2ccc8d93d93e71738ba16d0319a8896a1b13ef1b
[sfrench/cifs-2.6.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33         return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(&leak_lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(&leak_lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65         struct extent_state *state;
66         struct extent_buffer *eb;
67
68         while (!list_empty(&states)) {
69                 state = list_entry(states.next, struct extent_state, leak_list);
70                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71                        state->start, state->end, state->state,
72                        extent_state_in_tree(state),
73                        refcount_read(&state->refs));
74                 list_del(&state->leak_list);
75                 kmem_cache_free(extent_state_cache, state);
76         }
77
78         while (!list_empty(&buffers)) {
79                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
88         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90                 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92         struct inode *inode = tree->private_data;
93         u64 isize;
94
95         if (!inode || !is_data_inode(inode))
96                 return;
97
98         isize = i_size_read(inode);
99         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
102                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103         }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry)     do {} while (0)
108 #define btrfs_leak_debug_check()        do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
110 #endif
111
112 #define BUFFER_LRU_MAX 64
113
114 struct tree_entry {
115         u64 start;
116         u64 end;
117         struct rb_node rb_node;
118 };
119
120 struct extent_page_data {
121         struct bio *bio;
122         struct extent_io_tree *tree;
123         /* tells writepage not to lock the state bits for this range
124          * it still does the unlocking
125          */
126         unsigned int extent_locked:1;
127
128         /* tells the submit_bio code to use REQ_SYNC */
129         unsigned int sync_io:1;
130 };
131
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133                                  struct extent_changeset *changeset,
134                                  int set)
135 {
136         int ret;
137
138         if (!changeset)
139                 return 0;
140         if (set && (state->state & bits) == bits)
141                 return 0;
142         if (!set && (state->state & bits) == 0)
143                 return 0;
144         changeset->bytes_changed += state->end - state->start + 1;
145         ret = ulist_add(&changeset->range_changed, state->start, state->end,
146                         GFP_ATOMIC);
147         return ret;
148 }
149
150 static void flush_write_bio(struct extent_page_data *epd);
151
152 int __init extent_io_init(void)
153 {
154         extent_state_cache = kmem_cache_create("btrfs_extent_state",
155                         sizeof(struct extent_state), 0,
156                         SLAB_MEM_SPREAD, NULL);
157         if (!extent_state_cache)
158                 return -ENOMEM;
159
160         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161                         sizeof(struct extent_buffer), 0,
162                         SLAB_MEM_SPREAD, NULL);
163         if (!extent_buffer_cache)
164                 goto free_state_cache;
165
166         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167                         offsetof(struct btrfs_io_bio, bio),
168                         BIOSET_NEED_BVECS))
169                 goto free_buffer_cache;
170
171         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
172                 goto free_bioset;
173
174         return 0;
175
176 free_bioset:
177         bioset_exit(&btrfs_bioset);
178
179 free_buffer_cache:
180         kmem_cache_destroy(extent_buffer_cache);
181         extent_buffer_cache = NULL;
182
183 free_state_cache:
184         kmem_cache_destroy(extent_state_cache);
185         extent_state_cache = NULL;
186         return -ENOMEM;
187 }
188
189 void __cold extent_io_exit(void)
190 {
191         btrfs_leak_debug_check();
192
193         /*
194          * Make sure all delayed rcu free are flushed before we
195          * destroy caches.
196          */
197         rcu_barrier();
198         kmem_cache_destroy(extent_state_cache);
199         kmem_cache_destroy(extent_buffer_cache);
200         bioset_exit(&btrfs_bioset);
201 }
202
203 void extent_io_tree_init(struct extent_io_tree *tree,
204                          void *private_data)
205 {
206         tree->state = RB_ROOT;
207         tree->ops = NULL;
208         tree->dirty_bytes = 0;
209         spin_lock_init(&tree->lock);
210         tree->private_data = private_data;
211 }
212
213 static struct extent_state *alloc_extent_state(gfp_t mask)
214 {
215         struct extent_state *state;
216
217         /*
218          * The given mask might be not appropriate for the slab allocator,
219          * drop the unsupported bits
220          */
221         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
222         state = kmem_cache_alloc(extent_state_cache, mask);
223         if (!state)
224                 return state;
225         state->state = 0;
226         state->failrec = NULL;
227         RB_CLEAR_NODE(&state->rb_node);
228         btrfs_leak_debug_add(&state->leak_list, &states);
229         refcount_set(&state->refs, 1);
230         init_waitqueue_head(&state->wq);
231         trace_alloc_extent_state(state, mask, _RET_IP_);
232         return state;
233 }
234
235 void free_extent_state(struct extent_state *state)
236 {
237         if (!state)
238                 return;
239         if (refcount_dec_and_test(&state->refs)) {
240                 WARN_ON(extent_state_in_tree(state));
241                 btrfs_leak_debug_del(&state->leak_list);
242                 trace_free_extent_state(state, _RET_IP_);
243                 kmem_cache_free(extent_state_cache, state);
244         }
245 }
246
247 static struct rb_node *tree_insert(struct rb_root *root,
248                                    struct rb_node *search_start,
249                                    u64 offset,
250                                    struct rb_node *node,
251                                    struct rb_node ***p_in,
252                                    struct rb_node **parent_in)
253 {
254         struct rb_node **p;
255         struct rb_node *parent = NULL;
256         struct tree_entry *entry;
257
258         if (p_in && parent_in) {
259                 p = *p_in;
260                 parent = *parent_in;
261                 goto do_insert;
262         }
263
264         p = search_start ? &search_start : &root->rb_node;
265         while (*p) {
266                 parent = *p;
267                 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269                 if (offset < entry->start)
270                         p = &(*p)->rb_left;
271                 else if (offset > entry->end)
272                         p = &(*p)->rb_right;
273                 else
274                         return parent;
275         }
276
277 do_insert:
278         rb_link_node(node, parent, p);
279         rb_insert_color(node, root);
280         return NULL;
281 }
282
283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
284                                       struct rb_node **prev_ret,
285                                       struct rb_node **next_ret,
286                                       struct rb_node ***p_ret,
287                                       struct rb_node **parent_ret)
288 {
289         struct rb_root *root = &tree->state;
290         struct rb_node **n = &root->rb_node;
291         struct rb_node *prev = NULL;
292         struct rb_node *orig_prev = NULL;
293         struct tree_entry *entry;
294         struct tree_entry *prev_entry = NULL;
295
296         while (*n) {
297                 prev = *n;
298                 entry = rb_entry(prev, struct tree_entry, rb_node);
299                 prev_entry = entry;
300
301                 if (offset < entry->start)
302                         n = &(*n)->rb_left;
303                 else if (offset > entry->end)
304                         n = &(*n)->rb_right;
305                 else
306                         return *n;
307         }
308
309         if (p_ret)
310                 *p_ret = n;
311         if (parent_ret)
312                 *parent_ret = prev;
313
314         if (prev_ret) {
315                 orig_prev = prev;
316                 while (prev && offset > prev_entry->end) {
317                         prev = rb_next(prev);
318                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319                 }
320                 *prev_ret = prev;
321                 prev = orig_prev;
322         }
323
324         if (next_ret) {
325                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 while (prev && offset < prev_entry->start) {
327                         prev = rb_prev(prev);
328                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329                 }
330                 *next_ret = prev;
331         }
332         return NULL;
333 }
334
335 static inline struct rb_node *
336 tree_search_for_insert(struct extent_io_tree *tree,
337                        u64 offset,
338                        struct rb_node ***p_ret,
339                        struct rb_node **parent_ret)
340 {
341         struct rb_node *prev = NULL;
342         struct rb_node *ret;
343
344         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
345         if (!ret)
346                 return prev;
347         return ret;
348 }
349
350 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351                                           u64 offset)
352 {
353         return tree_search_for_insert(tree, offset, NULL, NULL);
354 }
355
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static void merge_state(struct extent_io_tree *tree,
366                         struct extent_state *state)
367 {
368         struct extent_state *other;
369         struct rb_node *other_node;
370
371         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
372                 return;
373
374         other_node = rb_prev(&state->rb_node);
375         if (other_node) {
376                 other = rb_entry(other_node, struct extent_state, rb_node);
377                 if (other->end == state->start - 1 &&
378                     other->state == state->state) {
379                         if (tree->private_data &&
380                             is_data_inode(tree->private_data))
381                                 btrfs_merge_delalloc_extent(tree->private_data,
382                                                             state, other);
383                         state->start = other->start;
384                         rb_erase(&other->rb_node, &tree->state);
385                         RB_CLEAR_NODE(&other->rb_node);
386                         free_extent_state(other);
387                 }
388         }
389         other_node = rb_next(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->start == state->end + 1 &&
393                     other->state == state->state) {
394                         if (tree->private_data &&
395                             is_data_inode(tree->private_data))
396                                 btrfs_merge_delalloc_extent(tree->private_data,
397                                                             state, other);
398                         state->end = other->end;
399                         rb_erase(&other->rb_node, &tree->state);
400                         RB_CLEAR_NODE(&other->rb_node);
401                         free_extent_state(other);
402                 }
403         }
404 }
405
406 static void set_state_bits(struct extent_io_tree *tree,
407                            struct extent_state *state, unsigned *bits,
408                            struct extent_changeset *changeset);
409
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421                         struct extent_state *state, u64 start, u64 end,
422                         struct rb_node ***p,
423                         struct rb_node **parent,
424                         unsigned *bits, struct extent_changeset *changeset)
425 {
426         struct rb_node *node;
427
428         if (end < start)
429                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430                        end, start);
431         state->start = start;
432         state->end = end;
433
434         set_state_bits(tree, state, bits, changeset);
435
436         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437         if (node) {
438                 struct extent_state *found;
439                 found = rb_entry(node, struct extent_state, rb_node);
440                 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
441                        found->start, found->end, start, end);
442                 return -EEXIST;
443         }
444         merge_state(tree, state);
445         return 0;
446 }
447
448 /*
449  * split a given extent state struct in two, inserting the preallocated
450  * struct 'prealloc' as the newly created second half.  'split' indicates an
451  * offset inside 'orig' where it should be split.
452  *
453  * Before calling,
454  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
455  * are two extent state structs in the tree:
456  * prealloc: [orig->start, split - 1]
457  * orig: [ split, orig->end ]
458  *
459  * The tree locks are not taken by this function. They need to be held
460  * by the caller.
461  */
462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463                        struct extent_state *prealloc, u64 split)
464 {
465         struct rb_node *node;
466
467         if (tree->private_data && is_data_inode(tree->private_data))
468                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
469
470         prealloc->start = orig->start;
471         prealloc->end = split - 1;
472         prealloc->state = orig->state;
473         orig->start = split;
474
475         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476                            &prealloc->rb_node, NULL, NULL);
477         if (node) {
478                 free_extent_state(prealloc);
479                 return -EEXIST;
480         }
481         return 0;
482 }
483
484 static struct extent_state *next_state(struct extent_state *state)
485 {
486         struct rb_node *next = rb_next(&state->rb_node);
487         if (next)
488                 return rb_entry(next, struct extent_state, rb_node);
489         else
490                 return NULL;
491 }
492
493 /*
494  * utility function to clear some bits in an extent state struct.
495  * it will optionally wake up any one waiting on this state (wake == 1).
496  *
497  * If no bits are set on the state struct after clearing things, the
498  * struct is freed and removed from the tree
499  */
500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501                                             struct extent_state *state,
502                                             unsigned *bits, int wake,
503                                             struct extent_changeset *changeset)
504 {
505         struct extent_state *next;
506         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
507         int ret;
508
509         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
510                 u64 range = state->end - state->start + 1;
511                 WARN_ON(range > tree->dirty_bytes);
512                 tree->dirty_bytes -= range;
513         }
514
515         if (tree->private_data && is_data_inode(tree->private_data))
516                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
518         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519         BUG_ON(ret < 0);
520         state->state &= ~bits_to_clear;
521         if (wake)
522                 wake_up(&state->wq);
523         if (state->state == 0) {
524                 next = next_state(state);
525                 if (extent_state_in_tree(state)) {
526                         rb_erase(&state->rb_node, &tree->state);
527                         RB_CLEAR_NODE(&state->rb_node);
528                         free_extent_state(state);
529                 } else {
530                         WARN_ON(1);
531                 }
532         } else {
533                 merge_state(tree, state);
534                 next = next_state(state);
535         }
536         return next;
537 }
538
539 static struct extent_state *
540 alloc_extent_state_atomic(struct extent_state *prealloc)
541 {
542         if (!prealloc)
543                 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545         return prealloc;
546 }
547
548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
549 {
550         struct inode *inode = tree->private_data;
551
552         btrfs_panic(btrfs_sb(inode->i_sb), err,
553         "locking error: extent tree was modified by another thread while locked");
554 }
555
556 /*
557  * clear some bits on a range in the tree.  This may require splitting
558  * or inserting elements in the tree, so the gfp mask is used to
559  * indicate which allocations or sleeping are allowed.
560  *
561  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562  * the given range from the tree regardless of state (ie for truncate).
563  *
564  * the range [start, end] is inclusive.
565  *
566  * This takes the tree lock, and returns 0 on success and < 0 on error.
567  */
568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569                               unsigned bits, int wake, int delete,
570                               struct extent_state **cached_state,
571                               gfp_t mask, struct extent_changeset *changeset)
572 {
573         struct extent_state *state;
574         struct extent_state *cached;
575         struct extent_state *prealloc = NULL;
576         struct rb_node *node;
577         u64 last_end;
578         int err;
579         int clear = 0;
580
581         btrfs_debug_check_extent_io_range(tree, start, end);
582
583         if (bits & EXTENT_DELALLOC)
584                 bits |= EXTENT_NORESERVE;
585
586         if (delete)
587                 bits |= ~EXTENT_CTLBITS;
588         bits |= EXTENT_FIRST_DELALLOC;
589
590         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591                 clear = 1;
592 again:
593         if (!prealloc && gfpflags_allow_blocking(mask)) {
594                 /*
595                  * Don't care for allocation failure here because we might end
596                  * up not needing the pre-allocated extent state at all, which
597                  * is the case if we only have in the tree extent states that
598                  * cover our input range and don't cover too any other range.
599                  * If we end up needing a new extent state we allocate it later.
600                  */
601                 prealloc = alloc_extent_state(mask);
602         }
603
604         spin_lock(&tree->lock);
605         if (cached_state) {
606                 cached = *cached_state;
607
608                 if (clear) {
609                         *cached_state = NULL;
610                         cached_state = NULL;
611                 }
612
613                 if (cached && extent_state_in_tree(cached) &&
614                     cached->start <= start && cached->end > start) {
615                         if (clear)
616                                 refcount_dec(&cached->refs);
617                         state = cached;
618                         goto hit_next;
619                 }
620                 if (clear)
621                         free_extent_state(cached);
622         }
623         /*
624          * this search will find the extents that end after
625          * our range starts
626          */
627         node = tree_search(tree, start);
628         if (!node)
629                 goto out;
630         state = rb_entry(node, struct extent_state, rb_node);
631 hit_next:
632         if (state->start > end)
633                 goto out;
634         WARN_ON(state->end < start);
635         last_end = state->end;
636
637         /* the state doesn't have the wanted bits, go ahead */
638         if (!(state->state & bits)) {
639                 state = next_state(state);
640                 goto next;
641         }
642
643         /*
644          *     | ---- desired range ---- |
645          *  | state | or
646          *  | ------------- state -------------- |
647          *
648          * We need to split the extent we found, and may flip
649          * bits on second half.
650          *
651          * If the extent we found extends past our range, we
652          * just split and search again.  It'll get split again
653          * the next time though.
654          *
655          * If the extent we found is inside our range, we clear
656          * the desired bit on it.
657          */
658
659         if (state->start < start) {
660                 prealloc = alloc_extent_state_atomic(prealloc);
661                 BUG_ON(!prealloc);
662                 err = split_state(tree, state, prealloc, start);
663                 if (err)
664                         extent_io_tree_panic(tree, err);
665
666                 prealloc = NULL;
667                 if (err)
668                         goto out;
669                 if (state->end <= end) {
670                         state = clear_state_bit(tree, state, &bits, wake,
671                                                 changeset);
672                         goto next;
673                 }
674                 goto search_again;
675         }
676         /*
677          * | ---- desired range ---- |
678          *                        | state |
679          * We need to split the extent, and clear the bit
680          * on the first half
681          */
682         if (state->start <= end && state->end > end) {
683                 prealloc = alloc_extent_state_atomic(prealloc);
684                 BUG_ON(!prealloc);
685                 err = split_state(tree, state, prealloc, end + 1);
686                 if (err)
687                         extent_io_tree_panic(tree, err);
688
689                 if (wake)
690                         wake_up(&state->wq);
691
692                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
693
694                 prealloc = NULL;
695                 goto out;
696         }
697
698         state = clear_state_bit(tree, state, &bits, wake, changeset);
699 next:
700         if (last_end == (u64)-1)
701                 goto out;
702         start = last_end + 1;
703         if (start <= end && state && !need_resched())
704                 goto hit_next;
705
706 search_again:
707         if (start > end)
708                 goto out;
709         spin_unlock(&tree->lock);
710         if (gfpflags_allow_blocking(mask))
711                 cond_resched();
712         goto again;
713
714 out:
715         spin_unlock(&tree->lock);
716         if (prealloc)
717                 free_extent_state(prealloc);
718
719         return 0;
720
721 }
722
723 static void wait_on_state(struct extent_io_tree *tree,
724                           struct extent_state *state)
725                 __releases(tree->lock)
726                 __acquires(tree->lock)
727 {
728         DEFINE_WAIT(wait);
729         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
730         spin_unlock(&tree->lock);
731         schedule();
732         spin_lock(&tree->lock);
733         finish_wait(&state->wq, &wait);
734 }
735
736 /*
737  * waits for one or more bits to clear on a range in the state tree.
738  * The range [start, end] is inclusive.
739  * The tree lock is taken by this function
740  */
741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742                             unsigned long bits)
743 {
744         struct extent_state *state;
745         struct rb_node *node;
746
747         btrfs_debug_check_extent_io_range(tree, start, end);
748
749         spin_lock(&tree->lock);
750 again:
751         while (1) {
752                 /*
753                  * this search will find all the extents that end after
754                  * our range starts
755                  */
756                 node = tree_search(tree, start);
757 process_node:
758                 if (!node)
759                         break;
760
761                 state = rb_entry(node, struct extent_state, rb_node);
762
763                 if (state->start > end)
764                         goto out;
765
766                 if (state->state & bits) {
767                         start = state->start;
768                         refcount_inc(&state->refs);
769                         wait_on_state(tree, state);
770                         free_extent_state(state);
771                         goto again;
772                 }
773                 start = state->end + 1;
774
775                 if (start > end)
776                         break;
777
778                 if (!cond_resched_lock(&tree->lock)) {
779                         node = rb_next(node);
780                         goto process_node;
781                 }
782         }
783 out:
784         spin_unlock(&tree->lock);
785 }
786
787 static void set_state_bits(struct extent_io_tree *tree,
788                            struct extent_state *state,
789                            unsigned *bits, struct extent_changeset *changeset)
790 {
791         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
792         int ret;
793
794         if (tree->private_data && is_data_inode(tree->private_data))
795                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
796
797         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798                 u64 range = state->end - state->start + 1;
799                 tree->dirty_bytes += range;
800         }
801         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802         BUG_ON(ret < 0);
803         state->state |= bits_to_set;
804 }
805
806 static void cache_state_if_flags(struct extent_state *state,
807                                  struct extent_state **cached_ptr,
808                                  unsigned flags)
809 {
810         if (cached_ptr && !(*cached_ptr)) {
811                 if (!flags || (state->state & flags)) {
812                         *cached_ptr = state;
813                         refcount_inc(&state->refs);
814                 }
815         }
816 }
817
818 static void cache_state(struct extent_state *state,
819                         struct extent_state **cached_ptr)
820 {
821         return cache_state_if_flags(state, cached_ptr,
822                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
823 }
824
825 /*
826  * set some bits on a range in the tree.  This may require allocations or
827  * sleeping, so the gfp mask is used to indicate what is allowed.
828  *
829  * If any of the exclusive bits are set, this will fail with -EEXIST if some
830  * part of the range already has the desired bits set.  The start of the
831  * existing range is returned in failed_start in this case.
832  *
833  * [start, end] is inclusive This takes the tree lock.
834  */
835
836 static int __must_check
837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
838                  unsigned bits, unsigned exclusive_bits,
839                  u64 *failed_start, struct extent_state **cached_state,
840                  gfp_t mask, struct extent_changeset *changeset)
841 {
842         struct extent_state *state;
843         struct extent_state *prealloc = NULL;
844         struct rb_node *node;
845         struct rb_node **p;
846         struct rb_node *parent;
847         int err = 0;
848         u64 last_start;
849         u64 last_end;
850
851         btrfs_debug_check_extent_io_range(tree, start, end);
852
853         bits |= EXTENT_FIRST_DELALLOC;
854 again:
855         if (!prealloc && gfpflags_allow_blocking(mask)) {
856                 /*
857                  * Don't care for allocation failure here because we might end
858                  * up not needing the pre-allocated extent state at all, which
859                  * is the case if we only have in the tree extent states that
860                  * cover our input range and don't cover too any other range.
861                  * If we end up needing a new extent state we allocate it later.
862                  */
863                 prealloc = alloc_extent_state(mask);
864         }
865
866         spin_lock(&tree->lock);
867         if (cached_state && *cached_state) {
868                 state = *cached_state;
869                 if (state->start <= start && state->end > start &&
870                     extent_state_in_tree(state)) {
871                         node = &state->rb_node;
872                         goto hit_next;
873                 }
874         }
875         /*
876          * this search will find all the extents that end after
877          * our range starts.
