1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
23 #include "rcu-string.h"
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
31 static inline bool extent_state_in_tree(const struct extent_state *state)
33 return !RB_EMPTY_NODE(&state->rb_node);
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
40 static DEFINE_SPINLOCK(leak_lock);
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
47 spin_lock_irqsave(&leak_lock, flags);
49 spin_unlock_irqrestore(&leak_lock, flags);
53 void btrfs_leak_debug_del(struct list_head *entry)
57 spin_lock_irqsave(&leak_lock, flags);
59 spin_unlock_irqrestore(&leak_lock, flags);
63 void btrfs_leak_debug_check(void)
65 struct extent_state *state;
66 struct extent_buffer *eb;
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
92 struct inode *inode = tree->private_data;
95 if (!inode || !is_data_inode(inode))
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
112 #define BUFFER_LRU_MAX 64
117 struct rb_node rb_node;
120 struct extent_page_data {
122 struct extent_io_tree *tree;
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
126 unsigned int extent_locked:1;
128 /* tells the submit_bio code to use REQ_SYNC */
129 unsigned int sync_io:1;
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133 struct extent_changeset *changeset,
140 if (set && (state->state & bits) == bits)
142 if (!set && (state->state & bits) == 0)
144 changeset->bytes_changed += state->end - state->start + 1;
145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
150 static void flush_write_bio(struct extent_page_data *epd);
152 int __init extent_io_init(void)
154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 sizeof(struct extent_state), 0,
156 SLAB_MEM_SPREAD, NULL);
157 if (!extent_state_cache)
160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 sizeof(struct extent_buffer), 0,
162 SLAB_MEM_SPREAD, NULL);
163 if (!extent_buffer_cache)
164 goto free_state_cache;
166 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
169 goto free_buffer_cache;
171 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
177 bioset_exit(&btrfs_bioset);
180 kmem_cache_destroy(extent_buffer_cache);
181 extent_buffer_cache = NULL;
184 kmem_cache_destroy(extent_state_cache);
185 extent_state_cache = NULL;
189 void __cold extent_io_exit(void)
191 btrfs_leak_debug_check();
194 * Make sure all delayed rcu free are flushed before we
198 kmem_cache_destroy(extent_state_cache);
199 kmem_cache_destroy(extent_buffer_cache);
200 bioset_exit(&btrfs_bioset);
203 void extent_io_tree_init(struct extent_io_tree *tree,
206 tree->state = RB_ROOT;
208 tree->dirty_bytes = 0;
209 spin_lock_init(&tree->lock);
210 tree->private_data = private_data;
213 static struct extent_state *alloc_extent_state(gfp_t mask)
215 struct extent_state *state;
218 * The given mask might be not appropriate for the slab allocator,
219 * drop the unsupported bits
221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
222 state = kmem_cache_alloc(extent_state_cache, mask);
226 state->failrec = NULL;
227 RB_CLEAR_NODE(&state->rb_node);
228 btrfs_leak_debug_add(&state->leak_list, &states);
229 refcount_set(&state->refs, 1);
230 init_waitqueue_head(&state->wq);
231 trace_alloc_extent_state(state, mask, _RET_IP_);
235 void free_extent_state(struct extent_state *state)
239 if (refcount_dec_and_test(&state->refs)) {
240 WARN_ON(extent_state_in_tree(state));
241 btrfs_leak_debug_del(&state->leak_list);
242 trace_free_extent_state(state, _RET_IP_);
243 kmem_cache_free(extent_state_cache, state);
247 static struct rb_node *tree_insert(struct rb_root *root,
248 struct rb_node *search_start,
250 struct rb_node *node,
251 struct rb_node ***p_in,
252 struct rb_node **parent_in)
255 struct rb_node *parent = NULL;
256 struct tree_entry *entry;
258 if (p_in && parent_in) {
264 p = search_start ? &search_start : &root->rb_node;
267 entry = rb_entry(parent, struct tree_entry, rb_node);
269 if (offset < entry->start)
271 else if (offset > entry->end)
278 rb_link_node(node, parent, p);
279 rb_insert_color(node, root);
283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
284 struct rb_node **prev_ret,
285 struct rb_node **next_ret,
286 struct rb_node ***p_ret,
287 struct rb_node **parent_ret)
289 struct rb_root *root = &tree->state;
290 struct rb_node **n = &root->rb_node;
291 struct rb_node *prev = NULL;
292 struct rb_node *orig_prev = NULL;
293 struct tree_entry *entry;
294 struct tree_entry *prev_entry = NULL;
298 entry = rb_entry(prev, struct tree_entry, rb_node);
301 if (offset < entry->start)
303 else if (offset > entry->end)
316 while (prev && offset > prev_entry->end) {
317 prev = rb_next(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 while (prev && offset < prev_entry->start) {
327 prev = rb_prev(prev);
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 static inline struct rb_node *
336 tree_search_for_insert(struct extent_io_tree *tree,
338 struct rb_node ***p_ret,
339 struct rb_node **parent_ret)
341 struct rb_node *prev = NULL;
344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
350 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 return tree_search_for_insert(tree, offset, NULL, NULL);
357 * utility function to look for merge candidates inside a given range.
358 * Any extents with matching state are merged together into a single
359 * extent in the tree. Extents with EXTENT_IO in their state field
360 * are not merged because the end_io handlers need to be able to do
361 * operations on them without sleeping (or doing allocations/splits).
363 * This should be called with the tree lock held.
365 static void merge_state(struct extent_io_tree *tree,
366 struct extent_state *state)
368 struct extent_state *other;
369 struct rb_node *other_node;
371 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
374 other_node = rb_prev(&state->rb_node);
376 other = rb_entry(other_node, struct extent_state, rb_node);
377 if (other->end == state->start - 1 &&
378 other->state == state->state) {
379 if (tree->private_data &&
380 is_data_inode(tree->private_data))
381 btrfs_merge_delalloc_extent(tree->private_data,
383 state->start = other->start;
384 rb_erase(&other->rb_node, &tree->state);
385 RB_CLEAR_NODE(&other->rb_node);
386 free_extent_state(other);
389 other_node = rb_next(&state->rb_node);
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->start == state->end + 1 &&
393 other->state == state->state) {
394 if (tree->private_data &&
395 is_data_inode(tree->private_data))
396 btrfs_merge_delalloc_extent(tree->private_data,
398 state->end = other->end;
399 rb_erase(&other->rb_node, &tree->state);
400 RB_CLEAR_NODE(&other->rb_node);
401 free_extent_state(other);
406 static void set_state_bits(struct extent_io_tree *tree,
407 struct extent_state *state, unsigned *bits,
408 struct extent_changeset *changeset);
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
420 static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
423 struct rb_node **parent,
424 unsigned *bits, struct extent_changeset *changeset)
426 struct rb_node *node;
429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
431 state->start = start;
434 set_state_bits(tree, state, bits, changeset);
436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
440 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
441 found->start, found->end, start, end);
444 merge_state(tree, state);
449 * split a given extent state struct in two, inserting the preallocated
450 * struct 'prealloc' as the newly created second half. 'split' indicates an
451 * offset inside 'orig' where it should be split.
454 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
455 * are two extent state structs in the tree:
456 * prealloc: [orig->start, split - 1]
457 * orig: [ split, orig->end ]
459 * The tree locks are not taken by this function. They need to be held
462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463 struct extent_state *prealloc, u64 split)
465 struct rb_node *node;
467 if (tree->private_data && is_data_inode(tree->private_data))
468 btrfs_split_delalloc_extent(tree->private_data, orig, split);
470 prealloc->start = orig->start;
471 prealloc->end = split - 1;
472 prealloc->state = orig->state;
475 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476 &prealloc->rb_node, NULL, NULL);
478 free_extent_state(prealloc);
484 static struct extent_state *next_state(struct extent_state *state)
486 struct rb_node *next = rb_next(&state->rb_node);
488 return rb_entry(next, struct extent_state, rb_node);
494 * utility function to clear some bits in an extent state struct.
