Merge tag 'rproc-v4.15' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61         CHUNK_ALLOC_NO_FORCE = 0,
62         CHUNK_ALLOC_LIMITED = 1,
63         CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67                                struct btrfs_fs_info *fs_info,
68                                 struct btrfs_delayed_ref_node *node, u64 parent,
69                                 u64 root_objectid, u64 owner_objectid,
70                                 u64 owner_offset, int refs_to_drop,
71                                 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73                                     struct extent_buffer *leaf,
74                                     struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76                                       struct btrfs_fs_info *fs_info,
77                                       u64 parent, u64 root_objectid,
78                                       u64 flags, u64 owner, u64 offset,
79                                       struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81                                      struct btrfs_fs_info *fs_info,
82                                      u64 parent, u64 root_objectid,
83                                      u64 flags, struct btrfs_disk_key *key,
84                                      int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86                           struct btrfs_fs_info *fs_info, u64 flags,
87                           int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89                          struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91                             struct btrfs_space_info *info, u64 bytes,
92                             int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94                                u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96                                      struct btrfs_space_info *space_info,
97                                      u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99                                      struct btrfs_space_info *space_info,
100                                      u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105         smp_mb();
106         return cache->cached == BTRFS_CACHE_FINISHED ||
107                 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112         return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117         atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122         if (atomic_dec_and_test(&cache->count)) {
123                 WARN_ON(cache->pinned > 0);
124                 WARN_ON(cache->reserved > 0);
125
126                 /*
127                  * If not empty, someone is still holding mutex of
128                  * full_stripe_lock, which can only be released by caller.
129                  * And it will definitely cause use-after-free when caller
130                  * tries to release full stripe lock.
131                  *
132                  * No better way to resolve, but only to warn.
133                  */
134                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135                 kfree(cache->free_space_ctl);
136                 kfree(cache);
137         }
138 }
139
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145                                 struct btrfs_block_group_cache *block_group)
146 {
147         struct rb_node **p;
148         struct rb_node *parent = NULL;
149         struct btrfs_block_group_cache *cache;
150
151         spin_lock(&info->block_group_cache_lock);
152         p = &info->block_group_cache_tree.rb_node;
153
154         while (*p) {
155                 parent = *p;
156                 cache = rb_entry(parent, struct btrfs_block_group_cache,
157                                  cache_node);
158                 if (block_group->key.objectid < cache->key.objectid) {
159                         p = &(*p)->rb_left;
160                 } else if (block_group->key.objectid > cache->key.objectid) {
161                         p = &(*p)->rb_right;
162                 } else {
163                         spin_unlock(&info->block_group_cache_lock);
164                         return -EEXIST;
165                 }
166         }
167
168         rb_link_node(&block_group->cache_node, parent, p);
169         rb_insert_color(&block_group->cache_node,
170                         &info->block_group_cache_tree);
171
172         if (info->first_logical_byte > block_group->key.objectid)
173                 info->first_logical_byte = block_group->key.objectid;
174
175         spin_unlock(&info->block_group_cache_lock);
176
177         return 0;
178 }
179
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186                               int contains)
187 {
188         struct btrfs_block_group_cache *cache, *ret = NULL;
189         struct rb_node *n;
190         u64 end, start;
191
192         spin_lock(&info->block_group_cache_lock);
193         n = info->block_group_cache_tree.rb_node;
194
195         while (n) {
196                 cache = rb_entry(n, struct btrfs_block_group_cache,
197                                  cache_node);
198                 end = cache->key.objectid + cache->key.offset - 1;
199                 start = cache->key.objectid;
200
201                 if (bytenr < start) {
202                         if (!contains && (!ret || start < ret->key.objectid))
203                                 ret = cache;
204                         n = n->rb_left;
205                 } else if (bytenr > start) {
206                         if (contains && bytenr <= end) {
207                                 ret = cache;
208                                 break;
209                         }
210                         n = n->rb_right;
211                 } else {
212                         ret = cache;
213                         break;
214                 }
215         }
216         if (ret) {
217                 btrfs_get_block_group(ret);
218                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219                         info->first_logical_byte = ret->key.objectid;
220         }
221         spin_unlock(&info->block_group_cache_lock);
222
223         return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227                                u64 start, u64 num_bytes)
228 {
229         u64 end = start + num_bytes - 1;
230         set_extent_bits(&fs_info->freed_extents[0],
231                         start, end, EXTENT_UPTODATE);
232         set_extent_bits(&fs_info->freed_extents[1],
233                         start, end, EXTENT_UPTODATE);
234         return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238                                   struct btrfs_block_group_cache *cache)
239 {
240         u64 start, end;
241
242         start = cache->key.objectid;
243         end = start + cache->key.offset - 1;
244
245         clear_extent_bits(&fs_info->freed_extents[0],
246                           start, end, EXTENT_UPTODATE);
247         clear_extent_bits(&fs_info->freed_extents[1],
248                           start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252                                  struct btrfs_block_group_cache *cache)
253 {
254         u64 bytenr;
255         u64 *logical;
256         int stripe_len;
257         int i, nr, ret;
258
259         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261                 cache->bytes_super += stripe_len;
262                 ret = add_excluded_extent(fs_info, cache->key.objectid,
263                                           stripe_len);
264                 if (ret)
265                         return ret;
266         }
267
268         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269                 bytenr = btrfs_sb_offset(i);
270                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271                                        bytenr, 0, &logical, &nr, &stripe_len);
272                 if (ret)
273                         return ret;
274
275                 while (nr--) {
276                         u64 start, len;
277
278                         if (logical[nr] > cache->key.objectid +
279                             cache->key.offset)
280                                 continue;
281
282                         if (logical[nr] + stripe_len <= cache->key.objectid)
283                                 continue;
284
285                         start = logical[nr];
286                         if (start < cache->key.objectid) {
287                                 start = cache->key.objectid;
288                                 len = (logical[nr] + stripe_len) - start;
289                         } else {
290                                 len = min_t(u64, stripe_len,
291                                             cache->key.objectid +
292                                             cache->key.offset - start);
293                         }
294
295                         cache->bytes_super += len;
296                         ret = add_excluded_extent(fs_info, start, len);
297                         if (ret) {
298                                 kfree(logical);
299                                 return ret;
300                         }
301                 }
302
303                 kfree(logical);
304         }
305         return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311         struct btrfs_caching_control *ctl;
312
313         spin_lock(&cache->lock);
314         if (!cache->caching_ctl) {
315                 spin_unlock(&cache->lock);
316                 return NULL;
317         }
318
319         ctl = cache->caching_ctl;
320         refcount_inc(&ctl->count);
321         spin_unlock(&cache->lock);
322         return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327         if (refcount_dec_and_test(&ctl->count))
328                 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334         struct btrfs_fs_info *fs_info = block_group->fs_info;
335         u64 start = block_group->key.objectid;
336         u64 len = block_group->key.offset;
337         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338                 fs_info->nodesize : fs_info->sectorsize;
339         u64 step = chunk << 1;
340
341         while (len > chunk) {
342                 btrfs_remove_free_space(block_group, start, chunk);
343                 start += step;
344                 if (len < step)
345                         len = 0;
346                 else
347                         len -= step;
348         }
349 }
350 #endif
351
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358                        struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360         u64 extent_start, extent_end, size, total_added = 0;
361         int ret;
362
363         while (start < end) {
364                 ret = find_first_extent_bit(info->pinned_extents, start,
365                                             &extent_start, &extent_end,
366                                             EXTENT_DIRTY | EXTENT_UPTODATE,
367                                             NULL);
368                 if (ret)
369                         break;
370
371                 if (extent_start <= start) {
372                         start = extent_end + 1;
373                 } else if (extent_start > start && extent_start < end) {
374                         size = extent_start - start;
375                         total_added += size;
376                         ret = btrfs_add_free_space(block_group, start,
377                                                    size);
378                         BUG_ON(ret); /* -ENOMEM or logic error */
379                         start = extent_end + 1;
380                 } else {
381                         break;
382                 }
383         }
384
385         if (start < end) {
386                 size = end - start;
387                 total_added += size;
388                 ret = btrfs_add_free_space(block_group, start, size);
389                 BUG_ON(ret); /* -ENOMEM or logic error */
390         }
391
392         return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398         struct btrfs_fs_info *fs_info = block_group->fs_info;
399         struct btrfs_root *extent_root = fs_info->extent_root;
400         struct btrfs_path *path;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403         u64 total_found = 0;
404         u64 last = 0;
405         u32 nritems;
406         int ret;
407         bool wakeup = true;
408
409         path = btrfs_alloc_path();
410         if (!path)
411                 return -ENOMEM;
412
413         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416         /*
417          * If we're fragmenting we don't want to make anybody think we can
418          * allocate from this block group until we've had a chance to fragment
419          * the free space.
420          */
421         if (btrfs_should_fragment_free_space(block_group))
422                 wakeup = false;
423 #endif
424         /*
425          * We don't want to deadlock with somebody trying to allocate a new
426          * extent for the extent root while also trying to search the extent
427          * root to add free space.  So we skip locking and search the commit
428          * root, since its read-only
429          */
430         path->skip_locking = 1;
431         path->search_commit_root = 1;
432         path->reada = READA_FORWARD;
433
434         key.objectid = last;
435         key.offset = 0;
436         key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440         if (ret < 0)
441                 goto out;
442
443         leaf = path->nodes[0];
444         nritems = btrfs_header_nritems(leaf);
445
446         while (1) {
447                 if (btrfs_fs_closing(fs_info) > 1) {
448                         last = (u64)-1;
449                         break;
450                 }
451
452                 if (path->slots[0] < nritems) {
453                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454                 } else {
455                         ret = find_next_key(path, 0, &key);
456                         if (ret)
457                                 break;
458
459                         if (need_resched() ||
460                             rwsem_is_contended(&fs_info->commit_root_sem)) {
461                                 if (wakeup)
462                                         caching_ctl->progress = last;
463                                 btrfs_release_path(path);
464                                 up_read(&fs_info->commit_root_sem);
465                                 mutex_unlock(&caching_ctl->mutex);
466                                 cond_resched();
467                                 mutex_lock(&caching_ctl->mutex);
468                                 down_read(&fs_info->commit_root_sem);
469                                 goto next;
470                         }
471
472                         ret = btrfs_next_leaf(extent_root, path);
473                         if (ret < 0)
474                                 goto out;
475                         if (ret)
476                                 break;
477                         leaf = path->nodes[0];
478                         nritems = btrfs_header_nritems(leaf);
479                         continue;
480                 }
481
482                 if (key.objectid < last) {
483                         key.objectid = last;
484                         key.offset = 0;
485                         key.type = BTRFS_EXTENT_ITEM_KEY;
486
487                         if (wakeup)
488                                 caching_ctl->progress = last;
489                         btrfs_release_path(path);
490                         goto next;
491                 }
492
493                 if (key.objectid < block_group->key.objectid) {
494                         path->slots[0]++;
495                         continue;
496                 }
497
498                 if (key.objectid >= block_group->key.objectid +
499                     block_group->key.offset)
500                         break;
501
502                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503                     key.type == BTRFS_METADATA_ITEM_KEY) {
504                         total_found += add_new_free_space(block_group,
505                                                           fs_info, last,
506                                                           key.objectid);
507                         if (key.type == BTRFS_METADATA_ITEM_KEY)
508                                 last = key.objectid +
509                                         fs_info->nodesize;
510                         else
511                                 last = key.objectid + key.offset;
512
513                         if (total_found > CACHING_CTL_WAKE_UP) {
514                                 total_found = 0;
515                                 if (wakeup)
516                                         wake_up(&caching_ctl->wait);
517                         }
518                 }
519                 path->slots[0]++;
520         }
521         ret = 0;
522
523         total_found += add_new_free_space(block_group, fs_info, last,
524                                           block_group->key.objectid +
525                                           block_group->key.offset);
526         caching_ctl->progress = (u64)-1;
527
528 out:
529         btrfs_free_path(path);
530         return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535         struct btrfs_block_group_cache *block_group;
536         struct btrfs_fs_info *fs_info;
537         struct btrfs_caching_control *caching_ctl;
538         struct btrfs_root *extent_root;
539         int ret;
540
541         caching_ctl = container_of(work, struct btrfs_caching_control, work);
542         block_group = caching_ctl->block_group;
543         fs_info = block_group->fs_info;
544         extent_root = fs_info->extent_root;
545
546         mutex_lock(&caching_ctl->mutex);
547         down_read(&fs_info->commit_root_sem);
548
549         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550                 ret = load_free_space_tree(caching_ctl);
551         else
552                 ret = load_extent_tree_free(caching_ctl);
553
554         spin_lock(&block_group->lock);
555         block_group->caching_ctl = NULL;
556         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557         spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560         if (btrfs_should_fragment_free_space(block_group)) {
561                 u64 bytes_used;
562
563                 spin_lock(&block_group->space_info->lock);
564                 spin_lock(&block_group->lock);
565                 bytes_used = block_group->key.offset -
566                         btrfs_block_group_used(&block_group->item);
567                 block_group->space_info->bytes_used += bytes_used >> 1;
568                 spin_unlock(&block_group->lock);
569                 spin_unlock(&block_group->space_info->lock);
570                 fragment_free_space(block_group);
571         }
572 #endif
573
574         caching_ctl->progress = (u64)-1;
575
576         up_read(&fs_info->commit_root_sem);
577         free_excluded_extents(fs_info, block_group);
578         mutex_unlock(&caching_ctl->mutex);
579
580         wake_up(&caching_ctl->wait);
581
582         put_caching_control(caching_ctl);
583         btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587                              int load_cache_only)
588 {
589         DEFINE_WAIT(wait);
590         struct btrfs_fs_info *fs_info = cache->fs_info;
591         struct btrfs_caching_control *caching_ctl;
592         int ret = 0;
593
594         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595         if (!caching_ctl)
596                 return -ENOMEM;
597
598         INIT_LIST_HEAD(&caching_ctl->list);
599         mutex_init(&caching_ctl->mutex);
600         init_waitqueue_head(&caching_ctl->wait);
601         caching_ctl->block_group = cache;
602         caching_ctl->progress = cache->key.objectid;
603         refcount_set(&caching_ctl->count, 1);
604         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605                         caching_thread, NULL, NULL);
606
607         spin_lock(&cache->lock);
608         /*
609          * This should be a rare occasion, but this could happen I think in the
610          * case where one thread starts to load the space cache info, and then
611          * some other thread starts a transaction commit which tries to do an
612          * allocation while the other thread is still loading the space cache
613          * info.  The previous loop should have kept us from choosing this block
614          * group, but if we've moved to the state where we will wait on caching
615          * block groups we need to first check if we're doing a fast load here,
616          * so we can wait for it to finish, otherwise we could end up allocating
617          * from a block group who's cache gets evicted for one reason or
618          * another.
619          */
620         while (cache->cached == BTRFS_CACHE_FAST) {
621                 struct btrfs_caching_control *ctl;
622
623                 ctl = cache->caching_ctl;
624                 refcount_inc(&ctl->count);
625                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626                 spin_unlock(&cache->lock);
627
628                 schedule();
629
630                 finish_wait(&ctl->wait, &wait);
631                 put_caching_control(ctl);
632                 spin_lock(&cache->lock);
633         }
634
635         if (cache->cached != BTRFS_CACHE_NO) {
636                 spin_unlock(&cache->lock);
637                 kfree(caching_ctl);
638                 return 0;
639         }
640         WARN_ON(cache->caching_ctl);
641         cache->caching_ctl = caching_ctl;
642         cache->cached = BTRFS_CACHE_FAST;
643         spin_unlock(&cache->lock);
644
645         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646                 mutex_lock(&caching_ctl->mutex);
647                 ret = load_free_space_cache(fs_info, cache);
648
649                 spin_lock(&cache->lock);
650                 if (ret == 1) {
651                         cache->caching_ctl = NULL;
652                         cache->cached = BTRFS_CACHE_FINISHED;
653                         cache->last_byte_to_unpin = (u64)-1;
654                         caching_ctl->progress = (u64)-1;
655                 } else {
656                         if (load_cache_only) {
657                                 cache->caching_ctl = NULL;
658                                 cache->cached = BTRFS_CACHE_NO;
659                         } else {
660                                 cache->cached = BTRFS_CACHE_STARTED;
661                                 cache->has_caching_ctl = 1;
662                         }
663                 }
664                 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666                 if (ret == 1 &&
667                     btrfs_should_fragment_free_space(cache)) {
668                         u64 bytes_used;
669
670                         spin_lock(&cache->space_info->lock);
671                         spin_lock(&cache->lock);
672                         bytes_used = cache->key.offset -
673                                 btrfs_block_group_used(&cache->item);
674                         cache->space_info->bytes_used += bytes_used >> 1;
675                         spin_unlock(&cache->lock);
676                         spin_unlock(&cache->space_info->lock);
677                         fragment_free_space(cache);
678                 }
679 #endif
680                 mutex_unlock(&caching_ctl->mutex);
681
682                 wake_up(&caching_ctl->wait);
683                 if (ret == 1) {
684                         put_caching_control(caching_ctl);
685                         free_excluded_extents(fs_info, cache);
686                         return 0;
687                 }
688         } else {
689                 /*
690                  * We're either using the free space tree or no caching at all.
691                  * Set cached to the appropriate value and wakeup any waiters.
692                  */
693                 spin_lock(&cache->lock);
694                 if (load_cache_only) {
695                         cache->caching_ctl = NULL;
696                         cache->cached = BTRFS_CACHE_NO;
697                 } else {
698                         cache->cached = BTRFS_CACHE_STARTED;
699                         cache->has_caching_ctl = 1;
700                 }
701                 spin_unlock(&cache->lock);
702                 wake_up(&caching_ctl->wait);
703         }
704
705         if (load_cache_only) {
706                 put_caching_control(caching_ctl);
707                 return 0;
708         }
709
710         down_write(&fs_info->commit_root_sem);
711         refcount_inc(&caching_ctl->count);
712         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713         up_write(&fs_info->commit_root_sem);
714
715         btrfs_get_block_group(cache);
716
717         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719         return ret;
720 }
721
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728         return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735                                                  struct btrfs_fs_info *info,
736                                                  u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742                                                   u64 flags)
743 {
744         struct list_head *head = &info->space_info;
745         struct btrfs_space_info *found;
746
747         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749         rcu_read_lock();
750         list_for_each_entry_rcu(found, head, list) {
751                 if (found->flags & flags) {
752                         rcu_read_unlock();
753                         return found;
754                 }
755         }
756         rcu_read_unlock();
757         return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761                              u64 owner, u64 root_objectid)
762 {
763         struct btrfs_space_info *space_info;
764         u64 flags;
765
766         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
769                 else
770                         flags = BTRFS_BLOCK_GROUP_METADATA;
771         } else {
772                 flags = BTRFS_BLOCK_GROUP_DATA;
773         }
774
775         space_info = __find_space_info(fs_info, flags);
776         ASSERT(space_info);
777         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786         struct list_head *head = &info->space_info;
787         struct btrfs_space_info *found;
788
789         rcu_read_lock();
790         list_for_each_entry_rcu(found, head, list)
791                 found->full = 0;
792         rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798         int ret;
799         struct btrfs_key key;
800         struct btrfs_path *path;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805
806         key.objectid = start;
807         key.offset = len;
808         key.type = BTRFS_EXTENT_ITEM_KEY;
809         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810         btrfs_free_path(path);
811         return ret;
812 }
813
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824                              struct btrfs_fs_info *fs_info, u64 bytenr,
825                              u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827         struct btrfs_delayed_ref_head *head;
828         struct btrfs_delayed_ref_root *delayed_refs;
829         struct btrfs_path *path;
830         struct btrfs_extent_item *ei;
831         struct extent_buffer *leaf;
832         struct btrfs_key key;
833         u32 item_size;
834         u64 num_refs;
835         u64 extent_flags;
836         int ret;
837
838         /*
839          * If we don't have skinny metadata, don't bother doing anything
840          * different
841          */
842         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843                 offset = fs_info->nodesize;
844                 metadata = 0;
845         }
846
847         path = btrfs_alloc_path();
848         if (!path)
849                 return -ENOMEM;
850
851         if (!trans) {
852                 path->skip_locking = 1;
853                 path->search_commit_root = 1;
854         }
855
856 search_again:
857         key.objectid = bytenr;
858         key.offset = offset;
859         if (metadata)
860                 key.type = BTRFS_METADATA_ITEM_KEY;
861         else
862                 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865         if (ret < 0)
866                 goto out_free;
867
868         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869                 if (path->slots[0]) {
870                         path->slots[0]--;
871                         btrfs_item_key_to_cpu(path->nodes[0], &key,
872                                               path->slots[0]);
873                         if (key.objectid == bytenr &&
874                             key.type == BTRFS_EXTENT_ITEM_KEY &&
875                             key.offset == fs_info->nodesize)
876                                 ret = 0;
877                 }
878         }
879
880         if (ret == 0) {
881                 leaf = path->nodes[0];
882                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883                 if (item_size >= sizeof(*ei)) {
884                         ei = btrfs_item_ptr(leaf, path->slots[0],
885                                             struct btrfs_extent_item);
886                         num_refs = btrfs_extent_refs(leaf, ei);
887                         extent_flags = btrfs_extent_flags(leaf, ei);
888                 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890                         struct btrfs_extent_item_v0 *ei0;
891                         BUG_ON(item_size != sizeof(*ei0));
892                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
893                                              struct btrfs_extent_item_v0);
894                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
895                         /* FIXME: this isn't correct for data */
896                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898                         BUG();
899 #endif
900                 }
901                 BUG_ON(num_refs == 0);
902         } else {
903                 num_refs = 0;
904                 extent_flags = 0;
905                 ret = 0;
906         }
907
908         if (!trans)
909                 goto out;
910
911         delayed_refs = &trans->transaction->delayed_refs;
912         spin_lock(&delayed_refs->lock);
913         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914         if (head) {
915                 if (!mutex_trylock(&head->mutex)) {
916                         refcount_inc(&head->refs);
917                         spin_unlock(&delayed_refs->lock);
918
919                         btrfs_release_path(path);
920
921                         /*
922                          * Mutex was contended, block until it's released and try
923                          * again
924                          */
925                         mutex_lock(&head->mutex);
926                         mutex_unlock(&head->mutex);
927                         btrfs_put_delayed_ref_head(head);
928                         goto search_again;
929                 }
930                 spin_lock(&head->lock);
931                 if (head->extent_op && head->extent_op->update_flags)
932                         extent_flags |= head->extent_op->flags_to_set;
933                 else
934                         BUG_ON(num_refs == 0);
935
936                 num_refs += head->ref_mod;
937                 spin_unlock(&head->lock);
938                 mutex_unlock(&head->mutex);
939         }
940         spin_unlock(&delayed_refs->lock);
941 out:
942         WARN_ON(num_refs == 0);
943         if (refs)
944                 *refs = num_refs;
945         if (flags)
946                 *flags = extent_flags;
947 out_free:
948         btrfs_free_path(path);
949         return ret;
950 }
951
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060                                   struct btrfs_fs_info *fs_info,
1061                                   struct btrfs_path *path,
1062                                   u64 owner, u32 extra_size)
1063 {
1064         struct btrfs_root *root = fs_info->extent_root;
1065         struct btrfs_extent_item *item;
1066         struct btrfs_extent_item_v0 *ei0;
1067         struct btrfs_extent_ref_v0 *ref0;
1068         struct btrfs_tree_block_info *bi;
1069         struct extent_buffer *leaf;
1070         struct btrfs_key key;
1071         struct btrfs_key found_key;
1072         u32 new_size = sizeof(*item);
1073         u64 refs;
1074         int ret;
1075
1076         leaf = path->nodes[0];
1077         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081                              struct btrfs_extent_item_v0);
1082         refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084         if (owner == (u64)-1) {
1085                 while (1) {
1086                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087                                 ret = btrfs_next_leaf(root, path);
1088                                 if (ret < 0)
1089                                         return ret;
1090                                 BUG_ON(ret > 0); /* Corruption */
1091                                 leaf = path->nodes[0];
1092                         }
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0]);
1095                         BUG_ON(key.objectid != found_key.objectid);
1096                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097                                 path->slots[0]++;
1098                                 continue;
1099                         }
1100                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101                                               struct btrfs_extent_ref_v0);
1102                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1103                         break;
1104                 }
1105         }
1106         btrfs_release_path(path);
1107
1108         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109                 new_size += sizeof(*bi);
1110
1111         new_size -= sizeof(*ei0);
1112         ret = btrfs_search_slot(trans, root, &key, path,
1113                                 new_size + extra_size, 1);
1114         if (ret < 0)
1115                 return ret;
1116         BUG_ON(ret); /* Corruption */
1117
1118         btrfs_extend_item(fs_info, path, new_size);
1119
1120         leaf = path->nodes[0];
1121         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122         btrfs_set_extent_refs(leaf, item, refs);
1123         /* FIXME: get real generation */
1124         btrfs_set_extent_generation(leaf, item, 0);
1125         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126                 btrfs_set_extent_flags(leaf, item,
1127                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129                 bi = (struct btrfs_tree_block_info *)(item + 1);
1130                 /* FIXME: get first key of the block */
1131                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133         } else {
1134                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135         }
1136         btrfs_mark_buffer_dirty(leaf);
1137         return 0;
1138 }
1139 #endif
1140
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147                                      struct btrfs_extent_inline_ref *iref,
1148                                      enum btrfs_inline_ref_type is_data)
1149 {
1150         int type = btrfs_extent_inline_ref_type(eb, iref);
1151         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155             type == BTRFS_SHARED_DATA_REF_KEY ||
1156             type == BTRFS_EXTENT_DATA_REF_KEY) {
1157                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173                                 return type;
1174                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175                                 ASSERT(eb->fs_info);
1176                                 /*
1177                                  * Every shared one has parent tree
1178                                  * block, which must be aligned to
1179                                  * nodesize.
1180                                  */
1181                                 if (offset &&
1182                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1183                                         return type;
1184                         }
1185                 } else {
1186                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187                         return type;
1188                 }
1189         }
1190
1191         btrfs_print_leaf((struct extent_buffer *)eb);
1192         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193                   eb->start, type);
1194         WARN_ON(1);
1195
1196         return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201         u32 high_crc = ~(u32)0;
1202         u32 low_crc = ~(u32)0;
1203         __le64 lenum;
1204
1205         lenum = cpu_to_le64(root_objectid);
1206         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207         lenum = cpu_to_le64(owner);
1208         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209         lenum = cpu_to_le64(offset);
1210         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212         return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216                                      struct btrfs_extent_data_ref *ref)
1217 {
1218         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219                                     btrfs_extent_data_ref_objectid(leaf, ref),
1220                                     btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224                                  struct btrfs_extent_data_ref *ref,
1225                                  u64 root_objectid, u64 owner, u64 offset)
1226 {
1227         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230                 return 0;
1231         return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235                                            struct btrfs_fs_info *fs_info,
1236                                            struct btrfs_path *path,
1237                                            u64 bytenr, u64 parent,
1238                                            u64 root_objectid,
1239                                            u64 owner, u64 offset)
1240 {
1241         struct btrfs_root *root = fs_info->extent_root;
1242         struct btrfs_key key;
1243         struct btrfs_extent_data_ref *ref;
1244         struct extent_buffer *leaf;
1245         u32 nritems;
1246         int ret;
1247         int recow;
1248         int err = -ENOENT;
1249
1250         key.objectid = bytenr;
1251         if (parent) {
1252                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253                 key.offset = parent;
1254         } else {
1255                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256                 key.offset = hash_extent_data_ref(root_objectid,
1257                                                   owner, offset);
1258         }
1259 again:
1260         recow = 0;
1261         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262         if (ret < 0) {
1263                 err = ret;
1264                 goto fail;
1265         }
1266
1267         if (parent) {
1268                 if (!ret)
1269                         return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272                 btrfs_release_path(path);
1273                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274                 if (ret < 0) {
1275                         err = ret;
1276                         goto fail;
1277                 }
1278                 if (!ret)
1279                         return 0;
1280 #endif
1281                 goto fail;
1282         }
1283
1284         leaf = path->nodes[0];
1285         nritems = btrfs_header_nritems(leaf);
1286         while (1) {
1287                 if (path->slots[0] >= nritems) {
1288                         ret = btrfs_next_leaf(root, path);
1289                         if (ret < 0)
1290                                 err = ret;
1291                         if (ret)
1292                                 goto fail;
1293
1294                         leaf = path->nodes[0];
1295                         nritems = btrfs_header_nritems(leaf);
1296                         recow = 1;
1297                 }
1298
1299                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300                 if (key.objectid != bytenr ||
1301                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302                         goto fail;
1303
1304                 ref = btrfs_item_ptr(leaf, path->slots[0],
1305                                      struct btrfs_extent_data_ref);
1306
1307                 if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                           owner, offset)) {
1309                         if (recow) {
1310                                 btrfs_release_path(path);
1311                                 goto again;
1312                         }
1313                         err = 0;
1314                         break;
1315                 }
1316                 path->slots[0]++;
1317         }
1318 fail:
1319         return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323                                            struct btrfs_fs_info *fs_info,
1324                                            struct btrfs_path *path,
1325                                            u64 bytenr, u64 parent,
1326                                            u64 root_objectid, u64 owner,
1327                                            u64 offset, int refs_to_add)
1328 {
1329         struct btrfs_root *root = fs_info->extent_root;
1330         struct btrfs_key key;
1331         struct extent_buffer *leaf;
1332         u32 size;
1333         u32 num_refs;
1334         int ret;
1335
1336         key.objectid = bytenr;
1337         if (parent) {
1338                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339                 key.offset = parent;
1340                 size = sizeof(struct btrfs_shared_data_ref);
1341         } else {
1342                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343                 key.offset = hash_extent_data_ref(root_objectid,
1344                                                   owner, offset);
1345                 size = sizeof(struct btrfs_extent_data_ref);
1346         }
1347
1348         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349         if (ret && ret != -EEXIST)
1350                 goto fail;
1351
1352         leaf = path->nodes[0];
1353         if (parent) {
1354                 struct btrfs_shared_data_ref *ref;
1355                 ref = btrfs_item_ptr(leaf, path->slots[0],
1356                                      struct btrfs_shared_data_ref);
1357                 if (ret == 0) {
1358                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359                 } else {
1360                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361                         num_refs += refs_to_add;
1362                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363                 }
1364         } else {
1365                 struct btrfs_extent_data_ref *ref;
1366                 while (ret == -EEXIST) {
1367                         ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                              struct btrfs_extent_data_ref);
1369                         if (match_extent_data_ref(leaf, ref, root_objectid,
1370                                                   owner, offset))
1371                                 break;
1372                         btrfs_release_path(path);
1373                         key.offset++;
1374                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1375                                                       size);
1376                         if (ret && ret != -EEXIST)
1377                                 goto fail;
1378
1379                         leaf = path->nodes[0];
1380                 }
1381                 ref = btrfs_item_ptr(leaf, path->slots[0],
1382                                      struct btrfs_extent_data_ref);
1383                 if (ret == 0) {
1384                         btrfs_set_extent_data_ref_root(leaf, ref,
1385                                                        root_objectid);
1386                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389                 } else {
1390                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391                         num_refs += refs_to_add;
1392                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393                 }
1394         }
1395         btrfs_mark_buffer_dirty(leaf);
1396         ret = 0;
1397 fail:
1398         btrfs_release_path(path);
1399         return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403                                            struct btrfs_fs_info *fs_info,
1404                                            struct btrfs_path *path,
1405                                            int refs_to_drop, int *last_ref)
1406 {
1407         struct btrfs_key key;
1408         struct btrfs_extent_data_ref *ref1 = NULL;
1409         struct btrfs_shared_data_ref *ref2 = NULL;
1410         struct extent_buffer *leaf;
1411         u32 num_refs = 0;
1412         int ret = 0;
1413
1414         leaf = path->nodes[0];
1415         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419                                       struct btrfs_extent_data_ref);
1420                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423                                       struct btrfs_shared_data_ref);
1424                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427                 struct btrfs_extent_ref_v0 *ref0;
1428                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429                                       struct btrfs_extent_ref_v0);
1430                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432         } else {
1433                 BUG();
1434         }
1435
1436         BUG_ON(num_refs < refs_to_drop);
1437         num_refs -= refs_to_drop;
1438
1439         if (num_refs == 0) {
1440                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441                 *last_ref = 1;
1442         } else {
1443                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448                 else {
1449                         struct btrfs_extent_ref_v0 *ref0;
1450                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451                                         struct btrfs_extent_ref_v0);
1452                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453                 }
1454 #endif
1455                 btrfs_mark_buffer_dirty(leaf);
1456         }
1457         return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461                                           struct btrfs_extent_inline_ref *iref)
1462 {
1463         struct btrfs_key key;
1464         struct extent_buffer *leaf;
1465         struct btrfs_extent_data_ref *ref1;
1466         struct btrfs_shared_data_ref *ref2;
1467         u32 num_refs = 0;
1468         int type;
1469
1470         leaf = path->nodes[0];
1471         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472         if (iref) {
1473                 /*
1474                  * If type is invalid, we should have bailed out earlier than
1475                  * this call.
1476                  */
1477                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482                 } else {
1483                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485                 }
1486         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488                                       struct btrfs_extent_data_ref);
1489                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492                                       struct btrfs_shared_data_ref);
1493                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496                 struct btrfs_extent_ref_v0 *ref0;
1497                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498                                       struct btrfs_extent_ref_v0);
1499                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501         } else {
1502                 WARN_ON(1);
1503         }
1504         return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508                                           struct btrfs_fs_info *fs_info,
1509                                           struct btrfs_path *path,
1510                                           u64 bytenr, u64 parent,
1511                                           u64 root_objectid)
1512 {
1513         struct btrfs_root *root = fs_info->extent_root;
1514         struct btrfs_key key;
1515         int ret;
1516
1517         key.objectid = bytenr;
1518         if (parent) {
1519                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520                 key.offset = parent;
1521         } else {
1522                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523                 key.offset = root_objectid;
1524         }
1525
1526         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527         if (ret > 0)
1528                 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530         if (ret == -ENOENT && parent) {
1531                 btrfs_release_path(path);
1532                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534                 if (ret > 0)
1535                         ret = -ENOENT;
1536         }
1537 #endif
1538         return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542                                           struct btrfs_fs_info *fs_info,
1543                                           struct btrfs_path *path,
1544                                           u64 bytenr, u64 parent,
1545                                           u64 root_objectid)
1546 {
1547         struct btrfs_key key;
1548         int ret;
1549
1550         key.objectid = bytenr;
1551         if (parent) {
1552                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553                 key.offset = parent;
1554         } else {
1555                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556                 key.offset = root_objectid;
1557         }
1558
1559         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560                                       path, &key, 0);
1561         btrfs_release_path(path);
1562         return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567         int type;
1568         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569                 if (parent > 0)
1570                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1571                 else
1572                         type = BTRFS_TREE_BLOCK_REF_KEY;
1573         } else {
1574                 if (parent > 0)
1575                         type = BTRFS_SHARED_DATA_REF_KEY;
1576                 else
1577                         type = BTRFS_EXTENT_DATA_REF_KEY;
1578         }
1579         return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583                          struct btrfs_key *key)
1584
1585 {
1586         for (; level < BTRFS_MAX_LEVEL; level++) {
1587                 if (!path->nodes[level])
1588                         break;
1589                 if (path->slots[level] + 1 >=
1590                     btrfs_header_nritems(path->nodes[level]))
1591                         continue;
1592                 if (level == 0)
1593                         btrfs_item_key_to_cpu(path->nodes[level], key,
1594                                               path->slots[level] + 1);
1595                 else
1596                         btrfs_node_key_to_cpu(path->nodes[level], key,
1597                                               path->slots[level] + 1);
1598                 return 0;
1599         }
1600         return 1;
1601 }
1602
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *       items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618                                  struct btrfs_fs_info *fs_info,
1619                                  struct btrfs_path *path,
1620                                  struct btrfs_extent_inline_ref **ref_ret,
1621                                  u64 bytenr, u64 num_bytes,
1622                                  u64 parent, u64 root_objectid,
1623                                  u64 owner, u64 offset, int insert)
1624 {
1625         struct btrfs_root *root = fs_info->extent_root;
1626         struct btrfs_key key;
1627         struct extent_buffer *leaf;
1628         struct btrfs_extent_item *ei;
1629         struct btrfs_extent_inline_ref *iref;
1630         u64 flags;
1631         u64 item_size;
1632         unsigned long ptr;
1633         unsigned long end;
1634         int extra_size;
1635         int type;
1636         int want;
1637         int ret;
1638         int err = 0;
1639         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640         int needed;
1641
1642         key.objectid = bytenr;
1643         key.type = BTRFS_EXTENT_ITEM_KEY;
1644         key.offset = num_bytes;
1645
1646         want = extent_ref_type(parent, owner);
1647         if (insert) {
1648                 extra_size = btrfs_extent_inline_ref_size(want);
1649                 path->keep_locks = 1;
1650         } else
1651                 extra_size = -1;
1652
1653         /*
1654          * Owner is our parent level, so we can just add one to get the level
1655          * for the block we are interested in.
1656          */
1657         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658                 key.type = BTRFS_METADATA_ITEM_KEY;
1659                 key.offset = owner;
1660         }
1661
1662 again:
1663         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664         if (ret < 0) {
1665                 err = ret;
1666                 goto out;
1667         }
1668
1669         /*
1670          * We may be a newly converted file system which still has the old fat
1671          * extent entries for metadata, so try and see if we have one of those.
