                         WARN_ON(PageDirty(p));
4703                         page_cache_release(p);
4704                 }
4705                 attach_extent_buffer_page(eb, p);
4706                 spin_unlock(&mapping->private_lock);
4707                 WARN_ON(PageDirty(p));
4708                 eb->pages[i] = p;
4709                 if (!PageUptodate(p))
4710                         uptodate = 0;
4711
4712                 /*
4713                  * see below about how we avoid a nasty race with release page
4714                  * and why we unlock later
4715                  */
4716         }
4717         if (uptodate)
4718                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4719 again:
4720         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4721         if (ret)
4722                 goto free_eb;
4723
4724         spin_lock(&fs_info->buffer_lock);
4725         ret = radix_tree_insert(&fs_info->buffer_radix,
4726                                 start >> PAGE_CACHE_SHIFT, eb);
4727         spin_unlock(&fs_info->buffer_lock);
4728         radix_tree_preload_end();
4729         if (ret == -EEXIST) {
4730                 exists = find_extent_buffer(fs_info, start);
4731                 if (exists)
4732                         goto free_eb;
4733                 else
4734                         goto again;
4735         }
4736         /* add one reference for the tree */
4737         check_buffer_tree_ref(eb);
4738         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4739
4740         /*
4741          * there is a race where release page may have
4742          * tried to find this extent buffer in the radix
4743          * but failed.  It will tell the VM it is safe to
4744          * reclaim the, and it will clear the page private bit.
4745          * We must make sure to set the page private bit properly
4746          * after the extent buffer is in the radix tree so
4747          * it doesn't get lost
4748          */
4749         SetPageChecked(eb->pages[0]);
4750         for (i = 1; i < num_pages; i++) {
4751                 p = extent_buffer_page(eb, i);
4752                 ClearPageChecked(p);
4753                 unlock_page(p);
4754         }
4755         unlock_page(eb->pages[0]);
4756         return eb;
4757
4758 free_eb:
4759         for (i = 0; i < num_pages; i++) {
4760                 if (eb->pages[i])
4761                         unlock_page(eb->pages[i]);
4762         }
4763
4764         WARN_ON(!atomic_dec_and_test(&eb->refs));
4765         btrfs_release_extent_buffer(eb);
4766         return exists;
4767 }
4768
4769 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4770 {
4771         struct extent_buffer *eb =
4772                         container_of(head, struct extent_buffer, rcu_head);
4773
4774         __free_extent_buffer(eb);
4775 }
4776
4777 /* Expects to have eb->eb_lock already held */
4778 static int release_extent_buffer(struct extent_buffer *eb)
4779 {
4780         WARN_ON(atomic_read(&eb->refs) == 0);
4781         if (atomic_dec_and_test(&eb->refs)) {
4782                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4783                         struct btrfs_fs_info *fs_info = eb->fs_info;
4784
4785                         spin_unlock(&eb->refs_lock);
4786
4787                         spin_lock(&fs_info->buffer_lock);
4788                         radix_tree_delete(&fs_info->buffer_radix,
4789                                           eb->start >> PAGE_CACHE_SHIFT);
4790                         spin_unlock(&fs_info->buffer_lock);
4791                 } else {
4792                         spin_unlock(&eb->refs_lock);
4793                 }
4794
4795                 /* Should be safe to release our pages at this point */
4796                 btrfs_release_extent_buffer_page(eb, 0);
4797                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4798                 return 1;
4799         }
4800         spin_unlock(&eb->refs_lock);
4801
4802         return 0;
4803 }
4804
4805 void free_extent_buffer(struct extent_buffer *eb)
4806 {
4807         int refs;
4808         int old;
4809         if (!eb)
4810                 return;
4811
4812         while (1) {
4813                 refs = atomic_read(&eb->refs);
4814                 if (refs <= 3)
4815                         break;
4816                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4817                 if (old == refs)
4818                         return;
4819         }
4820
4821         spin_lock(&eb->refs_lock);
4822         if (atomic_read(&eb->refs) == 2 &&
4823             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4824                 atomic_dec(&eb->refs);
4825
4826         if (atomic_read(&eb->refs) == 2 &&
4827             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4828             !extent_buffer_under_io(eb) &&
4829             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4830                 atomic_dec(&eb->refs);
4831
4832         /*
4833          * I know this is terrible, but it's temporary until we stop tracking
4834          * the uptodate bits and such for the extent buffers.