495 * it will optionally wake up any one waiting on this state (wake == 1).
497 * If no bits are set on the state struct after clearing things, the
498 * struct is freed and removed from the tree
500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501 struct extent_state *state,
502 unsigned *bits, int wake,
503 struct extent_changeset *changeset)
505 struct extent_state *next;
506 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
509 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
510 u64 range = state->end - state->start + 1;
511 WARN_ON(range > tree->dirty_bytes);
512 tree->dirty_bytes -= range;
515 if (tree->private_data && is_data_inode(tree->private_data))
516 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
518 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
520 state->state &= ~bits_to_clear;
523 if (state->state == 0) {
524 next = next_state(state);
525 if (extent_state_in_tree(state)) {
526 rb_erase(&state->rb_node, &tree->state);
527 RB_CLEAR_NODE(&state->rb_node);
528 free_extent_state(state);
533 merge_state(tree, state);
534 next = next_state(state);
539 static struct extent_state *
540 alloc_extent_state_atomic(struct extent_state *prealloc)
543 prealloc = alloc_extent_state(GFP_ATOMIC);
548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
550 struct inode *inode = tree->private_data;
552 btrfs_panic(btrfs_sb(inode->i_sb), err,
553 "locking error: extent tree was modified by another thread while locked");
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
564 * the range [start, end] is inclusive.
566 * This takes the tree lock, and returns 0 on success and < 0 on error.
568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569 unsigned bits, int wake, int delete,
570 struct extent_state **cached_state,
571 gfp_t mask, struct extent_changeset *changeset)
573 struct extent_state *state;
574 struct extent_state *cached;
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
581 btrfs_debug_check_extent_io_range(tree, start, end);
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
587 bits |= ~EXTENT_CTLBITS;
588 bits |= EXTENT_FIRST_DELALLOC;
590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
593 if (!prealloc && gfpflags_allow_blocking(mask)) {
595 * Don't care for allocation failure here because we might end
596 * up not needing the pre-allocated extent state at all, which
597 * is the case if we only have in the tree extent states that
598 * cover our input range and don't cover too any other range.
599 * If we end up needing a new extent state we allocate it later.
601 prealloc = alloc_extent_state(mask);
604 spin_lock(&tree->lock);
606 cached = *cached_state;
609 *cached_state = NULL;
613 if (cached && extent_state_in_tree(cached) &&
614 cached->start <= start && cached->end > start) {
616 refcount_dec(&cached->refs);
621 free_extent_state(cached);
624 * this search will find the extents that end after
627 node = tree_search(tree, start);
630 state = rb_entry(node, struct extent_state, rb_node);
632 if (state->start > end)
634 WARN_ON(state->end < start);
635 last_end = state->end;
637 /* the state doesn't have the wanted bits, go ahead */
638 if (!(state->state & bits)) {
639 state = next_state(state);
644 * | ---- desired range ---- |
646 * | ------------- state -------------- |
648 * We need to split the extent we found, and may flip
649 * bits on second half.
651 * If the extent we found extends past our range, we
652 * just split and search again. It'll get split again
653 * the next time though.
655 * If the extent we found is inside our range, we clear
656 * the desired bit on it.
659 if (state->start < start) {
660 prealloc = alloc_extent_state_atomic(prealloc);
662 err = split_state(tree, state, prealloc, start);
664 extent_io_tree_panic(tree, err);
669 if (state->end <= end) {
670 state = clear_state_bit(tree, state, &bits, wake,
677 * | ---- desired range ---- |
679 * We need to split the extent, and clear the bit
682 if (state->start <= end && state->end > end) {
683 prealloc = alloc_extent_state_atomic(prealloc);
685 err = split_state(tree, state, prealloc, end + 1);
687 extent_io_tree_panic(tree, err);
692 clear_state_bit(tree, prealloc, &bits, wake, changeset);
698 state = clear_state_bit(tree, state, &bits, wake, changeset);
700 if (last_end == (u64)-1)
702 start = last_end + 1;
703 if (start <= end && state && !need_resched())
709 spin_unlock(&tree->lock);
710 if (gfpflags_allow_blocking(mask))
715 spin_unlock(&tree->lock);
717 free_extent_state(prealloc);
723 static void wait_on_state(struct extent_io_tree *tree,
724 struct extent_state *state)
725 __releases(tree->lock)
726 __acquires(tree->lock)
729 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
730 spin_unlock(&tree->lock);
732 spin_lock(&tree->lock);
733 finish_wait(&state->wq, &wait);
737 * waits for one or more bits to clear on a range in the state tree.
738 * The range [start, end] is inclusive.
739 * The tree lock is taken by this function
741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
744 struct extent_state *state;
745 struct rb_node *node;
747 btrfs_debug_check_extent_io_range(tree, start, end);
749 spin_lock(&tree->lock);
753 * this search will find all the extents that end after
756 node = tree_search(tree, start);
761 state = rb_entry(node, struct extent_state, rb_node);
763 if (state->start > end)
766 if (state->state & bits) {
767 start = state->start;
768 refcount_inc(&state->refs);
769 wait_on_state(tree, state);
770 free_extent_state(state);
773 start = state->end + 1;
778 if (!cond_resched_lock(&tree->lock)) {
779 node = rb_next(node);
784 spin_unlock(&tree->lock);
787 static void set_state_bits(struct extent_io_tree *tree,
788 struct extent_state *state,
789 unsigned *bits, struct extent_changeset *changeset)
791 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
794 if (tree->private_data && is_data_inode(tree->private_data))
795 btrfs_set_delalloc_extent(tree->private_data, state, bits);
797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
801 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
803 state->state |= bits_to_set;
806 static void cache_state_if_flags(struct extent_state *state,
807 struct extent_state **cached_ptr,
810 if (cached_ptr && !(*cached_ptr)) {
811 if (!flags || (state->state & flags)) {
813 refcount_inc(&state->refs);
818 static void cache_state(struct extent_state *state,
819 struct extent_state **cached_ptr)
821 return cache_state_if_flags(state, cached_ptr,
822 EXTENT_IOBITS | EXTENT_BOUNDARY);
826 * set some bits on a range in the tree. This may require allocations or
827 * sleeping, so the gfp mask is used to indicate what is allowed.
829 * If any of the exclusive bits are set, this will fail with -EEXIST if some
830 * part of the range already has the desired bits set. The start of the
831 * existing range is returned in failed_start in this case.
833 * [start, end] is inclusive This takes the tree lock.
836 static int __must_check
837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
838 unsigned bits, unsigned exclusive_bits,
839 u64 *failed_start, struct extent_state **cached_state,
840 gfp_t mask, struct extent_changeset *changeset)
842 struct extent_state *state;
843 struct extent_state *prealloc = NULL;
844 struct rb_node *node;
846 struct rb_node *parent;
851 btrfs_debug_check_extent_io_range(tree, start, end);
853 bits |= EXTENT_FIRST_DELALLOC;
855 if (!prealloc && gfpflags_allow_blocking(mask)) {
857 * Don't care for allocation failure here because we might end
858 * up not needing the pre-allocated extent state at all, which
859 * is the case if we only have in the tree extent states that
860 * cover our input range and don't cover too any other range.
861 * If we end up needing a new extent state we allocate it later.
863 prealloc = alloc_extent_state(mask);
866 spin_lock(&tree->lock);
867 if (cached_state && *cached_state) {
868 state = *cached_state;
869 if (state->start <= start && state->end > start &&
870 extent_state_in_tree(state)) {
871 node = &state->rb_node;
876 * this search will find all the extents that end after
879 node = tree_search_for_insert(tree, start, &p, &parent);
881 prealloc = alloc_extent_state_atomic(prealloc);
883 err = insert_state(tree, prealloc, start, end,
884 &p, &parent, &bits, changeset);
886 extent_io_tree_panic(tree, err);
888 cache_state(prealloc, cached_state);
892 state = rb_entry(node, struct extent_state, rb_node);
894 last_start = state->start;
895 last_end = state->end;
898 * | ---- desired range ---- |
901 * Just lock what we found and keep going
903 if (state->start == start && state->end <= end) {
904 if (state->state & exclusive_bits) {
905 *failed_start = state->start;
910 set_state_bits(tree, state, &bits, changeset);
911 cache_state(state, cached_state);
912 merge_state(tree, state);
913 if (last_end == (u64)-1)
915 start = last_end + 1;
916 state = next_state(state);
917 if (start < end && state && state->start == start &&
924 * | ---- desired range ---- |
927 * | ------------- state -------------- |
929 * We need to split the extent we found, and may flip bits on
932 * If the extent we found extends past our
933 * range, we just split and search again. It'll get split
934 * again the next time though.
