Merge tag 'csky-for-linus-5.4-rc1' of git://github.com/c-sky/csky-linux
[sfrench/cifs-2.6.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33         return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(&leak_lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(&leak_lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65         struct extent_state *state;
66         struct extent_buffer *eb;
67
68         while (!list_empty(&states)) {
69                 state = list_entry(states.next, struct extent_state, leak_list);
70                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71                        state->start, state->end, state->state,
72                        extent_state_in_tree(state),
73                        refcount_read(&state->refs));
74                 list_del(&state->leak_list);
75                 kmem_cache_free(extent_state_cache, state);
76         }
77
78         while (!list_empty(&buffers)) {
79                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
88         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90                 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92         struct inode *inode = tree->private_data;
93         u64 isize;
94
95         if (!inode || !is_data_inode(inode))
96                 return;
97
98         isize = i_size_read(inode);
99         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
102                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103         }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry)     do {} while (0)
108 #define btrfs_leak_debug_check()        do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
110 #endif
111
112 struct tree_entry {
113         u64 start;
114         u64 end;
115         struct rb_node rb_node;
116 };
117
118 struct extent_page_data {
119         struct bio *bio;
120         struct extent_io_tree *tree;
121         /* tells writepage not to lock the state bits for this range
122          * it still does the unlocking
123          */
124         unsigned int extent_locked:1;
125
126         /* tells the submit_bio code to use REQ_SYNC */
127         unsigned int sync_io:1;
128 };
129
130 static int add_extent_changeset(struct extent_state *state, unsigned bits,
131                                  struct extent_changeset *changeset,
132                                  int set)
133 {
134         int ret;
135
136         if (!changeset)
137                 return 0;
138         if (set && (state->state & bits) == bits)
139                 return 0;
140         if (!set && (state->state & bits) == 0)
141                 return 0;
142         changeset->bytes_changed += state->end - state->start + 1;
143         ret = ulist_add(&changeset->range_changed, state->start, state->end,
144                         GFP_ATOMIC);
145         return ret;
146 }
147
148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149                                        unsigned long bio_flags)
150 {
151         blk_status_t ret = 0;
152         struct extent_io_tree *tree = bio->bi_private;
153
154         bio->bi_private = NULL;
155
156         if (tree->ops)
157                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158                                                  mirror_num, bio_flags);
159         else
160                 btrfsic_submit_bio(bio);
161
162         return blk_status_to_errno(ret);
163 }
164
165 /* Cleanup unsubmitted bios */
166 static void end_write_bio(struct extent_page_data *epd, int ret)
167 {
168         if (epd->bio) {
169                 epd->bio->bi_status = errno_to_blk_status(ret);
170                 bio_endio(epd->bio);
171                 epd->bio = NULL;
172         }
173 }
174
175 /*
176  * Submit bio from extent page data via submit_one_bio
177  *
178  * Return 0 if everything is OK.
179  * Return <0 for error.
180  */
181 static int __must_check flush_write_bio(struct extent_page_data *epd)
182 {
183         int ret = 0;
184
185         if (epd->bio) {
186                 ret = submit_one_bio(epd->bio, 0, 0);
187                 /*
188                  * Clean up of epd->bio is handled by its endio function.
189                  * And endio is either triggered by successful bio execution
190                  * or the error handler of submit bio hook.
191                  * So at this point, no matter what happened, we don't need
192                  * to clean up epd->bio.
193                  */
194                 epd->bio = NULL;
195         }
196         return ret;
197 }
198
199 int __init extent_io_init(void)
200 {
201         extent_state_cache = kmem_cache_create("btrfs_extent_state",
202                         sizeof(struct extent_state), 0,
203                         SLAB_MEM_SPREAD, NULL);
204         if (!extent_state_cache)
205                 return -ENOMEM;
206
207         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208                         sizeof(struct extent_buffer), 0,
209                         SLAB_MEM_SPREAD, NULL);
210         if (!extent_buffer_cache)
211                 goto free_state_cache;
212
213         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214                         offsetof(struct btrfs_io_bio, bio),
215                         BIOSET_NEED_BVECS))
216                 goto free_buffer_cache;
217
218         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219                 goto free_bioset;
220
221         return 0;
222
223 free_bioset:
224         bioset_exit(&btrfs_bioset);
225
226 free_buffer_cache:
227         kmem_cache_destroy(extent_buffer_cache);
228         extent_buffer_cache = NULL;
229
230 free_state_cache:
231         kmem_cache_destroy(extent_state_cache);
232         extent_state_cache = NULL;
233         return -ENOMEM;
234 }
235
236 void __cold extent_io_exit(void)
237 {
238         btrfs_leak_debug_check();
239
240         /*
241          * Make sure all delayed rcu free are flushed before we
242          * destroy caches.
243          */
244         rcu_barrier();
245         kmem_cache_destroy(extent_state_cache);
246         kmem_cache_destroy(extent_buffer_cache);
247         bioset_exit(&btrfs_bioset);
248 }
249
250 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251                          struct extent_io_tree *tree, unsigned int owner,
252                          void *private_data)
253 {
254         tree->fs_info = fs_info;
255         tree->state = RB_ROOT;
256         tree->ops = NULL;
257         tree->dirty_bytes = 0;
258         spin_lock_init(&tree->lock);
259         tree->private_data = private_data;
260         tree->owner = owner;
261 }
262
263 void extent_io_tree_release(struct extent_io_tree *tree)
264 {
265         spin_lock(&tree->lock);
266         /*
267          * Do a single barrier for the waitqueue_active check here, the state
268          * of the waitqueue should not change once extent_io_tree_release is
269          * called.
270          */
271         smp_mb();
272         while (!RB_EMPTY_ROOT(&tree->state)) {
273                 struct rb_node *node;
274                 struct extent_state *state;
275
276                 node = rb_first(&tree->state);
277                 state = rb_entry(node, struct extent_state, rb_node);
278                 rb_erase(&state->rb_node, &tree->state);
279                 RB_CLEAR_NODE(&state->rb_node);
280                 /*
281                  * btree io trees aren't supposed to have tasks waiting for
282                  * changes in the flags of extent states ever.
283                  */
284                 ASSERT(!waitqueue_active(&state->wq));
285                 free_extent_state(state);
286
287                 cond_resched_lock(&tree->lock);
288         }
289         spin_unlock(&tree->lock);
290 }
291
292 static struct extent_state *alloc_extent_state(gfp_t mask)
293 {
294         struct extent_state *state;
295
296         /*
297          * The given mask might be not appropriate for the slab allocator,
298          * drop the unsupported bits
299          */
300         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301         state = kmem_cache_alloc(extent_state_cache, mask);
302         if (!state)
303                 return state;
304         state->state = 0;
305         state->failrec = NULL;
306         RB_CLEAR_NODE(&state->rb_node);
307         btrfs_leak_debug_add(&state->leak_list, &states);
308         refcount_set(&state->refs, 1);
309         init_waitqueue_head(&state->wq);
310         trace_alloc_extent_state(state, mask, _RET_IP_);
311         return state;
312 }
313
314 void free_extent_state(struct extent_state *state)
315 {
316         if (!state)
317                 return;
318         if (refcount_dec_and_test(&state->refs)) {
319                 WARN_ON(extent_state_in_tree(state));
320                 btrfs_leak_debug_del(&state->leak_list);
321                 trace_free_extent_state(state, _RET_IP_);
322                 kmem_cache_free(extent_state_cache, state);
323         }
324 }
325
326 static struct rb_node *tree_insert(struct rb_root *root,
327                                    struct rb_node *search_start,
328                                    u64 offset,
329                                    struct rb_node *node,
330                                    struct rb_node ***p_in,
331                                    struct rb_node **parent_in)
332 {
333         struct rb_node **p;
334         struct rb_node *parent = NULL;
335         struct tree_entry *entry;
336
337         if (p_in && parent_in) {
338                 p = *p_in;
339                 parent = *parent_in;
340                 goto do_insert;
341         }
342
343         p = search_start ? &search_start : &root->rb_node;
344         while (*p) {
345                 parent = *p;
346                 entry = rb_entry(parent, struct tree_entry, rb_node);
347
348                 if (offset < entry->start)
349                         p = &(*p)->rb_left;
350                 else if (offset > entry->end)
351                         p = &(*p)->rb_right;
352                 else
353                         return parent;
354         }
355
356 do_insert:
357         rb_link_node(node, parent, p);
358         rb_insert_color(node, root);
359         return NULL;
360 }
361
362 /**
363  * __etree_search - searche @tree for an entry that contains @offset. Such
364  * entry would have entry->start <= offset && entry->end >= offset.
365  *
366  * @tree - the tree to search
367  * @offset - offset that should fall within an entry in @tree
368  * @next_ret - pointer to the first entry whose range ends after @offset
369  * @prev - pointer to the first entry whose range begins before @offset
370  * @p_ret - pointer where new node should be anchored (used when inserting an
371  *          entry in the tree)
372  * @parent_ret - points to entry which would have been the parent of the entry,
373  *               containing @offset
374  *
375  * This function returns a pointer to the entry that contains @offset byte
376  * address. If no such entry exists, then NULL is returned and the other
377  * pointer arguments to the function are filled, otherwise the found entry is
378  * returned and other pointers are left untouched.
379  */
380 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
381                                       struct rb_node **next_ret,
382                                       struct rb_node **prev_ret,
383                                       struct rb_node ***p_ret,
384                                       struct rb_node **parent_ret)
385 {
386         struct rb_root *root = &tree->state;
387         struct rb_node **n = &root->rb_node;
388         struct rb_node *prev = NULL;
389         struct rb_node *orig_prev = NULL;
390         struct tree_entry *entry;
391         struct tree_entry *prev_entry = NULL;
392
393         while (*n) {
394                 prev = *n;
395                 entry = rb_entry(prev, struct tree_entry, rb_node);
396                 prev_entry = entry;
397
398                 if (offset < entry->start)
399                         n = &(*n)->rb_left;
400                 else if (offset > entry->end)
401                         n = &(*n)->rb_right;
402                 else
403                         return *n;
404         }
405
406         if (p_ret)
407                 *p_ret = n;
408         if (parent_ret)
409                 *parent_ret = prev;
410
411         if (next_ret) {
412                 orig_prev = prev;
413                 while (prev && offset > prev_entry->end) {
414                         prev = rb_next(prev);
415                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416                 }
417                 *next_ret = prev;
418                 prev = orig_prev;
419         }
420
421         if (prev_ret) {
422                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
423                 while (prev && offset < prev_entry->start) {
424                         prev = rb_prev(prev);
425                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426                 }
427                 *prev_ret = prev;
428         }
429         return NULL;
430 }
431
432 static inline struct rb_node *
433 tree_search_for_insert(struct extent_io_tree *tree,
434                        u64 offset,
435                        struct rb_node ***p_ret,
436                        struct rb_node **parent_ret)
437 {
438         struct rb_node *next= NULL;
439         struct rb_node *ret;
440
441         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
442         if (!ret)
443                 return next;
444         return ret;
445 }
446
447 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448                                           u64 offset)
449 {
450         return tree_search_for_insert(tree, offset, NULL, NULL);
451 }
452
453 /*
454  * utility function to look for merge candidates inside a given range.
455  * Any extents with matching state are merged together into a single
456  * extent in the tree.  Extents with EXTENT_IO in their state field
457  * are not merged because the end_io handlers need to be able to do
458  * operations on them without sleeping (or doing allocations/splits).
459  *
460  * This should be called with the tree lock held.
461  */
462 static void merge_state(struct extent_io_tree *tree,
463                         struct extent_state *state)
464 {
465         struct extent_state *other;
466         struct rb_node *other_node;
467
468         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
469                 return;
470
471         other_node = rb_prev(&state->rb_node);
472         if (other_node) {
473                 other = rb_entry(other_node, struct extent_state, rb_node);
474                 if (other->end == state->start - 1 &&
475                     other->state == state->state) {
476                         if (tree->private_data &&
477                             is_data_inode(tree->private_data))
478                                 btrfs_merge_delalloc_extent(tree->private_data,
479                                                             state, other);
480                         state->start = other->start;
481                         rb_erase(&other->rb_node, &tree->state);
482                         RB_CLEAR_NODE(&other->rb_node);
483                         free_extent_state(other);
484                 }
485         }
486         other_node = rb_next(&state->rb_node);
487         if (other_node) {
488                 other = rb_entry(other_node, struct extent_state, rb_node);
489                 if (other->start == state->end + 1 &&
490                     other->state == state->state) {
491                         if (tree->private_data &&
492                             is_data_inode(tree->private_data))
493                                 btrfs_merge_delalloc_extent(tree->private_data,
494                                                             state, other);
495                         state->end = other->end;
496                         rb_erase(&other->rb_node, &tree->state);
497                         RB_CLEAR_NODE(&other->rb_node);
498                         free_extent_state(other);
499                 }
500         }
501 }
502
503 static void set_state_bits(struct extent_io_tree *tree,
504                            struct extent_state *state, unsigned *bits,
505                            struct extent_changeset *changeset);
506
507 /*
508  * insert an extent_state struct into the tree.  'bits' are set on the
509  * struct before it is inserted.
510  *
511  * This may return -EEXIST if the extent is already there, in which case the
512  * state struct is freed.
513  *
514  * The tree lock is not taken internally.  This is a utility function and
515  * probably isn't what you want to call (see set/clear_extent_bit).
516  */
517 static int insert_state(struct extent_io_tree *tree,
518                         struct extent_state *state, u64 start, u64 end,
519                         struct rb_node ***p,
520                         struct rb_node **parent,
521                         unsigned *bits, struct extent_changeset *changeset)
522 {
523         struct rb_node *node;
524
525         if (end < start) {
526                 btrfs_err(tree->fs_info,
527                         "insert state: end < start %llu %llu", end, start);
528                 WARN_ON(1);
529         }
530         state->start = start;
531         state->end = end;
532
533         set_state_bits(tree, state, bits, changeset);
534
535         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
536         if (node) {
537                 struct extent_state *found;
538                 found = rb_entry(node, struct extent_state, rb_node);
539                 btrfs_err(tree->fs_info,
540                        "found node %llu %llu on insert of %llu %llu",
541                        found->start, found->end, start, end);
542                 return -EEXIST;
543         }
544         merge_state(tree, state);
545         return 0;
546 }
547
548 /*
549  * split a given extent state struct in two, inserting the preallocated
550  * struct 'prealloc' as the newly created second half.  'split' indicates an
551  * offset inside 'orig' where it should be split.
552  *
553  * Before calling,
554  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
555  * are two extent state structs in the tree:
556  * prealloc: [orig->start, split - 1]
557  * orig: [ split, orig->end ]
558  *
559  * The tree locks are not taken by this function. They need to be held
560  * by the caller.
561  */
562 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563                        struct extent_state *prealloc, u64 split)
564 {
565         struct rb_node *node;
566
567         if (tree->private_data && is_data_inode(tree->private_data))
568                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
569
570         prealloc->start = orig->start;
571         prealloc->end = split - 1;
572         prealloc->state = orig->state;
573         orig->start = split;
574
575         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576                            &prealloc->rb_node, NULL, NULL);
577         if (node) {
578                 free_extent_state(prealloc);
579                 return -EEXIST;
580         }
581         return 0;
582 }
583
584 static struct extent_state *next_state(struct extent_state *state)
585 {
586         struct rb_node *next = rb_next(&state->rb_node);
587         if (next)
588                 return rb_entry(next, struct extent_state, rb_node);
589         else
590                 return NULL;
591 }
592
593 /*
594  * utility function to clear some bits in an extent state struct.
595  * it will optionally wake up anyone waiting on this state (wake == 1).
596  *
597  * If no bits are set on the state struct after clearing things, the
598  * struct is freed and removed from the tree
599  */
600 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601                                             struct extent_state *state,
602                                             unsigned *bits, int wake,
603                                             struct extent_changeset *changeset)
604 {
605         struct extent_state *next;
606         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
607         int ret;
608
609         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
610                 u64 range = state->end - state->start + 1;
611                 WARN_ON(range > tree->dirty_bytes);
612                 tree->dirty_bytes -= range;
613         }
614
615         if (tree->private_data && is_data_inode(tree->private_data))
616                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617
618         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619         BUG_ON(ret < 0);
620         state->state &= ~bits_to_clear;
621         if (wake)
622                 wake_up(&state->wq);
623         if (state->state == 0) {
624                 next = next_state(state);
625                 if (extent_state_in_tree(state)) {
626                         rb_erase(&state->rb_node, &tree->state);
627                         RB_CLEAR_NODE(&state->rb_node);
628                         free_extent_state(state);
629                 } else {
630                         WARN_ON(1);
631                 }
632         } else {
633                 merge_state(tree, state);
634                 next = next_state(state);
635         }
636         return next;
637 }
638
639 static struct extent_state *
640 alloc_extent_state_atomic(struct extent_state *prealloc)
641 {
642         if (!prealloc)
643                 prealloc = alloc_extent_state(GFP_ATOMIC);
644
645         return prealloc;
646 }
647
648 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
649 {
650         struct inode *inode = tree->private_data;
651
652         btrfs_panic(btrfs_sb(inode->i_sb), err,
653         "locking error: extent tree was modified by another thread while locked");
654 }
655
656 /*
657  * clear some bits on a range in the tree.  This may require splitting
658  * or inserting elements in the tree, so the gfp mask is used to
659  * indicate which allocations or sleeping are allowed.
660  *
661  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
662  * the given range from the tree regardless of state (ie for truncate).
663  *
664  * the range [start, end] is inclusive.
665  *
666  * This takes the tree lock, and returns 0 on success and < 0 on error.
667  */
668 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
669                               unsigned bits, int wake, int delete,
670                               struct extent_state **cached_state,
671                               gfp_t mask, struct extent_changeset *changeset)
672 {
673         struct extent_state *state;
674         struct extent_state *cached;
675         struct extent_state *prealloc = NULL;
676         struct rb_node *node;
677         u64 last_end;
678         int err;
679         int clear = 0;
680
681         btrfs_debug_check_extent_io_range(tree, start, end);
682         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
683
684         if (bits & EXTENT_DELALLOC)
685                 bits |= EXTENT_NORESERVE;
686
687         if (delete)
688                 bits |= ~EXTENT_CTLBITS;
689
690         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
691                 clear = 1;
692 again:
693         if (!prealloc && gfpflags_allow_blocking(mask)) {
694                 /*
695                  * Don't care for allocation failure here because we might end
696                  * up not needing the pre-allocated extent state at all, which
697                  * is the case if we only have in the tree extent states that
698                  * cover our input range and don't cover too any other range.
699                  * If we end up needing a new extent state we allocate it later.
700                  */
701                 prealloc = alloc_extent_state(mask);
702         }
703
704         spin_lock(&tree->lock);
705         if (cached_state) {
706                 cached = *cached_state;
707
708                 if (clear) {
709                         *cached_state = NULL;
710                         cached_state = NULL;
711                 }
712
713                 if (cached && extent_state_in_tree(cached) &&
714                     cached->start <= start && cached->end > start) {
715                         if (clear)
716                                 refcount_dec(&cached->refs);
717                         state = cached;
718                         goto hit_next;
719                 }
720                 if (clear)
721                         free_extent_state(cached);
722         }
723         /*
724          * this search will find the extents that end after
725          * our range starts
726          */
727         node = tree_search(tree, start);
728         if (!node)
729                 goto out;
730         state = rb_entry(node, struct extent_state, rb_node);
731 hit_next:
732         if (state->start > end)
733                 goto out;
734         WARN_ON(state->end < start);
735         last_end = state->end;
736
737         /* the state doesn't have the wanted bits, go ahead */
738         if (!(state->state & bits)) {
739                 state = next_state(state);
740                 goto next;
741         }
742
743         /*
744          *     | ---- desired range ---- |
745          *  | state | or
746          *  | ------------- state -------------- |
747          *
748          * We need to split the extent we found, and may flip
749          * bits on second half.
750          *
751          * If the extent we found extends past our range, we
752          * just split and search again.  It'll get split again
753          * the next time though.
754          *
755          * If the extent we found is inside our range, we clear
756          * the desired bit on it.
757          */
758
759         if (state->start < start) {
760                 prealloc = alloc_extent_state_atomic(prealloc);
761                 BUG_ON(!prealloc);
762                 err = split_state(tree, state, prealloc, start);
763                 if (err)
764                         extent_io_tree_panic(tree, err);
765
766                 prealloc = NULL;
767                 if (err)
768                         goto out;
769                 if (state->end <= end) {
770                         state = clear_state_bit(tree, state, &bits, wake,
771                                                 changeset);
772                         goto next;
773                 }
774                 goto search_again;
775         }
776         /*
777          * | ---- desired range ---- |
778          *                        | state |
779          * We need to split the extent, and clear the bit
780          * on the first half
781          */
782         if (state->start <= end && state->end > end) {
783                 prealloc = alloc_extent_state_atomic(prealloc);
784                 BUG_ON(!prealloc);
785                 err = split_state(tree, state, prealloc, end + 1);
786                 if (err)
787                         extent_io_tree_panic(tree, err);
788
789                 if (wake)
790                         wake_up(&state->wq);
791
792                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
793
794                 prealloc = NULL;
795                 goto out;
796         }
797
798         state = clear_state_bit(tree, state, &bits, wake, changeset);
799 next:
800         if (last_end == (u64)-1)
801                 goto out;
802         start = last_end + 1;
803         if (start <= end && state && !need_resched())
804                 goto hit_next;
805
806 search_again:
807         if (start > end)
808                 goto out;
809         spin_unlock(&tree->lock);
810         if (gfpflags_allow_blocking(mask))
811                 cond_resched();
812         goto again;
813
814 out:
815         spin_unlock(&tree->lock);
816         if (prealloc)
817                 free_extent_state(prealloc);
818
819         return 0;
820
821 }
822
823 static void wait_on_state(struct extent_io_tree *tree,
824                           struct extent_state *state)
825                 __releases(tree->lock)
826                 __acquires(tree->lock)
827 {
828         DEFINE_WAIT(wait);
829         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
830         spin_unlock(&tree->lock);
831         schedule();
832         spin_lock(&tree->lock);
833         finish_wait(&state->wq, &wait);
834 }
835
836 /*
837  * waits for one or more bits to clear on a range in the state tree.
838  * The range [start, end] is inclusive.