1672          */
1673         if (ret > 0 && skinny_metadata) {
1674                 skinny_metadata = false;
1675                 if (path->slots[0]) {
1676                         path->slots[0]--;
1677                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1678                                               path->slots[0]);
1679                         if (key.objectid == bytenr &&
1680                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1681                             key.offset == num_bytes)
1682                                 ret = 0;
1683                 }
1684                 if (ret) {
1685                         key.objectid = bytenr;
1686                         key.type = BTRFS_EXTENT_ITEM_KEY;
1687                         key.offset = num_bytes;
1688                         btrfs_release_path(path);
1689                         goto again;
1690                 }
1691         }
1692
1693         if (ret && !insert) {
1694                 err = -ENOENT;
1695                 goto out;
1696         } else if (WARN_ON(ret)) {
1697                 err = -EIO;
1698                 goto out;
1699         }
1700
1701         leaf = path->nodes[0];
1702         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704         if (item_size < sizeof(*ei)) {
1705                 if (!insert) {
1706                         err = -ENOENT;
1707                         goto out;
1708                 }
1709                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710                                              extra_size);
1711                 if (ret < 0) {
1712                         err = ret;
1713                         goto out;
1714                 }
1715                 leaf = path->nodes[0];
1716                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717         }
1718 #endif
1719         BUG_ON(item_size < sizeof(*ei));
1720
1721         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722         flags = btrfs_extent_flags(leaf, ei);
1723
1724         ptr = (unsigned long)(ei + 1);
1725         end = (unsigned long)ei + item_size;
1726
1727         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728                 ptr += sizeof(struct btrfs_tree_block_info);
1729                 BUG_ON(ptr > end);
1730         }
1731
1732         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733                 needed = BTRFS_REF_TYPE_DATA;
1734         else
1735                 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737         err = -ENOENT;
1738         while (1) {
1739                 if (ptr >= end) {
1740                         WARN_ON(ptr > end);
1741                         break;
1742                 }
1743                 iref = (struct btrfs_extent_inline_ref *)ptr;
1744                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745                 if (type == BTRFS_REF_TYPE_INVALID) {
1746                         err = -EINVAL;
1747                         goto out;
1748                 }
1749
1750                 if (want < type)
1751                         break;
1752                 if (want > type) {
1753                         ptr += btrfs_extent_inline_ref_size(type);
1754                         continue;
1755                 }
1756
1757                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758                         struct btrfs_extent_data_ref *dref;
1759                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760                         if (match_extent_data_ref(leaf, dref, root_objectid,
1761                                                   owner, offset)) {
1762                                 err = 0;
1763                                 break;
1764                         }
1765                         if (hash_extent_data_ref_item(leaf, dref) <
1766                             hash_extent_data_ref(root_objectid, owner, offset))
1767                                 break;
1768                 } else {
1769                         u64 ref_offset;
1770                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771                         if (parent > 0) {
1772                                 if (parent == ref_offset) {
1773                                         err = 0;
1774                                         break;
1775                                 }
1776                                 if (ref_offset < parent)
1777                                         break;
1778                         } else {
1779                                 if (root_objectid == ref_offset) {
1780                                         err = 0;
1781                                         break;
1782                                 }
1783                                 if (ref_offset < root_objectid)
1784                                         break;
1785                         }
1786                 }
1787                 ptr += btrfs_extent_inline_ref_size(type);
1788         }
1789         if (err == -ENOENT && insert) {
1790                 if (item_size + extra_size >=
1791                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792                         err = -EAGAIN;
1793                         goto out;
1794                 }
1795                 /*
1796                  * To add new inline back ref, we have to make sure
1797                  * there is no corresponding back ref item.
1798                  * For simplicity, we just do not add new inline back
1799                  * ref if there is any kind of item for this block
1800                  */
1801                 if (find_next_key(path, 0, &key) == 0 &&
1802                     key.objectid == bytenr &&
1803                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804                         err = -EAGAIN;
1805                         goto out;
1806                 }
1807         }
1808         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810         if (insert) {
1811                 path->keep_locks = 0;
1812                 btrfs_unlock_up_safe(path, 1);
1813         }
1814         return err;
1815 }
1816
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822                                  struct btrfs_path *path,
1823                                  struct btrfs_extent_inline_ref *iref,
1824                                  u64 parent, u64 root_objectid,
1825                                  u64 owner, u64 offset, int refs_to_add,
1826                                  struct btrfs_delayed_extent_op *extent_op)
1827 {
1828         struct extent_buffer *leaf;
1829         struct btrfs_extent_item *ei;
1830         unsigned long ptr;
1831         unsigned long end;
1832         unsigned long item_offset;
1833         u64 refs;
1834         int size;
1835         int type;
1836
1837         leaf = path->nodes[0];
1838         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839         item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841         type = extent_ref_type(parent, owner);
1842         size = btrfs_extent_inline_ref_size(type);
1843
1844         btrfs_extend_item(fs_info, path, size);
1845
1846         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847         refs = btrfs_extent_refs(leaf, ei);
1848         refs += refs_to_add;
1849         btrfs_set_extent_refs(leaf, ei, refs);
1850         if (extent_op)
1851                 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853         ptr = (unsigned long)ei + item_offset;
1854         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855         if (ptr < end - size)
1856                 memmove_extent_buffer(leaf, ptr + size, ptr,
1857                                       end - size - ptr);
1858
1859         iref = (struct btrfs_extent_inline_ref *)ptr;
1860         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                 struct btrfs_extent_data_ref *dref;
1863                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869                 struct btrfs_shared_data_ref *sref;
1870                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875         } else {
1876                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877         }
1878         btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882                                  struct btrfs_fs_info *fs_info,
1883                                  struct btrfs_path *path,
1884                                  struct btrfs_extent_inline_ref **ref_ret,
1885                                  u64 bytenr, u64 num_bytes, u64 parent,
1886                                  u64 root_objectid, u64 owner, u64 offset)
1887 {
1888         int ret;
1889
1890         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891                                            bytenr, num_bytes, parent,
1892                                            root_objectid, owner, offset, 0);
1893         if (ret != -ENOENT)
1894                 return ret;
1895
1896         btrfs_release_path(path);
1897         *ref_ret = NULL;
1898
1899         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901                                             parent, root_objectid);
1902         } else {
1903                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904                                              parent, root_objectid, owner,
1905                                              offset);
1906         }
1907         return ret;
1908 }
1909
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915                                   struct btrfs_path *path,
1916                                   struct btrfs_extent_inline_ref *iref,
1917                                   int refs_to_mod,
1918                                   struct btrfs_delayed_extent_op *extent_op,
1919                                   int *last_ref)
1920 {
1921         struct extent_buffer *leaf;
1922         struct btrfs_extent_item *ei;
1923         struct btrfs_extent_data_ref *dref = NULL;
1924         struct btrfs_shared_data_ref *sref = NULL;
1925         unsigned long ptr;
1926         unsigned long end;
1927         u32 item_size;
1928         int size;
1929         int type;
1930         u64 refs;
1931
1932         leaf = path->nodes[0];
1933         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934         refs = btrfs_extent_refs(leaf, ei);
1935         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936         refs += refs_to_mod;
1937         btrfs_set_extent_refs(leaf, ei, refs);
1938         if (extent_op)
1939                 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941         /*
1942          * If type is invalid, we should have bailed out after
1943          * lookup_inline_extent_backref().
1944          */
1945         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950                 refs = btrfs_extent_data_ref_count(leaf, dref);
1951         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953                 refs = btrfs_shared_data_ref_count(leaf, sref);
1954         } else {
1955                 refs = 1;
1956                 BUG_ON(refs_to_mod != -1);
1957         }
1958
1959         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960         refs += refs_to_mod;
1961
1962         if (refs > 0) {
1963                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965                 else
1966                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967         } else {
1968                 *last_ref = 1;
1969                 size =  btrfs_extent_inline_ref_size(type);
1970                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971                 ptr = (unsigned long)iref;
1972                 end = (unsigned long)ei + item_size;
1973                 if (ptr + size < end)
1974                         memmove_extent_buffer(leaf, ptr, ptr + size,
1975                                               end - ptr - size);
1976                 item_size -= size;
1977                 btrfs_truncate_item(fs_info, path, item_size, 1);
1978         }
1979         btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984                                  struct btrfs_fs_info *fs_info,
1985                                  struct btrfs_path *path,
1986                                  u64 bytenr, u64 num_bytes, u64 parent,
1987                                  u64 root_objectid, u64 owner,
1988                                  u64 offset, int refs_to_add,
1989                                  struct btrfs_delayed_extent_op *extent_op)
1990 {
1991         struct btrfs_extent_inline_ref *iref;
1992         int ret;
1993
1994         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995                                            bytenr, num_bytes, parent,
1996                                            root_objectid, owner, offset, 1);
1997         if (ret == 0) {
1998                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999                 update_inline_extent_backref(fs_info, path, iref,
2000                                              refs_to_add, extent_op, NULL);
2001         } else if (ret == -ENOENT) {
2002                 setup_inline_extent_backref(fs_info, path, iref, parent,
2003                                             root_objectid, owner, offset,
2004                                             refs_to_add, extent_op);
2005                 ret = 0;
2006         }
2007         return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011                                  struct btrfs_fs_info *fs_info,
2012                                  struct btrfs_path *path,
2013                                  u64 bytenr, u64 parent, u64 root_objectid,
2014                                  u64 owner, u64 offset, int refs_to_add)
2015 {
2016         int ret;
2017         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018                 BUG_ON(refs_to_add != 1);
2019                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020                                             parent, root_objectid);
2021         } else {
2022                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023                                              parent, root_objectid,
2024                                              owner, offset, refs_to_add);
2025         }
2026         return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030                                  struct btrfs_fs_info *fs_info,
2031                                  struct btrfs_path *path,
2032                                  struct btrfs_extent_inline_ref *iref,
2033                                  int refs_to_drop, int is_data, int *last_ref)
2034 {
2035         int ret = 0;
2036
2037         BUG_ON(!is_data && refs_to_drop != 1);
2038         if (iref) {
2039                 update_inline_extent_backref(fs_info, path, iref,
2040                                              -refs_to_drop, NULL, last_ref);
2041         } else if (is_data) {
2042                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043                                              last_ref);
2044         } else {
2045                 *last_ref = 1;
2046                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047         }
2048         return ret;
2049 }
2050
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053                                u64 *discarded_bytes)
2054 {
2055         int j, ret = 0;
2056         u64 bytes_left, end;
2057         u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059         if (WARN_ON(start != aligned_start)) {
2060                 len -= aligned_start - start;
2061                 len = round_down(len, 1 << 9);
2062                 start = aligned_start;
2063         }
2064
2065         *discarded_bytes = 0;
2066
2067         if (!len)
2068                 return 0;
2069
2070         end = start + len;
2071         bytes_left = len;
2072
2073         /* Skip any superblocks on this device. */
2074         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075                 u64 sb_start = btrfs_sb_offset(j);
2076                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077                 u64 size = sb_start - start;
2078
2079                 if (!in_range(sb_start, start, bytes_left) &&
2080                     !in_range(sb_end, start, bytes_left) &&
2081                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082                         continue;
2083
2084                 /*
2085                  * Superblock spans beginning of range.  Adjust start and
2086                  * try again.
2087                  */
2088                 if (sb_start <= start) {
2089                         start += sb_end - start;
2090                         if (start > end) {
2091                                 bytes_left = 0;
2092                                 break;
2093                         }
2094                         bytes_left = end - start;
2095                         continue;
2096                 }
2097
2098                 if (size) {
2099                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100                                                    GFP_NOFS, 0);
2101                         if (!ret)
2102                                 *discarded_bytes += size;
2103                         else if (ret != -EOPNOTSUPP)
2104                                 return ret;
2105                 }
2106
2107                 start = sb_end;
2108                 if (start > end) {
2109                         bytes_left = 0;
2110                         break;
2111                 }
2112                 bytes_left = end - start;
2113         }
2114
2115         if (bytes_left) {
2116                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117                                            GFP_NOFS, 0);
2118                 if (!ret)
2119                         *discarded_bytes += bytes_left;
2120         }
2121         return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125                          u64 num_bytes, u64 *actual_bytes)
2126 {
2127         int ret;
2128         u64 discarded_bytes = 0;
2129         struct btrfs_bio *bbio = NULL;
2130
2131
2132         /*
2133          * Avoid races with device replace and make sure our bbio has devices
2134          * associated to its stripes that don't go away while we are discarding.
2135          */
2136         btrfs_bio_counter_inc_blocked(fs_info);
2137         /* Tell the block device(s) that the sectors can be discarded */
2138         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139                               &bbio, 0);
2140         /* Error condition is -ENOMEM */
2141         if (!ret) {
2142                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143                 int i;
2144
2145
2146                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147                         u64 bytes;
2148                         if (!stripe->dev->can_discard)
2149                                 continue;
2150
2151                         ret = btrfs_issue_discard(stripe->dev->bdev,
2152                                                   stripe->physical,
2153                                                   stripe->length,
2154                                                   &bytes);
2155                         if (!ret)
2156                                 discarded_bytes += bytes;
2157                         else if (ret != -EOPNOTSUPP)
2158                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2159
2160                         /*
2161                          * Just in case we get back EOPNOTSUPP for some reason,
2162                          * just ignore the return value so we don't screw up
2163                          * people calling discard_extent.
2164                          */
2165                         ret = 0;
2166                 }
2167                 btrfs_put_bbio(bbio);
2168         }
2169         btrfs_bio_counter_dec(fs_info);
2170
2171         if (actual_bytes)
2172                 *actual_bytes = discarded_bytes;
2173
2174
2175         if (ret == -EOPNOTSUPP)
2176                 ret = 0;
2177         return ret;
2178 }
2179
2180 /* Can return -ENOMEM */
2181 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2182                          struct btrfs_root *root,
2183                          u64 bytenr, u64 num_bytes, u64 parent,
2184                          u64 root_objectid, u64 owner, u64 offset)
2185 {
2186         struct btrfs_fs_info *fs_info = root->fs_info;
2187         int old_ref_mod, new_ref_mod;
2188         int ret;
2189
2190         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192
2193         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194                            owner, offset, BTRFS_ADD_DELAYED_REF);
2195
2196         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2197                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2198                                                  num_bytes, parent,
2199                                                  root_objectid, (int)owner,
2200                                                  BTRFS_ADD_DELAYED_REF, NULL,
2201                                                  &old_ref_mod, &new_ref_mod);
2202         } else {
2203                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2204                                                  num_bytes, parent,
2205                                                  root_objectid, owner, offset,
2206                                                  0, BTRFS_ADD_DELAYED_REF,
2207                                                  &old_ref_mod, &new_ref_mod);
2208         }
2209
2210         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212
2213         return ret;
2214 }
2215
2216 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2217                                   struct btrfs_fs_info *fs_info,
2218                                   struct btrfs_delayed_ref_node *node,
2219                                   u64 parent, u64 root_objectid,
2220                                   u64 owner, u64 offset, int refs_to_add,
2221                                   struct btrfs_delayed_extent_op *extent_op)
2222 {
2223         struct btrfs_path *path;
2224         struct extent_buffer *leaf;
2225         struct btrfs_extent_item *item;
2226         struct btrfs_key key;
2227         u64 bytenr = node->bytenr;
2228         u64 num_bytes = node->num_bytes;
2229         u64 refs;
2230         int ret;
2231
2232         path = btrfs_alloc_path();
2233         if (!path)
2234                 return -ENOMEM;
2235
2236         path->reada = READA_FORWARD;
2237         path->leave_spinning = 1;
2238         /* this will setup the path even if it fails to insert the back ref */
2239         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240                                            num_bytes, parent, root_objectid,
2241                                            owner, offset,
2242                                            refs_to_add, extent_op);
2243         if ((ret < 0 && ret != -EAGAIN) || !ret)
2244                 goto out;
2245
2246         /*
2247          * Ok we had -EAGAIN which means we didn't have space to insert and
2248          * inline extent ref, so just update the reference count and add a
2249          * normal backref.
2250          */
2251         leaf = path->nodes[0];
2252         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2253         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254         refs = btrfs_extent_refs(leaf, item);
2255         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256         if (extent_op)
2257                 __run_delayed_extent_op(extent_op, leaf, item);
2258
2259         btrfs_mark_buffer_dirty(leaf);
2260         btrfs_release_path(path);
2261
2262         path->reada = READA_FORWARD;
2263         path->leave_spinning = 1;
2264         /* now insert the actual backref */
2265         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266                                     root_objectid, owner, offset, refs_to_add);
2267         if (ret)
2268                 btrfs_abort_transaction(trans, ret);
2269 out:
2270         btrfs_free_path(path);
2271         return ret;
2272 }
2273
2274 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2275                                 struct btrfs_fs_info *fs_info,
2276                                 struct btrfs_delayed_ref_node *node,
2277                                 struct btrfs_delayed_extent_op *extent_op,
2278                                 int insert_reserved)
2279 {
2280         int ret = 0;
2281         struct btrfs_delayed_data_ref *ref;
2282         struct btrfs_key ins;
2283         u64 parent = 0;
2284         u64 ref_root = 0;
2285         u64 flags = 0;
2286
2287         ins.objectid = node->bytenr;
2288         ins.offset = node->num_bytes;
2289         ins.type = BTRFS_EXTENT_ITEM_KEY;
2290
2291         ref = btrfs_delayed_node_to_data_ref(node);
2292         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2293
2294         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295                 parent = ref->parent;
2296         ref_root = ref->root;
2297
2298         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2299                 if (extent_op)
2300                         flags |= extent_op->flags_to_set;
2301                 ret = alloc_reserved_file_extent(trans, fs_info,
2302                                                  parent, ref_root, flags,
2303                                                  ref->objectid, ref->offset,
2304                                                  &ins, node->ref_mod);
2305         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2306                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2307                                              ref_root, ref->objectid,
2308                                              ref->offset, node->ref_mod,
2309                                              extent_op);
2310         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2311                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2312                                           ref_root, ref->objectid,
2313                                           ref->offset, node->ref_mod,
2314                                           extent_op);
2315         } else {
2316                 BUG();
2317         }
2318         return ret;
2319 }
2320
2321 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322                                     struct extent_buffer *leaf,
2323                                     struct btrfs_extent_item *ei)
2324 {
2325         u64 flags = btrfs_extent_flags(leaf, ei);
2326         if (extent_op->update_flags) {
2327                 flags |= extent_op->flags_to_set;
2328                 btrfs_set_extent_flags(leaf, ei, flags);
2329         }
2330
2331         if (extent_op->update_key) {
2332                 struct btrfs_tree_block_info *bi;
2333                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2335                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336         }
2337 }
2338
2339 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2340                                  struct btrfs_fs_info *fs_info,
2341                                  struct btrfs_delayed_ref_head *head,
2342                                  struct btrfs_delayed_extent_op *extent_op)
2343 {
2344         struct btrfs_key key;
2345         struct btrfs_path *path;
2346         struct btrfs_extent_item *ei;
2347         struct extent_buffer *leaf;
2348         u32 item_size;
2349         int ret;
2350         int err = 0;
2351         int metadata = !extent_op->is_data;
2352
2353         if (trans->aborted)
2354                 return 0;
2355
2356         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2357                 metadata = 0;
2358
2359         path = btrfs_alloc_path();
2360         if (!path)
2361                 return -ENOMEM;
2362
2363         key.objectid = head->bytenr;
2364
2365         if (metadata) {
2366                 key.type = BTRFS_METADATA_ITEM_KEY;
2367                 key.offset = extent_op->level;
2368         } else {
2369                 key.type = BTRFS_EXTENT_ITEM_KEY;
2370                 key.offset = head->num_bytes;
2371         }
2372
2373 again:
2374         path->reada = READA_FORWARD;
2375         path->leave_spinning = 1;
2376         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2377         if (ret < 0) {
2378                 err = ret;
2379                 goto out;
2380         }
2381         if (ret > 0) {
2382                 if (metadata) {
2383                         if (path->slots[0] > 0) {
2384                                 path->slots[0]--;
2385                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2386                                                       path->slots[0]);
2387                                 if (key.objectid == head->bytenr &&
2388                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2389                                     key.offset == head->num_bytes)
2390                                         ret = 0;
2391                         }
2392                         if (ret > 0) {
2393                                 btrfs_release_path(path);
2394                                 metadata = 0;
2395
2396                                 key.objectid = head->bytenr;
2397                                 key.offset = head->num_bytes;
2398                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2399                                 goto again;
2400                         }
2401                 } else {
2402                         err = -EIO;
2403                         goto out;
2404                 }
2405         }
2406
2407         leaf = path->nodes[0];
2408         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410         if (item_size < sizeof(*ei)) {
2411                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2412                 if (ret < 0) {
2413                         err = ret;
2414                         goto out;
2415                 }
2416                 leaf = path->nodes[0];
2417                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418         }
2419 #endif
2420         BUG_ON(item_size < sizeof(*ei));
2421         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422         __run_delayed_extent_op(extent_op, leaf, ei);
2423
2424         btrfs_mark_buffer_dirty(leaf);
2425 out:
2426         btrfs_free_path(path);
2427         return err;
2428 }
2429
2430 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2431                                 struct btrfs_fs_info *fs_info,
2432                                 struct btrfs_delayed_ref_node *node,
2433                                 struct btrfs_delayed_extent_op *extent_op,
2434                                 int insert_reserved)
2435 {
2436         int ret = 0;
2437         struct btrfs_delayed_tree_ref *ref;
2438         struct btrfs_key ins;
2439         u64 parent = 0;
2440         u64 ref_root = 0;
2441         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2442
2443         ref = btrfs_delayed_node_to_tree_ref(node);
2444         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2445
2446         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447                 parent = ref->parent;
2448         ref_root = ref->root;
2449
2450         ins.objectid = node->bytenr;
2451         if (skinny_metadata) {
2452                 ins.offset = ref->level;
2453                 ins.type = BTRFS_METADATA_ITEM_KEY;
2454         } else {
2455                 ins.offset = node->num_bytes;
2456                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2457         }
2458
2459         if (node->ref_mod != 1) {
2460                 btrfs_err(fs_info,
2461         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462                           node->bytenr, node->ref_mod, node->action, ref_root,
2463                           parent);
2464                 return -EIO;
2465         }
2466         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2467                 BUG_ON(!extent_op || !extent_op->update_flags);
2468                 ret = alloc_reserved_tree_block(trans, fs_info,
2469                                                 parent, ref_root,
2470                                                 extent_op->flags_to_set,
2471                                                 &extent_op->key,
2472                                                 ref->level, &ins);
2473         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2474                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2475                                              parent, ref_root,
2476                                              ref->level, 0, 1,
2477                                              extent_op);
2478         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2479                 ret = __btrfs_free_extent(trans, fs_info, node,
2480                                           parent, ref_root,
2481                                           ref->level, 0, 1, extent_op);
2482         } else {
2483                 BUG();
2484         }
2485         return ret;
2486 }
2487
2488 /* helper function to actually process a single delayed ref entry */
2489 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2490                                struct btrfs_fs_info *fs_info,
2491                                struct btrfs_delayed_ref_node *node,
2492                                struct btrfs_delayed_extent_op *extent_op,
2493                                int insert_reserved)
2494 {
2495         int ret = 0;
2496
2497         if (trans->aborted) {
2498                 if (insert_reserved)
2499                         btrfs_pin_extent(fs_info, node->bytenr,
2500                                          node->num_bytes, 1);
2501                 return 0;
2502         }
2503
2504         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2506                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2507                                            insert_reserved);
2508         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2510                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2511                                            insert_reserved);
2512         else
2513                 BUG();
2514         return ret;
2515 }
2516
2517 static inline struct btrfs_delayed_ref_node *
2518 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2519 {
2520         struct btrfs_delayed_ref_node *ref;
2521
2522         if (RB_EMPTY_ROOT(&head->ref_tree))
2523                 return NULL;
2524
2525         /*
2526          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2527          * This is to prevent a ref count from going down to zero, which deletes
2528          * the extent item from the extent tree, when there still are references
2529          * to add, which would fail because they would not find the extent item.
2530          */
2531         if (!list_empty(&head->ref_add_list))
2532                 return list_first_entry(&head->ref_add_list,
2533                                 struct btrfs_delayed_ref_node, add_list);
2534
2535         ref = rb_entry(rb_first(&head->ref_tree),
2536                        struct btrfs_delayed_ref_node, ref_node);
2537         ASSERT(list_empty(&ref->add_list));
2538         return ref;
2539 }
2540
2541 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2542                                       struct btrfs_delayed_ref_head *head)
2543 {
2544         spin_lock(&delayed_refs->lock);
2545         head->processing = 0;
2546         delayed_refs->num_heads_ready++;
2547         spin_unlock(&delayed_refs->lock);
2548         btrfs_delayed_ref_unlock(head);
2549 }
2550
2551 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2552                              struct btrfs_fs_info *fs_info,
2553                              struct btrfs_delayed_ref_head *head)
2554 {
2555         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2556         int ret;
2557
2558         if (!extent_op)
2559                 return 0;
2560         head->extent_op = NULL;
2561         if (head->must_insert_reserved) {
2562                 btrfs_free_delayed_extent_op(extent_op);
2563                 return 0;
2564         }
2565         spin_unlock(&head->lock);
2566         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2567         btrfs_free_delayed_extent_op(extent_op);
2568         return ret ? ret : 1;
2569 }
2570
2571 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2572                             struct btrfs_fs_info *fs_info,
2573                             struct btrfs_delayed_ref_head *head)
2574 {
2575         struct btrfs_delayed_ref_root *delayed_refs;
2576         int ret;
2577
2578         delayed_refs = &trans->transaction->delayed_refs;
2579
2580         ret = cleanup_extent_op(trans, fs_info, head);
2581         if (ret < 0) {
2582                 unselect_delayed_ref_head(delayed_refs, head);
2583                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584                 return ret;
2585         } else if (ret) {
2586                 return ret;
2587         }
2588
2589         /*
2590          * Need to drop our head ref lock and re-acquire the delayed ref lock
2591          * and then re-check to make sure nobody got added.
2592          */
2593         spin_unlock(&head->lock);
2594         spin_lock(&delayed_refs->lock);
2595         spin_lock(&head->lock);
2596         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2597                 spin_unlock(&head->lock);
2598                 spin_unlock(&delayed_refs->lock);
2599                 return 1;
2600         }
2601         delayed_refs->num_heads--;
2602         rb_erase(&head->href_node, &delayed_refs->href_root);
2603         RB_CLEAR_NODE(&head->href_node);
2604         spin_unlock(&delayed_refs->lock);
2605         spin_unlock(&head->lock);
2606         atomic_dec(&delayed_refs->num_entries);
2607
2608         trace_run_delayed_ref_head(fs_info, head, 0);
2609
2610         if (head->total_ref_mod < 0) {
2611                 struct btrfs_block_group_cache *cache;
2612
2613                 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2614                 ASSERT(cache);
2615                 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2616                                    -head->num_bytes);
2617                 btrfs_put_block_group(cache);
2618
2619                 if (head->is_data) {
2620                         spin_lock(&delayed_refs->lock);
2621                         delayed_refs->pending_csums -= head->num_bytes;
2622                         spin_unlock(&delayed_refs->lock);
2623                 }
2624         }
2625
2626         if (head->must_insert_reserved) {
2627                 btrfs_pin_extent(fs_info, head->bytenr,
2628                                  head->num_bytes, 1);
2629                 if (head->is_data) {
2630                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2631                                               head->num_bytes);
2632                 }
2633         }
2634
2635         /* Also free its reserved qgroup space */
2636         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2637                                       head->qgroup_reserved);
2638         btrfs_delayed_ref_unlock(head);
2639         btrfs_put_delayed_ref_head(head);
2640         return 0;
2641 }
2642
2643 /*
2644  * Returns 0 on success or if called with an already aborted transaction.
2645  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2646  */
2647 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2648                                              struct btrfs_fs_info *fs_info,
2649                                              unsigned long nr)
2650 {
2651         struct btrfs_delayed_ref_root *delayed_refs;
2652         struct btrfs_delayed_ref_node *ref;
2653         struct btrfs_delayed_ref_head *locked_ref = NULL;
2654         struct btrfs_delayed_extent_op *extent_op;
2655         ktime_t start = ktime_get();
2656         int ret;
2657         unsigned long count = 0;
2658         unsigned long actual_count = 0;
2659         int must_insert_reserved = 0;
2660
2661         delayed_refs = &trans->transaction->delayed_refs;
2662         while (1) {
2663                 if (!locked_ref) {
2664                         if (count >= nr)
2665                                 break;
2666
2667                         spin_lock(&delayed_refs->lock);
2668                         locked_ref = btrfs_select_ref_head(trans);
2669                         if (!locked_ref) {
2670                                 spin_unlock(&delayed_refs->lock);
2671                                 break;
2672                         }
2673
2674                         /* grab the lock that says we are going to process
2675                          * all the refs for this head */
2676                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2677                         spin_unlock(&delayed_refs->lock);
2678                         /*
2679                          * we may have dropped the spin lock to get the head
2680                          * mutex lock, and that might have given someone else
2681                          * time to free the head.  If that's true, it has been
2682                          * removed from our list and we can move on.
2683                          */
2684                         if (ret == -EAGAIN) {
2685                                 locked_ref = NULL;
2686                                 count++;
2687                                 continue;
2688                         }
2689                 }
2690
2691                 /*
2692                  * We need to try and merge add/drops of the same ref since we
2693                  * can run into issues with relocate dropping the implicit ref
2694                  * and then it being added back again before the drop can
2695                  * finish.  If we merged anything we need to re-loop so we can
2696                  * get a good ref.
2697                  * Or we can get node references of the same type that weren't
2698                  * merged when created due to bumps in the tree mod seq, and
2699                  * we need to merge them to prevent adding an inline extent
2700                  * backref before dropping it (triggering a BUG_ON at
2701                  * insert_inline_extent_backref()).
2702                  */
2703                 spin_lock(&locked_ref->lock);
2704                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2705                                          locked_ref);
2706
2707                 /*
2708                  * locked_ref is the head node, so we have to go one
2709                  * node back for any delayed ref updates
2710                  */
2711                 ref = select_delayed_ref(locked_ref);
2712
2713                 if (ref && ref->seq &&
2714                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2715                         spin_unlock(&locked_ref->lock);
2716                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2717                         locked_ref = NULL;
2718                         cond_resched();
2719                         count++;
2720                         continue;
2721                 }
2722
2723                 /*
2724                  * We're done processing refs in this ref_head, clean everything
2725                  * up and move on to the next ref_head.
2726                  */
2727                 if (!ref) {
2728                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2729                         if (ret > 0 ) {
2730                                 /* We dropped our lock, we need to loop. */
2731                                 ret = 0;
2732                                 continue;
2733                         } else if (ret) {
2734                                 return ret;
2735                         }
2736                         locked_ref = NULL;
2737                         count++;
2738                         continue;
2739                 }
2740
2741                 actual_count++;
2742                 ref->in_tree = 0;
2743                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2744                 RB_CLEAR_NODE(&ref->ref_node);
2745                 if (!list_empty(&ref->add_list))
2746                         list_del(&ref->add_list);
2747                 /*
2748                  * When we play the delayed ref, also correct the ref_mod on
2749                  * head
2750                  */
2751                 switch (ref->action) {
2752                 case BTRFS_ADD_DELAYED_REF:
2753                 case BTRFS_ADD_DELAYED_EXTENT:
2754                         locked_ref->ref_mod -= ref->ref_mod;
2755                         break;
2756                 case BTRFS_DROP_DELAYED_REF:
2757                         locked_ref->ref_mod += ref->ref_mod;
2758                         break;
2759                 default:
2760                         WARN_ON(1);
2761                 }
2762                 atomic_dec(&delayed_refs->num_entries);
2763
2764                 /*
2765                  * Record the must-insert_reserved flag before we drop the spin
2766                  * lock.
2767                  */
2768                 must_insert_reserved = locked_ref->must_insert_reserved;
2769                 locked_ref->must_insert_reserved = 0;
2770
2771                 extent_op = locked_ref->extent_op;
2772                 locked_ref->extent_op = NULL;
2773                 spin_unlock(&locked_ref->lock);
2774
2775                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2776                                           must_insert_reserved);
2777
2778                 btrfs_free_delayed_extent_op(extent_op);
2779                 if (ret) {
2780                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2781                         btrfs_put_delayed_ref(ref);
2782                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2783                                     ret);
2784                         return ret;
2785                 }
2786
2787                 btrfs_put_delayed_ref(ref);
2788                 count++;
2789                 cond_resched();
2790         }
2791
2792         /*
2793          * We don't want to include ref heads since we can have empty ref heads
2794          * and those will drastically skew our runtime down since we just do
2795          * accounting, no actual extent tree updates.
2796          */
2797         if (actual_count > 0) {
2798                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2799                 u64 avg;
2800
2801                 /*
2802                  * We weigh the current average higher than our current runtime
2803                  * to avoid large swings in the average.
2804                  */
2805                 spin_lock(&delayed_refs->lock);
2806                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2807                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2808                 spin_unlock(&delayed_refs->lock);
2809         }
2810         return 0;
2811 }
2812
2813 #ifdef SCRAMBLE_DELAYED_REFS
2814 /*
2815  * Normally delayed refs get processed in ascending bytenr order. This
2816  * correlates in most cases to the order added. To expose dependencies on this
2817  * order, we start to process the tree in the middle instead of the beginning
2818  */
2819 static u64 find_middle(struct rb_root *root)
2820 {
2821         struct rb_node *n = root->rb_node;
2822         struct btrfs_delayed_ref_node *entry;
2823         int alt = 1;
2824         u64 middle;
2825         u64 first = 0, last = 0;
2826
2827         n = rb_first(root);
2828         if (n) {
2829                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2830                 first = entry->bytenr;
2831         }
2832         n = rb_last(root);
2833         if (n) {
2834                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835                 last = entry->bytenr;
2836         }
2837         n = root->rb_node;
2838
2839         while (n) {
2840                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2841                 WARN_ON(!entry->in_tree);
2842
2843                 middle = entry->bytenr;
2844
2845                 if (alt)
2846                         n = n->rb_left;
2847                 else
2848                         n = n->rb_right;
2849
2850                 alt = 1 - alt;
2851         }
2852         return middle;
2853 }
2854 #endif
2855
2856 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2857 {
2858         u64 num_bytes;
2859
2860         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2861                              sizeof(struct btrfs_extent_inline_ref));
2862         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2863                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2864
2865         /*
2866          * We don't ever fill up leaves all the way so multiply by 2 just to be
2867          * closer to what we're really going to want to use.
2868          */
2869         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2870 }
2871
2872 /*
2873  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2874  * would require to store the csums for that many bytes.
2875  */
2876 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2877 {
2878         u64 csum_size;
2879         u64 num_csums_per_leaf;
2880         u64 num_csums;
2881
2882         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2883         num_csums_per_leaf = div64_u64(csum_size,
2884                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2885         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2886         num_csums += num_csums_per_leaf - 1;
2887         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2888         return num_csums;
2889 }
2890
2891 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2892                                        struct btrfs_fs_info *fs_info)
2893 {
2894         struct btrfs_block_rsv *global_rsv;
2895         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2896         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2897         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2898         u64 num_bytes, num_dirty_bgs_bytes;
2899         int ret = 0;
2900
2901         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2902         num_heads = heads_to_leaves(fs_info, num_heads);
2903         if (num_heads > 1)
2904                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2905         num_bytes <<= 1;
2906         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2907                                                         fs_info->nodesize;
2908         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2909                                                              num_dirty_bgs);
2910         global_rsv = &fs_info->global_block_rsv;
2911
2912         /*
2913          * If we can't allocate any more chunks lets make sure we have _lots_ of
2914          * wiggle room since running delayed refs can create more delayed refs.
2915          */
2916         if (global_rsv->space_info->full) {
2917                 num_dirty_bgs_bytes <<= 1;
2918                 num_bytes <<= 1;
2919         }
2920
2921         spin_lock(&global_rsv->lock);
2922         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2923                 ret = 1;
2924         spin_unlock(&global_rsv->lock);
2925         return ret;
2926 }
2927
2928 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2929                                        struct btrfs_fs_info *fs_info)
2930 {
2931         u64 num_entries =
2932                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2933         u64 avg_runtime;
2934         u64 val;
2935
2936         smp_mb();
2937         avg_runtime = fs_info->avg_delayed_ref_runtime;
2938         val = num_entries * avg_runtime;
2939         if (val >= NSEC_PER_SEC)
2940                 return 1;
2941         if (val >= NSEC_PER_SEC / 2)
2942                 return 2;
2943
2944         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2945 }
2946
2947 struct async_delayed_refs {
2948         struct btrfs_root *root;
2949         u64 transid;
2950         int count;
2951         int error;
2952         int sync;
2953         struct completion wait;
2954         struct btrfs_work work;
2955 };
2956
2957 static inline struct async_delayed_refs *
2958 to_async_delayed_refs(struct btrfs_work *work)
2959 {
2960         return container_of(work, struct async_delayed_refs, work);
2961 }
2962
2963 static void delayed_ref_async_start(struct btrfs_work *work)
2964 {
2965         struct async_delayed_refs *async = to_async_delayed_refs(work);
2966         struct btrfs_trans_handle *trans;
2967         struct btrfs_fs_info *fs_info = async->root->fs_info;
2968         int ret;
2969
2970         /* if the commit is already started, we don't need to wait here */
2971         if (btrfs_transaction_blocked(fs_info))
2972                 goto done;
2973
2974         trans = btrfs_join_transaction(async->root);
2975         if (IS_ERR(trans)) {
2976                 async->error = PTR_ERR(trans);
2977                 goto done;
2978         }
2979
2980         /*
2981          * trans->sync means that when we call end_transaction, we won't
2982          * wait on delayed refs
2983          */
2984         trans->sync = true;
2985
2986         /* Don't bother flushing if we got into a different transaction */
2987         if (trans->transid > async->transid)
2988                 goto end;
2989
2990         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2991         if (ret)
2992                 async->error = ret;
2993 end:
2994         ret = btrfs_end_transaction(trans);
2995         if (ret && !async->error)
2996                 async->error = ret;
2997 done:
2998         if (async->sync)
2999                 complete(&async->wait);
3000         else
3001                 kfree(async);
3002 }
3003
3004 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3005                                  unsigned long count, u64 transid, int wait)
3006 {
3007         struct async_delayed_refs *async;
3008         int ret;
3009
3010         async = kmalloc(sizeof(*async), GFP_NOFS);
3011         if (!async)
3012                 return -ENOMEM;
3013
3014         async->root = fs_info->tree_root;
3015         async->count = count;
3016         async->error = 0;
3017         async->transid = transid;
3018         if (wait)
3019                 async->sync = 1;
3020         else
3021                 async->sync = 0;
3022         init_completion(&async->wait);
3023
3024         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3025                         delayed_ref_async_start, NULL, NULL);
3026
3027         btrfs_queue_work(fs_info->extent_workers, &async->work);
3028
3029         if (wait) {
3030                 wait_for_completion(&async->wait);
3031                 ret = async->error;
3032                 kfree(async);
3033                 return ret;
3034         }
3035         return 0;
3036 }
3037
3038 /*
3039  * this starts processing the delayed reference count updates and
3040  * extent insertions we have queued up so far.  count can be
3041  * 0, which means to process everything in the tree at the start
3042  * of the run (but not newly added entries), or it can be some target
3043  * number you'd like to process.
