1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
18 #include "btrfs_inode.h"
20 #include "check-integrity.h"
22 #include "rcu-string.h"
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
29 static inline bool extent_state_in_tree(const struct extent_state *state)
31 return !RB_EMPTY_NODE(&state->rb_node);
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
38 static DEFINE_SPINLOCK(leak_lock);
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 spin_lock_irqsave(&leak_lock, flags);
47 spin_unlock_irqrestore(&leak_lock, flags);
51 void btrfs_leak_debug_del(struct list_head *entry)
55 spin_lock_irqsave(&leak_lock, flags);
57 spin_unlock_irqrestore(&leak_lock, flags);
61 void btrfs_leak_debug_check(void)
63 struct extent_state *state;
64 struct extent_buffer *eb;
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
95 #define btrfs_leak_debug_add(new, head) do {} while (0)
96 #define btrfs_leak_debug_del(entry) do {} while (0)
97 #define btrfs_leak_debug_check() do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101 #define BUFFER_LRU_MAX 64
106 struct rb_node rb_node;
109 struct extent_page_data {
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
117 unsigned int extent_locked:1;
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
123 static void add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
131 if (set && (state->state & bits) == bits)
133 if (!set && (state->state & bits) == 0)
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
142 static noinline void flush_write_bio(void *data);
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
147 return tree->ops->tree_fs_info(tree->private_data);
151 int __init extent_io_init(void)
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
169 goto free_buffer_cache;
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
177 bioset_free(btrfs_bioset);
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
190 void extent_io_exit(void)
192 btrfs_leak_debug_check();
195 * Make sure all delayed rcu free are flushed before we
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
202 bioset_free(btrfs_bioset);
205 void extent_io_tree_init(struct extent_io_tree *tree,
208 tree->state = RB_ROOT;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
215 static struct extent_state *alloc_extent_state(gfp_t mask)
217 struct extent_state *state;
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
237 void free_extent_state(struct extent_state *state)
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
249 static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
260 if (p_in && parent_in) {
266 p = search_start ? &search_start : &root->rb_node;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
271 if (offset < entry->start)
273 else if (offset > entry->end)
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
303 if (offset < entry->start)
305 else if (offset > entry->end)
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
343 struct rb_node *prev = NULL;
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
355 return tree_search_for_insert(tree, offset, NULL, NULL);
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
372 * This should be called with the tree lock held.
374 static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
377 struct extent_state *other;
378 struct rb_node *other_node;
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
383 other_node = rb_prev(&state->rb_node);
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
395 other_node = rb_next(&state->rb_node);
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
409 static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
416 static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
423 static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
437 static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
443 struct rb_node *node;
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
448 state->start = start;
451 set_state_bits(tree, state, bits, changeset);
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
461 merge_state(tree, state);
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
483 * The tree locks are not taken by this function. They need to be held
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
489 struct rb_node *node;
491 split_cb(tree, orig, split);
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
501 free_extent_state(prealloc);
507 static struct extent_state *next_state(struct extent_state *state)
509 struct rb_node *next = rb_next(&state->rb_node);
511 return rb_entry(next, struct extent_state, rb_node);
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
536 clear_state_cb(tree, state, bits);
537 add_extent_changeset(state, bits_to_clear, changeset, 0);
538 state->state &= ~bits_to_clear;
541 if (state->state == 0) {
542 next = next_state(state);
543 if (extent_state_in_tree(state)) {
544 rb_erase(&state->rb_node, &tree->state);
545 RB_CLEAR_NODE(&state->rb_node);
546 free_extent_state(state);
551 merge_state(tree, state);
552 next = next_state(state);
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
580 * the range [start, end] is inclusive.
582 * This takes the tree lock, and returns 0 on success and < 0 on error.
584 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
589 struct extent_state *state;
590 struct extent_state *cached;
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
597 btrfs_debug_check_extent_io_range(tree, start, end);
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
609 if (!prealloc && gfpflags_allow_blocking(mask)) {
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
617 prealloc = alloc_extent_state(mask);
620 spin_lock(&tree->lock);
622 cached = *cached_state;
625 *cached_state = NULL;
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
632 refcount_dec(&cached->refs);
637 free_extent_state(cached);
640 * this search will find the extents that end after
643 node = tree_search(tree, start);
646 state = rb_entry(node, struct extent_state, rb_node);
648 if (state->start > end)
650 WARN_ON(state->end < start);
651 last_end = state->end;
653 /* the state doesn't have the wanted bits, go ahead */
654 if (!(state->state & bits)) {
655 state = next_state(state);
660 * | ---- desired range ---- |
662 * | ------------- state -------------- |
664 * We need to split the extent we found, and may flip
665 * bits on second half.