878          */
879         node = tree_search_for_insert(tree, start, &p, &parent);
880         if (!node) {
881                 prealloc = alloc_extent_state_atomic(prealloc);
882                 BUG_ON(!prealloc);
883                 err = insert_state(tree, prealloc, start, end,
884                                    &p, &parent, &bits, changeset);
885                 if (err)
886                         extent_io_tree_panic(tree, err);
887
888                 cache_state(prealloc, cached_state);
889                 prealloc = NULL;
890                 goto out;
891         }
892         state = rb_entry(node, struct extent_state, rb_node);
893 hit_next:
894         last_start = state->start;
895         last_end = state->end;
896
897         /*
898          * | ---- desired range ---- |
899          * | state |
900          *
901          * Just lock what we found and keep going
902          */
903         if (state->start == start && state->end <= end) {
904                 if (state->state & exclusive_bits) {
905                         *failed_start = state->start;
906                         err = -EEXIST;
907                         goto out;
908                 }
909
910                 set_state_bits(tree, state, &bits, changeset);
911                 cache_state(state, cached_state);
912                 merge_state(tree, state);
913                 if (last_end == (u64)-1)
914                         goto out;
915                 start = last_end + 1;
916                 state = next_state(state);
917                 if (start < end && state && state->start == start &&
918                     !need_resched())
919                         goto hit_next;
920                 goto search_again;
921         }
922
923         /*
924          *     | ---- desired range ---- |
925          * | state |
926          *   or
927          * | ------------- state -------------- |
928          *
929          * We need to split the extent we found, and may flip bits on
930          * second half.
931          *
932          * If the extent we found extends past our
933          * range, we just split and search again.  It'll get split
934          * again the next time though.
935          *
936          * If the extent we found is inside our range, we set the
937          * desired bit on it.
938          */
939         if (state->start < start) {
940                 if (state->state & exclusive_bits) {
941                         *failed_start = start;
942                         err = -EEXIST;
943                         goto out;
944                 }
945
946                 prealloc = alloc_extent_state_atomic(prealloc);
947                 BUG_ON(!prealloc);
948                 err = split_state(tree, state, prealloc, start);
949                 if (err)
950                         extent_io_tree_panic(tree, err);
951
952                 prealloc = NULL;
953                 if (err)
954                         goto out;
955                 if (state->end <= end) {
956                         set_state_bits(tree, state, &bits, changeset);
957                         cache_state(state, cached_state);
958                         merge_state(tree, state);
959                         if (last_end == (u64)-1)
960                                 goto out;
961                         start = last_end + 1;
962                         state = next_state(state);
963                         if (start < end && state && state->start == start &&
964                             !need_resched())
965                                 goto hit_next;
966                 }
967                 goto search_again;
968         }
969         /*
970          * | ---- desired range ---- |
971          *     | state | or               | state |
972          *
973          * There's a hole, we need to insert something in it and
974          * ignore the extent we found.
975          */
976         if (state->start > start) {
977                 u64 this_end;
978                 if (end < last_start)
979                         this_end = end;
980                 else
981                         this_end = last_start - 1;
982
983                 prealloc = alloc_extent_state_atomic(prealloc);
984                 BUG_ON(!prealloc);
985
986                 /*
987                  * Avoid to free 'prealloc' if it can be merged with
988                  * the later extent.
989                  */
990                 err = insert_state(tree, prealloc, start, this_end,
991                                    NULL, NULL, &bits, changeset);
992                 if (err)
993                         extent_io_tree_panic(tree, err);
994
995                 cache_state(prealloc, cached_state);
996                 prealloc = NULL;
997                 start = this_end + 1;
998                 goto search_again;
999         }
1000         /*
1001          * | ---- desired range ---- |
1002          *                        | state |
1003          * We need to split the extent, and set the bit
1004          * on the first half
1005          */
1006         if (state->start <= end && state->end > end) {
1007                 if (state->state & exclusive_bits) {
1008                         *failed_start = start;
1009                         err = -EEXIST;
1010                         goto out;
1011                 }
1012
1013                 prealloc = alloc_extent_state_atomic(prealloc);
1014                 BUG_ON(!prealloc);
1015                 err = split_state(tree, state, prealloc, end + 1);
1016                 if (err)
1017                         extent_io_tree_panic(tree, err);
1018
1019                 set_state_bits(tree, prealloc, &bits, changeset);
1020                 cache_state(prealloc, cached_state);
1021                 merge_state(tree, prealloc);
1022                 prealloc = NULL;
1023                 goto out;
1024         }
1025
1026 search_again:
1027         if (start > end)
1028                 goto out;
1029         spin_unlock(&tree->lock);
1030         if (gfpflags_allow_blocking(mask))
1031                 cond_resched();
1032         goto again;
1033
1034 out:
1035         spin_unlock(&tree->lock);
1036         if (prealloc)
1037                 free_extent_state(prealloc);
1038
1039         return err;
1040
1041 }
1042
1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1044                    unsigned bits, u64 * failed_start,
1045                    struct extent_state **cached_state, gfp_t mask)
1046 {
1047         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1048                                 cached_state, mask, NULL);
1049 }
1050
1051
1052 /**
1053  * convert_extent_bit - convert all bits in a given range from one bit to
1054  *                      another
1055  * @tree:       the io tree to search
1056  * @start:      the start offset in bytes
1057  * @end:        the end offset in bytes (inclusive)
1058  * @bits:       the bits to set in this range
1059  * @clear_bits: the bits to clear in this range
1060  * @cached_state:       state that we're going to cache
1061  *
1062  * This will go through and set bits for the given range.  If any states exist
1063  * already in this range they are set with the given bit and cleared of the
1064  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1065  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1066  * boundary bits like LOCK.
1067  *
1068  * All allocations are done with GFP_NOFS.
1069  */
1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1071                        unsigned bits, unsigned clear_bits,
1072                        struct extent_state **cached_state)
1073 {
1074         struct extent_state *state;
1075         struct extent_state *prealloc = NULL;
1076         struct rb_node *node;
1077         struct rb_node **p;
1078         struct rb_node *parent;
1079         int err = 0;
1080         u64 last_start;
1081         u64 last_end;
1082         bool first_iteration = true;
1083
1084         btrfs_debug_check_extent_io_range(tree, start, end);
1085
1086 again:
1087         if (!prealloc) {
1088                 /*
1089                  * Best effort, don't worry if extent state allocation fails
1090                  * here for the first iteration. We might have a cached state
1091                  * that matches exactly the target range, in which case no
1092                  * extent state allocations are needed. We'll only know this
1093                  * after locking the tree.
1094                  */
1095                 prealloc = alloc_extent_state(GFP_NOFS);
1096                 if (!prealloc && !first_iteration)
1097                         return -ENOMEM;
1098         }
1099
1100         spin_lock(&tree->lock);
1101         if (cached_state && *cached_state) {
1102                 state = *cached_state;
1103                 if (state->start <= start && state->end > start &&
1104                     extent_state_in_tree(state)) {
1105                         node = &state->rb_node;
1106                         goto hit_next;
1107                 }
1108         }
1109
1110         /*
1111          * this search will find all the extents that end after
1112          * our range starts.
1113          */
1114         node = tree_search_for_insert(tree, start, &p, &parent);
1115         if (!node) {
1116                 prealloc = alloc_extent_state_atomic(prealloc);
1117                 if (!prealloc) {
1118                         err = -ENOMEM;
1119                         goto out;
1120                 }
1121                 err = insert_state(tree, prealloc, start, end,
1122                                    &p, &parent, &bits, NULL);
1123                 if (err)
1124                         extent_io_tree_panic(tree, err);
1125                 cache_state(prealloc, cached_state);
1126                 prealloc = NULL;
1127                 goto out;
1128         }
1129         state = rb_entry(node, struct extent_state, rb_node);
1130 hit_next:
1131         last_start = state->start;
1132         last_end = state->end;
1133
1134         /*
1135          * | ---- desired range ---- |
1136          * | state |
1137          *
1138          * Just lock what we found and keep going
1139          */
1140         if (state->start == start && state->end <= end) {
1141                 set_state_bits(tree, state, &bits, NULL);
1142                 cache_state(state, cached_state);
1143                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1144                 if (last_end == (u64)-1)
1145                         goto out;
1146                 start = last_end + 1;
1147                 if (start < end && state && state->start == start &&
1148                     !need_resched())
1149                         goto hit_next;
1150                 goto search_again;
1151         }
1152
1153         /*
1154          *     | ---- desired range ---- |
1155          * | state |
1156          *   or
1157          * | ------------- state -------------- |
1158          *
1159          * We need to split the extent we found, and may flip bits on
1160          * second half.
1161          *
1162          * If the extent we found extends past our
1163          * range, we just split and search again.  It'll get split
1164          * again the next time though.
1165          *
1166          * If the extent we found is inside our range, we set the
1167          * desired bit on it.
1168          */
1169         if (state->start < start) {
1170                 prealloc = alloc_extent_state_atomic(prealloc);
1171                 if (!prealloc) {
1172                         err = -ENOMEM;
1173                         goto out;
1174                 }
1175                 err = split_state(tree, state, prealloc, start);
1176                 if (err)
1177                         extent_io_tree_panic(tree, err);
1178                 prealloc = NULL;
1179                 if (err)
1180                         goto out;
1181                 if (state->end <= end) {
1182                         set_state_bits(tree, state, &bits, NULL);
1183                         cache_state(state, cached_state);
1184                         state = clear_state_bit(tree, state, &clear_bits, 0,
1185                                                 NULL);
1186                         if (last_end == (u64)-1)
1187                                 goto out;
1188                         start = last_end + 1;
1189                         if (start < end && state && state->start == start &&
1190                             !need_resched())
1191                                 goto hit_next;
1192                 }
1193                 goto search_again;
1194         }
1195         /*
1196          * | ---- desired range ---- |
1197          *     | state | or               | state |
1198          *
1199          * There's a hole, we need to insert something in it and
1200          * ignore the extent we found.
1201          */
1202         if (state->start > start) {
1203                 u64 this_end;
1204                 if (end < last_start)
1205                         this_end = end;
1206                 else
1207                         this_end = last_start - 1;
1208
1209                 prealloc = alloc_extent_state_atomic(prealloc);
1210                 if (!prealloc) {
1211                         err = -ENOMEM;
1212                         goto out;
1213                 }
1214
1215                 /*
1216                  * Avoid to free 'prealloc' if it can be merged with
1217                  * the later extent.
1218                  */
1219                 err = insert_state(tree, prealloc, start, this_end,
1220                                    NULL, NULL, &bits, NULL);
1221                 if (err)
1222                         extent_io_tree_panic(tree, err);
1223                 cache_state(prealloc, cached_state);
1224                 prealloc = NULL;
1225                 start = this_end + 1;
1226                 goto search_again;
1227         }
1228         /*
1229          * | ---- desired range ---- |
1230          *                        | state |
1231          * We need to split the extent, and set the bit
1232          * on the first half
1233          */
1234         if (state->start <= end && state->end > end) {
1235                 prealloc = alloc_extent_state_atomic(prealloc);
1236                 if (!prealloc) {
1237                         err = -ENOMEM;
1238                         goto out;
1239                 }
1240
1241                 err = split_state(tree, state, prealloc, end + 1);
1242                 if (err)
1243                         extent_io_tree_panic(tree, err);
1244
1245                 set_state_bits(tree, prealloc, &bits, NULL);
1246                 cache_state(prealloc, cached_state);
1247                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1248                 prealloc = NULL;
1249                 goto out;
1250         }
1251
1252 search_again:
1253         if (start > end)
1254                 goto out;
1255         spin_unlock(&tree->lock);
1256         cond_resched();
1257         first_iteration = false;
1258         goto again;
1259
1260 out:
1261         spin_unlock(&tree->lock);
1262         if (prealloc)
1263                 free_extent_state(prealloc);
1264
1265         return err;
1266 }
1267
1268 /* wrappers around set/clear extent bit */
1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1270                            unsigned bits, struct extent_changeset *changeset)
1271 {
1272         /*
1273          * We don't support EXTENT_LOCKED yet, as current changeset will
1274          * record any bits changed, so for EXTENT_LOCKED case, it will
1275          * either fail with -EEXIST or changeset will record the whole
1276          * range.
1277          */
1278         BUG_ON(bits & EXTENT_LOCKED);
1279
1280         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1281                                 changeset);
1282 }
1283
1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285                      unsigned bits, int wake, int delete,
1286                      struct extent_state **cached)
1287 {
1288         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1289                                   cached, GFP_NOFS, NULL);
1290 }
1291
1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1293                 unsigned bits, struct extent_changeset *changeset)
1294 {
1295         /*
1296          * Don't support EXTENT_LOCKED case, same reason as
1297          * set_record_extent_bits().
1298          */
1299         BUG_ON(bits & EXTENT_LOCKED);
1300
1301         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1302                                   changeset);
1303 }
1304
1305 /*
1306  * either insert or lock state struct between start and end use mask to tell
1307  * us if waiting is desired.
1308  */
1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1310                      struct extent_state **cached_state)
1311 {
1312         int err;
1313         u64 failed_start;
1314
1315         while (1) {
1316                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1317                                        EXTENT_LOCKED, &failed_start,
1318                                        cached_state, GFP_NOFS, NULL);
1319                 if (err == -EEXIST) {
1320                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321                         start = failed_start;
1322                 } else
1323                         break;
1324                 WARN_ON(start > end);
1325         }
1326         return err;
1327 }
1328
1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331         int err;
1332         u64 failed_start;
1333
1334         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1335                                &failed_start, NULL, GFP_NOFS, NULL);
1336         if (err == -EEXIST) {
1337                 if (failed_start > start)
1338                         clear_extent_bit(tree, start, failed_start - 1,
1339                                          EXTENT_LOCKED, 1, 0, NULL);
1340                 return 0;
1341         }
1342         return 1;
1343 }
1344
1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1346 {
1347         unsigned long index = start >> PAGE_SHIFT;
1348         unsigned long end_index = end >> PAGE_SHIFT;
1349         struct page *page;
1350
1351         while (index <= end_index) {
1352                 page = find_get_page(inode->i_mapping, index);
1353                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354                 clear_page_dirty_for_io(page);
1355                 put_page(page);
1356                 index++;
1357         }
1358 }
1359
1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362         unsigned long index = start >> PAGE_SHIFT;
1363         unsigned long end_index = end >> PAGE_SHIFT;
1364         struct page *page;
1365
1366         while (index <= end_index) {
1367                 page = find_get_page(inode->i_mapping, index);
1368                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369                 __set_page_dirty_nobuffers(page);
1370                 account_page_redirty(page);
1371                 put_page(page);
1372                 index++;
1373         }
1374 }
1375
1376 /* find the first state struct with 'bits' set after 'start', and
1377  * return it.  tree->lock must be held.  NULL will returned if
1378  * nothing was found after 'start'
1379  */
1380 static struct extent_state *
1381 find_first_extent_bit_state(struct extent_io_tree *tree,
1382                             u64 start, unsigned bits)
1383 {
1384         struct rb_node *node;
1385         struct extent_state *state;
1386
1387         /*
1388          * this search will find all the extents that end after
1389          * our range starts.
1390          */
1391         node = tree_search(tree, start);
1392         if (!node)
1393                 goto out;
1394
1395         while (1) {
1396                 state = rb_entry(node, struct extent_state, rb_node);
1397                 if (state->end >= start && (state->state & bits))
1398                         return state;
1399
1400                 node = rb_next(node);
1401                 if (!node)
1402                         break;
1403         }
1404 out:
1405         return NULL;
1406 }
1407
1408 /*
1409  * find the first offset in the io tree with 'bits' set. zero is
1410  * returned if we find something, and *start_ret and *end_ret are
1411  * set to reflect the state struct that was found.
1412  *
1413  * If nothing was found, 1 is returned. If found something, return 0.
1414  */
1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1416                           u64 *start_ret, u64 *end_ret, unsigned bits,
1417                           struct extent_state **cached_state)
1418 {
1419         struct extent_state *state;
1420         int ret = 1;
1421
1422         spin_lock(&tree->lock);
1423         if (cached_state && *cached_state) {
1424                 state = *cached_state;
1425                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1426                         while ((state = next_state(state)) != NULL) {
1427                                 if (state->state & bits)
1428                                         goto got_it;
1429                         }
1430                         free_extent_state(*cached_state);
1431                         *cached_state = NULL;
1432                         goto out;
1433                 }
1434                 free_extent_state(*cached_state);
1435                 *cached_state = NULL;
1436         }
1437
1438         state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440         if (state) {
1441                 cache_state_if_flags(state, cached_state, 0);
1442                 *start_ret = state->start;
1443                 *end_ret = state->end;
1444                 ret = 0;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return ret;
1449 }
1450
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * 1 is returned if we find something, 0 if nothing was in the tree
1456  */
1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458                                         u64 *start, u64 *end, u64 max_bytes,
1459                                         struct extent_state **cached_state)
1460 {
1461         struct rb_node *node;
1462         struct extent_state *state;
1463         u64 cur_start = *start;
1464         u64 found = 0;
1465         u64 total_bytes = 0;
1466
1467         spin_lock(&tree->lock);
1468
1469         /*
1470          * this search will find all the extents that end after
1471          * our range starts.
1472          */
1473         node = tree_search(tree, cur_start);
1474         if (!node) {
1475                 if (!found)
1476                         *end = (u64)-1;
1477                 goto out;
1478         }
1479
1480         while (1) {
1481                 state = rb_entry(node, struct extent_state, rb_node);
1482                 if (found && (state->start != cur_start ||
1483                               (state->state & EXTENT_BOUNDARY))) {
1484                         goto out;
1485                 }
1486                 if (!(state->state & EXTENT_DELALLOC)) {
1487                         if (!found)
1488                                 *end = state->end;
1489                         goto out;
1490                 }
1491                 if (!found) {
1492                         *start = state->start;
1493                         *cached_state = state;
1494                         refcount_inc(&state->refs);
1495                 }
1496                 found++;
1497                 *end = state->end;
1498                 cur_start = state->end + 1;
1499                 node = rb_next(node);
1500                 total_bytes += state->end - state->start + 1;
1501                 if (total_bytes >= max_bytes)
1502                         break;
1503                 if (!node)
1504                         break;
1505         }
1506 out:
1507         spin_unlock(&tree->lock);
1508         return found;
1509 }
1510
1511 static int __process_pages_contig(struct address_space *mapping,
1512                                   struct page *locked_page,
1513                                   pgoff_t start_index, pgoff_t end_index,
1514                                   unsigned long page_ops, pgoff_t *index_ret);
1515
1516 static noinline void __unlock_for_delalloc(struct inode *inode,
1517                                            struct page *locked_page,
1518                                            u64 start, u64 end)
1519 {
1520         unsigned long index = start >> PAGE_SHIFT;
1521         unsigned long end_index = end >> PAGE_SHIFT;
1522
1523         ASSERT(locked_page);
1524         if (index == locked_page->index && end_index == index)
1525                 return;
1526
1527         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1528                                PAGE_UNLOCK, NULL);
1529 }
1530
1531 static noinline int lock_delalloc_pages(struct inode *inode,
1532                                         struct page *locked_page,
1533                                         u64 delalloc_start,
1534                                         u64 delalloc_end)
1535 {
1536         unsigned long index = delalloc_start >> PAGE_SHIFT;
1537         unsigned long index_ret = index;
1538         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1539         int ret;
1540
1541         ASSERT(locked_page);
1542         if (index == locked_page->index && index == end_index)
1543                 return 0;
1544
1545         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1546                                      end_index, PAGE_LOCK, &index_ret);
1547         if (ret == -EAGAIN)
1548                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1549                                       (u64)index_ret << PAGE_SHIFT);
1550         return ret;
1551 }
1552
1553 /*
1554  * find a contiguous range of bytes in the file marked as delalloc, not
1555  * more than 'max_bytes'.  start and end are used to return the range,
1556  *
1557  * 1 is returned if we find something, 0 if nothing was in the tree
1558  */
1559 static noinline_for_stack u64 find_lock_delalloc_range(struct inode *inode,
1560                                     struct extent_io_tree *tree,
1561                                     struct page *locked_page, u64 *start,
1562                                     u64 *end, u64 max_bytes)
1563 {
1564         u64 delalloc_start;
1565         u64 delalloc_end;
1566         u64 found;
1567         struct extent_state *cached_state = NULL;
1568         int ret;
1569         int loops = 0;
1570
1571 again:
1572         /* step one, find a bunch of delalloc bytes starting at start */
1573         delalloc_start = *start;
1574         delalloc_end = 0;
1575         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1576                                     max_bytes, &cached_state);
1577         if (!found || delalloc_end <= *start) {
1578                 *start = delalloc_start;
1579                 *end = delalloc_end;
1580                 free_extent_state(cached_state);
1581                 return 0;
1582         }
1583
1584         /*
1585          * start comes from the offset of locked_page.  We have to lock
1586          * pages in order, so we can't process delalloc bytes before
1587          * locked_page
1588          */
1589         if (delalloc_start < *start)
1590                 delalloc_start = *start;
1591
1592         /*
1593          * make sure to limit the number of pages we try to lock down
1594          */
1595         if (delalloc_end + 1 - delalloc_start > max_bytes)
1596                 delalloc_end = delalloc_start + max_bytes - 1;
1597
1598         /* step two, lock all the pages after the page that has start */
1599         ret = lock_delalloc_pages(inode, locked_page,
1600                                   delalloc_start, delalloc_end);
1601         if (ret == -EAGAIN) {
1602                 /* some of the pages are gone, lets avoid looping by
1603                  * shortening the size of the delalloc range we're searching
1604                  */
1605                 free_extent_state(cached_state);
1606                 cached_state = NULL;
1607                 if (!loops) {
1608                         max_bytes = PAGE_SIZE;
1609                         loops = 1;
1610                         goto again;
1611                 } else {
1612                         found = 0;
1613                         goto out_failed;
1614                 }
1615         }
1616         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1617
1618         /* step three, lock the state bits for the whole range */
1619         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1620
1621         /* then test to make sure it is all still delalloc */
1622         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1623                              EXTENT_DELALLOC, 1, cached_state);
1624         if (!ret) {
1625                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1626                                      &cached_state);
1627                 __unlock_for_delalloc(inode, locked_page,
1628                               delalloc_start, delalloc_end);
1629                 cond_resched();
1630                 goto again;
1631         }
1632         free_extent_state(cached_state);
1633         *start = delalloc_start;
1634         *end = delalloc_end;
1635 out_failed:
1636         return found;
1637 }
1638
1639 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1640 u64 btrfs_find_lock_delalloc_range(struct inode *inode,
1641                                     struct extent_io_tree *tree,
1642                                     struct page *locked_page, u64 *start,
1643                                     u64 *end, u64 max_bytes)
1644 {
1645         return find_lock_delalloc_range(inode, tree, locked_page, start, end,
1646                         max_bytes);
1647 }
1648 #endif
1649
1650 static int __process_pages_contig(struct address_space *mapping,
1651                                   struct page *locked_page,
1652                                   pgoff_t start_index, pgoff_t end_index,
1653                                   unsigned long page_ops, pgoff_t *index_ret)
1654 {
1655         unsigned long nr_pages = end_index - start_index + 1;
1656         unsigned long pages_locked = 0;
1657         pgoff_t index = start_index;
1658         struct page *pages[16];
1659         unsigned ret;
1660         int err = 0;
1661         int i;
1662
1663         if (page_ops & PAGE_LOCK) {
1664                 ASSERT(page_ops == PAGE_LOCK);
1665                 ASSERT(index_ret && *index_ret == start_index);
1666         }
1667
1668         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1669                 mapping_set_error(mapping, -EIO);
1670
1671         while (nr_pages > 0) {
1672                 ret = find_get_pages_contig(mapping, index,
1673                                      min_t(unsigned long,
1674                                      nr_pages, ARRAY_SIZE(pages)), pages);
1675                 if (ret == 0) {
1676                         /*
1677                          * Only if we're going to lock these pages,
1678                          * can we find nothing at @index.