4835          */
4836         release_extent_buffer(eb);
4837 }
4838
4839 void free_extent_buffer_stale(struct extent_buffer *eb)
4840 {
4841         if (!eb)
4842                 return;
4843
4844         spin_lock(&eb->refs_lock);
4845         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4846
4847         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4848             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4849                 atomic_dec(&eb->refs);
4850         release_extent_buffer(eb);
4851 }
4852
4853 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4854 {
4855         unsigned long i;
4856         unsigned long num_pages;
4857         struct page *page;
4858
4859         num_pages = num_extent_pages(eb->start, eb->len);
4860
4861         for (i = 0; i < num_pages; i++) {
4862                 page = extent_buffer_page(eb, i);
4863                 if (!PageDirty(page))
4864                         continue;
4865
4866                 lock_page(page);
4867                 WARN_ON(!PagePrivate(page));
4868
4869                 clear_page_dirty_for_io(page);
4870                 spin_lock_irq(&page->mapping->tree_lock);
4871                 if (!PageDirty(page)) {
4872                         radix_tree_tag_clear(&page->mapping->page_tree,
4873                                                 page_index(page),
4874                                                 PAGECACHE_TAG_DIRTY);
4875                 }
4876                 spin_unlock_irq(&page->mapping->tree_lock);
4877                 ClearPageError(page);
4878                 unlock_page(page);
4879         }
4880         WARN_ON(atomic_read(&eb->refs) == 0);
4881 }
4882
4883 int set_extent_buffer_dirty(struct extent_buffer *eb)
4884 {
4885         unsigned long i;
4886         unsigned long num_pages;
4887         int was_dirty = 0;
4888
4889         check_buffer_tree_ref(eb);
4890
4891         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4892
4893         num_pages = num_extent_pages(eb->start, eb->len);
4894         WARN_ON(atomic_read(&eb->refs) == 0);
4895         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4896
4897         for (i = 0; i < num_pages; i++)
4898                 set_page_dirty(extent_buffer_page(eb, i));
4899         return was_dirty;
4900 }
4901
4902 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4903 {
4904         unsigned long i;
4905         struct page *page;
4906         unsigned long num_pages;
4907
4908         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4909         num_pages = num_extent_pages(eb->start, eb->len);
4910         for (i = 0; i < num_pages; i++) {
4911                 page = extent_buffer_page(eb, i);
4912                 if (page)
4913                         ClearPageUptodate(page);
4914         }
4915         return 0;
4916 }
4917
4918 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4919 {
4920         unsigned long i;
4921         struct page *page;
4922         unsigned long num_pages;
4923
4924         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4925         num_pages = num_extent_pages(eb->start, eb->len);
4926         for (i = 0; i < num_pages; i++) {
4927                 page = extent_buffer_page(eb, i);
4928                 SetPageUptodate(page);
4929         }
4930         return 0;
4931 }
4932
4933 int extent_buffer_uptodate(struct extent_buffer *eb)
4934 {
4935         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4936 }
4937
4938 int read_extent_buffer_pages(struct extent_io_tree *tree,
4939                              struct extent_buffer *eb, u64 start, int wait,
4940                              get_extent_t *get_extent, int mirror_num)
4941 {
4942         unsigned long i;
4943         unsigned long start_i;
4944         struct page *page;
4945         int err;
4946         int ret = 0;
4947         int locked_pages = 0;
4948         int all_uptodate = 1;
4949         unsigned long num_pages;
4950         unsigned long num_reads = 0;
4951         struct bio *bio = NULL;
4952         unsigned long bio_flags = 0;
4953
4954         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4955                 return 0;
4956
4957         if (start) {
4958                 WARN_ON(start < eb->start);
4959                 start_i = (start >> PAGE_CACHE_SHIFT) -
4960                         (eb->start >> PAGE_CACHE_SHIFT);
4961         } else {
4962                 start_i = 0;
4963         }
4964
4965         num_pages = num_extent_pages(eb->start, eb->len);
4966         for (i = start_i; i < num_pages; i++) {
4967                 page = extent_buffer_page(eb, i);
4968                 if (wait == WAIT_NONE) {
4969                         if (!trylock_page(page))
4970                                 goto unlock_exit;
4971                 } else {
4972                         lock_page(page);
4973                 }
4974                 locked_pages++;
4975                 if (!PageUptodate(page)) {
4976                         num_reads++;
4977                         all_uptodate = 0;
4978                 }
4979         }
4980         if (all_uptodate) {
4981                 if (start_i == 0)
4982                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4983                 goto unlock_exit;
4984         }
4985
4986         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4987         eb->read_mirror = 0;