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
675 if (state->start < start) {
676 prealloc = alloc_extent_state_atomic(prealloc);
678 err = split_state(tree, state, prealloc, start);
680 extent_io_tree_panic(tree, err);
685 if (state->end <= end) {
686 state = clear_state_bit(tree, state, &bits, wake,
693 * | ---- desired range ---- |
695 * We need to split the extent, and clear the bit
698 if (state->start <= end && state->end > end) {
699 prealloc = alloc_extent_state_atomic(prealloc);
701 err = split_state(tree, state, prealloc, end + 1);
703 extent_io_tree_panic(tree, err);
708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
714 state = clear_state_bit(tree, state, &bits, wake, changeset);
716 if (last_end == (u64)-1)
718 start = last_end + 1;
719 if (start <= end && state && !need_resched())
725 spin_unlock(&tree->lock);
726 if (gfpflags_allow_blocking(mask))
731 spin_unlock(&tree->lock);
733 free_extent_state(prealloc);
739 static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
741 __releases(tree->lock)
742 __acquires(tree->lock)
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&tree->lock);
748 spin_lock(&tree->lock);
749 finish_wait(&state->wq, &wait);
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
760 struct extent_state *state;
761 struct rb_node *node;
763 btrfs_debug_check_extent_io_range(tree, start, end);
765 spin_lock(&tree->lock);
769 * this search will find all the extents that end after
772 node = tree_search(tree, start);
777 state = rb_entry(node, struct extent_state, rb_node);
779 if (state->start > end)
782 if (state->state & bits) {
783 start = state->start;
784 refcount_inc(&state->refs);
785 wait_on_state(tree, state);
786 free_extent_state(state);
789 start = state->end + 1;
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
800 spin_unlock(&tree->lock);
803 static void set_state_bits(struct extent_io_tree *tree,
804 struct extent_state *state,
805 unsigned *bits, struct extent_changeset *changeset)
807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
814 add_extent_changeset(state, bits_to_set, changeset, 1);
815 state->state |= bits_to_set;
818 static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
822 if (cached_ptr && !(*cached_ptr)) {
823 if (!flags || (state->state & flags)) {
825 refcount_inc(&state->refs);
830 static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
845 * [start, end] is inclusive This takes the tree lock.
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 unsigned bits, unsigned exclusive_bits,
851 u64 *failed_start, struct extent_state **cached_state,
852 gfp_t mask, struct extent_changeset *changeset)
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
858 struct rb_node *parent;
863 btrfs_debug_check_extent_io_range(tree, start, end);
865 bits |= EXTENT_FIRST_DELALLOC;
867 if (!prealloc && gfpflags_allow_blocking(mask)) {
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
875 prealloc = alloc_extent_state(mask);
878 spin_lock(&tree->lock);
879 if (cached_state && *cached_state) {
880 state = *cached_state;
881 if (state->start <= start && state->end > start &&
882 extent_state_in_tree(state)) {
883 node = &state->rb_node;
888 * this search will find all the extents that end after
891 node = tree_search_for_insert(tree, start, &p, &parent);
893 prealloc = alloc_extent_state_atomic(prealloc);
895 err = insert_state(tree, prealloc, start, end,
896 &p, &parent, &bits, changeset);
898 extent_io_tree_panic(tree, err);
900 cache_state(prealloc, cached_state);
904 state = rb_entry(node, struct extent_state, rb_node);
906 last_start = state->start;
907 last_end = state->end;
910 * | ---- desired range ---- |
913 * Just lock what we found and keep going
915 if (state->start == start && state->end <= end) {
916 if (state->state & exclusive_bits) {
917 *failed_start = state->start;
922 set_state_bits(tree, state, &bits, changeset);
923 cache_state(state, cached_state);
924 merge_state(tree, state);
925 if (last_end == (u64)-1)
927 start = last_end + 1;
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
936 * | ---- desired range ---- |
939 * | ------------- state -------------- |
941 * We need to split the extent we found, and may flip bits on
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
948 * If the extent we found is inside our range, we set the
951 if (state->start < start) {
952 if (state->state & exclusive_bits) {
953 *failed_start = start;
958 prealloc = alloc_extent_state_atomic(prealloc);
960 err = split_state(tree, state, prealloc, start);
962 extent_io_tree_panic(tree, err);
967 if (state->end <= end) {
968 set_state_bits(tree, state, &bits, changeset);
969 cache_state(state, cached_state);
970 merge_state(tree, state);
971 if (last_end == (u64)-1)
973 start = last_end + 1;
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
982 * | ---- desired range ---- |
983 * | state | or | state |
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
988 if (state->start > start) {
990 if (end < last_start)
993 this_end = last_start - 1;
995 prealloc = alloc_extent_state_atomic(prealloc);
999 * Avoid to free 'prealloc' if it can be merged with
1002 err = insert_state(tree, prealloc, start, this_end,
1003 NULL, NULL, &bits, changeset);
1005 extent_io_tree_panic(tree, err);
1007 cache_state(prealloc, cached_state);
1009 start = this_end + 1;
1013 * | ---- desired range ---- |
1015 * We need to split the extent, and set the bit
1018 if (state->start <= end && state->end > end) {
1019 if (state->state & exclusive_bits) {
1020 *failed_start = start;
1025 prealloc = alloc_extent_state_atomic(prealloc);
1027 err = split_state(tree, state, prealloc, end + 1);
1029 extent_io_tree_panic(tree, err);
1031 set_state_bits(tree, prealloc, &bits, changeset);
1032 cache_state(prealloc, cached_state);
1033 merge_state(tree, prealloc);
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1047 spin_unlock(&tree->lock);
1049 free_extent_state(prealloc);
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 unsigned bits, u64 * failed_start,
1057 struct extent_state **cached_state, gfp_t mask)
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 cached_state, mask, NULL);
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
1072 * @cached_state: state that we're going to cache
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
1080 * All allocations are done with GFP_NOFS.