3044  *
3045  * Returns 0 on success or if called with an aborted transaction
3046  * Returns <0 on error and aborts the transaction
3047  */
3048 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3049                            struct btrfs_fs_info *fs_info, unsigned long count)
3050 {
3051         struct rb_node *node;
3052         struct btrfs_delayed_ref_root *delayed_refs;
3053         struct btrfs_delayed_ref_head *head;
3054         int ret;
3055         int run_all = count == (unsigned long)-1;
3056         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057
3058         /* We'll clean this up in btrfs_cleanup_transaction */
3059         if (trans->aborted)
3060                 return 0;
3061
3062         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063                 return 0;
3064
3065         delayed_refs = &trans->transaction->delayed_refs;
3066         if (count == 0)
3067                 count = atomic_read(&delayed_refs->num_entries) * 2;
3068
3069 again:
3070 #ifdef SCRAMBLE_DELAYED_REFS
3071         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072 #endif
3073         trans->can_flush_pending_bgs = false;
3074         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3075         if (ret < 0) {
3076                 btrfs_abort_transaction(trans, ret);
3077                 return ret;
3078         }
3079
3080         if (run_all) {
3081                 if (!list_empty(&trans->new_bgs))
3082                         btrfs_create_pending_block_groups(trans, fs_info);
3083
3084                 spin_lock(&delayed_refs->lock);
3085                 node = rb_first(&delayed_refs->href_root);
3086                 if (!node) {
3087                         spin_unlock(&delayed_refs->lock);
3088                         goto out;
3089                 }
3090                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3091                                 href_node);
3092                 refcount_inc(&head->refs);
3093                 spin_unlock(&delayed_refs->lock);
3094
3095                 /* Mutex was contended, block until it's released and retry. */
3096                 mutex_lock(&head->mutex);
3097                 mutex_unlock(&head->mutex);
3098
3099                 btrfs_put_delayed_ref_head(head);
3100                 cond_resched();
3101                 goto again;
3102         }
3103 out:
3104         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105         return 0;
3106 }
3107
3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109                                 struct btrfs_fs_info *fs_info,
3110                                 u64 bytenr, u64 num_bytes, u64 flags,
3111                                 int level, int is_data)
3112 {
3113         struct btrfs_delayed_extent_op *extent_op;
3114         int ret;
3115
3116         extent_op = btrfs_alloc_delayed_extent_op();
3117         if (!extent_op)
3118                 return -ENOMEM;
3119
3120         extent_op->flags_to_set = flags;
3121         extent_op->update_flags = true;
3122         extent_op->update_key = false;
3123         extent_op->is_data = is_data ? true : false;
3124         extent_op->level = level;
3125
3126         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127                                           num_bytes, extent_op);
3128         if (ret)
3129                 btrfs_free_delayed_extent_op(extent_op);
3130         return ret;
3131 }
3132
3133 static noinline int check_delayed_ref(struct btrfs_root *root,
3134                                       struct btrfs_path *path,
3135                                       u64 objectid, u64 offset, u64 bytenr)
3136 {
3137         struct btrfs_delayed_ref_head *head;
3138         struct btrfs_delayed_ref_node *ref;
3139         struct btrfs_delayed_data_ref *data_ref;
3140         struct btrfs_delayed_ref_root *delayed_refs;
3141         struct btrfs_transaction *cur_trans;
3142         struct rb_node *node;
3143         int ret = 0;
3144
3145         cur_trans = root->fs_info->running_transaction;
3146         if (!cur_trans)
3147                 return 0;
3148
3149         delayed_refs = &cur_trans->delayed_refs;
3150         spin_lock(&delayed_refs->lock);
3151         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3152         if (!head) {
3153                 spin_unlock(&delayed_refs->lock);
3154                 return 0;
3155         }
3156
3157         if (!mutex_trylock(&head->mutex)) {
3158                 refcount_inc(&head->refs);
3159                 spin_unlock(&delayed_refs->lock);
3160
3161                 btrfs_release_path(path);
3162
3163                 /*
3164                  * Mutex was contended, block until it's released and let
3165                  * caller try again
3166                  */
3167                 mutex_lock(&head->mutex);
3168                 mutex_unlock(&head->mutex);
3169                 btrfs_put_delayed_ref_head(head);
3170                 return -EAGAIN;
3171         }
3172         spin_unlock(&delayed_refs->lock);
3173
3174         spin_lock(&head->lock);
3175         /*
3176          * XXX: We should replace this with a proper search function in the
3177          * future.
3178          */
3179         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3180                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3181                 /* If it's a shared ref we know a cross reference exists */
3182                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3183                         ret = 1;
3184                         break;
3185                 }
3186
3187                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3188
3189                 /*
3190                  * If our ref doesn't match the one we're currently looking at
3191                  * then we have a cross reference.
3192                  */
3193                 if (data_ref->root != root->root_key.objectid ||
3194                     data_ref->objectid != objectid ||
3195                     data_ref->offset != offset) {
3196                         ret = 1;
3197                         break;
3198                 }
3199         }
3200         spin_unlock(&head->lock);
3201         mutex_unlock(&head->mutex);
3202         return ret;
3203 }
3204
3205 static noinline int check_committed_ref(struct btrfs_root *root,
3206                                         struct btrfs_path *path,
3207                                         u64 objectid, u64 offset, u64 bytenr)
3208 {
3209         struct btrfs_fs_info *fs_info = root->fs_info;
3210         struct btrfs_root *extent_root = fs_info->extent_root;
3211         struct extent_buffer *leaf;
3212         struct btrfs_extent_data_ref *ref;
3213         struct btrfs_extent_inline_ref *iref;
3214         struct btrfs_extent_item *ei;
3215         struct btrfs_key key;
3216         u32 item_size;
3217         int type;
3218         int ret;
3219
3220         key.objectid = bytenr;
3221         key.offset = (u64)-1;
3222         key.type = BTRFS_EXTENT_ITEM_KEY;
3223
3224         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3225         if (ret < 0)
3226                 goto out;
3227         BUG_ON(ret == 0); /* Corruption */
3228
3229         ret = -ENOENT;
3230         if (path->slots[0] == 0)
3231                 goto out;
3232
3233         path->slots[0]--;
3234         leaf = path->nodes[0];
3235         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3236
3237         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3238                 goto out;
3239
3240         ret = 1;
3241         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3243         if (item_size < sizeof(*ei)) {
3244                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3245                 goto out;
3246         }
3247 #endif
3248         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3249
3250         if (item_size != sizeof(*ei) +
3251             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3252                 goto out;
3253
3254         if (btrfs_extent_generation(leaf, ei) <=
3255             btrfs_root_last_snapshot(&root->root_item))
3256                 goto out;
3257
3258         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3259
3260         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3261         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3262                 goto out;
3263
3264         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3265         if (btrfs_extent_refs(leaf, ei) !=
3266             btrfs_extent_data_ref_count(leaf, ref) ||
3267             btrfs_extent_data_ref_root(leaf, ref) !=
3268             root->root_key.objectid ||
3269             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3270             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3271                 goto out;
3272
3273         ret = 0;
3274 out:
3275         return ret;
3276 }
3277
3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3279                           u64 bytenr)
3280 {
3281         struct btrfs_path *path;
3282         int ret;
3283         int ret2;
3284
3285         path = btrfs_alloc_path();
3286         if (!path)
3287                 return -ENOENT;
3288
3289         do {
3290                 ret = check_committed_ref(root, path, objectid,
3291                                           offset, bytenr);
3292                 if (ret && ret != -ENOENT)
3293                         goto out;
3294
3295                 ret2 = check_delayed_ref(root, path, objectid,
3296                                          offset, bytenr);
3297         } while (ret2 == -EAGAIN);
3298
3299         if (ret2 && ret2 != -ENOENT) {
3300                 ret = ret2;
3301                 goto out;
3302         }
3303
3304         if (ret != -ENOENT || ret2 != -ENOENT)
3305                 ret = 0;
3306 out:
3307         btrfs_free_path(path);
3308         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3309                 WARN_ON(ret > 0);
3310         return ret;
3311 }
3312
3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3314                            struct btrfs_root *root,
3315                            struct extent_buffer *buf,
3316                            int full_backref, int inc)
3317 {
3318         struct btrfs_fs_info *fs_info = root->fs_info;
3319         u64 bytenr;
3320         u64 num_bytes;
3321         u64 parent;
3322         u64 ref_root;
3323         u32 nritems;
3324         struct btrfs_key key;
3325         struct btrfs_file_extent_item *fi;
3326         int i;
3327         int level;
3328         int ret = 0;
3329         int (*process_func)(struct btrfs_trans_handle *,
3330                             struct btrfs_root *,
3331                             u64, u64, u64, u64, u64, u64);
3332
3333
3334         if (btrfs_is_testing(fs_info))
3335                 return 0;
3336
3337         ref_root = btrfs_header_owner(buf);
3338         nritems = btrfs_header_nritems(buf);
3339         level = btrfs_header_level(buf);
3340
3341         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3342                 return 0;
3343
3344         if (inc)
3345                 process_func = btrfs_inc_extent_ref;
3346         else
3347                 process_func = btrfs_free_extent;
3348
3349         if (full_backref)
3350                 parent = buf->start;
3351         else
3352                 parent = 0;
3353
3354         for (i = 0; i < nritems; i++) {
3355                 if (level == 0) {
3356                         btrfs_item_key_to_cpu(buf, &key, i);
3357                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3358                                 continue;
3359                         fi = btrfs_item_ptr(buf, i,
3360                                             struct btrfs_file_extent_item);
3361                         if (btrfs_file_extent_type(buf, fi) ==
3362                             BTRFS_FILE_EXTENT_INLINE)
3363                                 continue;
3364                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3365                         if (bytenr == 0)
3366                                 continue;
3367
3368                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3369                         key.offset -= btrfs_file_extent_offset(buf, fi);
3370                         ret = process_func(trans, root, bytenr, num_bytes,
3371                                            parent, ref_root, key.objectid,
3372                                            key.offset);
3373                         if (ret)
3374                                 goto fail;
3375                 } else {
3376                         bytenr = btrfs_node_blockptr(buf, i);
3377                         num_bytes = fs_info->nodesize;
3378                         ret = process_func(trans, root, bytenr, num_bytes,
3379                                            parent, ref_root, level - 1, 0);
3380                         if (ret)
3381                                 goto fail;
3382                 }
3383         }
3384         return 0;
3385 fail:
3386         return ret;
3387 }
3388
3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3390                   struct extent_buffer *buf, int full_backref)
3391 {
3392         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3393 }
3394
3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396                   struct extent_buffer *buf, int full_backref)
3397 {
3398         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3399 }
3400
3401 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3402                                  struct btrfs_fs_info *fs_info,
3403                                  struct btrfs_path *path,
3404                                  struct btrfs_block_group_cache *cache)
3405 {
3406         int ret;
3407         struct btrfs_root *extent_root = fs_info->extent_root;
3408         unsigned long bi;
3409         struct extent_buffer *leaf;
3410
3411         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3412         if (ret) {
3413                 if (ret > 0)
3414                         ret = -ENOENT;
3415                 goto fail;
3416         }
3417
3418         leaf = path->nodes[0];
3419         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3421         btrfs_mark_buffer_dirty(leaf);
3422 fail:
3423         btrfs_release_path(path);
3424         return ret;
3425
3426 }
3427
3428 static struct btrfs_block_group_cache *
3429 next_block_group(struct btrfs_fs_info *fs_info,
3430                  struct btrfs_block_group_cache *cache)
3431 {
3432         struct rb_node *node;
3433
3434         spin_lock(&fs_info->block_group_cache_lock);
3435
3436         /* If our block group was removed, we need a full search. */
3437         if (RB_EMPTY_NODE(&cache->cache_node)) {
3438                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439
3440                 spin_unlock(&fs_info->block_group_cache_lock);
3441                 btrfs_put_block_group(cache);
3442                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3443         }
3444         node = rb_next(&cache->cache_node);
3445         btrfs_put_block_group(cache);
3446         if (node) {
3447                 cache = rb_entry(node, struct btrfs_block_group_cache,
3448                                  cache_node);
3449                 btrfs_get_block_group(cache);
3450         } else
3451                 cache = NULL;
3452         spin_unlock(&fs_info->block_group_cache_lock);
3453         return cache;
3454 }
3455
3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3457                             struct btrfs_trans_handle *trans,
3458                             struct btrfs_path *path)
3459 {
3460         struct btrfs_fs_info *fs_info = block_group->fs_info;
3461         struct btrfs_root *root = fs_info->tree_root;
3462         struct inode *inode = NULL;
3463         struct extent_changeset *data_reserved = NULL;
3464         u64 alloc_hint = 0;
3465         int dcs = BTRFS_DC_ERROR;
3466         u64 num_pages = 0;
3467         int retries = 0;
3468         int ret = 0;
3469
3470         /*
3471          * If this block group is smaller than 100 megs don't bother caching the
3472          * block group.
3473          */
3474         if (block_group->key.offset < (100 * SZ_1M)) {
3475                 spin_lock(&block_group->lock);
3476                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3477                 spin_unlock(&block_group->lock);
3478                 return 0;
3479         }
3480
3481         if (trans->aborted)
3482                 return 0;
3483 again:
3484         inode = lookup_free_space_inode(fs_info, block_group, path);
3485         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3486                 ret = PTR_ERR(inode);
3487                 btrfs_release_path(path);
3488                 goto out;
3489         }
3490
3491         if (IS_ERR(inode)) {
3492                 BUG_ON(retries);
3493                 retries++;
3494
3495                 if (block_group->ro)
3496                         goto out_free;
3497
3498                 ret = create_free_space_inode(fs_info, trans, block_group,
3499                                               path);
3500                 if (ret)
3501                         goto out_free;
3502                 goto again;
3503         }
3504
3505         /* We've already setup this transaction, go ahead and exit */
3506         if (block_group->cache_generation == trans->transid &&
3507             i_size_read(inode)) {
3508                 dcs = BTRFS_DC_SETUP;
3509                 goto out_put;
3510         }
3511
3512         /*
3513          * We want to set the generation to 0, that way if anything goes wrong
3514          * from here on out we know not to trust this cache when we load up next
3515          * time.
3516          */
3517         BTRFS_I(inode)->generation = 0;
3518         ret = btrfs_update_inode(trans, root, inode);
3519         if (ret) {
3520                 /*
3521                  * So theoretically we could recover from this, simply set the
3522                  * super cache generation to 0 so we know to invalidate the
3523                  * cache, but then we'd have to keep track of the block groups
3524                  * that fail this way so we know we _have_ to reset this cache
3525                  * before the next commit or risk reading stale cache.  So to
3526                  * limit our exposure to horrible edge cases lets just abort the
3527                  * transaction, this only happens in really bad situations
3528                  * anyway.
3529                  */
3530                 btrfs_abort_transaction(trans, ret);
3531                 goto out_put;
3532         }
3533         WARN_ON(ret);
3534
3535         if (i_size_read(inode) > 0) {
3536                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3537                                         &fs_info->global_block_rsv);
3538                 if (ret)
3539                         goto out_put;
3540
3541                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3542                 if (ret)
3543                         goto out_put;
3544         }
3545
3546         spin_lock(&block_group->lock);
3547         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3548             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3549                 /*
3550                  * don't bother trying to write stuff out _if_
3551                  * a) we're not cached,
3552                  * b) we're with nospace_cache mount option,
3553                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3554                  */
3555                 dcs = BTRFS_DC_WRITTEN;
3556                 spin_unlock(&block_group->lock);
3557                 goto out_put;
3558         }
3559         spin_unlock(&block_group->lock);
3560
3561         /*
3562          * We hit an ENOSPC when setting up the cache in this transaction, just
3563          * skip doing the setup, we've already cleared the cache so we're safe.
3564          */
3565         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3566                 ret = -ENOSPC;
3567                 goto out_put;
3568         }
3569
3570         /*
3571          * Try to preallocate enough space based on how big the block group is.
3572          * Keep in mind this has to include any pinned space which could end up
3573          * taking up quite a bit since it's not folded into the other space
3574          * cache.
3575          */
3576         num_pages = div_u64(block_group->key.offset, SZ_256M);
3577         if (!num_pages)
3578                 num_pages = 1;
3579
3580         num_pages *= 16;
3581         num_pages *= PAGE_SIZE;
3582
3583         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3584         if (ret)
3585                 goto out_put;
3586
3587         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3588                                               num_pages, num_pages,
3589                                               &alloc_hint);
3590         /*
3591          * Our cache requires contiguous chunks so that we don't modify a bunch
3592          * of metadata or split extents when writing the cache out, which means
3593          * we can enospc if we are heavily fragmented in addition to just normal
3594          * out of space conditions.  So if we hit this just skip setting up any
3595          * other block groups for this transaction, maybe we'll unpin enough
3596          * space the next time around.
3597          */
3598         if (!ret)
3599                 dcs = BTRFS_DC_SETUP;
3600         else if (ret == -ENOSPC)
3601                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3602
3603 out_put:
3604         iput(inode);
3605 out_free:
3606         btrfs_release_path(path);
3607 out:
3608         spin_lock(&block_group->lock);
3609         if (!ret && dcs == BTRFS_DC_SETUP)
3610                 block_group->cache_generation = trans->transid;
3611         block_group->disk_cache_state = dcs;
3612         spin_unlock(&block_group->lock);
3613
3614         extent_changeset_free(data_reserved);
3615         return ret;
3616 }
3617
3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3619                             struct btrfs_fs_info *fs_info)
3620 {
3621         struct btrfs_block_group_cache *cache, *tmp;
3622         struct btrfs_transaction *cur_trans = trans->transaction;
3623         struct btrfs_path *path;
3624
3625         if (list_empty(&cur_trans->dirty_bgs) ||
3626             !btrfs_test_opt(fs_info, SPACE_CACHE))
3627                 return 0;
3628
3629         path = btrfs_alloc_path();
3630         if (!path)
3631                 return -ENOMEM;
3632
3633         /* Could add new block groups, use _safe just in case */
3634         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3635                                  dirty_list) {
3636                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3637                         cache_save_setup(cache, trans, path);
3638         }
3639
3640         btrfs_free_path(path);
3641         return 0;
3642 }
3643
3644 /*
3645  * transaction commit does final block group cache writeback during a
3646  * critical section where nothing is allowed to change the FS.  This is
3647  * required in order for the cache to actually match the block group,
3648  * but can introduce a lot of latency into the commit.
3649  *
3650  * So, btrfs_start_dirty_block_groups is here to kick off block group
3651  * cache IO.  There's a chance we'll have to redo some of it if the
3652  * block group changes again during the commit, but it greatly reduces
3653  * the commit latency by getting rid of the easy block groups while
3654  * we're still allowing others to join the commit.
3655  */
3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3657                                    struct btrfs_fs_info *fs_info)
3658 {
3659         struct btrfs_block_group_cache *cache;
3660         struct btrfs_transaction *cur_trans = trans->transaction;
3661         int ret = 0;
3662         int should_put;
3663         struct btrfs_path *path = NULL;
3664         LIST_HEAD(dirty);
3665         struct list_head *io = &cur_trans->io_bgs;
3666         int num_started = 0;
3667         int loops = 0;
3668
3669         spin_lock(&cur_trans->dirty_bgs_lock);
3670         if (list_empty(&cur_trans->dirty_bgs)) {
3671                 spin_unlock(&cur_trans->dirty_bgs_lock);
3672                 return 0;
3673         }
3674         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675         spin_unlock(&cur_trans->dirty_bgs_lock);
3676
3677 again:
3678         /*
3679          * make sure all the block groups on our dirty list actually
3680          * exist
3681          */
3682         btrfs_create_pending_block_groups(trans, fs_info);
3683
3684         if (!path) {
3685                 path = btrfs_alloc_path();
3686                 if (!path)
3687                         return -ENOMEM;
3688         }
3689
3690         /*
3691          * cache_write_mutex is here only to save us from balance or automatic
3692          * removal of empty block groups deleting this block group while we are
3693          * writing out the cache
3694          */
3695         mutex_lock(&trans->transaction->cache_write_mutex);
3696         while (!list_empty(&dirty)) {
3697                 cache = list_first_entry(&dirty,
3698                                          struct btrfs_block_group_cache,
3699                                          dirty_list);
3700                 /*
3701                  * this can happen if something re-dirties a block
3702                  * group that is already under IO.  Just wait for it to
3703                  * finish and then do it all again
3704                  */
3705                 if (!list_empty(&cache->io_list)) {
3706                         list_del_init(&cache->io_list);
3707                         btrfs_wait_cache_io(trans, cache, path);
3708                         btrfs_put_block_group(cache);
3709                 }
3710
3711
3712                 /*
3713                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3714                  * if it should update the cache_state.  Don't delete
3715                  * until after we wait.
3716                  *
3717                  * Since we're not running in the commit critical section
3718                  * we need the dirty_bgs_lock to protect from update_block_group
3719                  */
3720                 spin_lock(&cur_trans->dirty_bgs_lock);
3721                 list_del_init(&cache->dirty_list);
3722                 spin_unlock(&cur_trans->dirty_bgs_lock);
3723
3724                 should_put = 1;
3725
3726                 cache_save_setup(cache, trans, path);
3727
3728                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3729                         cache->io_ctl.inode = NULL;
3730                         ret = btrfs_write_out_cache(fs_info, trans,
3731                                                     cache, path);
3732                         if (ret == 0 && cache->io_ctl.inode) {
3733                                 num_started++;
3734                                 should_put = 0;
3735
3736                                 /*
3737                                  * the cache_write_mutex is protecting
3738                                  * the io_list
3739                                  */
3740                                 list_add_tail(&cache->io_list, io);
3741                         } else {
3742                                 /*
3743                                  * if we failed to write the cache, the
3744                                  * generation will be bad and life goes on
3745                                  */
3746                                 ret = 0;
3747                         }
3748                 }
3749                 if (!ret) {
3750                         ret = write_one_cache_group(trans, fs_info,
3751                                                     path, cache);
3752                         /*
3753                          * Our block group might still be attached to the list
3754                          * of new block groups in the transaction handle of some
3755                          * other task (struct btrfs_trans_handle->new_bgs). This
3756                          * means its block group item isn't yet in the extent
3757                          * tree. If this happens ignore the error, as we will
3758                          * try again later in the critical section of the
3759                          * transaction commit.
3760                          */
3761                         if (ret == -ENOENT) {
3762                                 ret = 0;
3763                                 spin_lock(&cur_trans->dirty_bgs_lock);
3764                                 if (list_empty(&cache->dirty_list)) {
3765                                         list_add_tail(&cache->dirty_list,
3766                                                       &cur_trans->dirty_bgs);
3767                                         btrfs_get_block_group(cache);
3768                                 }
3769                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3770                         } else if (ret) {
3771                                 btrfs_abort_transaction(trans, ret);
3772                         }
3773                 }
3774
3775                 /* if its not on the io list, we need to put the block group */
3776                 if (should_put)
3777                         btrfs_put_block_group(cache);
3778
3779                 if (ret)
3780                         break;
3781
3782                 /*
3783                  * Avoid blocking other tasks for too long. It might even save
3784                  * us from writing caches for block groups that are going to be
3785                  * removed.
3786                  */
3787                 mutex_unlock(&trans->transaction->cache_write_mutex);
3788                 mutex_lock(&trans->transaction->cache_write_mutex);
3789         }
3790         mutex_unlock(&trans->transaction->cache_write_mutex);
3791
3792         /*
3793          * go through delayed refs for all the stuff we've just kicked off
3794          * and then loop back (just once)
3795          */
3796         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3797         if (!ret && loops == 0) {
3798                 loops++;
3799                 spin_lock(&cur_trans->dirty_bgs_lock);
3800                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3801                 /*
3802                  * dirty_bgs_lock protects us from concurrent block group
3803                  * deletes too (not just cache_write_mutex).
3804                  */
3805                 if (!list_empty(&dirty)) {
3806                         spin_unlock(&cur_trans->dirty_bgs_lock);
3807                         goto again;
3808                 }
3809                 spin_unlock(&cur_trans->dirty_bgs_lock);
3810         } else if (ret < 0) {
3811                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3812         }
3813
3814         btrfs_free_path(path);
3815         return ret;
3816 }
3817
3818 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3819                                    struct btrfs_fs_info *fs_info)
3820 {
3821         struct btrfs_block_group_cache *cache;
3822         struct btrfs_transaction *cur_trans = trans->transaction;
3823         int ret = 0;
3824         int should_put;
3825         struct btrfs_path *path;
3826         struct list_head *io = &cur_trans->io_bgs;
3827         int num_started = 0;
3828
3829         path = btrfs_alloc_path();
3830         if (!path)
3831                 return -ENOMEM;
3832
3833         /*
3834          * Even though we are in the critical section of the transaction commit,
3835          * we can still have concurrent tasks adding elements to this
3836          * transaction's list of dirty block groups. These tasks correspond to
3837          * endio free space workers started when writeback finishes for a
3838          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3839          * allocate new block groups as a result of COWing nodes of the root
3840          * tree when updating the free space inode. The writeback for the space
3841          * caches is triggered by an earlier call to
3842          * btrfs_start_dirty_block_groups() and iterations of the following
3843          * loop.
3844          * Also we want to do the cache_save_setup first and then run the
3845          * delayed refs to make sure we have the best chance at doing this all
3846          * in one shot.
3847          */
3848         spin_lock(&cur_trans->dirty_bgs_lock);
3849         while (!list_empty(&cur_trans->dirty_bgs)) {
3850                 cache = list_first_entry(&cur_trans->dirty_bgs,
3851                                          struct btrfs_block_group_cache,
3852                                          dirty_list);
3853
3854                 /*
3855                  * this can happen if cache_save_setup re-dirties a block
3856                  * group that is already under IO.  Just wait for it to
3857                  * finish and then do it all again
3858                  */
3859                 if (!list_empty(&cache->io_list)) {
3860                         spin_unlock(&cur_trans->dirty_bgs_lock);
3861                         list_del_init(&cache->io_list);
3862                         btrfs_wait_cache_io(trans, cache, path);
3863                         btrfs_put_block_group(cache);
3864                         spin_lock(&cur_trans->dirty_bgs_lock);
3865                 }
3866
3867                 /*
3868                  * don't remove from the dirty list until after we've waited
3869                  * on any pending IO
3870                  */
3871                 list_del_init(&cache->dirty_list);
3872                 spin_unlock(&cur_trans->dirty_bgs_lock);
3873                 should_put = 1;
3874
3875                 cache_save_setup(cache, trans, path);
3876
3877                 if (!ret)
3878                         ret = btrfs_run_delayed_refs(trans, fs_info,
3879                                                      (unsigned long) -1);
3880
3881                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3882                         cache->io_ctl.inode = NULL;
3883                         ret = btrfs_write_out_cache(fs_info, trans,
3884                                                     cache, path);
3885                         if (ret == 0 && cache->io_ctl.inode) {
3886                                 num_started++;
3887                                 should_put = 0;
3888                                 list_add_tail(&cache->io_list, io);
3889                         } else {
3890                                 /*
3891                                  * if we failed to write the cache, the
3892                                  * generation will be bad and life goes on
3893                                  */
3894                                 ret = 0;
3895                         }
3896                 }
3897                 if (!ret) {
3898                         ret = write_one_cache_group(trans, fs_info,
3899                                                     path, cache);
3900                         /*
3901                          * One of the free space endio workers might have
3902                          * created a new block group while updating a free space
3903                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3904                          * and hasn't released its transaction handle yet, in
3905                          * which case the new block group is still attached to
3906                          * its transaction handle and its creation has not
3907                          * finished yet (no block group item in the extent tree
3908                          * yet, etc). If this is the case, wait for all free
3909                          * space endio workers to finish and retry. This is a
3910                          * a very rare case so no need for a more efficient and
3911                          * complex approach.
3912                          */
3913                         if (ret == -ENOENT) {
3914                                 wait_event(cur_trans->writer_wait,
3915                                    atomic_read(&cur_trans->num_writers) == 1);
3916                                 ret = write_one_cache_group(trans, fs_info,
3917                                                             path, cache);
3918                         }
3919                         if (ret)
3920                                 btrfs_abort_transaction(trans, ret);
3921                 }
3922
3923                 /* if its not on the io list, we need to put the block group */
3924                 if (should_put)
3925                         btrfs_put_block_group(cache);
3926                 spin_lock(&cur_trans->dirty_bgs_lock);
3927         }
3928         spin_unlock(&cur_trans->dirty_bgs_lock);
3929
3930         while (!list_empty(io)) {
3931                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3932                                          io_list);
3933                 list_del_init(&cache->io_list);
3934                 btrfs_wait_cache_io(trans, cache, path);
3935                 btrfs_put_block_group(cache);
3936         }
3937
3938         btrfs_free_path(path);
3939         return ret;
3940 }
3941
3942 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3943 {
3944         struct btrfs_block_group_cache *block_group;
3945         int readonly = 0;
3946
3947         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3948         if (!block_group || block_group->ro)
3949                 readonly = 1;
3950         if (block_group)
3951                 btrfs_put_block_group(block_group);
3952         return readonly;
3953 }
3954
3955 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3956 {
3957         struct btrfs_block_group_cache *bg;
3958         bool ret = true;
3959
3960         bg = btrfs_lookup_block_group(fs_info, bytenr);
3961         if (!bg)
3962                 return false;
3963
3964         spin_lock(&bg->lock);
3965         if (bg->ro)
3966                 ret = false;
3967         else
3968                 atomic_inc(&bg->nocow_writers);
3969         spin_unlock(&bg->lock);
3970
3971         /* no put on block group, done by btrfs_dec_nocow_writers */
3972         if (!ret)
3973                 btrfs_put_block_group(bg);
3974
3975         return ret;
3976
3977 }
3978
3979 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3980 {
3981         struct btrfs_block_group_cache *bg;
3982
3983         bg = btrfs_lookup_block_group(fs_info, bytenr);
3984         ASSERT(bg);
3985         if (atomic_dec_and_test(&bg->nocow_writers))
3986                 wake_up_atomic_t(&bg->nocow_writers);
3987         /*
3988          * Once for our lookup and once for the lookup done by a previous call
3989          * to btrfs_inc_nocow_writers()
3990          */
3991         btrfs_put_block_group(bg);
3992         btrfs_put_block_group(bg);
3993 }
3994
3995 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3996 {
3997         wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
3998                          TASK_UNINTERRUPTIBLE);
3999 }
4000
4001 static const char *alloc_name(u64 flags)
4002 {
4003         switch (flags) {
4004         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4005                 return "mixed";
4006         case BTRFS_BLOCK_GROUP_METADATA:
4007                 return "metadata";
4008         case BTRFS_BLOCK_GROUP_DATA:
4009                 return "data";
4010         case BTRFS_BLOCK_GROUP_SYSTEM:
4011                 return "system";
4012         default:
4013                 WARN_ON(1);
4014                 return "invalid-combination";
4015         };
4016 }
4017
4018 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4019                              struct btrfs_space_info **new)
4020 {
4021
4022         struct btrfs_space_info *space_info;
4023         int i;
4024         int ret;
4025
4026         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4027         if (!space_info)
4028                 return -ENOMEM;
4029
4030         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4031                                  GFP_KERNEL);
4032         if (ret) {
4033                 kfree(space_info);
4034                 return ret;
4035         }
4036
4037         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4038                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4039         init_rwsem(&space_info->groups_sem);
4040         spin_lock_init(&space_info->lock);
4041         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4042         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4043         init_waitqueue_head(&space_info->wait);
4044         INIT_LIST_HEAD(&space_info->ro_bgs);
4045         INIT_LIST_HEAD(&space_info->tickets);
4046         INIT_LIST_HEAD(&space_info->priority_tickets);
4047
4048         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4049                                     info->space_info_kobj, "%s",
4050                                     alloc_name(space_info->flags));
4051         if (ret) {
4052                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4053                 kfree(space_info);
4054                 return ret;
4055         }
4056
4057         *new = space_info;
4058         list_add_rcu(&space_info->list, &info->space_info);
4059         if (flags & BTRFS_BLOCK_GROUP_DATA)
4060                 info->data_sinfo = space_info;
4061
4062         return ret;
4063 }
4064
4065 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4066                              u64 total_bytes, u64 bytes_used,
4067                              u64 bytes_readonly,
4068                              struct btrfs_space_info **space_info)
4069 {
4070         struct btrfs_space_info *found;
4071         int factor;
4072
4073         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4074                      BTRFS_BLOCK_GROUP_RAID10))
4075                 factor = 2;
4076         else
4077                 factor = 1;
4078
4079         found = __find_space_info(info, flags);
4080         ASSERT(found);
4081         spin_lock(&found->lock);
4082         found->total_bytes += total_bytes;
4083         found->disk_total += total_bytes * factor;
4084         found->bytes_used += bytes_used;
4085         found->disk_used += bytes_used * factor;
4086         found->bytes_readonly += bytes_readonly;
4087         if (total_bytes > 0)
4088                 found->full = 0;
4089         space_info_add_new_bytes(info, found, total_bytes -
4090                                  bytes_used - bytes_readonly);
4091         spin_unlock(&found->lock);
4092         *space_info = found;
4093 }
4094
4095 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4096 {
4097         u64 extra_flags = chunk_to_extended(flags) &
4098                                 BTRFS_EXTENDED_PROFILE_MASK;
4099
4100         write_seqlock(&fs_info->profiles_lock);
4101         if (flags & BTRFS_BLOCK_GROUP_DATA)
4102                 fs_info->avail_data_alloc_bits |= extra_flags;
4103         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4104                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4105         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4106                 fs_info->avail_system_alloc_bits |= extra_flags;
4107         write_sequnlock(&fs_info->profiles_lock);
4108 }
4109
4110 /*
4111  * returns target flags in extended format or 0 if restripe for this
4112  * chunk_type is not in progress
4113  *
4114  * should be called with either volume_mutex or balance_lock held
4115  */
4116 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4117 {
4118         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4119         u64 target = 0;
4120
4121         if (!bctl)
4122                 return 0;
4123
4124         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4125             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4126                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4127         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4128                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4130         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4131                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4133         }
4134
4135         return target;
4136 }
4137
4138 /*
4139  * @flags: available profiles in extended format (see ctree.h)
4140  *
4141  * Returns reduced profile in chunk format.  If profile changing is in
4142  * progress (either running or paused) picks the target profile (if it's
4143  * already available), otherwise falls back to plain reducing.
4144  */
4145 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4146 {
4147         u64 num_devices = fs_info->fs_devices->rw_devices;
4148         u64 target;
4149         u64 raid_type;
4150         u64 allowed = 0;
4151
4152         /*
4153          * see if restripe for this chunk_type is in progress, if so
4154          * try to reduce to the target profile
4155          */
4156         spin_lock(&fs_info->balance_lock);
4157         target = get_restripe_target(fs_info, flags);
4158         if (target) {
4159                 /* pick target profile only if it's already available */
4160                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4161                         spin_unlock(&fs_info->balance_lock);
4162                         return extended_to_chunk(target);
4163                 }
4164         }
4165         spin_unlock(&fs_info->balance_lock);
4166
4167         /* First, mask out the RAID levels which aren't possible */
4168         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4169                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4170                         allowed |= btrfs_raid_group[raid_type];
4171         }
4172         allowed &= flags;
4173
4174         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4175                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4176         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4177                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4178         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4179                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4180         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4181                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4182         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4183                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4184
4185         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4186
4187         return extended_to_chunk(flags | allowed);
4188 }
4189
4190 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4191 {
4192         unsigned seq;
4193         u64 flags;
4194
4195         do {
4196                 flags = orig_flags;
4197                 seq = read_seqbegin(&fs_info->profiles_lock);
4198
4199                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4200                         flags |= fs_info->avail_data_alloc_bits;
4201                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4202                         flags |= fs_info->avail_system_alloc_bits;
4203                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4204                         flags |= fs_info->avail_metadata_alloc_bits;
4205         } while (read_seqretry(&fs_info->profiles_lock, seq));
4206
4207         return btrfs_reduce_alloc_profile(fs_info, flags);
4208 }
4209
4210 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4211 {
4212         struct btrfs_fs_info *fs_info = root->fs_info;
4213         u64 flags;
4214         u64 ret;
4215
4216         if (data)
4217                 flags = BTRFS_BLOCK_GROUP_DATA;
4218         else if (root == fs_info->chunk_root)
4219                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4220         else
4221                 flags = BTRFS_BLOCK_GROUP_METADATA;
4222
4223         ret = get_alloc_profile(fs_info, flags);
4224         return ret;
4225 }
4226
4227 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4228 {
4229         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4230 }
4231
4232 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4233 {
4234         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4235 }
4236
4237 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4238 {
4239         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4240 }
4241
4242 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4243                                  bool may_use_included)
4244 {
4245         ASSERT(s_info);
4246         return s_info->bytes_used + s_info->bytes_reserved +
4247                 s_info->bytes_pinned + s_info->bytes_readonly +
4248                 (may_use_included ? s_info->bytes_may_use : 0);
4249 }
4250
4251 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4252 {
4253         struct btrfs_root *root = inode->root;
4254         struct btrfs_fs_info *fs_info = root->fs_info;
4255         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4256         u64 used;
4257         int ret = 0;
4258         int need_commit = 2;
4259         int have_pinned_space;
4260
4261         /* make sure bytes are sectorsize aligned */
4262         bytes = ALIGN(bytes, fs_info->sectorsize);
4263
4264         if (btrfs_is_free_space_inode(inode)) {
4265                 need_commit = 0;
4266                 ASSERT(current->journal_info);
4267         }
4268
4269 again:
4270         /* make sure we have enough space to handle the data first */
4271         spin_lock(&data_sinfo->lock);
4272         used = btrfs_space_info_used(data_sinfo, true);
4273
4274         if (used + bytes > data_sinfo->total_bytes) {
4275                 struct btrfs_trans_handle *trans;
4276
4277                 /*
4278                  * if we don't have enough free bytes in this space then we need
4279                  * to alloc a new chunk.
4280                  */
4281                 if (!data_sinfo->full) {
4282                         u64 alloc_target;
4283
4284                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4285                         spin_unlock(&data_sinfo->lock);
4286
4287                         alloc_target = btrfs_data_alloc_profile(fs_info);
4288                         /*
4289                          * It is ugly that we don't call nolock join
4290                          * transaction for the free space inode case here.
4291                          * But it is safe because we only do the data space
4292                          * reservation for the free space cache in the
4293                          * transaction context, the common join transaction
4294                          * just increase the counter of the current transaction
4295                          * handler, doesn't try to acquire the trans_lock of
4296                          * the fs.
4297                          */
4298                         trans = btrfs_join_transaction(root);
4299                         if (IS_ERR(trans))
4300                                 return PTR_ERR(trans);
4301
4302                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4303                                              CHUNK_ALLOC_NO_FORCE);
4304                         btrfs_end_transaction(trans);
4305                         if (ret < 0) {
4306                                 if (ret != -ENOSPC)
4307                                         return ret;
4308                                 else {
4309                                         have_pinned_space = 1;
4310                                         goto commit_trans;
4311                                 }
4312                         }
4313
4314                         goto again;
4315                 }
4316
4317                 /*
4318                  * If we don't have enough pinned space to deal with this
4319                  * allocation, and no removed chunk in current transaction,
4320                  * don't bother committing the transaction.
4321                  */
4322                 have_pinned_space = percpu_counter_compare(
4323                         &data_sinfo->total_bytes_pinned,
4324                         used + bytes - data_sinfo->total_bytes);
4325                 spin_unlock(&data_sinfo->lock);
4326
4327                 /* commit the current transaction and try again */
4328 commit_trans:
4329                 if (need_commit &&
4330                     !atomic_read(&fs_info->open_ioctl_trans)) {
4331                         need_commit--;
4332
4333                         if (need_commit > 0) {
4334                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4335                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4336                                                          (u64)-1);
4337                         }
4338
4339                         trans = btrfs_join_transaction(root);
4340                         if (IS_ERR(trans))
4341                                 return PTR_ERR(trans);
4342                         if (have_pinned_space >= 0 ||
4343                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4344                                      &trans->transaction->flags) ||
4345                             need_commit > 0) {
4346                                 ret = btrfs_commit_transaction(trans);
4347                                 if (ret)
4348                                         return ret;
4349                                 /*
4350                                  * The cleaner kthread might still be doing iput
4351                                  * operations. Wait for it to finish so that
4352                                  * more space is released.