936 * If the extent we found is inside our range, we set the
939 if (state->start < start) {
940 if (state->state & exclusive_bits) {
941 *failed_start = start;
946 prealloc = alloc_extent_state_atomic(prealloc);
948 err = split_state(tree, state, prealloc, start);
950 extent_io_tree_panic(tree, err);
955 if (state->end <= end) {
956 set_state_bits(tree, state, &bits, changeset);
957 cache_state(state, cached_state);
958 merge_state(tree, state);
959 if (last_end == (u64)-1)
961 start = last_end + 1;
962 state = next_state(state);
963 if (start < end && state && state->start == start &&
970 * | ---- desired range ---- |
971 * | state | or | state |
973 * There's a hole, we need to insert something in it and
974 * ignore the extent we found.
976 if (state->start > start) {
978 if (end < last_start)
981 this_end = last_start - 1;
983 prealloc = alloc_extent_state_atomic(prealloc);
987 * Avoid to free 'prealloc' if it can be merged with
990 err = insert_state(tree, prealloc, start, this_end,
991 NULL, NULL, &bits, changeset);
993 extent_io_tree_panic(tree, err);
995 cache_state(prealloc, cached_state);
997 start = this_end + 1;
1001 * | ---- desired range ---- |
1003 * We need to split the extent, and set the bit
1006 if (state->start <= end && state->end > end) {
1007 if (state->state & exclusive_bits) {
1008 *failed_start = start;
1013 prealloc = alloc_extent_state_atomic(prealloc);
1015 err = split_state(tree, state, prealloc, end + 1);
1017 extent_io_tree_panic(tree, err);
1019 set_state_bits(tree, prealloc, &bits, changeset);
1020 cache_state(prealloc, cached_state);
1021 merge_state(tree, prealloc);
1029 spin_unlock(&tree->lock);
1030 if (gfpflags_allow_blocking(mask))
1035 spin_unlock(&tree->lock);
1037 free_extent_state(prealloc);
1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1044 unsigned bits, u64 * failed_start,
1045 struct extent_state **cached_state, gfp_t mask)
1047 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1048 cached_state, mask, NULL);
1053 * convert_extent_bit - convert all bits in a given range from one bit to
1055 * @tree: the io tree to search
1056 * @start: the start offset in bytes
1057 * @end: the end offset in bytes (inclusive)
1058 * @bits: the bits to set in this range
1059 * @clear_bits: the bits to clear in this range
1060 * @cached_state: state that we're going to cache
1062 * This will go through and set bits for the given range. If any states exist
1063 * already in this range they are set with the given bit and cleared of the
1064 * clear_bits. This is only meant to be used by things that are mergeable, ie
1065 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1066 * boundary bits like LOCK.
1068 * All allocations are done with GFP_NOFS.
1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1071 unsigned bits, unsigned clear_bits,
1072 struct extent_state **cached_state)
1074 struct extent_state *state;
1075 struct extent_state *prealloc = NULL;
1076 struct rb_node *node;
1078 struct rb_node *parent;
1082 bool first_iteration = true;
1084 btrfs_debug_check_extent_io_range(tree, start, end);
1089 * Best effort, don't worry if extent state allocation fails
1090 * here for the first iteration. We might have a cached state
1091 * that matches exactly the target range, in which case no
1092 * extent state allocations are needed. We'll only know this
1093 * after locking the tree.
1095 prealloc = alloc_extent_state(GFP_NOFS);
1096 if (!prealloc && !first_iteration)
1100 spin_lock(&tree->lock);
1101 if (cached_state && *cached_state) {
1102 state = *cached_state;
1103 if (state->start <= start && state->end > start &&
1104 extent_state_in_tree(state)) {
1105 node = &state->rb_node;
1111 * this search will find all the extents that end after
1114 node = tree_search_for_insert(tree, start, &p, &parent);
1116 prealloc = alloc_extent_state_atomic(prealloc);
1121 err = insert_state(tree, prealloc, start, end,
1122 &p, &parent, &bits, NULL);
1124 extent_io_tree_panic(tree, err);
1125 cache_state(prealloc, cached_state);
1129 state = rb_entry(node, struct extent_state, rb_node);
1131 last_start = state->start;
1132 last_end = state->end;
1135 * | ---- desired range ---- |
1138 * Just lock what we found and keep going
1140 if (state->start == start && state->end <= end) {
1141 set_state_bits(tree, state, &bits, NULL);
1142 cache_state(state, cached_state);
1143 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1144 if (last_end == (u64)-1)
1146 start = last_end + 1;
1147 if (start < end && state && state->start == start &&
1154 * | ---- desired range ---- |
1157 * | ------------- state -------------- |
1159 * We need to split the extent we found, and may flip bits on
1162 * If the extent we found extends past our
1163 * range, we just split and search again. It'll get split
1164 * again the next time though.
1166 * If the extent we found is inside our range, we set the
1167 * desired bit on it.
1169 if (state->start < start) {
1170 prealloc = alloc_extent_state_atomic(prealloc);
1175 err = split_state(tree, state, prealloc, start);
1177 extent_io_tree_panic(tree, err);
1181 if (state->end <= end) {
1182 set_state_bits(tree, state, &bits, NULL);
1183 cache_state(state, cached_state);
1184 state = clear_state_bit(tree, state, &clear_bits, 0,
1186 if (last_end == (u64)-1)
1188 start = last_end + 1;
1189 if (start < end && state && state->start == start &&
1196 * | ---- desired range ---- |
1197 * | state | or | state |
1199 * There's a hole, we need to insert something in it and
1200 * ignore the extent we found.
1202 if (state->start > start) {
1204 if (end < last_start)
1207 this_end = last_start - 1;
1209 prealloc = alloc_extent_state_atomic(prealloc);
1216 * Avoid to free 'prealloc' if it can be merged with
1219 err = insert_state(tree, prealloc, start, this_end,
1220 NULL, NULL, &bits, NULL);
1222 extent_io_tree_panic(tree, err);
1223 cache_state(prealloc, cached_state);
1225 start = this_end + 1;
1229 * | ---- desired range ---- |
1231 * We need to split the extent, and set the bit
1234 if (state->start <= end && state->end > end) {
1235 prealloc = alloc_extent_state_atomic(prealloc);
1241 err = split_state(tree, state, prealloc, end + 1);
1243 extent_io_tree_panic(tree, err);
1245 set_state_bits(tree, prealloc, &bits, NULL);
1246 cache_state(prealloc, cached_state);
1247 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1255 spin_unlock(&tree->lock);
1257 first_iteration = false;
1261 spin_unlock(&tree->lock);
1263 free_extent_state(prealloc);
1268 /* wrappers around set/clear extent bit */
1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1270 unsigned bits, struct extent_changeset *changeset)
1273 * We don't support EXTENT_LOCKED yet, as current changeset will
1274 * record any bits changed, so for EXTENT_LOCKED case, it will
1275 * either fail with -EEXIST or changeset will record the whole
1278 BUG_ON(bits & EXTENT_LOCKED);
1280 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285 unsigned bits, int wake, int delete,
1286 struct extent_state **cached)
1288 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1289 cached, GFP_NOFS, NULL);
1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1293 unsigned bits, struct extent_changeset *changeset)
1296 * Don't support EXTENT_LOCKED case, same reason as
1297 * set_record_extent_bits().