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 unsigned bits, unsigned clear_bits,
1084 struct extent_state **cached_state)
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
1090 struct rb_node *parent;
1094 bool first_iteration = true;
1096 btrfs_debug_check_extent_io_range(tree, start, end);
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1107 prealloc = alloc_extent_state(GFP_NOFS);
1108 if (!prealloc && !first_iteration)
1112 spin_lock(&tree->lock);
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
1116 extent_state_in_tree(state)) {
1117 node = &state->rb_node;
1123 * this search will find all the extents that end after
1126 node = tree_search_for_insert(tree, start, &p, &parent);
1128 prealloc = alloc_extent_state_atomic(prealloc);
1133 err = insert_state(tree, prealloc, start, end,
1134 &p, &parent, &bits, NULL);
1136 extent_io_tree_panic(tree, err);
1137 cache_state(prealloc, cached_state);
1141 state = rb_entry(node, struct extent_state, rb_node);
1143 last_start = state->start;
1144 last_end = state->end;
1147 * | ---- desired range ---- |
1150 * Just lock what we found and keep going
1152 if (state->start == start && state->end <= end) {
1153 set_state_bits(tree, state, &bits, NULL);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 if (last_end == (u64)-1)
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1166 * | ---- desired range ---- |
1169 * | ------------- state -------------- |
1171 * We need to split the extent we found, and may flip bits on
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1187 err = split_state(tree, state, prealloc, start);
1189 extent_io_tree_panic(tree, err);
1193 if (state->end <= end) {
1194 set_state_bits(tree, state, &bits, NULL);
1195 cache_state(state, cached_state);
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1198 if (last_end == (u64)-1)
1200 start = last_end + 1;
1201 if (start < end && state && state->start == start &&
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1214 if (state->start > start) {
1216 if (end < last_start)
1219 this_end = last_start - 1;
1221 prealloc = alloc_extent_state_atomic(prealloc);
1228 * Avoid to free 'prealloc' if it can be merged with
1231 err = insert_state(tree, prealloc, start, this_end,
1232 NULL, NULL, &bits, NULL);
1234 extent_io_tree_panic(tree, err);
1235 cache_state(prealloc, cached_state);
1237 start = this_end + 1;
1241 * | ---- desired range ---- |
1243 * We need to split the extent, and set the bit
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1253 err = split_state(tree, state, prealloc, end + 1);
1255 extent_io_tree_panic(tree, err);
1257 set_state_bits(tree, prealloc, &bits, NULL);
1258 cache_state(prealloc, cached_state);
1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1267 spin_unlock(&tree->lock);
1269 first_iteration = false;
1273 spin_unlock(&tree->lock);
1275 free_extent_state(prealloc);
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 unsigned bits, struct extent_changeset *changeset)
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1290 BUG_ON(bits & EXTENT_LOCKED);
1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached)
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, GFP_NOFS, NULL);
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, struct extent_changeset *changeset)
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1311 BUG_ON(bits & EXTENT_LOCKED);
1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state)
1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 EXTENT_LOCKED, &failed_start,
1330 cached_state, GFP_NOFS, NULL);
1331 if (err == -EEXIST) {
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
1336 WARN_ON(start > end);
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 &failed_start, NULL, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
1351 EXTENT_LOCKED, 1, 0, NULL);
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 __set_page_dirty_nobuffers(page);
1382 account_page_redirty(page);
1389 * helper function to set both pages and extents in the tree writeback
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 tree->ops->set_range_writeback(tree->private_data, start, end);
1396 /* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 u64 start, unsigned bits)
1404 struct rb_node *node;
1405 struct extent_state *state;
1408 * this search will find all the extents that end after
1411 node = tree_search(tree, start);
1416 state = rb_entry(node, struct extent_state, rb_node);
1417 if (state->end >= start && (state->state & bits))
1420 node = rb_next(node);
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1433 * If nothing was found, 1 is returned. If found something, return 0.