1679                          */
1680                         ASSERT(page_ops & PAGE_LOCK);
1681                         err = -EAGAIN;
1682                         goto out;
1683                 }
1684
1685                 for (i = 0; i < ret; i++) {
1686                         if (page_ops & PAGE_SET_PRIVATE2)
1687                                 SetPagePrivate2(pages[i]);
1688
1689                         if (pages[i] == locked_page) {
1690                                 put_page(pages[i]);
1691                                 pages_locked++;
1692                                 continue;
1693                         }
1694                         if (page_ops & PAGE_CLEAR_DIRTY)
1695                                 clear_page_dirty_for_io(pages[i]);
1696                         if (page_ops & PAGE_SET_WRITEBACK)
1697                                 set_page_writeback(pages[i]);
1698                         if (page_ops & PAGE_SET_ERROR)
1699                                 SetPageError(pages[i]);
1700                         if (page_ops & PAGE_END_WRITEBACK)
1701                                 end_page_writeback(pages[i]);
1702                         if (page_ops & PAGE_UNLOCK)
1703                                 unlock_page(pages[i]);
1704                         if (page_ops & PAGE_LOCK) {
1705                                 lock_page(pages[i]);
1706                                 if (!PageDirty(pages[i]) ||
1707                                     pages[i]->mapping != mapping) {
1708                                         unlock_page(pages[i]);
1709                                         put_page(pages[i]);
1710                                         err = -EAGAIN;
1711                                         goto out;
1712                                 }
1713                         }
1714                         put_page(pages[i]);
1715                         pages_locked++;
1716                 }
1717                 nr_pages -= ret;
1718                 index += ret;
1719                 cond_resched();
1720         }
1721 out:
1722         if (err && index_ret)
1723                 *index_ret = start_index + pages_locked - 1;
1724         return err;
1725 }
1726
1727 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1728                                  u64 delalloc_end, struct page *locked_page,
1729                                  unsigned clear_bits,
1730                                  unsigned long page_ops)
1731 {
1732         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1733                          NULL);
1734
1735         __process_pages_contig(inode->i_mapping, locked_page,
1736                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1737                                page_ops, NULL);
1738 }
1739
1740 /*
1741  * count the number of bytes in the tree that have a given bit(s)
1742  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1743  * cached.  The total number found is returned.
1744  */
1745 u64 count_range_bits(struct extent_io_tree *tree,
1746                      u64 *start, u64 search_end, u64 max_bytes,
1747                      unsigned bits, int contig)
1748 {
1749         struct rb_node *node;
1750         struct extent_state *state;
1751         u64 cur_start = *start;
1752         u64 total_bytes = 0;
1753         u64 last = 0;
1754         int found = 0;
1755
1756         if (WARN_ON(search_end <= cur_start))
1757                 return 0;
1758
1759         spin_lock(&tree->lock);
1760         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1761                 total_bytes = tree->dirty_bytes;
1762                 goto out;
1763         }
1764         /*
1765          * this search will find all the extents that end after
1766          * our range starts.
1767          */
1768         node = tree_search(tree, cur_start);
1769         if (!node)
1770                 goto out;
1771
1772         while (1) {
1773                 state = rb_entry(node, struct extent_state, rb_node);
1774                 if (state->start > search_end)
1775                         break;
1776                 if (contig && found && state->start > last + 1)
1777                         break;
1778                 if (state->end >= cur_start && (state->state & bits) == bits) {
1779                         total_bytes += min(search_end, state->end) + 1 -
1780                                        max(cur_start, state->start);
1781                         if (total_bytes >= max_bytes)
1782                                 break;
1783                         if (!found) {
1784                                 *start = max(cur_start, state->start);
1785                                 found = 1;
1786                         }
1787                         last = state->end;
1788                 } else if (contig && found) {
1789                         break;
1790                 }
1791                 node = rb_next(node);
1792                 if (!node)
1793                         break;
1794         }
1795 out:
1796         spin_unlock(&tree->lock);
1797         return total_bytes;
1798 }
1799
1800 /*
1801  * set the private field for a given byte offset in the tree.  If there isn't
1802  * an extent_state there already, this does nothing.
1803  */
1804 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1805                 struct io_failure_record *failrec)
1806 {
1807         struct rb_node *node;
1808         struct extent_state *state;
1809         int ret = 0;
1810
1811         spin_lock(&tree->lock);
1812         /*
1813          * this search will find all the extents that end after
1814          * our range starts.
1815          */
1816         node = tree_search(tree, start);
1817         if (!node) {
1818                 ret = -ENOENT;
1819                 goto out;
1820         }
1821         state = rb_entry(node, struct extent_state, rb_node);
1822         if (state->start != start) {
1823                 ret = -ENOENT;
1824                 goto out;
1825         }
1826         state->failrec = failrec;
1827 out:
1828         spin_unlock(&tree->lock);
1829         return ret;
1830 }
1831
1832 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1833                 struct io_failure_record **failrec)
1834 {
1835         struct rb_node *node;
1836         struct extent_state *state;
1837         int ret = 0;
1838
1839         spin_lock(&tree->lock);
1840         /*
1841          * this search will find all the extents that end after
1842          * our range starts.
1843          */
1844         node = tree_search(tree, start);
1845         if (!node) {
1846                 ret = -ENOENT;
1847                 goto out;
1848         }
1849         state = rb_entry(node, struct extent_state, rb_node);
1850         if (state->start != start) {
1851                 ret = -ENOENT;
1852                 goto out;
1853         }
1854         *failrec = state->failrec;
1855 out:
1856         spin_unlock(&tree->lock);
1857         return ret;
1858 }
1859
1860 /*
1861  * searches a range in the state tree for a given mask.
1862  * If 'filled' == 1, this returns 1 only if every extent in the tree
1863  * has the bits set.  Otherwise, 1 is returned if any bit in the
1864  * range is found set.
1865  */
1866 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1867                    unsigned bits, int filled, struct extent_state *cached)
1868 {
1869         struct extent_state *state = NULL;
1870         struct rb_node *node;
1871         int bitset = 0;
1872
1873         spin_lock(&tree->lock);
1874         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1875             cached->end > start)
1876                 node = &cached->rb_node;
1877         else
1878                 node = tree_search(tree, start);
1879         while (node && start <= end) {
1880                 state = rb_entry(node, struct extent_state, rb_node);
1881
1882                 if (filled && state->start > start) {
1883                         bitset = 0;
1884                         break;
1885                 }
1886
1887                 if (state->start > end)
1888                         break;
1889
1890                 if (state->state & bits) {
1891                         bitset = 1;
1892                         if (!filled)
1893                                 break;
1894                 } else if (filled) {
1895                         bitset = 0;
1896                         break;
1897                 }
1898
1899                 if (state->end == (u64)-1)
1900                         break;
1901
1902                 start = state->end + 1;
1903                 if (start > end)
1904                         break;
1905                 node = rb_next(node);
1906                 if (!node) {
1907                         if (filled)
1908                                 bitset = 0;
1909                         break;
1910                 }
1911         }
1912         spin_unlock(&tree->lock);
1913         return bitset;
1914 }
1915
1916 /*
1917  * helper function to set a given page up to date if all the
1918  * extents in the tree for that page are up to date
1919  */
1920 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1921 {
1922         u64 start = page_offset(page);
1923         u64 end = start + PAGE_SIZE - 1;
1924         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1925                 SetPageUptodate(page);
1926 }
1927
1928 int free_io_failure(struct extent_io_tree *failure_tree,
1929                     struct extent_io_tree *io_tree,
1930                     struct io_failure_record *rec)
1931 {
1932         int ret;
1933         int err = 0;
1934
1935         set_state_failrec(failure_tree, rec->start, NULL);
1936         ret = clear_extent_bits(failure_tree, rec->start,
1937                                 rec->start + rec->len - 1,
1938                                 EXTENT_LOCKED | EXTENT_DIRTY);
1939         if (ret)
1940                 err = ret;
1941
1942         ret = clear_extent_bits(io_tree, rec->start,
1943                                 rec->start + rec->len - 1,
1944                                 EXTENT_DAMAGED);
1945         if (ret && !err)
1946                 err = ret;
1947
1948         kfree(rec);
1949         return err;
1950 }
1951
1952 /*
1953  * this bypasses the standard btrfs submit functions deliberately, as
1954  * the standard behavior is to write all copies in a raid setup. here we only
1955  * want to write the one bad copy. so we do the mapping for ourselves and issue
1956  * submit_bio directly.
1957  * to avoid any synchronization issues, wait for the data after writing, which
1958  * actually prevents the read that triggered the error from finishing.
1959  * currently, there can be no more than two copies of every data bit. thus,
1960  * exactly one rewrite is required.
1961  */
1962 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1963                       u64 length, u64 logical, struct page *page,
1964                       unsigned int pg_offset, int mirror_num)
1965 {
1966         struct bio *bio;
1967         struct btrfs_device *dev;
1968         u64 map_length = 0;
1969         u64 sector;
1970         struct btrfs_bio *bbio = NULL;
1971         int ret;
1972
1973         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1974         BUG_ON(!mirror_num);
1975
1976         bio = btrfs_io_bio_alloc(1);
1977         bio->bi_iter.bi_size = 0;
1978         map_length = length;
1979
1980         /*
1981          * Avoid races with device replace and make sure our bbio has devices
1982          * associated to its stripes that don't go away while we are doing the
1983          * read repair operation.
1984          */
1985         btrfs_bio_counter_inc_blocked(fs_info);
1986         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1987                 /*
1988                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1989                  * to update all raid stripes, but here we just want to correct
1990                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1991                  * stripe's dev and sector.
1992                  */
1993                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1994                                       &map_length, &bbio, 0);
1995                 if (ret) {
1996                         btrfs_bio_counter_dec(fs_info);
1997                         bio_put(bio);
1998                         return -EIO;
1999                 }
2000                 ASSERT(bbio->mirror_num == 1);
2001         } else {
2002                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2003                                       &map_length, &bbio, mirror_num);
2004                 if (ret) {
2005                         btrfs_bio_counter_dec(fs_info);
2006                         bio_put(bio);
2007                         return -EIO;
2008                 }
2009                 BUG_ON(mirror_num != bbio->mirror_num);
2010         }
2011
2012         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2013         bio->bi_iter.bi_sector = sector;
2014         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2015         btrfs_put_bbio(bbio);
2016         if (!dev || !dev->bdev ||
2017             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2018                 btrfs_bio_counter_dec(fs_info);
2019                 bio_put(bio);
2020                 return -EIO;
2021         }
2022         bio_set_dev(bio, dev->bdev);
2023         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2024         bio_add_page(bio, page, length, pg_offset);
2025
2026         if (btrfsic_submit_bio_wait(bio)) {
2027                 /* try to remap that extent elsewhere? */
2028                 btrfs_bio_counter_dec(fs_info);
2029                 bio_put(bio);
2030                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2031                 return -EIO;
2032         }
2033
2034         btrfs_info_rl_in_rcu(fs_info,
2035                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2036                                   ino, start,
2037                                   rcu_str_deref(dev->name), sector);
2038         btrfs_bio_counter_dec(fs_info);
2039         bio_put(bio);
2040         return 0;
2041 }
2042
2043 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2044                          struct extent_buffer *eb, int mirror_num)
2045 {
2046         u64 start = eb->start;
2047         int i, num_pages = num_extent_pages(eb);
2048         int ret = 0;
2049
2050         if (sb_rdonly(fs_info->sb))
2051                 return -EROFS;
2052
2053         for (i = 0; i < num_pages; i++) {
2054                 struct page *p = eb->pages[i];
2055
2056                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2057                                         start - page_offset(p), mirror_num);
2058                 if (ret)
2059                         break;
2060                 start += PAGE_SIZE;
2061         }
2062
2063         return ret;
2064 }
2065
2066 /*
2067  * each time an IO finishes, we do a fast check in the IO failure tree
2068  * to see if we need to process or clean up an io_failure_record
2069  */
2070 int clean_io_failure(struct btrfs_fs_info *fs_info,
2071                      struct extent_io_tree *failure_tree,
2072                      struct extent_io_tree *io_tree, u64 start,
2073                      struct page *page, u64 ino, unsigned int pg_offset)
2074 {
2075         u64 private;
2076         struct io_failure_record *failrec;
2077         struct extent_state *state;
2078         int num_copies;
2079         int ret;
2080
2081         private = 0;
2082         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2083                                EXTENT_DIRTY, 0);
2084         if (!ret)
2085                 return 0;
2086
2087         ret = get_state_failrec(failure_tree, start, &failrec);
2088         if (ret)
2089                 return 0;
2090
2091         BUG_ON(!failrec->this_mirror);
2092
2093         if (failrec->in_validation) {
2094                 /* there was no real error, just free the record */
2095                 btrfs_debug(fs_info,
2096                         "clean_io_failure: freeing dummy error at %llu",
2097                         failrec->start);
2098                 goto out;
2099         }
2100         if (sb_rdonly(fs_info->sb))
2101                 goto out;
2102
2103         spin_lock(&io_tree->lock);
2104         state = find_first_extent_bit_state(io_tree,
2105                                             failrec->start,
2106                                             EXTENT_LOCKED);
2107         spin_unlock(&io_tree->lock);
2108
2109         if (state && state->start <= failrec->start &&
2110             state->end >= failrec->start + failrec->len - 1) {
2111                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2112                                               failrec->len);
2113                 if (num_copies > 1)  {
2114                         repair_io_failure(fs_info, ino, start, failrec->len,
2115                                           failrec->logical, page, pg_offset,
2116                                           failrec->failed_mirror);
2117                 }
2118         }
2119
2120 out:
2121         free_io_failure(failure_tree, io_tree, failrec);
2122
2123         return 0;
2124 }
2125
2126 /*
2127  * Can be called when
2128  * - hold extent lock
2129  * - under ordered extent
2130  * - the inode is freeing
2131  */
2132 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2133 {
2134         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2135         struct io_failure_record *failrec;
2136         struct extent_state *state, *next;
2137
2138         if (RB_EMPTY_ROOT(&failure_tree->state))
2139                 return;
2140
2141         spin_lock(&failure_tree->lock);
2142         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2143         while (state) {
2144                 if (state->start > end)
2145                         break;
2146
2147                 ASSERT(state->end <= end);
2148
2149                 next = next_state(state);
2150
2151                 failrec = state->failrec;
2152                 free_extent_state(state);
2153                 kfree(failrec);
2154
2155                 state = next;
2156         }
2157         spin_unlock(&failure_tree->lock);
2158 }
2159
2160 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2161                 struct io_failure_record **failrec_ret)
2162 {
2163         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2164         struct io_failure_record *failrec;
2165         struct extent_map *em;
2166         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2167         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2168         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2169         int ret;
2170         u64 logical;
2171
2172         ret = get_state_failrec(failure_tree, start, &failrec);
2173         if (ret) {
2174                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2175                 if (!failrec)
2176                         return -ENOMEM;
2177
2178                 failrec->start = start;
2179                 failrec->len = end - start + 1;
2180                 failrec->this_mirror = 0;
2181                 failrec->bio_flags = 0;
2182                 failrec->in_validation = 0;
2183
2184                 read_lock(&em_tree->lock);
2185                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2186                 if (!em) {
2187                         read_unlock(&em_tree->lock);
2188                         kfree(failrec);
2189                         return -EIO;
2190                 }
2191
2192                 if (em->start > start || em->start + em->len <= start) {
2193                         free_extent_map(em);
2194                         em = NULL;
2195                 }
2196                 read_unlock(&em_tree->lock);
2197                 if (!em) {
2198                         kfree(failrec);
2199                         return -EIO;
2200                 }
2201
2202                 logical = start - em->start;
2203                 logical = em->block_start + logical;
2204                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2205                         logical = em->block_start;
2206                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2207                         extent_set_compress_type(&failrec->bio_flags,
2208                                                  em->compress_type);
2209                 }
2210
2211                 btrfs_debug(fs_info,
2212                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2213                         logical, start, failrec->len);
2214
2215                 failrec->logical = logical;
2216                 free_extent_map(em);
2217
2218                 /* set the bits in the private failure tree */
2219                 ret = set_extent_bits(failure_tree, start, end,
2220                                         EXTENT_LOCKED | EXTENT_DIRTY);
2221                 if (ret >= 0)
2222                         ret = set_state_failrec(failure_tree, start, failrec);
2223                 /* set the bits in the inode's tree */
2224                 if (ret >= 0)
2225                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2226                 if (ret < 0) {
2227                         kfree(failrec);
2228                         return ret;
2229                 }
2230         } else {
2231                 btrfs_debug(fs_info,
2232                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2233                         failrec->logical, failrec->start, failrec->len,
2234                         failrec->in_validation);
2235                 /*
2236                  * when data can be on disk more than twice, add to failrec here
2237                  * (e.g. with a list for failed_mirror) to make
2238                  * clean_io_failure() clean all those errors at once.
2239                  */
2240         }
2241
2242         *failrec_ret = failrec;
2243
2244         return 0;
2245 }
2246
2247 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2248                            struct io_failure_record *failrec, int failed_mirror)
2249 {
2250         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2251         int num_copies;
2252
2253         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2254         if (num_copies == 1) {
2255                 /*
2256                  * we only have a single copy of the data, so don't bother with
2257                  * all the retry and error correction code that follows. no
2258                  * matter what the error is, it is very likely to persist.
2259                  */
2260                 btrfs_debug(fs_info,
2261                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2262                         num_copies, failrec->this_mirror, failed_mirror);
2263                 return false;
2264         }
2265
2266         /*
2267          * there are two premises:
2268          *      a) deliver good data to the caller
2269          *      b) correct the bad sectors on disk
2270          */
2271         if (failed_bio_pages > 1) {
2272                 /*
2273                  * to fulfill b), we need to know the exact failing sectors, as
2274                  * we don't want to rewrite any more than the failed ones. thus,
2275                  * we need separate read requests for the failed bio
2276                  *
2277                  * if the following BUG_ON triggers, our validation request got
2278                  * merged. we need separate requests for our algorithm to work.
2279                  */
2280                 BUG_ON(failrec->in_validation);
2281                 failrec->in_validation = 1;
2282                 failrec->this_mirror = failed_mirror;
2283         } else {
2284                 /*
2285                  * we're ready to fulfill a) and b) alongside. get a good copy
2286                  * of the failed sector and if we succeed, we have setup
2287                  * everything for repair_io_failure to do the rest for us.
