1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 static inline bool extent_state_in_tree(const struct extent_state *state)
30 return !RB_EMPTY_NODE(&state->rb_node);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
37 static DEFINE_SPINLOCK(leak_lock);
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 spin_lock_irqsave(&leak_lock, flags);
46 spin_unlock_irqrestore(&leak_lock, flags);
50 void btrfs_leak_debug_del(struct list_head *entry)
54 spin_lock_irqsave(&leak_lock, flags);
56 spin_unlock_irqrestore(&leak_lock, flags);
60 void btrfs_leak_debug_check(void)
62 struct extent_state *state;
63 struct extent_buffer *eb;
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node;
119 struct extent_page_data {
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
142 if (set && (state->state & bits) == bits)
144 if (!set && (state->state & bits) == 0)
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
159 return btrfs_sb(tree->mapping->host->i_sb);
162 int __init extent_io_init(void)
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
179 goto free_buffer_cache;
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
187 bioset_free(btrfs_bioset);
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
212 bioset_free(btrfs_bioset);
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
218 tree->state = RB_ROOT;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
225 static struct extent_state *alloc_extent_state(gfp_t mask)
227 struct extent_state *state;
229 state = kmem_cache_alloc(extent_state_cache, mask);
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
242 void free_extent_state(struct extent_state *state)
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
265 if (p_in && parent_in) {
271 p = search_start ? &search_start : &root->rb_node;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
276 if (offset < entry->start)
278 else if (offset > entry->end)
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
308 if (offset < entry->start)
310 else if (offset > entry->end)
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
348 struct rb_node *prev = NULL;
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 return tree_search_for_insert(tree, offset, NULL, NULL);
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
378 * This should be called with the tree lock held.
380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
383 struct extent_state *other;
384 struct rb_node *other_node;
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 other_node = rb_prev(&state->rb_node);
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
401 other_node = rb_next(&state->rb_node);
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
449 struct rb_node *node;
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
454 state->start = start;
457 set_state_bits(tree, state, bits, changeset);
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
465 found->start, found->end, start, end);
468 merge_state(tree, state);
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
490 * The tree locks are not taken by this function. They need to be held
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
496 struct rb_node *node;
498 split_cb(tree, orig, split);
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
508 free_extent_state(prealloc);
514 static struct extent_state *next_state(struct extent_state *state)
516 struct rb_node *next = rb_next(&state->rb_node);
518 return rb_entry(next, struct extent_state, rb_node);
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
558 merge_state(tree, state);
559 next = next_state(state);
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
588 * the range [start, end] is inclusive.
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
605 btrfs_debug_check_extent_io_range(tree, start, end);
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
625 prealloc = alloc_extent_state(mask);
628 spin_lock(&tree->lock);
630 cached = *cached_state;
633 *cached_state = NULL;
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
640 atomic_dec(&cached->refs);
645 free_extent_state(cached);
648 * this search will find the extents that end after
651 node = tree_search(tree, start);
654 state = rb_entry(node, struct extent_state, rb_node);
656 if (state->start > end)
658 WARN_ON(state->end < start);
659 last_end = state->end;
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
668 * | ---- desired range ---- |
670 * | ------------- state -------------- |
672 * We need to split the extent we found, and may flip
673 * bits on second half.
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
686 err = split_state(tree, state, prealloc, start);
688 extent_io_tree_panic(tree, err);
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
701 * | ---- desired range ---- |
703 * We need to split the extent, and clear the bit
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
711 extent_io_tree_panic(tree, err);
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
724 if (last_end == (u64)-1)
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
733 spin_unlock(&tree->lock);
734 if (gfpflags_allow_blocking(mask))
739 spin_unlock(&tree->lock);
741 free_extent_state(prealloc);
747 static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 struct extent_state *state;
769 struct rb_node *node;
771 btrfs_debug_check_extent_io_range(tree, start, end);
773 spin_lock(&tree->lock);
777 * this search will find all the extents that end after
780 node = tree_search(tree, start);
785 state = rb_entry(node, struct extent_state, rb_node);
787 if (state->start > end)
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
797 start = state->end + 1;
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
808 spin_unlock(&tree->lock);
811 static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
826 static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
833 atomic_inc(&state->refs);
838 static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
853 * [start, end] is inclusive This takes the tree lock.