1299 BUG_ON(bits & EXTENT_LOCKED);
1301 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1306 * either insert or lock state struct between start and end use mask to tell
1307 * us if waiting is desired.
1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1310 struct extent_state **cached_state)
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS, NULL);
1319 if (err == -EEXIST) {
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
1324 WARN_ON(start > end);
1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1335 &failed_start, NULL, GFP_NOFS, NULL);
1336 if (err == -EEXIST) {
1337 if (failed_start > start)
1338 clear_extent_bit(tree, start, failed_start - 1,
1339 EXTENT_LOCKED, 1, 0, NULL);
1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1347 unsigned long index = start >> PAGE_SHIFT;
1348 unsigned long end_index = end >> PAGE_SHIFT;
1351 while (index <= end_index) {
1352 page = find_get_page(inode->i_mapping, index);
1353 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354 clear_page_dirty_for_io(page);
1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1362 unsigned long index = start >> PAGE_SHIFT;
1363 unsigned long end_index = end >> PAGE_SHIFT;
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 __set_page_dirty_nobuffers(page);
1370 account_page_redirty(page);
1376 /* find the first state struct with 'bits' set after 'start', and
1377 * return it. tree->lock must be held. NULL will returned if
1378 * nothing was found after 'start'
1380 static struct extent_state *
1381 find_first_extent_bit_state(struct extent_io_tree *tree,
1382 u64 start, unsigned bits)
1384 struct rb_node *node;
1385 struct extent_state *state;
1388 * this search will find all the extents that end after
1391 node = tree_search(tree, start);
1396 state = rb_entry(node, struct extent_state, rb_node);
1397 if (state->end >= start && (state->state & bits))
1400 node = rb_next(node);
1409 * find the first offset in the io tree with 'bits' set. zero is
1410 * returned if we find something, and *start_ret and *end_ret are
1411 * set to reflect the state struct that was found.
1413 * If nothing was found, 1 is returned. If found something, return 0.
1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1416 u64 *start_ret, u64 *end_ret, unsigned bits,
1417 struct extent_state **cached_state)
1419 struct extent_state *state;
1422 spin_lock(&tree->lock);
1423 if (cached_state && *cached_state) {
1424 state = *cached_state;
1425 if (state->end == start - 1 && extent_state_in_tree(state)) {
1426 while ((state = next_state(state)) != NULL) {
1427 if (state->state & bits)
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1438 state = find_first_extent_bit_state(tree, start, bits);
1441 cache_state_if_flags(state, cached_state, 0);
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1447 spin_unlock(&tree->lock);
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
1465 u64 total_bytes = 0;
1467 spin_lock(&tree->lock);
1470 * this search will find all the extents that end after
1473 node = tree_search(tree, cur_start);
1481 state = rb_entry(node, struct extent_state, rb_node);
1482 if (found && (state->start != cur_start ||
1483 (state->state & EXTENT_BOUNDARY))) {
1486 if (!(state->state & EXTENT_DELALLOC)) {
1492 *start = state->start;
1493 *cached_state = state;
1494 refcount_inc(&state->refs);
1498 cur_start = state->end + 1;
1499 node = rb_next(node);
1500 total_bytes += state->end - state->start + 1;
1501 if (total_bytes >= max_bytes)
1507 spin_unlock(&tree->lock);
1511 static int __process_pages_contig(struct address_space *mapping,
1512 struct page *locked_page,
1513 pgoff_t start_index, pgoff_t end_index,
1514 unsigned long page_ops, pgoff_t *index_ret);
1516 static noinline void __unlock_for_delalloc(struct inode *inode,
1517 struct page *locked_page,
1520 unsigned long index = start >> PAGE_SHIFT;
1521 unsigned long end_index = end >> PAGE_SHIFT;
1523 ASSERT(locked_page);
1524 if (index == locked_page->index && end_index == index)
1527 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1531 static noinline int lock_delalloc_pages(struct inode *inode,
1532 struct page *locked_page,
1536 unsigned long index = delalloc_start >> PAGE_SHIFT;
1537 unsigned long index_ret = index;
1538 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1541 ASSERT(locked_page);
1542 if (index == locked_page->index && index == end_index)
1545 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1546 end_index, PAGE_LOCK, &index_ret);
1548 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1549 (u64)index_ret << PAGE_SHIFT);
1554 * find a contiguous range of bytes in the file marked as delalloc, not
1555 * more than 'max_bytes'. start and end are used to return the range,
1557 * 1 is returned if we find something, 0 if nothing was in the tree
1560 noinline_for_stack u64 find_lock_delalloc_range(struct inode *inode,
1561 struct extent_io_tree *tree,
1562 struct page *locked_page, u64 *start,
1565 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1569 struct extent_state *cached_state = NULL;
1574 /* step one, find a bunch of delalloc bytes starting at start */
1575 delalloc_start = *start;
1577 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1578 max_bytes, &cached_state);
1579 if (!found || delalloc_end <= *start) {
1580 *start = delalloc_start;
1581 *end = delalloc_end;
1582 free_extent_state(cached_state);
1587 * start comes from the offset of locked_page. We have to lock
1588 * pages in order, so we can't process delalloc bytes before
1591 if (delalloc_start < *start)
1592 delalloc_start = *start;
1595 * make sure to limit the number of pages we try to lock down
1597 if (delalloc_end + 1 - delalloc_start > max_bytes)
1598 delalloc_end = delalloc_start + max_bytes - 1;
1600 /* step two, lock all the pages after the page that has start */
1601 ret = lock_delalloc_pages(inode, locked_page,
1602 delalloc_start, delalloc_end);
1603 ASSERT(!ret || ret == -EAGAIN);
1604 if (ret == -EAGAIN) {
1605 /* some of the pages are gone, lets avoid looping by
1606 * shortening the size of the delalloc range we're searching
1608 free_extent_state(cached_state);
1609 cached_state = NULL;
1611 max_bytes = PAGE_SIZE;
1620 /* step three, lock the state bits for the whole range */
1621 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1623 /* then test to make sure it is all still delalloc */
1624 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1625 EXTENT_DELALLOC, 1, cached_state);
1627 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1629 __unlock_for_delalloc(inode, locked_page,
1630 delalloc_start, delalloc_end);
1634 free_extent_state(cached_state);
1635 *start = delalloc_start;
1636 *end = delalloc_end;
1641 static int __process_pages_contig(struct address_space *mapping,
1642 struct page *locked_page,
1643 pgoff_t start_index, pgoff_t end_index,
1644 unsigned long page_ops, pgoff_t *index_ret)
1646 unsigned long nr_pages = end_index - start_index + 1;
1647 unsigned long pages_locked = 0;
1648 pgoff_t index = start_index;
1649 struct page *pages[16];
1654 if (page_ops & PAGE_LOCK) {
1655 ASSERT(page_ops == PAGE_LOCK);
1656 ASSERT(index_ret && *index_ret == start_index);
1659 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1660 mapping_set_error(mapping, -EIO);
1662 while (nr_pages > 0) {
1663 ret = find_get_pages_contig(mapping, index,
1664 min_t(unsigned long,
1665 nr_pages, ARRAY_SIZE(pages)), pages);
1668 * Only if we're going to lock these pages,
1669 * can we find nothing at @index.