839  * The tree lock is taken by this function
840  */
841 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
842                             unsigned long bits)
843 {
844         struct extent_state *state;
845         struct rb_node *node;
846
847         btrfs_debug_check_extent_io_range(tree, start, end);
848
849         spin_lock(&tree->lock);
850 again:
851         while (1) {
852                 /*
853                  * this search will find all the extents that end after
854                  * our range starts
855                  */
856                 node = tree_search(tree, start);
857 process_node:
858                 if (!node)
859                         break;
860
861                 state = rb_entry(node, struct extent_state, rb_node);
862
863                 if (state->start > end)
864                         goto out;
865
866                 if (state->state & bits) {
867                         start = state->start;
868                         refcount_inc(&state->refs);
869                         wait_on_state(tree, state);
870                         free_extent_state(state);
871                         goto again;
872                 }
873                 start = state->end + 1;
874
875                 if (start > end)
876                         break;
877
878                 if (!cond_resched_lock(&tree->lock)) {
879                         node = rb_next(node);
880                         goto process_node;
881                 }
882         }
883 out:
884         spin_unlock(&tree->lock);
885 }
886
887 static void set_state_bits(struct extent_io_tree *tree,
888                            struct extent_state *state,
889                            unsigned *bits, struct extent_changeset *changeset)
890 {
891         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
892         int ret;
893
894         if (tree->private_data && is_data_inode(tree->private_data))
895                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
896
897         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
898                 u64 range = state->end - state->start + 1;
899                 tree->dirty_bytes += range;
900         }
901         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
902         BUG_ON(ret < 0);
903         state->state |= bits_to_set;
904 }
905
906 static void cache_state_if_flags(struct extent_state *state,
907                                  struct extent_state **cached_ptr,
908                                  unsigned flags)
909 {
910         if (cached_ptr && !(*cached_ptr)) {
911                 if (!flags || (state->state & flags)) {
912                         *cached_ptr = state;
913                         refcount_inc(&state->refs);
914                 }
915         }
916 }
917
918 static void cache_state(struct extent_state *state,
919                         struct extent_state **cached_ptr)
920 {
921         return cache_state_if_flags(state, cached_ptr,
922                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
923 }
924
925 /*
926  * set some bits on a range in the tree.  This may require allocations or
927  * sleeping, so the gfp mask is used to indicate what is allowed.
928  *
929  * If any of the exclusive bits are set, this will fail with -EEXIST if some
930  * part of the range already has the desired bits set.  The start of the
931  * existing range is returned in failed_start in this case.
932  *
933  * [start, end] is inclusive This takes the tree lock.
934  */
935
936 static int __must_check
937 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
938                  unsigned bits, unsigned exclusive_bits,
939                  u64 *failed_start, struct extent_state **cached_state,
940                  gfp_t mask, struct extent_changeset *changeset)
941 {
942         struct extent_state *state;
943         struct extent_state *prealloc = NULL;
944         struct rb_node *node;
945         struct rb_node **p;
946         struct rb_node *parent;
947         int err = 0;
948         u64 last_start;
949         u64 last_end;
950
951         btrfs_debug_check_extent_io_range(tree, start, end);
952         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
953
954 again:
955         if (!prealloc && gfpflags_allow_blocking(mask)) {
956                 /*
957                  * Don't care for allocation failure here because we might end
958                  * up not needing the pre-allocated extent state at all, which
959                  * is the case if we only have in the tree extent states that
960                  * cover our input range and don't cover too any other range.
961                  * If we end up needing a new extent state we allocate it later.
962                  */
963                 prealloc = alloc_extent_state(mask);
964         }
965
966         spin_lock(&tree->lock);
967         if (cached_state && *cached_state) {
968                 state = *cached_state;
969                 if (state->start <= start && state->end > start &&
970                     extent_state_in_tree(state)) {
971                         node = &state->rb_node;
972                         goto hit_next;
973                 }
974         }
975         /*
976          * this search will find all the extents that end after
977          * our range starts.
978          */
979         node = tree_search_for_insert(tree, start, &p, &parent);
980         if (!node) {
981                 prealloc = alloc_extent_state_atomic(prealloc);
982                 BUG_ON(!prealloc);
983                 err = insert_state(tree, prealloc, start, end,
984                                    &p, &parent, &bits, changeset);
985                 if (err)
986                         extent_io_tree_panic(tree, err);
987
988                 cache_state(prealloc, cached_state);
989                 prealloc = NULL;
990                 goto out;
991         }
992         state = rb_entry(node, struct extent_state, rb_node);
993 hit_next:
994         last_start = state->start;
995         last_end = state->end;
996
997         /*
998          * | ---- desired range ---- |
999          * | state |
1000          *
1001          * Just lock what we found and keep going
1002          */
1003         if (state->start == start && state->end <= end) {
1004                 if (state->state & exclusive_bits) {
1005                         *failed_start = state->start;
1006                         err = -EEXIST;
1007                         goto out;
1008                 }
1009
1010                 set_state_bits(tree, state, &bits, changeset);
1011                 cache_state(state, cached_state);
1012                 merge_state(tree, state);
1013                 if (last_end == (u64)-1)
1014                         goto out;
1015                 start = last_end + 1;
1016                 state = next_state(state);
1017                 if (start < end && state && state->start == start &&
1018                     !need_resched())
1019                         goto hit_next;
1020                 goto search_again;
1021         }
1022
1023         /*
1024          *     | ---- desired range ---- |
1025          * | state |
1026          *   or
1027          * | ------------- state -------------- |
1028          *
1029          * We need to split the extent we found, and may flip bits on
1030          * second half.
1031          *
1032          * If the extent we found extends past our
1033          * range, we just split and search again.  It'll get split
1034          * again the next time though.
1035          *
1036          * If the extent we found is inside our range, we set the
1037          * desired bit on it.
1038          */
1039         if (state->start < start) {
1040                 if (state->state & exclusive_bits) {
1041                         *failed_start = start;
1042                         err = -EEXIST;
1043                         goto out;
1044                 }
1045
1046                 prealloc = alloc_extent_state_atomic(prealloc);
1047                 BUG_ON(!prealloc);
1048                 err = split_state(tree, state, prealloc, start);
1049                 if (err)
1050                         extent_io_tree_panic(tree, err);
1051
1052                 prealloc = NULL;
1053                 if (err)
1054                         goto out;
1055                 if (state->end <= end) {
1056                         set_state_bits(tree, state, &bits, changeset);
1057                         cache_state(state, cached_state);
1058                         merge_state(tree, state);
1059                         if (last_end == (u64)-1)
1060                                 goto out;
1061                         start = last_end + 1;
1062                         state = next_state(state);
1063                         if (start < end && state && state->start == start &&
1064                             !need_resched())
1065                                 goto hit_next;
1066                 }
1067                 goto search_again;
1068         }
1069         /*
1070          * | ---- desired range ---- |
1071          *     | state | or               | state |
1072          *
1073          * There's a hole, we need to insert something in it and
1074          * ignore the extent we found.
1075          */
1076         if (state->start > start) {
1077                 u64 this_end;
1078                 if (end < last_start)
1079                         this_end = end;
1080                 else
1081                         this_end = last_start - 1;
1082
1083                 prealloc = alloc_extent_state_atomic(prealloc);
1084                 BUG_ON(!prealloc);
1085
1086                 /*
1087                  * Avoid to free 'prealloc' if it can be merged with
1088                  * the later extent.
1089                  */
1090                 err = insert_state(tree, prealloc, start, this_end,
1091                                    NULL, NULL, &bits, changeset);
1092                 if (err)
1093                         extent_io_tree_panic(tree, err);
1094
1095                 cache_state(prealloc, cached_state);
1096                 prealloc = NULL;
1097                 start = this_end + 1;
1098                 goto search_again;
1099         }
1100         /*
1101          * | ---- desired range ---- |
1102          *                        | state |
1103          * We need to split the extent, and set the bit
1104          * on the first half
1105          */
1106         if (state->start <= end && state->end > end) {
1107                 if (state->state & exclusive_bits) {
1108                         *failed_start = start;
1109                         err = -EEXIST;
1110                         goto out;
1111                 }
1112
1113                 prealloc = alloc_extent_state_atomic(prealloc);
1114                 BUG_ON(!prealloc);
1115                 err = split_state(tree, state, prealloc, end + 1);
1116                 if (err)
1117                         extent_io_tree_panic(tree, err);
1118
1119                 set_state_bits(tree, prealloc, &bits, changeset);
1120                 cache_state(prealloc, cached_state);
1121                 merge_state(tree, prealloc);
1122                 prealloc = NULL;
1123                 goto out;
1124         }
1125
1126 search_again:
1127         if (start > end)
1128                 goto out;
1129         spin_unlock(&tree->lock);
1130         if (gfpflags_allow_blocking(mask))
1131                 cond_resched();
1132         goto again;
1133
1134 out:
1135         spin_unlock(&tree->lock);
1136         if (prealloc)
1137                 free_extent_state(prealloc);
1138
1139         return err;
1140
1141 }
1142
1143 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1144                    unsigned bits, u64 * failed_start,
1145                    struct extent_state **cached_state, gfp_t mask)
1146 {
1147         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1148                                 cached_state, mask, NULL);
1149 }
1150
1151
1152 /**
1153  * convert_extent_bit - convert all bits in a given range from one bit to
1154  *                      another
1155  * @tree:       the io tree to search
1156  * @start:      the start offset in bytes
1157  * @end:        the end offset in bytes (inclusive)
1158  * @bits:       the bits to set in this range
1159  * @clear_bits: the bits to clear in this range
1160  * @cached_state:       state that we're going to cache
1161  *
1162  * This will go through and set bits for the given range.  If any states exist
1163  * already in this range they are set with the given bit and cleared of the
1164  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1165  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1166  * boundary bits like LOCK.
1167  *
1168  * All allocations are done with GFP_NOFS.
1169  */
1170 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1171                        unsigned bits, unsigned clear_bits,
1172                        struct extent_state **cached_state)
1173 {
1174         struct extent_state *state;
1175         struct extent_state *prealloc = NULL;
1176         struct rb_node *node;
1177         struct rb_node **p;
1178         struct rb_node *parent;
1179         int err = 0;
1180         u64 last_start;
1181         u64 last_end;
1182         bool first_iteration = true;
1183
1184         btrfs_debug_check_extent_io_range(tree, start, end);
1185         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186                                        clear_bits);
1187
1188 again:
1189         if (!prealloc) {
1190                 /*
1191                  * Best effort, don't worry if extent state allocation fails
1192                  * here for the first iteration. We might have a cached state
1193                  * that matches exactly the target range, in which case no
1194                  * extent state allocations are needed. We'll only know this
1195                  * after locking the tree.
1196                  */
1197                 prealloc = alloc_extent_state(GFP_NOFS);
1198                 if (!prealloc && !first_iteration)
1199                         return -ENOMEM;
1200         }
1201
1202         spin_lock(&tree->lock);
1203         if (cached_state && *cached_state) {
1204                 state = *cached_state;
1205                 if (state->start <= start && state->end > start &&
1206                     extent_state_in_tree(state)) {
1207                         node = &state->rb_node;
1208                         goto hit_next;
1209                 }
1210         }
1211
1212         /*
1213          * this search will find all the extents that end after
1214          * our range starts.
1215          */
1216         node = tree_search_for_insert(tree, start, &p, &parent);
1217         if (!node) {
1218                 prealloc = alloc_extent_state_atomic(prealloc);
1219                 if (!prealloc) {
1220                         err = -ENOMEM;
1221                         goto out;
1222                 }
1223                 err = insert_state(tree, prealloc, start, end,
1224                                    &p, &parent, &bits, NULL);
1225                 if (err)
1226                         extent_io_tree_panic(tree, err);
1227                 cache_state(prealloc, cached_state);
1228                 prealloc = NULL;
1229                 goto out;
1230         }
1231         state = rb_entry(node, struct extent_state, rb_node);
1232 hit_next:
1233         last_start = state->start;
1234         last_end = state->end;
1235
1236         /*
1237          * | ---- desired range ---- |
1238          * | state |
1239          *
1240          * Just lock what we found and keep going
1241          */
1242         if (state->start == start && state->end <= end) {
1243                 set_state_bits(tree, state, &bits, NULL);
1244                 cache_state(state, cached_state);
1245                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1246                 if (last_end == (u64)-1)
1247                         goto out;
1248                 start = last_end + 1;
1249                 if (start < end && state && state->start == start &&
1250                     !need_resched())
1251                         goto hit_next;
1252                 goto search_again;
1253         }
1254
1255         /*
1256          *     | ---- desired range ---- |
1257          * | state |
1258          *   or
1259          * | ------------- state -------------- |
1260          *
1261          * We need to split the extent we found, and may flip bits on
1262          * second half.
1263          *
1264          * If the extent we found extends past our
1265          * range, we just split and search again.  It'll get split
1266          * again the next time though.
1267          *
1268          * If the extent we found is inside our range, we set the
1269          * desired bit on it.
1270          */
1271         if (state->start < start) {
1272                 prealloc = alloc_extent_state_atomic(prealloc);
1273                 if (!prealloc) {
1274                         err = -ENOMEM;
1275                         goto out;
1276                 }
1277                 err = split_state(tree, state, prealloc, start);
1278                 if (err)
1279                         extent_io_tree_panic(tree, err);
1280                 prealloc = NULL;
1281                 if (err)
1282                         goto out;
1283                 if (state->end <= end) {
1284                         set_state_bits(tree, state, &bits, NULL);
1285                         cache_state(state, cached_state);
1286                         state = clear_state_bit(tree, state, &clear_bits, 0,
1287                                                 NULL);
1288                         if (last_end == (u64)-1)
1289                                 goto out;
1290                         start = last_end + 1;
1291                         if (start < end && state && state->start == start &&
1292                             !need_resched())
1293                                 goto hit_next;
1294                 }
1295                 goto search_again;
1296         }
1297         /*
1298          * | ---- desired range ---- |
1299          *     | state | or               | state |
1300          *
1301          * There's a hole, we need to insert something in it and
1302          * ignore the extent we found.
1303          */
1304         if (state->start > start) {
1305                 u64 this_end;
1306                 if (end < last_start)
1307                         this_end = end;
1308                 else
1309                         this_end = last_start - 1;
1310
1311                 prealloc = alloc_extent_state_atomic(prealloc);
1312                 if (!prealloc) {
1313                         err = -ENOMEM;
1314                         goto out;
1315                 }
1316
1317                 /*
1318                  * Avoid to free 'prealloc' if it can be merged with
1319                  * the later extent.
1320                  */
1321                 err = insert_state(tree, prealloc, start, this_end,
1322                                    NULL, NULL, &bits, NULL);
1323                 if (err)
1324                         extent_io_tree_panic(tree, err);
1325                 cache_state(prealloc, cached_state);
1326                 prealloc = NULL;
1327                 start = this_end + 1;
1328                 goto search_again;
1329         }
1330         /*
1331          * | ---- desired range ---- |
1332          *                        | state |
1333          * We need to split the extent, and set the bit
1334          * on the first half
1335          */
1336         if (state->start <= end && state->end > end) {
1337                 prealloc = alloc_extent_state_atomic(prealloc);
1338                 if (!prealloc) {
1339                         err = -ENOMEM;
1340                         goto out;
1341                 }
1342
1343                 err = split_state(tree, state, prealloc, end + 1);
1344                 if (err)
1345                         extent_io_tree_panic(tree, err);
1346
1347                 set_state_bits(tree, prealloc, &bits, NULL);
1348                 cache_state(prealloc, cached_state);
1349                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1350                 prealloc = NULL;
1351                 goto out;
1352         }
1353
1354 search_again:
1355         if (start > end)
1356                 goto out;
1357         spin_unlock(&tree->lock);
1358         cond_resched();
1359         first_iteration = false;
1360         goto again;
1361
1362 out:
1363         spin_unlock(&tree->lock);
1364         if (prealloc)
1365                 free_extent_state(prealloc);
1366
1367         return err;
1368 }
1369
1370 /* wrappers around set/clear extent bit */
1371 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1372                            unsigned bits, struct extent_changeset *changeset)
1373 {
1374         /*
1375          * We don't support EXTENT_LOCKED yet, as current changeset will
1376          * record any bits changed, so for EXTENT_LOCKED case, it will
1377          * either fail with -EEXIST or changeset will record the whole
1378          * range.
1379          */
1380         BUG_ON(bits & EXTENT_LOCKED);
1381
1382         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1383                                 changeset);
1384 }
1385
1386 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387                            unsigned bits)
1388 {
1389         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390                                 GFP_NOWAIT, NULL);
1391 }
1392
1393 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394                      unsigned bits, int wake, int delete,
1395                      struct extent_state **cached)
1396 {
1397         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1398                                   cached, GFP_NOFS, NULL);
1399 }
1400
1401 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1402                 unsigned bits, struct extent_changeset *changeset)
1403 {
1404         /*
1405          * Don't support EXTENT_LOCKED case, same reason as
1406          * set_record_extent_bits().
1407          */
1408         BUG_ON(bits & EXTENT_LOCKED);
1409
1410         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1411                                   changeset);
1412 }
1413
1414 /*
1415  * either insert or lock state struct between start and end use mask to tell
1416  * us if waiting is desired.
1417  */
1418 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1419                      struct extent_state **cached_state)
1420 {
1421         int err;
1422         u64 failed_start;
1423
1424         while (1) {
1425                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1426                                        EXTENT_LOCKED, &failed_start,
1427                                        cached_state, GFP_NOFS, NULL);
1428                 if (err == -EEXIST) {
1429                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430                         start = failed_start;
1431                 } else
1432                         break;
1433                 WARN_ON(start > end);
1434         }
1435         return err;
1436 }
1437
1438 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1439 {
1440         int err;
1441         u64 failed_start;
1442
1443         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1444                                &failed_start, NULL, GFP_NOFS, NULL);
1445         if (err == -EEXIST) {
1446                 if (failed_start > start)
1447                         clear_extent_bit(tree, start, failed_start - 1,
1448                                          EXTENT_LOCKED, 1, 0, NULL);
1449                 return 0;
1450         }
1451         return 1;
1452 }
1453
1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456         unsigned long index = start >> PAGE_SHIFT;
1457         unsigned long end_index = end >> PAGE_SHIFT;
1458         struct page *page;
1459
1460         while (index <= end_index) {
1461                 page = find_get_page(inode->i_mapping, index);
1462                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463                 clear_page_dirty_for_io(page);
1464                 put_page(page);
1465                 index++;
1466         }
1467 }
1468
1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470 {
1471         unsigned long index = start >> PAGE_SHIFT;
1472         unsigned long end_index = end >> PAGE_SHIFT;
1473         struct page *page;
1474
1475         while (index <= end_index) {
1476                 page = find_get_page(inode->i_mapping, index);
1477                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478                 __set_page_dirty_nobuffers(page);
1479                 account_page_redirty(page);
1480                 put_page(page);
1481                 index++;
1482         }
1483 }
1484
1485 /* find the first state struct with 'bits' set after 'start', and
1486  * return it.  tree->lock must be held.  NULL will returned if
1487  * nothing was found after 'start'
1488  */
1489 static struct extent_state *
1490 find_first_extent_bit_state(struct extent_io_tree *tree,
1491                             u64 start, unsigned bits)
1492 {
1493         struct rb_node *node;
1494         struct extent_state *state;
1495
1496         /*
1497          * this search will find all the extents that end after
1498          * our range starts.
1499          */
1500         node = tree_search(tree, start);
1501         if (!node)
1502                 goto out;
1503
1504         while (1) {
1505                 state = rb_entry(node, struct extent_state, rb_node);
1506                 if (state->end >= start && (state->state & bits))
1507                         return state;
1508
1509                 node = rb_next(node);
1510                 if (!node)
1511                         break;
1512         }
1513 out:
1514         return NULL;
1515 }
1516
1517 /*
1518  * find the first offset in the io tree with 'bits' set. zero is
1519  * returned if we find something, and *start_ret and *end_ret are
1520  * set to reflect the state struct that was found.
1521  *
1522  * If nothing was found, 1 is returned. If found something, return 0.
1523  */
1524 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1525                           u64 *start_ret, u64 *end_ret, unsigned bits,
1526                           struct extent_state **cached_state)
1527 {
1528         struct extent_state *state;
1529         int ret = 1;
1530
1531         spin_lock(&tree->lock);
1532         if (cached_state && *cached_state) {
1533                 state = *cached_state;
1534                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1535                         while ((state = next_state(state)) != NULL) {
1536                                 if (state->state & bits)
1537                                         goto got_it;
1538                         }
1539                         free_extent_state(*cached_state);
1540                         *cached_state = NULL;
1541                         goto out;
1542                 }
1543                 free_extent_state(*cached_state);
1544                 *cached_state = NULL;
1545         }
1546
1547         state = find_first_extent_bit_state(tree, start, bits);
1548 got_it:
1549         if (state) {
1550                 cache_state_if_flags(state, cached_state, 0);
1551                 *start_ret = state->start;
1552                 *end_ret = state->end;
1553                 ret = 0;
1554         }
1555 out:
1556         spin_unlock(&tree->lock);
1557         return ret;
1558 }
1559
1560 /**
1561  * find_first_clear_extent_bit - find the first range that has @bits not set.
1562  * This range could start before @start.
1563  *
1564  * @tree - the tree to search
1565  * @start - the offset at/after which the found extent should start
1566  * @start_ret - records the beginning of the range
1567  * @end_ret - records the end of the range (inclusive)
1568  * @bits - the set of bits which must be unset
1569  *
1570  * Since unallocated range is also considered one which doesn't have the bits
1571  * set it's possible that @end_ret contains -1, this happens in case the range
1572  * spans (last_range_end, end of device]. In this case it's up to the caller to
1573  * trim @end_ret to the appropriate size.
1574  */
1575 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1577 {
1578         struct extent_state *state;
1579         struct rb_node *node, *prev = NULL, *next;
1580
1581         spin_lock(&tree->lock);
1582
1583         /* Find first extent with bits cleared */
1584         while (1) {
1585                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586                 if (!node) {
1587                         node = next;
1588                         if (!node) {
1589                                 /*
1590                                  * We are past the last allocated chunk,
1591                                  * set start at the end of the last extent. The
1592                                  * device alloc tree should never be empty so
1593                                  * prev is always set.