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
866 struct rb_node *parent;
871 btrfs_debug_check_extent_io_range(tree, start, end);
873 bits |= EXTENT_FIRST_DELALLOC;
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
883 prealloc = alloc_extent_state(mask);
886 spin_lock(&tree->lock);
887 if (cached_state && *cached_state) {
888 state = *cached_state;
889 if (state->start <= start && state->end > start &&
890 extent_state_in_tree(state)) {
891 node = &state->rb_node;
896 * this search will find all the extents that end after
899 node = tree_search_for_insert(tree, start, &p, &parent);
901 prealloc = alloc_extent_state_atomic(prealloc);
903 err = insert_state(tree, prealloc, start, end,
904 &p, &parent, &bits, changeset);
906 extent_io_tree_panic(tree, err);
908 cache_state(prealloc, cached_state);
912 state = rb_entry(node, struct extent_state, rb_node);
914 last_start = state->start;
915 last_end = state->end;
918 * | ---- desired range ---- |
921 * Just lock what we found and keep going
923 if (state->start == start && state->end <= end) {
924 if (state->state & exclusive_bits) {
925 *failed_start = state->start;
930 set_state_bits(tree, state, &bits, changeset);
931 cache_state(state, cached_state);
932 merge_state(tree, state);
933 if (last_end == (u64)-1)
935 start = last_end + 1;
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
944 * | ---- desired range ---- |
947 * | ------------- state -------------- |
949 * We need to split the extent we found, and may flip bits on
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
956 * If the extent we found is inside our range, we set the
959 if (state->start < start) {
960 if (state->state & exclusive_bits) {
961 *failed_start = start;
966 prealloc = alloc_extent_state_atomic(prealloc);
968 err = split_state(tree, state, prealloc, start);
970 extent_io_tree_panic(tree, err);
975 if (state->end <= end) {
976 set_state_bits(tree, state, &bits, changeset);
977 cache_state(state, cached_state);
978 merge_state(tree, state);
979 if (last_end == (u64)-1)
981 start = last_end + 1;
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
990 * | ---- desired range ---- |
991 * | state | or | state |
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
996 if (state->start > start) {
998 if (end < last_start)
1001 this_end = last_start - 1;
1003 prealloc = alloc_extent_state_atomic(prealloc);
1007 * Avoid to free 'prealloc' if it can be merged with
1010 err = insert_state(tree, prealloc, start, this_end,
1011 NULL, NULL, &bits, changeset);
1013 extent_io_tree_panic(tree, err);
1015 cache_state(prealloc, cached_state);
1017 start = this_end + 1;
1021 * | ---- desired range ---- |
1023 * We need to split the extent, and set the bit
1026 if (state->start <= end && state->end > end) {
1027 if (state->state & exclusive_bits) {
1028 *failed_start = start;
1033 prealloc = alloc_extent_state_atomic(prealloc);
1035 err = split_state(tree, state, prealloc, end + 1);
1037 extent_io_tree_panic(tree, err);
1039 set_state_bits(tree, prealloc, &bits, changeset);
1040 cache_state(prealloc, cached_state);
1041 merge_state(tree, prealloc);
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1055 spin_unlock(&tree->lock);
1057 free_extent_state(prealloc);
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 unsigned bits, u64 * failed_start,
1065 struct extent_state **cached_state, gfp_t mask)
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 cached_state, mask, NULL);
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
1080 * @cached_state: state that we're going to cache
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
1088 * All allocations are done with GFP_NOFS.