2288                  */
2289                 if (failrec->in_validation) {
2290                         BUG_ON(failrec->this_mirror != failed_mirror);
2291                         failrec->in_validation = 0;
2292                         failrec->this_mirror = 0;
2293                 }
2294                 failrec->failed_mirror = failed_mirror;
2295                 failrec->this_mirror++;
2296                 if (failrec->this_mirror == failed_mirror)
2297                         failrec->this_mirror++;
2298         }
2299
2300         if (failrec->this_mirror > num_copies) {
2301                 btrfs_debug(fs_info,
2302                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2303                         num_copies, failrec->this_mirror, failed_mirror);
2304                 return false;
2305         }
2306
2307         return true;
2308 }
2309
2310
2311 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2312                                     struct io_failure_record *failrec,
2313                                     struct page *page, int pg_offset, int icsum,
2314                                     bio_end_io_t *endio_func, void *data)
2315 {
2316         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2317         struct bio *bio;
2318         struct btrfs_io_bio *btrfs_failed_bio;
2319         struct btrfs_io_bio *btrfs_bio;
2320
2321         bio = btrfs_io_bio_alloc(1);
2322         bio->bi_end_io = endio_func;
2323         bio->bi_iter.bi_sector = failrec->logical >> 9;
2324         bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2325         bio->bi_iter.bi_size = 0;
2326         bio->bi_private = data;
2327
2328         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2329         if (btrfs_failed_bio->csum) {
2330                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2331
2332                 btrfs_bio = btrfs_io_bio(bio);
2333                 btrfs_bio->csum = btrfs_bio->csum_inline;
2334                 icsum *= csum_size;
2335                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2336                        csum_size);
2337         }
2338
2339         bio_add_page(bio, page, failrec->len, pg_offset);
2340
2341         return bio;
2342 }
2343
2344 /*
2345  * this is a generic handler for readpage errors (default
2346  * readpage_io_failed_hook). if other copies exist, read those and write back
2347  * good data to the failed position. does not investigate in remapping the
2348  * failed extent elsewhere, hoping the device will be smart enough to do this as
2349  * needed
2350  */
2351
2352 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2353                               struct page *page, u64 start, u64 end,
2354                               int failed_mirror)
2355 {
2356         struct io_failure_record *failrec;
2357         struct inode *inode = page->mapping->host;
2358         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2359         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2360         struct bio *bio;
2361         int read_mode = 0;
2362         blk_status_t status;
2363         int ret;
2364         unsigned failed_bio_pages = bio_pages_all(failed_bio);
2365
2366         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2367
2368         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2369         if (ret)
2370                 return ret;
2371
2372         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2373                                     failed_mirror)) {
2374                 free_io_failure(failure_tree, tree, failrec);
2375                 return -EIO;
2376         }
2377
2378         if (failed_bio_pages > 1)
2379                 read_mode |= REQ_FAILFAST_DEV;
2380
2381         phy_offset >>= inode->i_sb->s_blocksize_bits;
2382         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2383                                       start - page_offset(page),
2384                                       (int)phy_offset, failed_bio->bi_end_io,
2385                                       NULL);
2386         bio->bi_opf = REQ_OP_READ | read_mode;
2387
2388         btrfs_debug(btrfs_sb(inode->i_sb),
2389                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2390                 read_mode, failrec->this_mirror, failrec->in_validation);
2391
2392         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2393                                          failrec->bio_flags, 0);
2394         if (status) {
2395                 free_io_failure(failure_tree, tree, failrec);
2396                 bio_put(bio);
2397                 ret = blk_status_to_errno(status);
2398         }
2399
2400         return ret;
2401 }
2402
2403 /* lots and lots of room for performance fixes in the end_bio funcs */
2404
2405 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2406 {
2407         int uptodate = (err == 0);
2408         int ret = 0;
2409
2410         btrfs_writepage_endio_finish_ordered(page, start, end, NULL, uptodate);
2411
2412         if (!uptodate) {
2413                 ClearPageUptodate(page);
2414                 SetPageError(page);
2415                 ret = err < 0 ? err : -EIO;
2416                 mapping_set_error(page->mapping, ret);
2417         }
2418 }
2419
2420 /*
2421  * after a writepage IO is done, we need to:
2422  * clear the uptodate bits on error
2423  * clear the writeback bits in the extent tree for this IO
2424  * end_page_writeback if the page has no more pending IO
2425  *
2426  * Scheduling is not allowed, so the extent state tree is expected
2427  * to have one and only one object corresponding to this IO.
2428  */
2429 static void end_bio_extent_writepage(struct bio *bio)
2430 {
2431         int error = blk_status_to_errno(bio->bi_status);
2432         struct bio_vec *bvec;
2433         u64 start;
2434         u64 end;
2435         int i;
2436
2437         ASSERT(!bio_flagged(bio, BIO_CLONED));
2438         bio_for_each_segment_all(bvec, bio, i) {
2439                 struct page *page = bvec->bv_page;
2440                 struct inode *inode = page->mapping->host;
2441                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2442
2443                 /* We always issue full-page reads, but if some block
2444                  * in a page fails to read, blk_update_request() will
2445                  * advance bv_offset and adjust bv_len to compensate.
2446                  * Print a warning for nonzero offsets, and an error
2447                  * if they don't add up to a full page.  */
2448                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2449                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2450                                 btrfs_err(fs_info,
2451                                    "partial page write in btrfs with offset %u and length %u",
2452                                         bvec->bv_offset, bvec->bv_len);
2453                         else
2454                                 btrfs_info(fs_info,
2455                                    "incomplete page write in btrfs with offset %u and length %u",
2456                                         bvec->bv_offset, bvec->bv_len);
2457                 }
2458
2459                 start = page_offset(page);
2460                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2461
2462                 end_extent_writepage(page, error, start, end);
2463                 end_page_writeback(page);
2464         }
2465
2466         bio_put(bio);
2467 }
2468
2469 static void
2470 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2471                               int uptodate)
2472 {
2473         struct extent_state *cached = NULL;
2474         u64 end = start + len - 1;
2475
2476         if (uptodate && tree->track_uptodate)
2477                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2478         unlock_extent_cached_atomic(tree, start, end, &cached);
2479 }
2480
2481 /*
2482  * after a readpage IO is done, we need to:
2483  * clear the uptodate bits on error
2484  * set the uptodate bits if things worked
2485  * set the page up to date if all extents in the tree are uptodate
2486  * clear the lock bit in the extent tree
2487  * unlock the page if there are no other extents locked for it
2488  *
2489  * Scheduling is not allowed, so the extent state tree is expected
2490  * to have one and only one object corresponding to this IO.
2491  */
2492 static void end_bio_extent_readpage(struct bio *bio)
2493 {
2494         struct bio_vec *bvec;
2495         int uptodate = !bio->bi_status;
2496         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2497         struct extent_io_tree *tree, *failure_tree;
2498         u64 offset = 0;
2499         u64 start;
2500         u64 end;
2501         u64 len;
2502         u64 extent_start = 0;
2503         u64 extent_len = 0;
2504         int mirror;
2505         int ret;
2506         int i;
2507
2508         ASSERT(!bio_flagged(bio, BIO_CLONED));
2509         bio_for_each_segment_all(bvec, bio, i) {
2510                 struct page *page = bvec->bv_page;
2511                 struct inode *inode = page->mapping->host;
2512                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2513
2514                 btrfs_debug(fs_info,
2515                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2516                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2517                         io_bio->mirror_num);
2518                 tree = &BTRFS_I(inode)->io_tree;
2519                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2520
2521                 /* We always issue full-page reads, but if some block
2522                  * in a page fails to read, blk_update_request() will
2523                  * advance bv_offset and adjust bv_len to compensate.
2524                  * Print a warning for nonzero offsets, and an error
2525                  * if they don't add up to a full page.  */
2526                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2527                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2528                                 btrfs_err(fs_info,
2529                                         "partial page read in btrfs with offset %u and length %u",
2530                                         bvec->bv_offset, bvec->bv_len);
2531                         else
2532                                 btrfs_info(fs_info,
2533                                         "incomplete page read in btrfs with offset %u and length %u",
2534                                         bvec->bv_offset, bvec->bv_len);
2535                 }
2536
2537                 start = page_offset(page);
2538                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2539                 len = bvec->bv_len;
2540
2541                 mirror = io_bio->mirror_num;
2542                 if (likely(uptodate && tree->ops)) {
2543                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2544                                                               page, start, end,
2545                                                               mirror);
2546                         if (ret)
2547                                 uptodate = 0;
2548                         else
2549                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2550                                                  failure_tree, tree, start,
2551                                                  page,
2552                                                  btrfs_ino(BTRFS_I(inode)), 0);
2553                 }
2554
2555                 if (likely(uptodate))
2556                         goto readpage_ok;
2557
2558                 if (tree->ops) {
2559                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2560                         if (ret == -EAGAIN) {
2561                                 /*
2562                                  * Data inode's readpage_io_failed_hook() always
2563                                  * returns -EAGAIN.
2564                                  *
2565                                  * The generic bio_readpage_error handles errors
2566                                  * the following way: If possible, new read
2567                                  * requests are created and submitted and will
2568                                  * end up in end_bio_extent_readpage as well (if
2569                                  * we're lucky, not in the !uptodate case). In
2570                                  * that case it returns 0 and we just go on with
2571                                  * the next page in our bio. If it can't handle
2572                                  * the error it will return -EIO and we remain
2573                                  * responsible for that page.
2574                                  */
2575                                 ret = bio_readpage_error(bio, offset, page,
2576                                                          start, end, mirror);
2577                                 if (ret == 0) {
2578                                         uptodate = !bio->bi_status;
2579                                         offset += len;
2580                                         continue;
2581                                 }
2582                         }
2583
2584                         /*
2585                          * metadata's readpage_io_failed_hook() always returns
2586                          * -EIO and fixes nothing.  -EIO is also returned if
2587                          * data inode error could not be fixed.
2588                          */
2589                         ASSERT(ret == -EIO);
2590                 }
2591 readpage_ok:
2592                 if (likely(uptodate)) {
2593                         loff_t i_size = i_size_read(inode);
2594                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2595                         unsigned off;
2596
2597                         /* Zero out the end if this page straddles i_size */
2598                         off = i_size & (PAGE_SIZE-1);
2599                         if (page->index == end_index && off)
2600                                 zero_user_segment(page, off, PAGE_SIZE);
2601                         SetPageUptodate(page);
2602                 } else {
2603                         ClearPageUptodate(page);
2604                         SetPageError(page);
2605                 }
2606                 unlock_page(page);
2607                 offset += len;
2608
2609                 if (unlikely(!uptodate)) {
2610                         if (extent_len) {
2611                                 endio_readpage_release_extent(tree,
2612                                                               extent_start,
2613                                                               extent_len, 1);
2614                                 extent_start = 0;
2615                                 extent_len = 0;
2616                         }
2617                         endio_readpage_release_extent(tree, start,
2618                                                       end - start + 1, 0);
2619                 } else if (!extent_len) {
2620                         extent_start = start;
2621                         extent_len = end + 1 - start;
2622                 } else if (extent_start + extent_len == start) {
2623                         extent_len += end + 1 - start;
2624                 } else {
2625                         endio_readpage_release_extent(tree, extent_start,
2626                                                       extent_len, uptodate);
2627                         extent_start = start;
2628                         extent_len = end + 1 - start;
2629                 }
2630         }
2631
2632         if (extent_len)
2633                 endio_readpage_release_extent(tree, extent_start, extent_len,
2634                                               uptodate);
2635         if (io_bio->end_io)
2636                 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2637         bio_put(bio);
2638 }
2639
2640 /*
2641  * Initialize the members up to but not including 'bio'. Use after allocating a
2642  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2643  * 'bio' because use of __GFP_ZERO is not supported.
2644  */
2645 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2646 {
2647         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2648 }
2649
2650 /*
2651  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2652  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2653  * for the appropriate container_of magic
2654  */
2655 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2656 {
2657         struct bio *bio;
2658
2659         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2660         bio_set_dev(bio, bdev);
2661         bio->bi_iter.bi_sector = first_byte >> 9;
2662         btrfs_io_bio_init(btrfs_io_bio(bio));
2663         return bio;
2664 }
2665
2666 struct bio *btrfs_bio_clone(struct bio *bio)
2667 {
2668         struct btrfs_io_bio *btrfs_bio;
2669         struct bio *new;
2670
2671         /* Bio allocation backed by a bioset does not fail */
2672         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2673         btrfs_bio = btrfs_io_bio(new);
2674         btrfs_io_bio_init(btrfs_bio);
2675         btrfs_bio->iter = bio->bi_iter;
2676         return new;
2677 }
2678
2679 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2680 {
2681         struct bio *bio;
2682
2683         /* Bio allocation backed by a bioset does not fail */
2684         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2685         btrfs_io_bio_init(btrfs_io_bio(bio));
2686         return bio;
2687 }
2688
2689 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2690 {
2691         struct bio *bio;
2692         struct btrfs_io_bio *btrfs_bio;
2693
2694         /* this will never fail when it's backed by a bioset */
2695         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2696         ASSERT(bio);
2697
2698         btrfs_bio = btrfs_io_bio(bio);
2699         btrfs_io_bio_init(btrfs_bio);
2700
2701         bio_trim(bio, offset >> 9, size >> 9);
2702         btrfs_bio->iter = bio->bi_iter;
2703         return bio;
2704 }
2705
2706 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2707                                        unsigned long bio_flags)
2708 {
2709         blk_status_t ret = 0;
2710         struct bio_vec *bvec = bio_last_bvec_all(bio);
2711         struct page *page = bvec->bv_page;
2712         struct extent_io_tree *tree = bio->bi_private;
2713         u64 start;
2714
2715         start = page_offset(page) + bvec->bv_offset;
2716
2717         bio->bi_private = NULL;
2718
2719         if (tree->ops)
2720                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2721                                            mirror_num, bio_flags, start);
2722         else
2723                 btrfsic_submit_bio(bio);
2724
2725         return blk_status_to_errno(ret);
2726 }
2727
2728 /*
2729  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2730  * @tree:       tree so we can call our merge_bio hook
2731  * @wbc:        optional writeback control for io accounting
2732  * @page:       page to add to the bio
2733  * @pg_offset:  offset of the new bio or to check whether we are adding
2734  *              a contiguous page to the previous one
2735  * @size:       portion of page that we want to write
2736  * @offset:     starting offset in the page
2737  * @bdev:       attach newly created bios to this bdev
2738  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2739  * @end_io_func:     end_io callback for new bio
2740  * @mirror_num:      desired mirror to read/write
2741  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2742  * @bio_flags:  flags of the current bio to see if we can merge them
2743  */
2744 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2745                               struct writeback_control *wbc,
2746                               struct page *page, u64 offset,
2747                               size_t size, unsigned long pg_offset,
2748                               struct block_device *bdev,
2749                               struct bio **bio_ret,
2750                               bio_end_io_t end_io_func,
2751                               int mirror_num,
2752                               unsigned long prev_bio_flags,
2753                               unsigned long bio_flags,
2754                               bool force_bio_submit)
2755 {
2756         int ret = 0;
2757         struct bio *bio;
2758         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2759         sector_t sector = offset >> 9;
2760
2761         ASSERT(bio_ret);
2762
2763         if (*bio_ret) {
2764                 bool contig;
2765                 bool can_merge = true;
2766
2767                 bio = *bio_ret;
2768                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2769                         contig = bio->bi_iter.bi_sector == sector;
2770                 else
2771                         contig = bio_end_sector(bio) == sector;
2772
2773                 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2774                                                       bio, bio_flags))
2775                         can_merge = false;
2776
2777                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2778                     force_bio_submit ||
2779                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2780                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2781                         if (ret < 0) {
2782                                 *bio_ret = NULL;
2783                                 return ret;
2784                         }
2785                         bio = NULL;
2786                 } else {
2787                         if (wbc)
2788                                 wbc_account_io(wbc, page, page_size);
2789                         return 0;
2790                 }
2791         }
2792
2793         bio = btrfs_bio_alloc(bdev, offset);
2794         bio_add_page(bio, page, page_size, pg_offset);
2795         bio->bi_end_io = end_io_func;
2796         bio->bi_private = tree;
2797         bio->bi_write_hint = page->mapping->host->i_write_hint;
2798         bio->bi_opf = opf;
2799         if (wbc) {
2800                 wbc_init_bio(wbc, bio);
2801                 wbc_account_io(wbc, page, page_size);
2802         }
2803
2804         *bio_ret = bio;
2805
2806         return ret;
2807 }
2808
2809 static void attach_extent_buffer_page(struct extent_buffer *eb,
2810                                       struct page *page)
2811 {
2812         if (!PagePrivate(page)) {
2813                 SetPagePrivate(page);
2814                 get_page(page);
2815                 set_page_private(page, (unsigned long)eb);
2816         } else {
2817                 WARN_ON(page->private != (unsigned long)eb);
2818         }
2819 }
2820
2821 void set_page_extent_mapped(struct page *page)
2822 {
2823         if (!PagePrivate(page)) {
2824                 SetPagePrivate(page);
2825                 get_page(page);
2826                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2827         }
2828 }
2829
2830 static struct extent_map *
2831 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2832                  u64 start, u64 len, get_extent_t *get_extent,
2833                  struct extent_map **em_cached)
2834 {
2835         struct extent_map *em;
2836
2837         if (em_cached && *em_cached) {
2838                 em = *em_cached;
2839                 if (extent_map_in_tree(em) && start >= em->start &&
2840                     start < extent_map_end(em)) {
2841                         refcount_inc(&em->refs);
2842                         return em;
2843                 }
2844
2845                 free_extent_map(em);
2846                 *em_cached = NULL;
2847         }
2848
2849         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2850         if (em_cached && !IS_ERR_OR_NULL(em)) {
2851                 BUG_ON(*em_cached);
2852                 refcount_inc(&em->refs);
2853                 *em_cached = em;
2854         }
2855         return em;
2856 }
2857 /*
2858  * basic readpage implementation.  Locked extent state structs are inserted
2859  * into the tree that are removed when the IO is done (by the end_io
2860  * handlers)
2861  * XXX JDM: This needs looking at to ensure proper page locking
2862  * return 0 on success, otherwise return error
2863  */
2864 static int __do_readpage(struct extent_io_tree *tree,
2865                          struct page *page,
2866                          get_extent_t *get_extent,
2867                          struct extent_map **em_cached,
2868                          struct bio **bio, int mirror_num,
2869                          unsigned long *bio_flags, unsigned int read_flags,
2870                          u64 *prev_em_start)
2871 {
2872         struct inode *inode = page->mapping->host;
2873         u64 start = page_offset(page);
2874         const u64 end = start + PAGE_SIZE - 1;
2875         u64 cur = start;
2876         u64 extent_offset;
2877         u64 last_byte = i_size_read(inode);
2878         u64 block_start;
2879         u64 cur_end;
2880         struct extent_map *em;
2881         struct block_device *bdev;
2882         int ret = 0;
2883         int nr = 0;
2884         size_t pg_offset = 0;
2885         size_t iosize;
2886         size_t disk_io_size;
2887         size_t blocksize = inode->i_sb->s_blocksize;
2888         unsigned long this_bio_flag = 0;
2889
2890         set_page_extent_mapped(page);
2891
2892         if (!PageUptodate(page)) {
2893                 if (cleancache_get_page(page) == 0) {
2894                         BUG_ON(blocksize != PAGE_SIZE);
2895                         unlock_extent(tree, start, end);
2896                         goto out;
2897                 }
2898         }
2899
2900         if (page->index == last_byte >> PAGE_SHIFT) {
2901                 char *userpage;
2902                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2903
2904                 if (zero_offset) {
2905                         iosize = PAGE_SIZE - zero_offset;
2906                         userpage = kmap_atomic(page);
2907                         memset(userpage + zero_offset, 0, iosize);
2908                         flush_dcache_page(page);
2909                         kunmap_atomic(userpage);
2910                 }
2911         }
2912         while (cur <= end) {
2913                 bool force_bio_submit = false;
2914                 u64 offset;
2915
2916                 if (cur >= last_byte) {
2917                         char *userpage;
2918                         struct extent_state *cached = NULL;
2919
2920                         iosize = PAGE_SIZE - pg_offset;
2921                         userpage = kmap_atomic(page);
2922                         memset(userpage + pg_offset, 0, iosize);
2923                         flush_dcache_page(page);
2924                         kunmap_atomic(userpage);
2925                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2926                                             &cached, GFP_NOFS);
2927                         unlock_extent_cached(tree, cur,
2928                                              cur + iosize - 1, &cached);
2929                         break;
2930                 }
2931                 em = __get_extent_map(inode, page, pg_offset, cur,
2932                                       end - cur + 1, get_extent, em_cached);
2933                 if (IS_ERR_OR_NULL(em)) {
2934                         SetPageError(page);
2935                         unlock_extent(tree, cur, end);
2936                         break;
2937                 }
2938                 extent_offset = cur - em->start;
2939                 BUG_ON(extent_map_end(em) <= cur);
2940                 BUG_ON(end < cur);
2941
2942                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2943                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2944                         extent_set_compress_type(&this_bio_flag,
2945                                                  em->compress_type);
2946                 }
2947
2948                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2949                 cur_end = min(extent_map_end(em) - 1, end);
2950                 iosize = ALIGN(iosize, blocksize);
2951                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2952                         disk_io_size = em->block_len;
2953                         offset = em->block_start;
2954                 } else {
2955                         offset = em->block_start + extent_offset;
2956                         disk_io_size = iosize;
2957                 }
2958                 bdev = em->bdev;
2959                 block_start = em->block_start;
2960                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2961                         block_start = EXTENT_MAP_HOLE;
2962
2963                 /*
2964                  * If we have a file range that points to a compressed extent
2965                  * and it's followed by a consecutive file range that points to
2966                  * to the same compressed extent (possibly with a different
2967                  * offset and/or length, so it either points to the whole extent
2968                  * or only part of it), we must make sure we do not submit a
2969                  * single bio to populate the pages for the 2 ranges because
2970                  * this makes the compressed extent read zero out the pages
2971                  * belonging to the 2nd range. Imagine the following scenario:
2972                  *
2973                  *  File layout
2974                  *  [0 - 8K]                     [8K - 24K]
2975                  *    |                               |
2976                  *    |                               |
2977                  * points to extent X,         points to extent X,
2978                  * offset 4K, length of 8K     offset 0, length 16K
2979                  *
2980                  * [extent X, compressed length = 4K uncompressed length = 16K]
2981                  *
2982                  * If the bio to read the compressed extent covers both ranges,
2983                  * it will decompress extent X into the pages belonging to the
2984                  * first range and then it will stop, zeroing out the remaining
2985                  * pages that belong to the other range that points to extent X.
2986                  * So here we make sure we submit 2 bios, one for the first
2987                  * range and another one for the third range. Both will target
2988                  * the same physical extent from disk, but we can't currently
2989                  * make the compressed bio endio callback populate the pages
2990                  * for both ranges because each compressed bio is tightly
2991                  * coupled with a single extent map, and each range can have
2992                  * an extent map with a different offset value relative to the
2993                  * uncompressed data of our extent and different lengths. This
2994                  * is a corner case so we prioritize correctness over
2995                  * non-optimal behavior (submitting 2 bios for the same extent).