4988         atomic_set(&eb->io_pages, num_reads);
4989         for (i = start_i; i < num_pages; i++) {
4990                 page = extent_buffer_page(eb, i);
4991                 if (!PageUptodate(page)) {
4992                         ClearPageError(page);
4993                         err = __extent_read_full_page(tree, page,
4994                                                       get_extent, &bio,
4995                                                       mirror_num, &bio_flags,
4996                                                       READ | REQ_META);
4997                         if (err)
4998                                 ret = err;
4999                 } else {
5000                         unlock_page(page);
5001                 }
5002         }
5003
5004         if (bio) {
5005                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5006                                      bio_flags);
5007                 if (err)
5008                         return err;
5009         }
5010
5011         if (ret || wait != WAIT_COMPLETE)
5012                 return ret;
5013
5014         for (i = start_i; i < num_pages; i++) {
5015                 page = extent_buffer_page(eb, i);
5016                 wait_on_page_locked(page);
5017                 if (!PageUptodate(page))
5018                         ret = -EIO;
5019         }
5020
5021         return ret;
5022
5023 unlock_exit:
5024         i = start_i;
5025         while (locked_pages > 0) {
5026                 page = extent_buffer_page(eb, i);
5027                 i++;
5028                 unlock_page(page);
5029                 locked_pages--;
5030         }
5031         return ret;
5032 }
5033
5034 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5035                         unsigned long start,
5036                         unsigned long len)
5037 {
5038         size_t cur;
5039         size_t offset;
5040         struct page *page;
5041         char *kaddr;
5042         char *dst = (char *)dstv;
5043         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5044         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5045
5046         WARN_ON(start > eb->len);
5047         WARN_ON(start + len > eb->start + eb->len);
5048
5049         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5050
5051         while (len > 0) {
5052                 page = extent_buffer_page(eb, i);
5053
5054                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5055                 kaddr = page_address(page);
5056                 memcpy(dst, kaddr + offset, cur);
5057
5058                 dst += cur;
5059                 len -= cur;
5060                 offset = 0;
5061                 i++;
5062         }
5063 }
5064
5065 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5066                         unsigned long start,
5067                         unsigned long len)
5068 {
5069         size_t cur;
5070         size_t offset;
5071         struct page *page;
5072         char *kaddr;
5073         char __user *dst = (char __user *)dstv;
5074         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5075         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5076         int ret = 0;
5077
5078         WARN_ON(start > eb->len);
5079         WARN_ON(start + len > eb->start + eb->len);
5080
5081         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5082
5083         while (len > 0) {
5084                 page = extent_buffer_page(eb, i);
5085
5086                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5087                 kaddr = page_address(page);
5088                 if (copy_to_user(dst, kaddr + offset, cur)) {
5089                         ret = -EFAULT;
5090                         break;
5091                 }
5092
5093                 dst += cur;
5094                 len -= cur;
5095                 offset = 0;
5096                 i++;
5097         }
5098
5099         return ret;
5100 }
5101
5102 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5103                                unsigned long min_len, char **map,
5104                                unsigned long *map_start,
5105                                unsigned long *map_len)
5106 {
5107         size_t offset = start & (PAGE_CACHE_SIZE - 1);
5108         char *kaddr;
5109         struct page *p;
5110         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5111         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5112         unsigned long end_i = (start_offset + start + min_len - 1) >>
5113                 PAGE_CACHE_SHIFT;
5114
5115         if (i != end_i)
5116                 return -EINVAL;
5117
5118         if (i == 0) {
5119                 offset = start_offset;
5120                 *map_start = 0;
5121         } else {
5122                 offset = 0;
5123                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5124         }
5125
5126         if (start + min_len > eb->len) {
5127                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5128                        "wanted %lu %lu\n",
5129                        eb->start, eb->len, start, min_len);
5130                 return -EINVAL;
5131         }
5132
5133         p = extent_buffer_page(eb, i);
5134         kaddr = page_address(p);
5135         *map = kaddr + offset;
5136         *map_len = PAGE_CACHE_SIZE - offset;
5137         return 0;
5138 }
5139