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 unsigned bits, unsigned clear_bits,
1092 struct extent_state **cached_state)
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
1098 struct rb_node *parent;
1102 bool first_iteration = true;
1104 btrfs_debug_check_extent_io_range(tree, start, end);
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1115 prealloc = alloc_extent_state(GFP_NOFS);
1116 if (!prealloc && !first_iteration)
1120 spin_lock(&tree->lock);
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
1124 extent_state_in_tree(state)) {
1125 node = &state->rb_node;
1131 * this search will find all the extents that end after
1134 node = tree_search_for_insert(tree, start, &p, &parent);
1136 prealloc = alloc_extent_state_atomic(prealloc);
1141 err = insert_state(tree, prealloc, start, end,
1142 &p, &parent, &bits, NULL);
1144 extent_io_tree_panic(tree, err);
1145 cache_state(prealloc, cached_state);
1149 state = rb_entry(node, struct extent_state, rb_node);
1151 last_start = state->start;
1152 last_end = state->end;
1155 * | ---- desired range ---- |
1158 * Just lock what we found and keep going
1160 if (state->start == start && state->end <= end) {
1161 set_state_bits(tree, state, &bits, NULL);
1162 cache_state(state, cached_state);
1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 if (last_end == (u64)-1)
1166 start = last_end + 1;
1167 if (start < end && state && state->start == start &&
1174 * | ---- desired range ---- |
1177 * | ------------- state -------------- |
1179 * We need to split the extent we found, and may flip bits on
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1195 err = split_state(tree, state, prealloc, start);
1197 extent_io_tree_panic(tree, err);
1201 if (state->end <= end) {
1202 set_state_bits(tree, state, &bits, NULL);
1203 cache_state(state, cached_state);
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1206 if (last_end == (u64)-1)
1208 start = last_end + 1;
1209 if (start < end && state && state->start == start &&
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1222 if (state->start > start) {
1224 if (end < last_start)
1227 this_end = last_start - 1;
1229 prealloc = alloc_extent_state_atomic(prealloc);
1236 * Avoid to free 'prealloc' if it can be merged with
1239 err = insert_state(tree, prealloc, start, this_end,
1240 NULL, NULL, &bits, NULL);
1242 extent_io_tree_panic(tree, err);
1243 cache_state(prealloc, cached_state);
1245 start = this_end + 1;
1249 * | ---- desired range ---- |
1251 * We need to split the extent, and set the bit
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1261 err = split_state(tree, state, prealloc, end + 1);
1263 extent_io_tree_panic(tree, err);
1265 set_state_bits(tree, prealloc, &bits, NULL);
1266 cache_state(prealloc, cached_state);
1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1275 spin_unlock(&tree->lock);
1277 first_iteration = false;
1281 spin_unlock(&tree->lock);
1283 free_extent_state(prealloc);
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 unsigned bits, struct extent_changeset *changeset)
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1298 BUG_ON(bits & EXTENT_LOCKED);
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, struct extent_changeset *changeset)
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1319 BUG_ON(bits & EXTENT_LOCKED);
1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 struct extent_state **cached_state)
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 EXTENT_LOCKED, &failed_start,
1338 cached_state, GFP_NOFS, NULL);
1339 if (err == -EEXIST) {
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
1344 WARN_ON(start > end);
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 &failed_start, NULL, GFP_NOFS, NULL);
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 __set_page_dirty_nobuffers(page);
1390 account_page_redirty(page);
1397 * helper function to set both pages and extents in the tree writeback
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page);
1414 /* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 u64 start, unsigned bits)
1422 struct rb_node *node;
1423 struct extent_state *state;
1426 * this search will find all the extents that end after
1429 node = tree_search(tree, start);
1434 state = rb_entry(node, struct extent_state, rb_node);
1435 if (state->end >= start && (state->state & bits))
1438 node = rb_next(node);
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1451 * If nothing was found, 1 is returned. If found something, return 0.
