1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
23 #include "rcu-string.h"
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
31 static inline bool extent_state_in_tree(const struct extent_state *state)
33 return !RB_EMPTY_NODE(&state->rb_node);
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
40 static DEFINE_SPINLOCK(leak_lock);
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
47 spin_lock_irqsave(&leak_lock, flags);
49 spin_unlock_irqrestore(&leak_lock, flags);
53 void btrfs_leak_debug_del(struct list_head *entry)
57 spin_lock_irqsave(&leak_lock, flags);
59 spin_unlock_irqrestore(&leak_lock, flags);
63 void btrfs_leak_debug_check(void)
65 struct extent_state *state;
66 struct extent_buffer *eb;
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
92 struct inode *inode = tree->private_data;
95 if (!inode || !is_data_inode(inode))
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
112 #define BUFFER_LRU_MAX 64
117 struct rb_node rb_node;
120 struct extent_page_data {
122 struct extent_io_tree *tree;
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
126 unsigned int extent_locked:1;
128 /* tells the submit_bio code to use REQ_SYNC */
129 unsigned int sync_io:1;
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133 struct extent_changeset *changeset,
140 if (set && (state->state & bits) == bits)
142 if (!set && (state->state & bits) == 0)
144 changeset->bytes_changed += state->end - state->start + 1;
145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
150 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
151 unsigned long bio_flags)
153 blk_status_t ret = 0;
154 struct bio_vec *bvec = bio_last_bvec_all(bio);
155 struct page *page = bvec->bv_page;
156 struct extent_io_tree *tree = bio->bi_private;
159 start = page_offset(page) + bvec->bv_offset;
161 bio->bi_private = NULL;
164 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
165 mirror_num, bio_flags, start);
167 btrfsic_submit_bio(bio);
169 return blk_status_to_errno(ret);
172 static void flush_write_bio(struct extent_page_data *epd)
177 ret = submit_one_bio(epd->bio, 0, 0);
178 BUG_ON(ret < 0); /* -ENOMEM */
183 int __init extent_io_init(void)
185 extent_state_cache = kmem_cache_create("btrfs_extent_state",
186 sizeof(struct extent_state), 0,
187 SLAB_MEM_SPREAD, NULL);
188 if (!extent_state_cache)
191 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
192 sizeof(struct extent_buffer), 0,
193 SLAB_MEM_SPREAD, NULL);
194 if (!extent_buffer_cache)
195 goto free_state_cache;
197 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
198 offsetof(struct btrfs_io_bio, bio),
200 goto free_buffer_cache;
202 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
208 bioset_exit(&btrfs_bioset);
211 kmem_cache_destroy(extent_buffer_cache);
212 extent_buffer_cache = NULL;
215 kmem_cache_destroy(extent_state_cache);
216 extent_state_cache = NULL;
220 void __cold extent_io_exit(void)
222 btrfs_leak_debug_check();
225 * Make sure all delayed rcu free are flushed before we
229 kmem_cache_destroy(extent_state_cache);
230 kmem_cache_destroy(extent_buffer_cache);
231 bioset_exit(&btrfs_bioset);
234 void extent_io_tree_init(struct extent_io_tree *tree,
237 tree->state = RB_ROOT;
239 tree->dirty_bytes = 0;
240 spin_lock_init(&tree->lock);
241 tree->private_data = private_data;
244 static struct extent_state *alloc_extent_state(gfp_t mask)
246 struct extent_state *state;
249 * The given mask might be not appropriate for the slab allocator,
250 * drop the unsupported bits
252 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
253 state = kmem_cache_alloc(extent_state_cache, mask);
257 state->failrec = NULL;
258 RB_CLEAR_NODE(&state->rb_node);
259 btrfs_leak_debug_add(&state->leak_list, &states);
260 refcount_set(&state->refs, 1);
261 init_waitqueue_head(&state->wq);
262 trace_alloc_extent_state(state, mask, _RET_IP_);
266 void free_extent_state(struct extent_state *state)
270 if (refcount_dec_and_test(&state->refs)) {
271 WARN_ON(extent_state_in_tree(state));
272 btrfs_leak_debug_del(&state->leak_list);
273 trace_free_extent_state(state, _RET_IP_);
274 kmem_cache_free(extent_state_cache, state);
278 static struct rb_node *tree_insert(struct rb_root *root,
279 struct rb_node *search_start,
281 struct rb_node *node,
282 struct rb_node ***p_in,
283 struct rb_node **parent_in)
286 struct rb_node *parent = NULL;
287 struct tree_entry *entry;
289 if (p_in && parent_in) {
295 p = search_start ? &search_start : &root->rb_node;
298 entry = rb_entry(parent, struct tree_entry, rb_node);
300 if (offset < entry->start)
302 else if (offset > entry->end)
309 rb_link_node(node, parent, p);
310 rb_insert_color(node, root);
314 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
315 struct rb_node **next_ret,
316 struct rb_node **prev_ret,
317 struct rb_node ***p_ret,
318 struct rb_node **parent_ret)
320 struct rb_root *root = &tree->state;
321 struct rb_node **n = &root->rb_node;
322 struct rb_node *prev = NULL;
323 struct rb_node *orig_prev = NULL;
324 struct tree_entry *entry;
325 struct tree_entry *prev_entry = NULL;
329 entry = rb_entry(prev, struct tree_entry, rb_node);
332 if (offset < entry->start)
334 else if (offset > entry->end)
347 while (prev && offset > prev_entry->end) {
348 prev = rb_next(prev);
349 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
356 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
357 while (prev && offset < prev_entry->start) {
358 prev = rb_prev(prev);
359 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
366 static inline struct rb_node *
367 tree_search_for_insert(struct extent_io_tree *tree,
369 struct rb_node ***p_ret,
370 struct rb_node **parent_ret)
372 struct rb_node *next= NULL;
375 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
381 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
384 return tree_search_for_insert(tree, offset, NULL, NULL);
388 * utility function to look for merge candidates inside a given range.
389 * Any extents with matching state are merged together into a single
390 * extent in the tree. Extents with EXTENT_IO in their state field
391 * are not merged because the end_io handlers need to be able to do
392 * operations on them without sleeping (or doing allocations/splits).
394 * This should be called with the tree lock held.
396 static void merge_state(struct extent_io_tree *tree,
397 struct extent_state *state)
399 struct extent_state *other;
400 struct rb_node *other_node;
402 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
405 other_node = rb_prev(&state->rb_node);
407 other = rb_entry(other_node, struct extent_state, rb_node);
408 if (other->end == state->start - 1 &&
409 other->state == state->state) {
410 if (tree->private_data &&
411 is_data_inode(tree->private_data))
412 btrfs_merge_delalloc_extent(tree->private_data,
414 state->start = other->start;
415 rb_erase(&other->rb_node, &tree->state);
416 RB_CLEAR_NODE(&other->rb_node);
417 free_extent_state(other);
420 other_node = rb_next(&state->rb_node);
422 other = rb_entry(other_node, struct extent_state, rb_node);
423 if (other->start == state->end + 1 &&
424 other->state == state->state) {
425 if (tree->private_data &&
426 is_data_inode(tree->private_data))
427 btrfs_merge_delalloc_extent(tree->private_data,
429 state->end = other->end;
430 rb_erase(&other->rb_node, &tree->state);
431 RB_CLEAR_NODE(&other->rb_node);
432 free_extent_state(other);
437 static void set_state_bits(struct extent_io_tree *tree,
438 struct extent_state *state, unsigned *bits,
439 struct extent_changeset *changeset);
442 * insert an extent_state struct into the tree. 'bits' are set on the
443 * struct before it is inserted.
445 * This may return -EEXIST if the extent is already there, in which case the
446 * state struct is freed.
448 * The tree lock is not taken internally. This is a utility function and
449 * probably isn't what you want to call (see set/clear_extent_bit).