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 u64 *start_ret, u64 *end_ret, unsigned bits,
1437 struct extent_state **cached_state)
1439 struct extent_state *state;
1443 spin_lock(&tree->lock);
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 n = rb_next(&state->rb_node);
1449 state = rb_entry(n, struct extent_state,
1451 if (state->state & bits)
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1463 state = find_first_extent_bit_state(tree, start, bits);
1466 cache_state_if_flags(state, cached_state, 0);
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1472 spin_unlock(&tree->lock);
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1490 u64 total_bytes = 0;
1492 spin_lock(&tree->lock);
1495 * this search will find all the extents that end after
1498 node = tree_search(tree, cur_start);
1506 state = rb_entry(node, struct extent_state, rb_node);
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
1511 if (!(state->state & EXTENT_DELALLOC)) {
1517 *start = state->start;
1518 *cached_state = state;
1519 refcount_inc(&state->refs);
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
1525 total_bytes += state->end - state->start + 1;
1526 if (total_bytes >= max_bytes)
1532 spin_unlock(&tree->lock);
1536 static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && end_index == index)
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 unsigned long index_ret = index;
1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1566 ASSERT(locked_page);
1567 if (index == locked_page->index && index == end_index)
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
1592 struct extent_state *cached_state = NULL;
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 max_bytes, &cached_state);
1602 if (!found || delalloc_end <= *start) {
1603 *start = delalloc_start;
1604 *end = delalloc_end;
1605 free_extent_state(cached_state);
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1614 if (delalloc_start < *start)
1615 delalloc_start = *start;
1618 * make sure to limit the number of pages we try to lock down
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1630 free_extent_state(cached_state);
1631 cached_state = NULL;
1633 max_bytes = PAGE_SIZE;
1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643 /* step three, lock the state bits for the whole range */
1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 EXTENT_DELALLOC, 1, cached_state);
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1657 free_extent_state(cached_state);
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1664 static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
1669 unsigned long nr_pages = end_index - start_index + 1;
1670 unsigned long pages_locked = 0;
1671 pgoff_t index = start_index;
1672 struct page *pages[16];
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 mapping_set_error(mapping, -EIO);
1685 while (nr_pages > 0) {
1686 ret = find_get_pages_contig(mapping, index,
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1694 ASSERT(page_ops & PAGE_LOCK);
1699 for (i = 0; i < ret; i++) {
1700 if (page_ops & PAGE_SET_PRIVATE2)
1701 SetPagePrivate2(pages[i]);
1703 if (pages[i] == locked_page) {
1708 if (page_ops & PAGE_CLEAR_DIRTY)
1709 clear_page_dirty_for_io(pages[i]);
1710 if (page_ops & PAGE_SET_WRITEBACK)
1711 set_page_writeback(pages[i]);
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
1714 if (page_ops & PAGE_END_WRITEBACK)
1715 end_page_writeback(pages[i]);
1716 if (page_ops & PAGE_UNLOCK)
1717 unlock_page(pages[i]);
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
1761 unsigned bits, int contig)
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
1770 if (WARN_ON(search_end <= cur_start))
1773 spin_lock(&tree->lock);
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1779 * this search will find all the extents that end after
1782 node = tree_search(tree, cur_start);
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1790 if (contig && found && state->start > last + 1)
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1798 *start = max(cur_start, state->start);
1802 } else if (contig && found) {
1805 node = rb_next(node);
1810 spin_unlock(&tree->lock);
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 struct io_failure_record *failrec)
1821 struct rb_node *node;
1822 struct extent_state *state;
1825 spin_lock(&tree->lock);
1827 * this search will find all the extents that end after
1830 node = tree_search(tree, start);
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1840 state->failrec = failrec;
1842 spin_unlock(&tree->lock);
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record **failrec)
1849 struct rb_node *node;
1850 struct extent_state *state;
1853 spin_lock(&tree->lock);
1855 * this search will find all the extents that end after
1858 node = tree_search(tree, start);
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1868 *failrec = state->failrec;
1870 spin_unlock(&tree->lock);
1875 * searches a range in the state tree for a given mask.