4353                                  */
4354                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4355                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4356                                 goto again;
4357                         } else {
4358                                 btrfs_end_transaction(trans);
4359                         }
4360                 }
4361
4362                 trace_btrfs_space_reservation(fs_info,
4363                                               "space_info:enospc",
4364                                               data_sinfo->flags, bytes, 1);
4365                 return -ENOSPC;
4366         }
4367         data_sinfo->bytes_may_use += bytes;
4368         trace_btrfs_space_reservation(fs_info, "space_info",
4369                                       data_sinfo->flags, bytes, 1);
4370         spin_unlock(&data_sinfo->lock);
4371
4372         return ret;
4373 }
4374
4375 int btrfs_check_data_free_space(struct inode *inode,
4376                         struct extent_changeset **reserved, u64 start, u64 len)
4377 {
4378         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4379         int ret;
4380
4381         /* align the range */
4382         len = round_up(start + len, fs_info->sectorsize) -
4383               round_down(start, fs_info->sectorsize);
4384         start = round_down(start, fs_info->sectorsize);
4385
4386         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4387         if (ret < 0)
4388                 return ret;
4389
4390         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4391         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4392         if (ret < 0)
4393                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4394         else
4395                 ret = 0;
4396         return ret;
4397 }
4398
4399 /*
4400  * Called if we need to clear a data reservation for this inode
4401  * Normally in a error case.
4402  *
4403  * This one will *NOT* use accurate qgroup reserved space API, just for case
4404  * which we can't sleep and is sure it won't affect qgroup reserved space.
4405  * Like clear_bit_hook().
4406  */
4407 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4408                                             u64 len)
4409 {
4410         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4411         struct btrfs_space_info *data_sinfo;
4412
4413         /* Make sure the range is aligned to sectorsize */
4414         len = round_up(start + len, fs_info->sectorsize) -
4415               round_down(start, fs_info->sectorsize);
4416         start = round_down(start, fs_info->sectorsize);
4417
4418         data_sinfo = fs_info->data_sinfo;
4419         spin_lock(&data_sinfo->lock);
4420         if (WARN_ON(data_sinfo->bytes_may_use < len))
4421                 data_sinfo->bytes_may_use = 0;
4422         else
4423                 data_sinfo->bytes_may_use -= len;
4424         trace_btrfs_space_reservation(fs_info, "space_info",
4425                                       data_sinfo->flags, len, 0);
4426         spin_unlock(&data_sinfo->lock);
4427 }
4428
4429 /*
4430  * Called if we need to clear a data reservation for this inode
4431  * Normally in a error case.
4432  *
4433  * This one will handle the per-inode data rsv map for accurate reserved
4434  * space framework.
4435  */
4436 void btrfs_free_reserved_data_space(struct inode *inode,
4437                         struct extent_changeset *reserved, u64 start, u64 len)
4438 {
4439         struct btrfs_root *root = BTRFS_I(inode)->root;
4440
4441         /* Make sure the range is aligned to sectorsize */
4442         len = round_up(start + len, root->fs_info->sectorsize) -
4443               round_down(start, root->fs_info->sectorsize);
4444         start = round_down(start, root->fs_info->sectorsize);
4445
4446         btrfs_free_reserved_data_space_noquota(inode, start, len);
4447         btrfs_qgroup_free_data(inode, reserved, start, len);
4448 }
4449
4450 static void force_metadata_allocation(struct btrfs_fs_info *info)
4451 {
4452         struct list_head *head = &info->space_info;
4453         struct btrfs_space_info *found;
4454
4455         rcu_read_lock();
4456         list_for_each_entry_rcu(found, head, list) {
4457                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4458                         found->force_alloc = CHUNK_ALLOC_FORCE;
4459         }
4460         rcu_read_unlock();
4461 }
4462
4463 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4464 {
4465         return (global->size << 1);
4466 }
4467
4468 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4469                               struct btrfs_space_info *sinfo, int force)
4470 {
4471         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4472         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4473         u64 thresh;
4474
4475         if (force == CHUNK_ALLOC_FORCE)
4476                 return 1;
4477
4478         /*
4479          * We need to take into account the global rsv because for all intents
4480          * and purposes it's used space.  Don't worry about locking the
4481          * global_rsv, it doesn't change except when the transaction commits.
4482          */
4483         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4484                 bytes_used += calc_global_rsv_need_space(global_rsv);
4485
4486         /*
4487          * in limited mode, we want to have some free space up to
4488          * about 1% of the FS size.
4489          */
4490         if (force == CHUNK_ALLOC_LIMITED) {
4491                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4492                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4493
4494                 if (sinfo->total_bytes - bytes_used < thresh)
4495                         return 1;
4496         }
4497
4498         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4499                 return 0;
4500         return 1;
4501 }
4502
4503 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4504 {
4505         u64 num_dev;
4506
4507         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4508                     BTRFS_BLOCK_GROUP_RAID0 |
4509                     BTRFS_BLOCK_GROUP_RAID5 |
4510                     BTRFS_BLOCK_GROUP_RAID6))
4511                 num_dev = fs_info->fs_devices->rw_devices;
4512         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4513                 num_dev = 2;
4514         else
4515                 num_dev = 1;    /* DUP or single */
4516
4517         return num_dev;
4518 }
4519
4520 /*
4521  * If @is_allocation is true, reserve space in the system space info necessary
4522  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4523  * removing a chunk.
4524  */
4525 void check_system_chunk(struct btrfs_trans_handle *trans,
4526                         struct btrfs_fs_info *fs_info, u64 type)
4527 {
4528         struct btrfs_space_info *info;
4529         u64 left;
4530         u64 thresh;
4531         int ret = 0;
4532         u64 num_devs;
4533
4534         /*
4535          * Needed because we can end up allocating a system chunk and for an
4536          * atomic and race free space reservation in the chunk block reserve.
4537          */
4538         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4539
4540         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4541         spin_lock(&info->lock);
4542         left = info->total_bytes - btrfs_space_info_used(info, true);
4543         spin_unlock(&info->lock);
4544
4545         num_devs = get_profile_num_devs(fs_info, type);
4546
4547         /* num_devs device items to update and 1 chunk item to add or remove */
4548         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4549                 btrfs_calc_trans_metadata_size(fs_info, 1);
4550
4551         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4552                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4553                            left, thresh, type);
4554                 dump_space_info(fs_info, info, 0, 0);
4555         }
4556
4557         if (left < thresh) {
4558                 u64 flags = btrfs_system_alloc_profile(fs_info);
4559
4560                 /*
4561                  * Ignore failure to create system chunk. We might end up not
4562                  * needing it, as we might not need to COW all nodes/leafs from
4563                  * the paths we visit in the chunk tree (they were already COWed
4564                  * or created in the current transaction for example).
4565                  */
4566                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4567         }
4568
4569         if (!ret) {
4570                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4571                                           &fs_info->chunk_block_rsv,
4572                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4573                 if (!ret)
4574                         trans->chunk_bytes_reserved += thresh;
4575         }
4576 }
4577
4578 /*
4579  * If force is CHUNK_ALLOC_FORCE:
4580  *    - return 1 if it successfully allocates a chunk,
4581  *    - return errors including -ENOSPC otherwise.
4582  * If force is NOT CHUNK_ALLOC_FORCE:
4583  *    - return 0 if it doesn't need to allocate a new chunk,
4584  *    - return 1 if it successfully allocates a chunk,
4585  *    - return errors including -ENOSPC otherwise.
4586  */
4587 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4588                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4589 {
4590         struct btrfs_space_info *space_info;
4591         int wait_for_alloc = 0;
4592         int ret = 0;
4593
4594         /* Don't re-enter if we're already allocating a chunk */
4595         if (trans->allocating_chunk)
4596                 return -ENOSPC;
4597
4598         space_info = __find_space_info(fs_info, flags);
4599         if (!space_info) {
4600                 ret = create_space_info(fs_info, flags, &space_info);
4601                 if (ret)
4602                         return ret;
4603         }
4604
4605 again:
4606         spin_lock(&space_info->lock);
4607         if (force < space_info->force_alloc)
4608                 force = space_info->force_alloc;
4609         if (space_info->full) {
4610                 if (should_alloc_chunk(fs_info, space_info, force))
4611                         ret = -ENOSPC;
4612                 else
4613                         ret = 0;
4614                 spin_unlock(&space_info->lock);
4615                 return ret;
4616         }
4617
4618         if (!should_alloc_chunk(fs_info, space_info, force)) {
4619                 spin_unlock(&space_info->lock);
4620                 return 0;
4621         } else if (space_info->chunk_alloc) {
4622                 wait_for_alloc = 1;
4623         } else {
4624                 space_info->chunk_alloc = 1;
4625         }
4626
4627         spin_unlock(&space_info->lock);
4628
4629         mutex_lock(&fs_info->chunk_mutex);
4630
4631         /*
4632          * The chunk_mutex is held throughout the entirety of a chunk
4633          * allocation, so once we've acquired the chunk_mutex we know that the
4634          * other guy is done and we need to recheck and see if we should
4635          * allocate.
4636          */
4637         if (wait_for_alloc) {
4638                 mutex_unlock(&fs_info->chunk_mutex);
4639                 wait_for_alloc = 0;
4640                 goto again;
4641         }
4642
4643         trans->allocating_chunk = true;
4644
4645         /*
4646          * If we have mixed data/metadata chunks we want to make sure we keep
4647          * allocating mixed chunks instead of individual chunks.
4648          */
4649         if (btrfs_mixed_space_info(space_info))
4650                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4651
4652         /*
4653          * if we're doing a data chunk, go ahead and make sure that
4654          * we keep a reasonable number of metadata chunks allocated in the
4655          * FS as well.
4656          */
4657         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4658                 fs_info->data_chunk_allocations++;
4659                 if (!(fs_info->data_chunk_allocations %
4660                       fs_info->metadata_ratio))
4661                         force_metadata_allocation(fs_info);
4662         }
4663
4664         /*
4665          * Check if we have enough space in SYSTEM chunk because we may need
4666          * to update devices.
4667          */
4668         check_system_chunk(trans, fs_info, flags);
4669
4670         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4671         trans->allocating_chunk = false;
4672
4673         spin_lock(&space_info->lock);
4674         if (ret < 0 && ret != -ENOSPC)
4675                 goto out;
4676         if (ret)
4677                 space_info->full = 1;
4678         else
4679                 ret = 1;
4680
4681         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4682 out:
4683         space_info->chunk_alloc = 0;
4684         spin_unlock(&space_info->lock);
4685         mutex_unlock(&fs_info->chunk_mutex);
4686         /*
4687          * When we allocate a new chunk we reserve space in the chunk block
4688          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4689          * add new nodes/leafs to it if we end up needing to do it when
4690          * inserting the chunk item and updating device items as part of the
4691          * second phase of chunk allocation, performed by
4692          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4693          * large number of new block groups to create in our transaction
4694          * handle's new_bgs list to avoid exhausting the chunk block reserve
4695          * in extreme cases - like having a single transaction create many new
4696          * block groups when starting to write out the free space caches of all
4697          * the block groups that were made dirty during the lifetime of the
4698          * transaction.
4699          */
4700         if (trans->can_flush_pending_bgs &&
4701             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4702                 btrfs_create_pending_block_groups(trans, fs_info);
4703                 btrfs_trans_release_chunk_metadata(trans);
4704         }
4705         return ret;
4706 }
4707
4708 static int can_overcommit(struct btrfs_fs_info *fs_info,
4709                           struct btrfs_space_info *space_info, u64 bytes,
4710                           enum btrfs_reserve_flush_enum flush,
4711                           bool system_chunk)
4712 {
4713         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4714         u64 profile;
4715         u64 space_size;
4716         u64 avail;
4717         u64 used;
4718
4719         /* Don't overcommit when in mixed mode. */
4720         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4721                 return 0;
4722
4723         if (system_chunk)
4724                 profile = btrfs_system_alloc_profile(fs_info);
4725         else
4726                 profile = btrfs_metadata_alloc_profile(fs_info);
4727
4728         used = btrfs_space_info_used(space_info, false);
4729
4730         /*
4731          * We only want to allow over committing if we have lots of actual space
4732          * free, but if we don't have enough space to handle the global reserve
4733          * space then we could end up having a real enospc problem when trying
4734          * to allocate a chunk or some other such important allocation.
4735          */
4736         spin_lock(&global_rsv->lock);
4737         space_size = calc_global_rsv_need_space(global_rsv);
4738         spin_unlock(&global_rsv->lock);
4739         if (used + space_size >= space_info->total_bytes)
4740                 return 0;
4741
4742         used += space_info->bytes_may_use;
4743
4744         avail = atomic64_read(&fs_info->free_chunk_space);
4745
4746         /*
4747          * If we have dup, raid1 or raid10 then only half of the free
4748          * space is actually useable.  For raid56, the space info used
4749          * doesn't include the parity drive, so we don't have to
4750          * change the math
4751          */
4752         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4753                        BTRFS_BLOCK_GROUP_RAID1 |
4754                        BTRFS_BLOCK_GROUP_RAID10))
4755                 avail >>= 1;
4756
4757         /*
4758          * If we aren't flushing all things, let us overcommit up to
4759          * 1/2th of the space. If we can flush, don't let us overcommit
4760          * too much, let it overcommit up to 1/8 of the space.
4761          */
4762         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4763                 avail >>= 3;
4764         else
4765                 avail >>= 1;
4766
4767         if (used + bytes < space_info->total_bytes + avail)
4768                 return 1;
4769         return 0;
4770 }
4771
4772 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4773                                          unsigned long nr_pages, int nr_items)
4774 {
4775         struct super_block *sb = fs_info->sb;
4776
4777         if (down_read_trylock(&sb->s_umount)) {
4778                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4779                 up_read(&sb->s_umount);
4780         } else {
4781                 /*
4782                  * We needn't worry the filesystem going from r/w to r/o though
4783                  * we don't acquire ->s_umount mutex, because the filesystem
4784                  * should guarantee the delalloc inodes list be empty after
4785                  * the filesystem is readonly(all dirty pages are written to
4786                  * the disk).
4787                  */
4788                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4789                 if (!current->journal_info)
4790                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4791         }
4792 }
4793
4794 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4795                                         u64 to_reclaim)
4796 {
4797         u64 bytes;
4798         u64 nr;
4799
4800         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4801         nr = div64_u64(to_reclaim, bytes);
4802         if (!nr)
4803                 nr = 1;
4804         return nr;
4805 }
4806
4807 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4808
4809 /*
4810  * shrink metadata reservation for delalloc
4811  */
4812 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4813                             u64 orig, bool wait_ordered)
4814 {
4815         struct btrfs_space_info *space_info;
4816         struct btrfs_trans_handle *trans;
4817         u64 delalloc_bytes;
4818         u64 max_reclaim;
4819         u64 items;
4820         long time_left;
4821         unsigned long nr_pages;
4822         int loops;
4823         enum btrfs_reserve_flush_enum flush;
4824
4825         /* Calc the number of the pages we need flush for space reservation */
4826         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4827         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4828
4829         trans = (struct btrfs_trans_handle *)current->journal_info;
4830         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4831
4832         delalloc_bytes = percpu_counter_sum_positive(
4833                                                 &fs_info->delalloc_bytes);
4834         if (delalloc_bytes == 0) {
4835                 if (trans)
4836                         return;
4837                 if (wait_ordered)
4838                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4839                 return;
4840         }
4841
4842         loops = 0;
4843         while (delalloc_bytes && loops < 3) {
4844                 max_reclaim = min(delalloc_bytes, to_reclaim);
4845                 nr_pages = max_reclaim >> PAGE_SHIFT;
4846                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4847                 /*
4848                  * We need to wait for the async pages to actually start before
4849                  * we do anything.
4850                  */
4851                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4852                 if (!max_reclaim)
4853                         goto skip_async;
4854
4855                 if (max_reclaim <= nr_pages)
4856                         max_reclaim = 0;
4857                 else
4858                         max_reclaim -= nr_pages;
4859
4860                 wait_event(fs_info->async_submit_wait,
4861                            atomic_read(&fs_info->async_delalloc_pages) <=
4862                            (int)max_reclaim);
4863 skip_async:
4864                 if (!trans)
4865                         flush = BTRFS_RESERVE_FLUSH_ALL;
4866                 else
4867                         flush = BTRFS_RESERVE_NO_FLUSH;
4868                 spin_lock(&space_info->lock);
4869                 if (list_empty(&space_info->tickets) &&
4870                     list_empty(&space_info->priority_tickets)) {
4871                         spin_unlock(&space_info->lock);
4872                         break;
4873                 }
4874                 spin_unlock(&space_info->lock);
4875
4876                 loops++;
4877                 if (wait_ordered && !trans) {
4878                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4879                 } else {
4880                         time_left = schedule_timeout_killable(1);
4881                         if (time_left)
4882                                 break;
4883                 }
4884                 delalloc_bytes = percpu_counter_sum_positive(
4885                                                 &fs_info->delalloc_bytes);
4886         }
4887 }
4888
4889 struct reserve_ticket {
4890         u64 bytes;
4891         int error;
4892         struct list_head list;
4893         wait_queue_head_t wait;
4894 };
4895
4896 /**
4897  * maybe_commit_transaction - possibly commit the transaction if its ok to
4898  * @root - the root we're allocating for
4899  * @bytes - the number of bytes we want to reserve
4900  * @force - force the commit
4901  *
4902  * This will check to make sure that committing the transaction will actually
4903  * get us somewhere and then commit the transaction if it does.  Otherwise it
4904  * will return -ENOSPC.
4905  */
4906 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4907                                   struct btrfs_space_info *space_info)
4908 {
4909         struct reserve_ticket *ticket = NULL;
4910         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4911         struct btrfs_trans_handle *trans;
4912         u64 bytes;
4913
4914         trans = (struct btrfs_trans_handle *)current->journal_info;
4915         if (trans)
4916                 return -EAGAIN;
4917
4918         spin_lock(&space_info->lock);
4919         if (!list_empty(&space_info->priority_tickets))
4920                 ticket = list_first_entry(&space_info->priority_tickets,
4921                                           struct reserve_ticket, list);
4922         else if (!list_empty(&space_info->tickets))
4923                 ticket = list_first_entry(&space_info->tickets,
4924                                           struct reserve_ticket, list);
4925         bytes = (ticket) ? ticket->bytes : 0;
4926         spin_unlock(&space_info->lock);
4927
4928         if (!bytes)
4929                 return 0;
4930
4931         /* See if there is enough pinned space to make this reservation */
4932         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4933                                    bytes) >= 0)
4934                 goto commit;
4935
4936         /*
4937          * See if there is some space in the delayed insertion reservation for
4938          * this reservation.
4939          */
4940         if (space_info != delayed_rsv->space_info)
4941                 return -ENOSPC;
4942
4943         spin_lock(&delayed_rsv->lock);
4944         if (delayed_rsv->size > bytes)
4945                 bytes = 0;
4946         else
4947                 bytes -= delayed_rsv->size;
4948         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4949                                    bytes) < 0) {
4950                 spin_unlock(&delayed_rsv->lock);
4951                 return -ENOSPC;
4952         }
4953         spin_unlock(&delayed_rsv->lock);
4954
4955 commit:
4956         trans = btrfs_join_transaction(fs_info->extent_root);
4957         if (IS_ERR(trans))
4958                 return -ENOSPC;
4959
4960         return btrfs_commit_transaction(trans);
4961 }
4962
4963 /*
4964  * Try to flush some data based on policy set by @state. This is only advisory
4965  * and may fail for various reasons. The caller is supposed to examine the
4966  * state of @space_info to detect the outcome.
4967  */
4968 static void flush_space(struct btrfs_fs_info *fs_info,
4969                        struct btrfs_space_info *space_info, u64 num_bytes,
4970                        int state)
4971 {
4972         struct btrfs_root *root = fs_info->extent_root;
4973         struct btrfs_trans_handle *trans;
4974         int nr;
4975         int ret = 0;
4976
4977         switch (state) {
4978         case FLUSH_DELAYED_ITEMS_NR:
4979         case FLUSH_DELAYED_ITEMS:
4980                 if (state == FLUSH_DELAYED_ITEMS_NR)
4981                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4982                 else
4983                         nr = -1;
4984
4985                 trans = btrfs_join_transaction(root);
4986                 if (IS_ERR(trans)) {
4987                         ret = PTR_ERR(trans);
4988                         break;
4989                 }
4990                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4991                 btrfs_end_transaction(trans);
4992                 break;
4993         case FLUSH_DELALLOC:
4994         case FLUSH_DELALLOC_WAIT:
4995                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4996                                 state == FLUSH_DELALLOC_WAIT);
4997                 break;
4998         case ALLOC_CHUNK:
4999                 trans = btrfs_join_transaction(root);
5000                 if (IS_ERR(trans)) {
5001                         ret = PTR_ERR(trans);
5002                         break;
5003                 }
5004                 ret = do_chunk_alloc(trans, fs_info,
5005                                      btrfs_metadata_alloc_profile(fs_info),
5006                                      CHUNK_ALLOC_NO_FORCE);
5007                 btrfs_end_transaction(trans);
5008                 if (ret > 0 || ret == -ENOSPC)
5009                         ret = 0;
5010                 break;
5011         case COMMIT_TRANS:
5012                 ret = may_commit_transaction(fs_info, space_info);
5013                 break;
5014         default:
5015                 ret = -ENOSPC;
5016                 break;
5017         }
5018
5019         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5020                                 ret);
5021         return;
5022 }
5023
5024 static inline u64
5025 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5026                                  struct btrfs_space_info *space_info,
5027                                  bool system_chunk)
5028 {
5029         struct reserve_ticket *ticket;
5030         u64 used;
5031         u64 expected;
5032         u64 to_reclaim = 0;
5033
5034         list_for_each_entry(ticket, &space_info->tickets, list)
5035                 to_reclaim += ticket->bytes;
5036         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5037                 to_reclaim += ticket->bytes;
5038         if (to_reclaim)
5039                 return to_reclaim;
5040
5041         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5042         if (can_overcommit(fs_info, space_info, to_reclaim,
5043                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5044                 return 0;
5045
5046         used = btrfs_space_info_used(space_info, true);
5047
5048         if (can_overcommit(fs_info, space_info, SZ_1M,
5049                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050                 expected = div_factor_fine(space_info->total_bytes, 95);
5051         else
5052                 expected = div_factor_fine(space_info->total_bytes, 90);
5053
5054         if (used > expected)
5055                 to_reclaim = used - expected;
5056         else
5057                 to_reclaim = 0;
5058         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5059                                      space_info->bytes_reserved);
5060         return to_reclaim;
5061 }
5062
5063 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5064                                         struct btrfs_space_info *space_info,
5065                                         u64 used, bool system_chunk)
5066 {
5067         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5068
5069         /* If we're just plain full then async reclaim just slows us down. */
5070         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5071                 return 0;
5072
5073         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5074                                               system_chunk))
5075                 return 0;
5076
5077         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5078                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5079 }
5080
5081 static void wake_all_tickets(struct list_head *head)
5082 {
5083         struct reserve_ticket *ticket;
5084
5085         while (!list_empty(head)) {
5086                 ticket = list_first_entry(head, struct reserve_ticket, list);
5087                 list_del_init(&ticket->list);
5088                 ticket->error = -ENOSPC;
5089                 wake_up(&ticket->wait);
5090         }
5091 }
5092
5093 /*
5094  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5095  * will loop and continuously try to flush as long as we are making progress.
5096  * We count progress as clearing off tickets each time we have to loop.
5097  */
5098 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5099 {
5100         struct btrfs_fs_info *fs_info;
5101         struct btrfs_space_info *space_info;
5102         u64 to_reclaim;
5103         int flush_state;
5104         int commit_cycles = 0;
5105         u64 last_tickets_id;
5106
5107         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5108         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5109
5110         spin_lock(&space_info->lock);
5111         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5112                                                       false);
5113         if (!to_reclaim) {
5114                 space_info->flush = 0;
5115                 spin_unlock(&space_info->lock);
5116                 return;
5117         }
5118         last_tickets_id = space_info->tickets_id;
5119         spin_unlock(&space_info->lock);
5120
5121         flush_state = FLUSH_DELAYED_ITEMS_NR;
5122         do {
5123                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5124                 spin_lock(&space_info->lock);
5125                 if (list_empty(&space_info->tickets)) {
5126                         space_info->flush = 0;
5127                         spin_unlock(&space_info->lock);
5128                         return;
5129                 }
5130                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5131                                                               space_info,
5132                                                               false);
5133                 if (last_tickets_id == space_info->tickets_id) {
5134                         flush_state++;
5135                 } else {
5136                         last_tickets_id = space_info->tickets_id;
5137                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5138                         if (commit_cycles)
5139                                 commit_cycles--;
5140                 }
5141
5142                 if (flush_state > COMMIT_TRANS) {
5143                         commit_cycles++;
5144                         if (commit_cycles > 2) {
5145                                 wake_all_tickets(&space_info->tickets);
5146                                 space_info->flush = 0;
5147                         } else {
5148                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5149                         }
5150                 }
5151                 spin_unlock(&space_info->lock);
5152         } while (flush_state <= COMMIT_TRANS);
5153 }
5154
5155 void btrfs_init_async_reclaim_work(struct work_struct *work)
5156 {
5157         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5158 }
5159
5160 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5161                                             struct btrfs_space_info *space_info,
5162                                             struct reserve_ticket *ticket)
5163 {
5164         u64 to_reclaim;
5165         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5166
5167         spin_lock(&space_info->lock);
5168         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5169                                                       false);
5170         if (!to_reclaim) {
5171                 spin_unlock(&space_info->lock);
5172                 return;
5173         }
5174         spin_unlock(&space_info->lock);
5175
5176         do {
5177                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5178                 flush_state++;
5179                 spin_lock(&space_info->lock);
5180                 if (ticket->bytes == 0) {
5181                         spin_unlock(&space_info->lock);
5182                         return;
5183                 }
5184                 spin_unlock(&space_info->lock);
5185
5186                 /*
5187                  * Priority flushers can't wait on delalloc without
5188                  * deadlocking.
5189                  */
5190                 if (flush_state == FLUSH_DELALLOC ||
5191                     flush_state == FLUSH_DELALLOC_WAIT)
5192                         flush_state = ALLOC_CHUNK;
5193         } while (flush_state < COMMIT_TRANS);
5194 }
5195
5196 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5197                                struct btrfs_space_info *space_info,
5198                                struct reserve_ticket *ticket, u64 orig_bytes)
5199
5200 {
5201         DEFINE_WAIT(wait);
5202         int ret = 0;
5203
5204         spin_lock(&space_info->lock);
5205         while (ticket->bytes > 0 && ticket->error == 0) {
5206                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5207                 if (ret) {
5208                         ret = -EINTR;
5209                         break;
5210                 }
5211                 spin_unlock(&space_info->lock);
5212
5213                 schedule();
5214
5215                 finish_wait(&ticket->wait, &wait);
5216                 spin_lock(&space_info->lock);
5217         }
5218         if (!ret)
5219                 ret = ticket->error;
5220         if (!list_empty(&ticket->list))
5221                 list_del_init(&ticket->list);
5222         if (ticket->bytes && ticket->bytes < orig_bytes) {
5223                 u64 num_bytes = orig_bytes - ticket->bytes;
5224                 space_info->bytes_may_use -= num_bytes;
5225                 trace_btrfs_space_reservation(fs_info, "space_info",
5226                                               space_info->flags, num_bytes, 0);
5227         }
5228         spin_unlock(&space_info->lock);
5229
5230         return ret;
5231 }
5232
5233 /**
5234  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235  * @root - the root we're allocating for
5236  * @space_info - the space info we want to allocate from
5237  * @orig_bytes - the number of bytes we want
5238  * @flush - whether or not we can flush to make our reservation
5239  *
5240  * This will reserve orig_bytes number of bytes from the space info associated
5241  * with the block_rsv.  If there is not enough space it will make an attempt to
5242  * flush out space to make room.  It will do this by flushing delalloc if
5243  * possible or committing the transaction.  If flush is 0 then no attempts to
5244  * regain reservations will be made and this will fail if there is not enough
5245  * space already.
5246  */
5247 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5248                                     struct btrfs_space_info *space_info,
5249                                     u64 orig_bytes,
5250                                     enum btrfs_reserve_flush_enum flush,
5251                                     bool system_chunk)
5252 {
5253         struct reserve_ticket ticket;
5254         u64 used;
5255         int ret = 0;
5256
5257         ASSERT(orig_bytes);
5258         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5259
5260         spin_lock(&space_info->lock);
5261         ret = -ENOSPC;
5262         used = btrfs_space_info_used(space_info, true);
5263
5264         /*
5265          * If we have enough space then hooray, make our reservation and carry
5266          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5267          * If not things get more complicated.
5268          */
5269         if (used + orig_bytes <= space_info->total_bytes) {
5270                 space_info->bytes_may_use += orig_bytes;
5271                 trace_btrfs_space_reservation(fs_info, "space_info",
5272                                               space_info->flags, orig_bytes, 1);
5273                 ret = 0;
5274         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5275                                   system_chunk)) {
5276                 space_info->bytes_may_use += orig_bytes;
5277                 trace_btrfs_space_reservation(fs_info, "space_info",
5278                                               space_info->flags, orig_bytes, 1);
5279                 ret = 0;
5280         }
5281
5282         /*
5283          * If we couldn't make a reservation then setup our reservation ticket
5284          * and kick the async worker if it's not already running.
5285          *
5286          * If we are a priority flusher then we just need to add our ticket to
5287          * the list and we will do our own flushing further down.
5288          */
5289         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5290                 ticket.bytes = orig_bytes;
5291                 ticket.error = 0;
5292                 init_waitqueue_head(&ticket.wait);
5293                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5294                         list_add_tail(&ticket.list, &space_info->tickets);
5295                         if (!space_info->flush) {
5296                                 space_info->flush = 1;
5297                                 trace_btrfs_trigger_flush(fs_info,
5298                                                           space_info->flags,
5299                                                           orig_bytes, flush,
5300                                                           "enospc");
5301                                 queue_work(system_unbound_wq,
5302                                            &fs_info->async_reclaim_work);
5303                         }
5304                 } else {
5305                         list_add_tail(&ticket.list,
5306                                       &space_info->priority_tickets);
5307                 }
5308         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5309                 used += orig_bytes;
5310                 /*
5311                  * We will do the space reservation dance during log replay,
5312                  * which means we won't have fs_info->fs_root set, so don't do
5313                  * the async reclaim as we will panic.
5314                  */
5315                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5316                     need_do_async_reclaim(fs_info, space_info,
5317                                           used, system_chunk) &&
5318                     !work_busy(&fs_info->async_reclaim_work)) {
5319                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5320                                                   orig_bytes, flush, "preempt");
5321                         queue_work(system_unbound_wq,
5322                                    &fs_info->async_reclaim_work);
5323                 }
5324         }
5325         spin_unlock(&space_info->lock);
5326         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5327                 return ret;
5328
5329         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5330                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5331                                            orig_bytes);
5332
5333         ret = 0;
5334         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5335         spin_lock(&space_info->lock);
5336         if (ticket.bytes) {
5337                 if (ticket.bytes < orig_bytes) {
5338                         u64 num_bytes = orig_bytes - ticket.bytes;
5339                         space_info->bytes_may_use -= num_bytes;
5340                         trace_btrfs_space_reservation(fs_info, "space_info",
5341                                                       space_info->flags,
5342                                                       num_bytes, 0);
5343
5344                 }
5345                 list_del_init(&ticket.list);
5346                 ret = -ENOSPC;
5347         }
5348         spin_unlock(&space_info->lock);
5349         ASSERT(list_empty(&ticket.list));
5350         return ret;
5351 }
5352
5353 /**
5354  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5355  * @root - the root we're allocating for
5356  * @block_rsv - the block_rsv we're allocating for
5357  * @orig_bytes - the number of bytes we want
5358  * @flush - whether or not we can flush to make our reservation
5359  *
5360  * This will reserve orgi_bytes number of bytes from the space info associated
5361  * with the block_rsv.  If there is not enough space it will make an attempt to
5362  * flush out space to make room.  It will do this by flushing delalloc if
5363  * possible or committing the transaction.  If flush is 0 then no attempts to
5364  * regain reservations will be made and this will fail if there is not enough
5365  * space already.
5366  */
5367 static int reserve_metadata_bytes(struct btrfs_root *root,
5368                                   struct btrfs_block_rsv *block_rsv,
5369                                   u64 orig_bytes,
5370                                   enum btrfs_reserve_flush_enum flush)
5371 {
5372         struct btrfs_fs_info *fs_info = root->fs_info;
5373         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5374         int ret;
5375         bool system_chunk = (root == fs_info->chunk_root);
5376
5377         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5378                                        orig_bytes, flush, system_chunk);
5379         if (ret == -ENOSPC &&
5380             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5381                 if (block_rsv != global_rsv &&
5382                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5383                         ret = 0;
5384         }
5385         if (ret == -ENOSPC)
5386                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5387                                               block_rsv->space_info->flags,
5388                                               orig_bytes, 1);
5389         return ret;
5390 }
5391
5392 static struct btrfs_block_rsv *get_block_rsv(
5393                                         const struct btrfs_trans_handle *trans,
5394                                         const struct btrfs_root *root)
5395 {
5396         struct btrfs_fs_info *fs_info = root->fs_info;
5397         struct btrfs_block_rsv *block_rsv = NULL;
5398
5399         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5400             (root == fs_info->csum_root && trans->adding_csums) ||
5401             (root == fs_info->uuid_root))
5402                 block_rsv = trans->block_rsv;
5403
5404         if (!block_rsv)
5405                 block_rsv = root->block_rsv;
5406
5407         if (!block_rsv)
5408                 block_rsv = &fs_info->empty_block_rsv;
5409
5410         return block_rsv;
5411 }
5412
5413 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5414                                u64 num_bytes)
5415 {
5416         int ret = -ENOSPC;
5417         spin_lock(&block_rsv->lock);
5418         if (block_rsv->reserved >= num_bytes) {
5419                 block_rsv->reserved -= num_bytes;
5420                 if (block_rsv->reserved < block_rsv->size)
5421                         block_rsv->full = 0;
5422                 ret = 0;
5423         }
5424         spin_unlock(&block_rsv->lock);
5425         return ret;
5426 }
5427
5428 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5429                                 u64 num_bytes, int update_size)
5430 {
5431         spin_lock(&block_rsv->lock);
5432         block_rsv->reserved += num_bytes;
5433         if (update_size)
5434                 block_rsv->size += num_bytes;
5435         else if (block_rsv->reserved >= block_rsv->size)
5436                 block_rsv->full = 1;
5437         spin_unlock(&block_rsv->lock);
5438 }
5439
5440 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5441                              struct btrfs_block_rsv *dest, u64 num_bytes,
5442                              int min_factor)
5443 {
5444         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5445         u64 min_bytes;
5446
5447         if (global_rsv->space_info != dest->space_info)
5448                 return -ENOSPC;
5449
5450         spin_lock(&global_rsv->lock);
5451         min_bytes = div_factor(global_rsv->size, min_factor);
5452         if (global_rsv->reserved < min_bytes + num_bytes) {
5453                 spin_unlock(&global_rsv->lock);
5454                 return -ENOSPC;
5455         }
5456         global_rsv->reserved -= num_bytes;
5457         if (global_rsv->reserved < global_rsv->size)
5458                 global_rsv->full = 0;
5459         spin_unlock(&global_rsv->lock);
5460
5461         block_rsv_add_bytes(dest, num_bytes, 1);
5462         return 0;
5463 }
5464
5465 /*
5466  * This is for space we already have accounted in space_info->bytes_may_use, so
5467  * basically when we're returning space from block_rsv's.
5468  */
5469 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5470                                      struct btrfs_space_info *space_info,
5471                                      u64 num_bytes)
5472 {
5473         struct reserve_ticket *ticket;
5474         struct list_head *head;
5475         u64 used;
5476         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5477         bool check_overcommit = false;
5478
5479         spin_lock(&space_info->lock);
5480         head = &space_info->priority_tickets;
5481
5482         /*
5483          * If we are over our limit then we need to check and see if we can
5484          * overcommit, and if we can't then we just need to free up our space
5485          * and not satisfy any requests.
5486          */
5487         used = btrfs_space_info_used(space_info, true);
5488         if (used - num_bytes >= space_info->total_bytes)
5489                 check_overcommit = true;
5490 again:
5491         while (!list_empty(head) && num_bytes) {
5492                 ticket = list_first_entry(head, struct reserve_ticket,
5493                                           list);
5494                 /*
5495                  * We use 0 bytes because this space is already reserved, so
5496                  * adding the ticket space would be a double count.
5497                  */
5498                 if (check_overcommit &&
5499                     !can_overcommit(fs_info, space_info, 0, flush, false))
5500                         break;
5501                 if (num_bytes >= ticket->bytes) {
5502                         list_del_init(&ticket->list);
5503                         num_bytes -= ticket->bytes;
5504                         ticket->bytes = 0;
5505                         space_info->tickets_id++;
5506                         wake_up(&ticket->wait);
5507                 } else {
5508                         ticket->bytes -= num_bytes;
5509                         num_bytes = 0;
5510                 }
5511         }
5512
5513         if (num_bytes && head == &space_info->priority_tickets) {
5514                 head = &space_info->tickets;
5515                 flush = BTRFS_RESERVE_FLUSH_ALL;
5516                 goto again;
5517         }
5518         space_info->bytes_may_use -= num_bytes;
5519         trace_btrfs_space_reservation(fs_info, "space_info",
5520                                       space_info->flags, num_bytes, 0);
5521         spin_unlock(&space_info->lock);
5522 }
5523
5524 /*
5525  * This is for newly allocated space that isn't accounted in
5526  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5527  * we use this helper.