451 static int insert_state(struct extent_io_tree *tree,
452 struct extent_state *state, u64 start, u64 end,
454 struct rb_node **parent,
455 unsigned *bits, struct extent_changeset *changeset)
457 struct rb_node *node;
460 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
462 state->start = start;
465 set_state_bits(tree, state, bits, changeset);
467 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
469 struct extent_state *found;
470 found = rb_entry(node, struct extent_state, rb_node);
471 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
472 found->start, found->end, start, end);
475 merge_state(tree, state);
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
490 * The tree locks are not taken by this function. They need to be held
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
496 struct rb_node *node;
498 if (tree->private_data && is_data_inode(tree->private_data))
499 btrfs_split_delalloc_extent(tree->private_data, orig, split);
501 prealloc->start = orig->start;
502 prealloc->end = split - 1;
503 prealloc->state = orig->state;
506 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
507 &prealloc->rb_node, NULL, NULL);
509 free_extent_state(prealloc);
515 static struct extent_state *next_state(struct extent_state *state)
517 struct rb_node *next = rb_next(&state->rb_node);
519 return rb_entry(next, struct extent_state, rb_node);
525 * utility function to clear some bits in an extent state struct.
526 * it will optionally wake up anyone waiting on this state (wake == 1).
528 * If no bits are set on the state struct after clearing things, the
529 * struct is freed and removed from the tree
531 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
532 struct extent_state *state,
533 unsigned *bits, int wake,
534 struct extent_changeset *changeset)
536 struct extent_state *next;
537 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
546 if (tree->private_data && is_data_inode(tree->private_data))
547 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
549 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
551 state->state &= ~bits_to_clear;
554 if (state->state == 0) {
555 next = next_state(state);
556 if (extent_state_in_tree(state)) {
557 rb_erase(&state->rb_node, &tree->state);
558 RB_CLEAR_NODE(&state->rb_node);
559 free_extent_state(state);
564 merge_state(tree, state);
565 next = next_state(state);
570 static struct extent_state *
571 alloc_extent_state_atomic(struct extent_state *prealloc)
574 prealloc = alloc_extent_state(GFP_ATOMIC);
579 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
581 struct inode *inode = tree->private_data;
583 btrfs_panic(btrfs_sb(inode->i_sb), err,
584 "locking error: extent tree was modified by another thread while locked");
588 * clear some bits on a range in the tree. This may require splitting
589 * or inserting elements in the tree, so the gfp mask is used to
590 * indicate which allocations or sleeping are allowed.
592 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
593 * the given range from the tree regardless of state (ie for truncate).
595 * the range [start, end] is inclusive.
597 * This takes the tree lock, and returns 0 on success and < 0 on error.
599 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
600 unsigned bits, int wake, int delete,
601 struct extent_state **cached_state,
602 gfp_t mask, struct extent_changeset *changeset)
604 struct extent_state *state;
605 struct extent_state *cached;
606 struct extent_state *prealloc = NULL;
607 struct rb_node *node;
612 btrfs_debug_check_extent_io_range(tree, start, end);
614 if (bits & EXTENT_DELALLOC)
615 bits |= EXTENT_NORESERVE;
618 bits |= ~EXTENT_CTLBITS;
620 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
623 if (!prealloc && gfpflags_allow_blocking(mask)) {
625 * Don't care for allocation failure here because we might end
626 * up not needing the pre-allocated extent state at all, which
627 * is the case if we only have in the tree extent states that
628 * cover our input range and don't cover too any other range.
629 * If we end up needing a new extent state we allocate it later.
631 prealloc = alloc_extent_state(mask);
634 spin_lock(&tree->lock);
636 cached = *cached_state;
639 *cached_state = NULL;
643 if (cached && extent_state_in_tree(cached) &&
644 cached->start <= start && cached->end > start) {
646 refcount_dec(&cached->refs);
651 free_extent_state(cached);
654 * this search will find the extents that end after
657 node = tree_search(tree, start);
660 state = rb_entry(node, struct extent_state, rb_node);
662 if (state->start > end)
664 WARN_ON(state->end < start);
665 last_end = state->end;
667 /* the state doesn't have the wanted bits, go ahead */
668 if (!(state->state & bits)) {
669 state = next_state(state);
674 * | ---- desired range ---- |
676 * | ------------- state -------------- |
678 * We need to split the extent we found, and may flip
679 * bits on second half.
681 * If the extent we found extends past our range, we
682 * just split and search again. It'll get split again
683 * the next time though.
685 * If the extent we found is inside our range, we clear
686 * the desired bit on it.
689 if (state->start < start) {
690 prealloc = alloc_extent_state_atomic(prealloc);
692 err = split_state(tree, state, prealloc, start);
694 extent_io_tree_panic(tree, err);
699 if (state->end <= end) {
700 state = clear_state_bit(tree, state, &bits, wake,
707 * | ---- desired range ---- |
709 * We need to split the extent, and clear the bit
712 if (state->start <= end && state->end > end) {
713 prealloc = alloc_extent_state_atomic(prealloc);
715 err = split_state(tree, state, prealloc, end + 1);
717 extent_io_tree_panic(tree, err);
722 clear_state_bit(tree, prealloc, &bits, wake, changeset);
728 state = clear_state_bit(tree, state, &bits, wake, changeset);
730 if (last_end == (u64)-1)
732 start = last_end + 1;
733 if (start <= end && state && !need_resched())
739 spin_unlock(&tree->lock);
740 if (gfpflags_allow_blocking(mask))
745 spin_unlock(&tree->lock);
747 free_extent_state(prealloc);
753 static void wait_on_state(struct extent_io_tree *tree,
754 struct extent_state *state)
755 __releases(tree->lock)
756 __acquires(tree->lock)
759 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
760 spin_unlock(&tree->lock);
762 spin_lock(&tree->lock);
763 finish_wait(&state->wq, &wait);
767 * waits for one or more bits to clear on a range in the state tree.
768 * The range [start, end] is inclusive.
769 * The tree lock is taken by this function
771 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
774 struct extent_state *state;
775 struct rb_node *node;
777 btrfs_debug_check_extent_io_range(tree, start, end);
779 spin_lock(&tree->lock);
783 * this search will find all the extents that end after
786 node = tree_search(tree, start);
791 state = rb_entry(node, struct extent_state, rb_node);
793 if (state->start > end)
796 if (state->state & bits) {
797 start = state->start;
798 refcount_inc(&state->refs);
799 wait_on_state(tree, state);
800 free_extent_state(state);
803 start = state->end + 1;
808 if (!cond_resched_lock(&tree->lock)) {
809 node = rb_next(node);
814 spin_unlock(&tree->lock);
817 static void set_state_bits(struct extent_io_tree *tree,
818 struct extent_state *state,
819 unsigned *bits, struct extent_changeset *changeset)
821 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
824 if (tree->private_data && is_data_inode(tree->private_data))
825 btrfs_set_delalloc_extent(tree->private_data, state, bits);
827 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
828 u64 range = state->end - state->start + 1;
829 tree->dirty_bytes += range;
831 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
833 state->state |= bits_to_set;
836 static void cache_state_if_flags(struct extent_state *state,
837 struct extent_state **cached_ptr,
840 if (cached_ptr && !(*cached_ptr)) {
841 if (!flags || (state->state & flags)) {
843 refcount_inc(&state->refs);
848 static void cache_state(struct extent_state *state,
849 struct extent_state **cached_ptr)
851 return cache_state_if_flags(state, cached_ptr,
852 EXTENT_IOBITS | EXTENT_BOUNDARY);
856 * set some bits on a range in the tree. This may require allocations or
857 * sleeping, so the gfp mask is used to indicate what is allowed.
859 * If any of the exclusive bits are set, this will fail with -EEXIST if some
860 * part of the range already has the desired bits set. The start of the
861 * existing range is returned in failed_start in this case.
863 * [start, end] is inclusive This takes the tree lock.
866 static int __must_check
867 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
868 unsigned bits, unsigned exclusive_bits,
869 u64 *failed_start, struct extent_state **cached_state,
870 gfp_t mask, struct extent_changeset *changeset)
872 struct extent_state *state;
873 struct extent_state *prealloc = NULL;
874 struct rb_node *node;
876 struct rb_node *parent;
881 btrfs_debug_check_extent_io_range(tree, start, end);
884 if (!prealloc && gfpflags_allow_blocking(mask)) {
886 * Don't care for allocation failure here because we might end
887 * up not needing the pre-allocated extent state at all, which
888 * is the case if we only have in the tree extent states that
889 * cover our input range and don't cover too any other range.