1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 unsigned bits, int filled, struct extent_state *cached)
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1887 spin_lock(&tree->lock);
1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 cached->end > start)
1890 node = &cached->rb_node;
1892 node = tree_search(tree, start);
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1896 if (filled && state->start > start) {
1901 if (state->start > end)
1904 if (state->state & bits) {
1908 } else if (filled) {
1913 if (state->end == (u64)-1)
1916 start = state->end + 1;
1919 node = rb_next(node);
1926 spin_unlock(&tree->lock);
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936 u64 start = page_offset(page);
1937 u64 end = start + PAGE_SIZE - 1;
1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 SetPageUptodate(page);
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
1949 set_state_failrec(failure_tree, rec->start, NULL);
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
1952 EXTENT_LOCKED | EXTENT_DIRTY);
1956 ret = clear_extent_bits(io_tree, rec->start,
1957 rec->start + rec->len - 1,
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
1971 * to avoid any synchronization issues, wait for the data after writing, which
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
1981 struct btrfs_device *dev;
1984 struct btrfs_bio *bbio = NULL;
1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1988 BUG_ON(!mirror_num);
1990 bio = btrfs_io_bio_alloc(1);
1991 bio->bi_iter.bi_size = 0;
1992 map_length = length;
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1999 btrfs_bio_counter_inc_blocked(fs_info);
2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2010 btrfs_bio_counter_dec(fs_info);
2014 ASSERT(bbio->mirror_num == 1);
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2019 btrfs_bio_counter_dec(fs_info);
2023 BUG_ON(mirror_num != bbio->mirror_num);
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 bio->bi_iter.bi_sector = sector;
2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 btrfs_put_bbio(bbio);
2030 if (!dev || !dev->bdev || !dev->writeable) {
2031 btrfs_bio_counter_dec(fs_info);
2035 bio_set_dev(bio, dev->bdev);
2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2037 bio_add_page(bio, page, length, pg_offset);
2039 if (btrfsic_submit_bio_wait(bio)) {
2040 /* try to remap that extent elsewhere? */
2041 btrfs_bio_counter_dec(fs_info);
2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2050 rcu_str_deref(dev->name), sector);
2051 btrfs_bio_counter_dec(fs_info);
2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2063 if (sb_rdonly(fs_info->sb))
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = eb->pages[i];
2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2070 start - page_offset(p), mirror_num);
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2083 int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
2089 struct io_failure_record *failrec;
2090 struct extent_state *state;
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2100 ret = get_state_failrec(failure_tree, start, &failrec);
2104 BUG_ON(!failrec->this_mirror);
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2113 if (sb_rdonly(fs_info->sb))
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
2120 spin_unlock(&io_tree->lock);
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 if (num_copies > 1) {
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
2134 free_io_failure(failure_tree, io_tree, failrec);
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 if (state->start > end)
2160 ASSERT(state->end <= end);
2162 next = next_state(state);
2164 failrec = state->failrec;
2165 free_extent_state(state);
2170 spin_unlock(&failure_tree->lock);
2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2174 struct io_failure_record **failrec_ret)
2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 struct io_failure_record *failrec;
2178 struct extent_map *em;
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 ret = get_state_failrec(failure_tree, start, &failrec);
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 read_unlock(&em_tree->lock);
2205 if (em->start > start || em->start + em->len <= start) {
2206 free_extent_map(em);
2209 read_unlock(&em_tree->lock);
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2228 failrec->logical = logical;
2229 free_extent_map(em);
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
2233 EXTENT_LOCKED | EXTENT_DIRTY);
2235 ret = set_state_failrec(failure_tree, start, failrec);
2236 /* set the bits in the inode's tree */
2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2255 *failrec_ret = failrec;
2260 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2267 if (num_copies == 1) {
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2284 if (failed_bio->bi_vcnt > 1) {
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
2313 if (failrec->this_mirror > num_copies) {
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2334 bio = btrfs_io_bio_alloc(1);
2335 bio->bi_end_io = endio_func;
2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2338 bio->bi_iter.bi_size = 0;
2339 bio->bi_private = data;
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2375 blk_status_t status;
2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2384 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2386 free_io_failure(failure_tree, tree, failrec);
2390 if (failed_bio->bi_vcnt > 1)
2391 read_mode |= REQ_FAILFAST_DEV;
2393 phy_offset >>= inode->i_sb->s_blocksize_bits;
2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2395 start - page_offset(page),
2396 (int)phy_offset, failed_bio->bi_end_io,
2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2400 btrfs_debug(btrfs_sb(inode->i_sb),
2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2402 read_mode, failrec->this_mirror, failrec->in_validation);
2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2405 failrec->bio_flags, 0);
2407 free_io_failure(failure_tree, tree, failrec);
2409 ret = blk_status_to_errno(status);
2415 /* lots and lots of room for performance fixes in the end_bio funcs */
2417 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2419 int uptodate = (err == 0);
2420 struct extent_io_tree *tree;
2423 tree = &BTRFS_I(page->mapping->host)->io_tree;
2425 if (tree->ops && tree->ops->writepage_end_io_hook)
2426 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2430 ClearPageUptodate(page);
2432 ret = err < 0 ? err : -EIO;
2433 mapping_set_error(page->mapping, ret);
2438 * after a writepage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * clear the writeback bits in the extent tree for this IO
2441 * end_page_writeback if the page has no more pending IO
2443 * Scheduling is not allowed, so the extent state tree is expected
2444 * to have one and only one object corresponding to this IO.