2996                  */
2997                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2998                     prev_em_start && *prev_em_start != (u64)-1 &&
2999                     *prev_em_start != em->orig_start)
3000                         force_bio_submit = true;
3001
3002                 if (prev_em_start)
3003                         *prev_em_start = em->orig_start;
3004
3005                 free_extent_map(em);
3006                 em = NULL;
3007
3008                 /* we've found a hole, just zero and go on */
3009                 if (block_start == EXTENT_MAP_HOLE) {
3010                         char *userpage;
3011                         struct extent_state *cached = NULL;
3012
3013                         userpage = kmap_atomic(page);
3014                         memset(userpage + pg_offset, 0, iosize);
3015                         flush_dcache_page(page);
3016                         kunmap_atomic(userpage);
3017
3018                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3019                                             &cached, GFP_NOFS);
3020                         unlock_extent_cached(tree, cur,
3021                                              cur + iosize - 1, &cached);
3022                         cur = cur + iosize;
3023                         pg_offset += iosize;
3024                         continue;
3025                 }
3026                 /* the get_extent function already copied into the page */
3027                 if (test_range_bit(tree, cur, cur_end,
3028                                    EXTENT_UPTODATE, 1, NULL)) {
3029                         check_page_uptodate(tree, page);
3030                         unlock_extent(tree, cur, cur + iosize - 1);
3031                         cur = cur + iosize;
3032                         pg_offset += iosize;
3033                         continue;
3034                 }
3035                 /* we have an inline extent but it didn't get marked up
3036                  * to date.  Error out
3037                  */
3038                 if (block_start == EXTENT_MAP_INLINE) {
3039                         SetPageError(page);
3040                         unlock_extent(tree, cur, cur + iosize - 1);
3041                         cur = cur + iosize;
3042                         pg_offset += iosize;
3043                         continue;
3044                 }
3045
3046                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3047                                          page, offset, disk_io_size,
3048                                          pg_offset, bdev, bio,
3049                                          end_bio_extent_readpage, mirror_num,
3050                                          *bio_flags,
3051                                          this_bio_flag,
3052                                          force_bio_submit);
3053                 if (!ret) {
3054                         nr++;
3055                         *bio_flags = this_bio_flag;
3056                 } else {
3057                         SetPageError(page);
3058                         unlock_extent(tree, cur, cur + iosize - 1);
3059                         goto out;
3060                 }
3061                 cur = cur + iosize;
3062                 pg_offset += iosize;
3063         }
3064 out:
3065         if (!nr) {
3066                 if (!PageError(page))
3067                         SetPageUptodate(page);
3068                 unlock_page(page);
3069         }
3070         return ret;
3071 }
3072
3073 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3074                                              struct page *pages[], int nr_pages,
3075                                              u64 start, u64 end,
3076                                              struct extent_map **em_cached,
3077                                              struct bio **bio,
3078                                              unsigned long *bio_flags,
3079                                              u64 *prev_em_start)
3080 {
3081         struct inode *inode;
3082         struct btrfs_ordered_extent *ordered;
3083         int index;
3084
3085         inode = pages[0]->mapping->host;
3086         while (1) {
3087                 lock_extent(tree, start, end);
3088                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3089                                                      end - start + 1);
3090                 if (!ordered)
3091                         break;
3092                 unlock_extent(tree, start, end);
3093                 btrfs_start_ordered_extent(inode, ordered, 1);
3094                 btrfs_put_ordered_extent(ordered);
3095         }
3096
3097         for (index = 0; index < nr_pages; index++) {
3098                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3099                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3100                 put_page(pages[index]);
3101         }
3102 }
3103
3104 static void __extent_readpages(struct extent_io_tree *tree,
3105                                struct page *pages[],
3106                                int nr_pages,
3107                                struct extent_map **em_cached,
3108                                struct bio **bio, unsigned long *bio_flags,
3109                                u64 *prev_em_start)
3110 {
3111         u64 start = 0;
3112         u64 end = 0;
3113         u64 page_start;
3114         int index;
3115         int first_index = 0;
3116
3117         for (index = 0; index < nr_pages; index++) {
3118                 page_start = page_offset(pages[index]);
3119                 if (!end) {
3120                         start = page_start;
3121                         end = start + PAGE_SIZE - 1;
3122                         first_index = index;
3123                 } else if (end + 1 == page_start) {
3124                         end += PAGE_SIZE;
3125                 } else {
3126                         __do_contiguous_readpages(tree, &pages[first_index],
3127                                                   index - first_index, start,
3128                                                   end, em_cached,
3129                                                   bio, bio_flags,
3130                                                   prev_em_start);
3131                         start = page_start;
3132                         end = start + PAGE_SIZE - 1;
3133                         first_index = index;
3134                 }
3135         }
3136
3137         if (end)
3138                 __do_contiguous_readpages(tree, &pages[first_index],
3139                                           index - first_index, start,
3140                                           end, em_cached, bio,
3141                                           bio_flags, prev_em_start);
3142 }
3143
3144 static int __extent_read_full_page(struct extent_io_tree *tree,
3145                                    struct page *page,
3146                                    get_extent_t *get_extent,
3147                                    struct bio **bio, int mirror_num,
3148                                    unsigned long *bio_flags,
3149                                    unsigned int read_flags)
3150 {
3151         struct inode *inode = page->mapping->host;
3152         struct btrfs_ordered_extent *ordered;
3153         u64 start = page_offset(page);
3154         u64 end = start + PAGE_SIZE - 1;
3155         int ret;
3156
3157         while (1) {
3158                 lock_extent(tree, start, end);
3159                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3160                                                 PAGE_SIZE);
3161                 if (!ordered)
3162                         break;
3163                 unlock_extent(tree, start, end);
3164                 btrfs_start_ordered_extent(inode, ordered, 1);
3165                 btrfs_put_ordered_extent(ordered);
3166         }
3167
3168         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3169                             bio_flags, read_flags, NULL);
3170         return ret;
3171 }
3172
3173 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3174                             get_extent_t *get_extent, int mirror_num)
3175 {
3176         struct bio *bio = NULL;
3177         unsigned long bio_flags = 0;
3178         int ret;
3179
3180         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3181                                       &bio_flags, 0);
3182         if (bio)
3183                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3184         return ret;
3185 }
3186
3187 static void update_nr_written(struct writeback_control *wbc,
3188                               unsigned long nr_written)
3189 {
3190         wbc->nr_to_write -= nr_written;
3191 }
3192
3193 /*
3194  * helper for __extent_writepage, doing all of the delayed allocation setup.
3195  *
3196  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3197  * to write the page (copy into inline extent).  In this case the IO has
3198  * been started and the page is already unlocked.
3199  *
3200  * This returns 0 if all went well (page still locked)
3201  * This returns < 0 if there were errors (page still locked)
3202  */
3203 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3204                               struct page *page, struct writeback_control *wbc,
3205                               struct extent_page_data *epd,
3206                               u64 delalloc_start,
3207                               unsigned long *nr_written)
3208 {
3209         struct extent_io_tree *tree = epd->tree;
3210         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3211         u64 nr_delalloc;
3212         u64 delalloc_to_write = 0;
3213         u64 delalloc_end = 0;
3214         int ret;
3215         int page_started = 0;
3216
3217
3218         while (delalloc_end < page_end) {
3219                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3220                                                page,
3221                                                &delalloc_start,
3222                                                &delalloc_end,
3223                                                BTRFS_MAX_EXTENT_SIZE);
3224                 if (nr_delalloc == 0) {
3225                         delalloc_start = delalloc_end + 1;
3226                         continue;
3227                 }
3228                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3229                                 delalloc_end, &page_started, nr_written, wbc);
3230                 /* File system has been set read-only */
3231                 if (ret) {
3232                         SetPageError(page);
3233                         /*
3234                          * btrfs_run_delalloc_range should return < 0 for error
3235                          * but just in case, we use > 0 here meaning the IO is
3236                          * started, so we don't want to return > 0 unless
3237                          * things are going well.
3238                          */
3239                         ret = ret < 0 ? ret : -EIO;
3240                         goto done;
3241                 }
3242                 /*
3243                  * delalloc_end is already one less than the total length, so
3244                  * we don't subtract one from PAGE_SIZE
3245                  */
3246                 delalloc_to_write += (delalloc_end - delalloc_start +
3247                                       PAGE_SIZE) >> PAGE_SHIFT;
3248                 delalloc_start = delalloc_end + 1;
3249         }
3250         if (wbc->nr_to_write < delalloc_to_write) {
3251                 int thresh = 8192;
3252
3253                 if (delalloc_to_write < thresh * 2)
3254                         thresh = delalloc_to_write;
3255                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3256                                          thresh);
3257         }
3258
3259         /* did the fill delalloc function already unlock and start
3260          * the IO?
3261          */
3262         if (page_started) {
3263                 /*
3264                  * we've unlocked the page, so we can't update
3265                  * the mapping's writeback index, just update
3266                  * nr_to_write.
3267                  */
3268                 wbc->nr_to_write -= *nr_written;
3269                 return 1;
3270         }
3271
3272         ret = 0;
3273
3274 done:
3275         return ret;
3276 }
3277
3278 /*
3279  * helper for __extent_writepage.  This calls the writepage start hooks,
3280  * and does the loop to map the page into extents and bios.
3281  *
3282  * We return 1 if the IO is started and the page is unlocked,
3283  * 0 if all went well (page still locked)
3284  * < 0 if there were errors (page still locked)
3285  */
3286 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3287                                  struct page *page,
3288                                  struct writeback_control *wbc,
3289                                  struct extent_page_data *epd,
3290                                  loff_t i_size,
3291                                  unsigned long nr_written,
3292                                  unsigned int write_flags, int *nr_ret)
3293 {
3294         struct extent_io_tree *tree = epd->tree;
3295         u64 start = page_offset(page);
3296         u64 page_end = start + PAGE_SIZE - 1;
3297         u64 end;
3298         u64 cur = start;
3299         u64 extent_offset;
3300         u64 block_start;
3301         u64 iosize;
3302         struct extent_map *em;
3303         struct block_device *bdev;
3304         size_t pg_offset = 0;
3305         size_t blocksize;
3306         int ret = 0;
3307         int nr = 0;
3308         bool compressed;
3309
3310         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3311         if (ret) {
3312                 /* Fixup worker will requeue */
3313                 if (ret == -EBUSY)
3314                         wbc->pages_skipped++;
3315                 else
3316                         redirty_page_for_writepage(wbc, page);
3317
3318                 update_nr_written(wbc, nr_written);
3319                 unlock_page(page);
3320                 return 1;
3321         }
3322
3323         /*
3324          * we don't want to touch the inode after unlocking the page,
3325          * so we update the mapping writeback index now
3326          */
3327         update_nr_written(wbc, nr_written + 1);
3328
3329         end = page_end;
3330         if (i_size <= start) {
3331                 btrfs_writepage_endio_finish_ordered(page, start, page_end,
3332                                                      NULL, 1);
3333                 goto done;
3334         }
3335
3336         blocksize = inode->i_sb->s_blocksize;
3337
3338         while (cur <= end) {
3339                 u64 em_end;
3340                 u64 offset;
3341
3342                 if (cur >= i_size) {
3343                         btrfs_writepage_endio_finish_ordered(page, cur,
3344                                                              page_end, NULL, 1);
3345                         break;
3346                 }
3347                 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3348                                      end - cur + 1, 1);
3349                 if (IS_ERR_OR_NULL(em)) {
3350                         SetPageError(page);
3351                         ret = PTR_ERR_OR_ZERO(em);
3352                         break;
3353                 }
3354
3355                 extent_offset = cur - em->start;
3356                 em_end = extent_map_end(em);
3357                 BUG_ON(em_end <= cur);
3358                 BUG_ON(end < cur);
3359                 iosize = min(em_end - cur, end - cur + 1);
3360                 iosize = ALIGN(iosize, blocksize);
3361                 offset = em->block_start + extent_offset;
3362                 bdev = em->bdev;
3363                 block_start = em->block_start;
3364                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3365                 free_extent_map(em);
3366                 em = NULL;
3367
3368                 /*
3369                  * compressed and inline extents are written through other
3370                  * paths in the FS
3371                  */
3372                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3373                     block_start == EXTENT_MAP_INLINE) {
3374                         /*
3375                          * end_io notification does not happen here for
3376                          * compressed extents
3377                          */
3378                         if (!compressed)
3379                                 btrfs_writepage_endio_finish_ordered(page, cur,
3380                                                             cur + iosize - 1,
3381                                                             NULL, 1);
3382                         else if (compressed) {
3383                                 /* we don't want to end_page_writeback on
3384                                  * a compressed extent.  this happens
3385                                  * elsewhere
3386                                  */
3387                                 nr++;
3388                         }
3389
3390                         cur += iosize;
3391                         pg_offset += iosize;
3392                         continue;
3393                 }
3394
3395                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3396                 if (!PageWriteback(page)) {
3397                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3398                                    "page %lu not writeback, cur %llu end %llu",
3399                                page->index, cur, end);
3400                 }
3401
3402                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3403                                          page, offset, iosize, pg_offset,
3404                                          bdev, &epd->bio,
3405                                          end_bio_extent_writepage,
3406                                          0, 0, 0, false);
3407                 if (ret) {
3408                         SetPageError(page);
3409                         if (PageWriteback(page))
3410                                 end_page_writeback(page);
3411                 }
3412
3413                 cur = cur + iosize;
3414                 pg_offset += iosize;
3415                 nr++;
3416         }
3417 done:
3418         *nr_ret = nr;
3419         return ret;
3420 }
3421
3422 /*
3423  * the writepage semantics are similar to regular writepage.  extent
3424  * records are inserted to lock ranges in the tree, and as dirty areas
3425  * are found, they are marked writeback.  Then the lock bits are removed
3426  * and the end_io handler clears the writeback ranges
3427  */
3428 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3429                               struct extent_page_data *epd)
3430 {
3431         struct inode *inode = page->mapping->host;
3432         u64 start = page_offset(page);
3433         u64 page_end = start + PAGE_SIZE - 1;
3434         int ret;
3435         int nr = 0;
3436         size_t pg_offset = 0;
3437         loff_t i_size = i_size_read(inode);
3438         unsigned long end_index = i_size >> PAGE_SHIFT;
3439         unsigned int write_flags = 0;
3440         unsigned long nr_written = 0;
3441
3442         write_flags = wbc_to_write_flags(wbc);
3443
3444         trace___extent_writepage(page, inode, wbc);
3445
3446         WARN_ON(!PageLocked(page));
3447
3448         ClearPageError(page);
3449
3450         pg_offset = i_size & (PAGE_SIZE - 1);
3451         if (page->index > end_index ||
3452            (page->index == end_index && !pg_offset)) {
3453                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3454                 unlock_page(page);
3455                 return 0;
3456         }
3457
3458         if (page->index == end_index) {
3459                 char *userpage;
3460
3461                 userpage = kmap_atomic(page);
3462                 memset(userpage + pg_offset, 0,
3463                        PAGE_SIZE - pg_offset);
3464                 kunmap_atomic(userpage);
3465                 flush_dcache_page(page);
3466         }
3467
3468         pg_offset = 0;
3469
3470         set_page_extent_mapped(page);
3471
3472         if (!epd->extent_locked) {
3473                 ret = writepage_delalloc(inode, page, wbc, epd, start,
3474                                          &nr_written);
3475                 if (ret == 1)
3476                         goto done_unlocked;
3477                 if (ret)
3478                         goto done;
3479         }
3480
3481         ret = __extent_writepage_io(inode, page, wbc, epd,
3482                                     i_size, nr_written, write_flags, &nr);
3483         if (ret == 1)
3484                 goto done_unlocked;
3485
3486 done:
3487         if (nr == 0) {
3488                 /* make sure the mapping tag for page dirty gets cleared */
3489                 set_page_writeback(page);
3490                 end_page_writeback(page);
3491         }
3492         if (PageError(page)) {
3493                 ret = ret < 0 ? ret : -EIO;
3494                 end_extent_writepage(page, ret, start, page_end);
3495         }
3496         unlock_page(page);
3497         return ret;
3498
3499 done_unlocked:
3500         return 0;
3501 }
3502
3503 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3504 {
3505         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3506                        TASK_UNINTERRUPTIBLE);
3507 }
3508
3509 static noinline_for_stack int
3510 lock_extent_buffer_for_io(struct extent_buffer *eb,
3511                           struct btrfs_fs_info *fs_info,
3512                           struct extent_page_data *epd)
3513 {
3514         int i, num_pages;
3515         int flush = 0;
3516         int ret = 0;
3517
3518         if (!btrfs_try_tree_write_lock(eb)) {
3519                 flush = 1;
3520                 flush_write_bio(epd);
3521                 btrfs_tree_lock(eb);
3522         }
3523
3524         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3525                 btrfs_tree_unlock(eb);
3526                 if (!epd->sync_io)
3527                         return 0;
3528                 if (!flush) {
3529                         flush_write_bio(epd);
3530                         flush = 1;
3531                 }
3532                 while (1) {
3533                         wait_on_extent_buffer_writeback(eb);
3534                         btrfs_tree_lock(eb);
3535                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3536                                 break;
3537                         btrfs_tree_unlock(eb);
3538                 }
3539         }
3540
3541         /*
3542          * We need to do this to prevent races in people who check if the eb is
3543          * under IO since we can end up having no IO bits set for a short period
3544          * of time.
3545          */
3546         spin_lock(&eb->refs_lock);
3547         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3548                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3549                 spin_unlock(&eb->refs_lock);
3550                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3551                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3552                                          -eb->len,
3553                                          fs_info->dirty_metadata_batch);
3554                 ret = 1;
3555         } else {
3556                 spin_unlock(&eb->refs_lock);
3557         }
3558
3559         btrfs_tree_unlock(eb);
3560
3561         if (!ret)
3562                 return ret;
3563
3564         num_pages = num_extent_pages(eb);
3565         for (i = 0; i < num_pages; i++) {
3566                 struct page *p = eb->pages[i];
3567
3568                 if (!trylock_page(p)) {
3569                         if (!flush) {
3570                                 flush_write_bio(epd);
3571                                 flush = 1;
3572                         }
3573                         lock_page(p);
3574                 }
3575         }
3576
3577         return ret;
3578 }
3579
3580 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3581 {
3582         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3583         smp_mb__after_atomic();
3584         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3585 }
3586
3587 static void set_btree_ioerr(struct page *page)
3588 {
3589         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3590
3591         SetPageError(page);
3592         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3593                 return;
3594
3595         /*
3596          * If writeback for a btree extent that doesn't belong to a log tree
3597          * failed, increment the counter transaction->eb_write_errors.
3598          * We do this because while the transaction is running and before it's
3599          * committing (when we call filemap_fdata[write|wait]_range against
3600          * the btree inode), we might have
3601          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3602          * returns an error or an error happens during writeback, when we're
3603          * committing the transaction we wouldn't know about it, since the pages
3604          * can be no longer dirty nor marked anymore for writeback (if a
3605          * subsequent modification to the extent buffer didn't happen before the
3606          * transaction commit), which makes filemap_fdata[write|wait]_range not
3607          * able to find the pages tagged with SetPageError at transaction
3608          * commit time. So if this happens we must abort the transaction,
3609          * otherwise we commit a super block with btree roots that point to
3610          * btree nodes/leafs whose content on disk is invalid - either garbage
3611          * or the content of some node/leaf from a past generation that got
3612          * cowed or deleted and is no longer valid.
3613          *
3614          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3615          * not be enough - we need to distinguish between log tree extents vs
3616          * non-log tree extents, and the next filemap_fdatawait_range() call
3617          * will catch and clear such errors in the mapping - and that call might
3618          * be from a log sync and not from a transaction commit. Also, checking
3619          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3620          * not done and would not be reliable - the eb might have been released
3621          * from memory and reading it back again means that flag would not be
3622          * set (since it's a runtime flag, not persisted on disk).
3623          *
3624          * Using the flags below in the btree inode also makes us achieve the
3625          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3626          * writeback for all dirty pages and before filemap_fdatawait_range()
3627          * is called, the writeback for all dirty pages had already finished
3628          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3629          * filemap_fdatawait_range() would return success, as it could not know
3630          * that writeback errors happened (the pages were no longer tagged for
3631          * writeback).