1594                                  */
1595                                 ASSERT(prev);
1596                                 state = rb_entry(prev, struct extent_state, rb_node);
1597                                 *start_ret = state->end + 1;
1598                                 *end_ret = -1;
1599                                 goto out;
1600                         }
1601                 }
1602                 /*
1603                  * At this point 'node' either contains 'start' or start is
1604                  * before 'node'
1605                  */
1606                 state = rb_entry(node, struct extent_state, rb_node);
1607
1608                 if (in_range(start, state->start, state->end - state->start + 1)) {
1609                         if (state->state & bits) {
1610                                 /*
1611                                  * |--range with bits sets--|
1612                                  *    |
1613                                  *    start
1614                                  */
1615                                 start = state->end + 1;
1616                         } else {
1617                                 /*
1618                                  * 'start' falls within a range that doesn't
1619                                  * have the bits set, so take its start as
1620                                  * the beginning of the desired range
1621                                  *
1622                                  * |--range with bits cleared----|
1623                                  *      |
1624                                  *      start
1625                                  */
1626                                 *start_ret = state->start;
1627                                 break;
1628                         }
1629                 } else {
1630                         /*
1631                          * |---prev range---|---hole/unset---|---node range---|
1632                          *                          |
1633                          *                        start
1634                          *
1635                          *                        or
1636                          *
1637                          * |---hole/unset--||--first node--|
1638                          * 0   |
1639                          *    start
1640                          */
1641                         if (prev) {
1642                                 state = rb_entry(prev, struct extent_state,
1643                                                  rb_node);
1644                                 *start_ret = state->end + 1;
1645                         } else {
1646                                 *start_ret = 0;
1647                         }
1648                         break;
1649                 }
1650         }
1651
1652         /*
1653          * Find the longest stretch from start until an entry which has the
1654          * bits set
1655          */
1656         while (1) {
1657                 state = rb_entry(node, struct extent_state, rb_node);
1658                 if (state->end >= start && !(state->state & bits)) {
1659                         *end_ret = state->end;
1660                 } else {
1661                         *end_ret = state->start - 1;
1662                         break;
1663                 }
1664
1665                 node = rb_next(node);
1666                 if (!node)
1667                         break;
1668         }
1669 out:
1670         spin_unlock(&tree->lock);
1671 }
1672
1673 /*
1674  * find a contiguous range of bytes in the file marked as delalloc, not
1675  * more than 'max_bytes'.  start and end are used to return the range,
1676  *
1677  * true is returned if we find something, false if nothing was in the tree
1678  */
1679 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1680                                         u64 *start, u64 *end, u64 max_bytes,
1681                                         struct extent_state **cached_state)
1682 {
1683         struct rb_node *node;
1684         struct extent_state *state;
1685         u64 cur_start = *start;
1686         bool found = false;
1687         u64 total_bytes = 0;
1688
1689         spin_lock(&tree->lock);
1690
1691         /*
1692          * this search will find all the extents that end after
1693          * our range starts.
1694          */
1695         node = tree_search(tree, cur_start);
1696         if (!node) {
1697                 *end = (u64)-1;
1698                 goto out;
1699         }
1700
1701         while (1) {
1702                 state = rb_entry(node, struct extent_state, rb_node);
1703                 if (found && (state->start != cur_start ||
1704                               (state->state & EXTENT_BOUNDARY))) {
1705                         goto out;
1706                 }
1707                 if (!(state->state & EXTENT_DELALLOC)) {
1708                         if (!found)
1709                                 *end = state->end;
1710                         goto out;
1711                 }
1712                 if (!found) {
1713                         *start = state->start;
1714                         *cached_state = state;
1715                         refcount_inc(&state->refs);
1716                 }
1717                 found = true;
1718                 *end = state->end;
1719                 cur_start = state->end + 1;
1720                 node = rb_next(node);
1721                 total_bytes += state->end - state->start + 1;
1722                 if (total_bytes >= max_bytes)
1723                         break;
1724                 if (!node)
1725                         break;
1726         }
1727 out:
1728         spin_unlock(&tree->lock);
1729         return found;
1730 }
1731
1732 static int __process_pages_contig(struct address_space *mapping,
1733                                   struct page *locked_page,
1734                                   pgoff_t start_index, pgoff_t end_index,
1735                                   unsigned long page_ops, pgoff_t *index_ret);
1736
1737 static noinline void __unlock_for_delalloc(struct inode *inode,
1738                                            struct page *locked_page,
1739                                            u64 start, u64 end)
1740 {
1741         unsigned long index = start >> PAGE_SHIFT;
1742         unsigned long end_index = end >> PAGE_SHIFT;
1743
1744         ASSERT(locked_page);
1745         if (index == locked_page->index && end_index == index)
1746                 return;
1747
1748         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749                                PAGE_UNLOCK, NULL);
1750 }
1751
1752 static noinline int lock_delalloc_pages(struct inode *inode,
1753                                         struct page *locked_page,
1754                                         u64 delalloc_start,
1755                                         u64 delalloc_end)
1756 {
1757         unsigned long index = delalloc_start >> PAGE_SHIFT;
1758         unsigned long index_ret = index;
1759         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1760         int ret;
1761
1762         ASSERT(locked_page);
1763         if (index == locked_page->index && index == end_index)
1764                 return 0;
1765
1766         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767                                      end_index, PAGE_LOCK, &index_ret);
1768         if (ret == -EAGAIN)
1769                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1770                                       (u64)index_ret << PAGE_SHIFT);
1771         return ret;
1772 }
1773
1774 /*
1775  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776  * more than @max_bytes.  @Start and @end are used to return the range,
1777  *
1778  * Return: true if we find something
1779  *         false if nothing was in the tree
1780  */
1781 EXPORT_FOR_TESTS
1782 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1783                                     struct page *locked_page, u64 *start,
1784                                     u64 *end)
1785 {
1786         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1787         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1788         u64 delalloc_start;
1789         u64 delalloc_end;
1790         bool found;
1791         struct extent_state *cached_state = NULL;
1792         int ret;
1793         int loops = 0;
1794
1795 again:
1796         /* step one, find a bunch of delalloc bytes starting at start */
1797         delalloc_start = *start;
1798         delalloc_end = 0;
1799         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1800                                     max_bytes, &cached_state);
1801         if (!found || delalloc_end <= *start) {
1802                 *start = delalloc_start;
1803                 *end = delalloc_end;
1804                 free_extent_state(cached_state);
1805                 return false;
1806         }
1807
1808         /*
1809          * start comes from the offset of locked_page.  We have to lock
1810          * pages in order, so we can't process delalloc bytes before
1811          * locked_page
1812          */
1813         if (delalloc_start < *start)
1814                 delalloc_start = *start;
1815
1816         /*
1817          * make sure to limit the number of pages we try to lock down
1818          */
1819         if (delalloc_end + 1 - delalloc_start > max_bytes)
1820                 delalloc_end = delalloc_start + max_bytes - 1;
1821
1822         /* step two, lock all the pages after the page that has start */
1823         ret = lock_delalloc_pages(inode, locked_page,
1824                                   delalloc_start, delalloc_end);
1825         ASSERT(!ret || ret == -EAGAIN);
1826         if (ret == -EAGAIN) {
1827                 /* some of the pages are gone, lets avoid looping by
1828                  * shortening the size of the delalloc range we're searching
1829                  */
1830                 free_extent_state(cached_state);
1831                 cached_state = NULL;
1832                 if (!loops) {
1833                         max_bytes = PAGE_SIZE;
1834                         loops = 1;
1835                         goto again;
1836                 } else {
1837                         found = false;
1838                         goto out_failed;
1839                 }
1840         }
1841
1842         /* step three, lock the state bits for the whole range */
1843         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1844
1845         /* then test to make sure it is all still delalloc */
1846         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1847                              EXTENT_DELALLOC, 1, cached_state);
1848         if (!ret) {
1849                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1850                                      &cached_state);
1851                 __unlock_for_delalloc(inode, locked_page,
1852                               delalloc_start, delalloc_end);
1853                 cond_resched();
1854                 goto again;
1855         }
1856         free_extent_state(cached_state);
1857         *start = delalloc_start;
1858         *end = delalloc_end;
1859 out_failed:
1860         return found;
1861 }
1862
1863 static int __process_pages_contig(struct address_space *mapping,
1864                                   struct page *locked_page,
1865                                   pgoff_t start_index, pgoff_t end_index,
1866                                   unsigned long page_ops, pgoff_t *index_ret)
1867 {
1868         unsigned long nr_pages = end_index - start_index + 1;
1869         unsigned long pages_locked = 0;
1870         pgoff_t index = start_index;
1871         struct page *pages[16];
1872         unsigned ret;
1873         int err = 0;
1874         int i;
1875
1876         if (page_ops & PAGE_LOCK) {
1877                 ASSERT(page_ops == PAGE_LOCK);
1878                 ASSERT(index_ret && *index_ret == start_index);
1879         }
1880
1881         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882                 mapping_set_error(mapping, -EIO);
1883
1884         while (nr_pages > 0) {
1885                 ret = find_get_pages_contig(mapping, index,
1886                                      min_t(unsigned long,
1887                                      nr_pages, ARRAY_SIZE(pages)), pages);
1888                 if (ret == 0) {
1889                         /*
1890                          * Only if we're going to lock these pages,
1891                          * can we find nothing at @index.
1892                          */
1893                         ASSERT(page_ops & PAGE_LOCK);
1894                         err = -EAGAIN;
1895                         goto out;
1896                 }
1897
1898                 for (i = 0; i < ret; i++) {
1899                         if (page_ops & PAGE_SET_PRIVATE2)
1900                                 SetPagePrivate2(pages[i]);
1901
1902                         if (pages[i] == locked_page) {
1903                                 put_page(pages[i]);
1904                                 pages_locked++;
1905                                 continue;
1906                         }
1907                         if (page_ops & PAGE_CLEAR_DIRTY)
1908                                 clear_page_dirty_for_io(pages[i]);
1909                         if (page_ops & PAGE_SET_WRITEBACK)
1910                                 set_page_writeback(pages[i]);
1911                         if (page_ops & PAGE_SET_ERROR)
1912                                 SetPageError(pages[i]);
1913                         if (page_ops & PAGE_END_WRITEBACK)
1914                                 end_page_writeback(pages[i]);
1915                         if (page_ops & PAGE_UNLOCK)
1916                                 unlock_page(pages[i]);
1917                         if (page_ops & PAGE_LOCK) {
1918                                 lock_page(pages[i]);
1919                                 if (!PageDirty(pages[i]) ||
1920                                     pages[i]->mapping != mapping) {
1921                                         unlock_page(pages[i]);
1922                                         put_page(pages[i]);
1923                                         err = -EAGAIN;
1924                                         goto out;
1925                                 }
1926                         }
1927                         put_page(pages[i]);
1928                         pages_locked++;
1929                 }
1930                 nr_pages -= ret;
1931                 index += ret;
1932                 cond_resched();
1933         }
1934 out:
1935         if (err && index_ret)
1936                 *index_ret = start_index + pages_locked - 1;
1937         return err;
1938 }
1939
1940 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1941                                   struct page *locked_page,
1942                                   unsigned clear_bits,
1943                                   unsigned long page_ops)
1944 {
1945         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1946                          NULL);
1947
1948         __process_pages_contig(inode->i_mapping, locked_page,
1949                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1950                                page_ops, NULL);
1951 }
1952
1953 /*
1954  * count the number of bytes in the tree that have a given bit(s)
1955  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1956  * cached.  The total number found is returned.
1957  */
1958 u64 count_range_bits(struct extent_io_tree *tree,
1959                      u64 *start, u64 search_end, u64 max_bytes,
1960                      unsigned bits, int contig)
1961 {
1962         struct rb_node *node;
1963         struct extent_state *state;
1964         u64 cur_start = *start;
1965         u64 total_bytes = 0;
1966         u64 last = 0;
1967         int found = 0;
1968
1969         if (WARN_ON(search_end <= cur_start))
1970                 return 0;
1971
1972         spin_lock(&tree->lock);
1973         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974                 total_bytes = tree->dirty_bytes;
1975                 goto out;
1976         }
1977         /*
1978          * this search will find all the extents that end after
1979          * our range starts.
1980          */
1981         node = tree_search(tree, cur_start);
1982         if (!node)
1983                 goto out;
1984
1985         while (1) {
1986                 state = rb_entry(node, struct extent_state, rb_node);
1987                 if (state->start > search_end)
1988                         break;
1989                 if (contig && found && state->start > last + 1)
1990                         break;
1991                 if (state->end >= cur_start && (state->state & bits) == bits) {
1992                         total_bytes += min(search_end, state->end) + 1 -
1993                                        max(cur_start, state->start);
1994                         if (total_bytes >= max_bytes)
1995                                 break;
1996                         if (!found) {
1997                                 *start = max(cur_start, state->start);
1998                                 found = 1;
1999                         }
2000                         last = state->end;
2001                 } else if (contig && found) {
2002                         break;
2003                 }
2004                 node = rb_next(node);
2005                 if (!node)
2006                         break;
2007         }
2008 out:
2009         spin_unlock(&tree->lock);
2010         return total_bytes;
2011 }
2012
2013 /*
2014  * set the private field for a given byte offset in the tree.  If there isn't
2015  * an extent_state there already, this does nothing.
2016  */
2017 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2018                 struct io_failure_record *failrec)
2019 {
2020         struct rb_node *node;
2021         struct extent_state *state;
2022         int ret = 0;
2023
2024         spin_lock(&tree->lock);
2025         /*
2026          * this search will find all the extents that end after
2027          * our range starts.
2028          */
2029         node = tree_search(tree, start);
2030         if (!node) {
2031                 ret = -ENOENT;
2032                 goto out;
2033         }
2034         state = rb_entry(node, struct extent_state, rb_node);
2035         if (state->start != start) {
2036                 ret = -ENOENT;
2037                 goto out;
2038         }
2039         state->failrec = failrec;
2040 out:
2041         spin_unlock(&tree->lock);
2042         return ret;
2043 }
2044
2045 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2046                 struct io_failure_record **failrec)
2047 {
2048         struct rb_node *node;
2049         struct extent_state *state;
2050         int ret = 0;
2051
2052         spin_lock(&tree->lock);
2053         /*
2054          * this search will find all the extents that end after
2055          * our range starts.
2056          */
2057         node = tree_search(tree, start);
2058         if (!node) {
2059                 ret = -ENOENT;
2060                 goto out;
2061         }
2062         state = rb_entry(node, struct extent_state, rb_node);
2063         if (state->start != start) {
2064                 ret = -ENOENT;
2065                 goto out;
2066         }
2067         *failrec = state->failrec;
2068 out:
2069         spin_unlock(&tree->lock);
2070         return ret;
2071 }
2072
2073 /*
2074  * searches a range in the state tree for a given mask.
2075  * If 'filled' == 1, this returns 1 only if every extent in the tree
2076  * has the bits set.  Otherwise, 1 is returned if any bit in the
2077  * range is found set.
2078  */
2079 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2080                    unsigned bits, int filled, struct extent_state *cached)
2081 {
2082         struct extent_state *state = NULL;
2083         struct rb_node *node;
2084         int bitset = 0;
2085
2086         spin_lock(&tree->lock);
2087         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2088             cached->end > start)
2089                 node = &cached->rb_node;
2090         else
2091                 node = tree_search(tree, start);
2092         while (node && start <= end) {
2093                 state = rb_entry(node, struct extent_state, rb_node);
2094
2095                 if (filled && state->start > start) {
2096                         bitset = 0;
2097                         break;
2098                 }
2099
2100                 if (state->start > end)
2101                         break;
2102
2103                 if (state->state & bits) {
2104                         bitset = 1;
2105                         if (!filled)
2106                                 break;
2107                 } else if (filled) {
2108                         bitset = 0;
2109                         break;
2110                 }
2111
2112                 if (state->end == (u64)-1)
2113                         break;
2114
2115                 start = state->end + 1;
2116                 if (start > end)
2117                         break;
2118                 node = rb_next(node);
2119                 if (!node) {
2120                         if (filled)
2121                                 bitset = 0;
2122                         break;
2123                 }
2124         }
2125         spin_unlock(&tree->lock);
2126         return bitset;
2127 }
2128
2129 /*
2130  * helper function to set a given page up to date if all the
2131  * extents in the tree for that page are up to date
2132  */
2133 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2134 {
2135         u64 start = page_offset(page);
2136         u64 end = start + PAGE_SIZE - 1;
2137         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2138                 SetPageUptodate(page);
2139 }
2140
2141 int free_io_failure(struct extent_io_tree *failure_tree,
2142                     struct extent_io_tree *io_tree,
2143                     struct io_failure_record *rec)
2144 {
2145         int ret;
2146         int err = 0;
2147
2148         set_state_failrec(failure_tree, rec->start, NULL);
2149         ret = clear_extent_bits(failure_tree, rec->start,
2150                                 rec->start + rec->len - 1,
2151                                 EXTENT_LOCKED | EXTENT_DIRTY);
2152         if (ret)
2153                 err = ret;
2154
2155         ret = clear_extent_bits(io_tree, rec->start,
2156                                 rec->start + rec->len - 1,
2157                                 EXTENT_DAMAGED);
2158         if (ret && !err)
2159                 err = ret;
2160
2161         kfree(rec);
2162         return err;
2163 }
2164
2165 /*
2166  * this bypasses the standard btrfs submit functions deliberately, as
2167  * the standard behavior is to write all copies in a raid setup. here we only
2168  * want to write the one bad copy. so we do the mapping for ourselves and issue
2169  * submit_bio directly.
2170  * to avoid any synchronization issues, wait for the data after writing, which
2171  * actually prevents the read that triggered the error from finishing.
2172  * currently, there can be no more than two copies of every data bit. thus,
2173  * exactly one rewrite is required.
2174  */
2175 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176                       u64 length, u64 logical, struct page *page,
2177                       unsigned int pg_offset, int mirror_num)
2178 {
2179         struct bio *bio;
2180         struct btrfs_device *dev;
2181         u64 map_length = 0;
2182         u64 sector;
2183         struct btrfs_bio *bbio = NULL;
2184         int ret;
2185
2186         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2187         BUG_ON(!mirror_num);
2188
2189         bio = btrfs_io_bio_alloc(1);
2190         bio->bi_iter.bi_size = 0;
2191         map_length = length;
2192
2193         /*
2194          * Avoid races with device replace and make sure our bbio has devices
2195          * associated to its stripes that don't go away while we are doing the
2196          * read repair operation.
2197          */
2198         btrfs_bio_counter_inc_blocked(fs_info);
2199         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2200                 /*
2201                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202                  * to update all raid stripes, but here we just want to correct
2203                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204                  * stripe's dev and sector.
2205                  */
2206                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207                                       &map_length, &bbio, 0);
2208                 if (ret) {
2209                         btrfs_bio_counter_dec(fs_info);
2210                         bio_put(bio);
2211                         return -EIO;
2212                 }
2213                 ASSERT(bbio->mirror_num == 1);
2214         } else {
2215                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216                                       &map_length, &bbio, mirror_num);
2217                 if (ret) {
2218                         btrfs_bio_counter_dec(fs_info);
2219                         bio_put(bio);
2220                         return -EIO;
2221                 }
2222                 BUG_ON(mirror_num != bbio->mirror_num);
2223         }
2224
2225         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2226         bio->bi_iter.bi_sector = sector;
2227         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2228         btrfs_put_bbio(bbio);
2229         if (!dev || !dev->bdev ||
2230             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2231                 btrfs_bio_counter_dec(fs_info);
2232                 bio_put(bio);
2233                 return -EIO;
2234         }
2235         bio_set_dev(bio, dev->bdev);
2236         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2237         bio_add_page(bio, page, length, pg_offset);
2238
2239         if (btrfsic_submit_bio_wait(bio)) {
2240                 /* try to remap that extent elsewhere? */
2241                 btrfs_bio_counter_dec(fs_info);
2242                 bio_put(bio);
2243                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2244                 return -EIO;
2245         }
2246
2247         btrfs_info_rl_in_rcu(fs_info,
2248                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2249                                   ino, start,
2250                                   rcu_str_deref(dev->name), sector);
2251         btrfs_bio_counter_dec(fs_info);
2252         bio_put(bio);
2253         return 0;
2254 }
2255
2256 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2257 {
2258         struct btrfs_fs_info *fs_info = eb->fs_info;
2259         u64 start = eb->start;
2260         int i, num_pages = num_extent_pages(eb);
2261         int ret = 0;
2262
2263         if (sb_rdonly(fs_info->sb))
2264                 return -EROFS;
2265
2266         for (i = 0; i < num_pages; i++) {
2267                 struct page *p = eb->pages[i];
2268
2269                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2270                                         start - page_offset(p), mirror_num);
2271                 if (ret)
2272                         break;
2273                 start += PAGE_SIZE;
2274         }
2275
2276         return ret;
2277 }
2278
2279 /*
2280  * each time an IO finishes, we do a fast check in the IO failure tree
2281  * to see if we need to process or clean up an io_failure_record
2282  */
2283 int clean_io_failure(struct btrfs_fs_info *fs_info,
2284                      struct extent_io_tree *failure_tree,
2285                      struct extent_io_tree *io_tree, u64 start,
2286                      struct page *page, u64 ino, unsigned int pg_offset)
2287 {
2288         u64 private;
2289         struct io_failure_record *failrec;
2290         struct extent_state *state;
2291         int num_copies;
2292         int ret;
2293
2294         private = 0;
2295         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296                                EXTENT_DIRTY, 0);
2297         if (!ret)
2298                 return 0;
2299
2300         ret = get_state_failrec(failure_tree, start, &failrec);
2301         if (ret)
2302                 return 0;
2303
2304         BUG_ON(!failrec->this_mirror);
2305
2306         if (failrec->in_validation) {
2307                 /* there was no real error, just free the record */
2308                 btrfs_debug(fs_info,
2309                         "clean_io_failure: freeing dummy error at %llu",
2310                         failrec->start);
2311                 goto out;
2312         }
2313         if (sb_rdonly(fs_info->sb))
2314                 goto out;
2315
2316         spin_lock(&io_tree->lock);
2317         state = find_first_extent_bit_state(io_tree,
2318                                             failrec->start,
2319                                             EXTENT_LOCKED);
2320         spin_unlock(&io_tree->lock);
2321
2322         if (state && state->start <= failrec->start &&
2323             state->end >= failrec->start + failrec->len - 1) {
2324                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325                                               failrec->len);
2326                 if (num_copies > 1)  {
2327                         repair_io_failure(fs_info, ino, start, failrec->len,
2328                                           failrec->logical, page, pg_offset,
2329                                           failrec->failed_mirror);
2330                 }
2331         }
2332
2333 out:
2334         free_io_failure(failure_tree, io_tree, failrec);
2335
2336         return 0;
2337 }
2338
2339 /*
2340  * Can be called when
2341  * - hold extent lock
2342  * - under ordered extent
2343  * - the inode is freeing
2344  */
2345 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2346 {
2347         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2348         struct io_failure_record *failrec;
2349         struct extent_state *state, *next;
2350
2351         if (RB_EMPTY_ROOT(&failure_tree->state))
2352                 return;
2353
2354         spin_lock(&failure_tree->lock);
2355         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356         while (state) {
2357                 if (state->start > end)
2358                         break;
2359
2360                 ASSERT(state->end <= end);
2361
2362                 next = next_state(state);
2363
2364                 failrec = state->failrec;
2365                 free_extent_state(state);
2366                 kfree(failrec);
2367
2368                 state = next;
2369         }
2370         spin_unlock(&failure_tree->lock);
2371 }
2372
2373 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2374                 struct io_failure_record **failrec_ret)
2375 {
2376         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377         struct io_failure_record *failrec;
2378         struct extent_map *em;
2379         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2382         int ret;
2383         u64 logical;
2384
2385         ret = get_state_failrec(failure_tree, start, &failrec);
2386         if (ret) {
2387                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388                 if (!failrec)
2389                         return -ENOMEM;
2390
2391                 failrec->start = start;
2392                 failrec->len = end - start + 1;
2393                 failrec->this_mirror = 0;
2394                 failrec->bio_flags = 0;
2395                 failrec->in_validation = 0;
2396
2397                 read_lock(&em_tree->lock);
2398                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2399                 if (!em) {
2400                         read_unlock(&em_tree->lock);
2401                         kfree(failrec);
2402                         return -EIO;
2403                 }
2404
2405                 if (em->start > start || em->start + em->len <= start) {
2406                         free_extent_map(em);
2407                         em = NULL;
2408                 }
2409                 read_unlock(&em_tree->lock);
2410                 if (!em) {
2411                         kfree(failrec);
2412                         return -EIO;
2413                 }
2414
2415                 logical = start - em->start;
2416                 logical = em->block_start + logical;
2417                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418                         logical = em->block_start;
2419                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420                         extent_set_compress_type(&failrec->bio_flags,
2421                                                  em->compress_type);
2422                 }
2423
2424                 btrfs_debug(fs_info,
2425                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426                         logical, start, failrec->len);
2427
2428                 failrec->logical = logical;
2429                 free_extent_map(em);
2430
2431                 /* set the bits in the private failure tree */
2432                 ret = set_extent_bits(failure_tree, start, end,
2433                                         EXTENT_LOCKED | EXTENT_DIRTY);
2434                 if (ret >= 0)
2435                         ret = set_state_failrec(failure_tree, start, failrec);
2436                 /* set the bits in the inode's tree */
2437                 if (ret >= 0)
2438                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2439                 if (ret < 0) {
2440                         kfree(failrec);
2441                         return ret;
2442                 }
2443         } else {
2444                 btrfs_debug(fs_info,
2445                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446                         failrec->logical, failrec->start, failrec->len,
2447                         failrec->in_validation);
2448                 /*
2449                  * when data can be on disk more than twice, add to failrec here
2450                  * (e.g. with a list for failed_mirror) to make
2451                  * clean_io_failure() clean all those errors at once.