5528  */
5529 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5530                                      struct btrfs_space_info *space_info,
5531                                      u64 num_bytes)
5532 {
5533         struct reserve_ticket *ticket;
5534         struct list_head *head = &space_info->priority_tickets;
5535
5536 again:
5537         while (!list_empty(head) && num_bytes) {
5538                 ticket = list_first_entry(head, struct reserve_ticket,
5539                                           list);
5540                 if (num_bytes >= ticket->bytes) {
5541                         trace_btrfs_space_reservation(fs_info, "space_info",
5542                                                       space_info->flags,
5543                                                       ticket->bytes, 1);
5544                         list_del_init(&ticket->list);
5545                         num_bytes -= ticket->bytes;
5546                         space_info->bytes_may_use += ticket->bytes;
5547                         ticket->bytes = 0;
5548                         space_info->tickets_id++;
5549                         wake_up(&ticket->wait);
5550                 } else {
5551                         trace_btrfs_space_reservation(fs_info, "space_info",
5552                                                       space_info->flags,
5553                                                       num_bytes, 1);
5554                         space_info->bytes_may_use += num_bytes;
5555                         ticket->bytes -= num_bytes;
5556                         num_bytes = 0;
5557                 }
5558         }
5559
5560         if (num_bytes && head == &space_info->priority_tickets) {
5561                 head = &space_info->tickets;
5562                 goto again;
5563         }
5564 }
5565
5566 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5567                                     struct btrfs_block_rsv *block_rsv,
5568                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5569 {
5570         struct btrfs_space_info *space_info = block_rsv->space_info;
5571         u64 ret;
5572
5573         spin_lock(&block_rsv->lock);
5574         if (num_bytes == (u64)-1)
5575                 num_bytes = block_rsv->size;
5576         block_rsv->size -= num_bytes;
5577         if (block_rsv->reserved >= block_rsv->size) {
5578                 num_bytes = block_rsv->reserved - block_rsv->size;
5579                 block_rsv->reserved = block_rsv->size;
5580                 block_rsv->full = 1;
5581         } else {
5582                 num_bytes = 0;
5583         }
5584         spin_unlock(&block_rsv->lock);
5585
5586         ret = num_bytes;
5587         if (num_bytes > 0) {
5588                 if (dest) {
5589                         spin_lock(&dest->lock);
5590                         if (!dest->full) {
5591                                 u64 bytes_to_add;
5592
5593                                 bytes_to_add = dest->size - dest->reserved;
5594                                 bytes_to_add = min(num_bytes, bytes_to_add);
5595                                 dest->reserved += bytes_to_add;
5596                                 if (dest->reserved >= dest->size)
5597                                         dest->full = 1;
5598                                 num_bytes -= bytes_to_add;
5599                         }
5600                         spin_unlock(&dest->lock);
5601                 }
5602                 if (num_bytes)
5603                         space_info_add_old_bytes(fs_info, space_info,
5604                                                  num_bytes);
5605         }
5606         return ret;
5607 }
5608
5609 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5610                             struct btrfs_block_rsv *dst, u64 num_bytes,
5611                             int update_size)
5612 {
5613         int ret;
5614
5615         ret = block_rsv_use_bytes(src, num_bytes);
5616         if (ret)
5617                 return ret;
5618
5619         block_rsv_add_bytes(dst, num_bytes, update_size);
5620         return 0;
5621 }
5622
5623 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5624 {
5625         memset(rsv, 0, sizeof(*rsv));
5626         spin_lock_init(&rsv->lock);
5627         rsv->type = type;
5628 }
5629
5630 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5631                                    struct btrfs_block_rsv *rsv,
5632                                    unsigned short type)
5633 {
5634         btrfs_init_block_rsv(rsv, type);
5635         rsv->space_info = __find_space_info(fs_info,
5636                                             BTRFS_BLOCK_GROUP_METADATA);
5637 }
5638
5639 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5640                                               unsigned short type)
5641 {
5642         struct btrfs_block_rsv *block_rsv;
5643
5644         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5645         if (!block_rsv)
5646                 return NULL;
5647
5648         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5649         return block_rsv;
5650 }
5651
5652 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5653                           struct btrfs_block_rsv *rsv)
5654 {
5655         if (!rsv)
5656                 return;
5657         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5658         kfree(rsv);
5659 }
5660
5661 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5662 {
5663         kfree(rsv);
5664 }
5665
5666 int btrfs_block_rsv_add(struct btrfs_root *root,
5667                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5668                         enum btrfs_reserve_flush_enum flush)
5669 {
5670         int ret;
5671
5672         if (num_bytes == 0)
5673                 return 0;
5674
5675         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5676         if (!ret) {
5677                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5678                 return 0;
5679         }
5680
5681         return ret;
5682 }
5683
5684 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5685 {
5686         u64 num_bytes = 0;
5687         int ret = -ENOSPC;
5688
5689         if (!block_rsv)
5690                 return 0;
5691
5692         spin_lock(&block_rsv->lock);
5693         num_bytes = div_factor(block_rsv->size, min_factor);
5694         if (block_rsv->reserved >= num_bytes)
5695                 ret = 0;
5696         spin_unlock(&block_rsv->lock);
5697
5698         return ret;
5699 }
5700
5701 int btrfs_block_rsv_refill(struct btrfs_root *root,
5702                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5703                            enum btrfs_reserve_flush_enum flush)
5704 {
5705         u64 num_bytes = 0;
5706         int ret = -ENOSPC;
5707
5708         if (!block_rsv)
5709                 return 0;
5710
5711         spin_lock(&block_rsv->lock);
5712         num_bytes = min_reserved;
5713         if (block_rsv->reserved >= num_bytes)
5714                 ret = 0;
5715         else
5716                 num_bytes -= block_rsv->reserved;
5717         spin_unlock(&block_rsv->lock);
5718
5719         if (!ret)
5720                 return 0;
5721
5722         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5723         if (!ret) {
5724                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5725                 return 0;
5726         }
5727
5728         return ret;
5729 }
5730
5731 /**
5732  * btrfs_inode_rsv_refill - refill the inode block rsv.
5733  * @inode - the inode we are refilling.
5734  * @flush - the flusing restriction.
5735  *
5736  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5737  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5738  * or return if we already have enough space.  This will also handle the resreve
5739  * tracepoint for the reserved amount.
5740  */
5741 int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5742                            enum btrfs_reserve_flush_enum flush)
5743 {
5744         struct btrfs_root *root = inode->root;
5745         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5746         u64 num_bytes = 0;
5747         int ret = -ENOSPC;
5748
5749         spin_lock(&block_rsv->lock);
5750         if (block_rsv->reserved < block_rsv->size)
5751                 num_bytes = block_rsv->size - block_rsv->reserved;
5752         spin_unlock(&block_rsv->lock);
5753
5754         if (num_bytes == 0)
5755                 return 0;
5756
5757         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5758         if (!ret) {
5759                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5760                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5761                                               btrfs_ino(inode), num_bytes, 1);
5762         }
5763         return ret;
5764 }
5765
5766 /**
5767  * btrfs_inode_rsv_release - release any excessive reservation.
5768  * @inode - the inode we need to release from.
5769  *
5770  * This is the same as btrfs_block_rsv_release, except that it handles the
5771  * tracepoint for the reservation.
5772  */
5773 void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5774 {
5775         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5776         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5777         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5778         u64 released = 0;
5779
5780         /*
5781          * Since we statically set the block_rsv->size we just want to say we
5782          * are releasing 0 bytes, and then we'll just get the reservation over
5783          * the size free'd.
5784          */
5785         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5786         if (released > 0)
5787                 trace_btrfs_space_reservation(fs_info, "delalloc",
5788                                               btrfs_ino(inode), released, 0);
5789 }
5790
5791 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5792                              struct btrfs_block_rsv *block_rsv,
5793                              u64 num_bytes)
5794 {
5795         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5796
5797         if (global_rsv == block_rsv ||
5798             block_rsv->space_info != global_rsv->space_info)
5799                 global_rsv = NULL;
5800         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5801 }
5802
5803 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5804 {
5805         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5806         struct btrfs_space_info *sinfo = block_rsv->space_info;
5807         u64 num_bytes;
5808
5809         /*
5810          * The global block rsv is based on the size of the extent tree, the
5811          * checksum tree and the root tree.  If the fs is empty we want to set
5812          * it to a minimal amount for safety.
5813          */
5814         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5815                 btrfs_root_used(&fs_info->csum_root->root_item) +
5816                 btrfs_root_used(&fs_info->tree_root->root_item);
5817         num_bytes = max_t(u64, num_bytes, SZ_16M);
5818
5819         spin_lock(&sinfo->lock);
5820         spin_lock(&block_rsv->lock);
5821
5822         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5823
5824         if (block_rsv->reserved < block_rsv->size) {
5825                 num_bytes = btrfs_space_info_used(sinfo, true);
5826                 if (sinfo->total_bytes > num_bytes) {
5827                         num_bytes = sinfo->total_bytes - num_bytes;
5828                         num_bytes = min(num_bytes,
5829                                         block_rsv->size - block_rsv->reserved);
5830                         block_rsv->reserved += num_bytes;
5831                         sinfo->bytes_may_use += num_bytes;
5832                         trace_btrfs_space_reservation(fs_info, "space_info",
5833                                                       sinfo->flags, num_bytes,
5834                                                       1);
5835                 }
5836         } else if (block_rsv->reserved > block_rsv->size) {
5837                 num_bytes = block_rsv->reserved - block_rsv->size;
5838                 sinfo->bytes_may_use -= num_bytes;
5839                 trace_btrfs_space_reservation(fs_info, "space_info",
5840                                       sinfo->flags, num_bytes, 0);
5841                 block_rsv->reserved = block_rsv->size;
5842         }
5843
5844         if (block_rsv->reserved == block_rsv->size)
5845                 block_rsv->full = 1;
5846         else
5847                 block_rsv->full = 0;
5848
5849         spin_unlock(&block_rsv->lock);
5850         spin_unlock(&sinfo->lock);
5851 }
5852
5853 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5854 {
5855         struct btrfs_space_info *space_info;
5856
5857         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5858         fs_info->chunk_block_rsv.space_info = space_info;
5859
5860         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5861         fs_info->global_block_rsv.space_info = space_info;
5862         fs_info->trans_block_rsv.space_info = space_info;
5863         fs_info->empty_block_rsv.space_info = space_info;
5864         fs_info->delayed_block_rsv.space_info = space_info;
5865
5866         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5867         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5868         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5869         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5870         if (fs_info->quota_root)
5871                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5872         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5873
5874         update_global_block_rsv(fs_info);
5875 }
5876
5877 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5878 {
5879         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5880                                 (u64)-1);
5881         WARN_ON(fs_info->trans_block_rsv.size > 0);
5882         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5883         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5884         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5885         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5886         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5887 }
5888
5889 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5890                                   struct btrfs_fs_info *fs_info)
5891 {
5892         if (!trans->block_rsv) {
5893                 ASSERT(!trans->bytes_reserved);
5894                 return;
5895         }
5896
5897         if (!trans->bytes_reserved)
5898                 return;
5899
5900         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5901         trace_btrfs_space_reservation(fs_info, "transaction",
5902                                       trans->transid, trans->bytes_reserved, 0);
5903         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5904                                 trans->bytes_reserved);
5905         trans->bytes_reserved = 0;
5906 }
5907
5908 /*
5909  * To be called after all the new block groups attached to the transaction
5910  * handle have been created (btrfs_create_pending_block_groups()).
5911  */
5912 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5913 {
5914         struct btrfs_fs_info *fs_info = trans->fs_info;
5915
5916         if (!trans->chunk_bytes_reserved)
5917                 return;
5918
5919         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5920
5921         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5922                                 trans->chunk_bytes_reserved);
5923         trans->chunk_bytes_reserved = 0;
5924 }
5925
5926 /* Can only return 0 or -ENOSPC */
5927 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5928                                   struct btrfs_inode *inode)
5929 {
5930         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5931         struct btrfs_root *root = inode->root;
5932         /*
5933          * We always use trans->block_rsv here as we will have reserved space
5934          * for our orphan when starting the transaction, using get_block_rsv()
5935          * here will sometimes make us choose the wrong block rsv as we could be
5936          * doing a reloc inode for a non refcounted root.
5937          */
5938         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5939         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5940
5941         /*
5942          * We need to hold space in order to delete our orphan item once we've
5943          * added it, so this takes the reservation so we can release it later
5944          * when we are truly done with the orphan item.
5945          */
5946         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5947
5948         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5949                         num_bytes, 1);
5950         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5951 }
5952
5953 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5954 {
5955         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5956         struct btrfs_root *root = inode->root;
5957         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5958
5959         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5960                         num_bytes, 0);
5961         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5962 }
5963
5964 /*
5965  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5966  * root: the root of the parent directory
5967  * rsv: block reservation
5968  * items: the number of items that we need do reservation
5969  * qgroup_reserved: used to return the reserved size in qgroup
5970  *
5971  * This function is used to reserve the space for snapshot/subvolume
5972  * creation and deletion. Those operations are different with the
5973  * common file/directory operations, they change two fs/file trees
5974  * and root tree, the number of items that the qgroup reserves is
5975  * different with the free space reservation. So we can not use
5976  * the space reservation mechanism in start_transaction().
5977  */
5978 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5979                                      struct btrfs_block_rsv *rsv,
5980                                      int items,
5981                                      u64 *qgroup_reserved,
5982                                      bool use_global_rsv)
5983 {
5984         u64 num_bytes;
5985         int ret;
5986         struct btrfs_fs_info *fs_info = root->fs_info;
5987         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5988
5989         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5990                 /* One for parent inode, two for dir entries */
5991                 num_bytes = 3 * fs_info->nodesize;
5992                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5993                 if (ret)
5994                         return ret;
5995         } else {
5996                 num_bytes = 0;
5997         }
5998
5999         *qgroup_reserved = num_bytes;
6000
6001         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6002         rsv->space_info = __find_space_info(fs_info,
6003                                             BTRFS_BLOCK_GROUP_METADATA);
6004         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6005                                   BTRFS_RESERVE_FLUSH_ALL);
6006
6007         if (ret == -ENOSPC && use_global_rsv)
6008                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6009
6010         if (ret && *qgroup_reserved)
6011                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6012
6013         return ret;
6014 }
6015
6016 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6017                                       struct btrfs_block_rsv *rsv)
6018 {
6019         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6020 }
6021
6022 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6023                                                  struct btrfs_inode *inode)
6024 {
6025         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6026         u64 reserve_size = 0;
6027         u64 csum_leaves;
6028         unsigned outstanding_extents;
6029
6030         lockdep_assert_held(&inode->lock);
6031         outstanding_extents = inode->outstanding_extents;
6032         if (outstanding_extents)
6033                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6034                                                 outstanding_extents + 1);
6035         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6036                                                  inode->csum_bytes);
6037         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6038                                                        csum_leaves);
6039
6040         spin_lock(&block_rsv->lock);
6041         block_rsv->size = reserve_size;
6042         spin_unlock(&block_rsv->lock);
6043 }
6044
6045 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6046 {
6047         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6048         struct btrfs_root *root = inode->root;
6049         unsigned nr_extents;
6050         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6051         int ret = 0;
6052         bool delalloc_lock = true;
6053
6054         /* If we are a free space inode we need to not flush since we will be in
6055          * the middle of a transaction commit.  We also don't need the delalloc
6056          * mutex since we won't race with anybody.  We need this mostly to make
6057          * lockdep shut its filthy mouth.
6058          *
6059          * If we have a transaction open (can happen if we call truncate_block
6060          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6061          */
6062         if (btrfs_is_free_space_inode(inode)) {
6063                 flush = BTRFS_RESERVE_NO_FLUSH;
6064                 delalloc_lock = false;
6065         } else if (current->journal_info) {
6066                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6067         }
6068
6069         if (flush != BTRFS_RESERVE_NO_FLUSH &&
6070             btrfs_transaction_in_commit(fs_info))
6071                 schedule_timeout(1);
6072
6073         if (delalloc_lock)
6074                 mutex_lock(&inode->delalloc_mutex);
6075
6076         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6077
6078         /* Add our new extents and calculate the new rsv size. */
6079         spin_lock(&inode->lock);
6080         nr_extents = count_max_extents(num_bytes);
6081         btrfs_mod_outstanding_extents(inode, nr_extents);
6082         inode->csum_bytes += num_bytes;
6083         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6084         spin_unlock(&inode->lock);
6085
6086         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6087                 ret = btrfs_qgroup_reserve_meta(root,
6088                                 nr_extents * fs_info->nodesize, true);
6089                 if (ret)
6090                         goto out_fail;
6091         }
6092
6093         ret = btrfs_inode_rsv_refill(inode, flush);
6094         if (unlikely(ret)) {
6095                 btrfs_qgroup_free_meta(root,
6096                                        nr_extents * fs_info->nodesize);
6097                 goto out_fail;
6098         }
6099
6100         if (delalloc_lock)
6101                 mutex_unlock(&inode->delalloc_mutex);
6102         return 0;
6103
6104 out_fail:
6105         spin_lock(&inode->lock);
6106         nr_extents = count_max_extents(num_bytes);
6107         btrfs_mod_outstanding_extents(inode, -nr_extents);
6108         inode->csum_bytes -= num_bytes;
6109         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6110         spin_unlock(&inode->lock);
6111
6112         btrfs_inode_rsv_release(inode);
6113         if (delalloc_lock)
6114                 mutex_unlock(&inode->delalloc_mutex);
6115         return ret;
6116 }
6117
6118 /**
6119  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6120  * @inode: the inode to release the reservation for.
6121  * @num_bytes: the number of bytes we are releasing.
6122  *
6123  * This will release the metadata reservation for an inode.  This can be called
6124  * once we complete IO for a given set of bytes to release their metadata
6125  * reservations, or on error for the same reason.
6126  */
6127 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6128 {
6129         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6130
6131         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6132         spin_lock(&inode->lock);
6133         inode->csum_bytes -= num_bytes;
6134         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6135         spin_unlock(&inode->lock);
6136
6137         if (btrfs_is_testing(fs_info))
6138                 return;
6139
6140         btrfs_inode_rsv_release(inode);
6141 }
6142
6143 /**
6144  * btrfs_delalloc_release_extents - release our outstanding_extents
6145  * @inode: the inode to balance the reservation for.
6146  * @num_bytes: the number of bytes we originally reserved with
6147  *
6148  * When we reserve space we increase outstanding_extents for the extents we may
6149  * add.  Once we've set the range as delalloc or created our ordered extents we
6150  * have outstanding_extents to track the real usage, so we use this to free our
6151  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6152  * with btrfs_delalloc_reserve_metadata.
6153  */
6154 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6155 {
6156         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6157         unsigned num_extents;
6158
6159         spin_lock(&inode->lock);
6160         num_extents = count_max_extents(num_bytes);
6161         btrfs_mod_outstanding_extents(inode, -num_extents);
6162         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6163         spin_unlock(&inode->lock);
6164
6165         if (btrfs_is_testing(fs_info))
6166                 return;
6167
6168         btrfs_inode_rsv_release(inode);
6169 }
6170
6171 /**
6172  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6173  * delalloc
6174  * @inode: inode we're writing to
6175  * @start: start range we are writing to
6176  * @len: how long the range we are writing to
6177  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6178  *            current reservation.
6179  *
6180  * This will do the following things
6181  *
6182  * o reserve space in data space info for num bytes
6183  *   and reserve precious corresponding qgroup space
6184  *   (Done in check_data_free_space)
6185  *
6186  * o reserve space for metadata space, based on the number of outstanding
6187  *   extents and how much csums will be needed
6188  *   also reserve metadata space in a per root over-reserve method.
6189  * o add to the inodes->delalloc_bytes
6190  * o add it to the fs_info's delalloc inodes list.
6191  *   (Above 3 all done in delalloc_reserve_metadata)
6192  *
6193  * Return 0 for success
6194  * Return <0 for error(-ENOSPC or -EQUOT)
6195  */
6196 int btrfs_delalloc_reserve_space(struct inode *inode,
6197                         struct extent_changeset **reserved, u64 start, u64 len)
6198 {
6199         int ret;
6200
6201         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6202         if (ret < 0)
6203                 return ret;
6204         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6205         if (ret < 0)
6206                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6207         return ret;
6208 }
6209
6210 /**
6211  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6212  * @inode: inode we're releasing space for
6213  * @start: start position of the space already reserved
6214  * @len: the len of the space already reserved
6215  * @release_bytes: the len of the space we consumed or didn't use
6216  *
6217  * This function will release the metadata space that was not used and will
6218  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6219  * list if there are no delalloc bytes left.
6220  * Also it will handle the qgroup reserved space.
6221  */
6222 void btrfs_delalloc_release_space(struct inode *inode,
6223                                   struct extent_changeset *reserved,
6224                                   u64 start, u64 len)
6225 {
6226         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6227         btrfs_free_reserved_data_space(inode, reserved, start, len);
6228 }
6229
6230 static int update_block_group(struct btrfs_trans_handle *trans,
6231                               struct btrfs_fs_info *info, u64 bytenr,
6232                               u64 num_bytes, int alloc)
6233 {
6234         struct btrfs_block_group_cache *cache = NULL;
6235         u64 total = num_bytes;
6236         u64 old_val;
6237         u64 byte_in_group;
6238         int factor;
6239
6240         /* block accounting for super block */
6241         spin_lock(&info->delalloc_root_lock);
6242         old_val = btrfs_super_bytes_used(info->super_copy);
6243         if (alloc)
6244                 old_val += num_bytes;
6245         else
6246                 old_val -= num_bytes;
6247         btrfs_set_super_bytes_used(info->super_copy, old_val);
6248         spin_unlock(&info->delalloc_root_lock);
6249
6250         while (total) {
6251                 cache = btrfs_lookup_block_group(info, bytenr);
6252                 if (!cache)
6253                         return -ENOENT;
6254                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6255                                     BTRFS_BLOCK_GROUP_RAID1 |
6256                                     BTRFS_BLOCK_GROUP_RAID10))
6257                         factor = 2;
6258                 else
6259                         factor = 1;
6260                 /*
6261                  * If this block group has free space cache written out, we
6262                  * need to make sure to load it if we are removing space.  This
6263                  * is because we need the unpinning stage to actually add the
6264                  * space back to the block group, otherwise we will leak space.
6265                  */
6266                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6267                         cache_block_group(cache, 1);
6268
6269                 byte_in_group = bytenr - cache->key.objectid;
6270                 WARN_ON(byte_in_group > cache->key.offset);
6271
6272                 spin_lock(&cache->space_info->lock);
6273                 spin_lock(&cache->lock);
6274
6275                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6276                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6277                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6278
6279                 old_val = btrfs_block_group_used(&cache->item);
6280                 num_bytes = min(total, cache->key.offset - byte_in_group);
6281                 if (alloc) {
6282                         old_val += num_bytes;
6283                         btrfs_set_block_group_used(&cache->item, old_val);
6284                         cache->reserved -= num_bytes;
6285                         cache->space_info->bytes_reserved -= num_bytes;
6286                         cache->space_info->bytes_used += num_bytes;
6287                         cache->space_info->disk_used += num_bytes * factor;
6288                         spin_unlock(&cache->lock);
6289                         spin_unlock(&cache->space_info->lock);
6290                 } else {
6291                         old_val -= num_bytes;
6292                         btrfs_set_block_group_used(&cache->item, old_val);
6293                         cache->pinned += num_bytes;
6294                         cache->space_info->bytes_pinned += num_bytes;
6295                         cache->space_info->bytes_used -= num_bytes;
6296                         cache->space_info->disk_used -= num_bytes * factor;
6297                         spin_unlock(&cache->lock);
6298                         spin_unlock(&cache->space_info->lock);
6299
6300                         trace_btrfs_space_reservation(info, "pinned",
6301                                                       cache->space_info->flags,
6302                                                       num_bytes, 1);
6303                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6304                                            num_bytes);
6305                         set_extent_dirty(info->pinned_extents,
6306                                          bytenr, bytenr + num_bytes - 1,
6307                                          GFP_NOFS | __GFP_NOFAIL);
6308                 }
6309
6310                 spin_lock(&trans->transaction->dirty_bgs_lock);
6311                 if (list_empty(&cache->dirty_list)) {
6312                         list_add_tail(&cache->dirty_list,
6313                                       &trans->transaction->dirty_bgs);
6314                                 trans->transaction->num_dirty_bgs++;
6315                         btrfs_get_block_group(cache);
6316                 }
6317                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6318
6319                 /*
6320                  * No longer have used bytes in this block group, queue it for
6321                  * deletion. We do this after adding the block group to the
6322                  * dirty list to avoid races between cleaner kthread and space
6323                  * cache writeout.
6324                  */
6325                 if (!alloc && old_val == 0) {
6326                         spin_lock(&info->unused_bgs_lock);
6327                         if (list_empty(&cache->bg_list)) {
6328                                 btrfs_get_block_group(cache);
6329                                 list_add_tail(&cache->bg_list,
6330                                               &info->unused_bgs);
6331                         }
6332                         spin_unlock(&info->unused_bgs_lock);
6333                 }
6334
6335                 btrfs_put_block_group(cache);
6336                 total -= num_bytes;
6337                 bytenr += num_bytes;
6338         }
6339         return 0;
6340 }
6341
6342 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6343 {
6344         struct btrfs_block_group_cache *cache;
6345         u64 bytenr;
6346
6347         spin_lock(&fs_info->block_group_cache_lock);
6348         bytenr = fs_info->first_logical_byte;
6349         spin_unlock(&fs_info->block_group_cache_lock);
6350
6351         if (bytenr < (u64)-1)
6352                 return bytenr;
6353
6354         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6355         if (!cache)
6356                 return 0;
6357
6358         bytenr = cache->key.objectid;
6359         btrfs_put_block_group(cache);
6360
6361         return bytenr;
6362 }
6363
6364 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6365                            struct btrfs_block_group_cache *cache,
6366                            u64 bytenr, u64 num_bytes, int reserved)
6367 {
6368         spin_lock(&cache->space_info->lock);
6369         spin_lock(&cache->lock);
6370         cache->pinned += num_bytes;
6371         cache->space_info->bytes_pinned += num_bytes;
6372         if (reserved) {
6373                 cache->reserved -= num_bytes;
6374                 cache->space_info->bytes_reserved -= num_bytes;
6375         }
6376         spin_unlock(&cache->lock);
6377         spin_unlock(&cache->space_info->lock);
6378
6379         trace_btrfs_space_reservation(fs_info, "pinned",
6380                                       cache->space_info->flags, num_bytes, 1);
6381         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6382         set_extent_dirty(fs_info->pinned_extents, bytenr,
6383                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6384         return 0;
6385 }
6386
6387 /*
6388  * this function must be called within transaction
6389  */
6390 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6391                      u64 bytenr, u64 num_bytes, int reserved)
6392 {
6393         struct btrfs_block_group_cache *cache;
6394
6395         cache = btrfs_lookup_block_group(fs_info, bytenr);
6396         BUG_ON(!cache); /* Logic error */
6397
6398         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6399
6400         btrfs_put_block_group(cache);
6401         return 0;
6402 }
6403
6404 /*
6405  * this function must be called within transaction
6406  */
6407 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6408                                     u64 bytenr, u64 num_bytes)
6409 {
6410         struct btrfs_block_group_cache *cache;
6411         int ret;
6412
6413         cache = btrfs_lookup_block_group(fs_info, bytenr);
6414         if (!cache)
6415                 return -EINVAL;
6416
6417         /*
6418          * pull in the free space cache (if any) so that our pin
6419          * removes the free space from the cache.  We have load_only set
6420          * to one because the slow code to read in the free extents does check
6421          * the pinned extents.
6422          */
6423         cache_block_group(cache, 1);
6424
6425         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6426
6427         /* remove us from the free space cache (if we're there at all) */
6428         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6429         btrfs_put_block_group(cache);
6430         return ret;
6431 }
6432
6433 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6434                                    u64 start, u64 num_bytes)
6435 {
6436         int ret;
6437         struct btrfs_block_group_cache *block_group;
6438         struct btrfs_caching_control *caching_ctl;
6439
6440         block_group = btrfs_lookup_block_group(fs_info, start);
6441         if (!block_group)
6442                 return -EINVAL;
6443
6444         cache_block_group(block_group, 0);
6445         caching_ctl = get_caching_control(block_group);
6446
6447         if (!caching_ctl) {
6448                 /* Logic error */
6449                 BUG_ON(!block_group_cache_done(block_group));
6450                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6451         } else {
6452                 mutex_lock(&caching_ctl->mutex);
6453
6454                 if (start >= caching_ctl->progress) {
6455                         ret = add_excluded_extent(fs_info, start, num_bytes);
6456                 } else if (start + num_bytes <= caching_ctl->progress) {
6457                         ret = btrfs_remove_free_space(block_group,
6458                                                       start, num_bytes);
6459                 } else {
6460                         num_bytes = caching_ctl->progress - start;
6461                         ret = btrfs_remove_free_space(block_group,
6462                                                       start, num_bytes);
6463                         if (ret)
6464                                 goto out_lock;
6465
6466                         num_bytes = (start + num_bytes) -
6467                                 caching_ctl->progress;
6468                         start = caching_ctl->progress;
6469                         ret = add_excluded_extent(fs_info, start, num_bytes);
6470                 }
6471 out_lock:
6472                 mutex_unlock(&caching_ctl->mutex);
6473                 put_caching_control(caching_ctl);
6474         }
6475         btrfs_put_block_group(block_group);
6476         return ret;
6477 }
6478
6479 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6480                                  struct extent_buffer *eb)
6481 {
6482         struct btrfs_file_extent_item *item;
6483         struct btrfs_key key;
6484         int found_type;
6485         int i;
6486
6487         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6488                 return 0;
6489
6490         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6491                 btrfs_item_key_to_cpu(eb, &key, i);
6492                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6493                         continue;
6494                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6495                 found_type = btrfs_file_extent_type(eb, item);
6496                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6497                         continue;
6498                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6499                         continue;
6500                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6501                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6502                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6503         }
6504
6505         return 0;
6506 }
6507
6508 static void
6509 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6510 {
6511         atomic_inc(&bg->reservations);
6512 }
6513
6514 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6515                                         const u64 start)
6516 {
6517         struct btrfs_block_group_cache *bg;
6518
6519         bg = btrfs_lookup_block_group(fs_info, start);
6520         ASSERT(bg);
6521         if (atomic_dec_and_test(&bg->reservations))
6522                 wake_up_atomic_t(&bg->reservations);
6523         btrfs_put_block_group(bg);
6524 }
6525
6526 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6527 {
6528         struct btrfs_space_info *space_info = bg->space_info;
6529
6530         ASSERT(bg->ro);
6531
6532         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6533                 return;
6534
6535         /*
6536          * Our block group is read only but before we set it to read only,
6537          * some task might have had allocated an extent from it already, but it
6538          * has not yet created a respective ordered extent (and added it to a
6539          * root's list of ordered extents).
6540          * Therefore wait for any task currently allocating extents, since the
6541          * block group's reservations counter is incremented while a read lock
6542          * on the groups' semaphore is held and decremented after releasing
6543          * the read access on that semaphore and creating the ordered extent.
6544          */
6545         down_write(&space_info->groups_sem);
6546         up_write(&space_info->groups_sem);
6547
6548         wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6549                          TASK_UNINTERRUPTIBLE);
6550 }
6551
6552 /**
6553  * btrfs_add_reserved_bytes - update the block_group and space info counters
6554  * @cache:      The cache we are manipulating
6555  * @ram_bytes:  The number of bytes of file content, and will be same to
6556  *              @num_bytes except for the compress path.
6557  * @num_bytes:  The number of bytes in question
6558  * @delalloc:   The blocks are allocated for the delalloc write
6559  *
6560  * This is called by the allocator when it reserves space. If this is a
6561  * reservation and the block group has become read only we cannot make the
6562  * reservation and return -EAGAIN, otherwise this function always succeeds.
6563  */
6564 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6565                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6566 {
6567         struct btrfs_space_info *space_info = cache->space_info;
6568         int ret = 0;
6569
6570         spin_lock(&space_info->lock);
6571         spin_lock(&cache->lock);
6572         if (cache->ro) {
6573                 ret = -EAGAIN;
6574         } else {
6575                 cache->reserved += num_bytes;
6576                 space_info->bytes_reserved += num_bytes;
6577
6578                 trace_btrfs_space_reservation(cache->fs_info,
6579                                 "space_info", space_info->flags,
6580                                 ram_bytes, 0);
6581                 space_info->bytes_may_use -= ram_bytes;
6582                 if (delalloc)
6583                         cache->delalloc_bytes += num_bytes;
6584         }
6585         spin_unlock(&cache->lock);
6586         spin_unlock(&space_info->lock);
6587         return ret;
6588 }
6589
6590 /**
6591  * btrfs_free_reserved_bytes - update the block_group and space info counters
6592  * @cache:      The cache we are manipulating
6593  * @num_bytes:  The number of bytes in question
6594  * @delalloc:   The blocks are allocated for the delalloc write
6595  *
6596  * This is called by somebody who is freeing space that was never actually used
6597  * on disk.  For example if you reserve some space for a new leaf in transaction
6598  * A and before transaction A commits you free that leaf, you call this with
6599  * reserve set to 0 in order to clear the reservation.
6600  */
6601
6602 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6603                                      u64 num_bytes, int delalloc)
6604 {
6605         struct btrfs_space_info *space_info = cache->space_info;
6606         int ret = 0;
6607
6608         spin_lock(&space_info->lock);
6609         spin_lock(&cache->lock);
6610         if (cache->ro)
6611                 space_info->bytes_readonly += num_bytes;
6612         cache->reserved -= num_bytes;
6613         space_info->bytes_reserved -= num_bytes;
6614
6615         if (delalloc)
6616                 cache->delalloc_bytes -= num_bytes;
6617         spin_unlock(&cache->lock);
6618         spin_unlock(&space_info->lock);
6619         return ret;
6620 }
6621 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6622 {
6623         struct btrfs_caching_control *next;
6624         struct btrfs_caching_control *caching_ctl;
6625         struct btrfs_block_group_cache *cache;
6626
6627         down_write(&fs_info->commit_root_sem);
6628
6629         list_for_each_entry_safe(caching_ctl, next,
6630                                  &fs_info->caching_block_groups, list) {
6631                 cache = caching_ctl->block_group;
6632                 if (block_group_cache_done(cache)) {
6633                         cache->last_byte_to_unpin = (u64)-1;
6634                         list_del_init(&caching_ctl->list);
6635                         put_caching_control(caching_ctl);
6636                 } else {
6637                         cache->last_byte_to_unpin = caching_ctl->progress;
6638                 }
6639         }
6640
6641         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6642                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6643         else
6644                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6645
6646         up_write(&fs_info->commit_root_sem);
6647
6648         update_global_block_rsv(fs_info);
6649 }
6650
6651 /*
6652  * Returns the free cluster for the given space info and sets empty_cluster to
6653  * what it should be based on the mount options.
6654  */
6655 static struct btrfs_free_cluster *
6656 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6657                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6658 {
6659         struct btrfs_free_cluster *ret = NULL;
6660
6661         *empty_cluster = 0;
6662         if (btrfs_mixed_space_info(space_info))
6663                 return ret;
6664
6665         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6666                 ret = &fs_info->meta_alloc_cluster;
6667                 if (btrfs_test_opt(fs_info, SSD))
6668                         *empty_cluster = SZ_2M;
6669                 else
6670                         *empty_cluster = SZ_64K;
6671         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6672                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6673                 *empty_cluster = SZ_2M;
6674                 ret = &fs_info->data_alloc_cluster;
6675         }
6676
6677         return ret;
6678 }
6679
6680 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6681                               u64 start, u64 end,
6682                               const bool return_free_space)
6683 {
6684         struct btrfs_block_group_cache *cache = NULL;
6685         struct btrfs_space_info *space_info;
6686         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6687         struct btrfs_free_cluster *cluster = NULL;
6688         u64 len;
6689         u64 total_unpinned = 0;
6690         u64 empty_cluster = 0;
6691         bool readonly;
6692
6693         while (start <= end) {
6694                 readonly = false;
6695                 if (!cache ||
6696                     start >= cache->key.objectid + cache->key.offset) {
6697                         if (cache)
6698                                 btrfs_put_block_group(cache);
6699                         total_unpinned = 0;
6700                         cache = btrfs_lookup_block_group(fs_info, start);
6701                         BUG_ON(!cache); /* Logic error */
6702
6703                         cluster = fetch_cluster_info(fs_info,
6704                                                      cache->space_info,
6705                                                      &empty_cluster);
6706                         empty_cluster <<= 1;
6707                 }
6708
6709                 len = cache->key.objectid + cache->key.offset - start;
6710                 len = min(len, end + 1 - start);
6711
6712                 if (start < cache->last_byte_to_unpin) {
6713                         len = min(len, cache->last_byte_to_unpin - start);
6714                         if (return_free_space)
6715                                 btrfs_add_free_space(cache, start, len);
6716                 }
6717
6718                 start += len;
6719                 total_unpinned += len;
6720                 space_info = cache->space_info;
6721
6722                 /*
6723                  * If this space cluster has been marked as fragmented and we've
6724                  * unpinned enough in this block group to potentially allow a
6725                  * cluster to be created inside of it go ahead and clear the
6726                  * fragmented check.
6727                  */
6728                 if (cluster && cluster->fragmented &&
6729                     total_unpinned > empty_cluster) {
6730                         spin_lock(&cluster->lock);
6731                         cluster->fragmented = 0;
6732                         spin_unlock(&cluster->lock);
6733                 }
6734
6735                 spin_lock(&space_info->lock);
6736                 spin_lock(&cache->lock);
6737                 cache->pinned -= len;
6738                 space_info->bytes_pinned -= len;
6739
6740                 trace_btrfs_space_reservation(fs_info, "pinned",
6741                                               space_info->flags, len, 0);
6742                 space_info->max_extent_size = 0;
6743                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6744                 if (cache->ro) {
6745                         space_info->bytes_readonly += len;
6746                         readonly = true;
6747                 }
6748                 spin_unlock(&cache->lock);
6749                 if (!readonly && return_free_space &&
6750                     global_rsv->space_info == space_info) {
6751                         u64 to_add = len;
6752
6753                         spin_lock(&global_rsv->lock);
6754                         if (!global_rsv->full) {
6755                                 to_add = min(len, global_rsv->size -
6756                                              global_rsv->reserved);
6757                                 global_rsv->reserved += to_add;
6758                                 space_info->bytes_may_use += to_add;
6759                                 if (global_rsv->reserved >= global_rsv->size)
6760                                         global_rsv->full = 1;
6761                                 trace_btrfs_space_reservation(fs_info,
6762                                                               "space_info",
6763                                                               space_info->flags,
6764                                                               to_add, 1);
6765                                 len -= to_add;
6766                         }
6767                         spin_unlock(&global_rsv->lock);
6768                         /* Add to any tickets we may have */
6769                         if (len)
6770                                 space_info_add_new_bytes(fs_info, space_info,
6771                                                          len);
6772                 }
6773                 spin_unlock(&space_info->lock);
6774         }
6775
6776         if (cache)
6777                 btrfs_put_block_group(cache);
6778         return 0;
6779 }
6780
6781 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6782                                struct btrfs_fs_info *fs_info)
6783 {
6784         struct btrfs_block_group_cache *block_group, *tmp;
6785         struct list_head *deleted_bgs;
6786         struct extent_io_tree *unpin;
6787         u64 start;
6788         u64 end;
6789         int ret;
6790
6791         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6792                 unpin = &fs_info->freed_extents[1];
6793         else
6794                 unpin = &fs_info->freed_extents[0];
6795
6796         while (!trans->aborted) {
6797                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6798                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6799                                             EXTENT_DIRTY, NULL);
6800                 if (ret) {
6801                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6802                         break;
6803                 }
6804
6805                 if (btrfs_test_opt(fs_info, DISCARD))
6806                         ret = btrfs_discard_extent(fs_info, start,
6807                                                    end + 1 - start, NULL);
6808
6809                 clear_extent_dirty(unpin, start, end);
6810                 unpin_extent_range(fs_info, start, end, true);
6811                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6812                 cond_resched();
6813         }
6814
6815         /*
6816          * Transaction is finished.  We don't need the lock anymore.  We
6817          * do need to clean up the block groups in case of a transaction
6818          * abort.