3632          */
3633         switch (eb->log_index) {
3634         case -1:
3635                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3636                 break;
3637         case 0:
3638                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3639                 break;
3640         case 1:
3641                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3642                 break;
3643         default:
3644                 BUG(); /* unexpected, logic error */
3645         }
3646 }
3647
3648 static void end_bio_extent_buffer_writepage(struct bio *bio)
3649 {
3650         struct bio_vec *bvec;
3651         struct extent_buffer *eb;
3652         int i, done;
3653
3654         ASSERT(!bio_flagged(bio, BIO_CLONED));
3655         bio_for_each_segment_all(bvec, bio, i) {
3656                 struct page *page = bvec->bv_page;
3657
3658                 eb = (struct extent_buffer *)page->private;
3659                 BUG_ON(!eb);
3660                 done = atomic_dec_and_test(&eb->io_pages);
3661
3662                 if (bio->bi_status ||
3663                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3664                         ClearPageUptodate(page);
3665                         set_btree_ioerr(page);
3666                 }
3667
3668                 end_page_writeback(page);
3669
3670                 if (!done)
3671                         continue;
3672
3673                 end_extent_buffer_writeback(eb);
3674         }
3675
3676         bio_put(bio);
3677 }
3678
3679 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3680                         struct btrfs_fs_info *fs_info,
3681                         struct writeback_control *wbc,
3682                         struct extent_page_data *epd)
3683 {
3684         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3685         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3686         u64 offset = eb->start;
3687         u32 nritems;
3688         int i, num_pages;
3689         unsigned long start, end;
3690         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3691         int ret = 0;
3692
3693         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3694         num_pages = num_extent_pages(eb);
3695         atomic_set(&eb->io_pages, num_pages);
3696
3697         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3698         nritems = btrfs_header_nritems(eb);
3699         if (btrfs_header_level(eb) > 0) {
3700                 end = btrfs_node_key_ptr_offset(nritems);
3701
3702                 memzero_extent_buffer(eb, end, eb->len - end);
3703         } else {
3704                 /*
3705                  * leaf:
3706                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3707                  */
3708                 start = btrfs_item_nr_offset(nritems);
3709                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3710                 memzero_extent_buffer(eb, start, end - start);
3711         }
3712
3713         for (i = 0; i < num_pages; i++) {
3714                 struct page *p = eb->pages[i];
3715
3716                 clear_page_dirty_for_io(p);
3717                 set_page_writeback(p);
3718                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3719                                          p, offset, PAGE_SIZE, 0, bdev,
3720                                          &epd->bio,
3721                                          end_bio_extent_buffer_writepage,
3722                                          0, 0, 0, false);
3723                 if (ret) {
3724                         set_btree_ioerr(p);
3725                         if (PageWriteback(p))
3726                                 end_page_writeback(p);
3727                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3728                                 end_extent_buffer_writeback(eb);
3729                         ret = -EIO;
3730                         break;
3731                 }
3732                 offset += PAGE_SIZE;
3733                 update_nr_written(wbc, 1);
3734                 unlock_page(p);
3735         }
3736
3737         if (unlikely(ret)) {
3738                 for (; i < num_pages; i++) {
3739                         struct page *p = eb->pages[i];
3740                         clear_page_dirty_for_io(p);
3741                         unlock_page(p);
3742                 }
3743         }
3744
3745         return ret;
3746 }
3747
3748 int btree_write_cache_pages(struct address_space *mapping,
3749                                    struct writeback_control *wbc)
3750 {
3751         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3752         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3753         struct extent_buffer *eb, *prev_eb = NULL;
3754         struct extent_page_data epd = {
3755                 .bio = NULL,
3756                 .tree = tree,
3757                 .extent_locked = 0,
3758                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3759         };
3760         int ret = 0;
3761         int done = 0;
3762         int nr_to_write_done = 0;
3763         struct pagevec pvec;
3764         int nr_pages;
3765         pgoff_t index;
3766         pgoff_t end;            /* Inclusive */
3767         int scanned = 0;
3768         xa_mark_t tag;
3769
3770         pagevec_init(&pvec);
3771         if (wbc->range_cyclic) {
3772                 index = mapping->writeback_index; /* Start from prev offset */
3773                 end = -1;
3774         } else {
3775                 index = wbc->range_start >> PAGE_SHIFT;
3776                 end = wbc->range_end >> PAGE_SHIFT;
3777                 scanned = 1;
3778         }
3779         if (wbc->sync_mode == WB_SYNC_ALL)
3780                 tag = PAGECACHE_TAG_TOWRITE;
3781         else
3782                 tag = PAGECACHE_TAG_DIRTY;
3783 retry:
3784         if (wbc->sync_mode == WB_SYNC_ALL)
3785                 tag_pages_for_writeback(mapping, index, end);
3786         while (!done && !nr_to_write_done && (index <= end) &&
3787                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3788                         tag))) {
3789                 unsigned i;
3790
3791                 scanned = 1;
3792                 for (i = 0; i < nr_pages; i++) {
3793                         struct page *page = pvec.pages[i];
3794
3795                         if (!PagePrivate(page))
3796                                 continue;
3797
3798                         spin_lock(&mapping->private_lock);
3799                         if (!PagePrivate(page)) {
3800                                 spin_unlock(&mapping->private_lock);
3801                                 continue;
3802                         }
3803
3804                         eb = (struct extent_buffer *)page->private;
3805
3806                         /*
3807                          * Shouldn't happen and normally this would be a BUG_ON
3808                          * but no sense in crashing the users box for something
3809                          * we can survive anyway.
3810                          */
3811                         if (WARN_ON(!eb)) {
3812                                 spin_unlock(&mapping->private_lock);
3813                                 continue;
3814                         }
3815
3816                         if (eb == prev_eb) {
3817                                 spin_unlock(&mapping->private_lock);
3818                                 continue;
3819                         }
3820
3821                         ret = atomic_inc_not_zero(&eb->refs);
3822                         spin_unlock(&mapping->private_lock);
3823                         if (!ret)
3824                                 continue;
3825
3826                         prev_eb = eb;
3827                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3828                         if (!ret) {
3829                                 free_extent_buffer(eb);
3830                                 continue;
3831                         }
3832
3833                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3834                         if (ret) {
3835                                 done = 1;
3836                                 free_extent_buffer(eb);
3837                                 break;
3838                         }
3839                         free_extent_buffer(eb);
3840
3841                         /*
3842                          * the filesystem may choose to bump up nr_to_write.
3843                          * We have to make sure to honor the new nr_to_write
3844                          * at any time
3845                          */
3846                         nr_to_write_done = wbc->nr_to_write <= 0;
3847                 }
3848                 pagevec_release(&pvec);
3849                 cond_resched();
3850         }
3851         if (!scanned && !done) {
3852                 /*
3853                  * We hit the last page and there is more work to be done: wrap
3854                  * back to the start of the file
3855                  */
3856                 scanned = 1;
3857                 index = 0;
3858                 goto retry;
3859         }
3860         flush_write_bio(&epd);
3861         return ret;
3862 }
3863
3864 /**
3865  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3866  * @mapping: address space structure to write
3867  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3868  * @data: data passed to __extent_writepage function
3869  *
3870  * If a page is already under I/O, write_cache_pages() skips it, even
3871  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3872  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3873  * and msync() need to guarantee that all the data which was dirty at the time
3874  * the call was made get new I/O started against them.  If wbc->sync_mode is
3875  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3876  * existing IO to complete.
3877  */
3878 static int extent_write_cache_pages(struct address_space *mapping,
3879                              struct writeback_control *wbc,
3880                              struct extent_page_data *epd)
3881 {
3882         struct inode *inode = mapping->host;
3883         int ret = 0;
3884         int done = 0;
3885         int nr_to_write_done = 0;
3886         struct pagevec pvec;
3887         int nr_pages;
3888         pgoff_t index;
3889         pgoff_t end;            /* Inclusive */
3890         pgoff_t done_index;
3891         int range_whole = 0;
3892         int scanned = 0;
3893         xa_mark_t tag;
3894
3895         /*
3896          * We have to hold onto the inode so that ordered extents can do their
3897          * work when the IO finishes.  The alternative to this is failing to add
3898          * an ordered extent if the igrab() fails there and that is a huge pain
3899          * to deal with, so instead just hold onto the inode throughout the
3900          * writepages operation.  If it fails here we are freeing up the inode
3901          * anyway and we'd rather not waste our time writing out stuff that is
3902          * going to be truncated anyway.
3903          */
3904         if (!igrab(inode))
3905                 return 0;
3906
3907         pagevec_init(&pvec);
3908         if (wbc->range_cyclic) {
3909                 index = mapping->writeback_index; /* Start from prev offset */
3910                 end = -1;
3911         } else {
3912                 index = wbc->range_start >> PAGE_SHIFT;
3913                 end = wbc->range_end >> PAGE_SHIFT;
3914                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3915                         range_whole = 1;
3916                 scanned = 1;
3917         }
3918         if (wbc->sync_mode == WB_SYNC_ALL)
3919                 tag = PAGECACHE_TAG_TOWRITE;
3920         else
3921                 tag = PAGECACHE_TAG_DIRTY;
3922 retry:
3923         if (wbc->sync_mode == WB_SYNC_ALL)
3924                 tag_pages_for_writeback(mapping, index, end);
3925         done_index = index;
3926         while (!done && !nr_to_write_done && (index <= end) &&
3927                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3928                                                 &index, end, tag))) {
3929                 unsigned i;
3930
3931                 scanned = 1;
3932                 for (i = 0; i < nr_pages; i++) {
3933                         struct page *page = pvec.pages[i];
3934
3935                         done_index = page->index;
3936                         /*
3937                          * At this point we hold neither the i_pages lock nor
3938                          * the page lock: the page may be truncated or
3939                          * invalidated (changing page->mapping to NULL),
3940                          * or even swizzled back from swapper_space to
3941                          * tmpfs file mapping
3942                          */
3943                         if (!trylock_page(page)) {
3944                                 flush_write_bio(epd);
3945                                 lock_page(page);
3946                         }
3947
3948                         if (unlikely(page->mapping != mapping)) {
3949                                 unlock_page(page);
3950                                 continue;
3951                         }
3952
3953                         if (wbc->sync_mode != WB_SYNC_NONE) {
3954                                 if (PageWriteback(page))
3955                                         flush_write_bio(epd);
3956                                 wait_on_page_writeback(page);
3957                         }
3958
3959                         if (PageWriteback(page) ||
3960                             !clear_page_dirty_for_io(page)) {
3961                                 unlock_page(page);
3962                                 continue;
3963                         }
3964
3965                         ret = __extent_writepage(page, wbc, epd);
3966
3967                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3968                                 unlock_page(page);
3969                                 ret = 0;
3970                         }
3971                         if (ret < 0) {
3972                                 /*
3973                                  * done_index is set past this page,
3974                                  * so media errors will not choke
3975                                  * background writeout for the entire
3976                                  * file. This has consequences for
3977                                  * range_cyclic semantics (ie. it may
3978                                  * not be suitable for data integrity
3979                                  * writeout).
3980                                  */
3981                                 done_index = page->index + 1;
3982                                 done = 1;
3983                                 break;
3984                         }
3985
3986                         /*
3987                          * the filesystem may choose to bump up nr_to_write.
3988                          * We have to make sure to honor the new nr_to_write
3989                          * at any time
3990                          */
3991                         nr_to_write_done = wbc->nr_to_write <= 0;
3992                 }
3993                 pagevec_release(&pvec);
3994                 cond_resched();
3995         }
3996         if (!scanned && !done) {
3997                 /*
3998                  * We hit the last page and there is more work to be done: wrap
3999                  * back to the start of the file
4000                  */
4001                 scanned = 1;
4002                 index = 0;
4003                 goto retry;
4004         }
4005
4006         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4007                 mapping->writeback_index = done_index;
4008
4009         btrfs_add_delayed_iput(inode);
4010         return ret;
4011 }
4012
4013 static void flush_write_bio(struct extent_page_data *epd)
4014 {
4015         if (epd->bio) {
4016                 int ret;
4017
4018                 ret = submit_one_bio(epd->bio, 0, 0);
4019                 BUG_ON(ret < 0); /* -ENOMEM */
4020                 epd->bio = NULL;
4021         }
4022 }
4023
4024 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4025 {
4026         int ret;
4027         struct extent_page_data epd = {
4028                 .bio = NULL,
4029                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4030                 .extent_locked = 0,
4031                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4032         };
4033
4034         ret = __extent_writepage(page, wbc, &epd);
4035
4036         flush_write_bio(&epd);
4037         return ret;
4038 }
4039
4040 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4041                               int mode)
4042 {
4043         int ret = 0;
4044         struct address_space *mapping = inode->i_mapping;
4045         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4046         struct page *page;
4047         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4048                 PAGE_SHIFT;
4049
4050         struct extent_page_data epd = {
4051                 .bio = NULL,
4052                 .tree = tree,
4053                 .extent_locked = 1,
4054                 .sync_io = mode == WB_SYNC_ALL,
4055         };
4056         struct writeback_control wbc_writepages = {
4057                 .sync_mode      = mode,
4058                 .nr_to_write    = nr_pages * 2,
4059                 .range_start    = start,
4060                 .range_end      = end + 1,
4061         };
4062
4063         while (start <= end) {
4064                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4065                 if (clear_page_dirty_for_io(page))
4066                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4067                 else {
4068                         btrfs_writepage_endio_finish_ordered(page, start,
4069                                                     start + PAGE_SIZE - 1,
4070                                                     NULL, 1);
4071                         unlock_page(page);
4072                 }
4073                 put_page(page);
4074                 start += PAGE_SIZE;
4075         }
4076
4077         flush_write_bio(&epd);
4078         return ret;
4079 }
4080
4081 int extent_writepages(struct address_space *mapping,
4082                       struct writeback_control *wbc)
4083 {
4084         int ret = 0;
4085         struct extent_page_data epd = {
4086                 .bio = NULL,
4087                 .tree = &BTRFS_I(mapping->host)->io_tree,
4088                 .extent_locked = 0,
4089                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4090         };
4091
4092         ret = extent_write_cache_pages(mapping, wbc, &epd);
4093         flush_write_bio(&epd);
4094         return ret;
4095 }
4096
4097 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4098                      unsigned nr_pages)
4099 {
4100         struct bio *bio = NULL;
4101         unsigned page_idx;
4102         unsigned long bio_flags = 0;
4103         struct page *pagepool[16];
4104         struct page *page;
4105         struct extent_map *em_cached = NULL;
4106         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4107         int nr = 0;
4108         u64 prev_em_start = (u64)-1;
4109
4110         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4111                 page = list_entry(pages->prev, struct page, lru);
4112
4113                 prefetchw(&page->flags);
4114                 list_del(&page->lru);
4115                 if (add_to_page_cache_lru(page, mapping,
4116                                         page->index,
4117                                         readahead_gfp_mask(mapping))) {
4118                         put_page(page);
4119                         continue;
4120                 }
4121
4122                 pagepool[nr++] = page;
4123                 if (nr < ARRAY_SIZE(pagepool))
4124                         continue;
4125                 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4126                                 &bio_flags, &prev_em_start);
4127                 nr = 0;
4128         }
4129         if (nr)
4130                 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4131                                 &bio_flags, &prev_em_start);
4132
4133         if (em_cached)
4134                 free_extent_map(em_cached);
4135
4136         BUG_ON(!list_empty(pages));
4137         if (bio)
4138                 return submit_one_bio(bio, 0, bio_flags);
4139         return 0;
4140 }
4141
4142 /*
4143  * basic invalidatepage code, this waits on any locked or writeback
4144  * ranges corresponding to the page, and then deletes any extent state
4145  * records from the tree
4146  */
4147 int extent_invalidatepage(struct extent_io_tree *tree,
4148                           struct page *page, unsigned long offset)
4149 {
4150         struct extent_state *cached_state = NULL;
4151         u64 start = page_offset(page);
4152         u64 end = start + PAGE_SIZE - 1;
4153         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4154
4155         start += ALIGN(offset, blocksize);
4156         if (start > end)
4157                 return 0;
4158
4159         lock_extent_bits(tree, start, end, &cached_state);
4160         wait_on_page_writeback(page);
4161         clear_extent_bit(tree, start, end,
4162                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4163                          EXTENT_DO_ACCOUNTING,
4164                          1, 1, &cached_state);
4165         return 0;
4166 }
4167
4168 /*
4169  * a helper for releasepage, this tests for areas of the page that
4170  * are locked or under IO and drops the related state bits if it is safe
4171  * to drop the page.
4172  */
4173 static int try_release_extent_state(struct extent_io_tree *tree,
4174                                     struct page *page, gfp_t mask)
4175 {
4176         u64 start = page_offset(page);
4177         u64 end = start + PAGE_SIZE - 1;
4178         int ret = 1;
4179
4180         if (test_range_bit(tree, start, end,
4181                            EXTENT_IOBITS, 0, NULL))
4182                 ret = 0;
4183         else {
4184                 /*
4185                  * at this point we can safely clear everything except the
4186                  * locked bit and the nodatasum bit
4187                  */
4188                 ret = __clear_extent_bit(tree, start, end,
4189                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4190                                  0, 0, NULL, mask, NULL);
4191
4192                 /* if clear_extent_bit failed for enomem reasons,
4193                  * we can't allow the release to continue.
4194                  */
4195                 if (ret < 0)
4196                         ret = 0;
4197                 else
4198                         ret = 1;
4199         }
4200         return ret;
4201 }
4202
4203 /*
4204  * a helper for releasepage.  As long as there are no locked extents
4205  * in the range corresponding to the page, both state records and extent
4206  * map records are removed
4207  */
4208 int try_release_extent_mapping(struct page *page, gfp_t mask)
4209 {
4210         struct extent_map *em;
4211         u64 start = page_offset(page);
4212         u64 end = start + PAGE_SIZE - 1;
4213         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4214         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4215         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4216
4217         if (gfpflags_allow_blocking(mask) &&
4218             page->mapping->host->i_size > SZ_16M) {
4219                 u64 len;
4220                 while (start <= end) {
4221                         len = end - start + 1;
4222                         write_lock(&map->lock);
4223                         em = lookup_extent_mapping(map, start, len);
4224                         if (!em) {
4225                                 write_unlock(&map->lock);
4226                                 break;
4227                         }
4228                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4229                             em->start != start) {
4230                                 write_unlock(&map->lock);
4231                                 free_extent_map(em);
4232                                 break;
4233                         }
4234                         if (!test_range_bit(tree, em->start,
4235                                             extent_map_end(em) - 1,
4236                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4237                                             0, NULL)) {
4238                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4239                                         &btrfs_inode->runtime_flags);
4240                                 remove_extent_mapping(map, em);
4241                                 /* once for the rb tree */
4242                                 free_extent_map(em);
4243                         }
4244                         start = extent_map_end(em);
4245                         write_unlock(&map->lock);
4246
4247                         /* once for us */
4248                         free_extent_map(em);
4249                 }
4250         }
4251         return try_release_extent_state(tree, page, mask);
4252 }
4253
4254 /*
4255  * helper function for fiemap, which doesn't want to see any holes.
4256  * This maps until we find something past 'last'
4257  */
4258 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4259                                                 u64 offset, u64 last)
4260 {
4261         u64 sectorsize = btrfs_inode_sectorsize(inode);
4262         struct extent_map *em;
4263         u64 len;
4264
4265         if (offset >= last)
4266                 return NULL;
4267
4268         while (1) {
4269                 len = last - offset;
4270                 if (len == 0)
4271                         break;
4272                 len = ALIGN(len, sectorsize);
4273                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4274                                 len, 0);
4275                 if (IS_ERR_OR_NULL(em))
4276                         return em;
4277
4278                 /* if this isn't a hole return it */
4279                 if (em->block_start != EXTENT_MAP_HOLE)
4280                         return em;
4281
4282                 /* this is a hole, advance to the next extent */
4283                 offset = extent_map_end(em);
4284                 free_extent_map(em);
4285                 if (offset >= last)
4286                         break;
4287         }
4288         return NULL;
4289 }
4290
4291 /*
4292  * To cache previous fiemap extent
4293  *
4294  * Will be used for merging fiemap extent
4295  */
4296 struct fiemap_cache {
4297         u64 offset;
4298         u64 phys;
4299         u64 len;
4300         u32 flags;
4301         bool cached;
4302 };
4303
4304 /*
4305  * Helper to submit fiemap extent.
4306  *
4307  * Will try to merge current fiemap extent specified by @offset, @phys,
4308  * @len and @flags with cached one.
4309  * And only when we fails to merge, cached one will be submitted as
4310  * fiemap extent.
4311  *
4312  * Return value is the same as fiemap_fill_next_extent().
4313  */
4314 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4315                                 struct fiemap_cache *cache,
4316                                 u64 offset, u64 phys, u64 len, u32 flags)
4317 {
4318         int ret = 0;
4319
4320         if (!cache->cached)
4321                 goto assign;
4322
4323         /*
4324          * Sanity check, extent_fiemap() should have ensured that new
4325          * fiemap extent won't overlap with cahced one.
4326          * Not recoverable.
4327          *
4328          * NOTE: Physical address can overlap, due to compression
4329          */
4330         if (cache->offset + cache->len > offset) {
4331                 WARN_ON(1);
4332                 return -EINVAL;
4333         }
4334
4335         /*
4336          * Only merges fiemap extents if
4337          * 1) Their logical addresses are continuous
4338          *
4339          * 2) Their physical addresses are continuous
4340          *    So truly compressed (physical size smaller than logical size)
4341          *    extents won't get merged with each other
4342          *
4343          * 3) Share same flags except FIEMAP_EXTENT_LAST
4344          *    So regular extent won't get merged with prealloc extent
4345          */
4346         if (cache->offset + cache->len  == offset &&
4347             cache->phys + cache->len == phys  &&
4348             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4349                         (flags & ~FIEMAP_EXTENT_LAST)) {
4350                 cache->len += len;
4351                 cache->flags |= flags;
4352                 goto try_submit_last;
4353         }
4354
4355         /* Not mergeable, need to submit cached one */
4356         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4357                                       cache->len, cache->flags);
4358         cache->cached = false;
4359         if (ret)
4360                 return ret;
4361 assign:
4362         cache->cached = true;
4363         cache->offset = offset;
4364         cache->phys = phys;
4365         cache->len = len;
4366         cache->flags = flags;
4367 try_submit_last:
4368         if (cache->flags & FIEMAP_EXTENT_LAST) {
4369                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4370                                 cache->phys, cache->len, cache->flags);
4371                 cache->cached = false;
4372         }
4373         return ret;
4374 }
4375
4376 /*
4377  * Emit last fiemap cache
4378  *
4379  * The last fiemap cache may still be cached in the following case:
4380  * 0                  4k                    8k
4381  * |<- Fiemap range ->|
4382  * |<------------  First extent ----------->|
4383  *
4384  * In this case, the first extent range will be cached but not emitted.
4385  * So we must emit it before ending extent_fiemap().