1671 ASSERT(page_ops & PAGE_LOCK);
1676 for (i = 0; i < ret; i++) {
1677 if (page_ops & PAGE_SET_PRIVATE2)
1678 SetPagePrivate2(pages[i]);
1680 if (pages[i] == locked_page) {
1685 if (page_ops & PAGE_CLEAR_DIRTY)
1686 clear_page_dirty_for_io(pages[i]);
1687 if (page_ops & PAGE_SET_WRITEBACK)
1688 set_page_writeback(pages[i]);
1689 if (page_ops & PAGE_SET_ERROR)
1690 SetPageError(pages[i]);
1691 if (page_ops & PAGE_END_WRITEBACK)
1692 end_page_writeback(pages[i]);
1693 if (page_ops & PAGE_UNLOCK)
1694 unlock_page(pages[i]);
1695 if (page_ops & PAGE_LOCK) {
1696 lock_page(pages[i]);
1697 if (!PageDirty(pages[i]) ||
1698 pages[i]->mapping != mapping) {
1699 unlock_page(pages[i]);
1713 if (err && index_ret)
1714 *index_ret = start_index + pages_locked - 1;
1718 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1719 u64 delalloc_end, struct page *locked_page,
1720 unsigned clear_bits,
1721 unsigned long page_ops)
1723 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1726 __process_pages_contig(inode->i_mapping, locked_page,
1727 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1732 * count the number of bytes in the tree that have a given bit(s)
1733 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1734 * cached. The total number found is returned.
1736 u64 count_range_bits(struct extent_io_tree *tree,
1737 u64 *start, u64 search_end, u64 max_bytes,
1738 unsigned bits, int contig)
1740 struct rb_node *node;
1741 struct extent_state *state;
1742 u64 cur_start = *start;
1743 u64 total_bytes = 0;
1747 if (WARN_ON(search_end <= cur_start))
1750 spin_lock(&tree->lock);
1751 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1752 total_bytes = tree->dirty_bytes;
1756 * this search will find all the extents that end after
1759 node = tree_search(tree, cur_start);
1764 state = rb_entry(node, struct extent_state, rb_node);
1765 if (state->start > search_end)
1767 if (contig && found && state->start > last + 1)
1769 if (state->end >= cur_start && (state->state & bits) == bits) {
1770 total_bytes += min(search_end, state->end) + 1 -
1771 max(cur_start, state->start);
1772 if (total_bytes >= max_bytes)
1775 *start = max(cur_start, state->start);
1779 } else if (contig && found) {
1782 node = rb_next(node);
1787 spin_unlock(&tree->lock);
1792 * set the private field for a given byte offset in the tree. If there isn't
1793 * an extent_state there already, this does nothing.
1795 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1796 struct io_failure_record *failrec)
1798 struct rb_node *node;
1799 struct extent_state *state;
1802 spin_lock(&tree->lock);
1804 * this search will find all the extents that end after
1807 node = tree_search(tree, start);
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start != start) {
1817 state->failrec = failrec;
1819 spin_unlock(&tree->lock);
1823 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1824 struct io_failure_record **failrec)
1826 struct rb_node *node;
1827 struct extent_state *state;
1830 spin_lock(&tree->lock);
1832 * this search will find all the extents that end after
1835 node = tree_search(tree, start);
1840 state = rb_entry(node, struct extent_state, rb_node);
1841 if (state->start != start) {
1845 *failrec = state->failrec;
1847 spin_unlock(&tree->lock);
1852 * searches a range in the state tree for a given mask.
1853 * If 'filled' == 1, this returns 1 only if every extent in the tree
1854 * has the bits set. Otherwise, 1 is returned if any bit in the
1855 * range is found set.
1857 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1858 unsigned bits, int filled, struct extent_state *cached)
1860 struct extent_state *state = NULL;
1861 struct rb_node *node;
1864 spin_lock(&tree->lock);
1865 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1866 cached->end > start)
1867 node = &cached->rb_node;
1869 node = tree_search(tree, start);
1870 while (node && start <= end) {
1871 state = rb_entry(node, struct extent_state, rb_node);
1873 if (filled && state->start > start) {
1878 if (state->start > end)
1881 if (state->state & bits) {
1885 } else if (filled) {
1890 if (state->end == (u64)-1)
1893 start = state->end + 1;
1896 node = rb_next(node);
1903 spin_unlock(&tree->lock);
1908 * helper function to set a given page up to date if all the
1909 * extents in the tree for that page are up to date
1911 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1913 u64 start = page_offset(page);
1914 u64 end = start + PAGE_SIZE - 1;
1915 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1916 SetPageUptodate(page);
1919 int free_io_failure(struct extent_io_tree *failure_tree,
1920 struct extent_io_tree *io_tree,
1921 struct io_failure_record *rec)
1926 set_state_failrec(failure_tree, rec->start, NULL);
1927 ret = clear_extent_bits(failure_tree, rec->start,
1928 rec->start + rec->len - 1,
1929 EXTENT_LOCKED | EXTENT_DIRTY);
1933 ret = clear_extent_bits(io_tree, rec->start,
1934 rec->start + rec->len - 1,
1944 * this bypasses the standard btrfs submit functions deliberately, as
1945 * the standard behavior is to write all copies in a raid setup. here we only
1946 * want to write the one bad copy. so we do the mapping for ourselves and issue
1947 * submit_bio directly.
1948 * to avoid any synchronization issues, wait for the data after writing, which
1949 * actually prevents the read that triggered the error from finishing.
1950 * currently, there can be no more than two copies of every data bit. thus,
1951 * exactly one rewrite is required.
1953 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1954 u64 length, u64 logical, struct page *page,
1955 unsigned int pg_offset, int mirror_num)
1958 struct btrfs_device *dev;
1961 struct btrfs_bio *bbio = NULL;
1964 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1965 BUG_ON(!mirror_num);
1967 bio = btrfs_io_bio_alloc(1);
1968 bio->bi_iter.bi_size = 0;
1969 map_length = length;
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are doing the
1974 * read repair operation.
1976 btrfs_bio_counter_inc_blocked(fs_info);
1977 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1979 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1980 * to update all raid stripes, but here we just want to correct
1981 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1982 * stripe's dev and sector.
1984 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1985 &map_length, &bbio, 0);
1987 btrfs_bio_counter_dec(fs_info);
1991 ASSERT(bbio->mirror_num == 1);
1993 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1994 &map_length, &bbio, mirror_num);
1996 btrfs_bio_counter_dec(fs_info);
2000 BUG_ON(mirror_num != bbio->mirror_num);
2003 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2004 bio->bi_iter.bi_sector = sector;
2005 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2006 btrfs_put_bbio(bbio);
2007 if (!dev || !dev->bdev ||
2008 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2009 btrfs_bio_counter_dec(fs_info);
2013 bio_set_dev(bio, dev->bdev);
2014 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2015 bio_add_page(bio, page, length, pg_offset);
2017 if (btrfsic_submit_bio_wait(bio)) {
2018 /* try to remap that extent elsewhere? */
2019 btrfs_bio_counter_dec(fs_info);
2021 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2025 btrfs_info_rl_in_rcu(fs_info,
2026 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2028 rcu_str_deref(dev->name), sector);
2029 btrfs_bio_counter_dec(fs_info);
2034 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2035 struct extent_buffer *eb, int mirror_num)
2037 u64 start = eb->start;
2038 int i, num_pages = num_extent_pages(eb);
2041 if (sb_rdonly(fs_info->sb))
2044 for (i = 0; i < num_pages; i++) {
2045 struct page *p = eb->pages[i];
2047 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2048 start - page_offset(p), mirror_num);
2058 * each time an IO finishes, we do a fast check in the IO failure tree
2059 * to see if we need to process or clean up an io_failure_record
2061 int clean_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_io_tree *failure_tree,
2063 struct extent_io_tree *io_tree, u64 start,
2064 struct page *page, u64 ino, unsigned int pg_offset)
2067 struct io_failure_record *failrec;
2068 struct extent_state *state;
2073 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2078 ret = get_state_failrec(failure_tree, start, &failrec);
2082 BUG_ON(!failrec->this_mirror);
2084 if (failrec->in_validation) {
2085 /* there was no real error, just free the record */
2086 btrfs_debug(fs_info,
2087 "clean_io_failure: freeing dummy error at %llu",
2091 if (sb_rdonly(fs_info->sb))
2094 spin_lock(&io_tree->lock);
2095 state = find_first_extent_bit_state(io_tree,