6819          */
6820         deleted_bgs = &trans->transaction->deleted_bgs;
6821         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6822                 u64 trimmed = 0;
6823
6824                 ret = -EROFS;
6825                 if (!trans->aborted)
6826                         ret = btrfs_discard_extent(fs_info,
6827                                                    block_group->key.objectid,
6828                                                    block_group->key.offset,
6829                                                    &trimmed);
6830
6831                 list_del_init(&block_group->bg_list);
6832                 btrfs_put_block_group_trimming(block_group);
6833                 btrfs_put_block_group(block_group);
6834
6835                 if (ret) {
6836                         const char *errstr = btrfs_decode_error(ret);
6837                         btrfs_warn(fs_info,
6838                            "discard failed while removing blockgroup: errno=%d %s",
6839                                    ret, errstr);
6840                 }
6841         }
6842
6843         return 0;
6844 }
6845
6846 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6847                                 struct btrfs_fs_info *info,
6848                                 struct btrfs_delayed_ref_node *node, u64 parent,
6849                                 u64 root_objectid, u64 owner_objectid,
6850                                 u64 owner_offset, int refs_to_drop,
6851                                 struct btrfs_delayed_extent_op *extent_op)
6852 {
6853         struct btrfs_key key;
6854         struct btrfs_path *path;
6855         struct btrfs_root *extent_root = info->extent_root;
6856         struct extent_buffer *leaf;
6857         struct btrfs_extent_item *ei;
6858         struct btrfs_extent_inline_ref *iref;
6859         int ret;
6860         int is_data;
6861         int extent_slot = 0;
6862         int found_extent = 0;
6863         int num_to_del = 1;
6864         u32 item_size;
6865         u64 refs;
6866         u64 bytenr = node->bytenr;
6867         u64 num_bytes = node->num_bytes;
6868         int last_ref = 0;
6869         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6870
6871         path = btrfs_alloc_path();
6872         if (!path)
6873                 return -ENOMEM;
6874
6875         path->reada = READA_FORWARD;
6876         path->leave_spinning = 1;
6877
6878         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6879         BUG_ON(!is_data && refs_to_drop != 1);
6880
6881         if (is_data)
6882                 skinny_metadata = false;
6883
6884         ret = lookup_extent_backref(trans, info, path, &iref,
6885                                     bytenr, num_bytes, parent,
6886                                     root_objectid, owner_objectid,
6887                                     owner_offset);
6888         if (ret == 0) {
6889                 extent_slot = path->slots[0];
6890                 while (extent_slot >= 0) {
6891                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6892                                               extent_slot);
6893                         if (key.objectid != bytenr)
6894                                 break;
6895                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6896                             key.offset == num_bytes) {
6897                                 found_extent = 1;
6898                                 break;
6899                         }
6900                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6901                             key.offset == owner_objectid) {
6902                                 found_extent = 1;
6903                                 break;
6904                         }
6905                         if (path->slots[0] - extent_slot > 5)
6906                                 break;
6907                         extent_slot--;
6908                 }
6909 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6910                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6911                 if (found_extent && item_size < sizeof(*ei))
6912                         found_extent = 0;
6913 #endif
6914                 if (!found_extent) {
6915                         BUG_ON(iref);
6916                         ret = remove_extent_backref(trans, info, path, NULL,
6917                                                     refs_to_drop,
6918                                                     is_data, &last_ref);
6919                         if (ret) {
6920                                 btrfs_abort_transaction(trans, ret);
6921                                 goto out;
6922                         }
6923                         btrfs_release_path(path);
6924                         path->leave_spinning = 1;
6925
6926                         key.objectid = bytenr;
6927                         key.type = BTRFS_EXTENT_ITEM_KEY;
6928                         key.offset = num_bytes;
6929
6930                         if (!is_data && skinny_metadata) {
6931                                 key.type = BTRFS_METADATA_ITEM_KEY;
6932                                 key.offset = owner_objectid;
6933                         }
6934
6935                         ret = btrfs_search_slot(trans, extent_root,
6936                                                 &key, path, -1, 1);
6937                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6938                                 /*
6939                                  * Couldn't find our skinny metadata item,
6940                                  * see if we have ye olde extent item.
6941                                  */
6942                                 path->slots[0]--;
6943                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6944                                                       path->slots[0]);
6945                                 if (key.objectid == bytenr &&
6946                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6947                                     key.offset == num_bytes)
6948                                         ret = 0;
6949                         }
6950
6951                         if (ret > 0 && skinny_metadata) {
6952                                 skinny_metadata = false;
6953                                 key.objectid = bytenr;
6954                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6955                                 key.offset = num_bytes;
6956                                 btrfs_release_path(path);
6957                                 ret = btrfs_search_slot(trans, extent_root,
6958                                                         &key, path, -1, 1);
6959                         }
6960
6961                         if (ret) {
6962                                 btrfs_err(info,
6963                                           "umm, got %d back from search, was looking for %llu",
6964                                           ret, bytenr);
6965                                 if (ret > 0)
6966                                         btrfs_print_leaf(path->nodes[0]);
6967                         }
6968                         if (ret < 0) {
6969                                 btrfs_abort_transaction(trans, ret);
6970                                 goto out;
6971                         }
6972                         extent_slot = path->slots[0];
6973                 }
6974         } else if (WARN_ON(ret == -ENOENT)) {
6975                 btrfs_print_leaf(path->nodes[0]);
6976                 btrfs_err(info,
6977                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6978                         bytenr, parent, root_objectid, owner_objectid,
6979                         owner_offset);
6980                 btrfs_abort_transaction(trans, ret);
6981                 goto out;
6982         } else {
6983                 btrfs_abort_transaction(trans, ret);
6984                 goto out;
6985         }
6986
6987         leaf = path->nodes[0];
6988         item_size = btrfs_item_size_nr(leaf, extent_slot);
6989 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6990         if (item_size < sizeof(*ei)) {
6991                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6992                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6993                                              0);
6994                 if (ret < 0) {
6995                         btrfs_abort_transaction(trans, ret);
6996                         goto out;
6997                 }
6998
6999                 btrfs_release_path(path);
7000                 path->leave_spinning = 1;
7001
7002                 key.objectid = bytenr;
7003                 key.type = BTRFS_EXTENT_ITEM_KEY;
7004                 key.offset = num_bytes;
7005
7006                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7007                                         -1, 1);
7008                 if (ret) {
7009                         btrfs_err(info,
7010                                   "umm, got %d back from search, was looking for %llu",
7011                                 ret, bytenr);
7012                         btrfs_print_leaf(path->nodes[0]);
7013                 }
7014                 if (ret < 0) {
7015                         btrfs_abort_transaction(trans, ret);
7016                         goto out;
7017                 }
7018
7019                 extent_slot = path->slots[0];
7020                 leaf = path->nodes[0];
7021                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7022         }
7023 #endif
7024         BUG_ON(item_size < sizeof(*ei));
7025         ei = btrfs_item_ptr(leaf, extent_slot,
7026                             struct btrfs_extent_item);
7027         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7028             key.type == BTRFS_EXTENT_ITEM_KEY) {
7029                 struct btrfs_tree_block_info *bi;
7030                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7031                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7032                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7033         }
7034
7035         refs = btrfs_extent_refs(leaf, ei);
7036         if (refs < refs_to_drop) {
7037                 btrfs_err(info,
7038                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7039                           refs_to_drop, refs, bytenr);
7040                 ret = -EINVAL;
7041                 btrfs_abort_transaction(trans, ret);
7042                 goto out;
7043         }
7044         refs -= refs_to_drop;
7045
7046         if (refs > 0) {
7047                 if (extent_op)
7048                         __run_delayed_extent_op(extent_op, leaf, ei);
7049                 /*
7050                  * In the case of inline back ref, reference count will
7051                  * be updated by remove_extent_backref
7052                  */
7053                 if (iref) {
7054                         BUG_ON(!found_extent);
7055                 } else {
7056                         btrfs_set_extent_refs(leaf, ei, refs);
7057                         btrfs_mark_buffer_dirty(leaf);
7058                 }
7059                 if (found_extent) {
7060                         ret = remove_extent_backref(trans, info, path,
7061                                                     iref, refs_to_drop,
7062                                                     is_data, &last_ref);
7063                         if (ret) {
7064                                 btrfs_abort_transaction(trans, ret);
7065                                 goto out;
7066                         }
7067                 }
7068         } else {
7069                 if (found_extent) {
7070                         BUG_ON(is_data && refs_to_drop !=
7071                                extent_data_ref_count(path, iref));
7072                         if (iref) {
7073                                 BUG_ON(path->slots[0] != extent_slot);
7074                         } else {
7075                                 BUG_ON(path->slots[0] != extent_slot + 1);
7076                                 path->slots[0] = extent_slot;
7077                                 num_to_del = 2;
7078                         }
7079                 }
7080
7081                 last_ref = 1;
7082                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7083                                       num_to_del);
7084                 if (ret) {
7085                         btrfs_abort_transaction(trans, ret);
7086                         goto out;
7087                 }
7088                 btrfs_release_path(path);
7089
7090                 if (is_data) {
7091                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7092                         if (ret) {
7093                                 btrfs_abort_transaction(trans, ret);
7094                                 goto out;
7095                         }
7096                 }
7097
7098                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7099                 if (ret) {
7100                         btrfs_abort_transaction(trans, ret);
7101                         goto out;
7102                 }
7103
7104                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7105                 if (ret) {
7106                         btrfs_abort_transaction(trans, ret);
7107                         goto out;
7108                 }
7109         }
7110         btrfs_release_path(path);
7111
7112 out:
7113         btrfs_free_path(path);
7114         return ret;
7115 }
7116
7117 /*
7118  * when we free an block, it is possible (and likely) that we free the last
7119  * delayed ref for that extent as well.  This searches the delayed ref tree for
7120  * a given extent, and if there are no other delayed refs to be processed, it
7121  * removes it from the tree.
7122  */
7123 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7124                                       u64 bytenr)
7125 {
7126         struct btrfs_delayed_ref_head *head;
7127         struct btrfs_delayed_ref_root *delayed_refs;
7128         int ret = 0;
7129
7130         delayed_refs = &trans->transaction->delayed_refs;
7131         spin_lock(&delayed_refs->lock);
7132         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7133         if (!head)
7134                 goto out_delayed_unlock;
7135
7136         spin_lock(&head->lock);
7137         if (!RB_EMPTY_ROOT(&head->ref_tree))
7138                 goto out;
7139
7140         if (head->extent_op) {
7141                 if (!head->must_insert_reserved)
7142                         goto out;
7143                 btrfs_free_delayed_extent_op(head->extent_op);
7144                 head->extent_op = NULL;
7145         }
7146
7147         /*
7148          * waiting for the lock here would deadlock.  If someone else has it
7149          * locked they are already in the process of dropping it anyway
7150          */
7151         if (!mutex_trylock(&head->mutex))
7152                 goto out;
7153
7154         /*
7155          * at this point we have a head with no other entries.  Go
7156          * ahead and process it.
7157          */
7158         rb_erase(&head->href_node, &delayed_refs->href_root);
7159         RB_CLEAR_NODE(&head->href_node);
7160         atomic_dec(&delayed_refs->num_entries);
7161
7162         /*
7163          * we don't take a ref on the node because we're removing it from the
7164          * tree, so we just steal the ref the tree was holding.
7165          */
7166         delayed_refs->num_heads--;
7167         if (head->processing == 0)
7168                 delayed_refs->num_heads_ready--;
7169         head->processing = 0;
7170         spin_unlock(&head->lock);
7171         spin_unlock(&delayed_refs->lock);
7172
7173         BUG_ON(head->extent_op);
7174         if (head->must_insert_reserved)
7175                 ret = 1;
7176
7177         mutex_unlock(&head->mutex);
7178         btrfs_put_delayed_ref_head(head);
7179         return ret;
7180 out:
7181         spin_unlock(&head->lock);
7182
7183 out_delayed_unlock:
7184         spin_unlock(&delayed_refs->lock);
7185         return 0;
7186 }
7187
7188 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7189                            struct btrfs_root *root,
7190                            struct extent_buffer *buf,
7191                            u64 parent, int last_ref)
7192 {
7193         struct btrfs_fs_info *fs_info = root->fs_info;
7194         int pin = 1;
7195         int ret;
7196
7197         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7198                 int old_ref_mod, new_ref_mod;
7199
7200                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7201                                    root->root_key.objectid,
7202                                    btrfs_header_level(buf), 0,
7203                                    BTRFS_DROP_DELAYED_REF);
7204                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7205                                                  buf->len, parent,
7206                                                  root->root_key.objectid,
7207                                                  btrfs_header_level(buf),
7208                                                  BTRFS_DROP_DELAYED_REF, NULL,
7209                                                  &old_ref_mod, &new_ref_mod);
7210                 BUG_ON(ret); /* -ENOMEM */
7211                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7212         }
7213
7214         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7215                 struct btrfs_block_group_cache *cache;
7216
7217                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7218                         ret = check_ref_cleanup(trans, buf->start);
7219                         if (!ret)
7220                                 goto out;
7221                 }
7222
7223                 pin = 0;
7224                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7225
7226                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7227                         pin_down_extent(fs_info, cache, buf->start,
7228                                         buf->len, 1);
7229                         btrfs_put_block_group(cache);
7230                         goto out;
7231                 }
7232
7233                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7234
7235                 btrfs_add_free_space(cache, buf->start, buf->len);
7236                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7237                 btrfs_put_block_group(cache);
7238                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7239         }
7240 out:
7241         if (pin)
7242                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7243                                  root->root_key.objectid);
7244
7245         if (last_ref) {
7246                 /*
7247                  * Deleting the buffer, clear the corrupt flag since it doesn't
7248                  * matter anymore.
7249                  */
7250                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7251         }
7252 }
7253
7254 /* Can return -ENOMEM */
7255 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7256                       struct btrfs_root *root,
7257                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7258                       u64 owner, u64 offset)
7259 {
7260         struct btrfs_fs_info *fs_info = root->fs_info;
7261         int old_ref_mod, new_ref_mod;
7262         int ret;
7263
7264         if (btrfs_is_testing(fs_info))
7265                 return 0;
7266
7267         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7268                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7269                                    root_objectid, owner, offset,
7270                                    BTRFS_DROP_DELAYED_REF);
7271
7272         /*
7273          * tree log blocks never actually go into the extent allocation
7274          * tree, just update pinning info and exit early.
7275          */
7276         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7277                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7278                 /* unlocks the pinned mutex */
7279                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7280                 old_ref_mod = new_ref_mod = 0;
7281                 ret = 0;
7282         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7283                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7284                                                  num_bytes, parent,
7285                                                  root_objectid, (int)owner,
7286                                                  BTRFS_DROP_DELAYED_REF, NULL,
7287                                                  &old_ref_mod, &new_ref_mod);
7288         } else {
7289                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7290                                                  num_bytes, parent,
7291                                                  root_objectid, owner, offset,
7292                                                  0, BTRFS_DROP_DELAYED_REF,
7293                                                  &old_ref_mod, &new_ref_mod);
7294         }
7295
7296         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7297                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7298
7299         return ret;
7300 }
7301
7302 /*
7303  * when we wait for progress in the block group caching, its because
7304  * our allocation attempt failed at least once.  So, we must sleep
7305  * and let some progress happen before we try again.
7306  *
7307  * This function will sleep at least once waiting for new free space to
7308  * show up, and then it will check the block group free space numbers
7309  * for our min num_bytes.  Another option is to have it go ahead
7310  * and look in the rbtree for a free extent of a given size, but this
7311  * is a good start.
7312  *
7313  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7314  * any of the information in this block group.
7315  */
7316 static noinline void
7317 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7318                                 u64 num_bytes)
7319 {
7320         struct btrfs_caching_control *caching_ctl;
7321
7322         caching_ctl = get_caching_control(cache);
7323         if (!caching_ctl)
7324                 return;
7325
7326         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7327                    (cache->free_space_ctl->free_space >= num_bytes));
7328
7329         put_caching_control(caching_ctl);
7330 }
7331
7332 static noinline int
7333 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7334 {
7335         struct btrfs_caching_control *caching_ctl;
7336         int ret = 0;
7337
7338         caching_ctl = get_caching_control(cache);
7339         if (!caching_ctl)
7340                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7341
7342         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7343         if (cache->cached == BTRFS_CACHE_ERROR)
7344                 ret = -EIO;
7345         put_caching_control(caching_ctl);
7346         return ret;
7347 }
7348
7349 int __get_raid_index(u64 flags)
7350 {
7351         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7352                 return BTRFS_RAID_RAID10;
7353         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7354                 return BTRFS_RAID_RAID1;
7355         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7356                 return BTRFS_RAID_DUP;
7357         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7358                 return BTRFS_RAID_RAID0;
7359         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7360                 return BTRFS_RAID_RAID5;
7361         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7362                 return BTRFS_RAID_RAID6;
7363
7364         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7365 }
7366
7367 int get_block_group_index(struct btrfs_block_group_cache *cache)
7368 {
7369         return __get_raid_index(cache->flags);
7370 }
7371
7372 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7373         [BTRFS_RAID_RAID10]     = "raid10",
7374         [BTRFS_RAID_RAID1]      = "raid1",
7375         [BTRFS_RAID_DUP]        = "dup",
7376         [BTRFS_RAID_RAID0]      = "raid0",
7377         [BTRFS_RAID_SINGLE]     = "single",
7378         [BTRFS_RAID_RAID5]      = "raid5",
7379         [BTRFS_RAID_RAID6]      = "raid6",
7380 };
7381
7382 static const char *get_raid_name(enum btrfs_raid_types type)
7383 {
7384         if (type >= BTRFS_NR_RAID_TYPES)
7385                 return NULL;
7386
7387         return btrfs_raid_type_names[type];
7388 }
7389
7390 enum btrfs_loop_type {
7391         LOOP_CACHING_NOWAIT = 0,
7392         LOOP_CACHING_WAIT = 1,
7393         LOOP_ALLOC_CHUNK = 2,
7394         LOOP_NO_EMPTY_SIZE = 3,
7395 };
7396
7397 static inline void
7398 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7399                        int delalloc)
7400 {
7401         if (delalloc)
7402                 down_read(&cache->data_rwsem);
7403 }
7404
7405 static inline void
7406 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7407                        int delalloc)
7408 {
7409         btrfs_get_block_group(cache);
7410         if (delalloc)
7411                 down_read(&cache->data_rwsem);
7412 }
7413
7414 static struct btrfs_block_group_cache *
7415 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7416                    struct btrfs_free_cluster *cluster,
7417                    int delalloc)
7418 {
7419         struct btrfs_block_group_cache *used_bg = NULL;
7420
7421         spin_lock(&cluster->refill_lock);
7422         while (1) {
7423                 used_bg = cluster->block_group;
7424                 if (!used_bg)
7425                         return NULL;
7426
7427                 if (used_bg == block_group)
7428                         return used_bg;
7429
7430                 btrfs_get_block_group(used_bg);
7431
7432                 if (!delalloc)
7433                         return used_bg;
7434
7435                 if (down_read_trylock(&used_bg->data_rwsem))
7436                         return used_bg;
7437
7438                 spin_unlock(&cluster->refill_lock);
7439
7440                 /* We should only have one-level nested. */
7441                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7442
7443                 spin_lock(&cluster->refill_lock);
7444                 if (used_bg == cluster->block_group)
7445                         return used_bg;
7446
7447                 up_read(&used_bg->data_rwsem);
7448                 btrfs_put_block_group(used_bg);
7449         }
7450 }
7451
7452 static inline void
7453 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7454                          int delalloc)
7455 {
7456         if (delalloc)
7457                 up_read(&cache->data_rwsem);
7458         btrfs_put_block_group(cache);
7459 }
7460
7461 /*
7462  * walks the btree of allocated extents and find a hole of a given size.
7463  * The key ins is changed to record the hole:
7464  * ins->objectid == start position
7465  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7466  * ins->offset == the size of the hole.
7467  * Any available blocks before search_start are skipped.
7468  *
7469  * If there is no suitable free space, we will record the max size of
7470  * the free space extent currently.
7471  */
7472 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7473                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7474                                 u64 hint_byte, struct btrfs_key *ins,
7475                                 u64 flags, int delalloc)
7476 {
7477         int ret = 0;
7478         struct btrfs_root *root = fs_info->extent_root;
7479         struct btrfs_free_cluster *last_ptr = NULL;
7480         struct btrfs_block_group_cache *block_group = NULL;
7481         u64 search_start = 0;
7482         u64 max_extent_size = 0;
7483         u64 empty_cluster = 0;
7484         struct btrfs_space_info *space_info;
7485         int loop = 0;
7486         int index = __get_raid_index(flags);
7487         bool failed_cluster_refill = false;
7488         bool failed_alloc = false;
7489         bool use_cluster = true;
7490         bool have_caching_bg = false;
7491         bool orig_have_caching_bg = false;
7492         bool full_search = false;
7493
7494         WARN_ON(num_bytes < fs_info->sectorsize);
7495         ins->type = BTRFS_EXTENT_ITEM_KEY;
7496         ins->objectid = 0;
7497         ins->offset = 0;
7498
7499         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7500
7501         space_info = __find_space_info(fs_info, flags);
7502         if (!space_info) {
7503                 btrfs_err(fs_info, "No space info for %llu", flags);
7504                 return -ENOSPC;
7505         }
7506
7507         /*
7508          * If our free space is heavily fragmented we may not be able to make
7509          * big contiguous allocations, so instead of doing the expensive search
7510          * for free space, simply return ENOSPC with our max_extent_size so we
7511          * can go ahead and search for a more manageable chunk.
7512          *
7513          * If our max_extent_size is large enough for our allocation simply
7514          * disable clustering since we will likely not be able to find enough
7515          * space to create a cluster and induce latency trying.
7516          */
7517         if (unlikely(space_info->max_extent_size)) {
7518                 spin_lock(&space_info->lock);
7519                 if (space_info->max_extent_size &&
7520                     num_bytes > space_info->max_extent_size) {
7521                         ins->offset = space_info->max_extent_size;
7522                         spin_unlock(&space_info->lock);
7523                         return -ENOSPC;
7524                 } else if (space_info->max_extent_size) {
7525                         use_cluster = false;
7526                 }
7527                 spin_unlock(&space_info->lock);
7528         }
7529
7530         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7531         if (last_ptr) {
7532                 spin_lock(&last_ptr->lock);
7533                 if (last_ptr->block_group)
7534                         hint_byte = last_ptr->window_start;
7535                 if (last_ptr->fragmented) {
7536                         /*
7537                          * We still set window_start so we can keep track of the
7538                          * last place we found an allocation to try and save
7539                          * some time.
7540                          */
7541                         hint_byte = last_ptr->window_start;
7542                         use_cluster = false;
7543                 }
7544                 spin_unlock(&last_ptr->lock);
7545         }
7546
7547         search_start = max(search_start, first_logical_byte(fs_info, 0));
7548         search_start = max(search_start, hint_byte);
7549         if (search_start == hint_byte) {
7550                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7551                 /*
7552                  * we don't want to use the block group if it doesn't match our
7553                  * allocation bits, or if its not cached.
7554                  *
7555                  * However if we are re-searching with an ideal block group
7556                  * picked out then we don't care that the block group is cached.
7557                  */
7558                 if (block_group && block_group_bits(block_group, flags) &&
7559                     block_group->cached != BTRFS_CACHE_NO) {
7560                         down_read(&space_info->groups_sem);
7561                         if (list_empty(&block_group->list) ||
7562                             block_group->ro) {
7563                                 /*
7564                                  * someone is removing this block group,
7565                                  * we can't jump into the have_block_group
7566                                  * target because our list pointers are not
7567                                  * valid
7568                                  */
7569                                 btrfs_put_block_group(block_group);
7570                                 up_read(&space_info->groups_sem);
7571                         } else {
7572                                 index = get_block_group_index(block_group);
7573                                 btrfs_lock_block_group(block_group, delalloc);
7574                                 goto have_block_group;
7575                         }
7576                 } else if (block_group) {
7577                         btrfs_put_block_group(block_group);
7578                 }
7579         }
7580 search:
7581         have_caching_bg = false;
7582         if (index == 0 || index == __get_raid_index(flags))
7583                 full_search = true;
7584         down_read(&space_info->groups_sem);
7585         list_for_each_entry(block_group, &space_info->block_groups[index],
7586                             list) {
7587                 u64 offset;
7588                 int cached;
7589
7590                 /* If the block group is read-only, we can skip it entirely. */
7591                 if (unlikely(block_group->ro))
7592                         continue;
7593
7594                 btrfs_grab_block_group(block_group, delalloc);
7595                 search_start = block_group->key.objectid;
7596
7597                 /*
7598                  * this can happen if we end up cycling through all the
7599                  * raid types, but we want to make sure we only allocate
7600                  * for the proper type.
7601                  */
7602                 if (!block_group_bits(block_group, flags)) {
7603                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7604                                 BTRFS_BLOCK_GROUP_RAID1 |
7605                                 BTRFS_BLOCK_GROUP_RAID5 |
7606                                 BTRFS_BLOCK_GROUP_RAID6 |
7607                                 BTRFS_BLOCK_GROUP_RAID10;
7608
7609                         /*
7610                          * if they asked for extra copies and this block group
7611                          * doesn't provide them, bail.  This does allow us to
7612                          * fill raid0 from raid1.
7613                          */
7614                         if ((flags & extra) && !(block_group->flags & extra))
7615                                 goto loop;
7616                 }
7617
7618 have_block_group:
7619                 cached = block_group_cache_done(block_group);
7620                 if (unlikely(!cached)) {
7621                         have_caching_bg = true;
7622                         ret = cache_block_group(block_group, 0);
7623                         BUG_ON(ret < 0);
7624                         ret = 0;
7625                 }
7626
7627                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7628                         goto loop;
7629
7630                 /*
7631                  * Ok we want to try and use the cluster allocator, so
7632                  * lets look there
7633                  */
7634                 if (last_ptr && use_cluster) {
7635                         struct btrfs_block_group_cache *used_block_group;
7636                         unsigned long aligned_cluster;
7637                         /*
7638                          * the refill lock keeps out other
7639                          * people trying to start a new cluster
7640                          */
7641                         used_block_group = btrfs_lock_cluster(block_group,
7642                                                               last_ptr,
7643                                                               delalloc);
7644                         if (!used_block_group)
7645                                 goto refill_cluster;
7646
7647                         if (used_block_group != block_group &&
7648                             (used_block_group->ro ||
7649                              !block_group_bits(used_block_group, flags)))
7650                                 goto release_cluster;
7651
7652                         offset = btrfs_alloc_from_cluster(used_block_group,
7653                                                 last_ptr,
7654                                                 num_bytes,
7655                                                 used_block_group->key.objectid,
7656                                                 &max_extent_size);
7657                         if (offset) {
7658                                 /* we have a block, we're done */
7659                                 spin_unlock(&last_ptr->refill_lock);
7660                                 trace_btrfs_reserve_extent_cluster(fs_info,
7661                                                 used_block_group,
7662                                                 search_start, num_bytes);
7663                                 if (used_block_group != block_group) {
7664                                         btrfs_release_block_group(block_group,
7665                                                                   delalloc);
7666                                         block_group = used_block_group;
7667                                 }
7668                                 goto checks;
7669                         }
7670
7671                         WARN_ON(last_ptr->block_group != used_block_group);
7672 release_cluster:
7673                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674                          * set up a new clusters, so lets just skip it
7675                          * and let the allocator find whatever block
7676                          * it can find.  If we reach this point, we
7677                          * will have tried the cluster allocator
7678                          * plenty of times and not have found
7679                          * anything, so we are likely way too
7680                          * fragmented for the clustering stuff to find
7681                          * anything.
7682                          *
7683                          * However, if the cluster is taken from the
7684                          * current block group, release the cluster
7685                          * first, so that we stand a better chance of
7686                          * succeeding in the unclustered
7687                          * allocation.  */
7688                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7689                             used_block_group != block_group) {
7690                                 spin_unlock(&last_ptr->refill_lock);
7691                                 btrfs_release_block_group(used_block_group,
7692                                                           delalloc);
7693                                 goto unclustered_alloc;
7694                         }
7695
7696                         /*
7697                          * this cluster didn't work out, free it and
7698                          * start over
7699                          */
7700                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701
7702                         if (used_block_group != block_group)
7703                                 btrfs_release_block_group(used_block_group,
7704                                                           delalloc);
7705 refill_cluster:
7706                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7707                                 spin_unlock(&last_ptr->refill_lock);
7708                                 goto unclustered_alloc;
7709                         }
7710
7711                         aligned_cluster = max_t(unsigned long,
7712                                                 empty_cluster + empty_size,
7713                                               block_group->full_stripe_len);
7714
7715                         /* allocate a cluster in this block group */
7716                         ret = btrfs_find_space_cluster(fs_info, block_group,
7717                                                        last_ptr, search_start,
7718                                                        num_bytes,
7719                                                        aligned_cluster);
7720                         if (ret == 0) {
7721                                 /*
7722                                  * now pull our allocation out of this
7723                                  * cluster
7724                                  */
7725                                 offset = btrfs_alloc_from_cluster(block_group,
7726                                                         last_ptr,
7727                                                         num_bytes,
7728                                                         search_start,
7729                                                         &max_extent_size);
7730                                 if (offset) {
7731                                         /* we found one, proceed */
7732                                         spin_unlock(&last_ptr->refill_lock);
7733                                         trace_btrfs_reserve_extent_cluster(fs_info,
7734                                                 block_group, search_start,
7735                                                 num_bytes);
7736                                         goto checks;
7737                                 }
7738                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7739                                    && !failed_cluster_refill) {
7740                                 spin_unlock(&last_ptr->refill_lock);
7741
7742                                 failed_cluster_refill = true;
7743                                 wait_block_group_cache_progress(block_group,
7744                                        num_bytes + empty_cluster + empty_size);
7745                                 goto have_block_group;
7746                         }
7747
7748                         /*
7749                          * at this point we either didn't find a cluster
7750                          * or we weren't able to allocate a block from our
7751                          * cluster.  Free the cluster we've been trying
7752                          * to use, and go to the next block group
7753                          */
7754                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7755                         spin_unlock(&last_ptr->refill_lock);
7756                         goto loop;
7757                 }
7758
7759 unclustered_alloc:
7760                 /*
7761                  * We are doing an unclustered alloc, set the fragmented flag so
7762                  * we don't bother trying to setup a cluster again until we get
7763                  * more space.
7764                  */
7765                 if (unlikely(last_ptr)) {
7766                         spin_lock(&last_ptr->lock);
7767                         last_ptr->fragmented = 1;
7768                         spin_unlock(&last_ptr->lock);
7769                 }
7770                 if (cached) {
7771                         struct btrfs_free_space_ctl *ctl =
7772                                 block_group->free_space_ctl;
7773
7774                         spin_lock(&ctl->tree_lock);
7775                         if (ctl->free_space <
7776                             num_bytes + empty_cluster + empty_size) {
7777                                 if (ctl->free_space > max_extent_size)
7778                                         max_extent_size = ctl->free_space;
7779                                 spin_unlock(&ctl->tree_lock);
7780                                 goto loop;
7781                         }
7782                         spin_unlock(&ctl->tree_lock);
7783                 }
7784
7785                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7786                                                     num_bytes, empty_size,
7787                                                     &max_extent_size);
7788                 /*
7789                  * If we didn't find a chunk, and we haven't failed on this
7790                  * block group before, and this block group is in the middle of
7791                  * caching and we are ok with waiting, then go ahead and wait
7792                  * for progress to be made, and set failed_alloc to true.
7793                  *
7794                  * If failed_alloc is true then we've already waited on this
7795                  * block group once and should move on to the next block group.
7796                  */
7797                 if (!offset && !failed_alloc && !cached &&
7798                     loop > LOOP_CACHING_NOWAIT) {
7799                         wait_block_group_cache_progress(block_group,
7800                                                 num_bytes + empty_size);
7801                         failed_alloc = true;
7802                         goto have_block_group;
7803                 } else if (!offset) {
7804                         goto loop;
7805                 }
7806 checks:
7807                 search_start = ALIGN(offset, fs_info->stripesize);
7808
7809                 /* move on to the next group */
7810                 if (search_start + num_bytes >
7811                     block_group->key.objectid + block_group->key.offset) {
7812                         btrfs_add_free_space(block_group, offset, num_bytes);
7813                         goto loop;
7814                 }
7815
7816                 if (offset < search_start)
7817                         btrfs_add_free_space(block_group, offset,
7818                                              search_start - offset);
7819                 BUG_ON(offset > search_start);
7820
7821                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7822                                 num_bytes, delalloc);
7823                 if (ret == -EAGAIN) {
7824                         btrfs_add_free_space(block_group, offset, num_bytes);
7825                         goto loop;
7826                 }
7827                 btrfs_inc_block_group_reservations(block_group);
7828
7829                 /* we are all good, lets return */
7830                 ins->objectid = search_start;
7831                 ins->offset = num_bytes;
7832
7833                 trace_btrfs_reserve_extent(fs_info, block_group,
7834                                            search_start, num_bytes);
7835                 btrfs_release_block_group(block_group, delalloc);
7836                 break;
7837 loop:
7838                 failed_cluster_refill = false;
7839                 failed_alloc = false;
7840                 BUG_ON(index != get_block_group_index(block_group));
7841                 btrfs_release_block_group(block_group, delalloc);
7842                 cond_resched();
7843         }
7844         up_read(&space_info->groups_sem);
7845
7846         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7847                 && !orig_have_caching_bg)
7848                 orig_have_caching_bg = true;
7849
7850         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7851                 goto search;
7852
7853         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7854                 goto search;
7855
7856         /*
7857          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7858          *                      caching kthreads as we move along
7859          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7860          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7861          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7862          *                      again
7863          */
7864         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7865                 index = 0;
7866                 if (loop == LOOP_CACHING_NOWAIT) {
7867                         /*
7868                          * We want to skip the LOOP_CACHING_WAIT step if we
7869                          * don't have any uncached bgs and we've already done a
7870                          * full search through.
7871                          */
7872                         if (orig_have_caching_bg || !full_search)
7873                                 loop = LOOP_CACHING_WAIT;
7874                         else
7875                                 loop = LOOP_ALLOC_CHUNK;
7876                 } else {
7877                         loop++;
7878                 }
7879
7880                 if (loop == LOOP_ALLOC_CHUNK) {
7881                         struct btrfs_trans_handle *trans;
7882                         int exist = 0;
7883
7884                         trans = current->journal_info;
7885                         if (trans)
7886                                 exist = 1;
7887                         else
7888                                 trans = btrfs_join_transaction(root);
7889
7890                         if (IS_ERR(trans)) {
7891                                 ret = PTR_ERR(trans);
7892                                 goto out;
7893                         }
7894
7895                         ret = do_chunk_alloc(trans, fs_info, flags,
7896                                              CHUNK_ALLOC_FORCE);
7897
7898                         /*
7899                          * If we can't allocate a new chunk we've already looped
7900                          * through at least once, move on to the NO_EMPTY_SIZE
7901                          * case.
7902                          */
7903                         if (ret == -ENOSPC)
7904                                 loop = LOOP_NO_EMPTY_SIZE;
7905
7906                         /*
7907                          * Do not bail out on ENOSPC since we
7908                          * can do more things.
7909                          */
7910                         if (ret < 0 && ret != -ENOSPC)
7911                                 btrfs_abort_transaction(trans, ret);
7912                         else
7913                                 ret = 0;
7914                         if (!exist)
7915                                 btrfs_end_transaction(trans);
7916                         if (ret)
7917                                 goto out;
7918                 }
7919
7920                 if (loop == LOOP_NO_EMPTY_SIZE) {
7921                         /*
7922                          * Don't loop again if we already have no empty_size and
7923                          * no empty_cluster.