4386  */
4387 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4388                                   struct fiemap_extent_info *fieinfo,
4389                                   struct fiemap_cache *cache)
4390 {
4391         int ret;
4392
4393         if (!cache->cached)
4394                 return 0;
4395
4396         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4397                                       cache->len, cache->flags);
4398         cache->cached = false;
4399         if (ret > 0)
4400                 ret = 0;
4401         return ret;
4402 }
4403
4404 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4405                 __u64 start, __u64 len)
4406 {
4407         int ret = 0;
4408         u64 off = start;
4409         u64 max = start + len;
4410         u32 flags = 0;
4411         u32 found_type;
4412         u64 last;
4413         u64 last_for_get_extent = 0;
4414         u64 disko = 0;
4415         u64 isize = i_size_read(inode);
4416         struct btrfs_key found_key;
4417         struct extent_map *em = NULL;
4418         struct extent_state *cached_state = NULL;
4419         struct btrfs_path *path;
4420         struct btrfs_root *root = BTRFS_I(inode)->root;
4421         struct fiemap_cache cache = { 0 };
4422         int end = 0;
4423         u64 em_start = 0;
4424         u64 em_len = 0;
4425         u64 em_end = 0;
4426
4427         if (len == 0)
4428                 return -EINVAL;
4429
4430         path = btrfs_alloc_path();
4431         if (!path)
4432                 return -ENOMEM;
4433         path->leave_spinning = 1;
4434
4435         start = round_down(start, btrfs_inode_sectorsize(inode));
4436         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4437
4438         /*
4439          * lookup the last file extent.  We're not using i_size here
4440          * because there might be preallocation past i_size
4441          */
4442         ret = btrfs_lookup_file_extent(NULL, root, path,
4443                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4444         if (ret < 0) {
4445                 btrfs_free_path(path);
4446                 return ret;
4447         } else {
4448                 WARN_ON(!ret);
4449                 if (ret == 1)
4450                         ret = 0;
4451         }
4452
4453         path->slots[0]--;
4454         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4455         found_type = found_key.type;
4456
4457         /* No extents, but there might be delalloc bits */
4458         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4459             found_type != BTRFS_EXTENT_DATA_KEY) {
4460                 /* have to trust i_size as the end */
4461                 last = (u64)-1;
4462                 last_for_get_extent = isize;
4463         } else {
4464                 /*
4465                  * remember the start of the last extent.  There are a
4466                  * bunch of different factors that go into the length of the
4467                  * extent, so its much less complex to remember where it started
4468                  */
4469                 last = found_key.offset;
4470                 last_for_get_extent = last + 1;
4471         }
4472         btrfs_release_path(path);
4473
4474         /*
4475          * we might have some extents allocated but more delalloc past those
4476          * extents.  so, we trust isize unless the start of the last extent is
4477          * beyond isize
4478          */
4479         if (last < isize) {
4480                 last = (u64)-1;
4481                 last_for_get_extent = isize;
4482         }
4483
4484         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4485                          &cached_state);
4486
4487         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4488         if (!em)
4489                 goto out;
4490         if (IS_ERR(em)) {
4491                 ret = PTR_ERR(em);
4492                 goto out;
4493         }
4494
4495         while (!end) {
4496                 u64 offset_in_extent = 0;
4497
4498                 /* break if the extent we found is outside the range */
4499                 if (em->start >= max || extent_map_end(em) < off)
4500                         break;
4501
4502                 /*
4503                  * get_extent may return an extent that starts before our
4504                  * requested range.  We have to make sure the ranges
4505                  * we return to fiemap always move forward and don't
4506                  * overlap, so adjust the offsets here
4507                  */
4508                 em_start = max(em->start, off);
4509
4510                 /*
4511                  * record the offset from the start of the extent
4512                  * for adjusting the disk offset below.  Only do this if the
4513                  * extent isn't compressed since our in ram offset may be past
4514                  * what we have actually allocated on disk.
4515                  */
4516                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4517                         offset_in_extent = em_start - em->start;
4518                 em_end = extent_map_end(em);
4519                 em_len = em_end - em_start;
4520                 flags = 0;
4521                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4522                         disko = em->block_start + offset_in_extent;
4523                 else
4524                         disko = 0;
4525
4526                 /*
4527                  * bump off for our next call to get_extent
4528                  */
4529                 off = extent_map_end(em);
4530                 if (off >= max)
4531                         end = 1;
4532
4533                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4534                         end = 1;
4535                         flags |= FIEMAP_EXTENT_LAST;
4536                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4537                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4538                                   FIEMAP_EXTENT_NOT_ALIGNED);
4539                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4540                         flags |= (FIEMAP_EXTENT_DELALLOC |
4541                                   FIEMAP_EXTENT_UNKNOWN);
4542                 } else if (fieinfo->fi_extents_max) {
4543                         u64 bytenr = em->block_start -
4544                                 (em->start - em->orig_start);
4545
4546                         /*
4547                          * As btrfs supports shared space, this information
4548                          * can be exported to userspace tools via
4549                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4550                          * then we're just getting a count and we can skip the
4551                          * lookup stuff.
4552                          */
4553                         ret = btrfs_check_shared(root,
4554                                                  btrfs_ino(BTRFS_I(inode)),
4555                                                  bytenr);
4556                         if (ret < 0)
4557                                 goto out_free;
4558                         if (ret)
4559                                 flags |= FIEMAP_EXTENT_SHARED;
4560                         ret = 0;
4561                 }
4562                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4563                         flags |= FIEMAP_EXTENT_ENCODED;
4564                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4565                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4566
4567                 free_extent_map(em);
4568                 em = NULL;
4569                 if ((em_start >= last) || em_len == (u64)-1 ||
4570                    (last == (u64)-1 && isize <= em_end)) {
4571                         flags |= FIEMAP_EXTENT_LAST;
4572                         end = 1;
4573                 }
4574
4575                 /* now scan forward to see if this is really the last extent. */
4576                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4577                 if (IS_ERR(em)) {
4578                         ret = PTR_ERR(em);
4579                         goto out;
4580                 }
4581                 if (!em) {
4582                         flags |= FIEMAP_EXTENT_LAST;
4583                         end = 1;
4584                 }
4585                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4586                                            em_len, flags);
4587                 if (ret) {
4588                         if (ret == 1)
4589                                 ret = 0;
4590                         goto out_free;
4591                 }
4592         }
4593 out_free:
4594         if (!ret)
4595                 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4596         free_extent_map(em);
4597 out:
4598         btrfs_free_path(path);
4599         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4600                              &cached_state);
4601         return ret;
4602 }
4603
4604 static void __free_extent_buffer(struct extent_buffer *eb)
4605 {
4606         btrfs_leak_debug_del(&eb->leak_list);
4607         kmem_cache_free(extent_buffer_cache, eb);
4608 }
4609
4610 int extent_buffer_under_io(struct extent_buffer *eb)
4611 {
4612         return (atomic_read(&eb->io_pages) ||
4613                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4614                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4615 }
4616
4617 /*
4618  * Release all pages attached to the extent buffer.
4619  */
4620 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4621 {
4622         int i;
4623         int num_pages;
4624         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4625
4626         BUG_ON(extent_buffer_under_io(eb));
4627
4628         num_pages = num_extent_pages(eb);
4629         for (i = 0; i < num_pages; i++) {
4630                 struct page *page = eb->pages[i];
4631
4632                 if (!page)
4633                         continue;
4634                 if (mapped)
4635                         spin_lock(&page->mapping->private_lock);
4636                 /*
4637                  * We do this since we'll remove the pages after we've
4638                  * removed the eb from the radix tree, so we could race
4639                  * and have this page now attached to the new eb.  So
4640                  * only clear page_private if it's still connected to
4641                  * this eb.
4642                  */
4643                 if (PagePrivate(page) &&
4644                     page->private == (unsigned long)eb) {
4645                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4646                         BUG_ON(PageDirty(page));
4647                         BUG_ON(PageWriteback(page));
4648                         /*
4649                          * We need to make sure we haven't be attached
4650                          * to a new eb.
4651                          */
4652                         ClearPagePrivate(page);
4653                         set_page_private(page, 0);
4654                         /* One for the page private */
4655                         put_page(page);
4656                 }
4657
4658                 if (mapped)
4659                         spin_unlock(&page->mapping->private_lock);
4660
4661                 /* One for when we allocated the page */
4662                 put_page(page);
4663         }
4664 }
4665
4666 /*
4667  * Helper for releasing the extent buffer.
4668  */
4669 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4670 {
4671         btrfs_release_extent_buffer_pages(eb);
4672         __free_extent_buffer(eb);
4673 }
4674
4675 static struct extent_buffer *
4676 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4677                       unsigned long len)
4678 {
4679         struct extent_buffer *eb = NULL;
4680
4681         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4682         eb->start = start;
4683         eb->len = len;
4684         eb->fs_info = fs_info;
4685         eb->bflags = 0;
4686         rwlock_init(&eb->lock);
4687         atomic_set(&eb->write_locks, 0);
4688         atomic_set(&eb->read_locks, 0);
4689         atomic_set(&eb->blocking_readers, 0);
4690         atomic_set(&eb->blocking_writers, 0);
4691         atomic_set(&eb->spinning_readers, 0);
4692         atomic_set(&eb->spinning_writers, 0);
4693         eb->lock_nested = 0;
4694         init_waitqueue_head(&eb->write_lock_wq);
4695         init_waitqueue_head(&eb->read_lock_wq);
4696
4697         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4698
4699         spin_lock_init(&eb->refs_lock);
4700         atomic_set(&eb->refs, 1);
4701         atomic_set(&eb->io_pages, 0);
4702
4703         /*
4704          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4705          */
4706         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4707                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4708         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4709
4710         return eb;
4711 }
4712
4713 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4714 {
4715         int i;
4716         struct page *p;
4717         struct extent_buffer *new;
4718         int num_pages = num_extent_pages(src);
4719
4720         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4721         if (new == NULL)
4722                 return NULL;
4723
4724         for (i = 0; i < num_pages; i++) {
4725                 p = alloc_page(GFP_NOFS);
4726                 if (!p) {
4727                         btrfs_release_extent_buffer(new);
4728                         return NULL;
4729                 }
4730                 attach_extent_buffer_page(new, p);
4731                 WARN_ON(PageDirty(p));
4732                 SetPageUptodate(p);
4733                 new->pages[i] = p;
4734                 copy_page(page_address(p), page_address(src->pages[i]));
4735         }
4736
4737         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4738         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4739
4740         return new;
4741 }
4742
4743 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4744                                                   u64 start, unsigned long len)
4745 {
4746         struct extent_buffer *eb;
4747         int num_pages;
4748         int i;
4749
4750         eb = __alloc_extent_buffer(fs_info, start, len);
4751         if (!eb)
4752                 return NULL;
4753
4754         num_pages = num_extent_pages(eb);
4755         for (i = 0; i < num_pages; i++) {
4756                 eb->pages[i] = alloc_page(GFP_NOFS);
4757                 if (!eb->pages[i])
4758                         goto err;
4759         }
4760         set_extent_buffer_uptodate(eb);
4761         btrfs_set_header_nritems(eb, 0);
4762         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4763
4764         return eb;
4765 err:
4766         for (; i > 0; i--)
4767                 __free_page(eb->pages[i - 1]);
4768         __free_extent_buffer(eb);
4769         return NULL;
4770 }
4771
4772 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4773                                                 u64 start)
4774 {
4775         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4776 }
4777
4778 static void check_buffer_tree_ref(struct extent_buffer *eb)
4779 {
4780         int refs;
4781         /* the ref bit is tricky.  We have to make sure it is set
4782          * if we have the buffer dirty.   Otherwise the
4783          * code to free a buffer can end up dropping a dirty
4784          * page
4785          *
4786          * Once the ref bit is set, it won't go away while the
4787          * buffer is dirty or in writeback, and it also won't
4788          * go away while we have the reference count on the
4789          * eb bumped.
4790          *
4791          * We can't just set the ref bit without bumping the
4792          * ref on the eb because free_extent_buffer might
4793          * see the ref bit and try to clear it.  If this happens
4794          * free_extent_buffer might end up dropping our original
4795          * ref by mistake and freeing the page before we are able
4796          * to add one more ref.
4797          *
4798          * So bump the ref count first, then set the bit.  If someone
4799          * beat us to it, drop the ref we added.
4800          */
4801         refs = atomic_read(&eb->refs);
4802         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4803                 return;
4804
4805         spin_lock(&eb->refs_lock);
4806         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4807                 atomic_inc(&eb->refs);
4808         spin_unlock(&eb->refs_lock);
4809 }
4810
4811 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4812                 struct page *accessed)
4813 {
4814         int num_pages, i;
4815
4816         check_buffer_tree_ref(eb);
4817
4818         num_pages = num_extent_pages(eb);
4819         for (i = 0; i < num_pages; i++) {
4820                 struct page *p = eb->pages[i];
4821
4822                 if (p != accessed)
4823                         mark_page_accessed(p);
4824         }
4825 }
4826
4827 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4828                                          u64 start)
4829 {
4830         struct extent_buffer *eb;
4831
4832         rcu_read_lock();
4833         eb = radix_tree_lookup(&fs_info->buffer_radix,
4834                                start >> PAGE_SHIFT);
4835         if (eb && atomic_inc_not_zero(&eb->refs)) {
4836                 rcu_read_unlock();
4837                 /*
4838                  * Lock our eb's refs_lock to avoid races with
4839                  * free_extent_buffer. When we get our eb it might be flagged
4840                  * with EXTENT_BUFFER_STALE and another task running
4841                  * free_extent_buffer might have seen that flag set,
4842                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4843                  * writeback flags not set) and it's still in the tree (flag
4844                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4845                  * of decrementing the extent buffer's reference count twice.
4846                  * So here we could race and increment the eb's reference count,
4847                  * clear its stale flag, mark it as dirty and drop our reference
4848                  * before the other task finishes executing free_extent_buffer,
4849                  * which would later result in an attempt to free an extent
4850                  * buffer that is dirty.
4851                  */
4852                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4853                         spin_lock(&eb->refs_lock);
4854                         spin_unlock(&eb->refs_lock);
4855                 }
4856                 mark_extent_buffer_accessed(eb, NULL);
4857                 return eb;
4858         }
4859         rcu_read_unlock();
4860
4861         return NULL;
4862 }
4863
4864 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4865 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4866                                         u64 start)
4867 {
4868         struct extent_buffer *eb, *exists = NULL;
4869         int ret;
4870
4871         eb = find_extent_buffer(fs_info, start);
4872         if (eb)
4873                 return eb;
4874         eb = alloc_dummy_extent_buffer(fs_info, start);
4875         if (!eb)
4876                 return NULL;
4877         eb->fs_info = fs_info;
4878 again:
4879         ret = radix_tree_preload(GFP_NOFS);
4880         if (ret)
4881                 goto free_eb;
4882         spin_lock(&fs_info->buffer_lock);
4883         ret = radix_tree_insert(&fs_info->buffer_radix,
4884                                 start >> PAGE_SHIFT, eb);
4885         spin_unlock(&fs_info->buffer_lock);
4886         radix_tree_preload_end();
4887         if (ret == -EEXIST) {
4888                 exists = find_extent_buffer(fs_info, start);
4889                 if (exists)
4890                         goto free_eb;
4891                 else
4892                         goto again;
4893         }
4894         check_buffer_tree_ref(eb);
4895         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4896
4897         return eb;
4898 free_eb:
4899         btrfs_release_extent_buffer(eb);
4900         return exists;
4901 }
4902 #endif
4903
4904 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4905                                           u64 start)
4906 {
4907         unsigned long len = fs_info->nodesize;
4908         int num_pages;
4909         int i;
4910         unsigned long index = start >> PAGE_SHIFT;
4911         struct extent_buffer *eb;
4912         struct extent_buffer *exists = NULL;
4913         struct page *p;
4914         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4915         int uptodate = 1;
4916         int ret;
4917
4918         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4919                 btrfs_err(fs_info, "bad tree block start %llu", start);
4920                 return ERR_PTR(-EINVAL);
4921         }
4922
4923         eb = find_extent_buffer(fs_info, start);
4924         if (eb)
4925                 return eb;
4926
4927         eb = __alloc_extent_buffer(fs_info, start, len);
4928         if (!eb)
4929                 return ERR_PTR(-ENOMEM);
4930
4931         num_pages = num_extent_pages(eb);
4932         for (i = 0; i < num_pages; i++, index++) {
4933                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4934                 if (!p) {
4935                         exists = ERR_PTR(-ENOMEM);
4936                         goto free_eb;
4937                 }
4938
4939                 spin_lock(&mapping->private_lock);
4940                 if (PagePrivate(p)) {
4941                         /*
4942                          * We could have already allocated an eb for this page
4943                          * and attached one so lets see if we can get a ref on
4944                          * the existing eb, and if we can we know it's good and
4945                          * we can just return that one, else we know we can just
4946                          * overwrite page->private.
4947                          */
4948                         exists = (struct extent_buffer *)p->private;
4949                         if (atomic_inc_not_zero(&exists->refs)) {
4950                                 spin_unlock(&mapping->private_lock);
4951                                 unlock_page(p);
4952                                 put_page(p);
4953                                 mark_extent_buffer_accessed(exists, p);
4954                                 goto free_eb;
4955                         }
4956                         exists = NULL;
4957
4958                         /*
4959                          * Do this so attach doesn't complain and we need to
4960                          * drop the ref the old guy had.
4961                          */
4962                         ClearPagePrivate(p);
4963                         WARN_ON(PageDirty(p));
4964                         put_page(p);
4965                 }
4966                 attach_extent_buffer_page(eb, p);
4967                 spin_unlock(&mapping->private_lock);
4968                 WARN_ON(PageDirty(p));
4969                 eb->pages[i] = p;
4970                 if (!PageUptodate(p))
4971                         uptodate = 0;
4972
4973                 /*
4974                  * We can't unlock the pages just yet since the extent buffer
4975                  * hasn't been properly inserted in the radix tree, this
4976                  * opens a race with btree_releasepage which can free a page
4977                  * while we are still filling in all pages for the buffer and
4978                  * we could crash.
4979                  */
4980         }
4981         if (uptodate)
4982                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4983 again:
4984         ret = radix_tree_preload(GFP_NOFS);
4985         if (ret) {
4986                 exists = ERR_PTR(ret);
4987                 goto free_eb;
4988         }
4989
4990         spin_lock(&fs_info->buffer_lock);
4991         ret = radix_tree_insert(&fs_info->buffer_radix,
4992                                 start >> PAGE_SHIFT, eb);
4993         spin_unlock(&fs_info->buffer_lock);
4994         radix_tree_preload_end();
4995         if (ret == -EEXIST) {
4996                 exists = find_extent_buffer(fs_info, start);
4997                 if (exists)
4998                         goto free_eb;
4999                 else
5000                         goto again;
5001         }
5002         /* add one reference for the tree */
5003         check_buffer_tree_ref(eb);
5004         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5005
5006         /*
5007          * Now it's safe to unlock the pages because any calls to
5008          * btree_releasepage will correctly detect that a page belongs to a
5009          * live buffer and won't free them prematurely.
5010          */
5011         for (i = 0; i < num_pages; i++)
5012                 unlock_page(eb->pages[i]);
5013         return eb;
5014
5015 free_eb:
5016         WARN_ON(!atomic_dec_and_test(&eb->refs));
5017         for (i = 0; i < num_pages; i++) {
5018                 if (eb->pages[i])
5019                         unlock_page(eb->pages[i]);
5020         }
5021
5022         btrfs_release_extent_buffer(eb);
5023         return exists;
5024 }
5025
5026 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5027 {
5028         struct extent_buffer *eb =
5029                         container_of(head, struct extent_buffer, rcu_head);
5030
5031         __free_extent_buffer(eb);
5032 }
5033
5034 static int release_extent_buffer(struct extent_buffer *eb)
5035 {
5036         lockdep_assert_held(&eb->refs_lock);
5037
5038         WARN_ON(atomic_read(&eb->refs) == 0);
5039         if (atomic_dec_and_test(&eb->refs)) {
5040                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5041                         struct btrfs_fs_info *fs_info = eb->fs_info;
5042
5043                         spin_unlock(&eb->refs_lock);
5044
5045                         spin_lock(&fs_info->buffer_lock);
5046                         radix_tree_delete(&fs_info->buffer_radix,
5047                                           eb->start >> PAGE_SHIFT);
5048                         spin_unlock(&fs_info->buffer_lock);
5049                 } else {
5050                         spin_unlock(&eb->refs_lock);
5051                 }
5052
5053                 /* Should be safe to release our pages at this point */
5054                 btrfs_release_extent_buffer_pages(eb);
5055 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5057                         __free_extent_buffer(eb);
5058                         return 1;
5059                 }
5060 #endif
5061                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5062                 return 1;
5063         }
5064         spin_unlock(&eb->refs_lock);
5065
5066         return 0;
5067 }
5068
5069 void free_extent_buffer(struct extent_buffer *eb)
5070 {
5071         int refs;
5072         int old;
5073         if (!eb)
5074                 return;
5075
5076         while (1) {
5077                 refs = atomic_read(&eb->refs);
5078                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5079                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5080                         refs == 1))
5081                         break;
5082                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5083                 if (old == refs)
5084                         return;
5085         }
5086
5087         spin_lock(&eb->refs_lock);
5088         if (atomic_read(&eb->refs) == 2 &&
5089             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5090             !extent_buffer_under_io(eb) &&
5091             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5092                 atomic_dec(&eb->refs);
5093
5094         /*
5095          * I know this is terrible, but it's temporary until we stop tracking
5096          * the uptodate bits and such for the extent buffers.