2098 spin_unlock(&io_tree->lock);
2100 if (state && state->start <= failrec->start &&
2101 state->end >= failrec->start + failrec->len - 1) {
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2104 if (num_copies > 1) {
2105 repair_io_failure(fs_info, ino, start, failrec->len,
2106 failrec->logical, page, pg_offset,
2107 failrec->failed_mirror);
2112 free_io_failure(failure_tree, io_tree, failrec);
2118 * Can be called when
2119 * - hold extent lock
2120 * - under ordered extent
2121 * - the inode is freeing
2123 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2125 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2126 struct io_failure_record *failrec;
2127 struct extent_state *state, *next;
2129 if (RB_EMPTY_ROOT(&failure_tree->state))
2132 spin_lock(&failure_tree->lock);
2133 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2135 if (state->start > end)
2138 ASSERT(state->end <= end);
2140 next = next_state(state);
2142 failrec = state->failrec;
2143 free_extent_state(state);
2148 spin_unlock(&failure_tree->lock);
2151 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2152 struct io_failure_record **failrec_ret)
2154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2155 struct io_failure_record *failrec;
2156 struct extent_map *em;
2157 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2158 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2159 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2163 ret = get_state_failrec(failure_tree, start, &failrec);
2165 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2169 failrec->start = start;
2170 failrec->len = end - start + 1;
2171 failrec->this_mirror = 0;
2172 failrec->bio_flags = 0;
2173 failrec->in_validation = 0;
2175 read_lock(&em_tree->lock);
2176 em = lookup_extent_mapping(em_tree, start, failrec->len);
2178 read_unlock(&em_tree->lock);
2183 if (em->start > start || em->start + em->len <= start) {
2184 free_extent_map(em);
2187 read_unlock(&em_tree->lock);
2193 logical = start - em->start;
2194 logical = em->block_start + logical;
2195 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2196 logical = em->block_start;
2197 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2198 extent_set_compress_type(&failrec->bio_flags,
2202 btrfs_debug(fs_info,
2203 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2204 logical, start, failrec->len);
2206 failrec->logical = logical;
2207 free_extent_map(em);
2209 /* set the bits in the private failure tree */
2210 ret = set_extent_bits(failure_tree, start, end,
2211 EXTENT_LOCKED | EXTENT_DIRTY);
2213 ret = set_state_failrec(failure_tree, start, failrec);
2214 /* set the bits in the inode's tree */
2216 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2222 btrfs_debug(fs_info,
2223 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2224 failrec->logical, failrec->start, failrec->len,
2225 failrec->in_validation);
2227 * when data can be on disk more than twice, add to failrec here
2228 * (e.g. with a list for failed_mirror) to make
2229 * clean_io_failure() clean all those errors at once.
2233 *failrec_ret = failrec;
2238 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2239 struct io_failure_record *failrec, int failed_mirror)
2241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2244 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2245 if (num_copies == 1) {
2247 * we only have a single copy of the data, so don't bother with
2248 * all the retry and error correction code that follows. no
2249 * matter what the error is, it is very likely to persist.
2251 btrfs_debug(fs_info,
2252 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2253 num_copies, failrec->this_mirror, failed_mirror);
2258 * there are two premises:
2259 * a) deliver good data to the caller
2260 * b) correct the bad sectors on disk
2262 if (failed_bio_pages > 1) {
2264 * to fulfill b), we need to know the exact failing sectors, as
2265 * we don't want to rewrite any more than the failed ones. thus,
2266 * we need separate read requests for the failed bio
2268 * if the following BUG_ON triggers, our validation request got
2269 * merged. we need separate requests for our algorithm to work.
2271 BUG_ON(failrec->in_validation);
2272 failrec->in_validation = 1;
2273 failrec->this_mirror = failed_mirror;
2276 * we're ready to fulfill a) and b) alongside. get a good copy
2277 * of the failed sector and if we succeed, we have setup
2278 * everything for repair_io_failure to do the rest for us.
2280 if (failrec->in_validation) {
2281 BUG_ON(failrec->this_mirror != failed_mirror);
2282 failrec->in_validation = 0;
2283 failrec->this_mirror = 0;
2285 failrec->failed_mirror = failed_mirror;
2286 failrec->this_mirror++;
2287 if (failrec->this_mirror == failed_mirror)
2288 failrec->this_mirror++;
2291 if (failrec->this_mirror > num_copies) {
2292 btrfs_debug(fs_info,
2293 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2294 num_copies, failrec->this_mirror, failed_mirror);
2302 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2303 struct io_failure_record *failrec,
2304 struct page *page, int pg_offset, int icsum,
2305 bio_end_io_t *endio_func, void *data)
2307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2309 struct btrfs_io_bio *btrfs_failed_bio;
2310 struct btrfs_io_bio *btrfs_bio;
2312 bio = btrfs_io_bio_alloc(1);
2313 bio->bi_end_io = endio_func;
2314 bio->bi_iter.bi_sector = failrec->logical >> 9;
2315 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2316 bio->bi_iter.bi_size = 0;
2317 bio->bi_private = data;
2319 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320 if (btrfs_failed_bio->csum) {
2321 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2323 btrfs_bio = btrfs_io_bio(bio);
2324 btrfs_bio->csum = btrfs_bio->csum_inline;
2326 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2330 bio_add_page(bio, page, failrec->len, pg_offset);
2336 * this is a generic handler for readpage errors (default
2337 * readpage_io_failed_hook). if other copies exist, read those and write back
2338 * good data to the failed position. does not investigate in remapping the
2339 * failed extent elsewhere, hoping the device will be smart enough to do this as
2343 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2344 struct page *page, u64 start, u64 end,
2347 struct io_failure_record *failrec;
2348 struct inode *inode = page->mapping->host;
2349 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2350 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2353 blk_status_t status;
2355 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2357 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2359 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2363 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2365 free_io_failure(failure_tree, tree, failrec);
2369 if (failed_bio_pages > 1)
2370 read_mode |= REQ_FAILFAST_DEV;
2372 phy_offset >>= inode->i_sb->s_blocksize_bits;
2373 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2374 start - page_offset(page),
2375 (int)phy_offset, failed_bio->bi_end_io,
2377 bio->bi_opf = REQ_OP_READ | read_mode;
2379 btrfs_debug(btrfs_sb(inode->i_sb),
2380 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2381 read_mode, failrec->this_mirror, failrec->in_validation);
2383 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2384 failrec->bio_flags, 0);
2386 free_io_failure(failure_tree, tree, failrec);
2388 ret = blk_status_to_errno(status);
2394 /* lots and lots of room for performance fixes in the end_bio funcs */
2396 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2398 int uptodate = (err == 0);
2401 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2404 ClearPageUptodate(page);
2406 ret = err < 0 ? err : -EIO;
2407 mapping_set_error(page->mapping, ret);
2412 * after a writepage IO is done, we need to:
2413 * clear the uptodate bits on error
2414 * clear the writeback bits in the extent tree for this IO
2415 * end_page_writeback if the page has no more pending IO
2417 * Scheduling is not allowed, so the extent state tree is expected
2418 * to have one and only one object corresponding to this IO.
2420 static void end_bio_extent_writepage(struct bio *bio)
2422 int error = blk_status_to_errno(bio->bi_status);
2423 struct bio_vec *bvec;
2428 ASSERT(!bio_flagged(bio, BIO_CLONED));
2429 bio_for_each_segment_all(bvec, bio, i) {
2430 struct page *page = bvec->bv_page;
2431 struct inode *inode = page->mapping->host;
2432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2434 /* We always issue full-page reads, but if some block
2435 * in a page fails to read, blk_update_request() will
2436 * advance bv_offset and adjust bv_len to compensate.