890 * If we end up needing a new extent state we allocate it later.
892 prealloc = alloc_extent_state(mask);
895 spin_lock(&tree->lock);
896 if (cached_state && *cached_state) {
897 state = *cached_state;
898 if (state->start <= start && state->end > start &&
899 extent_state_in_tree(state)) {
900 node = &state->rb_node;
905 * this search will find all the extents that end after
908 node = tree_search_for_insert(tree, start, &p, &parent);
910 prealloc = alloc_extent_state_atomic(prealloc);
912 err = insert_state(tree, prealloc, start, end,
913 &p, &parent, &bits, changeset);
915 extent_io_tree_panic(tree, err);
917 cache_state(prealloc, cached_state);
921 state = rb_entry(node, struct extent_state, rb_node);
923 last_start = state->start;
924 last_end = state->end;
927 * | ---- desired range ---- |
930 * Just lock what we found and keep going
932 if (state->start == start && state->end <= end) {
933 if (state->state & exclusive_bits) {
934 *failed_start = state->start;
939 set_state_bits(tree, state, &bits, changeset);
940 cache_state(state, cached_state);
941 merge_state(tree, state);
942 if (last_end == (u64)-1)
944 start = last_end + 1;
945 state = next_state(state);
946 if (start < end && state && state->start == start &&
953 * | ---- desired range ---- |
956 * | ------------- state -------------- |
958 * We need to split the extent we found, and may flip bits on
961 * If the extent we found extends past our
962 * range, we just split and search again. It'll get split
963 * again the next time though.
965 * If the extent we found is inside our range, we set the
968 if (state->start < start) {
969 if (state->state & exclusive_bits) {
970 *failed_start = start;
975 prealloc = alloc_extent_state_atomic(prealloc);
977 err = split_state(tree, state, prealloc, start);
979 extent_io_tree_panic(tree, err);
984 if (state->end <= end) {
985 set_state_bits(tree, state, &bits, changeset);
986 cache_state(state, cached_state);
987 merge_state(tree, state);
988 if (last_end == (u64)-1)
990 start = last_end + 1;
991 state = next_state(state);
992 if (start < end && state && state->start == start &&
999 * | ---- desired range ---- |
1000 * | state | or | state |
1002 * There's a hole, we need to insert something in it and
1003 * ignore the extent we found.
1005 if (state->start > start) {
1007 if (end < last_start)
1010 this_end = last_start - 1;
1012 prealloc = alloc_extent_state_atomic(prealloc);
1016 * Avoid to free 'prealloc' if it can be merged with
1019 err = insert_state(tree, prealloc, start, this_end,
1020 NULL, NULL, &bits, changeset);
1022 extent_io_tree_panic(tree, err);
1024 cache_state(prealloc, cached_state);
1026 start = this_end + 1;
1030 * | ---- desired range ---- |
1032 * We need to split the extent, and set the bit
1035 if (state->start <= end && state->end > end) {
1036 if (state->state & exclusive_bits) {
1037 *failed_start = start;
1042 prealloc = alloc_extent_state_atomic(prealloc);
1044 err = split_state(tree, state, prealloc, end + 1);
1046 extent_io_tree_panic(tree, err);
1048 set_state_bits(tree, prealloc, &bits, changeset);
1049 cache_state(prealloc, cached_state);
1050 merge_state(tree, prealloc);
1058 spin_unlock(&tree->lock);
1059 if (gfpflags_allow_blocking(mask))
1064 spin_unlock(&tree->lock);
1066 free_extent_state(prealloc);
1072 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1073 unsigned bits, u64 * failed_start,
1074 struct extent_state **cached_state, gfp_t mask)
1076 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1077 cached_state, mask, NULL);
1082 * convert_extent_bit - convert all bits in a given range from one bit to
1084 * @tree: the io tree to search
1085 * @start: the start offset in bytes
1086 * @end: the end offset in bytes (inclusive)
1087 * @bits: the bits to set in this range
1088 * @clear_bits: the bits to clear in this range
1089 * @cached_state: state that we're going to cache
1091 * This will go through and set bits for the given range. If any states exist
1092 * already in this range they are set with the given bit and cleared of the
1093 * clear_bits. This is only meant to be used by things that are mergeable, ie
1094 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1095 * boundary bits like LOCK.
1097 * All allocations are done with GFP_NOFS.
1099 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1100 unsigned bits, unsigned clear_bits,
1101 struct extent_state **cached_state)
1103 struct extent_state *state;
1104 struct extent_state *prealloc = NULL;
1105 struct rb_node *node;
1107 struct rb_node *parent;
1111 bool first_iteration = true;
1113 btrfs_debug_check_extent_io_range(tree, start, end);
1118 * Best effort, don't worry if extent state allocation fails
1119 * here for the first iteration. We might have a cached state
1120 * that matches exactly the target range, in which case no
1121 * extent state allocations are needed. We'll only know this
1122 * after locking the tree.
1124 prealloc = alloc_extent_state(GFP_NOFS);
1125 if (!prealloc && !first_iteration)
1129 spin_lock(&tree->lock);
1130 if (cached_state && *cached_state) {
1131 state = *cached_state;
1132 if (state->start <= start && state->end > start &&
1133 extent_state_in_tree(state)) {
1134 node = &state->rb_node;
1140 * this search will find all the extents that end after
1143 node = tree_search_for_insert(tree, start, &p, &parent);
1145 prealloc = alloc_extent_state_atomic(prealloc);
1150 err = insert_state(tree, prealloc, start, end,
1151 &p, &parent, &bits, NULL);
1153 extent_io_tree_panic(tree, err);
1154 cache_state(prealloc, cached_state);
1158 state = rb_entry(node, struct extent_state, rb_node);
1160 last_start = state->start;
1161 last_end = state->end;
1164 * | ---- desired range ---- |
1167 * Just lock what we found and keep going
1169 if (state->start == start && state->end <= end) {
1170 set_state_bits(tree, state, &bits, NULL);
1171 cache_state(state, cached_state);
1172 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1173 if (last_end == (u64)-1)
1175 start = last_end + 1;
1176 if (start < end && state && state->start == start &&
1183 * | ---- desired range ---- |
1186 * | ------------- state -------------- |
1188 * We need to split the extent we found, and may flip bits on
1191 * If the extent we found extends past our
1192 * range, we just split and search again. It'll get split
1193 * again the next time though.
1195 * If the extent we found is inside our range, we set the
1196 * desired bit on it.
1198 if (state->start < start) {
1199 prealloc = alloc_extent_state_atomic(prealloc);
1204 err = split_state(tree, state, prealloc, start);
1206 extent_io_tree_panic(tree, err);
1210 if (state->end <= end) {
1211 set_state_bits(tree, state, &bits, NULL);
1212 cache_state(state, cached_state);
1213 state = clear_state_bit(tree, state, &clear_bits, 0,
1215 if (last_end == (u64)-1)
1217 start = last_end + 1;
1218 if (start < end && state && state->start == start &&
1225 * | ---- desired range ---- |
1226 * | state | or | state |
1228 * There's a hole, we need to insert something in it and
1229 * ignore the extent we found.
1231 if (state->start > start) {
1233 if (end < last_start)
1236 this_end = last_start - 1;
1238 prealloc = alloc_extent_state_atomic(prealloc);
1245 * Avoid to free 'prealloc' if it can be merged with
1248 err = insert_state(tree, prealloc, start, this_end,
1249 NULL, NULL, &bits, NULL);
1251 extent_io_tree_panic(tree, err);
1252 cache_state(prealloc, cached_state);
1254 start = this_end + 1;
1258 * | ---- desired range ---- |
1260 * We need to split the extent, and set the bit
1263 if (state->start <= end && state->end > end) {
1264 prealloc = alloc_extent_state_atomic(prealloc);
1270 err = split_state(tree, state, prealloc, end + 1);
1272 extent_io_tree_panic(tree, err);
1274 set_state_bits(tree, prealloc, &bits, NULL);
1275 cache_state(prealloc, cached_state);
1276 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1284 spin_unlock(&tree->lock);
1286 first_iteration = false;
1290 spin_unlock(&tree->lock);
1292 free_extent_state(prealloc);
1297 /* wrappers around set/clear extent bit */
1298 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1299 unsigned bits, struct extent_changeset *changeset)
1302 * We don't support EXTENT_LOCKED yet, as current changeset will
1303 * record any bits changed, so for EXTENT_LOCKED case, it will
1304 * either fail with -EEXIST or changeset will record the whole
1307 BUG_ON(bits & EXTENT_LOCKED);
1309 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1313 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1314 unsigned bits, int wake, int delete,
1315 struct extent_state **cached)
1317 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1318 cached, GFP_NOFS, NULL);
1321 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 unsigned bits, struct extent_changeset *changeset)
1325 * Don't support EXTENT_LOCKED case, same reason as
1326 * set_record_extent_bits().