2452                  */
2453         }
2454
2455         *failrec_ret = failrec;
2456
2457         return 0;
2458 }
2459
2460 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2461                            struct io_failure_record *failrec, int failed_mirror)
2462 {
2463         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464         int num_copies;
2465
2466         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2467         if (num_copies == 1) {
2468                 /*
2469                  * we only have a single copy of the data, so don't bother with
2470                  * all the retry and error correction code that follows. no
2471                  * matter what the error is, it is very likely to persist.
2472                  */
2473                 btrfs_debug(fs_info,
2474                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475                         num_copies, failrec->this_mirror, failed_mirror);
2476                 return false;
2477         }
2478
2479         /*
2480          * there are two premises:
2481          *      a) deliver good data to the caller
2482          *      b) correct the bad sectors on disk
2483          */
2484         if (failed_bio_pages > 1) {
2485                 /*
2486                  * to fulfill b), we need to know the exact failing sectors, as
2487                  * we don't want to rewrite any more than the failed ones. thus,
2488                  * we need separate read requests for the failed bio
2489                  *
2490                  * if the following BUG_ON triggers, our validation request got
2491                  * merged. we need separate requests for our algorithm to work.
2492                  */
2493                 BUG_ON(failrec->in_validation);
2494                 failrec->in_validation = 1;
2495                 failrec->this_mirror = failed_mirror;
2496         } else {
2497                 /*
2498                  * we're ready to fulfill a) and b) alongside. get a good copy
2499                  * of the failed sector and if we succeed, we have setup
2500                  * everything for repair_io_failure to do the rest for us.
2501                  */
2502                 if (failrec->in_validation) {
2503                         BUG_ON(failrec->this_mirror != failed_mirror);
2504                         failrec->in_validation = 0;
2505                         failrec->this_mirror = 0;
2506                 }
2507                 failrec->failed_mirror = failed_mirror;
2508                 failrec->this_mirror++;
2509                 if (failrec->this_mirror == failed_mirror)
2510                         failrec->this_mirror++;
2511         }
2512
2513         if (failrec->this_mirror > num_copies) {
2514                 btrfs_debug(fs_info,
2515                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516                         num_copies, failrec->this_mirror, failed_mirror);
2517                 return false;
2518         }
2519
2520         return true;
2521 }
2522
2523
2524 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525                                     struct io_failure_record *failrec,
2526                                     struct page *page, int pg_offset, int icsum,
2527                                     bio_end_io_t *endio_func, void *data)
2528 {
2529         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2530         struct bio *bio;
2531         struct btrfs_io_bio *btrfs_failed_bio;
2532         struct btrfs_io_bio *btrfs_bio;
2533
2534         bio = btrfs_io_bio_alloc(1);
2535         bio->bi_end_io = endio_func;
2536         bio->bi_iter.bi_sector = failrec->logical >> 9;
2537         bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2538         bio->bi_iter.bi_size = 0;
2539         bio->bi_private = data;
2540
2541         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542         if (btrfs_failed_bio->csum) {
2543                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545                 btrfs_bio = btrfs_io_bio(bio);
2546                 btrfs_bio->csum = btrfs_bio->csum_inline;
2547                 icsum *= csum_size;
2548                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2549                        csum_size);
2550         }
2551
2552         bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554         return bio;
2555 }
2556
2557 /*
2558  * This is a generic handler for readpage errors. If other copies exist, read
2559  * those and write back good data to the failed position. Does not investigate
2560  * in remapping the failed extent elsewhere, hoping the device will be smart
2561  * enough to do this as needed
2562  */
2563 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564                               struct page *page, u64 start, u64 end,
2565                               int failed_mirror)
2566 {
2567         struct io_failure_record *failrec;
2568         struct inode *inode = page->mapping->host;
2569         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2570         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2571         struct bio *bio;
2572         int read_mode = 0;
2573         blk_status_t status;
2574         int ret;
2575         unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2576
2577         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2578
2579         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580         if (ret)
2581                 return ret;
2582
2583         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2584                                     failed_mirror)) {
2585                 free_io_failure(failure_tree, tree, failrec);
2586                 return -EIO;
2587         }
2588
2589         if (failed_bio_pages > 1)
2590                 read_mode |= REQ_FAILFAST_DEV;
2591
2592         phy_offset >>= inode->i_sb->s_blocksize_bits;
2593         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594                                       start - page_offset(page),
2595                                       (int)phy_offset, failed_bio->bi_end_io,
2596                                       NULL);
2597         bio->bi_opf = REQ_OP_READ | read_mode;
2598
2599         btrfs_debug(btrfs_sb(inode->i_sb),
2600                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601                 read_mode, failrec->this_mirror, failrec->in_validation);
2602
2603         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2604                                          failrec->bio_flags);
2605         if (status) {
2606                 free_io_failure(failure_tree, tree, failrec);
2607                 bio_put(bio);
2608                 ret = blk_status_to_errno(status);
2609         }
2610
2611         return ret;
2612 }
2613
2614 /* lots and lots of room for performance fixes in the end_bio funcs */
2615
2616 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2617 {
2618         int uptodate = (err == 0);
2619         int ret = 0;
2620
2621         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2622
2623         if (!uptodate) {
2624                 ClearPageUptodate(page);
2625                 SetPageError(page);
2626                 ret = err < 0 ? err : -EIO;
2627                 mapping_set_error(page->mapping, ret);
2628         }
2629 }
2630
2631 /*
2632  * after a writepage IO is done, we need to:
2633  * clear the uptodate bits on error
2634  * clear the writeback bits in the extent tree for this IO
2635  * end_page_writeback if the page has no more pending IO
2636  *
2637  * Scheduling is not allowed, so the extent state tree is expected
2638  * to have one and only one object corresponding to this IO.
2639  */
2640 static void end_bio_extent_writepage(struct bio *bio)
2641 {
2642         int error = blk_status_to_errno(bio->bi_status);
2643         struct bio_vec *bvec;
2644         u64 start;
2645         u64 end;
2646         struct bvec_iter_all iter_all;
2647
2648         ASSERT(!bio_flagged(bio, BIO_CLONED));
2649         bio_for_each_segment_all(bvec, bio, iter_all) {
2650                 struct page *page = bvec->bv_page;
2651                 struct inode *inode = page->mapping->host;
2652                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653
2654                 /* We always issue full-page reads, but if some block
2655                  * in a page fails to read, blk_update_request() will
2656                  * advance bv_offset and adjust bv_len to compensate.
2657                  * Print a warning for nonzero offsets, and an error
2658                  * if they don't add up to a full page.  */
2659                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2661                                 btrfs_err(fs_info,
2662                                    "partial page write in btrfs with offset %u and length %u",
2663                                         bvec->bv_offset, bvec->bv_len);
2664                         else
2665                                 btrfs_info(fs_info,
2666                                    "incomplete page write in btrfs with offset %u and length %u",
2667                                         bvec->bv_offset, bvec->bv_len);
2668                 }
2669
2670                 start = page_offset(page);
2671                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2672
2673                 end_extent_writepage(page, error, start, end);
2674                 end_page_writeback(page);
2675         }
2676
2677         bio_put(bio);
2678 }
2679
2680 static void
2681 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682                               int uptodate)
2683 {
2684         struct extent_state *cached = NULL;
2685         u64 end = start + len - 1;
2686
2687         if (uptodate && tree->track_uptodate)
2688                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2689         unlock_extent_cached_atomic(tree, start, end, &cached);
2690 }
2691
2692 /*
2693  * after a readpage IO is done, we need to:
2694  * clear the uptodate bits on error
2695  * set the uptodate bits if things worked
2696  * set the page up to date if all extents in the tree are uptodate
2697  * clear the lock bit in the extent tree
2698  * unlock the page if there are no other extents locked for it
2699  *
2700  * Scheduling is not allowed, so the extent state tree is expected
2701  * to have one and only one object corresponding to this IO.
2702  */
2703 static void end_bio_extent_readpage(struct bio *bio)
2704 {
2705         struct bio_vec *bvec;
2706         int uptodate = !bio->bi_status;
2707         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2708         struct extent_io_tree *tree, *failure_tree;
2709         u64 offset = 0;
2710         u64 start;
2711         u64 end;
2712         u64 len;
2713         u64 extent_start = 0;
2714         u64 extent_len = 0;
2715         int mirror;
2716         int ret;
2717         struct bvec_iter_all iter_all;
2718
2719         ASSERT(!bio_flagged(bio, BIO_CLONED));
2720         bio_for_each_segment_all(bvec, bio, iter_all) {
2721                 struct page *page = bvec->bv_page;
2722                 struct inode *inode = page->mapping->host;
2723                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2724                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2725                         != BTRFS_BTREE_INODE_OBJECTID;
2726
2727                 btrfs_debug(fs_info,
2728                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2729                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2730                         io_bio->mirror_num);
2731                 tree = &BTRFS_I(inode)->io_tree;
2732                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2733
2734                 /* We always issue full-page reads, but if some block
2735                  * in a page fails to read, blk_update_request() will
2736                  * advance bv_offset and adjust bv_len to compensate.
2737                  * Print a warning for nonzero offsets, and an error
2738                  * if they don't add up to a full page.  */
2739                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2741                                 btrfs_err(fs_info,
2742                                         "partial page read in btrfs with offset %u and length %u",
2743                                         bvec->bv_offset, bvec->bv_len);
2744                         else
2745                                 btrfs_info(fs_info,
2746                                         "incomplete page read in btrfs with offset %u and length %u",
2747                                         bvec->bv_offset, bvec->bv_len);
2748                 }
2749
2750                 start = page_offset(page);
2751                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2752                 len = bvec->bv_len;
2753
2754                 mirror = io_bio->mirror_num;
2755                 if (likely(uptodate)) {
2756                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757                                                               page, start, end,
2758                                                               mirror);
2759                         if (ret)
2760                                 uptodate = 0;
2761                         else
2762                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763                                                  failure_tree, tree, start,
2764                                                  page,
2765                                                  btrfs_ino(BTRFS_I(inode)), 0);
2766                 }
2767
2768                 if (likely(uptodate))
2769                         goto readpage_ok;
2770
2771                 if (data_inode) {
2772
2773                         /*
2774                          * The generic bio_readpage_error handles errors the
2775                          * following way: If possible, new read requests are
2776                          * created and submitted and will end up in
2777                          * end_bio_extent_readpage as well (if we're lucky,
2778                          * not in the !uptodate case). In that case it returns
2779                          * 0 and we just go on with the next page in our bio.
2780                          * If it can't handle the error it will return -EIO and
2781                          * we remain responsible for that page.
2782                          */
2783                         ret = bio_readpage_error(bio, offset, page, start, end,
2784                                                  mirror);
2785                         if (ret == 0) {
2786                                 uptodate = !bio->bi_status;
2787                                 offset += len;
2788                                 continue;
2789                         }
2790                 } else {
2791                         struct extent_buffer *eb;
2792
2793                         eb = (struct extent_buffer *)page->private;
2794                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795                         eb->read_mirror = mirror;
2796                         atomic_dec(&eb->io_pages);
2797                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798                                                &eb->bflags))
2799                                 btree_readahead_hook(eb, -EIO);
2800                 }
2801 readpage_ok:
2802                 if (likely(uptodate)) {
2803                         loff_t i_size = i_size_read(inode);
2804                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2805                         unsigned off;
2806
2807                         /* Zero out the end if this page straddles i_size */
2808                         off = offset_in_page(i_size);
2809                         if (page->index == end_index && off)
2810                                 zero_user_segment(page, off, PAGE_SIZE);
2811                         SetPageUptodate(page);
2812                 } else {
2813                         ClearPageUptodate(page);
2814                         SetPageError(page);
2815                 }
2816                 unlock_page(page);
2817                 offset += len;
2818
2819                 if (unlikely(!uptodate)) {
2820                         if (extent_len) {
2821                                 endio_readpage_release_extent(tree,
2822                                                               extent_start,
2823                                                               extent_len, 1);
2824                                 extent_start = 0;
2825                                 extent_len = 0;
2826                         }
2827                         endio_readpage_release_extent(tree, start,
2828                                                       end - start + 1, 0);
2829                 } else if (!extent_len) {
2830                         extent_start = start;
2831                         extent_len = end + 1 - start;
2832                 } else if (extent_start + extent_len == start) {
2833                         extent_len += end + 1 - start;
2834                 } else {
2835                         endio_readpage_release_extent(tree, extent_start,
2836                                                       extent_len, uptodate);
2837                         extent_start = start;
2838                         extent_len = end + 1 - start;
2839                 }
2840         }
2841
2842         if (extent_len)
2843                 endio_readpage_release_extent(tree, extent_start, extent_len,
2844                                               uptodate);
2845         btrfs_io_bio_free_csum(io_bio);
2846         bio_put(bio);
2847 }
2848
2849 /*
2850  * Initialize the members up to but not including 'bio'. Use after allocating a
2851  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852  * 'bio' because use of __GFP_ZERO is not supported.
2853  */
2854 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2855 {
2856         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857 }
2858
2859 /*
2860  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2862  * for the appropriate container_of magic
2863  */
2864 struct bio *btrfs_bio_alloc(u64 first_byte)
2865 {
2866         struct bio *bio;
2867
2868         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2869         bio->bi_iter.bi_sector = first_byte >> 9;
2870         btrfs_io_bio_init(btrfs_io_bio(bio));
2871         return bio;
2872 }
2873
2874 struct bio *btrfs_bio_clone(struct bio *bio)
2875 {
2876         struct btrfs_io_bio *btrfs_bio;
2877         struct bio *new;
2878
2879         /* Bio allocation backed by a bioset does not fail */
2880         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2881         btrfs_bio = btrfs_io_bio(new);
2882         btrfs_io_bio_init(btrfs_bio);
2883         btrfs_bio->iter = bio->bi_iter;
2884         return new;
2885 }
2886
2887 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2888 {
2889         struct bio *bio;
2890
2891         /* Bio allocation backed by a bioset does not fail */
2892         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2893         btrfs_io_bio_init(btrfs_io_bio(bio));
2894         return bio;
2895 }
2896
2897 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2898 {
2899         struct bio *bio;
2900         struct btrfs_io_bio *btrfs_bio;
2901
2902         /* this will never fail when it's backed by a bioset */
2903         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2904         ASSERT(bio);
2905
2906         btrfs_bio = btrfs_io_bio(bio);
2907         btrfs_io_bio_init(btrfs_bio);
2908
2909         bio_trim(bio, offset >> 9, size >> 9);
2910         btrfs_bio->iter = bio->bi_iter;
2911         return bio;
2912 }
2913
2914 /*
2915  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2916  * @tree:       tree so we can call our merge_bio hook
2917  * @wbc:        optional writeback control for io accounting
2918  * @page:       page to add to the bio
2919  * @pg_offset:  offset of the new bio or to check whether we are adding
2920  *              a contiguous page to the previous one
2921  * @size:       portion of page that we want to write
2922  * @offset:     starting offset in the page
2923  * @bdev:       attach newly created bios to this bdev
2924  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2925  * @end_io_func:     end_io callback for new bio
2926  * @mirror_num:      desired mirror to read/write
2927  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2928  * @bio_flags:  flags of the current bio to see if we can merge them
2929  */
2930 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2931                               struct writeback_control *wbc,
2932                               struct page *page, u64 offset,
2933                               size_t size, unsigned long pg_offset,
2934                               struct block_device *bdev,
2935                               struct bio **bio_ret,
2936                               bio_end_io_t end_io_func,
2937                               int mirror_num,
2938                               unsigned long prev_bio_flags,
2939                               unsigned long bio_flags,
2940                               bool force_bio_submit)
2941 {
2942         int ret = 0;
2943         struct bio *bio;
2944         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2945         sector_t sector = offset >> 9;
2946
2947         ASSERT(bio_ret);
2948
2949         if (*bio_ret) {
2950                 bool contig;
2951                 bool can_merge = true;
2952
2953                 bio = *bio_ret;
2954                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2955                         contig = bio->bi_iter.bi_sector == sector;
2956                 else
2957                         contig = bio_end_sector(bio) == sector;
2958
2959                 ASSERT(tree->ops);
2960                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2961                         can_merge = false;
2962
2963                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2964                     force_bio_submit ||
2965                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2966                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2967                         if (ret < 0) {
2968                                 *bio_ret = NULL;
2969                                 return ret;
2970                         }
2971                         bio = NULL;
2972                 } else {
2973                         if (wbc)
2974                                 wbc_account_cgroup_owner(wbc, page, page_size);
2975                         return 0;
2976                 }
2977         }
2978
2979         bio = btrfs_bio_alloc(offset);
2980         bio_set_dev(bio, bdev);
2981         bio_add_page(bio, page, page_size, pg_offset);
2982         bio->bi_end_io = end_io_func;
2983         bio->bi_private = tree;
2984         bio->bi_write_hint = page->mapping->host->i_write_hint;
2985         bio->bi_opf = opf;
2986         if (wbc) {
2987                 wbc_init_bio(wbc, bio);
2988                 wbc_account_cgroup_owner(wbc, page, page_size);
2989         }
2990
2991         *bio_ret = bio;
2992
2993         return ret;
2994 }
2995
2996 static void attach_extent_buffer_page(struct extent_buffer *eb,
2997                                       struct page *page)
2998 {
2999         if (!PagePrivate(page)) {
3000                 SetPagePrivate(page);
3001                 get_page(page);
3002                 set_page_private(page, (unsigned long)eb);
3003         } else {
3004                 WARN_ON(page->private != (unsigned long)eb);
3005         }
3006 }
3007
3008 void set_page_extent_mapped(struct page *page)
3009 {
3010         if (!PagePrivate(page)) {
3011                 SetPagePrivate(page);
3012                 get_page(page);
3013                 set_page_private(page, EXTENT_PAGE_PRIVATE);
3014         }
3015 }
3016
3017 static struct extent_map *
3018 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019                  u64 start, u64 len, get_extent_t *get_extent,
3020                  struct extent_map **em_cached)
3021 {
3022         struct extent_map *em;
3023
3024         if (em_cached && *em_cached) {
3025                 em = *em_cached;
3026                 if (extent_map_in_tree(em) && start >= em->start &&
3027                     start < extent_map_end(em)) {
3028                         refcount_inc(&em->refs);
3029                         return em;
3030                 }
3031
3032                 free_extent_map(em);
3033                 *em_cached = NULL;
3034         }
3035
3036         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3037         if (em_cached && !IS_ERR_OR_NULL(em)) {
3038                 BUG_ON(*em_cached);
3039                 refcount_inc(&em->refs);
3040                 *em_cached = em;
3041         }
3042         return em;
3043 }
3044 /*
3045  * basic readpage implementation.  Locked extent state structs are inserted
3046  * into the tree that are removed when the IO is done (by the end_io
3047  * handlers)
3048  * XXX JDM: This needs looking at to ensure proper page locking
3049  * return 0 on success, otherwise return error
3050  */
3051 static int __do_readpage(struct extent_io_tree *tree,
3052                          struct page *page,
3053                          get_extent_t *get_extent,
3054                          struct extent_map **em_cached,
3055                          struct bio **bio, int mirror_num,
3056                          unsigned long *bio_flags, unsigned int read_flags,
3057                          u64 *prev_em_start)
3058 {
3059         struct inode *inode = page->mapping->host;
3060         u64 start = page_offset(page);
3061         const u64 end = start + PAGE_SIZE - 1;
3062         u64 cur = start;
3063         u64 extent_offset;
3064         u64 last_byte = i_size_read(inode);
3065         u64 block_start;
3066         u64 cur_end;
3067         struct extent_map *em;
3068         struct block_device *bdev;
3069         int ret = 0;
3070         int nr = 0;
3071         size_t pg_offset = 0;
3072         size_t iosize;
3073         size_t disk_io_size;
3074         size_t blocksize = inode->i_sb->s_blocksize;
3075         unsigned long this_bio_flag = 0;
3076
3077         set_page_extent_mapped(page);
3078
3079         if (!PageUptodate(page)) {
3080                 if (cleancache_get_page(page) == 0) {
3081                         BUG_ON(blocksize != PAGE_SIZE);
3082                         unlock_extent(tree, start, end);
3083                         goto out;
3084                 }
3085         }
3086
3087         if (page->index == last_byte >> PAGE_SHIFT) {
3088                 char *userpage;
3089                 size_t zero_offset = offset_in_page(last_byte);
3090
3091                 if (zero_offset) {
3092                         iosize = PAGE_SIZE - zero_offset;
3093                         userpage = kmap_atomic(page);
3094                         memset(userpage + zero_offset, 0, iosize);
3095                         flush_dcache_page(page);
3096                         kunmap_atomic(userpage);
3097                 }
3098         }
3099         while (cur <= end) {
3100                 bool force_bio_submit = false;
3101                 u64 offset;
3102
3103                 if (cur >= last_byte) {
3104                         char *userpage;
3105                         struct extent_state *cached = NULL;
3106
3107                         iosize = PAGE_SIZE - pg_offset;
3108                         userpage = kmap_atomic(page);
3109                         memset(userpage + pg_offset, 0, iosize);
3110                         flush_dcache_page(page);
3111                         kunmap_atomic(userpage);
3112                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3113                                             &cached, GFP_NOFS);
3114                         unlock_extent_cached(tree, cur,
3115                                              cur + iosize - 1, &cached);
3116                         break;
3117                 }
3118                 em = __get_extent_map(inode, page, pg_offset, cur,
3119                                       end - cur + 1, get_extent, em_cached);
3120                 if (IS_ERR_OR_NULL(em)) {
3121                         SetPageError(page);
3122                         unlock_extent(tree, cur, end);
3123                         break;
3124                 }
3125                 extent_offset = cur - em->start;
3126                 BUG_ON(extent_map_end(em) <= cur);
3127                 BUG_ON(end < cur);
3128
3129                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3130                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3131                         extent_set_compress_type(&this_bio_flag,
3132                                                  em->compress_type);
3133                 }
3134
3135                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136                 cur_end = min(extent_map_end(em) - 1, end);
3137                 iosize = ALIGN(iosize, blocksize);
3138                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139                         disk_io_size = em->block_len;
3140                         offset = em->block_start;
3141                 } else {
3142                         offset = em->block_start + extent_offset;
3143                         disk_io_size = iosize;
3144                 }
3145                 bdev = em->bdev;
3146                 block_start = em->block_start;
3147                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148                         block_start = EXTENT_MAP_HOLE;
3149
3150                 /*
3151                  * If we have a file range that points to a compressed extent
3152                  * and it's followed by a consecutive file range that points to
3153                  * to the same compressed extent (possibly with a different
3154                  * offset and/or length, so it either points to the whole extent
3155                  * or only part of it), we must make sure we do not submit a
3156                  * single bio to populate the pages for the 2 ranges because
3157                  * this makes the compressed extent read zero out the pages
3158                  * belonging to the 2nd range. Imagine the following scenario:
3159                  *
3160                  *  File layout
3161                  *  [0 - 8K]                     [8K - 24K]
3162                  *    |                               |
3163                  *    |                               |
3164                  * points to extent X,         points to extent X,
3165                  * offset 4K, length of 8K     offset 0, length 16K
3166                  *
3167                  * [extent X, compressed length = 4K uncompressed length = 16K]
3168                  *
3169                  * If the bio to read the compressed extent covers both ranges,
3170                  * it will decompress extent X into the pages belonging to the
3171                  * first range and then it will stop, zeroing out the remaining
3172                  * pages that belong to the other range that points to extent X.