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 u64 *start_ret, u64 *end_ret, unsigned bits,
1455 struct extent_state **cached_state)
1457 struct extent_state *state;
1461 spin_lock(&tree->lock);
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 n = rb_next(&state->rb_node);
1467 state = rb_entry(n, struct extent_state,
1469 if (state->state & bits)
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1481 state = find_first_extent_bit_state(tree, start, bits);
1484 cache_state_if_flags(state, cached_state, 0);
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1490 spin_unlock(&tree->lock);
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1508 u64 total_bytes = 0;
1510 spin_lock(&tree->lock);
1513 * this search will find all the extents that end after
1516 node = tree_search(tree, cur_start);
1524 state = rb_entry(node, struct extent_state, rb_node);
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
1529 if (!(state->state & EXTENT_DELALLOC)) {
1535 *start = state->start;
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
1543 total_bytes += state->end - state->start + 1;
1544 if (total_bytes >= max_bytes)
1550 spin_unlock(&tree->lock);
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1559 struct page *pages[16];
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
1562 unsigned long nr_pages = end_index - index + 1;
1565 if (index == locked_page->index && end_index == index)
1568 while (nr_pages > 0) {
1569 ret = find_get_pages_contig(inode->i_mapping, index,
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 unsigned long start_index = index;
1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
1603 while (nrpages > 0) {
1604 ret = find_get_pages_contig(inode->i_mapping, index,
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1614 * the caller is taking responsibility for
1617 if (pages[i] != locked_page) {
1618 lock_page(pages[i]);
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
1622 unlock_page(pages[i]);
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1639 ((u64)(start_index + pages_locked - 1)) <<
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
1659 struct extent_state *cached_state = NULL;
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 max_bytes, &cached_state);
1669 if (!found || delalloc_end <= *start) {
1670 *start = delalloc_start;
1671 *end = delalloc_end;
1672 free_extent_state(cached_state);
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1681 if (delalloc_start < *start)
1682 delalloc_start = *start;
1685 * make sure to limit the number of pages we try to lock down
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1697 free_extent_state(cached_state);
1698 cached_state = NULL;
1700 max_bytes = PAGE_SIZE;
1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710 /* step three, lock the state bits for the whole range */
1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 EXTENT_DELALLOC, 1, cached_state);
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1724 free_extent_state(cached_state);
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 struct page *locked_page,
1733 unsigned clear_bits,
1734 unsigned long page_ops)
1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 struct page *pages[16];
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
1741 unsigned long nr_pages = end_index - index + 1;
1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1751 while (nr_pages > 0) {
1752 ret = find_get_pages_contig(inode->i_mapping, index,
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
1755 for (i = 0; i < ret; i++) {
1757 if (page_ops & PAGE_SET_PRIVATE2)
1758 SetPagePrivate2(pages[i]);
1760 if (pages[i] == locked_page) {
1764 if (page_ops & PAGE_CLEAR_DIRTY)
1765 clear_page_dirty_for_io(pages[i]);
1766 if (page_ops & PAGE_SET_WRITEBACK)
1767 set_page_writeback(pages[i]);
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
1770 if (page_ops & PAGE_END_WRITEBACK)
1771 end_page_writeback(pages[i]);
1772 if (page_ops & PAGE_UNLOCK)
1773 unlock_page(pages[i]);
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
1789 unsigned bits, int contig)
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
1798 if (WARN_ON(search_end <= cur_start))
1801 spin_lock(&tree->lock);
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1807 * this search will find all the extents that end after
1810 node = tree_search(tree, cur_start);
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1818 if (contig && found && state->start > last + 1)
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1826 *start = max(cur_start, state->start);
1830 } else if (contig && found) {
1833 node = rb_next(node);
1838 spin_unlock(&tree->lock);
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record *failrec)
1849 struct rb_node *node;
1850 struct extent_state *state;
1853 spin_lock(&tree->lock);
1855 * this search will find all the extents that end after
1858 node = tree_search(tree, start);
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1868 state->failrec = failrec;
1870 spin_unlock(&tree->lock);
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 struct io_failure_record **failrec)
1877 struct rb_node *node;
1878 struct extent_state *state;
1881 spin_lock(&tree->lock);
1883 * this search will find all the extents that end after
1886 node = tree_search(tree, start);
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1896 *failrec = state->failrec;
1898 spin_unlock(&tree->lock);
1903 * searches a range in the state tree for a given mask.