5140 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5141                           unsigned long start,
5142                           unsigned long len)
5143 {
5144         size_t cur;
5145         size_t offset;
5146         struct page *page;
5147         char *kaddr;
5148         char *ptr = (char *)ptrv;
5149         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5150         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5151         int ret = 0;
5152
5153         WARN_ON(start > eb->len);
5154         WARN_ON(start + len > eb->start + eb->len);
5155
5156         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5157
5158         while (len > 0) {
5159                 page = extent_buffer_page(eb, i);
5160
5161                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5162
5163                 kaddr = page_address(page);
5164                 ret = memcmp(ptr, kaddr + offset, cur);
5165                 if (ret)
5166                         break;
5167
5168                 ptr += cur;
5169                 len -= cur;
5170                 offset = 0;
5171                 i++;
5172         }
5173         return ret;
5174 }
5175
5176 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5177                          unsigned long start, unsigned long len)
5178 {
5179         size_t cur;
5180         size_t offset;
5181         struct page *page;
5182         char *kaddr;
5183         char *src = (char *)srcv;
5184         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5185         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5186
5187         WARN_ON(start > eb->len);
5188         WARN_ON(start + len > eb->start + eb->len);
5189
5190         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5191
5192         while (len > 0) {
5193                 page = extent_buffer_page(eb, i);
5194                 WARN_ON(!PageUptodate(page));
5195
5196                 cur = min(len, PAGE_CACHE_SIZE - offset);
5197                 kaddr = page_address(page);
5198                 memcpy(kaddr + offset, src, cur);
5199
5200                 src += cur;
5201                 len -= cur;
5202                 offset = 0;
5203                 i++;
5204         }
5205 }
5206
5207 void memset_extent_buffer(struct extent_buffer *eb, char c,
5208                           unsigned long start, unsigned long len)
5209 {
5210         size_t cur;
5211         size_t offset;
5212         struct page *page;
5213         char *kaddr;
5214         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5215         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5216
5217         WARN_ON(start > eb->len);
5218         WARN_ON(start + len > eb->start + eb->len);
5219
5220         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5221
5222         while (len > 0) {
5223                 page = extent_buffer_page(eb, i);
5224                 WARN_ON(!PageUptodate(page));
5225
5226                 cur = min(len, PAGE_CACHE_SIZE - offset);
5227                 kaddr = page_address(page);
5228                 memset(kaddr + offset, c, cur);
5229
5230                 len -= cur;
5231                 offset = 0;
5232                 i++;
5233         }
5234 }
5235
5236 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5237                         unsigned long dst_offset, unsigned long src_offset,
5238                         unsigned long len)
5239 {
5240         u64 dst_len = dst->len;
5241         size_t cur;
5242         size_t offset;
5243         struct page *page;
5244         char *kaddr;
5245         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5246         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5247
5248         WARN_ON(src->len != dst_len);
5249
5250         offset = (start_offset + dst_offset) &
5251                 (PAGE_CACHE_SIZE - 1);
5252
5253         while (len > 0) {
5254                 page = extent_buffer_page(dst, i);
5255                 WARN_ON(!PageUptodate(page));
5256
5257                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5258
5259                 kaddr = page_address(page);
5260                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5261
5262                 src_offset += cur;
5263                 len -= cur;
5264                 offset = 0;
5265                 i++;
5266         }
5267 }
5268
5269 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5270 {
5271         unsigned long distance = (src > dst) ? src - dst : dst - src;
5272         return distance < len;
5273 }
5274
5275 static void copy_pages(struct page *dst_page, struct page *src_page,
5276                        unsigned long dst_off, unsigned long src_off,
5277                        unsigned long len)
5278 {
5279         char *dst_kaddr = page_address(dst_page);
5280         char *src_kaddr;
5281         int must_memmove = 0;
5282
5283         if (dst_page != src_page) {
5284                 src_kaddr = page_address(src_page);
5285         } else {
5286                 src_kaddr = dst_kaddr;
5287                 if (areas_overlap(src_off, dst_off, len))
5288                         must_memmove = 1;
5289         }
5290
5291         if (must_memmove)
5292                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5293         else
5294                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5295 }
5296
5297 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5298                            unsigned long src_offset, unsigned long len)