3173                  * So here we make sure we submit 2 bios, one for the first
3174                  * range and another one for the third range. Both will target
3175                  * the same physical extent from disk, but we can't currently
3176                  * make the compressed bio endio callback populate the pages
3177                  * for both ranges because each compressed bio is tightly
3178                  * coupled with a single extent map, and each range can have
3179                  * an extent map with a different offset value relative to the
3180                  * uncompressed data of our extent and different lengths. This
3181                  * is a corner case so we prioritize correctness over
3182                  * non-optimal behavior (submitting 2 bios for the same extent).
3183                  */
3184                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185                     prev_em_start && *prev_em_start != (u64)-1 &&
3186                     *prev_em_start != em->start)
3187                         force_bio_submit = true;
3188
3189                 if (prev_em_start)
3190                         *prev_em_start = em->start;
3191
3192                 free_extent_map(em);
3193                 em = NULL;
3194
3195                 /* we've found a hole, just zero and go on */
3196                 if (block_start == EXTENT_MAP_HOLE) {
3197                         char *userpage;
3198                         struct extent_state *cached = NULL;
3199
3200                         userpage = kmap_atomic(page);
3201                         memset(userpage + pg_offset, 0, iosize);
3202                         flush_dcache_page(page);
3203                         kunmap_atomic(userpage);
3204
3205                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3206                                             &cached, GFP_NOFS);
3207                         unlock_extent_cached(tree, cur,
3208                                              cur + iosize - 1, &cached);
3209                         cur = cur + iosize;
3210                         pg_offset += iosize;
3211                         continue;
3212                 }
3213                 /* the get_extent function already copied into the page */
3214                 if (test_range_bit(tree, cur, cur_end,
3215                                    EXTENT_UPTODATE, 1, NULL)) {
3216                         check_page_uptodate(tree, page);
3217                         unlock_extent(tree, cur, cur + iosize - 1);
3218                         cur = cur + iosize;
3219                         pg_offset += iosize;
3220                         continue;
3221                 }
3222                 /* we have an inline extent but it didn't get marked up
3223                  * to date.  Error out
3224                  */
3225                 if (block_start == EXTENT_MAP_INLINE) {
3226                         SetPageError(page);
3227                         unlock_extent(tree, cur, cur + iosize - 1);
3228                         cur = cur + iosize;
3229                         pg_offset += iosize;
3230                         continue;
3231                 }
3232
3233                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3234                                          page, offset, disk_io_size,
3235                                          pg_offset, bdev, bio,
3236                                          end_bio_extent_readpage, mirror_num,
3237                                          *bio_flags,
3238                                          this_bio_flag,
3239                                          force_bio_submit);
3240                 if (!ret) {
3241                         nr++;
3242                         *bio_flags = this_bio_flag;
3243                 } else {
3244                         SetPageError(page);
3245                         unlock_extent(tree, cur, cur + iosize - 1);
3246                         goto out;
3247                 }
3248                 cur = cur + iosize;
3249                 pg_offset += iosize;
3250         }
3251 out:
3252         if (!nr) {
3253                 if (!PageError(page))
3254                         SetPageUptodate(page);
3255                 unlock_page(page);
3256         }
3257         return ret;
3258 }
3259
3260 static inline void contiguous_readpages(struct extent_io_tree *tree,
3261                                              struct page *pages[], int nr_pages,
3262                                              u64 start, u64 end,
3263                                              struct extent_map **em_cached,
3264                                              struct bio **bio,
3265                                              unsigned long *bio_flags,
3266                                              u64 *prev_em_start)
3267 {
3268         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3269         int index;
3270
3271         btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3272
3273         for (index = 0; index < nr_pages; index++) {
3274                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3275                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3276                 put_page(pages[index]);
3277         }
3278 }
3279
3280 static int __extent_read_full_page(struct extent_io_tree *tree,
3281                                    struct page *page,
3282                                    get_extent_t *get_extent,
3283                                    struct bio **bio, int mirror_num,
3284                                    unsigned long *bio_flags,
3285                                    unsigned int read_flags)
3286 {
3287         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3288         u64 start = page_offset(page);
3289         u64 end = start + PAGE_SIZE - 1;
3290         int ret;
3291
3292         btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3293
3294         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3295                             bio_flags, read_flags, NULL);
3296         return ret;
3297 }
3298
3299 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3300                             get_extent_t *get_extent, int mirror_num)
3301 {
3302         struct bio *bio = NULL;
3303         unsigned long bio_flags = 0;
3304         int ret;
3305
3306         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3307                                       &bio_flags, 0);
3308         if (bio)
3309                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3310         return ret;
3311 }
3312
3313 static void update_nr_written(struct writeback_control *wbc,
3314                               unsigned long nr_written)
3315 {
3316         wbc->nr_to_write -= nr_written;
3317 }
3318
3319 /*
3320  * helper for __extent_writepage, doing all of the delayed allocation setup.
3321  *
3322  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3323  * to write the page (copy into inline extent).  In this case the IO has
3324  * been started and the page is already unlocked.
3325  *
3326  * This returns 0 if all went well (page still locked)
3327  * This returns < 0 if there were errors (page still locked)
3328  */
3329 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3330                 struct page *page, struct writeback_control *wbc,
3331                 u64 delalloc_start, unsigned long *nr_written)
3332 {
3333         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3334         bool found;
3335         u64 delalloc_to_write = 0;
3336         u64 delalloc_end = 0;
3337         int ret;
3338         int page_started = 0;
3339
3340
3341         while (delalloc_end < page_end) {
3342                 found = find_lock_delalloc_range(inode, page,
3343                                                &delalloc_start,
3344                                                &delalloc_end);
3345                 if (!found) {
3346                         delalloc_start = delalloc_end + 1;
3347                         continue;
3348                 }
3349                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350                                 delalloc_end, &page_started, nr_written, wbc);
3351                 if (ret) {
3352                         SetPageError(page);
3353                         /*
3354                          * btrfs_run_delalloc_range should return < 0 for error
3355                          * but just in case, we use > 0 here meaning the IO is
3356                          * started, so we don't want to return > 0 unless
3357                          * things are going well.
3358                          */
3359                         ret = ret < 0 ? ret : -EIO;
3360                         goto done;
3361                 }
3362                 /*
3363                  * delalloc_end is already one less than the total length, so
3364                  * we don't subtract one from PAGE_SIZE
3365                  */
3366                 delalloc_to_write += (delalloc_end - delalloc_start +
3367                                       PAGE_SIZE) >> PAGE_SHIFT;
3368                 delalloc_start = delalloc_end + 1;
3369         }
3370         if (wbc->nr_to_write < delalloc_to_write) {
3371                 int thresh = 8192;
3372
3373                 if (delalloc_to_write < thresh * 2)
3374                         thresh = delalloc_to_write;
3375                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376                                          thresh);
3377         }
3378
3379         /* did the fill delalloc function already unlock and start
3380          * the IO?
3381          */
3382         if (page_started) {
3383                 /*
3384                  * we've unlocked the page, so we can't update
3385                  * the mapping's writeback index, just update
3386                  * nr_to_write.
3387                  */
3388                 wbc->nr_to_write -= *nr_written;
3389                 return 1;
3390         }
3391
3392         ret = 0;
3393
3394 done:
3395         return ret;
3396 }
3397
3398 /*
3399  * helper for __extent_writepage.  This calls the writepage start hooks,
3400  * and does the loop to map the page into extents and bios.
3401  *
3402  * We return 1 if the IO is started and the page is unlocked,
3403  * 0 if all went well (page still locked)
3404  * < 0 if there were errors (page still locked)
3405  */
3406 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407                                  struct page *page,
3408                                  struct writeback_control *wbc,
3409                                  struct extent_page_data *epd,
3410                                  loff_t i_size,
3411                                  unsigned long nr_written,
3412                                  unsigned int write_flags, int *nr_ret)
3413 {
3414         struct extent_io_tree *tree = epd->tree;
3415         u64 start = page_offset(page);
3416         u64 page_end = start + PAGE_SIZE - 1;
3417         u64 end;
3418         u64 cur = start;
3419         u64 extent_offset;
3420         u64 block_start;
3421         u64 iosize;
3422         struct extent_map *em;
3423         struct block_device *bdev;
3424         size_t pg_offset = 0;
3425         size_t blocksize;
3426         int ret = 0;
3427         int nr = 0;
3428         bool compressed;
3429
3430         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431         if (ret) {
3432                 /* Fixup worker will requeue */
3433                 if (ret == -EBUSY)
3434                         wbc->pages_skipped++;
3435                 else
3436                         redirty_page_for_writepage(wbc, page);
3437
3438                 update_nr_written(wbc, nr_written);
3439                 unlock_page(page);
3440                 return 1;
3441         }
3442
3443         /*
3444          * we don't want to touch the inode after unlocking the page,
3445          * so we update the mapping writeback index now
3446          */
3447         update_nr_written(wbc, nr_written + 1);
3448
3449         end = page_end;
3450         if (i_size <= start) {
3451                 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3452                 goto done;
3453         }
3454
3455         blocksize = inode->i_sb->s_blocksize;
3456
3457         while (cur <= end) {
3458                 u64 em_end;
3459                 u64 offset;
3460
3461                 if (cur >= i_size) {
3462                         btrfs_writepage_endio_finish_ordered(page, cur,
3463                                                              page_end, 1);
3464                         break;
3465                 }
3466                 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3467                                      end - cur + 1, 1);
3468                 if (IS_ERR_OR_NULL(em)) {
3469                         SetPageError(page);
3470                         ret = PTR_ERR_OR_ZERO(em);
3471                         break;
3472                 }
3473
3474                 extent_offset = cur - em->start;
3475                 em_end = extent_map_end(em);
3476                 BUG_ON(em_end <= cur);
3477                 BUG_ON(end < cur);
3478                 iosize = min(em_end - cur, end - cur + 1);
3479                 iosize = ALIGN(iosize, blocksize);
3480                 offset = em->block_start + extent_offset;
3481                 bdev = em->bdev;
3482                 block_start = em->block_start;
3483                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3484                 free_extent_map(em);
3485                 em = NULL;
3486
3487                 /*
3488                  * compressed and inline extents are written through other
3489                  * paths in the FS
3490                  */
3491                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3492                     block_start == EXTENT_MAP_INLINE) {
3493                         /*
3494                          * end_io notification does not happen here for
3495                          * compressed extents
3496                          */
3497                         if (!compressed)
3498                                 btrfs_writepage_endio_finish_ordered(page, cur,
3499                                                             cur + iosize - 1,
3500                                                             1);
3501                         else if (compressed) {
3502                                 /* we don't want to end_page_writeback on
3503                                  * a compressed extent.  this happens
3504                                  * elsewhere
3505                                  */
3506                                 nr++;
3507                         }
3508
3509                         cur += iosize;
3510                         pg_offset += iosize;
3511                         continue;
3512                 }
3513
3514                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3515                 if (!PageWriteback(page)) {
3516                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3517                                    "page %lu not writeback, cur %llu end %llu",
3518                                page->index, cur, end);
3519                 }
3520
3521                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3522                                          page, offset, iosize, pg_offset,
3523                                          bdev, &epd->bio,
3524                                          end_bio_extent_writepage,
3525                                          0, 0, 0, false);
3526                 if (ret) {
3527                         SetPageError(page);
3528                         if (PageWriteback(page))
3529                                 end_page_writeback(page);
3530                 }
3531
3532                 cur = cur + iosize;
3533                 pg_offset += iosize;
3534                 nr++;
3535         }
3536 done:
3537         *nr_ret = nr;
3538         return ret;
3539 }
3540
3541 /*
3542  * the writepage semantics are similar to regular writepage.  extent
3543  * records are inserted to lock ranges in the tree, and as dirty areas
3544  * are found, they are marked writeback.  Then the lock bits are removed
3545  * and the end_io handler clears the writeback ranges
3546  *
3547  * Return 0 if everything goes well.
3548  * Return <0 for error.
3549  */
3550 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3551                               struct extent_page_data *epd)
3552 {
3553         struct inode *inode = page->mapping->host;
3554         u64 start = page_offset(page);
3555         u64 page_end = start + PAGE_SIZE - 1;
3556         int ret;
3557         int nr = 0;
3558         size_t pg_offset = 0;
3559         loff_t i_size = i_size_read(inode);
3560         unsigned long end_index = i_size >> PAGE_SHIFT;
3561         unsigned int write_flags = 0;
3562         unsigned long nr_written = 0;
3563
3564         write_flags = wbc_to_write_flags(wbc);
3565
3566         trace___extent_writepage(page, inode, wbc);
3567
3568         WARN_ON(!PageLocked(page));
3569
3570         ClearPageError(page);
3571
3572         pg_offset = offset_in_page(i_size);
3573         if (page->index > end_index ||
3574            (page->index == end_index && !pg_offset)) {
3575                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3576                 unlock_page(page);
3577                 return 0;
3578         }
3579
3580         if (page->index == end_index) {
3581                 char *userpage;
3582
3583                 userpage = kmap_atomic(page);
3584                 memset(userpage + pg_offset, 0,
3585                        PAGE_SIZE - pg_offset);
3586                 kunmap_atomic(userpage);
3587                 flush_dcache_page(page);
3588         }
3589
3590         pg_offset = 0;
3591
3592         set_page_extent_mapped(page);
3593
3594         if (!epd->extent_locked) {
3595                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3596                 if (ret == 1)
3597                         goto done_unlocked;
3598                 if (ret)
3599                         goto done;
3600         }
3601
3602         ret = __extent_writepage_io(inode, page, wbc, epd,
3603                                     i_size, nr_written, write_flags, &nr);
3604         if (ret == 1)
3605                 goto done_unlocked;
3606
3607 done:
3608         if (nr == 0) {
3609                 /* make sure the mapping tag for page dirty gets cleared */
3610                 set_page_writeback(page);
3611                 end_page_writeback(page);
3612         }
3613         if (PageError(page)) {
3614                 ret = ret < 0 ? ret : -EIO;
3615                 end_extent_writepage(page, ret, start, page_end);
3616         }
3617         unlock_page(page);
3618         ASSERT(ret <= 0);
3619         return ret;
3620
3621 done_unlocked:
3622         return 0;
3623 }
3624
3625 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3626 {
3627         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628                        TASK_UNINTERRUPTIBLE);
3629 }
3630
3631 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632 {
3633         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634         smp_mb__after_atomic();
3635         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636 }
3637
3638 /*
3639  * Lock eb pages and flush the bio if we can't the locks
3640  *
3641  * Return  0 if nothing went wrong
3642  * Return >0 is same as 0, except bio is not submitted
3643  * Return <0 if something went wrong, no page is locked
3644  */
3645 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3646                           struct extent_page_data *epd)
3647 {
3648         struct btrfs_fs_info *fs_info = eb->fs_info;
3649         int i, num_pages, failed_page_nr;
3650         int flush = 0;
3651         int ret = 0;
3652
3653         if (!btrfs_try_tree_write_lock(eb)) {
3654                 ret = flush_write_bio(epd);
3655                 if (ret < 0)
3656                         return ret;
3657                 flush = 1;
3658                 btrfs_tree_lock(eb);
3659         }
3660
3661         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3662                 btrfs_tree_unlock(eb);
3663                 if (!epd->sync_io)
3664                         return 0;
3665                 if (!flush) {
3666                         ret = flush_write_bio(epd);
3667                         if (ret < 0)
3668                                 return ret;
3669                         flush = 1;
3670                 }
3671                 while (1) {
3672                         wait_on_extent_buffer_writeback(eb);
3673                         btrfs_tree_lock(eb);
3674                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3675                                 break;
3676                         btrfs_tree_unlock(eb);
3677                 }
3678         }
3679
3680         /*
3681          * We need to do this to prevent races in people who check if the eb is
3682          * under IO since we can end up having no IO bits set for a short period
3683          * of time.
3684          */
3685         spin_lock(&eb->refs_lock);
3686         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3687                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3688                 spin_unlock(&eb->refs_lock);
3689                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3690                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3691                                          -eb->len,
3692                                          fs_info->dirty_metadata_batch);
3693                 ret = 1;
3694         } else {
3695                 spin_unlock(&eb->refs_lock);
3696         }
3697
3698         btrfs_tree_unlock(eb);
3699
3700         if (!ret)
3701                 return ret;
3702
3703         num_pages = num_extent_pages(eb);
3704         for (i = 0; i < num_pages; i++) {
3705                 struct page *p = eb->pages[i];
3706
3707                 if (!trylock_page(p)) {
3708                         if (!flush) {
3709                                 int err;
3710
3711                                 err = flush_write_bio(epd);
3712                                 if (err < 0) {
3713                                         ret = err;
3714                                         failed_page_nr = i;
3715                                         goto err_unlock;
3716                                 }
3717                                 flush = 1;
3718                         }
3719                         lock_page(p);
3720                 }
3721         }
3722
3723         return ret;
3724 err_unlock:
3725         /* Unlock already locked pages */
3726         for (i = 0; i < failed_page_nr; i++)
3727                 unlock_page(eb->pages[i]);
3728         /*
3729          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3730          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3731          * be made and undo everything done before.
3732          */
3733         btrfs_tree_lock(eb);
3734         spin_lock(&eb->refs_lock);
3735         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3736         end_extent_buffer_writeback(eb);
3737         spin_unlock(&eb->refs_lock);
3738         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3739                                  fs_info->dirty_metadata_batch);
3740         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3741         btrfs_tree_unlock(eb);
3742         return ret;
3743 }
3744
3745 static void set_btree_ioerr(struct page *page)
3746 {
3747         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3748
3749         SetPageError(page);
3750         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3751                 return;
3752
3753         /*
3754          * If writeback for a btree extent that doesn't belong to a log tree
3755          * failed, increment the counter transaction->eb_write_errors.
3756          * We do this because while the transaction is running and before it's
3757          * committing (when we call filemap_fdata[write|wait]_range against
3758          * the btree inode), we might have
3759          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3760          * returns an error or an error happens during writeback, when we're
3761          * committing the transaction we wouldn't know about it, since the pages
3762          * can be no longer dirty nor marked anymore for writeback (if a
3763          * subsequent modification to the extent buffer didn't happen before the
3764          * transaction commit), which makes filemap_fdata[write|wait]_range not
3765          * able to find the pages tagged with SetPageError at transaction
3766          * commit time. So if this happens we must abort the transaction,
3767          * otherwise we commit a super block with btree roots that point to
3768          * btree nodes/leafs whose content on disk is invalid - either garbage
3769          * or the content of some node/leaf from a past generation that got
3770          * cowed or deleted and is no longer valid.
3771          *
3772          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3773          * not be enough - we need to distinguish between log tree extents vs
3774          * non-log tree extents, and the next filemap_fdatawait_range() call
3775          * will catch and clear such errors in the mapping - and that call might
3776          * be from a log sync and not from a transaction commit. Also, checking
3777          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3778          * not done and would not be reliable - the eb might have been released
3779          * from memory and reading it back again means that flag would not be
3780          * set (since it's a runtime flag, not persisted on disk).
3781          *
3782          * Using the flags below in the btree inode also makes us achieve the
3783          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3784          * writeback for all dirty pages and before filemap_fdatawait_range()
3785          * is called, the writeback for all dirty pages had already finished
3786          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3787          * filemap_fdatawait_range() would return success, as it could not know
3788          * that writeback errors happened (the pages were no longer tagged for
3789          * writeback).