1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 unsigned bits, int filled, struct extent_state *cached)
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1915 spin_lock(&tree->lock);
1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 cached->end > start)
1918 node = &cached->rb_node;
1920 node = tree_search(tree, start);
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1924 if (filled && state->start > start) {
1929 if (state->start > end)
1932 if (state->state & bits) {
1936 } else if (filled) {
1941 if (state->end == (u64)-1)
1944 start = state->end + 1;
1947 node = rb_next(node);
1954 spin_unlock(&tree->lock);
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1964 u64 start = page_offset(page);
1965 u64 end = start + PAGE_SIZE - 1;
1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 SetPageUptodate(page);
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1976 set_state_failrec(failure_tree, rec->start, NULL);
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
1979 EXTENT_LOCKED | EXTENT_DIRTY);
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
1998 * to avoid any synchronization issues, wait for the data after writing, which
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2008 struct btrfs_device *dev;
2011 struct btrfs_bio *bbio = NULL;
2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 BUG_ON(!mirror_num);
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2025 bio->bi_iter.bi_size = 0;
2026 map_length = length;
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2033 btrfs_bio_counter_inc_blocked(fs_info);
2034 ret = btrfs_map_block(fs_info, WRITE, logical,
2035 &map_length, &bbio, mirror_num);
2037 btrfs_bio_counter_dec(fs_info);
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 bio->bi_iter.bi_sector = sector;
2044 dev = bbio->stripes[mirror_num-1].dev;
2045 btrfs_put_bbio(bbio);
2046 if (!dev || !dev->bdev || !dev->writeable) {
2047 btrfs_bio_counter_dec(fs_info);
2051 bio->bi_bdev = dev->bdev;
2052 bio->bi_rw = WRITE_SYNC;
2053 bio_add_page(bio, page, length, pg_offset);
2055 if (btrfsic_submit_bio_wait(bio)) {
2056 /* try to remap that extent elsewhere? */
2057 btrfs_bio_counter_dec(fs_info);
2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
2067 btrfs_bio_counter_dec(fs_info);
2072 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2082 for (i = 0; i < num_pages; i++) {
2083 struct page *p = eb->pages[i];
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
2086 PAGE_SIZE, start, p,
2087 start - page_offset(p), mirror_num);
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2100 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
2104 struct io_failure_record *failrec;
2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106 struct extent_state *state;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2121 BUG_ON(!failrec->this_mirror);
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2142 if (num_copies > 1) {
2143 repair_io_failure(inode, start, failrec->len,
2144 failrec->logical, page,
2145 pg_offset, failrec->failed_mirror);
2150 free_io_failure(inode, failrec);
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2161 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2173 if (state->start > end)
2176 ASSERT(state->end <= end);
2178 next = next_state(state);
2180 failrec = state->failrec;
2181 free_extent_state(state);
2186 spin_unlock(&failure_tree->lock);
2189 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2190 struct io_failure_record **failrec_ret)
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2215 read_unlock(&em_tree->lock);
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2224 read_unlock(&em_tree->lock);
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2242 failrec->logical = logical;
2243 free_extent_map(em);
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY);
2249 ret = set_state_failrec(failure_tree, start, failrec);
2250 /* set the bits in the inode's tree */
2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2268 *failrec_ret = failrec;
2273 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
2280 if (num_copies == 1) {
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2287 num_copies, failrec->this_mirror, failed_mirror);
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2296 if (failed_bio->bi_vcnt > 1) {
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
2325 if (failrec->this_mirror > num_copies) {
2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2327 num_copies, failrec->this_mirror, failed_mirror);
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2348 bio->bi_end_io = endio_func;
2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2351 bio->bi_iter.bi_size = 0;
2352 bio->bi_private = data;
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2398 free_io_failure(inode, failrec);
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2405 read_mode = READ_SYNC;
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
2410 (int)phy_offset, failed_bio->bi_end_io,
2413 free_io_failure(inode, failrec);
2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2422 failrec->bio_flags, 0);
2424 free_io_failure(inode, failrec);
2431 /* lots and lots of room for performance fixes in the end_bio funcs */
2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2441 if (tree->ops && tree->ops->writepage_end_io_hook) {
2442 ret = tree->ops->writepage_end_io_hook(page, start,
2443 end, NULL, uptodate);
2449 ClearPageUptodate(page);
2451 ret = ret < 0 ? ret : -EIO;
2452 mapping_set_error(page->mapping, ret);
2457 * after a writepage IO is done, we need to:
2458 * clear the uptodate bits on error
2459 * clear the writeback bits in the extent tree for this IO
2460 * end_page_writeback if the page has no more pending IO
2462 * Scheduling is not allowed, so the extent state tree is expected
2463 * to have one and only one object corresponding to this IO.