5299 {
5300         size_t cur;
5301         size_t dst_off_in_page;
5302         size_t src_off_in_page;
5303         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5304         unsigned long dst_i;
5305         unsigned long src_i;
5306
5307         if (src_offset + len > dst->len) {
5308                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5309                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5310                 BUG_ON(1);
5311         }
5312         if (dst_offset + len > dst->len) {
5313                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5314                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5315                 BUG_ON(1);
5316         }
5317
5318         while (len > 0) {
5319                 dst_off_in_page = (start_offset + dst_offset) &
5320                         (PAGE_CACHE_SIZE - 1);
5321                 src_off_in_page = (start_offset + src_offset) &
5322                         (PAGE_CACHE_SIZE - 1);
5323
5324                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5325                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5326
5327                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5328                                                src_off_in_page));
5329                 cur = min_t(unsigned long, cur,
5330                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5331
5332                 copy_pages(extent_buffer_page(dst, dst_i),
5333                            extent_buffer_page(dst, src_i),
5334                            dst_off_in_page, src_off_in_page, cur);
5335
5336                 src_offset += cur;
5337                 dst_offset += cur;
5338                 len -= cur;
5339         }
5340 }
5341
5342 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5343                            unsigned long src_offset, unsigned long len)
5344 {
5345         size_t cur;
5346         size_t dst_off_in_page;
5347         size_t src_off_in_page;
5348         unsigned long dst_end = dst_offset + len - 1;
5349         unsigned long src_end = src_offset + len - 1;
5350         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5351         unsigned long dst_i;
5352         unsigned long src_i;
5353
5354         if (src_offset + len > dst->len) {
5355                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5356                        "len %lu len %lu\n", src_offset, len, dst->len);
5357                 BUG_ON(1);
5358         }
5359         if (dst_offset + len > dst->len) {
5360                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5361                        "len %lu len %lu\n", dst_offset, len, dst->len);
5362                 BUG_ON(1);
5363         }
5364         if (dst_offset < src_offset) {
5365                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5366                 return;
5367         }
5368         while (len > 0) {
5369                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5370                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5371
5372                 dst_off_in_page = (start_offset + dst_end) &
5373                         (PAGE_CACHE_SIZE - 1);
5374                 src_off_in_page = (start_offset + src_end) &
5375                         (PAGE_CACHE_SIZE - 1);
5376
5377                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5378                 cur = min(cur, dst_off_in_page + 1);
5379                 copy_pages(extent_buffer_page(dst, dst_i),
5380                            extent_buffer_page(dst, src_i),
5381                            dst_off_in_page - cur + 1,
5382                            src_off_in_page - cur + 1, cur);
5383
5384                 dst_end -= cur;
5385                 src_end -= cur;
5386                 len -= cur;
5387         }
5388 }
5389
5390 int try_release_extent_buffer(struct page *page)
5391 {
5392         struct extent_buffer *eb;
5393
5394         /*
5395          * We need to make sure noboody is attaching this page to an eb right
5396          * now.
5397          */
5398         spin_lock(&page->mapping->private_lock);
5399         if (!PagePrivate(page)) {
5400                 spin_unlock(&page->mapping->private_lock);
5401                 return 1;
5402         }
5403
5404         eb = (struct extent_buffer *)page->private;
5405         BUG_ON(!eb);
5406
5407         /*
5408          * This is a little awful but should be ok, we need to make sure that
5409          * the eb doesn't disappear out from under us while we're looking at
5410          * this page.
5411          */
5412         spin_lock(&eb->refs_lock);
5413         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5414                 spin_unlock(&eb->refs_lock);
5415                 spin_unlock(&page->mapping->private_lock);
5416                 return 0;
5417         }
5418         spin_unlock(&page->mapping->private_lock);
5419
5420         /*
5421          * If tree ref isn't set then we know the ref on this eb is a real ref,
5422          * so just return, this page will likely be freed soon anyway.
5423          */
5424         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5425                 spin_unlock(&eb->refs_lock);
5426                 return 0;
5427         }
5428
5429         return release_extent_buffer(eb);
5430 }