7924                          */
7925                         if (empty_size == 0 &&
7926                             empty_cluster == 0) {
7927                                 ret = -ENOSPC;
7928                                 goto out;
7929                         }
7930                         empty_size = 0;
7931                         empty_cluster = 0;
7932                 }
7933
7934                 goto search;
7935         } else if (!ins->objectid) {
7936                 ret = -ENOSPC;
7937         } else if (ins->objectid) {
7938                 if (!use_cluster && last_ptr) {
7939                         spin_lock(&last_ptr->lock);
7940                         last_ptr->window_start = ins->objectid;
7941                         spin_unlock(&last_ptr->lock);
7942                 }
7943                 ret = 0;
7944         }
7945 out:
7946         if (ret == -ENOSPC) {
7947                 spin_lock(&space_info->lock);
7948                 space_info->max_extent_size = max_extent_size;
7949                 spin_unlock(&space_info->lock);
7950                 ins->offset = max_extent_size;
7951         }
7952         return ret;
7953 }
7954
7955 static void dump_space_info(struct btrfs_fs_info *fs_info,
7956                             struct btrfs_space_info *info, u64 bytes,
7957                             int dump_block_groups)
7958 {
7959         struct btrfs_block_group_cache *cache;
7960         int index = 0;
7961
7962         spin_lock(&info->lock);
7963         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7964                    info->flags,
7965                    info->total_bytes - btrfs_space_info_used(info, true),
7966                    info->full ? "" : "not ");
7967         btrfs_info(fs_info,
7968                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7969                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7970                 info->bytes_reserved, info->bytes_may_use,
7971                 info->bytes_readonly);
7972         spin_unlock(&info->lock);
7973
7974         if (!dump_block_groups)
7975                 return;
7976
7977         down_read(&info->groups_sem);
7978 again:
7979         list_for_each_entry(cache, &info->block_groups[index], list) {
7980                 spin_lock(&cache->lock);
7981                 btrfs_info(fs_info,
7982                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7983                         cache->key.objectid, cache->key.offset,
7984                         btrfs_block_group_used(&cache->item), cache->pinned,
7985                         cache->reserved, cache->ro ? "[readonly]" : "");
7986                 btrfs_dump_free_space(cache, bytes);
7987                 spin_unlock(&cache->lock);
7988         }
7989         if (++index < BTRFS_NR_RAID_TYPES)
7990                 goto again;
7991         up_read(&info->groups_sem);
7992 }
7993
7994 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7995                          u64 num_bytes, u64 min_alloc_size,
7996                          u64 empty_size, u64 hint_byte,
7997                          struct btrfs_key *ins, int is_data, int delalloc)
7998 {
7999         struct btrfs_fs_info *fs_info = root->fs_info;
8000         bool final_tried = num_bytes == min_alloc_size;
8001         u64 flags;
8002         int ret;
8003
8004         flags = get_alloc_profile_by_root(root, is_data);
8005 again:
8006         WARN_ON(num_bytes < fs_info->sectorsize);
8007         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8008                                hint_byte, ins, flags, delalloc);
8009         if (!ret && !is_data) {
8010                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8011         } else if (ret == -ENOSPC) {
8012                 if (!final_tried && ins->offset) {
8013                         num_bytes = min(num_bytes >> 1, ins->offset);
8014                         num_bytes = round_down(num_bytes,
8015                                                fs_info->sectorsize);
8016                         num_bytes = max(num_bytes, min_alloc_size);
8017                         ram_bytes = num_bytes;
8018                         if (num_bytes == min_alloc_size)
8019                                 final_tried = true;
8020                         goto again;
8021                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8022                         struct btrfs_space_info *sinfo;
8023
8024                         sinfo = __find_space_info(fs_info, flags);
8025                         btrfs_err(fs_info,
8026                                   "allocation failed flags %llu, wanted %llu",
8027                                   flags, num_bytes);
8028                         if (sinfo)
8029                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8030                 }
8031         }
8032
8033         return ret;
8034 }
8035
8036 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8037                                         u64 start, u64 len,
8038                                         int pin, int delalloc)
8039 {
8040         struct btrfs_block_group_cache *cache;
8041         int ret = 0;
8042
8043         cache = btrfs_lookup_block_group(fs_info, start);
8044         if (!cache) {
8045                 btrfs_err(fs_info, "Unable to find block group for %llu",
8046                           start);
8047                 return -ENOSPC;
8048         }
8049
8050         if (pin)
8051                 pin_down_extent(fs_info, cache, start, len, 1);
8052         else {
8053                 if (btrfs_test_opt(fs_info, DISCARD))
8054                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8055                 btrfs_add_free_space(cache, start, len);
8056                 btrfs_free_reserved_bytes(cache, len, delalloc);
8057                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8058         }
8059
8060         btrfs_put_block_group(cache);
8061         return ret;
8062 }
8063
8064 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8065                                u64 start, u64 len, int delalloc)
8066 {
8067         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8068 }
8069
8070 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8071                                        u64 start, u64 len)
8072 {
8073         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8074 }
8075
8076 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8077                                       struct btrfs_fs_info *fs_info,
8078                                       u64 parent, u64 root_objectid,
8079                                       u64 flags, u64 owner, u64 offset,
8080                                       struct btrfs_key *ins, int ref_mod)
8081 {
8082         int ret;
8083         struct btrfs_extent_item *extent_item;
8084         struct btrfs_extent_inline_ref *iref;
8085         struct btrfs_path *path;
8086         struct extent_buffer *leaf;
8087         int type;
8088         u32 size;
8089
8090         if (parent > 0)
8091                 type = BTRFS_SHARED_DATA_REF_KEY;
8092         else
8093                 type = BTRFS_EXTENT_DATA_REF_KEY;
8094
8095         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8096
8097         path = btrfs_alloc_path();
8098         if (!path)
8099                 return -ENOMEM;
8100
8101         path->leave_spinning = 1;
8102         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8103                                       ins, size);
8104         if (ret) {
8105                 btrfs_free_path(path);
8106                 return ret;
8107         }
8108
8109         leaf = path->nodes[0];
8110         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8111                                      struct btrfs_extent_item);
8112         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8113         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8114         btrfs_set_extent_flags(leaf, extent_item,
8115                                flags | BTRFS_EXTENT_FLAG_DATA);
8116
8117         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8118         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8119         if (parent > 0) {
8120                 struct btrfs_shared_data_ref *ref;
8121                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8122                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8123                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8124         } else {
8125                 struct btrfs_extent_data_ref *ref;
8126                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8127                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8128                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8129                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8130                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8131         }
8132
8133         btrfs_mark_buffer_dirty(path->nodes[0]);
8134         btrfs_free_path(path);
8135
8136         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8137                                           ins->offset);
8138         if (ret)
8139                 return ret;
8140
8141         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8142         if (ret) { /* -ENOENT, logic error */
8143                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8144                         ins->objectid, ins->offset);
8145                 BUG();
8146         }
8147         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8148         return ret;
8149 }
8150
8151 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8152                                      struct btrfs_fs_info *fs_info,
8153                                      u64 parent, u64 root_objectid,
8154                                      u64 flags, struct btrfs_disk_key *key,
8155                                      int level, struct btrfs_key *ins)
8156 {
8157         int ret;
8158         struct btrfs_extent_item *extent_item;
8159         struct btrfs_tree_block_info *block_info;
8160         struct btrfs_extent_inline_ref *iref;
8161         struct btrfs_path *path;
8162         struct extent_buffer *leaf;
8163         u32 size = sizeof(*extent_item) + sizeof(*iref);
8164         u64 num_bytes = ins->offset;
8165         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8166
8167         if (!skinny_metadata)
8168                 size += sizeof(*block_info);
8169
8170         path = btrfs_alloc_path();
8171         if (!path) {
8172                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8173                                                    fs_info->nodesize);
8174                 return -ENOMEM;
8175         }
8176
8177         path->leave_spinning = 1;
8178         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8179                                       ins, size);
8180         if (ret) {
8181                 btrfs_free_path(path);
8182                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8183                                                    fs_info->nodesize);
8184                 return ret;
8185         }
8186
8187         leaf = path->nodes[0];
8188         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8189                                      struct btrfs_extent_item);
8190         btrfs_set_extent_refs(leaf, extent_item, 1);
8191         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8192         btrfs_set_extent_flags(leaf, extent_item,
8193                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8194
8195         if (skinny_metadata) {
8196                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8197                 num_bytes = fs_info->nodesize;
8198         } else {
8199                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8200                 btrfs_set_tree_block_key(leaf, block_info, key);
8201                 btrfs_set_tree_block_level(leaf, block_info, level);
8202                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8203         }
8204
8205         if (parent > 0) {
8206                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8207                 btrfs_set_extent_inline_ref_type(leaf, iref,
8208                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8209                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8210         } else {
8211                 btrfs_set_extent_inline_ref_type(leaf, iref,
8212                                                  BTRFS_TREE_BLOCK_REF_KEY);
8213                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8214         }
8215
8216         btrfs_mark_buffer_dirty(leaf);
8217         btrfs_free_path(path);
8218
8219         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8220                                           num_bytes);
8221         if (ret)
8222                 return ret;
8223
8224         ret = update_block_group(trans, fs_info, ins->objectid,
8225                                  fs_info->nodesize, 1);
8226         if (ret) { /* -ENOENT, logic error */
8227                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8228                         ins->objectid, ins->offset);
8229                 BUG();
8230         }
8231
8232         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8233                                           fs_info->nodesize);
8234         return ret;
8235 }
8236
8237 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8238                                      struct btrfs_root *root, u64 owner,
8239                                      u64 offset, u64 ram_bytes,
8240                                      struct btrfs_key *ins)
8241 {
8242         struct btrfs_fs_info *fs_info = root->fs_info;
8243         int ret;
8244
8245         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8246
8247         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8248                            root->root_key.objectid, owner, offset,
8249                            BTRFS_ADD_DELAYED_EXTENT);
8250
8251         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8252                                          ins->offset, 0,
8253                                          root->root_key.objectid, owner,
8254                                          offset, ram_bytes,
8255                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8256         return ret;
8257 }
8258
8259 /*
8260  * this is used by the tree logging recovery code.  It records that
8261  * an extent has been allocated and makes sure to clear the free
8262  * space cache bits as well
8263  */
8264 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8265                                    struct btrfs_fs_info *fs_info,
8266                                    u64 root_objectid, u64 owner, u64 offset,
8267                                    struct btrfs_key *ins)
8268 {
8269         int ret;
8270         struct btrfs_block_group_cache *block_group;
8271         struct btrfs_space_info *space_info;
8272
8273         /*
8274          * Mixed block groups will exclude before processing the log so we only
8275          * need to do the exclude dance if this fs isn't mixed.
8276          */
8277         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8278                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8279                                               ins->offset);
8280                 if (ret)
8281                         return ret;
8282         }
8283
8284         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8285         if (!block_group)
8286                 return -EINVAL;
8287
8288         space_info = block_group->space_info;
8289         spin_lock(&space_info->lock);
8290         spin_lock(&block_group->lock);
8291         space_info->bytes_reserved += ins->offset;
8292         block_group->reserved += ins->offset;
8293         spin_unlock(&block_group->lock);
8294         spin_unlock(&space_info->lock);
8295
8296         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8297                                          0, owner, offset, ins, 1);
8298         btrfs_put_block_group(block_group);
8299         return ret;
8300 }
8301
8302 static struct extent_buffer *
8303 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8304                       u64 bytenr, int level)
8305 {
8306         struct btrfs_fs_info *fs_info = root->fs_info;
8307         struct extent_buffer *buf;
8308
8309         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8310         if (IS_ERR(buf))
8311                 return buf;
8312
8313         btrfs_set_header_generation(buf, trans->transid);
8314         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8315         btrfs_tree_lock(buf);
8316         clean_tree_block(fs_info, buf);
8317         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8318
8319         btrfs_set_lock_blocking(buf);
8320         set_extent_buffer_uptodate(buf);
8321
8322         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8323                 buf->log_index = root->log_transid % 2;
8324                 /*
8325                  * we allow two log transactions at a time, use different
8326                  * EXENT bit to differentiate dirty pages.
8327                  */
8328                 if (buf->log_index == 0)
8329                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8330                                         buf->start + buf->len - 1, GFP_NOFS);
8331                 else
8332                         set_extent_new(&root->dirty_log_pages, buf->start,
8333                                         buf->start + buf->len - 1);
8334         } else {
8335                 buf->log_index = -1;
8336                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8337                          buf->start + buf->len - 1, GFP_NOFS);
8338         }
8339         trans->dirty = true;
8340         /* this returns a buffer locked for blocking */
8341         return buf;
8342 }
8343
8344 static struct btrfs_block_rsv *
8345 use_block_rsv(struct btrfs_trans_handle *trans,
8346               struct btrfs_root *root, u32 blocksize)
8347 {
8348         struct btrfs_fs_info *fs_info = root->fs_info;
8349         struct btrfs_block_rsv *block_rsv;
8350         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8351         int ret;
8352         bool global_updated = false;
8353
8354         block_rsv = get_block_rsv(trans, root);
8355
8356         if (unlikely(block_rsv->size == 0))
8357                 goto try_reserve;
8358 again:
8359         ret = block_rsv_use_bytes(block_rsv, blocksize);
8360         if (!ret)
8361                 return block_rsv;
8362
8363         if (block_rsv->failfast)
8364                 return ERR_PTR(ret);
8365
8366         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8367                 global_updated = true;
8368                 update_global_block_rsv(fs_info);
8369                 goto again;
8370         }
8371
8372         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8373                 static DEFINE_RATELIMIT_STATE(_rs,
8374                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8375                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8376                 if (__ratelimit(&_rs))
8377                         WARN(1, KERN_DEBUG
8378                                 "BTRFS: block rsv returned %d\n", ret);
8379         }
8380 try_reserve:
8381         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8382                                      BTRFS_RESERVE_NO_FLUSH);
8383         if (!ret)
8384                 return block_rsv;
8385         /*
8386          * If we couldn't reserve metadata bytes try and use some from
8387          * the global reserve if its space type is the same as the global
8388          * reservation.
8389          */
8390         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8391             block_rsv->space_info == global_rsv->space_info) {
8392                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8393                 if (!ret)
8394                         return global_rsv;
8395         }
8396         return ERR_PTR(ret);
8397 }
8398
8399 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8400                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8401 {
8402         block_rsv_add_bytes(block_rsv, blocksize, 0);
8403         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8404 }
8405
8406 /*
8407  * finds a free extent and does all the dirty work required for allocation
8408  * returns the tree buffer or an ERR_PTR on error.
8409  */
8410 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8411                                              struct btrfs_root *root,
8412                                              u64 parent, u64 root_objectid,
8413                                              const struct btrfs_disk_key *key,
8414                                              int level, u64 hint,
8415                                              u64 empty_size)
8416 {
8417         struct btrfs_fs_info *fs_info = root->fs_info;
8418         struct btrfs_key ins;
8419         struct btrfs_block_rsv *block_rsv;
8420         struct extent_buffer *buf;
8421         struct btrfs_delayed_extent_op *extent_op;
8422         u64 flags = 0;
8423         int ret;
8424         u32 blocksize = fs_info->nodesize;
8425         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8426
8427 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8428         if (btrfs_is_testing(fs_info)) {
8429                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8430                                             level);
8431                 if (!IS_ERR(buf))
8432                         root->alloc_bytenr += blocksize;
8433                 return buf;
8434         }
8435 #endif
8436
8437         block_rsv = use_block_rsv(trans, root, blocksize);
8438         if (IS_ERR(block_rsv))
8439                 return ERR_CAST(block_rsv);
8440
8441         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8442                                    empty_size, hint, &ins, 0, 0);
8443         if (ret)
8444                 goto out_unuse;
8445
8446         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8447         if (IS_ERR(buf)) {
8448                 ret = PTR_ERR(buf);
8449                 goto out_free_reserved;
8450         }
8451
8452         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8453                 if (parent == 0)
8454                         parent = ins.objectid;
8455                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8456         } else
8457                 BUG_ON(parent > 0);
8458
8459         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8460                 extent_op = btrfs_alloc_delayed_extent_op();
8461                 if (!extent_op) {
8462                         ret = -ENOMEM;
8463                         goto out_free_buf;
8464                 }
8465                 if (key)
8466                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8467                 else
8468                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8469                 extent_op->flags_to_set = flags;
8470                 extent_op->update_key = skinny_metadata ? false : true;
8471                 extent_op->update_flags = true;
8472                 extent_op->is_data = false;
8473                 extent_op->level = level;
8474
8475                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8476                                    root_objectid, level, 0,
8477                                    BTRFS_ADD_DELAYED_EXTENT);
8478                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8479                                                  ins.offset, parent,
8480                                                  root_objectid, level,
8481                                                  BTRFS_ADD_DELAYED_EXTENT,
8482                                                  extent_op, NULL, NULL);
8483                 if (ret)
8484                         goto out_free_delayed;
8485         }
8486         return buf;
8487
8488 out_free_delayed:
8489         btrfs_free_delayed_extent_op(extent_op);
8490 out_free_buf:
8491         free_extent_buffer(buf);
8492 out_free_reserved:
8493         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8494 out_unuse:
8495         unuse_block_rsv(fs_info, block_rsv, blocksize);
8496         return ERR_PTR(ret);
8497 }
8498
8499 struct walk_control {
8500         u64 refs[BTRFS_MAX_LEVEL];
8501         u64 flags[BTRFS_MAX_LEVEL];
8502         struct btrfs_key update_progress;
8503         int stage;
8504         int level;
8505         int shared_level;
8506         int update_ref;
8507         int keep_locks;
8508         int reada_slot;
8509         int reada_count;
8510         int for_reloc;
8511 };
8512
8513 #define DROP_REFERENCE  1
8514 #define UPDATE_BACKREF  2
8515
8516 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8517                                      struct btrfs_root *root,
8518                                      struct walk_control *wc,
8519                                      struct btrfs_path *path)
8520 {
8521         struct btrfs_fs_info *fs_info = root->fs_info;
8522         u64 bytenr;
8523         u64 generation;
8524         u64 refs;
8525         u64 flags;
8526         u32 nritems;
8527         struct btrfs_key key;
8528         struct extent_buffer *eb;
8529         int ret;
8530         int slot;
8531         int nread = 0;
8532
8533         if (path->slots[wc->level] < wc->reada_slot) {
8534                 wc->reada_count = wc->reada_count * 2 / 3;
8535                 wc->reada_count = max(wc->reada_count, 2);
8536         } else {
8537                 wc->reada_count = wc->reada_count * 3 / 2;
8538                 wc->reada_count = min_t(int, wc->reada_count,
8539                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8540         }
8541
8542         eb = path->nodes[wc->level];
8543         nritems = btrfs_header_nritems(eb);
8544
8545         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8546                 if (nread >= wc->reada_count)
8547                         break;
8548
8549                 cond_resched();
8550                 bytenr = btrfs_node_blockptr(eb, slot);
8551                 generation = btrfs_node_ptr_generation(eb, slot);
8552
8553                 if (slot == path->slots[wc->level])
8554                         goto reada;
8555
8556                 if (wc->stage == UPDATE_BACKREF &&
8557                     generation <= root->root_key.offset)
8558                         continue;
8559
8560                 /* We don't lock the tree block, it's OK to be racy here */
8561                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8562                                                wc->level - 1, 1, &refs,
8563                                                &flags);
8564                 /* We don't care about errors in readahead. */
8565                 if (ret < 0)
8566                         continue;
8567                 BUG_ON(refs == 0);
8568
8569                 if (wc->stage == DROP_REFERENCE) {
8570                         if (refs == 1)
8571                                 goto reada;
8572
8573                         if (wc->level == 1 &&
8574                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8575                                 continue;
8576                         if (!wc->update_ref ||
8577                             generation <= root->root_key.offset)
8578                                 continue;
8579                         btrfs_node_key_to_cpu(eb, &key, slot);
8580                         ret = btrfs_comp_cpu_keys(&key,
8581                                                   &wc->update_progress);
8582                         if (ret < 0)
8583                                 continue;
8584                 } else {
8585                         if (wc->level == 1 &&
8586                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587                                 continue;
8588                 }
8589 reada:
8590                 readahead_tree_block(fs_info, bytenr);
8591                 nread++;
8592         }
8593         wc->reada_slot = slot;
8594 }
8595
8596 /*
8597  * helper to process tree block while walking down the tree.
8598  *
8599  * when wc->stage == UPDATE_BACKREF, this function updates
8600  * back refs for pointers in the block.
8601  *
8602  * NOTE: return value 1 means we should stop walking down.
8603  */
8604 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8605                                    struct btrfs_root *root,
8606                                    struct btrfs_path *path,
8607                                    struct walk_control *wc, int lookup_info)
8608 {
8609         struct btrfs_fs_info *fs_info = root->fs_info;
8610         int level = wc->level;
8611         struct extent_buffer *eb = path->nodes[level];
8612         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8613         int ret;
8614
8615         if (wc->stage == UPDATE_BACKREF &&
8616             btrfs_header_owner(eb) != root->root_key.objectid)
8617                 return 1;
8618
8619         /*
8620          * when reference count of tree block is 1, it won't increase
8621          * again. once full backref flag is set, we never clear it.
8622          */
8623         if (lookup_info &&
8624             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8625              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8626                 BUG_ON(!path->locks[level]);
8627                 ret = btrfs_lookup_extent_info(trans, fs_info,
8628                                                eb->start, level, 1,
8629                                                &wc->refs[level],
8630                                                &wc->flags[level]);
8631                 BUG_ON(ret == -ENOMEM);
8632                 if (ret)
8633                         return ret;
8634                 BUG_ON(wc->refs[level] == 0);
8635         }
8636
8637         if (wc->stage == DROP_REFERENCE) {
8638                 if (wc->refs[level] > 1)
8639                         return 1;
8640
8641                 if (path->locks[level] && !wc->keep_locks) {
8642                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8643                         path->locks[level] = 0;
8644                 }
8645                 return 0;
8646         }
8647
8648         /* wc->stage == UPDATE_BACKREF */
8649         if (!(wc->flags[level] & flag)) {
8650                 BUG_ON(!path->locks[level]);
8651                 ret = btrfs_inc_ref(trans, root, eb, 1);
8652                 BUG_ON(ret); /* -ENOMEM */
8653                 ret = btrfs_dec_ref(trans, root, eb, 0);
8654                 BUG_ON(ret); /* -ENOMEM */
8655                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8656                                                   eb->len, flag,
8657                                                   btrfs_header_level(eb), 0);
8658                 BUG_ON(ret); /* -ENOMEM */
8659                 wc->flags[level] |= flag;
8660         }
8661
8662         /*
8663          * the block is shared by multiple trees, so it's not good to
8664          * keep the tree lock
8665          */
8666         if (path->locks[level] && level > 0) {
8667                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8668                 path->locks[level] = 0;
8669         }
8670         return 0;
8671 }
8672
8673 /*
8674  * helper to process tree block pointer.
8675  *
8676  * when wc->stage == DROP_REFERENCE, this function checks
8677  * reference count of the block pointed to. if the block
8678  * is shared and we need update back refs for the subtree
8679  * rooted at the block, this function changes wc->stage to
8680  * UPDATE_BACKREF. if the block is shared and there is no
8681  * need to update back, this function drops the reference
8682  * to the block.
8683  *
8684  * NOTE: return value 1 means we should stop walking down.
8685  */
8686 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8687                                  struct btrfs_root *root,
8688                                  struct btrfs_path *path,
8689                                  struct walk_control *wc, int *lookup_info)
8690 {
8691         struct btrfs_fs_info *fs_info = root->fs_info;
8692         u64 bytenr;
8693         u64 generation;
8694         u64 parent;
8695         u32 blocksize;
8696         struct btrfs_key key;
8697         struct extent_buffer *next;
8698         int level = wc->level;
8699         int reada = 0;
8700         int ret = 0;
8701         bool need_account = false;
8702
8703         generation = btrfs_node_ptr_generation(path->nodes[level],
8704                                                path->slots[level]);
8705         /*
8706          * if the lower level block was created before the snapshot
8707          * was created, we know there is no need to update back refs
8708          * for the subtree
8709          */
8710         if (wc->stage == UPDATE_BACKREF &&
8711             generation <= root->root_key.offset) {
8712                 *lookup_info = 1;
8713                 return 1;
8714         }
8715
8716         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8717         blocksize = fs_info->nodesize;
8718
8719         next = find_extent_buffer(fs_info, bytenr);
8720         if (!next) {
8721                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8722                 if (IS_ERR(next))
8723                         return PTR_ERR(next);
8724
8725                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8726                                                level - 1);
8727                 reada = 1;
8728         }
8729         btrfs_tree_lock(next);
8730         btrfs_set_lock_blocking(next);
8731
8732         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8733                                        &wc->refs[level - 1],
8734                                        &wc->flags[level - 1]);
8735         if (ret < 0)
8736                 goto out_unlock;
8737
8738         if (unlikely(wc->refs[level - 1] == 0)) {
8739                 btrfs_err(fs_info, "Missing references.");
8740                 ret = -EIO;
8741                 goto out_unlock;
8742         }
8743         *lookup_info = 0;
8744
8745         if (wc->stage == DROP_REFERENCE) {
8746                 if (wc->refs[level - 1] > 1) {
8747                         need_account = true;
8748                         if (level == 1 &&
8749                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8750                                 goto skip;
8751
8752                         if (!wc->update_ref ||
8753                             generation <= root->root_key.offset)
8754                                 goto skip;
8755
8756                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8757                                               path->slots[level]);
8758                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8759                         if (ret < 0)
8760                                 goto skip;
8761
8762                         wc->stage = UPDATE_BACKREF;
8763                         wc->shared_level = level - 1;
8764                 }
8765         } else {
8766                 if (level == 1 &&
8767                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8768                         goto skip;
8769         }
8770
8771         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8772                 btrfs_tree_unlock(next);
8773                 free_extent_buffer(next);
8774                 next = NULL;
8775                 *lookup_info = 1;
8776         }
8777
8778         if (!next) {
8779                 if (reada && level == 1)
8780                         reada_walk_down(trans, root, wc, path);
8781                 next = read_tree_block(fs_info, bytenr, generation);
8782                 if (IS_ERR(next)) {
8783                         return PTR_ERR(next);
8784                 } else if (!extent_buffer_uptodate(next)) {
8785                         free_extent_buffer(next);
8786                         return -EIO;
8787                 }
8788                 btrfs_tree_lock(next);
8789                 btrfs_set_lock_blocking(next);
8790         }
8791
8792         level--;
8793         ASSERT(level == btrfs_header_level(next));
8794         if (level != btrfs_header_level(next)) {
8795                 btrfs_err(root->fs_info, "mismatched level");
8796                 ret = -EIO;
8797                 goto out_unlock;
8798         }
8799         path->nodes[level] = next;
8800         path->slots[level] = 0;
8801         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8802         wc->level = level;
8803         if (wc->level == 1)
8804                 wc->reada_slot = 0;
8805         return 0;
8806 skip:
8807         wc->refs[level - 1] = 0;
8808         wc->flags[level - 1] = 0;
8809         if (wc->stage == DROP_REFERENCE) {
8810                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8811                         parent = path->nodes[level]->start;
8812                 } else {
8813                         ASSERT(root->root_key.objectid ==
8814                                btrfs_header_owner(path->nodes[level]));
8815                         if (root->root_key.objectid !=
8816                             btrfs_header_owner(path->nodes[level])) {
8817                                 btrfs_err(root->fs_info,
8818                                                 "mismatched block owner");
8819                                 ret = -EIO;
8820                                 goto out_unlock;
8821                         }
8822                         parent = 0;
8823                 }
8824
8825                 if (need_account) {
8826                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8827                                                          generation, level - 1);
8828                         if (ret) {
8829                                 btrfs_err_rl(fs_info,
8830                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8831                                              ret);
8832                         }
8833                 }
8834                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8835                                         parent, root->root_key.objectid,
8836                                         level - 1, 0);
8837                 if (ret)
8838                         goto out_unlock;
8839         }
8840
8841         *lookup_info = 1;
8842         ret = 1;
8843
8844 out_unlock:
8845         btrfs_tree_unlock(next);
8846         free_extent_buffer(next);
8847
8848         return ret;
8849 }
8850
8851 /*
8852  * helper to process tree block while walking up the tree.
8853  *
8854  * when wc->stage == DROP_REFERENCE, this function drops
8855  * reference count on the block.
8856  *
8857  * when wc->stage == UPDATE_BACKREF, this function changes
8858  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8859  * to UPDATE_BACKREF previously while processing the block.
8860  *
8861  * NOTE: return value 1 means we should stop walking up.
8862  */
8863 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8864                                  struct btrfs_root *root,
8865                                  struct btrfs_path *path,
8866                                  struct walk_control *wc)
8867 {
8868         struct btrfs_fs_info *fs_info = root->fs_info;
8869         int ret;
8870         int level = wc->level;
8871         struct extent_buffer *eb = path->nodes[level];
8872         u64 parent = 0;
8873
8874         if (wc->stage == UPDATE_BACKREF) {
8875                 BUG_ON(wc->shared_level < level);
8876                 if (level < wc->shared_level)
8877                         goto out;
8878
8879                 ret = find_next_key(path, level + 1, &wc->update_progress);
8880                 if (ret > 0)
8881                         wc->update_ref = 0;
8882
8883                 wc->stage = DROP_REFERENCE;
8884                 wc->shared_level = -1;
8885                 path->slots[level] = 0;
8886
8887                 /*
8888                  * check reference count again if the block isn't locked.
8889                  * we should start walking down the tree again if reference
8890                  * count is one.
8891                  */
8892                 if (!path->locks[level]) {
8893                         BUG_ON(level == 0);
8894                         btrfs_tree_lock(eb);
8895                         btrfs_set_lock_blocking(eb);
8896                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8897
8898                         ret = btrfs_lookup_extent_info(trans, fs_info,
8899                                                        eb->start, level, 1,
8900                                                        &wc->refs[level],
8901                                                        &wc->flags[level]);
8902                         if (ret < 0) {
8903                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8904                                 path->locks[level] = 0;
8905                                 return ret;
8906                         }
8907                         BUG_ON(wc->refs[level] == 0);
8908                         if (wc->refs[level] == 1) {
8909                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8910                                 path->locks[level] = 0;
8911                                 return 1;
8912                         }
8913                 }
8914         }
8915
8916         /* wc->stage == DROP_REFERENCE */
8917         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8918
8919         if (wc->refs[level] == 1) {
8920                 if (level == 0) {
8921                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8922                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8923                         else
8924                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8925                         BUG_ON(ret); /* -ENOMEM */
8926                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8927                         if (ret) {
8928                                 btrfs_err_rl(fs_info,
8929                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8930                                              ret);
8931                         }
8932                 }
8933                 /* make block locked assertion in clean_tree_block happy */
8934                 if (!path->locks[level] &&
8935                     btrfs_header_generation(eb) == trans->transid) {
8936                         btrfs_tree_lock(eb);
8937                         btrfs_set_lock_blocking(eb);
8938                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8939                 }
8940                 clean_tree_block(fs_info, eb);
8941         }
8942
8943         if (eb == root->node) {
8944                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8945                         parent = eb->start;
8946                 else
8947                         BUG_ON(root->root_key.objectid !=
8948                                btrfs_header_owner(eb));
8949         } else {
8950                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8951                         parent = path->nodes[level + 1]->start;
8952                 else
8953                         BUG_ON(root->root_key.objectid !=
8954                                btrfs_header_owner(path->nodes[level + 1]));
8955         }
8956
8957         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8958 out:
8959         wc->refs[level] = 0;
8960         wc->flags[level] = 0;
8961         return 0;
8962 }
8963
8964 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8965                                    struct btrfs_root *root,
8966                                    struct btrfs_path *path,
8967                                    struct walk_control *wc)
8968 {
8969         int level = wc->level;
8970         int lookup_info = 1;
8971         int ret;
8972
8973         while (level >= 0) {
8974                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8975                 if (ret > 0)
8976                         break;
8977
8978                 if (level == 0)
8979                         break;
8980
8981                 if (path->slots[level] >=
8982                     btrfs_header_nritems(path->nodes[level]))
8983                         break;
8984
8985                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8986                 if (ret > 0) {
8987                         path->slots[level]++;
8988                         continue;
8989                 } else if (ret < 0)
8990                         return ret;
8991                 level = wc->level;
8992         }
8993         return 0;
8994 }
8995
8996 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8997                                  struct btrfs_root *root,
8998                                  struct btrfs_path *path,
8999                                  struct walk_control *wc, int max_level)
9000 {
9001         int level = wc->level;
9002         int ret;
9003
9004         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9005         while (level < max_level && path->nodes[level]) {
9006                 wc->level = level;
9007                 if (path->slots[level] + 1 <
9008                     btrfs_header_nritems(path->nodes[level])) {
9009                         path->slots[level]++;
9010                         return 0;
9011                 } else {
9012                         ret = walk_up_proc(trans, root, path, wc);
9013                         if (ret > 0)
9014                                 return 0;
9015
9016                         if (path->locks[level]) {
9017                                 btrfs_tree_unlock_rw(path->nodes[level],
9018                                                      path->locks[level]);
9019                                 path->locks[level] = 0;
9020                         }
9021                         free_extent_buffer(path->nodes[level]);
9022                         path->nodes[level] = NULL;
9023                         level++;
9024                 }
9025         }
9026         return 1;
9027 }
9028
9029 /*
9030  * drop a subvolume tree.
9031  *
9032  * this function traverses the tree freeing any blocks that only
9033  * referenced by the tree.
9034  *
9035  * when a shared tree block is found. this function decreases its
9036  * reference count by one. if update_ref is true, this function
9037  * also make sure backrefs for the shared block and all lower level
9038  * blocks are properly updated.
9039  *
9040  * If called with for_reloc == 0, may exit early with -EAGAIN
9041  */
9042 int btrfs_drop_snapshot(struct btrfs_root *root,
9043                          struct btrfs_block_rsv *block_rsv, int update_ref,
9044                          int for_reloc)
9045 {
9046         struct btrfs_fs_info *fs_info = root->fs_info;
9047         struct btrfs_path *path;
9048         struct btrfs_trans_handle *trans;
9049         struct btrfs_root *tree_root = fs_info->tree_root;
9050         struct btrfs_root_item *root_item = &root->root_item;
9051         struct walk_control *wc;
9052         struct btrfs_key key;
9053         int err = 0;
9054         int ret;
9055         int level;
9056         bool root_dropped = false;
9057
9058         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9059
9060         path = btrfs_alloc_path();
9061         if (!path) {
9062                 err = -ENOMEM;
9063                 goto out;
9064         }
9065
9066         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9067         if (!wc) {
9068                 btrfs_free_path(path);
9069                 err = -ENOMEM;
9070                 goto out;
9071         }
9072
9073         trans = btrfs_start_transaction(tree_root, 0);
9074         if (IS_ERR(trans)) {
9075                 err = PTR_ERR(trans);
9076                 goto out_free;
9077         }
9078
9079         if (block_rsv)
9080                 trans->block_rsv = block_rsv;
9081
9082         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9083                 level = btrfs_header_level(root->node);
9084                 path->nodes[level] = btrfs_lock_root_node(root);
9085                 btrfs_set_lock_blocking(path->nodes[level]);
9086                 path->slots[level] = 0;
9087                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9088                 memset(&wc->update_progress, 0,
9089                        sizeof(wc->update_progress));
9090         } else {
9091                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9092                 memcpy(&wc->update_progress, &key,
9093                        sizeof(wc->update_progress));
9094
9095                 level = root_item->drop_level;
9096                 BUG_ON(level == 0);
9097                 path->lowest_level = level;
9098                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9099                 path->lowest_level = 0;
9100                 if (ret < 0) {
9101                         err = ret;
9102                         goto out_end_trans;
9103                 }
9104                 WARN_ON(ret > 0);
9105
9106                 /*
9107                  * unlock our path, this is safe because only this
9108                  * function is allowed to delete this snapshot
9109                  */
9110                 btrfs_unlock_up_safe(path, 0);
9111
9112                 level = btrfs_header_level(root->node);
9113                 while (1) {
9114                         btrfs_tree_lock(path->nodes[level]);
9115                         btrfs_set_lock_blocking(path->nodes[level]);
9116                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9117
9118                         ret = btrfs_lookup_extent_info(trans, fs_info,
9119                                                 path->nodes[level]->start,
9120                                                 level, 1, &wc->refs[level],
9121                                                 &wc->flags[level]);
9122                         if (ret < 0) {
9123                                 err = ret;
9124                                 goto out_end_trans;
9125                         }
9126                         BUG_ON(wc->refs[level] == 0);
9127
9128                         if (level == root_item->drop_level)
9129                                 break;
9130
9131                         btrfs_tree_unlock(path->nodes[level]);
9132                         path->locks[level] = 0;
9133                         WARN_ON(wc->refs[level] != 1);
9134                         level--;
9135                 }
9136         }
9137
9138         wc->level = level;
9139         wc->shared_level = -1;
9140         wc->stage = DROP_REFERENCE;
9141         wc->update_ref = update_ref;
9142         wc->keep_locks = 0;
9143         wc->for_reloc = for_reloc;
9144         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9145
9146         while (1) {
9147
9148                 ret = walk_down_tree(trans, root, path, wc);
9149                 if (ret < 0) {
9150                         err = ret;
9151                         break;
9152                 }
9153
9154                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9155                 if (ret < 0) {
9156                         err = ret;
9157                         break;
9158                 }
9159
9160                 if (ret > 0) {
9161                         BUG_ON(wc->stage != DROP_REFERENCE);
9162                         break;
9163                 }
9164
9165                 if (wc->stage == DROP_REFERENCE) {
9166                         level = wc->level;
9167                         btrfs_node_key(path->nodes[level],
9168                                        &root_item->drop_progress,
9169                                        path->slots[level]);
9170                         root_item->drop_level = level;
9171                 }
9172
9173                 BUG_ON(wc->level == 0);
9174                 if (btrfs_should_end_transaction(trans) ||
9175                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9176                         ret = btrfs_update_root(trans, tree_root,
9177                                                 &root->root_key,
9178                                                 root_item);
9179                         if (ret) {
9180                                 btrfs_abort_transaction(trans, ret);
9181                                 err = ret;
9182                                 goto out_end_trans;
9183                         }
9184
9185                         btrfs_end_transaction_throttle(trans);
9186                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9187                                 btrfs_debug(fs_info,
9188                                             "drop snapshot early exit");
9189                                 err = -EAGAIN;
9190                                 goto out_free;
9191                         }
9192
9193                         trans = btrfs_start_transaction(tree_root, 0);
9194                         if (IS_ERR(trans)) {
9195                                 err = PTR_ERR(trans);
9196                                 goto out_free;
9197                         }
9198                         if (block_rsv)
9199                                 trans->block_rsv = block_rsv;
9200                 }
9201         }
9202         btrfs_release_path(path);
9203         if (err)
9204                 goto out_end_trans;
9205
9206         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9207         if (ret) {
9208                 btrfs_abort_transaction(trans, ret);
9209                 goto out_end_trans;
9210         }
9211
9212         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9213                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9214                                       NULL, NULL);
9215                 if (ret < 0) {
9216                         btrfs_abort_transaction(trans, ret);
9217                         err = ret;
9218                         goto out_end_trans;
9219                 } else if (ret > 0) {
9220                         /* if we fail to delete the orphan item this time
9221                          * around, it'll get picked up the next time.
9222                          *
9223                          * The most common failure here is just -ENOENT.
9224                          */
9225                         btrfs_del_orphan_item(trans, tree_root,
9226                                               root->root_key.objectid);
9227                 }
9228         }
9229
9230         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9231                 btrfs_add_dropped_root(trans, root);
9232         } else {
9233                 free_extent_buffer(root->node);
9234                 free_extent_buffer(root->commit_root);
9235                 btrfs_put_fs_root(root);
9236         }
9237         root_dropped = true;
9238 out_end_trans:
9239         btrfs_end_transaction_throttle(trans);
9240 out_free:
9241         kfree(wc);
9242         btrfs_free_path(path);
9243 out:
9244         /*
9245          * So if we need to stop dropping the snapshot for whatever reason we
9246          * need to make sure to add it back to the dead root list so that we
9247          * keep trying to do the work later.  This also cleans up roots if we
9248          * don't have it in the radix (like when we recover after a power fail
9249          * or unmount) so we don't leak memory.
9250          */
9251         if (!for_reloc && !root_dropped)
9252                 btrfs_add_dead_root(root);
9253         if (err && err != -EAGAIN)
9254                 btrfs_handle_fs_error(fs_info, err, NULL);
9255         return err;
9256 }
9257
9258 /*
9259  * drop subtree rooted at tree block 'node'.
9260  *
9261  * NOTE: this function will unlock and release tree block 'node'
9262  * only used by relocation code
9263  */
9264 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9265                         struct btrfs_root *root,
9266                         struct extent_buffer *node,
9267                         struct extent_buffer *parent)
9268 {
9269         struct btrfs_fs_info *fs_info = root->fs_info;
9270         struct btrfs_path *path;
9271         struct walk_control *wc;
9272         int level;
9273         int parent_level;
9274         int ret = 0;
9275         int wret;
9276
9277         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9278
9279         path = btrfs_alloc_path();
9280         if (!path)
9281                 return -ENOMEM;
9282
9283         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9284         if (!wc) {
9285                 btrfs_free_path(path);
9286                 return -ENOMEM;
9287         }
9288
9289         btrfs_assert_tree_locked(parent);
9290         parent_level = btrfs_header_level(parent);
9291         extent_buffer_get(parent);
9292         path->nodes[parent_level] = parent;
9293         path->slots[parent_level] = btrfs_header_nritems(parent);
9294
9295         btrfs_assert_tree_locked(node);
9296         level = btrfs_header_level(node);
9297         path->nodes[level] = node;
9298         path->slots[level] = 0;
9299         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9300
9301         wc->refs[parent_level] = 1;
9302         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9303         wc->level = level;
9304         wc->shared_level = -1;
9305         wc->stage = DROP_REFERENCE;
9306         wc->update_ref = 0;
9307         wc->keep_locks = 1;
9308         wc->for_reloc = 1;
9309         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9310
9311         while (1) {
9312                 wret = walk_down_tree(trans, root, path, wc);
9313                 if (wret < 0) {
9314                         ret = wret;
9315                         break;
9316                 }
9317
9318                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9319                 if (wret < 0)
9320                         ret = wret;
9321                 if (wret != 0)
9322                         break;
9323         }
9324
9325         kfree(wc);
9326         btrfs_free_path(path);
9327         return ret;
9328 }
9329
9330 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9331 {
9332         u64 num_devices;
9333         u64 stripped;
9334
9335         /*
9336          * if restripe for this chunk_type is on pick target profile and
9337          * return, otherwise do the usual balance
9338          */
9339         stripped = get_restripe_target(fs_info, flags);
9340         if (stripped)
9341                 return extended_to_chunk(stripped);
9342
9343         num_devices = fs_info->fs_devices->rw_devices;
9344
9345         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9346                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9347                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9348
9349         if (num_devices == 1) {
9350                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9351                 stripped = flags & ~stripped;
9352
9353                 /* turn raid0 into single device chunks */
9354                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9355                         return stripped;
9356
9357                 /* turn mirroring into duplication */
9358                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9359                              BTRFS_BLOCK_GROUP_RAID10))
9360                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9361         } else {
9362                 /* they already had raid on here, just return */
9363                 if (flags & stripped)
9364                         return flags;
9365
9366                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9367                 stripped = flags & ~stripped;
9368
9369                 /* switch duplicated blocks with raid1 */
9370                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9371                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9372
9373                 /* this is drive concat, leave it alone */
9374         }
9375
9376         return flags;
9377 }
9378
9379 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9380 {
9381         struct btrfs_space_info *sinfo = cache->space_info;
9382         u64 num_bytes;
9383         u64 min_allocable_bytes;
9384         int ret = -ENOSPC;
9385
9386         /*
9387          * We need some metadata space and system metadata space for
9388          * allocating chunks in some corner cases until we force to set
9389          * it to be readonly.