2465 static void end_bio_extent_writepage(struct bio *bio)
2467 struct bio_vec *bvec;
2472 bio_for_each_segment_all(bvec, bio, i) {
2473 struct page *page = bvec->bv_page;
2475 /* We always issue full-page reads, but if some block
2476 * in a page fails to read, blk_update_request() will
2477 * advance bv_offset and adjust bv_len to compensate.
2478 * Print a warning for nonzero offsets, and an error
2479 * if they don't add up to a full page. */
2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "partial page write in btrfs with offset %u and length %u",
2484 bvec->bv_offset, bvec->bv_len);
2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "incomplete page write in btrfs with offset %u and "
2489 bvec->bv_offset, bvec->bv_len);
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
2495 end_extent_writepage(page, bio->bi_error, start, end);
2496 end_page_writeback(page);
2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2525 static void end_bio_extent_readpage(struct bio *bio)
2527 struct bio_vec *bvec;
2528 int uptodate = !bio->bi_error;
2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2530 struct extent_io_tree *tree;
2535 u64 extent_start = 0;
2541 bio_for_each_segment_all(bvec, bio, i) {
2542 struct page *page = bvec->bv_page;
2543 struct inode *inode = page->mapping->host;
2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547 bio->bi_error, io_bio->mirror_num);
2548 tree = &BTRFS_I(inode)->io_tree;
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
2559 bvec->bv_offset, bvec->bv_len);
2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562 "incomplete page read in btrfs with offset %u and "
2564 bvec->bv_offset, bvec->bv_len);
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
2571 mirror = io_bio->mirror_num;
2572 if (likely(uptodate && tree->ops &&
2573 tree->ops->readpage_end_io_hook)) {
2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580 clean_io_failure(inode, start, page, 0);
2583 if (likely(uptodate))
2586 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2587 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2588 if (!ret && !bio->bi_error)
2592 * The generic bio_readpage_error handles errors the
2593 * following way: If possible, new read requests are
2594 * created and submitted and will end up in
2595 * end_bio_extent_readpage as well (if we're lucky, not
2596 * in the !uptodate case). In that case it returns 0 and
2597 * we just go on with the next page in our bio. If it
2598 * can't handle the error it will return -EIO and we
2599 * remain responsible for that page.