3790          */
3791         switch (eb->log_index) {
3792         case -1:
3793                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3794                 break;
3795         case 0:
3796                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3797                 break;
3798         case 1:
3799                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3800                 break;
3801         default:
3802                 BUG(); /* unexpected, logic error */
3803         }
3804 }
3805
3806 static void end_bio_extent_buffer_writepage(struct bio *bio)
3807 {
3808         struct bio_vec *bvec;
3809         struct extent_buffer *eb;
3810         int done;
3811         struct bvec_iter_all iter_all;
3812
3813         ASSERT(!bio_flagged(bio, BIO_CLONED));
3814         bio_for_each_segment_all(bvec, bio, iter_all) {
3815                 struct page *page = bvec->bv_page;
3816
3817                 eb = (struct extent_buffer *)page->private;
3818                 BUG_ON(!eb);
3819                 done = atomic_dec_and_test(&eb->io_pages);
3820
3821                 if (bio->bi_status ||
3822                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3823                         ClearPageUptodate(page);
3824                         set_btree_ioerr(page);
3825                 }
3826
3827                 end_page_writeback(page);
3828
3829                 if (!done)
3830                         continue;
3831
3832                 end_extent_buffer_writeback(eb);
3833         }
3834
3835         bio_put(bio);
3836 }
3837
3838 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3839                         struct writeback_control *wbc,
3840                         struct extent_page_data *epd)
3841 {
3842         struct btrfs_fs_info *fs_info = eb->fs_info;
3843         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3844         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3845         u64 offset = eb->start;
3846         u32 nritems;
3847         int i, num_pages;
3848         unsigned long start, end;
3849         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3850         int ret = 0;
3851
3852         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3853         num_pages = num_extent_pages(eb);
3854         atomic_set(&eb->io_pages, num_pages);
3855
3856         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3857         nritems = btrfs_header_nritems(eb);
3858         if (btrfs_header_level(eb) > 0) {
3859                 end = btrfs_node_key_ptr_offset(nritems);
3860
3861                 memzero_extent_buffer(eb, end, eb->len - end);
3862         } else {
3863                 /*
3864                  * leaf:
3865                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3866                  */
3867                 start = btrfs_item_nr_offset(nritems);
3868                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3869                 memzero_extent_buffer(eb, start, end - start);
3870         }
3871
3872         for (i = 0; i < num_pages; i++) {
3873                 struct page *p = eb->pages[i];
3874
3875                 clear_page_dirty_for_io(p);
3876                 set_page_writeback(p);
3877                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3878                                          p, offset, PAGE_SIZE, 0, bdev,
3879                                          &epd->bio,
3880                                          end_bio_extent_buffer_writepage,
3881                                          0, 0, 0, false);
3882                 if (ret) {
3883                         set_btree_ioerr(p);
3884                         if (PageWriteback(p))
3885                                 end_page_writeback(p);
3886                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3887                                 end_extent_buffer_writeback(eb);
3888                         ret = -EIO;
3889                         break;
3890                 }
3891                 offset += PAGE_SIZE;
3892                 update_nr_written(wbc, 1);
3893                 unlock_page(p);
3894         }
3895
3896         if (unlikely(ret)) {
3897                 for (; i < num_pages; i++) {
3898                         struct page *p = eb->pages[i];
3899                         clear_page_dirty_for_io(p);
3900                         unlock_page(p);
3901                 }
3902         }
3903
3904         return ret;
3905 }
3906
3907 int btree_write_cache_pages(struct address_space *mapping,
3908                                    struct writeback_control *wbc)
3909 {
3910         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3911         struct extent_buffer *eb, *prev_eb = NULL;
3912         struct extent_page_data epd = {
3913                 .bio = NULL,
3914                 .tree = tree,
3915                 .extent_locked = 0,
3916                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3917         };
3918         int ret = 0;
3919         int done = 0;
3920         int nr_to_write_done = 0;
3921         struct pagevec pvec;
3922         int nr_pages;
3923         pgoff_t index;
3924         pgoff_t end;            /* Inclusive */
3925         int scanned = 0;
3926         xa_mark_t tag;
3927
3928         pagevec_init(&pvec);
3929         if (wbc->range_cyclic) {
3930                 index = mapping->writeback_index; /* Start from prev offset */
3931                 end = -1;
3932         } else {
3933                 index = wbc->range_start >> PAGE_SHIFT;
3934                 end = wbc->range_end >> PAGE_SHIFT;
3935                 scanned = 1;
3936         }
3937         if (wbc->sync_mode == WB_SYNC_ALL)
3938                 tag = PAGECACHE_TAG_TOWRITE;
3939         else
3940                 tag = PAGECACHE_TAG_DIRTY;
3941 retry:
3942         if (wbc->sync_mode == WB_SYNC_ALL)
3943                 tag_pages_for_writeback(mapping, index, end);
3944         while (!done && !nr_to_write_done && (index <= end) &&
3945                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3946                         tag))) {
3947                 unsigned i;
3948
3949                 scanned = 1;
3950                 for (i = 0; i < nr_pages; i++) {
3951                         struct page *page = pvec.pages[i];
3952
3953                         if (!PagePrivate(page))
3954                                 continue;
3955
3956                         spin_lock(&mapping->private_lock);
3957                         if (!PagePrivate(page)) {
3958                                 spin_unlock(&mapping->private_lock);
3959                                 continue;
3960                         }
3961
3962                         eb = (struct extent_buffer *)page->private;
3963
3964                         /*
3965                          * Shouldn't happen and normally this would be a BUG_ON
3966                          * but no sense in crashing the users box for something
3967                          * we can survive anyway.
3968                          */
3969                         if (WARN_ON(!eb)) {
3970                                 spin_unlock(&mapping->private_lock);
3971                                 continue;
3972                         }
3973
3974                         if (eb == prev_eb) {
3975                                 spin_unlock(&mapping->private_lock);
3976                                 continue;
3977                         }
3978
3979                         ret = atomic_inc_not_zero(&eb->refs);
3980                         spin_unlock(&mapping->private_lock);
3981                         if (!ret)
3982                                 continue;
3983
3984                         prev_eb = eb;
3985                         ret = lock_extent_buffer_for_io(eb, &epd);
3986                         if (!ret) {
3987                                 free_extent_buffer(eb);
3988                                 continue;
3989                         }
3990
3991                         ret = write_one_eb(eb, wbc, &epd);
3992                         if (ret) {
3993                                 done = 1;
3994                                 free_extent_buffer(eb);
3995                                 break;
3996                         }
3997                         free_extent_buffer(eb);
3998
3999                         /*
4000                          * the filesystem may choose to bump up nr_to_write.
4001                          * We have to make sure to honor the new nr_to_write
4002                          * at any time
4003                          */
4004                         nr_to_write_done = wbc->nr_to_write <= 0;
4005                 }
4006                 pagevec_release(&pvec);
4007                 cond_resched();
4008         }
4009         if (!scanned && !done) {
4010                 /*
4011                  * We hit the last page and there is more work to be done: wrap
4012                  * back to the start of the file
4013                  */
4014                 scanned = 1;
4015                 index = 0;
4016                 goto retry;
4017         }
4018         ASSERT(ret <= 0);
4019         if (ret < 0) {
4020                 end_write_bio(&epd, ret);
4021                 return ret;
4022         }
4023         ret = flush_write_bio(&epd);
4024         return ret;
4025 }
4026
4027 /**
4028  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4029  * @mapping: address space structure to write
4030  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4031  * @data: data passed to __extent_writepage function
4032  *
4033  * If a page is already under I/O, write_cache_pages() skips it, even
4034  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4035  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4036  * and msync() need to guarantee that all the data which was dirty at the time
4037  * the call was made get new I/O started against them.  If wbc->sync_mode is
4038  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4039  * existing IO to complete.
4040  */
4041 static int extent_write_cache_pages(struct address_space *mapping,
4042                              struct writeback_control *wbc,
4043                              struct extent_page_data *epd)
4044 {
4045         struct inode *inode = mapping->host;
4046         int ret = 0;
4047         int done = 0;
4048         int nr_to_write_done = 0;
4049         struct pagevec pvec;
4050         int nr_pages;
4051         pgoff_t index;
4052         pgoff_t end;            /* Inclusive */
4053         pgoff_t done_index;
4054         int range_whole = 0;
4055         int scanned = 0;
4056         xa_mark_t tag;
4057
4058         /*
4059          * We have to hold onto the inode so that ordered extents can do their
4060          * work when the IO finishes.  The alternative to this is failing to add
4061          * an ordered extent if the igrab() fails there and that is a huge pain
4062          * to deal with, so instead just hold onto the inode throughout the
4063          * writepages operation.  If it fails here we are freeing up the inode
4064          * anyway and we'd rather not waste our time writing out stuff that is
4065          * going to be truncated anyway.
4066          */
4067         if (!igrab(inode))
4068                 return 0;
4069
4070         pagevec_init(&pvec);
4071         if (wbc->range_cyclic) {
4072                 index = mapping->writeback_index; /* Start from prev offset */
4073                 end = -1;
4074         } else {
4075                 index = wbc->range_start >> PAGE_SHIFT;
4076                 end = wbc->range_end >> PAGE_SHIFT;
4077                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4078                         range_whole = 1;
4079                 scanned = 1;
4080         }
4081
4082         /*
4083          * We do the tagged writepage as long as the snapshot flush bit is set
4084          * and we are the first one who do the filemap_flush() on this inode.
4085          *
4086          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4087          * not race in and drop the bit.
4088          */
4089         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4090             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4091                                &BTRFS_I(inode)->runtime_flags))
4092                 wbc->tagged_writepages = 1;
4093
4094         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4095                 tag = PAGECACHE_TAG_TOWRITE;
4096         else
4097                 tag = PAGECACHE_TAG_DIRTY;
4098 retry:
4099         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4100                 tag_pages_for_writeback(mapping, index, end);
4101         done_index = index;
4102         while (!done && !nr_to_write_done && (index <= end) &&
4103                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4104                                                 &index, end, tag))) {
4105                 unsigned i;
4106
4107                 scanned = 1;
4108                 for (i = 0; i < nr_pages; i++) {
4109                         struct page *page = pvec.pages[i];
4110
4111                         done_index = page->index;
4112                         /*
4113                          * At this point we hold neither the i_pages lock nor
4114                          * the page lock: the page may be truncated or
4115                          * invalidated (changing page->mapping to NULL),
4116                          * or even swizzled back from swapper_space to
4117                          * tmpfs file mapping
4118                          */
4119                         if (!trylock_page(page)) {
4120                                 ret = flush_write_bio(epd);
4121                                 BUG_ON(ret < 0);
4122                                 lock_page(page);
4123                         }
4124
4125                         if (unlikely(page->mapping != mapping)) {
4126                                 unlock_page(page);
4127                                 continue;
4128                         }
4129
4130                         if (wbc->sync_mode != WB_SYNC_NONE) {
4131                                 if (PageWriteback(page)) {
4132                                         ret = flush_write_bio(epd);
4133                                         BUG_ON(ret < 0);
4134                                 }
4135                                 wait_on_page_writeback(page);
4136                         }
4137
4138                         if (PageWriteback(page) ||
4139                             !clear_page_dirty_for_io(page)) {
4140                                 unlock_page(page);
4141                                 continue;
4142                         }
4143
4144                         ret = __extent_writepage(page, wbc, epd);
4145                         if (ret < 0) {
4146                                 /*
4147                                  * done_index is set past this page,
4148                                  * so media errors will not choke
4149                                  * background writeout for the entire
4150                                  * file. This has consequences for
4151                                  * range_cyclic semantics (ie. it may
4152                                  * not be suitable for data integrity
4153                                  * writeout).
4154                                  */
4155                                 done_index = page->index + 1;
4156                                 done = 1;
4157                                 break;
4158                         }
4159
4160                         /*
4161                          * the filesystem may choose to bump up nr_to_write.
4162                          * We have to make sure to honor the new nr_to_write
4163                          * at any time
4164                          */
4165                         nr_to_write_done = wbc->nr_to_write <= 0;
4166                 }
4167                 pagevec_release(&pvec);
4168                 cond_resched();
4169         }
4170         if (!scanned && !done) {
4171                 /*
4172                  * We hit the last page and there is more work to be done: wrap
4173                  * back to the start of the file
4174                  */
4175                 scanned = 1;
4176                 index = 0;
4177                 goto retry;
4178         }
4179
4180         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4181                 mapping->writeback_index = done_index;
4182
4183         btrfs_add_delayed_iput(inode);
4184         return ret;
4185 }
4186
4187 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4188 {
4189         int ret;
4190         struct extent_page_data epd = {
4191                 .bio = NULL,
4192                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4193                 .extent_locked = 0,
4194                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4195         };
4196
4197         ret = __extent_writepage(page, wbc, &epd);
4198         ASSERT(ret <= 0);
4199         if (ret < 0) {
4200                 end_write_bio(&epd, ret);
4201                 return ret;
4202         }
4203
4204         ret = flush_write_bio(&epd);
4205         ASSERT(ret <= 0);
4206         return ret;
4207 }
4208
4209 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4210                               int mode)
4211 {
4212         int ret = 0;
4213         struct address_space *mapping = inode->i_mapping;
4214         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4215         struct page *page;
4216         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4217                 PAGE_SHIFT;
4218
4219         struct extent_page_data epd = {
4220                 .bio = NULL,
4221                 .tree = tree,
4222                 .extent_locked = 1,
4223                 .sync_io = mode == WB_SYNC_ALL,
4224         };
4225         struct writeback_control wbc_writepages = {
4226                 .sync_mode      = mode,
4227                 .nr_to_write    = nr_pages * 2,
4228                 .range_start    = start,
4229                 .range_end      = end + 1,
4230         };
4231
4232         while (start <= end) {
4233                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4234                 if (clear_page_dirty_for_io(page))
4235                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4236                 else {
4237                         btrfs_writepage_endio_finish_ordered(page, start,
4238                                                     start + PAGE_SIZE - 1, 1);
4239                         unlock_page(page);
4240                 }
4241                 put_page(page);
4242                 start += PAGE_SIZE;
4243         }
4244
4245         ASSERT(ret <= 0);
4246         if (ret < 0) {
4247                 end_write_bio(&epd, ret);
4248                 return ret;
4249         }
4250         ret = flush_write_bio(&epd);
4251         return ret;
4252 }
4253
4254 int extent_writepages(struct address_space *mapping,
4255                       struct writeback_control *wbc)
4256 {
4257         int ret = 0;
4258         struct extent_page_data epd = {
4259                 .bio = NULL,
4260                 .tree = &BTRFS_I(mapping->host)->io_tree,
4261                 .extent_locked = 0,
4262                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4263         };
4264
4265         ret = extent_write_cache_pages(mapping, wbc, &epd);
4266         ASSERT(ret <= 0);
4267         if (ret < 0) {
4268                 end_write_bio(&epd, ret);
4269                 return ret;
4270         }
4271         ret = flush_write_bio(&epd);
4272         return ret;
4273 }
4274
4275 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4276                      unsigned nr_pages)
4277 {
4278         struct bio *bio = NULL;
4279         unsigned long bio_flags = 0;
4280         struct page *pagepool[16];
4281         struct extent_map *em_cached = NULL;
4282         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4283         int nr = 0;
4284         u64 prev_em_start = (u64)-1;
4285
4286         while (!list_empty(pages)) {
4287                 u64 contig_end = 0;
4288
4289                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4290                         struct page *page = lru_to_page(pages);
4291
4292                         prefetchw(&page->flags);
4293                         list_del(&page->lru);
4294                         if (add_to_page_cache_lru(page, mapping, page->index,
4295                                                 readahead_gfp_mask(mapping))) {
4296                                 put_page(page);
4297                                 break;
4298                         }
4299
4300                         pagepool[nr++] = page;
4301                         contig_end = page_offset(page) + PAGE_SIZE - 1;
4302                 }
4303
4304                 if (nr) {
4305                         u64 contig_start = page_offset(pagepool[0]);
4306
4307                         ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4308
4309                         contiguous_readpages(tree, pagepool, nr, contig_start,
4310                                      contig_end, &em_cached, &bio, &bio_flags,
4311                                      &prev_em_start);
4312                 }
4313         }
4314
4315         if (em_cached)
4316                 free_extent_map(em_cached);
4317
4318         if (bio)
4319                 return submit_one_bio(bio, 0, bio_flags);
4320         return 0;
4321 }
4322
4323 /*
4324  * basic invalidatepage code, this waits on any locked or writeback
4325  * ranges corresponding to the page, and then deletes any extent state
4326  * records from the tree
4327  */
4328 int extent_invalidatepage(struct extent_io_tree *tree,
4329                           struct page *page, unsigned long offset)
4330 {
4331         struct extent_state *cached_state = NULL;
4332         u64 start = page_offset(page);
4333         u64 end = start + PAGE_SIZE - 1;
4334         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4335
4336         start += ALIGN(offset, blocksize);
4337         if (start > end)
4338                 return 0;
4339
4340         lock_extent_bits(tree, start, end, &cached_state);
4341         wait_on_page_writeback(page);
4342         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4343                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4344         return 0;
4345 }
4346
4347 /*
4348  * a helper for releasepage, this tests for areas of the page that
4349  * are locked or under IO and drops the related state bits if it is safe
4350  * to drop the page.
4351  */
4352 static int try_release_extent_state(struct extent_io_tree *tree,
4353                                     struct page *page, gfp_t mask)
4354 {
4355         u64 start = page_offset(page);
4356         u64 end = start + PAGE_SIZE - 1;
4357         int ret = 1;
4358
4359         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4360                 ret = 0;
4361         } else {
4362                 /*
4363                  * at this point we can safely clear everything except the
4364                  * locked bit and the nodatasum bit
4365                  */
4366                 ret = __clear_extent_bit(tree, start, end,
4367                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4368                                  0, 0, NULL, mask, NULL);
4369
4370                 /* if clear_extent_bit failed for enomem reasons,
4371                  * we can't allow the release to continue.
4372                  */
4373                 if (ret < 0)
4374                         ret = 0;
4375                 else
4376                         ret = 1;
4377         }
4378         return ret;
4379 }
4380
4381 /*
4382  * a helper for releasepage.  As long as there are no locked extents
4383  * in the range corresponding to the page, both state records and extent
4384  * map records are removed
4385  */
4386 int try_release_extent_mapping(struct page *page, gfp_t mask)
4387 {
4388         struct extent_map *em;
4389         u64 start = page_offset(page);
4390         u64 end = start + PAGE_SIZE - 1;
4391         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4392         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4393         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4394
4395         if (gfpflags_allow_blocking(mask) &&
4396             page->mapping->host->i_size > SZ_16M) {
4397                 u64 len;
4398                 while (start <= end) {
4399                         len = end - start + 1;
4400                         write_lock(&map->lock);
4401                         em = lookup_extent_mapping(map, start, len);
4402                         if (!em) {
4403                                 write_unlock(&map->lock);
4404                                 break;
4405                         }
4406                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4407                             em->start != start) {
4408                                 write_unlock(&map->lock);
4409                                 free_extent_map(em);
4410                                 break;
4411                         }
4412                         if (!test_range_bit(tree, em->start,
4413                                             extent_map_end(em) - 1,
4414                                             EXTENT_LOCKED, 0, NULL)) {
4415                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4416                                         &btrfs_inode->runtime_flags);
4417                                 remove_extent_mapping(map, em);
4418                                 /* once for the rb tree */
4419                                 free_extent_map(em);
4420                         }
4421                         start = extent_map_end(em);
4422                         write_unlock(&map->lock);
4423
4424                         /* once for us */
4425                         free_extent_map(em);
4426                 }
4427         }
4428         return try_release_extent_state(tree, page, mask);
4429 }
4430
4431 /*
4432  * helper function for fiemap, which doesn't want to see any holes.
4433  * This maps until we find something past 'last'
4434  */
4435 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4436                                                 u64 offset, u64 last)
4437 {
4438         u64 sectorsize = btrfs_inode_sectorsize(inode);
4439         struct extent_map *em;
4440         u64 len;
4441
4442         if (offset >= last)
4443                 return NULL;
4444
4445         while (1) {
4446                 len = last - offset;
4447                 if (len == 0)
4448                         break;
4449                 len = ALIGN(len, sectorsize);
4450                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4451                 if (IS_ERR_OR_NULL(em))
4452                         return em;
4453
4454                 /* if this isn't a hole return it */
4455                 if (em->block_start != EXTENT_MAP_HOLE)
4456                         return em;
4457
4458                 /* this is a hole, advance to the next extent */
4459                 offset = extent_map_end(em);
4460                 free_extent_map(em);
4461                 if (offset >= last)
4462                         break;
4463         }
4464         return NULL;
4465 }
4466
4467 /*
4468  * To cache previous fiemap extent
4469  *
4470  * Will be used for merging fiemap extent
4471  */
4472 struct fiemap_cache {
4473         u64 offset;
4474         u64 phys;
4475         u64 len;
4476         u32 flags;
4477         bool cached;
4478 };
4479
4480 /*
4481  * Helper to submit fiemap extent.
4482  *
4483  * Will try to merge current fiemap extent specified by @offset, @phys,
4484  * @len and @flags with cached one.
4485  * And only when we fails to merge, cached one will be submitted as
4486  * fiemap extent.
4487  *
4488  * Return value is the same as fiemap_fill_next_extent().
4489  */
4490 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4491                                 struct fiemap_cache *cache,
4492                                 u64 offset, u64 phys, u64 len, u32 flags)
4493 {
4494         int ret = 0;
4495
4496         if (!cache->cached)
4497                 goto assign;
4498
4499         /*
4500          * Sanity check, extent_fiemap() should have ensured that new
4501          * fiemap extent won't overlap with cached one.
4502          * Not recoverable.
4503          *
4504          * NOTE: Physical address can overlap, due to compression
4505          */
4506         if (cache->offset + cache->len > offset) {
4507                 WARN_ON(1);
4508                 return -EINVAL;
4509         }
4510
4511         /*
4512          * Only merges fiemap extents if
4513          * 1) Their logical addresses are continuous
4514          *
4515          * 2) Their physical addresses are continuous
4516          *    So truly compressed (physical size smaller than logical size)
4517          *    extents won't get merged with each other
4518          *
4519          * 3) Share same flags except FIEMAP_EXTENT_LAST
4520          *    So regular extent won't get merged with prealloc extent
4521          */
4522         if (cache->offset + cache->len  == offset &&
4523             cache->phys + cache->len == phys  &&
4524             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4525                         (flags & ~FIEMAP_EXTENT_LAST)) {
4526                 cache->len += len;
4527                 cache->flags |= flags;
4528                 goto try_submit_last;
4529         }
4530
4531         /* Not mergeable, need to submit cached one */
4532         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4533                                       cache->len, cache->flags);
4534         cache->cached = false;
4535         if (ret)
4536                 return ret;
4537 assign:
4538         cache->cached = true;
4539         cache->offset = offset;
4540         cache->phys = phys;
4541         cache->len = len;
4542         cache->flags = flags;
4543 try_submit_last:
4544         if (cache->flags & FIEMAP_EXTENT_LAST) {
4545                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4546                                 cache->phys, cache->len, cache->flags);
4547                 cache->cached = false;
4548         }
4549         return ret;
4550 }
4551
4552 /*
4553  * Emit last fiemap cache
4554  *
4555  * The last fiemap cache may still be cached in the following case:
4556  * 0                  4k                    8k
4557  * |<- Fiemap range ->|
4558  * |<------------  First extent ----------->|
4559  *
4560  * In this case, the first extent range will be cached but not emitted.