1328 BUG_ON(bits & EXTENT_LOCKED);
1330 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1335 * either insert or lock state struct between start and end use mask to tell
1336 * us if waiting is desired.
1338 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1339 struct extent_state **cached_state)
1345 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1346 EXTENT_LOCKED, &failed_start,
1347 cached_state, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1350 start = failed_start;
1353 WARN_ON(start > end);
1358 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1363 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1364 &failed_start, NULL, GFP_NOFS, NULL);
1365 if (err == -EEXIST) {
1366 if (failed_start > start)
1367 clear_extent_bit(tree, start, failed_start - 1,
1368 EXTENT_LOCKED, 1, 0, NULL);
1374 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1376 unsigned long index = start >> PAGE_SHIFT;
1377 unsigned long end_index = end >> PAGE_SHIFT;
1380 while (index <= end_index) {
1381 page = find_get_page(inode->i_mapping, index);
1382 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1383 clear_page_dirty_for_io(page);
1389 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1391 unsigned long index = start >> PAGE_SHIFT;
1392 unsigned long end_index = end >> PAGE_SHIFT;
1395 while (index <= end_index) {
1396 page = find_get_page(inode->i_mapping, index);
1397 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1398 __set_page_dirty_nobuffers(page);
1399 account_page_redirty(page);
1405 /* find the first state struct with 'bits' set after 'start', and
1406 * return it. tree->lock must be held. NULL will returned if
1407 * nothing was found after 'start'
1409 static struct extent_state *
1410 find_first_extent_bit_state(struct extent_io_tree *tree,
1411 u64 start, unsigned bits)
1413 struct rb_node *node;
1414 struct extent_state *state;
1417 * this search will find all the extents that end after
1420 node = tree_search(tree, start);
1425 state = rb_entry(node, struct extent_state, rb_node);
1426 if (state->end >= start && (state->state & bits))
1429 node = rb_next(node);
1438 * find the first offset in the io tree with 'bits' set. zero is
1439 * returned if we find something, and *start_ret and *end_ret are
1440 * set to reflect the state struct that was found.
1442 * If nothing was found, 1 is returned. If found something, return 0.
1444 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1445 u64 *start_ret, u64 *end_ret, unsigned bits,
1446 struct extent_state **cached_state)
1448 struct extent_state *state;
1451 spin_lock(&tree->lock);
1452 if (cached_state && *cached_state) {
1453 state = *cached_state;
1454 if (state->end == start - 1 && extent_state_in_tree(state)) {
1455 while ((state = next_state(state)) != NULL) {
1456 if (state->state & bits)
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1463 free_extent_state(*cached_state);
1464 *cached_state = NULL;
1467 state = find_first_extent_bit_state(tree, start, bits);
1470 cache_state_if_flags(state, cached_state, 0);
1471 *start_ret = state->start;
1472 *end_ret = state->end;
1476 spin_unlock(&tree->lock);
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'. start and end are used to return the range,
1484 * true is returned if we find something, false if nothing was in the tree
1486 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1487 u64 *start, u64 *end, u64 max_bytes,
1488 struct extent_state **cached_state)
1490 struct rb_node *node;
1491 struct extent_state *state;
1492 u64 cur_start = *start;
1494 u64 total_bytes = 0;
1496 spin_lock(&tree->lock);
1499 * this search will find all the extents that end after
1502 node = tree_search(tree, cur_start);
1509 state = rb_entry(node, struct extent_state, rb_node);
1510 if (found && (state->start != cur_start ||
1511 (state->state & EXTENT_BOUNDARY))) {
1514 if (!(state->state & EXTENT_DELALLOC)) {
1520 *start = state->start;
1521 *cached_state = state;
1522 refcount_inc(&state->refs);
1526 cur_start = state->end + 1;
1527 node = rb_next(node);
1528 total_bytes += state->end - state->start + 1;
1529 if (total_bytes >= max_bytes)
1535 spin_unlock(&tree->lock);
1539 static int __process_pages_contig(struct address_space *mapping,
1540 struct page *locked_page,
1541 pgoff_t start_index, pgoff_t end_index,
1542 unsigned long page_ops, pgoff_t *index_ret);
1544 static noinline void __unlock_for_delalloc(struct inode *inode,
1545 struct page *locked_page,
1548 unsigned long index = start >> PAGE_SHIFT;
1549 unsigned long end_index = end >> PAGE_SHIFT;
1551 ASSERT(locked_page);
1552 if (index == locked_page->index && end_index == index)
1555 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1559 static noinline int lock_delalloc_pages(struct inode *inode,
1560 struct page *locked_page,
1564 unsigned long index = delalloc_start >> PAGE_SHIFT;
1565 unsigned long index_ret = index;
1566 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1569 ASSERT(locked_page);
1570 if (index == locked_page->index && index == end_index)
1573 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1574 end_index, PAGE_LOCK, &index_ret);
1576 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1577 (u64)index_ret << PAGE_SHIFT);
1582 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1583 * more than @max_bytes. @Start and @end are used to return the range,
1585 * Return: true if we find something
1586 * false if nothing was in the tree
1589 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1590 struct extent_io_tree *tree,
1591 struct page *locked_page, u64 *start,
1594 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1598 struct extent_state *cached_state = NULL;
1603 /* step one, find a bunch of delalloc bytes starting at start */
1604 delalloc_start = *start;
1606 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1607 max_bytes, &cached_state);
1608 if (!found || delalloc_end <= *start) {
1609 *start = delalloc_start;
1610 *end = delalloc_end;
1611 free_extent_state(cached_state);
1616 * start comes from the offset of locked_page. We have to lock
1617 * pages in order, so we can't process delalloc bytes before
1620 if (delalloc_start < *start)
1621 delalloc_start = *start;
1624 * make sure to limit the number of pages we try to lock down
1626 if (delalloc_end + 1 - delalloc_start > max_bytes)
1627 delalloc_end = delalloc_start + max_bytes - 1;
1629 /* step two, lock all the pages after the page that has start */
1630 ret = lock_delalloc_pages(inode, locked_page,
1631 delalloc_start, delalloc_end);
1632 ASSERT(!ret || ret == -EAGAIN);
1633 if (ret == -EAGAIN) {
1634 /* some of the pages are gone, lets avoid looping by
1635 * shortening the size of the delalloc range we're searching
1637 free_extent_state(cached_state);
1638 cached_state = NULL;
1640 max_bytes = PAGE_SIZE;
1649 /* step three, lock the state bits for the whole range */
1650 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1652 /* then test to make sure it is all still delalloc */
1653 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1654 EXTENT_DELALLOC, 1, cached_state);
1656 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1658 __unlock_for_delalloc(inode, locked_page,
1659 delalloc_start, delalloc_end);
1663 free_extent_state(cached_state);
1664 *start = delalloc_start;
1665 *end = delalloc_end;
1670 static int __process_pages_contig(struct address_space *mapping,
1671 struct page *locked_page,
1672 pgoff_t start_index, pgoff_t end_index,
1673 unsigned long page_ops, pgoff_t *index_ret)
1675 unsigned long nr_pages = end_index - start_index + 1;
1676 unsigned long pages_locked = 0;
1677 pgoff_t index = start_index;
1678 struct page *pages[16];
1683 if (page_ops & PAGE_LOCK) {
1684 ASSERT(page_ops == PAGE_LOCK);
1685 ASSERT(index_ret && *index_ret == start_index);
1688 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1689 mapping_set_error(mapping, -EIO);
1691 while (nr_pages > 0) {
1692 ret = find_get_pages_contig(mapping, index,
1693 min_t(unsigned long,
1694 nr_pages, ARRAY_SIZE(pages)), pages);
1697 * Only if we're going to lock these pages,
1698 * can we find nothing at @index.