2601 ret = bio_readpage_error(bio, offset, page, start, end,
2604 uptodate = !bio->bi_error;
2610 if (likely(uptodate)) {
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
2615 /* Zero out the end if this page straddles i_size */
2616 off = i_size & (PAGE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_SIZE);
2619 SetPageUptodate(page);
2621 ClearPageUptodate(page);
2627 if (unlikely(!uptodate)) {
2629 endio_readpage_release_extent(tree,
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2654 io_bio->end_io(io_bio, bio->bi_error);
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2666 struct btrfs_io_bio *btrfs_bio;
2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2679 bio->bi_bdev = bdev;
2680 bio->bi_iter.bi_sector = first_sector;
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2691 struct btrfs_io_bio *btrfs_bio;
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2701 #ifdef CONFIG_BLK_CGROUP
2702 /* FIXME, put this into bio_clone_bioset */
2704 bio_associate_blkcg(new, bio->bi_css);
2710 /* this also allocates from the btrfs_bioset */
2711 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2713 struct btrfs_io_bio *btrfs_bio;
2716 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2718 btrfs_bio = btrfs_io_bio(bio);
2719 btrfs_bio->csum = NULL;
2720 btrfs_bio->csum_allocated = NULL;
2721 btrfs_bio->end_io = NULL;
2727 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2728 unsigned long bio_flags)
2731 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2732 struct page *page = bvec->bv_page;
2733 struct extent_io_tree *tree = bio->bi_private;
2736 start = page_offset(page) + bvec->bv_offset;
2738 bio->bi_private = NULL;
2741 if (tree->ops && tree->ops->submit_bio_hook)
2742 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2743 mirror_num, bio_flags, start);
2745 btrfsic_submit_bio(bio);
2751 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2752 unsigned long offset, size_t size, struct bio *bio,
2753 unsigned long bio_flags)
2756 if (tree->ops && tree->ops->merge_bio_hook)
2757 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2763 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2764 struct writeback_control *wbc,
2765 struct page *page, sector_t sector,
2766 size_t size, unsigned long offset,
2767 struct block_device *bdev,
2768 struct bio **bio_ret,
2769 unsigned long max_pages,
2770 bio_end_io_t end_io_func,
2772 unsigned long prev_bio_flags,
2773 unsigned long bio_flags,
2774 bool force_bio_submit)
2779 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2780 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782 if (bio_ret && *bio_ret) {
2785 contig = bio->bi_iter.bi_sector == sector;
2787 contig = bio_end_sector(bio) == sector;
2789 if (prev_bio_flags != bio_flags || !contig ||
2791 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2792 bio_add_page(bio, page, page_size, offset) < page_size) {
2793 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2801 wbc_account_io(wbc, page, page_size);
2806 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2807 GFP_NOFS | __GFP_HIGH);
2811 bio_add_page(bio, page, page_size, offset);
2812 bio->bi_end_io = end_io_func;
2813 bio->bi_private = tree;
2814 bio_set_op_attrs(bio, op, op_flags);
2816 wbc_init_bio(wbc, bio);
2817 wbc_account_io(wbc, page, page_size);
2823 ret = submit_one_bio(bio, mirror_num, bio_flags);
2828 static void attach_extent_buffer_page(struct extent_buffer *eb,
2831 if (!PagePrivate(page)) {
2832 SetPagePrivate(page);
2834 set_page_private(page, (unsigned long)eb);
2836 WARN_ON(page->private != (unsigned long)eb);
2840 void set_page_extent_mapped(struct page *page)
2842 if (!PagePrivate(page)) {
2843 SetPagePrivate(page);
2845 set_page_private(page, EXTENT_PAGE_PRIVATE);
2849 static struct extent_map *
2850 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2851 u64 start, u64 len, get_extent_t *get_extent,
2852 struct extent_map **em_cached)
2854 struct extent_map *em;
2856 if (em_cached && *em_cached) {
2858 if (extent_map_in_tree(em) && start >= em->start &&
2859 start < extent_map_end(em)) {
2860 atomic_inc(&em->refs);
2864 free_extent_map(em);
2868 em = get_extent(inode, page, pg_offset, start, len, 0);
2869 if (em_cached && !IS_ERR_OR_NULL(em)) {
2871 atomic_inc(&em->refs);
2877 * basic readpage implementation. Locked extent state structs are inserted