2446 static void end_bio_extent_writepage(struct bio *bio)
2448 int error = blk_status_to_errno(bio->bi_status);
2449 struct bio_vec *bvec;
2454 ASSERT(!bio_flagged(bio, BIO_CLONED));
2455 bio_for_each_segment_all(bvec, bio, i) {
2456 struct page *page = bvec->bv_page;
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2472 "incomplete page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
2479 end_extent_writepage(page, error, start, end);
2480 end_page_writeback(page);
2487 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2509 static void end_bio_extent_readpage(struct bio *bio)
2511 struct bio_vec *bvec;
2512 int uptodate = !bio->bi_status;
2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2514 struct extent_io_tree *tree, *failure_tree;
2519 u64 extent_start = 0;
2525 ASSERT(!bio_flagged(bio, BIO_CLONED));
2526 bio_for_each_segment_all(bvec, bio, i) {
2527 struct page *page = bvec->bv_page;
2528 struct inode *inode = page->mapping->host;
2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2531 btrfs_debug(fs_info,
2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2533 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2534 io_bio->mirror_num);
2535 tree = &BTRFS_I(inode)->io_tree;
2536 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2538 /* We always issue full-page reads, but if some block
2539 * in a page fails to read, blk_update_request() will
2540 * advance bv_offset and adjust bv_len to compensate.
2541 * Print a warning for nonzero offsets, and an error
2542 * if they don't add up to a full page. */
2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 "partial page read in btrfs with offset %u and length %u",
2547 bvec->bv_offset, bvec->bv_len);
2550 "incomplete page read in btrfs with offset %u and length %u",
2551 bvec->bv_offset, bvec->bv_len);
2554 start = page_offset(page);
2555 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 mirror = io_bio->mirror_num;
2559 if (likely(uptodate && tree->ops)) {
2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2566 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2567 failure_tree, tree, start,
2569 btrfs_ino(BTRFS_I(inode)), 0);
2572 if (likely(uptodate))
2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 if (ret == -EAGAIN) {
2579 * Data inode's readpage_io_failed_hook() always
2582 * The generic bio_readpage_error handles errors
2583 * the following way: If possible, new read
2584 * requests are created and submitted and will
2585 * end up in end_bio_extent_readpage as well (if
2586 * we're lucky, not in the !uptodate case). In
2587 * that case it returns 0 and we just go on with
2588 * the next page in our bio. If it can't handle
2589 * the error it will return -EIO and we remain
2590 * responsible for that page.
2592 ret = bio_readpage_error(bio, offset, page,
2593 start, end, mirror);
2595 uptodate = !bio->bi_status;
2602 * metadata's readpage_io_failed_hook() always returns
2603 * -EIO and fixes nothing. -EIO is also returned if
2604 * data inode error could not be fixed.
2606 ASSERT(ret == -EIO);
2609 if (likely(uptodate)) {
2610 loff_t i_size = i_size_read(inode);
2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
2614 /* Zero out the end if this page straddles i_size */
2615 off = i_size & (PAGE_SIZE-1);
2616 if (page->index == end_index && off)
2617 zero_user_segment(page, off, PAGE_SIZE);
2618 SetPageUptodate(page);
2620 ClearPageUptodate(page);
2626 if (unlikely(!uptodate)) {
2628 endio_readpage_release_extent(tree,
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2658 * Initialize the members up to but not including 'bio'. Use after allocating a
2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2660 * 'bio' because use of __GFP_ZERO is not supported.