1700 ASSERT(page_ops & PAGE_LOCK);
1705 for (i = 0; i < ret; i++) {
1706 if (page_ops & PAGE_SET_PRIVATE2)
1707 SetPagePrivate2(pages[i]);
1709 if (pages[i] == locked_page) {
1714 if (page_ops & PAGE_CLEAR_DIRTY)
1715 clear_page_dirty_for_io(pages[i]);
1716 if (page_ops & PAGE_SET_WRITEBACK)
1717 set_page_writeback(pages[i]);
1718 if (page_ops & PAGE_SET_ERROR)
1719 SetPageError(pages[i]);
1720 if (page_ops & PAGE_END_WRITEBACK)
1721 end_page_writeback(pages[i]);
1722 if (page_ops & PAGE_UNLOCK)
1723 unlock_page(pages[i]);
1724 if (page_ops & PAGE_LOCK) {
1725 lock_page(pages[i]);
1726 if (!PageDirty(pages[i]) ||
1727 pages[i]->mapping != mapping) {
1728 unlock_page(pages[i]);
1742 if (err && index_ret)
1743 *index_ret = start_index + pages_locked - 1;
1747 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1748 u64 delalloc_end, struct page *locked_page,
1749 unsigned clear_bits,
1750 unsigned long page_ops)
1752 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1755 __process_pages_contig(inode->i_mapping, locked_page,
1756 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1761 * count the number of bytes in the tree that have a given bit(s)
1762 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1763 * cached. The total number found is returned.
1765 u64 count_range_bits(struct extent_io_tree *tree,
1766 u64 *start, u64 search_end, u64 max_bytes,
1767 unsigned bits, int contig)
1769 struct rb_node *node;
1770 struct extent_state *state;
1771 u64 cur_start = *start;
1772 u64 total_bytes = 0;
1776 if (WARN_ON(search_end <= cur_start))
1779 spin_lock(&tree->lock);
1780 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1781 total_bytes = tree->dirty_bytes;
1785 * this search will find all the extents that end after
1788 node = tree_search(tree, cur_start);
1793 state = rb_entry(node, struct extent_state, rb_node);
1794 if (state->start > search_end)
1796 if (contig && found && state->start > last + 1)
1798 if (state->end >= cur_start && (state->state & bits) == bits) {
1799 total_bytes += min(search_end, state->end) + 1 -
1800 max(cur_start, state->start);
1801 if (total_bytes >= max_bytes)
1804 *start = max(cur_start, state->start);
1808 } else if (contig && found) {
1811 node = rb_next(node);
1816 spin_unlock(&tree->lock);
1821 * set the private field for a given byte offset in the tree. If there isn't
1822 * an extent_state there already, this does nothing.
1824 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1825 struct io_failure_record *failrec)
1827 struct rb_node *node;
1828 struct extent_state *state;
1831 spin_lock(&tree->lock);
1833 * this search will find all the extents that end after
1836 node = tree_search(tree, start);
1841 state = rb_entry(node, struct extent_state, rb_node);
1842 if (state->start != start) {
1846 state->failrec = failrec;
1848 spin_unlock(&tree->lock);
1852 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1853 struct io_failure_record **failrec)
1855 struct rb_node *node;
1856 struct extent_state *state;
1859 spin_lock(&tree->lock);
1861 * this search will find all the extents that end after
1864 node = tree_search(tree, start);
1869 state = rb_entry(node, struct extent_state, rb_node);
1870 if (state->start != start) {
1874 *failrec = state->failrec;
1876 spin_unlock(&tree->lock);
1881 * searches a range in the state tree for a given mask.
1882 * If 'filled' == 1, this returns 1 only if every extent in the tree
1883 * has the bits set. Otherwise, 1 is returned if any bit in the
1884 * range is found set.
1886 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1887 unsigned bits, int filled, struct extent_state *cached)
1889 struct extent_state *state = NULL;
1890 struct rb_node *node;
1893 spin_lock(&tree->lock);
1894 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1895 cached->end > start)
1896 node = &cached->rb_node;
1898 node = tree_search(tree, start);
1899 while (node && start <= end) {
1900 state = rb_entry(node, struct extent_state, rb_node);
1902 if (filled && state->start > start) {
1907 if (state->start > end)
1910 if (state->state & bits) {
1914 } else if (filled) {
1919 if (state->end == (u64)-1)
1922 start = state->end + 1;
1925 node = rb_next(node);
1932 spin_unlock(&tree->lock);
1937 * helper function to set a given page up to date if all the
1938 * extents in the tree for that page are up to date
1940 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1942 u64 start = page_offset(page);
1943 u64 end = start + PAGE_SIZE - 1;
1944 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1945 SetPageUptodate(page);
1948 int free_io_failure(struct extent_io_tree *failure_tree,
1949 struct extent_io_tree *io_tree,
1950 struct io_failure_record *rec)
1955 set_state_failrec(failure_tree, rec->start, NULL);
1956 ret = clear_extent_bits(failure_tree, rec->start,
1957 rec->start + rec->len - 1,
1958 EXTENT_LOCKED | EXTENT_DIRTY);
1962 ret = clear_extent_bits(io_tree, rec->start,
1963 rec->start + rec->len - 1,
1973 * this bypasses the standard btrfs submit functions deliberately, as
1974 * the standard behavior is to write all copies in a raid setup. here we only
1975 * want to write the one bad copy. so we do the mapping for ourselves and issue
1976 * submit_bio directly.
1977 * to avoid any synchronization issues, wait for the data after writing, which
1978 * actually prevents the read that triggered the error from finishing.
1979 * currently, there can be no more than two copies of every data bit. thus,
1980 * exactly one rewrite is required.
1982 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1983 u64 length, u64 logical, struct page *page,
1984 unsigned int pg_offset, int mirror_num)
1987 struct btrfs_device *dev;
1990 struct btrfs_bio *bbio = NULL;
1993 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1994 BUG_ON(!mirror_num);
1996 bio = btrfs_io_bio_alloc(1);
1997 bio->bi_iter.bi_size = 0;
1998 map_length = length;
2001 * Avoid races with device replace and make sure our bbio has devices
2002 * associated to its stripes that don't go away while we are doing the
2003 * read repair operation.
2005 btrfs_bio_counter_inc_blocked(fs_info);
2006 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2008 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2009 * to update all raid stripes, but here we just want to correct
2010 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2011 * stripe's dev and sector.