2878 * into the tree that are removed when the IO is done (by the end_io
2880 * XXX JDM: This needs looking at to ensure proper page locking
2881 * return 0 on success, otherwise return error
2883 static int __do_readpage(struct extent_io_tree *tree,
2885 get_extent_t *get_extent,
2886 struct extent_map **em_cached,
2887 struct bio **bio, int mirror_num,
2888 unsigned long *bio_flags, int read_flags,
2891 struct inode *inode = page->mapping->host;
2892 u64 start = page_offset(page);
2893 u64 page_end = start + PAGE_SIZE - 1;
2897 u64 last_byte = i_size_read(inode);
2901 struct extent_map *em;
2902 struct block_device *bdev;
2905 size_t pg_offset = 0;
2907 size_t disk_io_size;
2908 size_t blocksize = inode->i_sb->s_blocksize;
2909 unsigned long this_bio_flag = 0;
2911 set_page_extent_mapped(page);
2914 if (!PageUptodate(page)) {
2915 if (cleancache_get_page(page) == 0) {
2916 BUG_ON(blocksize != PAGE_SIZE);
2917 unlock_extent(tree, start, end);
2922 if (page->index == last_byte >> PAGE_SHIFT) {
2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2927 iosize = PAGE_SIZE - zero_offset;
2928 userpage = kmap_atomic(page);
2929 memset(userpage + zero_offset, 0, iosize);
2930 flush_dcache_page(page);
2931 kunmap_atomic(userpage);
2934 while (cur <= end) {
2935 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2936 bool force_bio_submit = false;
2938 if (cur >= last_byte) {
2940 struct extent_state *cached = NULL;
2942 iosize = PAGE_SIZE - pg_offset;
2943 userpage = kmap_atomic(page);
2944 memset(userpage + pg_offset, 0, iosize);
2945 flush_dcache_page(page);
2946 kunmap_atomic(userpage);
2947 set_extent_uptodate(tree, cur, cur + iosize - 1,
2949 unlock_extent_cached(tree, cur,
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
2956 if (IS_ERR_OR_NULL(em)) {
2958 unlock_extent(tree, cur, end);
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 extent_set_compress_type(&this_bio_flag,
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
2973 iosize = ALIGN(iosize, blocksize);
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 sector = em->block_start >> 9;
2978 sector = (em->block_start + extent_offset) >> 9;
2979 disk_io_size = iosize;
2982 block_start = em->block_start;
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2997 * [0 - 8K] [8K - 24K]
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3026 *prev_em_start = em->orig_start;
3028 free_extent_map(em);
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3034 struct extent_state *cached = NULL;
3036 userpage = kmap_atomic(page);
3037 memset(userpage + pg_offset, 0, iosize);
3038 flush_dcache_page(page);
3039 kunmap_atomic(userpage);
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
3043 unlock_extent_cached(tree, cur,
3047 pg_offset += iosize;
3050 /* the get_extent function already copied into the page */
3051 if (test_range_bit(tree, cur, cur_end,
3052 EXTENT_UPTODATE, 1, NULL)) {
3053 check_page_uptodate(tree, page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3056 pg_offset += iosize;
3059 /* we have an inline extent but it didn't get marked up
3060 * to date. Error out
3062 if (block_start == EXTENT_MAP_INLINE) {
3064 unlock_extent(tree, cur, cur + iosize - 1);
3066 pg_offset += iosize;
3071 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3072 page, sector, disk_io_size, pg_offset,
3074 end_bio_extent_readpage, mirror_num,
3080 *bio_flags = this_bio_flag;
3083 unlock_extent(tree, cur, cur + iosize - 1);
3087 pg_offset += iosize;
3091 if (!PageError(page))
3092 SetPageUptodate(page);
3098 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3099 struct page *pages[], int nr_pages,
3101 get_extent_t *get_extent,
3102 struct extent_map **em_cached,
3103 struct bio **bio, int mirror_num,
3104 unsigned long *bio_flags,
3107 struct inode *inode;
3108 struct btrfs_ordered_extent *ordered;
3111 inode = pages[0]->mapping->host;
3113 lock_extent(tree, start, end);
3114 ordered = btrfs_lookup_ordered_range(inode, start,
3118 unlock_extent(tree, start, end);
3119 btrfs_start_ordered_extent(inode, ordered, 1);
3120 btrfs_put_ordered_extent(ordered);
3123 for (index = 0; index < nr_pages; index++) {
3124 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3125 mirror_num, bio_flags, 0, prev_em_start);
3126 put_page(pages[index]);
3130 static void __extent_readpages(struct extent_io_tree *tree,
3131 struct page *pages[],