2662 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2670 * for the appropriate container_of magic
2672 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2677 bio_set_dev(bio, bdev);
2678 bio->bi_iter.bi_sector = first_byte >> 9;
2679 btrfs_io_bio_init(btrfs_io_bio(bio));
2683 struct bio *btrfs_bio_clone(struct bio *bio)
2685 struct btrfs_io_bio *btrfs_bio;
2688 /* Bio allocation backed by a bioset does not fail */
2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2690 btrfs_bio = btrfs_io_bio(new);
2691 btrfs_io_bio_init(btrfs_bio);
2692 btrfs_bio->iter = bio->bi_iter;
2696 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2700 /* Bio allocation backed by a bioset does not fail */
2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2702 btrfs_io_bio_init(btrfs_io_bio(bio));
2706 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2709 struct btrfs_io_bio *btrfs_bio;
2711 /* this will never fail when it's backed by a bioset */
2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2715 btrfs_bio = btrfs_io_bio(bio);
2716 btrfs_io_bio_init(btrfs_bio);
2718 bio_trim(bio, offset >> 9, size >> 9);
2719 btrfs_bio->iter = bio->bi_iter;
2723 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2724 unsigned long bio_flags)
2726 blk_status_t ret = 0;
2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2728 struct page *page = bvec->bv_page;
2729 struct extent_io_tree *tree = bio->bi_private;
2732 start = page_offset(page) + bvec->bv_offset;
2734 bio->bi_private = NULL;
2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2739 mirror_num, bio_flags, start);
2741 btrfsic_submit_bio(bio);
2744 return blk_status_to_errno(ret);
2747 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2748 unsigned long offset, size_t size, struct bio *bio,
2749 unsigned long bio_flags)
2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2760 * @opf: bio REQ_OP_* and REQ_* flags as one value
2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, u64 offset,
2765 size_t size, unsigned long pg_offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 bio_end_io_t end_io_func,
2770 unsigned long prev_bio_flags,
2771 unsigned long bio_flags,
2772 bool force_bio_submit)
2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779 sector_t sector = offset >> 9;
2781 if (bio_ret && *bio_ret) {
2784 contig = bio->bi_iter.bi_sector == sector;
2786 contig = bio_end_sector(bio) == sector;
2788 if (prev_bio_flags != bio_flags || !contig ||
2790 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2800 wbc_account_io(wbc, page, page_size);
2805 bio = btrfs_bio_alloc(bdev, offset);
2806 bio_add_page(bio, page, page_size, pg_offset);
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
2809 bio->bi_write_hint = page->mapping->host->i_write_hint;
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2819 ret = submit_one_bio(bio, mirror_num, bio_flags);
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2827 if (!PagePrivate(page)) {
2828 SetPagePrivate(page);
2830 set_page_private(page, (unsigned long)eb);
2832 WARN_ON(page->private != (unsigned long)eb);
2836 void set_page_extent_mapped(struct page *page)
2838 if (!PagePrivate(page)) {
2839 SetPagePrivate(page);
2841 set_page_private(page, EXTENT_PAGE_PRIVATE);
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 u64 start, u64 len, get_extent_t *get_extent,
2848 struct extent_map **em_cached)
2850 struct extent_map *em;
2852 if (em_cached && *em_cached) {
2854 if (extent_map_in_tree(em) && start >= em->start &&
2855 start < extent_map_end(em)) {
2856 refcount_inc(&em->refs);
2860 free_extent_map(em);
2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2865 if (em_cached && !IS_ERR_OR_NULL(em)) {
2867 refcount_inc(&em->refs);
2873 * basic readpage implementation. Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2876 * XXX JDM: This needs looking at to ensure proper page locking
2877 * return 0 on success, otherwise return error
2879 static int __do_readpage(struct extent_io_tree *tree,
2881 get_extent_t *get_extent,
2882 struct extent_map **em_cached,
2883 struct bio **bio, int mirror_num,
2884 unsigned long *bio_flags, unsigned int read_flags,
2887 struct inode *inode = page->mapping->host;
2888 u64 start = page_offset(page);
2889 u64 page_end = start + PAGE_SIZE - 1;
2893 u64 last_byte = i_size_read(inode);
2896 struct extent_map *em;
2897 struct block_device *bdev;
2900 size_t pg_offset = 0;
2902 size_t disk_io_size;
2903 size_t blocksize = inode->i_sb->s_blocksize;
2904 unsigned long this_bio_flag = 0;
2906 set_page_extent_mapped(page);
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
2912 unlock_extent(tree, start, end);
2917 if (page->index == last_byte >> PAGE_SHIFT) {
2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2922 iosize = PAGE_SIZE - zero_offset;
2923 userpage = kmap_atomic(page);
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