2013 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2014 &map_length, &bbio, 0);
2016 btrfs_bio_counter_dec(fs_info);
2020 ASSERT(bbio->mirror_num == 1);
2022 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2023 &map_length, &bbio, mirror_num);
2025 btrfs_bio_counter_dec(fs_info);
2029 BUG_ON(mirror_num != bbio->mirror_num);
2032 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2033 bio->bi_iter.bi_sector = sector;
2034 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2035 btrfs_put_bbio(bbio);
2036 if (!dev || !dev->bdev ||
2037 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2038 btrfs_bio_counter_dec(fs_info);
2042 bio_set_dev(bio, dev->bdev);
2043 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2044 bio_add_page(bio, page, length, pg_offset);
2046 if (btrfsic_submit_bio_wait(bio)) {
2047 /* try to remap that extent elsewhere? */
2048 btrfs_bio_counter_dec(fs_info);
2050 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054 btrfs_info_rl_in_rcu(fs_info,
2055 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2057 rcu_str_deref(dev->name), sector);
2058 btrfs_bio_counter_dec(fs_info);
2063 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2064 struct extent_buffer *eb, int mirror_num)
2066 u64 start = eb->start;
2067 int i, num_pages = num_extent_pages(eb);
2070 if (sb_rdonly(fs_info->sb))
2073 for (i = 0; i < num_pages; i++) {
2074 struct page *p = eb->pages[i];
2076 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2077 start - page_offset(p), mirror_num);
2087 * each time an IO finishes, we do a fast check in the IO failure tree
2088 * to see if we need to process or clean up an io_failure_record
2090 int clean_io_failure(struct btrfs_fs_info *fs_info,
2091 struct extent_io_tree *failure_tree,
2092 struct extent_io_tree *io_tree, u64 start,
2093 struct page *page, u64 ino, unsigned int pg_offset)
2096 struct io_failure_record *failrec;
2097 struct extent_state *state;
2102 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2107 ret = get_state_failrec(failure_tree, start, &failrec);
2111 BUG_ON(!failrec->this_mirror);
2113 if (failrec->in_validation) {
2114 /* there was no real error, just free the record */
2115 btrfs_debug(fs_info,
2116 "clean_io_failure: freeing dummy error at %llu",
2120 if (sb_rdonly(fs_info->sb))
2123 spin_lock(&io_tree->lock);
2124 state = find_first_extent_bit_state(io_tree,
2127 spin_unlock(&io_tree->lock);
2129 if (state && state->start <= failrec->start &&
2130 state->end >= failrec->start + failrec->len - 1) {
2131 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2133 if (num_copies > 1) {
2134 repair_io_failure(fs_info, ino, start, failrec->len,
2135 failrec->logical, page, pg_offset,
2136 failrec->failed_mirror);
2141 free_io_failure(failure_tree, io_tree, failrec);
2147 * Can be called when
2148 * - hold extent lock
2149 * - under ordered extent
2150 * - the inode is freeing
2152 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2154 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2155 struct io_failure_record *failrec;
2156 struct extent_state *state, *next;
2158 if (RB_EMPTY_ROOT(&failure_tree->state))
2161 spin_lock(&failure_tree->lock);
2162 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2164 if (state->start > end)
2167 ASSERT(state->end <= end);
2169 next = next_state(state);
2171 failrec = state->failrec;
2172 free_extent_state(state);
2177 spin_unlock(&failure_tree->lock);
2180 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2181 struct io_failure_record **failrec_ret)
2183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2184 struct io_failure_record *failrec;
2185 struct extent_map *em;
2186 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2187 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2188 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2192 ret = get_state_failrec(failure_tree, start, &failrec);
2194 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2198 failrec->start = start;
2199 failrec->len = end - start + 1;
2200 failrec->this_mirror = 0;
2201 failrec->bio_flags = 0;
2202 failrec->in_validation = 0;
2204 read_lock(&em_tree->lock);
2205 em = lookup_extent_mapping(em_tree, start, failrec->len);
2207 read_unlock(&em_tree->lock);
2212 if (em->start > start || em->start + em->len <= start) {
2213 free_extent_map(em);
2216 read_unlock(&em_tree->lock);
2222 logical = start - em->start;
2223 logical = em->block_start + logical;
2224 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2225 logical = em->block_start;
2226 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2227 extent_set_compress_type(&failrec->bio_flags,
2231 btrfs_debug(fs_info,
2232 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2233 logical, start, failrec->len);
2235 failrec->logical = logical;
2236 free_extent_map(em);
2238 /* set the bits in the private failure tree */
2239 ret = set_extent_bits(failure_tree, start, end,
2240 EXTENT_LOCKED | EXTENT_DIRTY);
2242 ret = set_state_failrec(failure_tree, start, failrec);
2243 /* set the bits in the inode's tree */
2245 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2251 btrfs_debug(fs_info,
2252 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2253 failrec->logical, failrec->start, failrec->len,
2254 failrec->in_validation);
2256 * when data can be on disk more than twice, add to failrec here
2257 * (e.g. with a list for failed_mirror) to make
2258 * clean_io_failure() clean all those errors at once.
2262 *failrec_ret = failrec;
2267 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2268 struct io_failure_record *failrec, int failed_mirror)
2270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2273 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2274 if (num_copies == 1) {
2276 * we only have a single copy of the data, so don't bother with
2277 * all the retry and error correction code that follows. no
2278 * matter what the error is, it is very likely to persist.
2280 btrfs_debug(fs_info,
2281 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2282 num_copies, failrec->this_mirror, failed_mirror);
2287 * there are two premises:
2288 * a) deliver good data to the caller
2289 * b) correct the bad sectors on disk
2291 if (failed_bio_pages > 1) {
2293 * to fulfill b), we need to know the exact failing sectors, as
2294 * we don't want to rewrite any more than the failed ones. thus,
2295 * we need separate read requests for the failed bio
2297 * if the following BUG_ON triggers, our validation request got
2298 * merged. we need separate requests for our algorithm to work.
2300 BUG_ON(failrec->in_validation);
2301 failrec->in_validation = 1;
2302 failrec->this_mirror = failed_mirror;
2305 * we're ready to fulfill a) and b) alongside. get a good copy
2306 * of the failed sector and if we succeed, we have setup
2307 * everything for repair_io_failure to do the rest for us.
2309 if (failrec->in_validation) {
2310 BUG_ON(failrec->this_mirror != failed_mirror);
2311 failrec->in_validation = 0;
2312 failrec->this_mirror = 0;
2314 failrec->failed_mirror = failed_mirror;
2315 failrec->this_mirror++;
2316 if (failrec->this_mirror == failed_mirror)
2317 failrec->this_mirror++;
2320 if (failrec->this_mirror > num_copies) {
2321 btrfs_debug(fs_info,
2322 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2323 num_copies, failrec->this_mirror, failed_mirror);
2331 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2332 struct io_failure_record *failrec,
2333 struct page *page, int pg_offset, int icsum,
2334 bio_end_io_t *endio_func, void *data)
2336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2338 struct btrfs_io_bio *btrfs_failed_bio;
2339 struct btrfs_io_bio *btrfs_bio;
2341 bio = btrfs_io_bio_alloc(1);
2342 bio->bi_end_io = endio_func;
2343 bio->bi_iter.bi_sector = failrec->logical >> 9;
2344 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2345 bio->bi_iter.bi_size = 0;
2346 bio->bi_private = data;
2348 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2349 if (btrfs_failed_bio->csum) {
2350 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352 btrfs_bio = btrfs_io_bio(bio);
2353 btrfs_bio->csum = btrfs_bio->csum_inline;
2355 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2359 bio_add_page(bio, page, failrec->len, pg_offset);
2365 * This is a generic handler for readpage errors. If other copies exist, read
2366 * those and write back good data to the failed position. Does not investigate
2367 * in remapping the failed extent elsewhere, hoping the device will be smart
2368 * enough to do this as needed
2370 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 struct page *page, u64 start, u64 end,
2374 struct io_failure_record *failrec;
2375 struct inode *inode = page->mapping->host;
2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380 blk_status_t status;
2382 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2384 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2390 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2392 free_io_failure(failure_tree, tree, failrec);
2396 if (failed_bio_pages > 1)
2397 read_mode |= REQ_FAILFAST_DEV;
2399 phy_offset >>= inode->i_sb->s_blocksize_bits;
2400 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401 start - page_offset(page),
2402 (int)phy_offset, failed_bio->bi_end_io,
2404 bio->bi_opf = REQ_OP_READ | read_mode;
2406 btrfs_debug(btrfs_sb(inode->i_sb),
2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
2410 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2411 failrec->bio_flags, 0);
2413 free_io_failure(failure_tree, tree, failrec);
2415 ret = blk_status_to_errno(status);
2421 /* lots and lots of room for performance fixes in the end_bio funcs */
2423 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2425 int uptodate = (err == 0);
2428 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2431 ClearPageUptodate(page);
2433 ret = err < 0 ? err : -EIO;
2434 mapping_set_error(page->mapping, ret);
2439 * after a writepage IO is done, we need to:
2440 * clear the uptodate bits on error
2441 * clear the writeback bits in the extent tree for this IO
2442 * end_page_writeback if the page has no more pending IO
2444 * Scheduling is not allowed, so the extent state tree is expected
2445 * to have one and only one object corresponding to this IO.