4561  * So we must emit it before ending extent_fiemap().
4562  */
4563 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4564                                   struct fiemap_cache *cache)
4565 {
4566         int ret;
4567
4568         if (!cache->cached)
4569                 return 0;
4570
4571         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4572                                       cache->len, cache->flags);
4573         cache->cached = false;
4574         if (ret > 0)
4575                 ret = 0;
4576         return ret;
4577 }
4578
4579 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4580                 __u64 start, __u64 len)
4581 {
4582         int ret = 0;
4583         u64 off = start;
4584         u64 max = start + len;
4585         u32 flags = 0;
4586         u32 found_type;
4587         u64 last;
4588         u64 last_for_get_extent = 0;
4589         u64 disko = 0;
4590         u64 isize = i_size_read(inode);
4591         struct btrfs_key found_key;
4592         struct extent_map *em = NULL;
4593         struct extent_state *cached_state = NULL;
4594         struct btrfs_path *path;
4595         struct btrfs_root *root = BTRFS_I(inode)->root;
4596         struct fiemap_cache cache = { 0 };
4597         struct ulist *roots;
4598         struct ulist *tmp_ulist;
4599         int end = 0;
4600         u64 em_start = 0;
4601         u64 em_len = 0;
4602         u64 em_end = 0;
4603
4604         if (len == 0)
4605                 return -EINVAL;
4606
4607         path = btrfs_alloc_path();
4608         if (!path)
4609                 return -ENOMEM;
4610         path->leave_spinning = 1;
4611
4612         roots = ulist_alloc(GFP_KERNEL);
4613         tmp_ulist = ulist_alloc(GFP_KERNEL);
4614         if (!roots || !tmp_ulist) {
4615                 ret = -ENOMEM;
4616                 goto out_free_ulist;
4617         }
4618
4619         start = round_down(start, btrfs_inode_sectorsize(inode));
4620         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4621
4622         /*
4623          * lookup the last file extent.  We're not using i_size here
4624          * because there might be preallocation past i_size
4625          */
4626         ret = btrfs_lookup_file_extent(NULL, root, path,
4627                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4628         if (ret < 0) {
4629                 goto out_free_ulist;
4630         } else {
4631                 WARN_ON(!ret);
4632                 if (ret == 1)
4633                         ret = 0;
4634         }
4635
4636         path->slots[0]--;
4637         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4638         found_type = found_key.type;
4639
4640         /* No extents, but there might be delalloc bits */
4641         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4642             found_type != BTRFS_EXTENT_DATA_KEY) {
4643                 /* have to trust i_size as the end */
4644                 last = (u64)-1;
4645                 last_for_get_extent = isize;
4646         } else {
4647                 /*
4648                  * remember the start of the last extent.  There are a
4649                  * bunch of different factors that go into the length of the
4650                  * extent, so its much less complex to remember where it started
4651                  */
4652                 last = found_key.offset;
4653                 last_for_get_extent = last + 1;
4654         }
4655         btrfs_release_path(path);
4656
4657         /*
4658          * we might have some extents allocated but more delalloc past those
4659          * extents.  so, we trust isize unless the start of the last extent is
4660          * beyond isize
4661          */
4662         if (last < isize) {
4663                 last = (u64)-1;
4664                 last_for_get_extent = isize;
4665         }
4666
4667         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4668                          &cached_state);
4669
4670         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4671         if (!em)
4672                 goto out;
4673         if (IS_ERR(em)) {
4674                 ret = PTR_ERR(em);
4675                 goto out;
4676         }
4677
4678         while (!end) {
4679                 u64 offset_in_extent = 0;
4680
4681                 /* break if the extent we found is outside the range */
4682                 if (em->start >= max || extent_map_end(em) < off)
4683                         break;
4684
4685                 /*
4686                  * get_extent may return an extent that starts before our
4687                  * requested range.  We have to make sure the ranges
4688                  * we return to fiemap always move forward and don't
4689                  * overlap, so adjust the offsets here
4690                  */
4691                 em_start = max(em->start, off);
4692
4693                 /*
4694                  * record the offset from the start of the extent
4695                  * for adjusting the disk offset below.  Only do this if the
4696                  * extent isn't compressed since our in ram offset may be past
4697                  * what we have actually allocated on disk.
4698                  */
4699                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4700                         offset_in_extent = em_start - em->start;
4701                 em_end = extent_map_end(em);
4702                 em_len = em_end - em_start;
4703                 flags = 0;
4704                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4705                         disko = em->block_start + offset_in_extent;
4706                 else
4707                         disko = 0;
4708
4709                 /*
4710                  * bump off for our next call to get_extent
4711                  */
4712                 off = extent_map_end(em);
4713                 if (off >= max)
4714                         end = 1;
4715
4716                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4717                         end = 1;
4718                         flags |= FIEMAP_EXTENT_LAST;
4719                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4720                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4721                                   FIEMAP_EXTENT_NOT_ALIGNED);
4722                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4723                         flags |= (FIEMAP_EXTENT_DELALLOC |
4724                                   FIEMAP_EXTENT_UNKNOWN);
4725                 } else if (fieinfo->fi_extents_max) {
4726                         u64 bytenr = em->block_start -
4727                                 (em->start - em->orig_start);
4728
4729                         /*
4730                          * As btrfs supports shared space, this information
4731                          * can be exported to userspace tools via
4732                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4733                          * then we're just getting a count and we can skip the
4734                          * lookup stuff.
4735                          */
4736                         ret = btrfs_check_shared(root,
4737                                                  btrfs_ino(BTRFS_I(inode)),
4738                                                  bytenr, roots, tmp_ulist);
4739                         if (ret < 0)
4740                                 goto out_free;
4741                         if (ret)
4742                                 flags |= FIEMAP_EXTENT_SHARED;
4743                         ret = 0;
4744                 }
4745                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4746                         flags |= FIEMAP_EXTENT_ENCODED;
4747                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4748                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4749
4750                 free_extent_map(em);
4751                 em = NULL;
4752                 if ((em_start >= last) || em_len == (u64)-1 ||
4753                    (last == (u64)-1 && isize <= em_end)) {
4754                         flags |= FIEMAP_EXTENT_LAST;
4755                         end = 1;
4756                 }
4757
4758                 /* now scan forward to see if this is really the last extent. */
4759                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4760                 if (IS_ERR(em)) {
4761                         ret = PTR_ERR(em);
4762                         goto out;
4763                 }
4764                 if (!em) {
4765                         flags |= FIEMAP_EXTENT_LAST;
4766                         end = 1;
4767                 }
4768                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4769                                            em_len, flags);
4770                 if (ret) {
4771                         if (ret == 1)
4772                                 ret = 0;
4773                         goto out_free;
4774                 }
4775         }
4776 out_free:
4777         if (!ret)
4778                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4779         free_extent_map(em);
4780 out:
4781         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4782                              &cached_state);
4783
4784 out_free_ulist:
4785         btrfs_free_path(path);
4786         ulist_free(roots);
4787         ulist_free(tmp_ulist);
4788         return ret;
4789 }
4790
4791 static void __free_extent_buffer(struct extent_buffer *eb)
4792 {
4793         btrfs_leak_debug_del(&eb->leak_list);
4794         kmem_cache_free(extent_buffer_cache, eb);
4795 }
4796
4797 int extent_buffer_under_io(struct extent_buffer *eb)
4798 {
4799         return (atomic_read(&eb->io_pages) ||
4800                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4801                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4802 }
4803
4804 /*
4805  * Release all pages attached to the extent buffer.
4806  */
4807 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4808 {
4809         int i;
4810         int num_pages;
4811         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4812
4813         BUG_ON(extent_buffer_under_io(eb));
4814
4815         num_pages = num_extent_pages(eb);
4816         for (i = 0; i < num_pages; i++) {
4817                 struct page *page = eb->pages[i];
4818
4819                 if (!page)
4820                         continue;
4821                 if (mapped)
4822                         spin_lock(&page->mapping->private_lock);
4823                 /*
4824                  * We do this since we'll remove the pages after we've
4825                  * removed the eb from the radix tree, so we could race
4826                  * and have this page now attached to the new eb.  So
4827                  * only clear page_private if it's still connected to
4828                  * this eb.
4829                  */
4830                 if (PagePrivate(page) &&
4831                     page->private == (unsigned long)eb) {
4832                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4833                         BUG_ON(PageDirty(page));
4834                         BUG_ON(PageWriteback(page));
4835                         /*
4836                          * We need to make sure we haven't be attached
4837                          * to a new eb.
4838                          */
4839                         ClearPagePrivate(page);
4840                         set_page_private(page, 0);
4841                         /* One for the page private */
4842                         put_page(page);
4843                 }
4844
4845                 if (mapped)
4846                         spin_unlock(&page->mapping->private_lock);
4847
4848                 /* One for when we allocated the page */
4849                 put_page(page);
4850         }
4851 }
4852
4853 /*
4854  * Helper for releasing the extent buffer.
4855  */
4856 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4857 {
4858         btrfs_release_extent_buffer_pages(eb);
4859         __free_extent_buffer(eb);
4860 }
4861
4862 static struct extent_buffer *
4863 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4864                       unsigned long len)
4865 {
4866         struct extent_buffer *eb = NULL;
4867
4868         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4869         eb->start = start;
4870         eb->len = len;
4871         eb->fs_info = fs_info;
4872         eb->bflags = 0;
4873         rwlock_init(&eb->lock);
4874         atomic_set(&eb->blocking_readers, 0);
4875         eb->blocking_writers = 0;
4876         eb->lock_nested = false;
4877         init_waitqueue_head(&eb->write_lock_wq);
4878         init_waitqueue_head(&eb->read_lock_wq);
4879
4880         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4881
4882         spin_lock_init(&eb->refs_lock);
4883         atomic_set(&eb->refs, 1);
4884         atomic_set(&eb->io_pages, 0);
4885
4886         /*
4887          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4888          */
4889         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4890                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4891         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4892
4893 #ifdef CONFIG_BTRFS_DEBUG
4894         eb->spinning_writers = 0;
4895         atomic_set(&eb->spinning_readers, 0);
4896         atomic_set(&eb->read_locks, 0);
4897         eb->write_locks = 0;
4898 #endif
4899
4900         return eb;
4901 }
4902
4903 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4904 {
4905         int i;
4906         struct page *p;
4907         struct extent_buffer *new;
4908         int num_pages = num_extent_pages(src);
4909
4910         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4911         if (new == NULL)
4912                 return NULL;
4913
4914         for (i = 0; i < num_pages; i++) {
4915                 p = alloc_page(GFP_NOFS);
4916                 if (!p) {
4917                         btrfs_release_extent_buffer(new);
4918                         return NULL;
4919                 }
4920                 attach_extent_buffer_page(new, p);
4921                 WARN_ON(PageDirty(p));
4922                 SetPageUptodate(p);
4923                 new->pages[i] = p;
4924                 copy_page(page_address(p), page_address(src->pages[i]));
4925         }
4926
4927         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4928         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4929
4930         return new;
4931 }
4932
4933 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4934                                                   u64 start, unsigned long len)
4935 {
4936         struct extent_buffer *eb;
4937         int num_pages;
4938         int i;
4939
4940         eb = __alloc_extent_buffer(fs_info, start, len);
4941         if (!eb)
4942                 return NULL;
4943
4944         num_pages = num_extent_pages(eb);
4945         for (i = 0; i < num_pages; i++) {
4946                 eb->pages[i] = alloc_page(GFP_NOFS);
4947                 if (!eb->pages[i])
4948                         goto err;
4949         }
4950         set_extent_buffer_uptodate(eb);
4951         btrfs_set_header_nritems(eb, 0);
4952         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4953
4954         return eb;
4955 err:
4956         for (; i > 0; i--)
4957                 __free_page(eb->pages[i - 1]);
4958         __free_extent_buffer(eb);
4959         return NULL;
4960 }
4961
4962 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4963                                                 u64 start)
4964 {
4965         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4966 }
4967
4968 static void check_buffer_tree_ref(struct extent_buffer *eb)
4969 {
4970         int refs;
4971         /* the ref bit is tricky.  We have to make sure it is set
4972          * if we have the buffer dirty.   Otherwise the
4973          * code to free a buffer can end up dropping a dirty
4974          * page
4975          *
4976          * Once the ref bit is set, it won't go away while the
4977          * buffer is dirty or in writeback, and it also won't
4978          * go away while we have the reference count on the
4979          * eb bumped.
4980          *
4981          * We can't just set the ref bit without bumping the
4982          * ref on the eb because free_extent_buffer might
4983          * see the ref bit and try to clear it.  If this happens
4984          * free_extent_buffer might end up dropping our original
4985          * ref by mistake and freeing the page before we are able
4986          * to add one more ref.
4987          *
4988          * So bump the ref count first, then set the bit.  If someone
4989          * beat us to it, drop the ref we added.
4990          */
4991         refs = atomic_read(&eb->refs);
4992         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4993                 return;
4994
4995         spin_lock(&eb->refs_lock);
4996         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4997                 atomic_inc(&eb->refs);
4998         spin_unlock(&eb->refs_lock);
4999 }
5000
5001 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5002                 struct page *accessed)
5003 {
5004         int num_pages, i;
5005
5006         check_buffer_tree_ref(eb);
5007
5008         num_pages = num_extent_pages(eb);
5009         for (i = 0; i < num_pages; i++) {
5010                 struct page *p = eb->pages[i];
5011
5012                 if (p != accessed)
5013                         mark_page_accessed(p);
5014         }
5015 }
5016
5017 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5018                                          u64 start)
5019 {
5020         struct extent_buffer *eb;
5021
5022         rcu_read_lock();
5023         eb = radix_tree_lookup(&fs_info->buffer_radix,
5024                                start >> PAGE_SHIFT);
5025         if (eb && atomic_inc_not_zero(&eb->refs)) {
5026                 rcu_read_unlock();
5027                 /*
5028                  * Lock our eb's refs_lock to avoid races with
5029                  * free_extent_buffer. When we get our eb it might be flagged
5030                  * with EXTENT_BUFFER_STALE and another task running
5031                  * free_extent_buffer might have seen that flag set,
5032                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5033                  * writeback flags not set) and it's still in the tree (flag
5034                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5035                  * of decrementing the extent buffer's reference count twice.
5036                  * So here we could race and increment the eb's reference count,
5037                  * clear its stale flag, mark it as dirty and drop our reference
5038                  * before the other task finishes executing free_extent_buffer,
5039                  * which would later result in an attempt to free an extent
5040                  * buffer that is dirty.
5041                  */
5042                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5043                         spin_lock(&eb->refs_lock);
5044                         spin_unlock(&eb->refs_lock);
5045                 }
5046                 mark_extent_buffer_accessed(eb, NULL);
5047                 return eb;
5048         }
5049         rcu_read_unlock();
5050
5051         return NULL;
5052 }
5053
5054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5055 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5056                                         u64 start)
5057 {
5058         struct extent_buffer *eb, *exists = NULL;
5059         int ret;
5060
5061         eb = find_extent_buffer(fs_info, start);
5062         if (eb)
5063                 return eb;
5064         eb = alloc_dummy_extent_buffer(fs_info, start);
5065         if (!eb)
5066                 return NULL;
5067         eb->fs_info = fs_info;
5068 again:
5069         ret = radix_tree_preload(GFP_NOFS);
5070         if (ret)
5071                 goto free_eb;
5072         spin_lock(&fs_info->buffer_lock);
5073         ret = radix_tree_insert(&fs_info->buffer_radix,
5074                                 start >> PAGE_SHIFT, eb);
5075         spin_unlock(&fs_info->buffer_lock);
5076         radix_tree_preload_end();
5077         if (ret == -EEXIST) {
5078                 exists = find_extent_buffer(fs_info, start);
5079                 if (exists)
5080                         goto free_eb;
5081                 else
5082                         goto again;
5083         }
5084         check_buffer_tree_ref(eb);
5085         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5086
5087         return eb;
5088 free_eb:
5089         btrfs_release_extent_buffer(eb);
5090         return exists;
5091 }
5092 #endif
5093
5094 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5095                                           u64 start)
5096 {
5097         unsigned long len = fs_info->nodesize;
5098         int num_pages;
5099         int i;
5100         unsigned long index = start >> PAGE_SHIFT;
5101         struct extent_buffer *eb;
5102         struct extent_buffer *exists = NULL;
5103         struct page *p;
5104         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5105         int uptodate = 1;
5106         int ret;
5107
5108         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5109                 btrfs_err(fs_info, "bad tree block start %llu", start);
5110                 return ERR_PTR(-EINVAL);
5111         }
5112
5113         eb = find_extent_buffer(fs_info, start);
5114         if (eb)
5115                 return eb;
5116
5117         eb = __alloc_extent_buffer(fs_info, start, len);
5118         if (!eb)
5119                 return ERR_PTR(-ENOMEM);
5120
5121         num_pages = num_extent_pages(eb);
5122         for (i = 0; i < num_pages; i++, index++) {
5123                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5124                 if (!p) {
5125                         exists = ERR_PTR(-ENOMEM);
5126                         goto free_eb;
5127                 }
5128
5129                 spin_lock(&mapping->private_lock);
5130                 if (PagePrivate(p)) {
5131                         /*
5132                          * We could have already allocated an eb for this page
5133                          * and attached one so lets see if we can get a ref on
5134                          * the existing eb, and if we can we know it's good and
5135                          * we can just return that one, else we know we can just
5136                          * overwrite page->private.
5137                          */
5138                         exists = (struct extent_buffer *)p->private;
5139                         if (atomic_inc_not_zero(&exists->refs)) {
5140                                 spin_unlock(&mapping->private_lock);
5141                                 unlock_page(p);
5142                                 put_page(p);
5143                                 mark_extent_buffer_accessed(exists, p);
5144                                 goto free_eb;
5145                         }
5146                         exists = NULL;
5147
5148                         /*
5149                          * Do this so attach doesn't complain and we need to
5150                          * drop the ref the old guy had.
5151                          */
5152                         ClearPagePrivate(p);
5153                         WARN_ON(PageDirty(p));
5154                         put_page(p);
5155                 }
5156                 attach_extent_buffer_page(eb, p);
5157                 spin_unlock(&mapping->private_lock);
5158                 WARN_ON(PageDirty(p));
5159                 eb->pages[i] = p;
5160                 if (!PageUptodate(p))
5161                         uptodate = 0;
5162
5163                 /*
5164                  * We can't unlock the pages just yet since the extent buffer
5165                  * hasn't been properly inserted in the radix tree, this
5166                  * opens a race with btree_releasepage which can free a page
5167                  * while we are still filling in all pages for the buffer and
5168                  * we could crash.
5169                  */
5170         }
5171         if (uptodate)
5172                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173 again:
5174         ret = radix_tree_preload(GFP_NOFS);
5175         if (ret) {
5176                 exists = ERR_PTR(ret);
5177                 goto free_eb;
5178         }
5179
5180         spin_lock(&fs_info->buffer_lock);
5181         ret = radix_tree_insert(&fs_info->buffer_radix,
5182                                 start >> PAGE_SHIFT, eb);
5183         spin_unlock(&fs_info->buffer_lock);
5184         radix_tree_preload_end();
5185         if (ret == -EEXIST) {
5186                 exists = find_extent_buffer(fs_info, start);
5187                 if (exists)
5188                         goto free_eb;
5189                 else
5190                         goto again;
5191         }
5192         /* add one reference for the tree */
5193         check_buffer_tree_ref(eb);
5194         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5195
5196         /*
5197          * Now it's safe to unlock the pages because any calls to
5198          * btree_releasepage will correctly detect that a page belongs to a
5199          * live buffer and won't free them prematurely.
5200          */
5201         for (i = 0; i < num_pages; i++)
5202                 unlock_page(eb->pages[i]);
5203         return eb;
5204
5205 free_eb:
5206         WARN_ON(!atomic_dec_and_test(&eb->refs));
5207         for (i = 0; i < num_pages; i++) {
5208                 if (eb->pages[i])
5209                         unlock_page(eb->pages[i]);
5210         }
5211
5212         btrfs_release_extent_buffer(eb);
5213         return exists;
5214 }
5215
5216 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5217 {
5218         struct extent_buffer *eb =
5219                         container_of(head, struct extent_buffer, rcu_head);
5220
5221         __free_extent_buffer(eb);
5222 }
5223
5224 static int release_extent_buffer(struct extent_buffer *eb)
5225 {
5226         lockdep_assert_held(&eb->refs_lock);
5227
5228         WARN_ON(atomic_read(&eb->refs) == 0);
5229         if (atomic_dec_and_test(&eb->refs)) {
5230                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5231                         struct btrfs_fs_info *fs_info = eb->fs_info;
5232
5233                         spin_unlock(&eb->refs_lock);
5234
5235                         spin_lock(&fs_info->buffer_lock);
5236                         radix_tree_delete(&fs_info->buffer_radix,
5237                                           eb->start >> PAGE_SHIFT);
5238                         spin_unlock(&fs_info->buffer_lock);
5239                 } else {
5240                         spin_unlock(&eb->refs_lock);
5241                 }
5242
5243                 /* Should be safe to release our pages at this point */
5244                 btrfs_release_extent_buffer_pages(eb);
5245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5246                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5247                         __free_extent_buffer(eb);
5248                         return 1;
5249                 }
5250 #endif
5251                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5252                 return 1;
5253         }
5254         spin_unlock(&eb->refs_lock);
5255
5256         return 0;
5257 }
5258
5259 void free_extent_buffer(struct extent_buffer *eb)
5260 {
5261         int refs;
5262         int old;
5263         if (!eb)
5264                 return;
5265
5266         while (1) {
5267                 refs = atomic_read(&eb->refs);
5268                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5269                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5270                         refs == 1))
5271                         break;
5272                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5273                 if (old == refs)
5274                         return;
5275         }
5276
5277         spin_lock(&eb->refs_lock);
5278         if (atomic_read(&eb->refs) == 2 &&
5279             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5280             !extent_buffer_under_io(eb) &&
5281             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5282                 atomic_dec(&eb->refs);
5283
5284         /*
5285          * I know this is terrible, but it's temporary until we stop tracking
5286          * the uptodate bits and such for the extent buffers.