2926 kunmap_atomic(userpage);
2929 while (cur <= end) {
2930 bool force_bio_submit = false;
2933 if (cur >= last_byte) {
2935 struct extent_state *cached = NULL;
2937 iosize = PAGE_SIZE - pg_offset;
2938 userpage = kmap_atomic(page);
2939 memset(userpage + pg_offset, 0, iosize);
2940 flush_dcache_page(page);
2941 kunmap_atomic(userpage);
2942 set_extent_uptodate(tree, cur, cur + iosize - 1,
2944 unlock_extent_cached(tree, cur,
2949 em = __get_extent_map(inode, page, pg_offset, cur,
2950 end - cur + 1, get_extent, em_cached);
2951 if (IS_ERR_OR_NULL(em)) {
2953 unlock_extent(tree, cur, end);
2956 extent_offset = cur - em->start;
2957 BUG_ON(extent_map_end(em) <= cur);
2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2961 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2962 extent_set_compress_type(&this_bio_flag,
2966 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967 cur_end = min(extent_map_end(em) - 1, end);
2968 iosize = ALIGN(iosize, blocksize);
2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970 disk_io_size = em->block_len;
2971 offset = em->block_start;
2973 offset = em->block_start + extent_offset;
2974 disk_io_size = iosize;
2977 block_start = em->block_start;
2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979 block_start = EXTENT_MAP_HOLE;
2982 * If we have a file range that points to a compressed extent
2983 * and it's followed by a consecutive file range that points to
2984 * to the same compressed extent (possibly with a different
2985 * offset and/or length, so it either points to the whole extent
2986 * or only part of it), we must make sure we do not submit a
2987 * single bio to populate the pages for the 2 ranges because
2988 * this makes the compressed extent read zero out the pages
2989 * belonging to the 2nd range. Imagine the following scenario:
2992 * [0 - 8K] [8K - 24K]
2995 * points to extent X, points to extent X,
2996 * offset 4K, length of 8K offset 0, length 16K
2998 * [extent X, compressed length = 4K uncompressed length = 16K]
3000 * If the bio to read the compressed extent covers both ranges,
3001 * it will decompress extent X into the pages belonging to the
3002 * first range and then it will stop, zeroing out the remaining
3003 * pages that belong to the other range that points to extent X.
3004 * So here we make sure we submit 2 bios, one for the first
3005 * range and another one for the third range. Both will target
3006 * the same physical extent from disk, but we can't currently
3007 * make the compressed bio endio callback populate the pages
3008 * for both ranges because each compressed bio is tightly
3009 * coupled with a single extent map, and each range can have
3010 * an extent map with a different offset value relative to the
3011 * uncompressed data of our extent and different lengths. This
3012 * is a corner case so we prioritize correctness over
3013 * non-optimal behavior (submitting 2 bios for the same extent).
3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016 prev_em_start && *prev_em_start != (u64)-1 &&
3017 *prev_em_start != em->orig_start)
3018 force_bio_submit = true;
3021 *prev_em_start = em->orig_start;
3023 free_extent_map(em);
3026 /* we've found a hole, just zero and go on */
3027 if (block_start == EXTENT_MAP_HOLE) {
3029 struct extent_state *cached = NULL;
3031 userpage = kmap_atomic(page);
3032 memset(userpage + pg_offset, 0, iosize);
3033 flush_dcache_page(page);
3034 kunmap_atomic(userpage);
3036 set_extent_uptodate(tree, cur, cur + iosize - 1,
3038 unlock_extent_cached(tree, cur,
3042 pg_offset += iosize;
3045 /* the get_extent function already copied into the page */
3046 if (test_range_bit(tree, cur, cur_end,
3047 EXTENT_UPTODATE, 1, NULL)) {
3048 check_page_uptodate(tree, page);
3049 unlock_extent(tree, cur, cur + iosize - 1);
3051 pg_offset += iosize;
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3057 if (block_start == EXTENT_MAP_INLINE) {
3059 unlock_extent(tree, cur, cur + iosize - 1);
3061 pg_offset += iosize;
3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3066 page, offset, disk_io_size,
3067 pg_offset, bdev, bio,
3068 end_bio_extent_readpage, mirror_num,
3074 *bio_flags = this_bio_flag;
3077 unlock_extent(tree, cur, cur + iosize - 1);
3081 pg_offset += iosize;
3085 if (!PageError(page))
3086 SetPageUptodate(page);
3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 struct page *pages[], int nr_pages,
3095 get_extent_t *get_extent,
3096 struct extent_map **em_cached,
3098 unsigned long *bio_flags,
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3105 inode = pages[0]->mapping->host;
3107 lock_extent(tree, start, end);
3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3117 for (index = 0; index < nr_pages; index++) {
3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119 0, bio_flags, 0, prev_em_start);
3120 put_page(pages[index]);