2447 static void end_bio_extent_writepage(struct bio *bio)
2449 int error = blk_status_to_errno(bio->bi_status);
2450 struct bio_vec *bvec;
2455 ASSERT(!bio_flagged(bio, BIO_CLONED));
2456 bio_for_each_segment_all(bvec, bio, i) {
2457 struct page *page = bvec->bv_page;
2458 struct inode *inode = page->mapping->host;
2459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2461 /* We always issue full-page reads, but if some block
2462 * in a page fails to read, blk_update_request() will
2463 * advance bv_offset and adjust bv_len to compensate.
2464 * Print a warning for nonzero offsets, and an error
2465 * if they don't add up to a full page. */
2466 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2467 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2469 "partial page write in btrfs with offset %u and length %u",
2470 bvec->bv_offset, bvec->bv_len);
2473 "incomplete page write in btrfs with offset %u and length %u",
2474 bvec->bv_offset, bvec->bv_len);
2477 start = page_offset(page);
2478 end = start + bvec->bv_offset + bvec->bv_len - 1;
2480 end_extent_writepage(page, error, start, end);
2481 end_page_writeback(page);
2488 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 struct extent_state *cached = NULL;
2492 u64 end = start + len - 1;
2494 if (uptodate && tree->track_uptodate)
2495 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2496 unlock_extent_cached_atomic(tree, start, end, &cached);
2500 * after a readpage IO is done, we need to:
2501 * clear the uptodate bits on error
2502 * set the uptodate bits if things worked
2503 * set the page up to date if all extents in the tree are uptodate
2504 * clear the lock bit in the extent tree
2505 * unlock the page if there are no other extents locked for it
2507 * Scheduling is not allowed, so the extent state tree is expected
2508 * to have one and only one object corresponding to this IO.
2510 static void end_bio_extent_readpage(struct bio *bio)
2512 struct bio_vec *bvec;
2513 int uptodate = !bio->bi_status;
2514 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2515 struct extent_io_tree *tree, *failure_tree;
2520 u64 extent_start = 0;
2526 ASSERT(!bio_flagged(bio, BIO_CLONED));
2527 bio_for_each_segment_all(bvec, bio, i) {
2528 struct page *page = bvec->bv_page;
2529 struct inode *inode = page->mapping->host;
2530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2531 bool data_inode = btrfs_ino(BTRFS_I(inode))
2532 != BTRFS_BTREE_INODE_OBJECTID;
2534 btrfs_debug(fs_info,
2535 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2536 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2537 io_bio->mirror_num);
2538 tree = &BTRFS_I(inode)->io_tree;
2539 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2541 /* We always issue full-page reads, but if some block
2542 * in a page fails to read, blk_update_request() will
2543 * advance bv_offset and adjust bv_len to compensate.
2544 * Print a warning for nonzero offsets, and an error
2545 * if they don't add up to a full page. */
2546 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2547 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2549 "partial page read in btrfs with offset %u and length %u",
2550 bvec->bv_offset, bvec->bv_len);
2553 "incomplete page read in btrfs with offset %u and length %u",
2554 bvec->bv_offset, bvec->bv_len);
2557 start = page_offset(page);
2558 end = start + bvec->bv_offset + bvec->bv_len - 1;
2561 mirror = io_bio->mirror_num;
2562 if (likely(uptodate)) {
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2569 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2570 failure_tree, tree, start,
2572 btrfs_ino(BTRFS_I(inode)), 0);
2575 if (likely(uptodate))
2581 * The generic bio_readpage_error handles errors the
2582 * following way: If possible, new read requests are
2583 * created and submitted and will end up in
2584 * end_bio_extent_readpage as well (if we're lucky,
2585 * not in the !uptodate case). In that case it returns
2586 * 0 and we just go on with the next page in our bio.
2587 * If it can't handle the error it will return -EIO and
2588 * we remain responsible for that page.
2590 ret = bio_readpage_error(bio, offset, page, start, end,
2593 uptodate = !bio->bi_status;
2598 struct extent_buffer *eb;
2600 eb = (struct extent_buffer *)page->private;
2601 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2602 eb->read_mirror = mirror;
2603 atomic_dec(&eb->io_pages);
2604 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2606 btree_readahead_hook(eb, -EIO);
2611 if (likely(uptodate)) {
2612 loff_t i_size = i_size_read(inode);
2613 pgoff_t end_index = i_size >> PAGE_SHIFT;
2616 /* Zero out the end if this page straddles i_size */
2617 off = offset_in_page(i_size);
2618 if (page->index == end_index && off)
2619 zero_user_segment(page, off, PAGE_SIZE);
2620 SetPageUptodate(page);
2622 ClearPageUptodate(page);
2628 if (unlikely(!uptodate)) {
2630 endio_readpage_release_extent(tree,
2636 endio_readpage_release_extent(tree, start,
2637 end - start + 1, 0);
2638 } else if (!extent_len) {
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 } else if (extent_start + extent_len == start) {
2642 extent_len += end + 1 - start;
2644 endio_readpage_release_extent(tree, extent_start,
2645 extent_len, uptodate);
2646 extent_start = start;
2647 extent_len = end + 1 - start;
2652 endio_readpage_release_extent(tree, extent_start, extent_len,
2654 btrfs_io_bio_free_csum(io_bio);
2659 * Initialize the members up to but not including 'bio'. Use after allocating a
2660 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2661 * 'bio' because use of __GFP_ZERO is not supported.
2663 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2665 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2669 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2670 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2671 * for the appropriate container_of magic
2673 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2677 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2678 bio_set_dev(bio, bdev);
2679 bio->bi_iter.bi_sector = first_byte >> 9;
2680 btrfs_io_bio_init(btrfs_io_bio(bio));
2684 struct bio *btrfs_bio_clone(struct bio *bio)
2686 struct btrfs_io_bio *btrfs_bio;
2689 /* Bio allocation backed by a bioset does not fail */
2690 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2691 btrfs_bio = btrfs_io_bio(new);
2692 btrfs_io_bio_init(btrfs_bio);
2693 btrfs_bio->iter = bio->bi_iter;
2697 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2701 /* Bio allocation backed by a bioset does not fail */
2702 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2703 btrfs_io_bio_init(btrfs_io_bio(bio));
2707 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2710 struct btrfs_io_bio *btrfs_bio;
2712 /* this will never fail when it's backed by a bioset */
2713 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2716 btrfs_bio = btrfs_io_bio(bio);
2717 btrfs_io_bio_init(btrfs_bio);
2719 bio_trim(bio, offset >> 9, size >> 9);
2720 btrfs_bio->iter = bio->bi_iter;
2725 * @opf: bio REQ_OP_* and REQ_* flags as one value
2726 * @tree: tree so we can call our merge_bio hook
2727 * @wbc: optional writeback control for io accounting
2728 * @page: page to add to the bio
2729 * @pg_offset: offset of the new bio or to check whether we are adding
2730 * a contiguous page to the previous one
2731 * @size: portion of page that we want to write
2732 * @offset: starting offset in the page
2733 * @bdev: attach newly created bios to this bdev
2734 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2735 * @end_io_func: end_io callback for new bio
2736 * @mirror_num: desired mirror to read/write
2737 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2738 * @bio_flags: flags of the current bio to see if we can merge them
2740 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2741 struct writeback_control *wbc,
2742 struct page *page, u64 offset,
2743 size_t size, unsigned long pg_offset,
2744 struct block_device *bdev,
2745 struct bio **bio_ret,
2746 bio_end_io_t end_io_func,
2748 unsigned long prev_bio_flags,
2749 unsigned long bio_flags,
2750 bool force_bio_submit)
2754 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2755 sector_t sector = offset >> 9;
2761 bool can_merge = true;
2764 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2765 contig = bio->bi_iter.bi_sector == sector;
2767 contig = bio_end_sector(bio) == sector;