5287          */
5288         release_extent_buffer(eb);
5289 }
5290
5291 void free_extent_buffer_stale(struct extent_buffer *eb)
5292 {
5293         if (!eb)
5294                 return;
5295
5296         spin_lock(&eb->refs_lock);
5297         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5298
5299         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5300             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5301                 atomic_dec(&eb->refs);
5302         release_extent_buffer(eb);
5303 }
5304
5305 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5306 {
5307         int i;
5308         int num_pages;
5309         struct page *page;
5310
5311         num_pages = num_extent_pages(eb);
5312
5313         for (i = 0; i < num_pages; i++) {
5314                 page = eb->pages[i];
5315                 if (!PageDirty(page))
5316                         continue;
5317
5318                 lock_page(page);
5319                 WARN_ON(!PagePrivate(page));
5320
5321                 clear_page_dirty_for_io(page);
5322                 xa_lock_irq(&page->mapping->i_pages);
5323                 if (!PageDirty(page))
5324                         __xa_clear_mark(&page->mapping->i_pages,
5325                                         page_index(page), PAGECACHE_TAG_DIRTY);
5326                 xa_unlock_irq(&page->mapping->i_pages);
5327                 ClearPageError(page);
5328                 unlock_page(page);
5329         }
5330         WARN_ON(atomic_read(&eb->refs) == 0);
5331 }
5332
5333 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5334 {
5335         int i;
5336         int num_pages;
5337         bool was_dirty;
5338
5339         check_buffer_tree_ref(eb);
5340
5341         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5342
5343         num_pages = num_extent_pages(eb);
5344         WARN_ON(atomic_read(&eb->refs) == 0);
5345         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5346
5347         if (!was_dirty)
5348                 for (i = 0; i < num_pages; i++)
5349                         set_page_dirty(eb->pages[i]);
5350
5351 #ifdef CONFIG_BTRFS_DEBUG
5352         for (i = 0; i < num_pages; i++)
5353                 ASSERT(PageDirty(eb->pages[i]));
5354 #endif
5355
5356         return was_dirty;
5357 }
5358
5359 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5360 {
5361         int i;
5362         struct page *page;
5363         int num_pages;
5364
5365         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5366         num_pages = num_extent_pages(eb);
5367         for (i = 0; i < num_pages; i++) {
5368                 page = eb->pages[i];
5369                 if (page)
5370                         ClearPageUptodate(page);
5371         }
5372 }
5373
5374 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5375 {
5376         int i;
5377         struct page *page;
5378         int num_pages;
5379
5380         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5381         num_pages = num_extent_pages(eb);
5382         for (i = 0; i < num_pages; i++) {
5383                 page = eb->pages[i];
5384                 SetPageUptodate(page);
5385         }
5386 }
5387
5388 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5389 {
5390         int i;
5391         struct page *page;
5392         int err;
5393         int ret = 0;
5394         int locked_pages = 0;
5395         int all_uptodate = 1;
5396         int num_pages;
5397         unsigned long num_reads = 0;
5398         struct bio *bio = NULL;
5399         unsigned long bio_flags = 0;
5400         struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5401
5402         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5403                 return 0;
5404
5405         num_pages = num_extent_pages(eb);
5406         for (i = 0; i < num_pages; i++) {
5407                 page = eb->pages[i];
5408                 if (wait == WAIT_NONE) {
5409                         if (!trylock_page(page))
5410                                 goto unlock_exit;
5411                 } else {
5412                         lock_page(page);
5413                 }
5414                 locked_pages++;
5415         }
5416         /*
5417          * We need to firstly lock all pages to make sure that
5418          * the uptodate bit of our pages won't be affected by
5419          * clear_extent_buffer_uptodate().
5420          */
5421         for (i = 0; i < num_pages; i++) {
5422                 page = eb->pages[i];
5423                 if (!PageUptodate(page)) {
5424                         num_reads++;
5425                         all_uptodate = 0;
5426                 }
5427         }
5428
5429         if (all_uptodate) {
5430                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5431                 goto unlock_exit;
5432         }
5433
5434         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5435         eb->read_mirror = 0;
5436         atomic_set(&eb->io_pages, num_reads);
5437         for (i = 0; i < num_pages; i++) {
5438                 page = eb->pages[i];
5439
5440                 if (!PageUptodate(page)) {
5441                         if (ret) {
5442                                 atomic_dec(&eb->io_pages);
5443                                 unlock_page(page);
5444                                 continue;
5445                         }
5446
5447                         ClearPageError(page);
5448                         err = __extent_read_full_page(tree, page,
5449                                                       btree_get_extent, &bio,
5450                                                       mirror_num, &bio_flags,
5451                                                       REQ_META);
5452                         if (err) {
5453                                 ret = err;
5454                                 /*
5455                                  * We use &bio in above __extent_read_full_page,
5456                                  * so we ensure that if it returns error, the
5457                                  * current page fails to add itself to bio and
5458                                  * it's been unlocked.
5459                                  *
5460                                  * We must dec io_pages by ourselves.
5461                                  */
5462                                 atomic_dec(&eb->io_pages);
5463                         }
5464                 } else {
5465                         unlock_page(page);
5466                 }
5467         }
5468
5469         if (bio) {
5470                 err = submit_one_bio(bio, mirror_num, bio_flags);
5471                 if (err)
5472                         return err;
5473         }
5474
5475         if (ret || wait != WAIT_COMPLETE)
5476                 return ret;
5477
5478         for (i = 0; i < num_pages; i++) {
5479                 page = eb->pages[i];
5480                 wait_on_page_locked(page);
5481                 if (!PageUptodate(page))
5482                         ret = -EIO;
5483         }
5484
5485         return ret;
5486
5487 unlock_exit:
5488         while (locked_pages > 0) {
5489                 locked_pages--;
5490                 page = eb->pages[locked_pages];
5491                 unlock_page(page);
5492         }
5493         return ret;
5494 }
5495
5496 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5497                         unsigned long start, unsigned long len)
5498 {
5499         size_t cur;
5500         size_t offset;
5501         struct page *page;
5502         char *kaddr;
5503         char *dst = (char *)dstv;
5504         size_t start_offset = offset_in_page(eb->start);
5505         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5506
5507         if (start + len > eb->len) {
5508                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5509                      eb->start, eb->len, start, len);
5510                 memset(dst, 0, len);
5511                 return;
5512         }
5513
5514         offset = offset_in_page(start_offset + start);
5515
5516         while (len > 0) {
5517                 page = eb->pages[i];
5518
5519                 cur = min(len, (PAGE_SIZE - offset));
5520                 kaddr = page_address(page);
5521                 memcpy(dst, kaddr + offset, cur);
5522
5523                 dst += cur;
5524                 len -= cur;
5525                 offset = 0;
5526                 i++;
5527         }
5528 }
5529
5530 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5531                                void __user *dstv,
5532                                unsigned long start, unsigned long len)
5533 {
5534         size_t cur;
5535         size_t offset;
5536         struct page *page;
5537         char *kaddr;
5538         char __user *dst = (char __user *)dstv;
5539         size_t start_offset = offset_in_page(eb->start);
5540         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5541         int ret = 0;
5542
5543         WARN_ON(start > eb->len);
5544         WARN_ON(start + len > eb->start + eb->len);
5545
5546         offset = offset_in_page(start_offset + start);
5547
5548         while (len > 0) {
5549                 page = eb->pages[i];
5550
5551                 cur = min(len, (PAGE_SIZE - offset));
5552                 kaddr = page_address(page);
5553                 if (copy_to_user(dst, kaddr + offset, cur)) {
5554                         ret = -EFAULT;
5555                         break;
5556                 }
5557
5558                 dst += cur;
5559                 len -= cur;
5560                 offset = 0;
5561                 i++;
5562         }
5563
5564         return ret;
5565 }
5566
5567 /*
5568  * return 0 if the item is found within a page.
5569  * return 1 if the item spans two pages.
5570  * return -EINVAL otherwise.
5571  */
5572 int map_private_extent_buffer(const struct extent_buffer *eb,
5573                               unsigned long start, unsigned long min_len,
5574                               char **map, unsigned long *map_start,
5575                               unsigned long *map_len)
5576 {
5577         size_t offset;
5578         char *kaddr;
5579         struct page *p;
5580         size_t start_offset = offset_in_page(eb->start);
5581         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5582         unsigned long end_i = (start_offset + start + min_len - 1) >>
5583                 PAGE_SHIFT;
5584
5585         if (start + min_len > eb->len) {
5586                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5587                        eb->start, eb->len, start, min_len);
5588                 return -EINVAL;
5589         }
5590
5591         if (i != end_i)
5592                 return 1;
5593
5594         if (i == 0) {
5595                 offset = start_offset;
5596                 *map_start = 0;
5597         } else {
5598                 offset = 0;
5599                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5600         }
5601
5602         p = eb->pages[i];
5603         kaddr = page_address(p);
5604         *map = kaddr + offset;
5605         *map_len = PAGE_SIZE - offset;
5606         return 0;
5607 }
5608
5609 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5610                          unsigned long start, unsigned long len)
5611 {
5612         size_t cur;
5613         size_t offset;
5614         struct page *page;
5615         char *kaddr;
5616         char *ptr = (char *)ptrv;
5617         size_t start_offset = offset_in_page(eb->start);
5618         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5619         int ret = 0;
5620
5621         WARN_ON(start > eb->len);
5622         WARN_ON(start + len > eb->start + eb->len);
5623
5624         offset = offset_in_page(start_offset + start);
5625
5626         while (len > 0) {
5627                 page = eb->pages[i];
5628
5629                 cur = min(len, (PAGE_SIZE - offset));
5630
5631                 kaddr = page_address(page);
5632                 ret = memcmp(ptr, kaddr + offset, cur);
5633                 if (ret)
5634                         break;
5635
5636                 ptr += cur;
5637                 len -= cur;
5638                 offset = 0;
5639                 i++;
5640         }
5641         return ret;
5642 }
5643
5644 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5645                 const void *srcv)
5646 {
5647         char *kaddr;
5648
5649         WARN_ON(!PageUptodate(eb->pages[0]));
5650         kaddr = page_address(eb->pages[0]);
5651         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5652                         BTRFS_FSID_SIZE);
5653 }
5654
5655 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5656 {
5657         char *kaddr;
5658
5659         WARN_ON(!PageUptodate(eb->pages[0]));
5660         kaddr = page_address(eb->pages[0]);
5661         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5662                         BTRFS_FSID_SIZE);
5663 }
5664
5665 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5666                          unsigned long start, unsigned long len)
5667 {
5668         size_t cur;
5669         size_t offset;
5670         struct page *page;
5671         char *kaddr;
5672         char *src = (char *)srcv;
5673         size_t start_offset = offset_in_page(eb->start);
5674         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5675
5676         WARN_ON(start > eb->len);
5677         WARN_ON(start + len > eb->start + eb->len);
5678
5679         offset = offset_in_page(start_offset + start);
5680
5681         while (len > 0) {
5682                 page = eb->pages[i];
5683                 WARN_ON(!PageUptodate(page));
5684
5685                 cur = min(len, PAGE_SIZE - offset);
5686                 kaddr = page_address(page);
5687                 memcpy(kaddr + offset, src, cur);
5688
5689                 src += cur;
5690                 len -= cur;
5691                 offset = 0;
5692                 i++;
5693         }
5694 }
5695
5696 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5697                 unsigned long len)
5698 {
5699         size_t cur;
5700         size_t offset;
5701         struct page *page;
5702         char *kaddr;
5703         size_t start_offset = offset_in_page(eb->start);
5704         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5705
5706         WARN_ON(start > eb->len);
5707         WARN_ON(start + len > eb->start + eb->len);
5708
5709         offset = offset_in_page(start_offset + start);
5710
5711         while (len > 0) {
5712                 page = eb->pages[i];
5713                 WARN_ON(!PageUptodate(page));
5714
5715                 cur = min(len, PAGE_SIZE - offset);
5716                 kaddr = page_address(page);
5717                 memset(kaddr + offset, 0, cur);
5718
5719                 len -= cur;
5720                 offset = 0;
5721                 i++;
5722         }
5723 }
5724
5725 void copy_extent_buffer_full(struct extent_buffer *dst,
5726                              struct extent_buffer *src)
5727 {
5728         int i;
5729         int num_pages;
5730
5731         ASSERT(dst->len == src->len);
5732
5733         num_pages = num_extent_pages(dst);
5734         for (i = 0; i < num_pages; i++)
5735                 copy_page(page_address(dst->pages[i]),
5736                                 page_address(src->pages[i]));
5737 }
5738
5739 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5740                         unsigned long dst_offset, unsigned long src_offset,
5741                         unsigned long len)
5742 {
5743         u64 dst_len = dst->len;
5744         size_t cur;
5745         size_t offset;
5746         struct page *page;
5747         char *kaddr;
5748         size_t start_offset = offset_in_page(dst->start);
5749         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5750
5751         WARN_ON(src->len != dst_len);
5752
5753         offset = offset_in_page(start_offset + dst_offset);
5754
5755         while (len > 0) {
5756                 page = dst->pages[i];
5757                 WARN_ON(!PageUptodate(page));
5758
5759                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5760
5761                 kaddr = page_address(page);
5762                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5763
5764                 src_offset += cur;
5765                 len -= cur;
5766                 offset = 0;
5767                 i++;
5768         }
5769 }
5770
5771 /*
5772  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5773  * given bit number
5774  * @eb: the extent buffer
5775  * @start: offset of the bitmap item in the extent buffer
5776  * @nr: bit number
5777  * @page_index: return index of the page in the extent buffer that contains the
5778  * given bit number
5779  * @page_offset: return offset into the page given by page_index
5780  *
5781  * This helper hides the ugliness of finding the byte in an extent buffer which
5782  * contains a given bit.
5783  */
5784 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5785                                     unsigned long start, unsigned long nr,
5786                                     unsigned long *page_index,
5787                                     size_t *page_offset)
5788 {
5789         size_t start_offset = offset_in_page(eb->start);
5790         size_t byte_offset = BIT_BYTE(nr);
5791         size_t offset;
5792
5793         /*
5794          * The byte we want is the offset of the extent buffer + the offset of
5795          * the bitmap item in the extent buffer + the offset of the byte in the
5796          * bitmap item.
5797          */
5798         offset = start_offset + start + byte_offset;
5799
5800         *page_index = offset >> PAGE_SHIFT;
5801         *page_offset = offset_in_page(offset);
5802 }
5803
5804 /**
5805  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5806  * @eb: the extent buffer
5807  * @start: offset of the bitmap item in the extent buffer
5808  * @nr: bit number to test
5809  */
5810 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5811                            unsigned long nr)
5812 {
5813         u8 *kaddr;
5814         struct page *page;
5815         unsigned long i;
5816         size_t offset;
5817
5818         eb_bitmap_offset(eb, start, nr, &i, &offset);
5819         page = eb->pages[i];
5820         WARN_ON(!PageUptodate(page));
5821         kaddr = page_address(page);
5822         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5823 }
5824
5825 /**
5826  * extent_buffer_bitmap_set - set an area of a bitmap
5827  * @eb: the extent buffer
5828  * @start: offset of the bitmap item in the extent buffer
5829  * @pos: bit number of the first bit
5830  * @len: number of bits to set
5831  */
5832 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5833                               unsigned long pos, unsigned long len)
5834 {
5835         u8 *kaddr;
5836         struct page *page;
5837         unsigned long i;
5838         size_t offset;
5839         const unsigned int size = pos + len;
5840         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5841         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5842
5843         eb_bitmap_offset(eb, start, pos, &i, &offset);
5844         page = eb->pages[i];
5845         WARN_ON(!PageUptodate(page));
5846         kaddr = page_address(page);
5847
5848         while (len >= bits_to_set) {
5849                 kaddr[offset] |= mask_to_set;
5850                 len -= bits_to_set;
5851                 bits_to_set = BITS_PER_BYTE;
5852                 mask_to_set = ~0;
5853                 if (++offset >= PAGE_SIZE && len > 0) {
5854                         offset = 0;
5855                         page = eb->pages[++i];
5856                         WARN_ON(!PageUptodate(page));
5857                         kaddr = page_address(page);
5858                 }
5859         }
5860         if (len) {
5861                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5862                 kaddr[offset] |= mask_to_set;
5863         }
5864 }
5865
5866
5867 /**
5868  * extent_buffer_bitmap_clear - clear an area of a bitmap
5869  * @eb: the extent buffer
5870  * @start: offset of the bitmap item in the extent buffer
5871  * @pos: bit number of the first bit
5872  * @len: number of bits to clear
5873  */
5874 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5875                                 unsigned long pos, unsigned long len)
5876 {
5877         u8 *kaddr;
5878         struct page *page;
5879         unsigned long i;
5880         size_t offset;
5881         const unsigned int size = pos + len;
5882         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5883         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5884
5885         eb_bitmap_offset(eb, start, pos, &i, &offset);
5886         page = eb->pages[i];
5887         WARN_ON(!PageUptodate(page));
5888         kaddr = page_address(page);
5889
5890         while (len >= bits_to_clear) {
5891                 kaddr[offset] &= ~mask_to_clear;
5892                 len -= bits_to_clear;
5893                 bits_to_clear = BITS_PER_BYTE;
5894                 mask_to_clear = ~0;
5895                 if (++offset >= PAGE_SIZE && len > 0) {
5896                         offset = 0;
5897                         page = eb->pages[++i];
5898                         WARN_ON(!PageUptodate(page));
5899                         kaddr = page_address(page);
5900                 }
5901         }
5902         if (len) {
5903                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5904                 kaddr[offset] &= ~mask_to_clear;
5905         }
5906 }
5907
5908 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5909 {
5910         unsigned long distance = (src > dst) ? src - dst : dst - src;
5911         return distance < len;
5912 }
5913
5914 static void copy_pages(struct page *dst_page, struct page *src_page,
5915                        unsigned long dst_off, unsigned long src_off,
5916                        unsigned long len)
5917 {
5918         char *dst_kaddr = page_address(dst_page);
5919         char *src_kaddr;
5920         int must_memmove = 0;
5921
5922         if (dst_page != src_page) {
5923                 src_kaddr = page_address(src_page);
5924         } else {
5925                 src_kaddr = dst_kaddr;
5926                 if (areas_overlap(src_off, dst_off, len))
5927                         must_memmove = 1;
5928         }
5929
5930         if (must_memmove)
5931                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5932         else
5933                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5934 }
5935
5936 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5937                            unsigned long src_offset, unsigned long len)
5938 {
5939         struct btrfs_fs_info *fs_info = dst->fs_info;
5940         size_t cur;
5941         size_t dst_off_in_page;
5942         size_t src_off_in_page;
5943         size_t start_offset = offset_in_page(dst->start);
5944         unsigned long dst_i;
5945         unsigned long src_i;
5946
5947         if (src_offset + len > dst->len) {
5948                 btrfs_err(fs_info,
5949                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5950                          src_offset, len, dst->len);
5951                 BUG();
5952         }
5953         if (dst_offset + len > dst->len) {
5954                 btrfs_err(fs_info,
5955                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5956                          dst_offset, len, dst->len);
5957                 BUG();
5958         }
5959
5960         while (len > 0) {
5961                 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5962                 src_off_in_page = offset_in_page(start_offset + src_offset);
5963
5964                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5965                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5966
5967                 cur = min(len, (unsigned long)(PAGE_SIZE -
5968                                                src_off_in_page));
5969                 cur = min_t(unsigned long, cur,
5970                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5971
5972                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5973                            dst_off_in_page, src_off_in_page, cur);
5974
5975                 src_offset += cur;
5976                 dst_offset += cur;
5977                 len -= cur;
5978         }
5979 }
5980
5981 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5982                            unsigned long src_offset, unsigned long len)
5983 {
5984         struct btrfs_fs_info *fs_info = dst->fs_info;
5985         size_t cur;
5986         size_t dst_off_in_page;
5987         size_t src_off_in_page;
5988         unsigned long dst_end = dst_offset + len - 1;
5989         unsigned long src_end = src_offset + len - 1;
5990         size_t start_offset = offset_in_page(dst->start);
5991         unsigned long dst_i;
5992         unsigned long src_i;
5993
5994         if (src_offset + len > dst->len) {
5995                 btrfs_err(fs_info,
5996                           "memmove bogus src_offset %lu move len %lu len %lu",
5997                           src_offset, len, dst->len);
5998                 BUG();
5999         }
6000         if (dst_offset + len > dst->len) {
6001                 btrfs_err(fs_info,
6002                           "memmove bogus dst_offset %lu move len %lu len %lu",
6003                           dst_offset, len, dst->len);
6004                 BUG();
6005         }
6006         if (dst_offset < src_offset) {
6007                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6008                 return;
6009         }
6010         while (len > 0) {
6011                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6012                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6013
6014                 dst_off_in_page = offset_in_page(start_offset + dst_end);
6015                 src_off_in_page = offset_in_page(start_offset + src_end);
6016
6017                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6018                 cur = min(cur, dst_off_in_page + 1);
6019                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6020                            dst_off_in_page - cur + 1,
6021                            src_off_in_page - cur + 1, cur);
6022
6023                 dst_end -= cur;
6024                 src_end -= cur;
6025                 len -= cur;
6026         }
6027 }
6028
6029 int try_release_extent_buffer(struct page *page)
6030 {
6031         struct extent_buffer *eb;
6032
6033         /*
6034          * We need to make sure nobody is attaching this page to an eb right
6035          * now.
6036          */
6037         spin_lock(&page->mapping->private_lock);
6038         if (!PagePrivate(page)) {
6039                 spin_unlock(&page->mapping->private_lock);
6040                 return 1;
6041         }
6042
6043         eb = (struct extent_buffer *)page->private;
6044         BUG_ON(!eb);
6045
6046         /*
6047          * This is a little awful but should be ok, we need to make sure that
6048          * the eb doesn't disappear out from under us while we're looking at
6049          * this page.
6050          */
6051         spin_lock(&eb->refs_lock);
6052         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6053                 spin_unlock(&eb->refs_lock);
6054                 spin_unlock(&page->mapping->private_lock);
6055                 return 0;
6056         }
6057         spin_unlock(&page->mapping->private_lock);
6058
6059         /*
6060          * If tree ref isn't set then we know the ref on this eb is a real ref,
6061          * so just return, this page will likely be freed soon anyway.
6062          */
6063         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6064                 spin_unlock(&eb->refs_lock);
6065                 return 0;
6066         }
6067
6068         return release_extent_buffer(eb);
6069 }