2437 * Print a warning for nonzero offsets, and an error
2438 * if they don't add up to a full page. */
2439 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2440 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2442 "partial page write in btrfs with offset %u and length %u",
2443 bvec->bv_offset, bvec->bv_len);
2446 "incomplete page write in btrfs with offset %u and length %u",
2447 bvec->bv_offset, bvec->bv_len);
2450 start = page_offset(page);
2451 end = start + bvec->bv_offset + bvec->bv_len - 1;
2453 end_extent_writepage(page, error, start, end);
2454 end_page_writeback(page);
2461 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2464 struct extent_state *cached = NULL;
2465 u64 end = start + len - 1;
2467 if (uptodate && tree->track_uptodate)
2468 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2469 unlock_extent_cached_atomic(tree, start, end, &cached);
2473 * after a readpage IO is done, we need to:
2474 * clear the uptodate bits on error
2475 * set the uptodate bits if things worked
2476 * set the page up to date if all extents in the tree are uptodate
2477 * clear the lock bit in the extent tree
2478 * unlock the page if there are no other extents locked for it
2480 * Scheduling is not allowed, so the extent state tree is expected
2481 * to have one and only one object corresponding to this IO.
2483 static void end_bio_extent_readpage(struct bio *bio)
2485 struct bio_vec *bvec;
2486 int uptodate = !bio->bi_status;
2487 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2488 struct extent_io_tree *tree, *failure_tree;
2493 u64 extent_start = 0;
2499 ASSERT(!bio_flagged(bio, BIO_CLONED));
2500 bio_for_each_segment_all(bvec, bio, i) {
2501 struct page *page = bvec->bv_page;
2502 struct inode *inode = page->mapping->host;
2503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2505 btrfs_debug(fs_info,
2506 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2507 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2508 io_bio->mirror_num);
2509 tree = &BTRFS_I(inode)->io_tree;
2510 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2512 /* We always issue full-page reads, but if some block
2513 * in a page fails to read, blk_update_request() will
2514 * advance bv_offset and adjust bv_len to compensate.
2515 * Print a warning for nonzero offsets, and an error
2516 * if they don't add up to a full page. */
2517 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2518 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2520 "partial page read in btrfs with offset %u and length %u",
2521 bvec->bv_offset, bvec->bv_len);
2524 "incomplete page read in btrfs with offset %u and length %u",
2525 bvec->bv_offset, bvec->bv_len);
2528 start = page_offset(page);
2529 end = start + bvec->bv_offset + bvec->bv_len - 1;
2532 mirror = io_bio->mirror_num;
2533 if (likely(uptodate && tree->ops)) {
2534 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2540 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2541 failure_tree, tree, start,
2543 btrfs_ino(BTRFS_I(inode)), 0);
2546 if (likely(uptodate))
2550 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2551 if (ret == -EAGAIN) {
2553 * Data inode's readpage_io_failed_hook() always
2556 * The generic bio_readpage_error handles errors
2557 * the following way: If possible, new read
2558 * requests are created and submitted and will
2559 * end up in end_bio_extent_readpage as well (if
2560 * we're lucky, not in the !uptodate case). In
2561 * that case it returns 0 and we just go on with
2562 * the next page in our bio. If it can't handle
2563 * the error it will return -EIO and we remain
2564 * responsible for that page.
2566 ret = bio_readpage_error(bio, offset, page,
2567 start, end, mirror);
2569 uptodate = !bio->bi_status;
2576 * metadata's readpage_io_failed_hook() always returns
2577 * -EIO and fixes nothing. -EIO is also returned if
2578 * data inode error could not be fixed.
2580 ASSERT(ret == -EIO);
2583 if (likely(uptodate)) {
2584 loff_t i_size = i_size_read(inode);
2585 pgoff_t end_index = i_size >> PAGE_SHIFT;
2588 /* Zero out the end if this page straddles i_size */
2589 off = i_size & (PAGE_SIZE-1);
2590 if (page->index == end_index && off)
2591 zero_user_segment(page, off, PAGE_SIZE);
2592 SetPageUptodate(page);
2594 ClearPageUptodate(page);
2600 if (unlikely(!uptodate)) {
2602 endio_readpage_release_extent(tree,
2608 endio_readpage_release_extent(tree, start,
2609 end - start + 1, 0);
2610 } else if (!extent_len) {
2611 extent_start = start;
2612 extent_len = end + 1 - start;
2613 } else if (extent_start + extent_len == start) {
2614 extent_len += end + 1 - start;
2616 endio_readpage_release_extent(tree, extent_start,
2617 extent_len, uptodate);
2618 extent_start = start;
2619 extent_len = end + 1 - start;
2624 endio_readpage_release_extent(tree, extent_start, extent_len,
2627 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2632 * Initialize the members up to but not including 'bio'. Use after allocating a
2633 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2634 * 'bio' because use of __GFP_ZERO is not supported.
2636 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2638 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2642 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2643 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2644 * for the appropriate container_of magic
2646 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2650 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2651 bio_set_dev(bio, bdev);
2652 bio->bi_iter.bi_sector = first_byte >> 9;
2653 btrfs_io_bio_init(btrfs_io_bio(bio));
2657 struct bio *btrfs_bio_clone(struct bio *bio)
2659 struct btrfs_io_bio *btrfs_bio;
2662 /* Bio allocation backed by a bioset does not fail */
2663 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2664 btrfs_bio = btrfs_io_bio(new);
2665 btrfs_io_bio_init(btrfs_bio);
2666 btrfs_bio->iter = bio->bi_iter;
2670 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2674 /* Bio allocation backed by a bioset does not fail */
2675 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2676 btrfs_io_bio_init(btrfs_io_bio(bio));
2680 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2683 struct btrfs_io_bio *btrfs_bio;
2685 /* this will never fail when it's backed by a bioset */
2686 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2689 btrfs_bio = btrfs_io_bio(bio);
2690 btrfs_io_bio_init(btrfs_bio);
2692 bio_trim(bio, offset >> 9, size >> 9);
2693 btrfs_bio->iter = bio->bi_iter;
2697 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2698 unsigned long bio_flags)
2700 blk_status_t ret = 0;
2701 struct bio_vec *bvec = bio_last_bvec_all(bio);
2702 struct page *page = bvec->bv_page;
2703 struct extent_io_tree *tree = bio->bi_private;
2706 start = page_offset(page) + bvec->bv_offset;
2708 bio->bi_private = NULL;
2711 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2712 mirror_num, bio_flags, start);
2714 btrfsic_submit_bio(bio);
2716 return blk_status_to_errno(ret);
2720 * @opf: bio REQ_OP_* and REQ_* flags as one value
2721 * @tree: tree so we can call our merge_bio hook
2722 * @wbc: optional writeback control for io accounting
2723 * @page: page to add to the bio
2724 * @pg_offset: offset of the new bio or to check whether we are adding
2725 * a contiguous page to the previous one
2726 * @size: portion of page that we want to write
2727 * @offset: starting offset in the page
2728 * @bdev: attach newly created bios to this bdev
2729 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2730 * @end_io_func: end_io callback for new bio
2731 * @mirror_num: desired mirror to read/write
2732 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2733 * @bio_flags: flags of the current bio to see if we can merge them
2735 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2736 struct writeback_control *wbc,
2737 struct page *page, u64 offset,
2738 size_t size, unsigned long pg_offset,
2739 struct block_device *bdev,
2740 struct bio **bio_ret,
2741 bio_end_io_t end_io_func,
2743 unsigned long prev_bio_flags,
2744 unsigned long bio_flags,
2745 bool force_bio_submit)
2749 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2750 sector_t sector = offset >> 9;
2756 bool can_merge = true;
2759 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2760 contig = bio->bi_iter.bi_sector == sector;