5097          */
5098         release_extent_buffer(eb);
5099 }
5100
5101 void free_extent_buffer_stale(struct extent_buffer *eb)
5102 {
5103         if (!eb)
5104                 return;
5105
5106         spin_lock(&eb->refs_lock);
5107         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5108
5109         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5110             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5111                 atomic_dec(&eb->refs);
5112         release_extent_buffer(eb);
5113 }
5114
5115 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5116 {
5117         int i;
5118         int num_pages;
5119         struct page *page;
5120
5121         num_pages = num_extent_pages(eb);
5122
5123         for (i = 0; i < num_pages; i++) {
5124                 page = eb->pages[i];
5125                 if (!PageDirty(page))
5126                         continue;
5127
5128                 lock_page(page);
5129                 WARN_ON(!PagePrivate(page));
5130
5131                 clear_page_dirty_for_io(page);
5132                 xa_lock_irq(&page->mapping->i_pages);
5133                 if (!PageDirty(page))
5134                         __xa_clear_mark(&page->mapping->i_pages,
5135                                         page_index(page), PAGECACHE_TAG_DIRTY);
5136                 xa_unlock_irq(&page->mapping->i_pages);
5137                 ClearPageError(page);
5138                 unlock_page(page);
5139         }
5140         WARN_ON(atomic_read(&eb->refs) == 0);
5141 }
5142
5143 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5144 {
5145         int i;
5146         int num_pages;
5147         bool was_dirty;
5148
5149         check_buffer_tree_ref(eb);
5150
5151         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5152
5153         num_pages = num_extent_pages(eb);
5154         WARN_ON(atomic_read(&eb->refs) == 0);
5155         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5156
5157         if (!was_dirty)
5158                 for (i = 0; i < num_pages; i++)
5159                         set_page_dirty(eb->pages[i]);
5160
5161 #ifdef CONFIG_BTRFS_DEBUG
5162         for (i = 0; i < num_pages; i++)
5163                 ASSERT(PageDirty(eb->pages[i]));
5164 #endif
5165
5166         return was_dirty;
5167 }
5168
5169 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5170 {
5171         int i;
5172         struct page *page;
5173         int num_pages;
5174
5175         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5176         num_pages = num_extent_pages(eb);
5177         for (i = 0; i < num_pages; i++) {
5178                 page = eb->pages[i];
5179                 if (page)
5180                         ClearPageUptodate(page);
5181         }
5182 }
5183
5184 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5185 {
5186         int i;
5187         struct page *page;
5188         int num_pages;
5189
5190         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5191         num_pages = num_extent_pages(eb);
5192         for (i = 0; i < num_pages; i++) {
5193                 page = eb->pages[i];
5194                 SetPageUptodate(page);
5195         }
5196 }
5197
5198 int read_extent_buffer_pages(struct extent_io_tree *tree,
5199                              struct extent_buffer *eb, int wait, int mirror_num)
5200 {
5201         int i;
5202         struct page *page;
5203         int err;
5204         int ret = 0;
5205         int locked_pages = 0;
5206         int all_uptodate = 1;
5207         int num_pages;
5208         unsigned long num_reads = 0;
5209         struct bio *bio = NULL;
5210         unsigned long bio_flags = 0;
5211
5212         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5213                 return 0;
5214
5215         num_pages = num_extent_pages(eb);
5216         for (i = 0; i < num_pages; i++) {
5217                 page = eb->pages[i];
5218                 if (wait == WAIT_NONE) {
5219                         if (!trylock_page(page))
5220                                 goto unlock_exit;
5221                 } else {
5222                         lock_page(page);
5223                 }
5224                 locked_pages++;
5225         }
5226         /*
5227          * We need to firstly lock all pages to make sure that
5228          * the uptodate bit of our pages won't be affected by
5229          * clear_extent_buffer_uptodate().
5230          */
5231         for (i = 0; i < num_pages; i++) {
5232                 page = eb->pages[i];
5233                 if (!PageUptodate(page)) {
5234                         num_reads++;
5235                         all_uptodate = 0;
5236                 }
5237         }
5238
5239         if (all_uptodate) {
5240                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5241                 goto unlock_exit;
5242         }
5243
5244         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5245         eb->read_mirror = 0;
5246         atomic_set(&eb->io_pages, num_reads);
5247         for (i = 0; i < num_pages; i++) {
5248                 page = eb->pages[i];
5249
5250                 if (!PageUptodate(page)) {
5251                         if (ret) {
5252                                 atomic_dec(&eb->io_pages);
5253                                 unlock_page(page);
5254                                 continue;
5255                         }
5256
5257                         ClearPageError(page);
5258                         err = __extent_read_full_page(tree, page,
5259                                                       btree_get_extent, &bio,
5260                                                       mirror_num, &bio_flags,
5261                                                       REQ_META);
5262                         if (err) {
5263                                 ret = err;
5264                                 /*
5265                                  * We use &bio in above __extent_read_full_page,
5266                                  * so we ensure that if it returns error, the
5267                                  * current page fails to add itself to bio and
5268                                  * it's been unlocked.
5269                                  *
5270                                  * We must dec io_pages by ourselves.
5271                                  */
5272                                 atomic_dec(&eb->io_pages);
5273                         }
5274                 } else {
5275                         unlock_page(page);
5276                 }
5277         }
5278
5279         if (bio) {
5280                 err = submit_one_bio(bio, mirror_num, bio_flags);
5281                 if (err)
5282                         return err;
5283         }
5284
5285         if (ret || wait != WAIT_COMPLETE)
5286                 return ret;
5287
5288         for (i = 0; i < num_pages; i++) {
5289                 page = eb->pages[i];
5290                 wait_on_page_locked(page);
5291                 if (!PageUptodate(page))
5292                         ret = -EIO;
5293         }
5294
5295         return ret;
5296
5297 unlock_exit:
5298         while (locked_pages > 0) {
5299                 locked_pages--;
5300                 page = eb->pages[locked_pages];
5301                 unlock_page(page);
5302         }
5303         return ret;
5304 }
5305
5306 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5307                         unsigned long start, unsigned long len)
5308 {
5309         size_t cur;
5310         size_t offset;
5311         struct page *page;
5312         char *kaddr;
5313         char *dst = (char *)dstv;
5314         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5315         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5316
5317         if (start + len > eb->len) {
5318                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5319                      eb->start, eb->len, start, len);
5320                 memset(dst, 0, len);
5321                 return;
5322         }
5323
5324         offset = (start_offset + start) & (PAGE_SIZE - 1);
5325
5326         while (len > 0) {
5327                 page = eb->pages[i];
5328
5329                 cur = min(len, (PAGE_SIZE - offset));
5330                 kaddr = page_address(page);
5331                 memcpy(dst, kaddr + offset, cur);
5332
5333                 dst += cur;
5334                 len -= cur;
5335                 offset = 0;
5336                 i++;
5337         }
5338 }
5339
5340 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5341                                void __user *dstv,
5342                                unsigned long start, unsigned long len)
5343 {
5344         size_t cur;
5345         size_t offset;
5346         struct page *page;
5347         char *kaddr;
5348         char __user *dst = (char __user *)dstv;
5349         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351         int ret = 0;
5352
5353         WARN_ON(start > eb->len);
5354         WARN_ON(start + len > eb->start + eb->len);
5355
5356         offset = (start_offset + start) & (PAGE_SIZE - 1);
5357
5358         while (len > 0) {
5359                 page = eb->pages[i];
5360
5361                 cur = min(len, (PAGE_SIZE - offset));
5362                 kaddr = page_address(page);
5363                 if (copy_to_user(dst, kaddr + offset, cur)) {
5364                         ret = -EFAULT;
5365                         break;
5366                 }
5367
5368                 dst += cur;
5369                 len -= cur;
5370                 offset = 0;
5371                 i++;
5372         }
5373
5374         return ret;
5375 }
5376
5377 /*
5378  * return 0 if the item is found within a page.
5379  * return 1 if the item spans two pages.
5380  * return -EINVAL otherwise.
5381  */
5382 int map_private_extent_buffer(const struct extent_buffer *eb,
5383                               unsigned long start, unsigned long min_len,
5384                               char **map, unsigned long *map_start,
5385                               unsigned long *map_len)
5386 {
5387         size_t offset = start & (PAGE_SIZE - 1);
5388         char *kaddr;
5389         struct page *p;
5390         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392         unsigned long end_i = (start_offset + start + min_len - 1) >>
5393                 PAGE_SHIFT;
5394
5395         if (start + min_len > eb->len) {
5396                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5397                        eb->start, eb->len, start, min_len);
5398                 return -EINVAL;
5399         }
5400
5401         if (i != end_i)
5402                 return 1;
5403
5404         if (i == 0) {
5405                 offset = start_offset;
5406                 *map_start = 0;
5407         } else {
5408                 offset = 0;
5409                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5410         }
5411
5412         p = eb->pages[i];
5413         kaddr = page_address(p);
5414         *map = kaddr + offset;
5415         *map_len = PAGE_SIZE - offset;
5416         return 0;
5417 }
5418
5419 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5420                          unsigned long start, unsigned long len)
5421 {
5422         size_t cur;
5423         size_t offset;
5424         struct page *page;
5425         char *kaddr;
5426         char *ptr = (char *)ptrv;
5427         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5428         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5429         int ret = 0;
5430
5431         WARN_ON(start > eb->len);
5432         WARN_ON(start + len > eb->start + eb->len);
5433
5434         offset = (start_offset + start) & (PAGE_SIZE - 1);
5435
5436         while (len > 0) {
5437                 page = eb->pages[i];
5438
5439                 cur = min(len, (PAGE_SIZE - offset));
5440
5441                 kaddr = page_address(page);
5442                 ret = memcmp(ptr, kaddr + offset, cur);
5443                 if (ret)
5444                         break;
5445
5446                 ptr += cur;
5447                 len -= cur;
5448                 offset = 0;
5449                 i++;
5450         }
5451         return ret;
5452 }
5453
5454 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5455                 const void *srcv)
5456 {
5457         char *kaddr;
5458
5459         WARN_ON(!PageUptodate(eb->pages[0]));
5460         kaddr = page_address(eb->pages[0]);
5461         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5462                         BTRFS_FSID_SIZE);
5463 }
5464
5465 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5466 {
5467         char *kaddr;
5468
5469         WARN_ON(!PageUptodate(eb->pages[0]));
5470         kaddr = page_address(eb->pages[0]);
5471         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5472                         BTRFS_FSID_SIZE);
5473 }
5474
5475 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5476                          unsigned long start, unsigned long len)
5477 {
5478         size_t cur;
5479         size_t offset;
5480         struct page *page;
5481         char *kaddr;
5482         char *src = (char *)srcv;
5483         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5484         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5485
5486         WARN_ON(start > eb->len);
5487         WARN_ON(start + len > eb->start + eb->len);
5488
5489         offset = (start_offset + start) & (PAGE_SIZE - 1);
5490
5491         while (len > 0) {
5492                 page = eb->pages[i];
5493                 WARN_ON(!PageUptodate(page));
5494
5495                 cur = min(len, PAGE_SIZE - offset);
5496                 kaddr = page_address(page);
5497                 memcpy(kaddr + offset, src, cur);
5498
5499                 src += cur;
5500                 len -= cur;
5501                 offset = 0;
5502                 i++;
5503         }
5504 }
5505
5506 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5507                 unsigned long len)
5508 {
5509         size_t cur;
5510         size_t offset;
5511         struct page *page;
5512         char *kaddr;
5513         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5514         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5515
5516         WARN_ON(start > eb->len);
5517         WARN_ON(start + len > eb->start + eb->len);
5518
5519         offset = (start_offset + start) & (PAGE_SIZE - 1);
5520
5521         while (len > 0) {
5522                 page = eb->pages[i];
5523                 WARN_ON(!PageUptodate(page));
5524
5525                 cur = min(len, PAGE_SIZE - offset);
5526                 kaddr = page_address(page);
5527                 memset(kaddr + offset, 0, cur);
5528
5529                 len -= cur;
5530                 offset = 0;
5531                 i++;
5532         }
5533 }
5534
5535 void copy_extent_buffer_full(struct extent_buffer *dst,
5536                              struct extent_buffer *src)
5537 {
5538         int i;
5539         int num_pages;
5540
5541         ASSERT(dst->len == src->len);
5542
5543         num_pages = num_extent_pages(dst);
5544         for (i = 0; i < num_pages; i++)
5545                 copy_page(page_address(dst->pages[i]),
5546                                 page_address(src->pages[i]));
5547 }
5548
5549 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5550                         unsigned long dst_offset, unsigned long src_offset,
5551                         unsigned long len)
5552 {
5553         u64 dst_len = dst->len;
5554         size_t cur;
5555         size_t offset;
5556         struct page *page;
5557         char *kaddr;
5558         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5559         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5560
5561         WARN_ON(src->len != dst_len);
5562
5563         offset = (start_offset + dst_offset) &
5564                 (PAGE_SIZE - 1);
5565
5566         while (len > 0) {
5567                 page = dst->pages[i];
5568                 WARN_ON(!PageUptodate(page));
5569
5570                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5571
5572                 kaddr = page_address(page);
5573                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5574
5575                 src_offset += cur;
5576                 len -= cur;
5577                 offset = 0;
5578                 i++;
5579         }
5580 }
5581
5582 /*
5583  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5584  * given bit number
5585  * @eb: the extent buffer
5586  * @start: offset of the bitmap item in the extent buffer
5587  * @nr: bit number
5588  * @page_index: return index of the page in the extent buffer that contains the
5589  * given bit number
5590  * @page_offset: return offset into the page given by page_index
5591  *
5592  * This helper hides the ugliness of finding the byte in an extent buffer which
5593  * contains a given bit.
5594  */
5595 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5596                                     unsigned long start, unsigned long nr,
5597                                     unsigned long *page_index,
5598                                     size_t *page_offset)
5599 {
5600         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5601         size_t byte_offset = BIT_BYTE(nr);
5602         size_t offset;
5603
5604         /*
5605          * The byte we want is the offset of the extent buffer + the offset of
5606          * the bitmap item in the extent buffer + the offset of the byte in the
5607          * bitmap item.
5608          */
5609         offset = start_offset + start + byte_offset;
5610
5611         *page_index = offset >> PAGE_SHIFT;
5612         *page_offset = offset & (PAGE_SIZE - 1);
5613 }
5614
5615 /**
5616  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5617  * @eb: the extent buffer
5618  * @start: offset of the bitmap item in the extent buffer
5619  * @nr: bit number to test
5620  */
5621 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5622                            unsigned long nr)
5623 {
5624         u8 *kaddr;
5625         struct page *page;
5626         unsigned long i;
5627         size_t offset;
5628
5629         eb_bitmap_offset(eb, start, nr, &i, &offset);
5630         page = eb->pages[i];
5631         WARN_ON(!PageUptodate(page));
5632         kaddr = page_address(page);
5633         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5634 }
5635
5636 /**
5637  * extent_buffer_bitmap_set - set an area of a bitmap
5638  * @eb: the extent buffer
5639  * @start: offset of the bitmap item in the extent buffer
5640  * @pos: bit number of the first bit
5641  * @len: number of bits to set
5642  */
5643 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5644                               unsigned long pos, unsigned long len)
5645 {
5646         u8 *kaddr;
5647         struct page *page;
5648         unsigned long i;
5649         size_t offset;
5650         const unsigned int size = pos + len;
5651         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5652         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5653
5654         eb_bitmap_offset(eb, start, pos, &i, &offset);
5655         page = eb->pages[i];
5656         WARN_ON(!PageUptodate(page));
5657         kaddr = page_address(page);
5658
5659         while (len >= bits_to_set) {
5660                 kaddr[offset] |= mask_to_set;
5661                 len -= bits_to_set;
5662                 bits_to_set = BITS_PER_BYTE;
5663                 mask_to_set = ~0;
5664                 if (++offset >= PAGE_SIZE && len > 0) {
5665                         offset = 0;
5666                         page = eb->pages[++i];
5667                         WARN_ON(!PageUptodate(page));
5668                         kaddr = page_address(page);
5669                 }
5670         }
5671         if (len) {
5672                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5673                 kaddr[offset] |= mask_to_set;
5674         }
5675 }
5676
5677
5678 /**
5679  * extent_buffer_bitmap_clear - clear an area of a bitmap
5680  * @eb: the extent buffer
5681  * @start: offset of the bitmap item in the extent buffer
5682  * @pos: bit number of the first bit
5683  * @len: number of bits to clear
5684  */
5685 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5686                                 unsigned long pos, unsigned long len)
5687 {
5688         u8 *kaddr;
5689         struct page *page;
5690         unsigned long i;
5691         size_t offset;
5692         const unsigned int size = pos + len;
5693         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5694         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5695
5696         eb_bitmap_offset(eb, start, pos, &i, &offset);
5697         page = eb->pages[i];
5698         WARN_ON(!PageUptodate(page));
5699         kaddr = page_address(page);
5700
5701         while (len >= bits_to_clear) {
5702                 kaddr[offset] &= ~mask_to_clear;
5703                 len -= bits_to_clear;
5704                 bits_to_clear = BITS_PER_BYTE;
5705                 mask_to_clear = ~0;
5706                 if (++offset >= PAGE_SIZE && len > 0) {
5707                         offset = 0;
5708                         page = eb->pages[++i];
5709                         WARN_ON(!PageUptodate(page));
5710                         kaddr = page_address(page);
5711                 }
5712         }
5713         if (len) {
5714                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5715                 kaddr[offset] &= ~mask_to_clear;
5716         }
5717 }
5718
5719 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5720 {
5721         unsigned long distance = (src > dst) ? src - dst : dst - src;
5722         return distance < len;
5723 }
5724
5725 static void copy_pages(struct page *dst_page, struct page *src_page,
5726                        unsigned long dst_off, unsigned long src_off,
5727                        unsigned long len)
5728 {
5729         char *dst_kaddr = page_address(dst_page);
5730         char *src_kaddr;
5731         int must_memmove = 0;
5732
5733         if (dst_page != src_page) {
5734                 src_kaddr = page_address(src_page);
5735         } else {
5736                 src_kaddr = dst_kaddr;
5737                 if (areas_overlap(src_off, dst_off, len))
5738                         must_memmove = 1;
5739         }
5740
5741         if (must_memmove)
5742                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5743         else
5744                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5745 }
5746
5747 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5748                            unsigned long src_offset, unsigned long len)
5749 {
5750         struct btrfs_fs_info *fs_info = dst->fs_info;
5751         size_t cur;
5752         size_t dst_off_in_page;
5753         size_t src_off_in_page;
5754         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5755         unsigned long dst_i;
5756         unsigned long src_i;
5757
5758         if (src_offset + len > dst->len) {
5759                 btrfs_err(fs_info,
5760                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5761                          src_offset, len, dst->len);
5762                 BUG_ON(1);
5763         }
5764         if (dst_offset + len > dst->len) {
5765                 btrfs_err(fs_info,
5766                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5767                          dst_offset, len, dst->len);
5768                 BUG_ON(1);
5769         }
5770
5771         while (len > 0) {
5772                 dst_off_in_page = (start_offset + dst_offset) &
5773                         (PAGE_SIZE - 1);
5774                 src_off_in_page = (start_offset + src_offset) &
5775                         (PAGE_SIZE - 1);
5776
5777                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5778                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5779
5780                 cur = min(len, (unsigned long)(PAGE_SIZE -
5781                                                src_off_in_page));
5782                 cur = min_t(unsigned long, cur,
5783                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5784
5785                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5786                            dst_off_in_page, src_off_in_page, cur);
5787
5788                 src_offset += cur;
5789                 dst_offset += cur;
5790                 len -= cur;
5791         }
5792 }
5793
5794 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5795                            unsigned long src_offset, unsigned long len)
5796 {
5797         struct btrfs_fs_info *fs_info = dst->fs_info;
5798         size_t cur;
5799         size_t dst_off_in_page;
5800         size_t src_off_in_page;
5801         unsigned long dst_end = dst_offset + len - 1;
5802         unsigned long src_end = src_offset + len - 1;
5803         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5804         unsigned long dst_i;
5805         unsigned long src_i;
5806
5807         if (src_offset + len > dst->len) {
5808                 btrfs_err(fs_info,
5809                           "memmove bogus src_offset %lu move len %lu len %lu",
5810                           src_offset, len, dst->len);
5811                 BUG_ON(1);
5812         }
5813         if (dst_offset + len > dst->len) {
5814                 btrfs_err(fs_info,
5815                           "memmove bogus dst_offset %lu move len %lu len %lu",
5816                           dst_offset, len, dst->len);
5817                 BUG_ON(1);
5818         }
5819         if (dst_offset < src_offset) {
5820                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5821                 return;
5822         }
5823         while (len > 0) {
5824                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5825                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5826
5827                 dst_off_in_page = (start_offset + dst_end) &
5828                         (PAGE_SIZE - 1);
5829                 src_off_in_page = (start_offset + src_end) &
5830                         (PAGE_SIZE - 1);
5831
5832                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5833                 cur = min(cur, dst_off_in_page + 1);
5834                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5835                            dst_off_in_page - cur + 1,
5836                            src_off_in_page - cur + 1, cur);
5837
5838                 dst_end -= cur;
5839                 src_end -= cur;
5840                 len -= cur;
5841         }
5842 }
5843
5844 int try_release_extent_buffer(struct page *page)
5845 {
5846         struct extent_buffer *eb;
5847
5848         /*
5849          * We need to make sure nobody is attaching this page to an eb right
5850          * now.
5851          */
5852         spin_lock(&page->mapping->private_lock);
5853         if (!PagePrivate(page)) {
5854                 spin_unlock(&page->mapping->private_lock);
5855                 return 1;
5856         }
5857
5858         eb = (struct extent_buffer *)page->private;
5859         BUG_ON(!eb);
5860
5861         /*
5862          * This is a little awful but should be ok, we need to make sure that
5863          * the eb doesn't disappear out from under us while we're looking at
5864          * this page.
5865          */
5866         spin_lock(&eb->refs_lock);
5867         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5868                 spin_unlock(&eb->refs_lock);
5869                 spin_unlock(&page->mapping->private_lock);
5870                 return 0;
5871         }
5872         spin_unlock(&page->mapping->private_lock);
5873
5874         /*
5875          * If tree ref isn't set then we know the ref on this eb is a real ref,
5876          * so just return, this page will likely be freed soon anyway.
5877          */
5878         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5879                 spin_unlock(&eb->refs_lock);
5880                 return 0;
5881         }
5882
5883         return release_extent_buffer(eb);
5884 }