2770 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2773 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2775 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2776 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2784 wbc_account_io(wbc, page, page_size);
2789 bio = btrfs_bio_alloc(bdev, offset);
2790 bio_add_page(bio, page, page_size, pg_offset);
2791 bio->bi_end_io = end_io_func;
2792 bio->bi_private = tree;
2793 bio->bi_write_hint = page->mapping->host->i_write_hint;
2796 wbc_init_bio(wbc, bio);
2797 wbc_account_io(wbc, page, page_size);
2805 static void attach_extent_buffer_page(struct extent_buffer *eb,
2808 if (!PagePrivate(page)) {
2809 SetPagePrivate(page);
2811 set_page_private(page, (unsigned long)eb);
2813 WARN_ON(page->private != (unsigned long)eb);
2817 void set_page_extent_mapped(struct page *page)
2819 if (!PagePrivate(page)) {
2820 SetPagePrivate(page);
2822 set_page_private(page, EXTENT_PAGE_PRIVATE);
2826 static struct extent_map *
2827 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2828 u64 start, u64 len, get_extent_t *get_extent,
2829 struct extent_map **em_cached)
2831 struct extent_map *em;
2833 if (em_cached && *em_cached) {
2835 if (extent_map_in_tree(em) && start >= em->start &&
2836 start < extent_map_end(em)) {
2837 refcount_inc(&em->refs);
2841 free_extent_map(em);
2845 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2846 if (em_cached && !IS_ERR_OR_NULL(em)) {
2848 refcount_inc(&em->refs);
2854 * basic readpage implementation. Locked extent state structs are inserted
2855 * into the tree that are removed when the IO is done (by the end_io
2857 * XXX JDM: This needs looking at to ensure proper page locking
2858 * return 0 on success, otherwise return error
2860 static int __do_readpage(struct extent_io_tree *tree,
2862 get_extent_t *get_extent,
2863 struct extent_map **em_cached,
2864 struct bio **bio, int mirror_num,
2865 unsigned long *bio_flags, unsigned int read_flags,
2868 struct inode *inode = page->mapping->host;
2869 u64 start = page_offset(page);
2870 const u64 end = start + PAGE_SIZE - 1;
2873 u64 last_byte = i_size_read(inode);
2876 struct extent_map *em;
2877 struct block_device *bdev;
2880 size_t pg_offset = 0;
2882 size_t disk_io_size;
2883 size_t blocksize = inode->i_sb->s_blocksize;
2884 unsigned long this_bio_flag = 0;
2886 set_page_extent_mapped(page);
2888 if (!PageUptodate(page)) {
2889 if (cleancache_get_page(page) == 0) {
2890 BUG_ON(blocksize != PAGE_SIZE);
2891 unlock_extent(tree, start, end);
2896 if (page->index == last_byte >> PAGE_SHIFT) {
2898 size_t zero_offset = offset_in_page(last_byte);
2901 iosize = PAGE_SIZE - zero_offset;
2902 userpage = kmap_atomic(page);
2903 memset(userpage + zero_offset, 0, iosize);
2904 flush_dcache_page(page);
2905 kunmap_atomic(userpage);
2908 while (cur <= end) {
2909 bool force_bio_submit = false;
2912 if (cur >= last_byte) {
2914 struct extent_state *cached = NULL;
2916 iosize = PAGE_SIZE - pg_offset;
2917 userpage = kmap_atomic(page);
2918 memset(userpage + pg_offset, 0, iosize);
2919 flush_dcache_page(page);
2920 kunmap_atomic(userpage);
2921 set_extent_uptodate(tree, cur, cur + iosize - 1,
2923 unlock_extent_cached(tree, cur,
2924 cur + iosize - 1, &cached);
2927 em = __get_extent_map(inode, page, pg_offset, cur,
2928 end - cur + 1, get_extent, em_cached);
2929 if (IS_ERR_OR_NULL(em)) {
2931 unlock_extent(tree, cur, end);
2934 extent_offset = cur - em->start;
2935 BUG_ON(extent_map_end(em) <= cur);
2938 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2939 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2940 extent_set_compress_type(&this_bio_flag,
2944 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2945 cur_end = min(extent_map_end(em) - 1, end);
2946 iosize = ALIGN(iosize, blocksize);
2947 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2948 disk_io_size = em->block_len;
2949 offset = em->block_start;
2951 offset = em->block_start + extent_offset;
2952 disk_io_size = iosize;
2955 block_start = em->block_start;
2956 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2957 block_start = EXTENT_MAP_HOLE;
2960 * If we have a file range that points to a compressed extent
2961 * and it's followed by a consecutive file range that points to
2962 * to the same compressed extent (possibly with a different
2963 * offset and/or length, so it either points to the whole extent
2964 * or only part of it), we must make sure we do not submit a
2965 * single bio to populate the pages for the 2 ranges because
2966 * this makes the compressed extent read zero out the pages
2967 * belonging to the 2nd range. Imagine the following scenario:
2970 * [0 - 8K] [8K - 24K]
2973 * points to extent X, points to extent X,
2974 * offset 4K, length of 8K offset 0, length 16K
2976 * [extent X, compressed length = 4K uncompressed length = 16K]
2978 * If the bio to read the compressed extent covers both ranges,
2979 * it will decompress extent X into the pages belonging to the
2980 * first range and then it will stop, zeroing out the remaining
2981 * pages that belong to the other range that points to extent X.
2982 * So here we make sure we submit 2 bios, one for the first
2983 * range and another one for the third range. Both will target
2984 * the same physical extent from disk, but we can't currently
2985 * make the compressed bio endio callback populate the pages
2986 * for both ranges because each compressed bio is tightly
2987 * coupled with a single extent map, and each range can have
2988 * an extent map with a different offset value relative to the
2989 * uncompressed data of our extent and different lengths. This
2990 * is a corner case so we prioritize correctness over
2991 * non-optimal behavior (submitting 2 bios for the same extent).
2993 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2994 prev_em_start && *prev_em_start != (u64)-1 &&
2995 *prev_em_start != em->start)
2996 force_bio_submit = true;
2999 *prev_em_start = em->start;
3001 free_extent_map(em);
3004 /* we've found a hole, just zero and go on */
3005 if (block_start == EXTENT_MAP_HOLE) {
3007 struct extent_state *cached = NULL;
3009 userpage = kmap_atomic(page);
3010 memset(userpage + pg_offset, 0, iosize);
3011 flush_dcache_page(page);
3012 kunmap_atomic(userpage);
3014 set_extent_uptodate(tree, cur, cur + iosize - 1,
3016 unlock_extent_cached(tree, cur,
3017 cur + iosize - 1, &cached);
3019 pg_offset += iosize;
3022 /* the get_extent function already copied into the page */
3023 if (test_range_bit(tree, cur, cur_end,
3024 EXTENT_UPTODATE, 1, NULL)) {
3025 check_page_uptodate(tree, page);
3026 unlock_extent(tree, cur, cur + iosize - 1);
3028 pg_offset += iosize;
3031 /* we have an inline extent but it didn't get marked up
3032 * to date. Error out
3034 if (block_start == EXTENT_MAP_INLINE) {
3036 unlock_extent(tree, cur, cur + iosize - 1);
3038 pg_offset += iosize;
3042 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3043 page, offset, disk_io_size,
3044 pg_offset, bdev, bio,
3045 end_bio_extent_readpage, mirror_num,
3051 *bio_flags = this_bio_flag;
3054 unlock_extent(tree, cur, cur + iosize - 1);
3058 pg_offset += iosize;
3062 if (!PageError(page))
3063 SetPageUptodate(page);
3069 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3070 struct page *pages[], int nr_pages,
3072 struct extent_map **em_cached,
3074 unsigned long *bio_flags,
3077 struct inode *inode;
3078 struct btrfs_ordered_extent *ordered;
3081 inode = pages[0]->mapping->host;
3083 lock_extent(tree, start, end);
3084 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3088 unlock_extent(tree, start, end);
3089 btrfs_start_ordered_extent(inode, ordered, 1);
3090 btrfs_put_ordered_extent(ordered);
3093 for (index = 0; index < nr_pages; index++) {
3094 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3095 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3096 put_page(pages[index]);
3100 static void __extent_readpages(struct extent_io_tree *tree,
3101 struct page *pages[],
3103 struct extent_map **em_cached,
3104 struct bio **bio, unsigned long *bio_flags,
3111 int first_index = 0;
3113 for (index = 0; index < nr_pages; index++) {
3114 page_start = page_offset(pages[index]);
3117 end = start + PAGE_SIZE - 1;
3118 first_index = index;
3119 } else if (end + 1 == page_start) {
3122 __do_contiguous_readpages(tree, &pages[first_index],
3123 index - first_index, start,