2762 contig = bio_end_sector(bio) == sector;
2764 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2768 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2770 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2771 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2779 wbc_account_io(wbc, page, page_size);
2784 bio = btrfs_bio_alloc(bdev, offset);
2785 bio_add_page(bio, page, page_size, pg_offset);
2786 bio->bi_end_io = end_io_func;
2787 bio->bi_private = tree;
2788 bio->bi_write_hint = page->mapping->host->i_write_hint;
2791 wbc_init_bio(wbc, bio);
2792 wbc_account_io(wbc, page, page_size);
2800 static void attach_extent_buffer_page(struct extent_buffer *eb,
2803 if (!PagePrivate(page)) {
2804 SetPagePrivate(page);
2806 set_page_private(page, (unsigned long)eb);
2808 WARN_ON(page->private != (unsigned long)eb);
2812 void set_page_extent_mapped(struct page *page)
2814 if (!PagePrivate(page)) {
2815 SetPagePrivate(page);
2817 set_page_private(page, EXTENT_PAGE_PRIVATE);
2821 static struct extent_map *
2822 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2823 u64 start, u64 len, get_extent_t *get_extent,
2824 struct extent_map **em_cached)
2826 struct extent_map *em;
2828 if (em_cached && *em_cached) {
2830 if (extent_map_in_tree(em) && start >= em->start &&
2831 start < extent_map_end(em)) {
2832 refcount_inc(&em->refs);
2836 free_extent_map(em);
2840 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2841 if (em_cached && !IS_ERR_OR_NULL(em)) {
2843 refcount_inc(&em->refs);
2849 * basic readpage implementation. Locked extent state structs are inserted
2850 * into the tree that are removed when the IO is done (by the end_io
2852 * XXX JDM: This needs looking at to ensure proper page locking
2853 * return 0 on success, otherwise return error
2855 static int __do_readpage(struct extent_io_tree *tree,
2857 get_extent_t *get_extent,
2858 struct extent_map **em_cached,
2859 struct bio **bio, int mirror_num,
2860 unsigned long *bio_flags, unsigned int read_flags,
2863 struct inode *inode = page->mapping->host;
2864 u64 start = page_offset(page);
2865 const u64 end = start + PAGE_SIZE - 1;
2868 u64 last_byte = i_size_read(inode);
2871 struct extent_map *em;
2872 struct block_device *bdev;
2875 size_t pg_offset = 0;
2877 size_t disk_io_size;
2878 size_t blocksize = inode->i_sb->s_blocksize;
2879 unsigned long this_bio_flag = 0;
2881 set_page_extent_mapped(page);
2883 if (!PageUptodate(page)) {
2884 if (cleancache_get_page(page) == 0) {
2885 BUG_ON(blocksize != PAGE_SIZE);
2886 unlock_extent(tree, start, end);
2891 if (page->index == last_byte >> PAGE_SHIFT) {
2893 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2896 iosize = PAGE_SIZE - zero_offset;
2897 userpage = kmap_atomic(page);
2898 memset(userpage + zero_offset, 0, iosize);
2899 flush_dcache_page(page);
2900 kunmap_atomic(userpage);
2903 while (cur <= end) {
2904 bool force_bio_submit = false;
2907 if (cur >= last_byte) {
2909 struct extent_state *cached = NULL;
2911 iosize = PAGE_SIZE - pg_offset;
2912 userpage = kmap_atomic(page);
2913 memset(userpage + pg_offset, 0, iosize);
2914 flush_dcache_page(page);
2915 kunmap_atomic(userpage);
2916 set_extent_uptodate(tree, cur, cur + iosize - 1,
2918 unlock_extent_cached(tree, cur,
2919 cur + iosize - 1, &cached);
2922 em = __get_extent_map(inode, page, pg_offset, cur,
2923 end - cur + 1, get_extent, em_cached);
2924 if (IS_ERR_OR_NULL(em)) {
2926 unlock_extent(tree, cur, end);
2929 extent_offset = cur - em->start;
2930 BUG_ON(extent_map_end(em) <= cur);
2933 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2934 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2935 extent_set_compress_type(&this_bio_flag,
2939 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2940 cur_end = min(extent_map_end(em) - 1, end);
2941 iosize = ALIGN(iosize, blocksize);
2942 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2943 disk_io_size = em->block_len;
2944 offset = em->block_start;
2946 offset = em->block_start + extent_offset;
2947 disk_io_size = iosize;
2950 block_start = em->block_start;
2951 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2952 block_start = EXTENT_MAP_HOLE;
2955 * If we have a file range that points to a compressed extent
2956 * and it's followed by a consecutive file range that points to
2957 * to the same compressed extent (possibly with a different
2958 * offset and/or length, so it either points to the whole extent
2959 * or only part of it), we must make sure we do not submit a
2960 * single bio to populate the pages for the 2 ranges because
2961 * this makes the compressed extent read zero out the pages
2962 * belonging to the 2nd range. Imagine the following scenario:
2965 * [0 - 8K] [8K - 24K]
2968 * points to extent X, points to extent X,
2969 * offset 4K, length of 8K offset 0, length 16K
2971 * [extent X, compressed length = 4K uncompressed length = 16K]
2973 * If the bio to read the compressed extent covers both ranges,
2974 * it will decompress extent X into the pages belonging to the
2975 * first range and then it will stop, zeroing out the remaining
2976 * pages that belong to the other range that points to extent X.
2977 * So here we make sure we submit 2 bios, one for the first
2978 * range and another one for the third range. Both will target
2979 * the same physical extent from disk, but we can't currently
2980 * make the compressed bio endio callback populate the pages
2981 * for both ranges because each compressed bio is tightly
2982 * coupled with a single extent map, and each range can have
2983 * an extent map with a different offset value relative to the
2984 * uncompressed data of our extent and different lengths. This
2985 * is a corner case so we prioritize correctness over
2986 * non-optimal behavior (submitting 2 bios for the same extent).
2988 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2989 prev_em_start && *prev_em_start != (u64)-1 &&
2990 *prev_em_start != em->orig_start)
2991 force_bio_submit = true;
2994 *prev_em_start = em->orig_start;
2996 free_extent_map(em);
2999 /* we've found a hole, just zero and go on */
3000 if (block_start == EXTENT_MAP_HOLE) {
3002 struct extent_state *cached = NULL;
3004 userpage = kmap_atomic(page);
3005 memset(userpage + pg_offset, 0, iosize);
3006 flush_dcache_page(page);
3007 kunmap_atomic(userpage);
3009 set_extent_uptodate(tree, cur, cur + iosize - 1,
3011 unlock_extent_cached(tree, cur,
3012 cur + iosize - 1, &cached);
3014 pg_offset += iosize;
3017 /* the get_extent function already copied into the page */
3018 if (test_range_bit(tree, cur, cur_end,
3019 EXTENT_UPTODATE, 1, NULL)) {
3020 check_page_uptodate(tree, page);
3021 unlock_extent(tree, cur, cur + iosize - 1);
3023 pg_offset += iosize;
3026 /* we have an inline extent but it didn't get marked up
3027 * to date. Error out
3029 if (block_start == EXTENT_MAP_INLINE) {
3031 unlock_extent(tree, cur, cur + iosize - 1);
3033 pg_offset += iosize;
3037 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3038 page, offset, disk_io_size,
3039 pg_offset, bdev, bio,
3040 end_bio_extent_readpage, mirror_num,
3046 *bio_flags = this_bio_flag;
3049 unlock_extent(tree, cur, cur + iosize - 1);
3053 pg_offset += iosize;
3057 if (!PageError(page))
3058 SetPageUptodate(page);
3064 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3065 struct page *pages[], int nr_pages,
3067 struct extent_map **em_cached,
3069 unsigned long *bio_flags,
3072 struct inode *inode;
3073 struct btrfs_ordered_extent *ordered;
3076 inode = pages[0]->mapping->host;
3078 lock_extent(tree, start, end);
3079 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3083 unlock_extent(tree, start, end);
3084 btrfs_start_ordered_extent(inode, ordered, 1);
3085 btrfs_put_ordered_extent(ordered);
3088 for (index = 0; index < nr_pages; index++) {
3089 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3090 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3091 put_page(pages[index]);
3095 static void __extent_readpages(struct extent_io_tree *tree,
3096 struct page *pages[],
3098 struct extent_map **em_cached,
3099 struct bio **bio, unsigned long *bio_flags,
3106 int first_index = 0;
3108 for (index = 0; index < nr_pages; index++) {
3109 page_start = page_offset(pages[index]);
3112 end = start + PAGE_SIZE - 1;
3113 first_index = index;
3114 } else if (end + 1 == page_start) {
3117 __do_contiguous_readpages(