9390          */
9391         if ((sinfo->flags &
9392              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9393             !force)
9394                 min_allocable_bytes = SZ_1M;
9395         else
9396                 min_allocable_bytes = 0;
9397
9398         spin_lock(&sinfo->lock);
9399         spin_lock(&cache->lock);
9400
9401         if (cache->ro) {
9402                 cache->ro++;
9403                 ret = 0;
9404                 goto out;
9405         }
9406
9407         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9408                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9409
9410         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9411             min_allocable_bytes <= sinfo->total_bytes) {
9412                 sinfo->bytes_readonly += num_bytes;
9413                 cache->ro++;
9414                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9415                 ret = 0;
9416         }
9417 out:
9418         spin_unlock(&cache->lock);
9419         spin_unlock(&sinfo->lock);
9420         return ret;
9421 }
9422
9423 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9424                              struct btrfs_block_group_cache *cache)
9425
9426 {
9427         struct btrfs_trans_handle *trans;
9428         u64 alloc_flags;
9429         int ret;
9430
9431 again:
9432         trans = btrfs_join_transaction(fs_info->extent_root);
9433         if (IS_ERR(trans))
9434                 return PTR_ERR(trans);
9435
9436         /*
9437          * we're not allowed to set block groups readonly after the dirty
9438          * block groups cache has started writing.  If it already started,
9439          * back off and let this transaction commit
9440          */
9441         mutex_lock(&fs_info->ro_block_group_mutex);
9442         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9443                 u64 transid = trans->transid;
9444
9445                 mutex_unlock(&fs_info->ro_block_group_mutex);
9446                 btrfs_end_transaction(trans);
9447
9448                 ret = btrfs_wait_for_commit(fs_info, transid);
9449                 if (ret)
9450                         return ret;
9451                 goto again;
9452         }
9453
9454         /*
9455          * if we are changing raid levels, try to allocate a corresponding
9456          * block group with the new raid level.
9457          */
9458         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9459         if (alloc_flags != cache->flags) {
9460                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9461                                      CHUNK_ALLOC_FORCE);
9462                 /*
9463                  * ENOSPC is allowed here, we may have enough space
9464                  * already allocated at the new raid level to
9465                  * carry on
9466                  */
9467                 if (ret == -ENOSPC)
9468                         ret = 0;
9469                 if (ret < 0)
9470                         goto out;
9471         }
9472
9473         ret = inc_block_group_ro(cache, 0);
9474         if (!ret)
9475                 goto out;
9476         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9477         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9478                              CHUNK_ALLOC_FORCE);
9479         if (ret < 0)
9480                 goto out;
9481         ret = inc_block_group_ro(cache, 0);
9482 out:
9483         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9484                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9485                 mutex_lock(&fs_info->chunk_mutex);
9486                 check_system_chunk(trans, fs_info, alloc_flags);
9487                 mutex_unlock(&fs_info->chunk_mutex);
9488         }
9489         mutex_unlock(&fs_info->ro_block_group_mutex);
9490
9491         btrfs_end_transaction(trans);
9492         return ret;
9493 }
9494
9495 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9496                             struct btrfs_fs_info *fs_info, u64 type)
9497 {
9498         u64 alloc_flags = get_alloc_profile(fs_info, type);
9499
9500         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9501 }
9502
9503 /*
9504  * helper to account the unused space of all the readonly block group in the
9505  * space_info. takes mirrors into account.
9506  */
9507 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9508 {
9509         struct btrfs_block_group_cache *block_group;
9510         u64 free_bytes = 0;
9511         int factor;
9512
9513         /* It's df, we don't care if it's racy */
9514         if (list_empty(&sinfo->ro_bgs))
9515                 return 0;
9516
9517         spin_lock(&sinfo->lock);
9518         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9519                 spin_lock(&block_group->lock);
9520
9521                 if (!block_group->ro) {
9522                         spin_unlock(&block_group->lock);
9523                         continue;
9524                 }
9525
9526                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9527                                           BTRFS_BLOCK_GROUP_RAID10 |
9528                                           BTRFS_BLOCK_GROUP_DUP))
9529                         factor = 2;
9530                 else
9531                         factor = 1;
9532
9533                 free_bytes += (block_group->key.offset -
9534                                btrfs_block_group_used(&block_group->item)) *
9535                                factor;
9536
9537                 spin_unlock(&block_group->lock);
9538         }
9539         spin_unlock(&sinfo->lock);
9540
9541         return free_bytes;
9542 }
9543
9544 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9545 {
9546         struct btrfs_space_info *sinfo = cache->space_info;
9547         u64 num_bytes;
9548
9549         BUG_ON(!cache->ro);
9550
9551         spin_lock(&sinfo->lock);
9552         spin_lock(&cache->lock);
9553         if (!--cache->ro) {
9554                 num_bytes = cache->key.offset - cache->reserved -
9555                             cache->pinned - cache->bytes_super -
9556                             btrfs_block_group_used(&cache->item);
9557                 sinfo->bytes_readonly -= num_bytes;
9558                 list_del_init(&cache->ro_list);
9559         }
9560         spin_unlock(&cache->lock);
9561         spin_unlock(&sinfo->lock);
9562 }
9563
9564 /*
9565  * checks to see if its even possible to relocate this block group.
9566  *
9567  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9568  * ok to go ahead and try.
9569  */
9570 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9571 {
9572         struct btrfs_root *root = fs_info->extent_root;
9573         struct btrfs_block_group_cache *block_group;
9574         struct btrfs_space_info *space_info;
9575         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9576         struct btrfs_device *device;
9577         struct btrfs_trans_handle *trans;
9578         u64 min_free;
9579         u64 dev_min = 1;
9580         u64 dev_nr = 0;
9581         u64 target;
9582         int debug;
9583         int index;
9584         int full = 0;
9585         int ret = 0;
9586
9587         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9588
9589         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9590
9591         /* odd, couldn't find the block group, leave it alone */
9592         if (!block_group) {
9593                 if (debug)
9594                         btrfs_warn(fs_info,
9595                                    "can't find block group for bytenr %llu",
9596                                    bytenr);
9597                 return -1;
9598         }
9599
9600         min_free = btrfs_block_group_used(&block_group->item);
9601
9602         /* no bytes used, we're good */
9603         if (!min_free)
9604                 goto out;
9605
9606         space_info = block_group->space_info;
9607         spin_lock(&space_info->lock);
9608
9609         full = space_info->full;
9610
9611         /*
9612          * if this is the last block group we have in this space, we can't
9613          * relocate it unless we're able to allocate a new chunk below.
9614          *
9615          * Otherwise, we need to make sure we have room in the space to handle
9616          * all of the extents from this block group.  If we can, we're good
9617          */
9618         if ((space_info->total_bytes != block_group->key.offset) &&
9619             (btrfs_space_info_used(space_info, false) + min_free <
9620              space_info->total_bytes)) {
9621                 spin_unlock(&space_info->lock);
9622                 goto out;
9623         }
9624         spin_unlock(&space_info->lock);
9625
9626         /*
9627          * ok we don't have enough space, but maybe we have free space on our
9628          * devices to allocate new chunks for relocation, so loop through our
9629          * alloc devices and guess if we have enough space.  if this block
9630          * group is going to be restriped, run checks against the target
9631          * profile instead of the current one.
9632          */
9633         ret = -1;
9634
9635         /*
9636          * index:
9637          *      0: raid10
9638          *      1: raid1
9639          *      2: dup
9640          *      3: raid0
9641          *      4: single
9642          */
9643         target = get_restripe_target(fs_info, block_group->flags);
9644         if (target) {
9645                 index = __get_raid_index(extended_to_chunk(target));
9646         } else {
9647                 /*
9648                  * this is just a balance, so if we were marked as full
9649                  * we know there is no space for a new chunk
9650                  */
9651                 if (full) {
9652                         if (debug)
9653                                 btrfs_warn(fs_info,
9654                                            "no space to alloc new chunk for block group %llu",
9655                                            block_group->key.objectid);
9656                         goto out;
9657                 }
9658
9659                 index = get_block_group_index(block_group);
9660         }
9661
9662         if (index == BTRFS_RAID_RAID10) {
9663                 dev_min = 4;
9664                 /* Divide by 2 */
9665                 min_free >>= 1;
9666         } else if (index == BTRFS_RAID_RAID1) {
9667                 dev_min = 2;
9668         } else if (index == BTRFS_RAID_DUP) {
9669                 /* Multiply by 2 */
9670                 min_free <<= 1;
9671         } else if (index == BTRFS_RAID_RAID0) {
9672                 dev_min = fs_devices->rw_devices;
9673                 min_free = div64_u64(min_free, dev_min);
9674         }
9675
9676         /* We need to do this so that we can look at pending chunks */
9677         trans = btrfs_join_transaction(root);
9678         if (IS_ERR(trans)) {
9679                 ret = PTR_ERR(trans);
9680                 goto out;
9681         }
9682
9683         mutex_lock(&fs_info->chunk_mutex);
9684         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9685                 u64 dev_offset;
9686
9687                 /*
9688                  * check to make sure we can actually find a chunk with enough
9689                  * space to fit our block group in.
9690                  */
9691                 if (device->total_bytes > device->bytes_used + min_free &&
9692                     !device->is_tgtdev_for_dev_replace) {
9693                         ret = find_free_dev_extent(trans, device, min_free,
9694                                                    &dev_offset, NULL);
9695                         if (!ret)
9696                                 dev_nr++;
9697
9698                         if (dev_nr >= dev_min)
9699                                 break;
9700
9701                         ret = -1;
9702                 }
9703         }
9704         if (debug && ret == -1)
9705                 btrfs_warn(fs_info,
9706                            "no space to allocate a new chunk for block group %llu",
9707                            block_group->key.objectid);
9708         mutex_unlock(&fs_info->chunk_mutex);
9709         btrfs_end_transaction(trans);
9710 out:
9711         btrfs_put_block_group(block_group);
9712         return ret;
9713 }
9714
9715 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9716                                   struct btrfs_path *path,
9717                                   struct btrfs_key *key)
9718 {
9719         struct btrfs_root *root = fs_info->extent_root;
9720         int ret = 0;
9721         struct btrfs_key found_key;
9722         struct extent_buffer *leaf;
9723         int slot;
9724
9725         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9726         if (ret < 0)
9727                 goto out;
9728
9729         while (1) {
9730                 slot = path->slots[0];
9731                 leaf = path->nodes[0];
9732                 if (slot >= btrfs_header_nritems(leaf)) {
9733                         ret = btrfs_next_leaf(root, path);
9734                         if (ret == 0)
9735                                 continue;
9736                         if (ret < 0)
9737                                 goto out;
9738                         break;
9739                 }
9740                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9741
9742                 if (found_key.objectid >= key->objectid &&
9743                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9744                         struct extent_map_tree *em_tree;
9745                         struct extent_map *em;
9746
9747                         em_tree = &root->fs_info->mapping_tree.map_tree;
9748                         read_lock(&em_tree->lock);
9749                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9750                                                    found_key.offset);
9751                         read_unlock(&em_tree->lock);
9752                         if (!em) {
9753                                 btrfs_err(fs_info,
9754                         "logical %llu len %llu found bg but no related chunk",
9755                                           found_key.objectid, found_key.offset);
9756                                 ret = -ENOENT;
9757                         } else {
9758                                 ret = 0;
9759                         }
9760                         free_extent_map(em);
9761                         goto out;
9762                 }
9763                 path->slots[0]++;
9764         }
9765 out:
9766         return ret;
9767 }
9768
9769 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9770 {
9771         struct btrfs_block_group_cache *block_group;
9772         u64 last = 0;
9773
9774         while (1) {
9775                 struct inode *inode;
9776
9777                 block_group = btrfs_lookup_first_block_group(info, last);
9778                 while (block_group) {
9779                         spin_lock(&block_group->lock);
9780                         if (block_group->iref)
9781                                 break;
9782                         spin_unlock(&block_group->lock);
9783                         block_group = next_block_group(info, block_group);
9784                 }
9785                 if (!block_group) {
9786                         if (last == 0)
9787                                 break;
9788                         last = 0;
9789                         continue;
9790                 }
9791
9792                 inode = block_group->inode;
9793                 block_group->iref = 0;
9794                 block_group->inode = NULL;
9795                 spin_unlock(&block_group->lock);
9796                 ASSERT(block_group->io_ctl.inode == NULL);
9797                 iput(inode);
9798                 last = block_group->key.objectid + block_group->key.offset;
9799                 btrfs_put_block_group(block_group);
9800         }
9801 }
9802
9803 /*
9804  * Must be called only after stopping all workers, since we could have block
9805  * group caching kthreads running, and therefore they could race with us if we
9806  * freed the block groups before stopping them.
9807  */
9808 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9809 {
9810         struct btrfs_block_group_cache *block_group;
9811         struct btrfs_space_info *space_info;
9812         struct btrfs_caching_control *caching_ctl;
9813         struct rb_node *n;
9814
9815         down_write(&info->commit_root_sem);
9816         while (!list_empty(&info->caching_block_groups)) {
9817                 caching_ctl = list_entry(info->caching_block_groups.next,
9818                                          struct btrfs_caching_control, list);
9819                 list_del(&caching_ctl->list);
9820                 put_caching_control(caching_ctl);
9821         }
9822         up_write(&info->commit_root_sem);
9823
9824         spin_lock(&info->unused_bgs_lock);
9825         while (!list_empty(&info->unused_bgs)) {
9826                 block_group = list_first_entry(&info->unused_bgs,
9827                                                struct btrfs_block_group_cache,
9828                                                bg_list);
9829                 list_del_init(&block_group->bg_list);
9830                 btrfs_put_block_group(block_group);
9831         }
9832         spin_unlock(&info->unused_bgs_lock);
9833
9834         spin_lock(&info->block_group_cache_lock);
9835         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9836                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9837                                        cache_node);
9838                 rb_erase(&block_group->cache_node,
9839                          &info->block_group_cache_tree);
9840                 RB_CLEAR_NODE(&block_group->cache_node);
9841                 spin_unlock(&info->block_group_cache_lock);
9842
9843                 down_write(&block_group->space_info->groups_sem);
9844                 list_del(&block_group->list);
9845                 up_write(&block_group->space_info->groups_sem);
9846
9847                 /*
9848                  * We haven't cached this block group, which means we could
9849                  * possibly have excluded extents on this block group.
9850                  */
9851                 if (block_group->cached == BTRFS_CACHE_NO ||
9852                     block_group->cached == BTRFS_CACHE_ERROR)
9853                         free_excluded_extents(info, block_group);
9854
9855                 btrfs_remove_free_space_cache(block_group);
9856                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9857                 ASSERT(list_empty(&block_group->dirty_list));
9858                 ASSERT(list_empty(&block_group->io_list));
9859                 ASSERT(list_empty(&block_group->bg_list));
9860                 ASSERT(atomic_read(&block_group->count) == 1);
9861                 btrfs_put_block_group(block_group);
9862
9863                 spin_lock(&info->block_group_cache_lock);
9864         }
9865         spin_unlock(&info->block_group_cache_lock);
9866
9867         /* now that all the block groups are freed, go through and
9868          * free all the space_info structs.  This is only called during
9869          * the final stages of unmount, and so we know nobody is
9870          * using them.  We call synchronize_rcu() once before we start,
9871          * just to be on the safe side.
9872          */
9873         synchronize_rcu();
9874
9875         release_global_block_rsv(info);
9876
9877         while (!list_empty(&info->space_info)) {
9878                 int i;
9879
9880                 space_info = list_entry(info->space_info.next,
9881                                         struct btrfs_space_info,
9882                                         list);
9883
9884                 /*
9885                  * Do not hide this behind enospc_debug, this is actually
9886                  * important and indicates a real bug if this happens.
9887                  */
9888                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9889                             space_info->bytes_reserved > 0 ||
9890                             space_info->bytes_may_use > 0))
9891                         dump_space_info(info, space_info, 0, 0);
9892                 list_del(&space_info->list);
9893                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9894                         struct kobject *kobj;
9895                         kobj = space_info->block_group_kobjs[i];
9896                         space_info->block_group_kobjs[i] = NULL;
9897                         if (kobj) {
9898                                 kobject_del(kobj);
9899                                 kobject_put(kobj);
9900                         }
9901                 }
9902                 kobject_del(&space_info->kobj);
9903                 kobject_put(&space_info->kobj);
9904         }
9905         return 0;
9906 }
9907
9908 static void link_block_group(struct btrfs_block_group_cache *cache)
9909 {
9910         struct btrfs_space_info *space_info = cache->space_info;
9911         int index = get_block_group_index(cache);
9912         bool first = false;
9913
9914         down_write(&space_info->groups_sem);
9915         if (list_empty(&space_info->block_groups[index]))
9916                 first = true;
9917         list_add_tail(&cache->list, &space_info->block_groups[index]);
9918         up_write(&space_info->groups_sem);
9919
9920         if (first) {
9921                 struct raid_kobject *rkobj;
9922                 int ret;
9923
9924                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9925                 if (!rkobj)
9926                         goto out_err;
9927                 rkobj->raid_type = index;
9928                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9929                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9930                                   "%s", get_raid_name(index));
9931                 if (ret) {
9932                         kobject_put(&rkobj->kobj);
9933                         goto out_err;
9934                 }
9935                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9936         }
9937
9938         return;
9939 out_err:
9940         btrfs_warn(cache->fs_info,
9941                    "failed to add kobject for block cache, ignoring");
9942 }
9943
9944 static struct btrfs_block_group_cache *
9945 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9946                                u64 start, u64 size)
9947 {
9948         struct btrfs_block_group_cache *cache;
9949
9950         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9951         if (!cache)
9952                 return NULL;
9953
9954         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9955                                         GFP_NOFS);
9956         if (!cache->free_space_ctl) {
9957                 kfree(cache);
9958                 return NULL;
9959         }
9960
9961         cache->key.objectid = start;
9962         cache->key.offset = size;
9963         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9964
9965         cache->fs_info = fs_info;
9966         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9967         set_free_space_tree_thresholds(cache);
9968
9969         atomic_set(&cache->count, 1);
9970         spin_lock_init(&cache->lock);
9971         init_rwsem(&cache->data_rwsem);
9972         INIT_LIST_HEAD(&cache->list);
9973         INIT_LIST_HEAD(&cache->cluster_list);
9974         INIT_LIST_HEAD(&cache->bg_list);
9975         INIT_LIST_HEAD(&cache->ro_list);
9976         INIT_LIST_HEAD(&cache->dirty_list);
9977         INIT_LIST_HEAD(&cache->io_list);
9978         btrfs_init_free_space_ctl(cache);
9979         atomic_set(&cache->trimming, 0);
9980         mutex_init(&cache->free_space_lock);
9981         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9982
9983         return cache;
9984 }
9985
9986 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9987 {
9988         struct btrfs_path *path;
9989         int ret;
9990         struct btrfs_block_group_cache *cache;
9991         struct btrfs_space_info *space_info;
9992         struct btrfs_key key;
9993         struct btrfs_key found_key;
9994         struct extent_buffer *leaf;
9995         int need_clear = 0;
9996         u64 cache_gen;
9997         u64 feature;
9998         int mixed;
9999
10000         feature = btrfs_super_incompat_flags(info->super_copy);
10001         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10002
10003         key.objectid = 0;
10004         key.offset = 0;
10005         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10006         path = btrfs_alloc_path();
10007         if (!path)
10008                 return -ENOMEM;
10009         path->reada = READA_FORWARD;
10010
10011         cache_gen = btrfs_super_cache_generation(info->super_copy);
10012         if (btrfs_test_opt(info, SPACE_CACHE) &&
10013             btrfs_super_generation(info->super_copy) != cache_gen)
10014                 need_clear = 1;
10015         if (btrfs_test_opt(info, CLEAR_CACHE))
10016                 need_clear = 1;
10017
10018         while (1) {
10019                 ret = find_first_block_group(info, path, &key);
10020                 if (ret > 0)
10021                         break;
10022                 if (ret != 0)
10023                         goto error;
10024
10025                 leaf = path->nodes[0];
10026                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10027
10028                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10029                                                        found_key.offset);
10030                 if (!cache) {
10031                         ret = -ENOMEM;
10032                         goto error;
10033                 }
10034
10035                 if (need_clear) {
10036                         /*
10037                          * When we mount with old space cache, we need to
10038                          * set BTRFS_DC_CLEAR and set dirty flag.
10039                          *
10040                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10041                          *    truncate the old free space cache inode and
10042                          *    setup a new one.
10043                          * b) Setting 'dirty flag' makes sure that we flush
10044                          *    the new space cache info onto disk.
10045                          */
10046                         if (btrfs_test_opt(info, SPACE_CACHE))
10047                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10048                 }
10049
10050                 read_extent_buffer(leaf, &cache->item,
10051                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10052                                    sizeof(cache->item));
10053                 cache->flags = btrfs_block_group_flags(&cache->item);
10054                 if (!mixed &&
10055                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10056                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10057                         btrfs_err(info,
10058 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10059                                   cache->key.objectid);
10060                         ret = -EINVAL;
10061                         goto error;
10062                 }
10063
10064                 key.objectid = found_key.objectid + found_key.offset;
10065                 btrfs_release_path(path);
10066
10067                 /*
10068                  * We need to exclude the super stripes now so that the space
10069                  * info has super bytes accounted for, otherwise we'll think
10070                  * we have more space than we actually do.
10071                  */
10072                 ret = exclude_super_stripes(info, cache);
10073                 if (ret) {
10074                         /*
10075                          * We may have excluded something, so call this just in
10076                          * case.
10077                          */
10078                         free_excluded_extents(info, cache);
10079                         btrfs_put_block_group(cache);
10080                         goto error;
10081                 }
10082
10083                 /*
10084                  * check for two cases, either we are full, and therefore
10085                  * don't need to bother with the caching work since we won't
10086                  * find any space, or we are empty, and we can just add all
10087                  * the space in and be done with it.  This saves us _alot_ of
10088                  * time, particularly in the full case.
10089                  */
10090                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10091                         cache->last_byte_to_unpin = (u64)-1;
10092                         cache->cached = BTRFS_CACHE_FINISHED;
10093                         free_excluded_extents(info, cache);
10094                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10095                         cache->last_byte_to_unpin = (u64)-1;
10096                         cache->cached = BTRFS_CACHE_FINISHED;
10097                         add_new_free_space(cache, info,
10098                                            found_key.objectid,
10099                                            found_key.objectid +
10100                                            found_key.offset);
10101                         free_excluded_extents(info, cache);
10102                 }
10103
10104                 ret = btrfs_add_block_group_cache(info, cache);
10105                 if (ret) {
10106                         btrfs_remove_free_space_cache(cache);
10107                         btrfs_put_block_group(cache);
10108                         goto error;
10109                 }
10110
10111                 trace_btrfs_add_block_group(info, cache, 0);
10112                 update_space_info(info, cache->flags, found_key.offset,
10113                                   btrfs_block_group_used(&cache->item),
10114                                   cache->bytes_super, &space_info);
10115
10116                 cache->space_info = space_info;
10117
10118                 link_block_group(cache);
10119
10120                 set_avail_alloc_bits(info, cache->flags);
10121                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10122                         inc_block_group_ro(cache, 1);
10123                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10124                         spin_lock(&info->unused_bgs_lock);
10125                         /* Should always be true but just in case. */
10126                         if (list_empty(&cache->bg_list)) {
10127                                 btrfs_get_block_group(cache);
10128                                 list_add_tail(&cache->bg_list,
10129                                               &info->unused_bgs);
10130                         }
10131                         spin_unlock(&info->unused_bgs_lock);
10132                 }
10133         }
10134
10135         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10136                 if (!(get_alloc_profile(info, space_info->flags) &
10137                       (BTRFS_BLOCK_GROUP_RAID10 |
10138                        BTRFS_BLOCK_GROUP_RAID1 |
10139                        BTRFS_BLOCK_GROUP_RAID5 |
10140                        BTRFS_BLOCK_GROUP_RAID6 |
10141                        BTRFS_BLOCK_GROUP_DUP)))
10142                         continue;
10143                 /*
10144                  * avoid allocating from un-mirrored block group if there are
10145                  * mirrored block groups.
10146                  */
10147                 list_for_each_entry(cache,
10148                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10149                                 list)
10150                         inc_block_group_ro(cache, 1);
10151                 list_for_each_entry(cache,
10152                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10153                                 list)
10154                         inc_block_group_ro(cache, 1);
10155         }
10156
10157         init_global_block_rsv(info);
10158         ret = 0;
10159 error:
10160         btrfs_free_path(path);
10161         return ret;
10162 }
10163
10164 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10165                                        struct btrfs_fs_info *fs_info)
10166 {
10167         struct btrfs_block_group_cache *block_group, *tmp;
10168         struct btrfs_root *extent_root = fs_info->extent_root;
10169         struct btrfs_block_group_item item;
10170         struct btrfs_key key;
10171         int ret = 0;
10172         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10173
10174         trans->can_flush_pending_bgs = false;
10175         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10176                 if (ret)
10177                         goto next;
10178
10179                 spin_lock(&block_group->lock);
10180                 memcpy(&item, &block_group->item, sizeof(item));
10181                 memcpy(&key, &block_group->key, sizeof(key));
10182                 spin_unlock(&block_group->lock);
10183
10184                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10185                                         sizeof(item));
10186                 if (ret)
10187                         btrfs_abort_transaction(trans, ret);
10188                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10189                                                key.offset);
10190                 if (ret)
10191                         btrfs_abort_transaction(trans, ret);
10192                 add_block_group_free_space(trans, fs_info, block_group);
10193                 /* already aborted the transaction if it failed. */
10194 next:
10195                 list_del_init(&block_group->bg_list);
10196         }
10197         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10198 }
10199
10200 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10201                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10202                            u64 type, u64 chunk_offset, u64 size)
10203 {
10204         struct btrfs_block_group_cache *cache;
10205         int ret;
10206
10207         btrfs_set_log_full_commit(fs_info, trans);
10208
10209         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10210         if (!cache)
10211                 return -ENOMEM;
10212
10213         btrfs_set_block_group_used(&cache->item, bytes_used);
10214         btrfs_set_block_group_chunk_objectid(&cache->item,
10215                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10216         btrfs_set_block_group_flags(&cache->item, type);
10217
10218         cache->flags = type;
10219         cache->last_byte_to_unpin = (u64)-1;
10220         cache->cached = BTRFS_CACHE_FINISHED;
10221         cache->needs_free_space = 1;
10222         ret = exclude_super_stripes(fs_info, cache);
10223         if (ret) {
10224                 /*
10225                  * We may have excluded something, so call this just in
10226                  * case.
10227                  */
10228                 free_excluded_extents(fs_info, cache);
10229                 btrfs_put_block_group(cache);
10230                 return ret;
10231         }
10232
10233         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10234
10235         free_excluded_extents(fs_info, cache);
10236
10237 #ifdef CONFIG_BTRFS_DEBUG
10238         if (btrfs_should_fragment_free_space(cache)) {
10239                 u64 new_bytes_used = size - bytes_used;
10240
10241                 bytes_used += new_bytes_used >> 1;
10242                 fragment_free_space(cache);
10243         }
10244 #endif
10245         /*
10246          * Ensure the corresponding space_info object is created and
10247          * assigned to our block group. We want our bg to be added to the rbtree
10248          * with its ->space_info set.
10249          */
10250         cache->space_info = __find_space_info(fs_info, cache->flags);
10251         if (!cache->space_info) {
10252                 ret = create_space_info(fs_info, cache->flags,
10253                                        &cache->space_info);
10254                 if (ret) {
10255                         btrfs_remove_free_space_cache(cache);
10256                         btrfs_put_block_group(cache);
10257                         return ret;
10258                 }
10259         }
10260
10261         ret = btrfs_add_block_group_cache(fs_info, cache);
10262         if (ret) {
10263                 btrfs_remove_free_space_cache(cache);
10264                 btrfs_put_block_group(cache);
10265                 return ret;
10266         }
10267
10268         /*
10269          * Now that our block group has its ->space_info set and is inserted in
10270          * the rbtree, update the space info's counters.
10271          */
10272         trace_btrfs_add_block_group(fs_info, cache, 1);
10273         update_space_info(fs_info, cache->flags, size, bytes_used,
10274                                 cache->bytes_super, &cache->space_info);
10275         update_global_block_rsv(fs_info);
10276
10277         link_block_group(cache);
10278
10279         list_add_tail(&cache->bg_list, &trans->new_bgs);
10280
10281         set_avail_alloc_bits(fs_info, type);
10282         return 0;
10283 }
10284
10285 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10286 {
10287         u64 extra_flags = chunk_to_extended(flags) &
10288                                 BTRFS_EXTENDED_PROFILE_MASK;
10289
10290         write_seqlock(&fs_info->profiles_lock);
10291         if (flags & BTRFS_BLOCK_GROUP_DATA)
10292                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10293         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10294                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10295         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10296                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10297         write_sequnlock(&fs_info->profiles_lock);
10298 }
10299
10300 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10301                              struct btrfs_fs_info *fs_info, u64 group_start,
10302                              struct extent_map *em)
10303 {
10304         struct btrfs_root *root = fs_info->extent_root;
10305         struct btrfs_path *path;
10306         struct btrfs_block_group_cache *block_group;
10307         struct btrfs_free_cluster *cluster;
10308         struct btrfs_root *tree_root = fs_info->tree_root;
10309         struct btrfs_key key;
10310         struct inode *inode;
10311         struct kobject *kobj = NULL;
10312         int ret;
10313         int index;
10314         int factor;
10315         struct btrfs_caching_control *caching_ctl = NULL;
10316         bool remove_em;
10317
10318         block_group = btrfs_lookup_block_group(fs_info, group_start);
10319         BUG_ON(!block_group);
10320         BUG_ON(!block_group->ro);
10321
10322         /*
10323          * Free the reserved super bytes from this block group before
10324          * remove it.
10325          */
10326         free_excluded_extents(fs_info, block_group);
10327         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10328                                   block_group->key.offset);
10329
10330         memcpy(&key, &block_group->key, sizeof(key));
10331         index = get_block_group_index(block_group);
10332         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10333                                   BTRFS_BLOCK_GROUP_RAID1 |
10334                                   BTRFS_BLOCK_GROUP_RAID10))
10335                 factor = 2;
10336         else
10337                 factor = 1;
10338
10339         /* make sure this block group isn't part of an allocation cluster */
10340         cluster = &fs_info->data_alloc_cluster;
10341         spin_lock(&cluster->refill_lock);
10342         btrfs_return_cluster_to_free_space(block_group, cluster);
10343         spin_unlock(&cluster->refill_lock);
10344
10345         /*
10346          * make sure this block group isn't part of a metadata
10347          * allocation cluster
10348          */
10349         cluster = &fs_info->meta_alloc_cluster;
10350         spin_lock(&cluster->refill_lock);
10351         btrfs_return_cluster_to_free_space(block_group, cluster);
10352         spin_unlock(&cluster->refill_lock);
10353
10354         path = btrfs_alloc_path();
10355         if (!path) {
10356                 ret = -ENOMEM;
10357                 goto out;
10358         }
10359
10360         /*
10361          * get the inode first so any iput calls done for the io_list
10362          * aren't the final iput (no unlinks allowed now)
10363          */
10364         inode = lookup_free_space_inode(fs_info, block_group, path);
10365
10366         mutex_lock(&trans->transaction->cache_write_mutex);
10367         /*
10368          * make sure our free spache cache IO is done before remove the
10369          * free space inode
10370          */
10371         spin_lock(&trans->transaction->dirty_bgs_lock);
10372         if (!list_empty(&block_group->io_list)) {
10373                 list_del_init(&block_group->io_list);
10374
10375                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10376
10377                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10378                 btrfs_wait_cache_io(trans, block_group, path);
10379                 btrfs_put_block_group(block_group);
10380                 spin_lock(&trans->transaction->dirty_bgs_lock);
10381         }
10382
10383         if (!list_empty(&block_group->dirty_list)) {
10384                 list_del_init(&block_group->dirty_list);
10385                 btrfs_put_block_group(block_group);
10386         }
10387         spin_unlock(&trans->transaction->dirty_bgs_lock);
10388         mutex_unlock(&trans->transaction->cache_write_mutex);
10389
10390         if (!IS_ERR(inode)) {
10391                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10392                 if (ret) {
10393                         btrfs_add_delayed_iput(inode);
10394                         goto out;
10395                 }
10396                 clear_nlink(inode);
10397                 /* One for the block groups ref */
10398                 spin_lock(&block_group->lock);
10399                 if (block_group->iref) {
10400                         block_group->iref = 0;
10401                         block_group->inode = NULL;
10402                         spin_unlock(&block_group->lock);
10403                         iput(inode);
10404                 } else {
10405                         spin_unlock(&block_group->lock);
10406                 }
10407                 /* One for our lookup ref */
10408                 btrfs_add_delayed_iput(inode);
10409         }
10410
10411         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10412         key.offset = block_group->key.objectid;
10413         key.type = 0;
10414
10415         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10416         if (ret < 0)
10417                 goto out;
10418         if (ret > 0)
10419                 btrfs_release_path(path);
10420         if (ret == 0) {
10421                 ret = btrfs_del_item(trans, tree_root, path);
10422                 if (ret)
10423                         goto out;
10424                 btrfs_release_path(path);
10425         }
10426
10427         spin_lock(&fs_info->block_group_cache_lock);
10428         rb_erase(&block_group->cache_node,
10429                  &fs_info->block_group_cache_tree);
10430         RB_CLEAR_NODE(&block_group->cache_node);
10431
10432         if (fs_info->first_logical_byte == block_group->key.objectid)
10433                 fs_info->first_logical_byte = (u64)-1;
10434         spin_unlock(&fs_info->block_group_cache_lock);
10435
10436         down_write(&block_group->space_info->groups_sem);
10437         /*
10438          * we must use list_del_init so people can check to see if they
10439          * are still on the list after taking the semaphore
10440          */
10441         list_del_init(&block_group->list);
10442         if (list_empty(&block_group->space_info->block_groups[index])) {
10443                 kobj = block_group->space_info->block_group_kobjs[index];
10444                 block_group->space_info->block_group_kobjs[index] = NULL;
10445                 clear_avail_alloc_bits(fs_info, block_group->flags);
10446         }
10447         up_write(&block_group->space_info->groups_sem);
10448         if (kobj) {
10449                 kobject_del(kobj);
10450                 kobject_put(kobj);
10451         }
10452
10453         if (block_group->has_caching_ctl)
10454                 caching_ctl = get_caching_control(block_group);
10455         if (block_group->cached == BTRFS_CACHE_STARTED)
10456                 wait_block_group_cache_done(block_group);
10457         if (block_group->has_caching_ctl) {
10458                 down_write(&fs_info->commit_root_sem);
10459                 if (!caching_ctl) {
10460                         struct btrfs_caching_control *ctl;
10461
10462                         list_for_each_entry(ctl,
10463                                     &fs_info->caching_block_groups, list)
10464                                 if (ctl->block_group == block_group) {
10465                                         caching_ctl = ctl;
10466                                         refcount_inc(&caching_ctl->count);
10467                                         break;
10468                                 }
10469                 }
10470                 if (caching_ctl)
10471                         list_del_init(&caching_ctl->list);
10472                 up_write(&fs_info->commit_root_sem);
10473                 if (caching_ctl) {
10474                         /* Once for the caching bgs list and once for us. */
10475                         put_caching_control(caching_ctl);
10476                         put_caching_control(caching_ctl);
10477                 }
10478         }
10479
10480         spin_lock(&trans->transaction->dirty_bgs_lock);
10481         if (!list_empty(&block_group->dirty_list)) {
10482                 WARN_ON(1);
10483         }
10484         if (!list_empty(&block_group->io_list)) {
10485                 WARN_ON(1);
10486         }
10487         spin_unlock(&trans->transaction->dirty_bgs_lock);
10488         btrfs_remove_free_space_cache(block_group);
10489
10490         spin_lock(&block_group->space_info->lock);
10491         list_del_init(&block_group->ro_list);
10492
10493         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10494                 WARN_ON(block_group->space_info->total_bytes
10495                         < block_group->key.offset);
10496                 WARN_ON(block_group->space_info->bytes_readonly
10497                         < block_group->key.offset);
10498                 WARN_ON(block_group->space_info->disk_total
10499                         < block_group->key.offset * factor);
10500         }
10501         block_group->space_info->total_bytes -= block_group->key.offset;
10502         block_group->space_info->bytes_readonly -= block_group->key.offset;
10503         block_group->space_info->disk_total -= block_group->key.offset * factor;
10504
10505         spin_unlock(&block_group->space_info->lock);
10506
10507         memcpy(&key, &block_group->key, sizeof(key));
10508
10509         mutex_lock(&fs_info->chunk_mutex);
10510         if (!list_empty(&em->list)) {
10511                 /* We're in the transaction->pending_chunks list. */
10512                 free_extent_map(em);
10513         }
10514         spin_lock(&block_group->lock);
10515         block_group->removed = 1;
10516         /*
10517          * At this point trimming can't start on this block group, because we
10518          * removed the block group from the tree fs_info->block_group_cache_tree
10519          * so no one can't find it anymore and even if someone already got this
10520          * block group before we removed it from the rbtree, they have already
10521          * incremented block_group->trimming - if they didn't, they won't find
10522          * any free space entries because we already removed them all when we
10523          * called btrfs_remove_free_space_cache().
10524          *
10525          * And we must not remove the extent map from the fs_info->mapping_tree
10526          * to prevent the same logical address range and physical device space
10527          * ranges from being reused for a new block group. This is because our
10528          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10529          * completely transactionless, so while it is trimming a range the
10530          * currently running transaction might finish and a new one start,
10531          * allowing for new block groups to be created that can reuse the same
10532          * physical device locations unless we take this special care.
10533          *
10534          * There may also be an implicit trim operation if the file system
10535          * is mounted with -odiscard. The same protections must remain
10536          * in place until the extents have been discarded completely when
10537          * the transaction commit has completed.
10538          */
10539         remove_em = (atomic_read(&block_group->trimming) == 0);
10540         /*
10541          * Make sure a trimmer task always sees the em in the pinned_chunks list
10542          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10543          * before checking block_group->removed).
10544          */
10545         if (!remove_em) {
10546                 /*
10547                  * Our em might be in trans->transaction->pending_chunks which
10548                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10549                  * and so is the fs_info->pinned_chunks list.
10550                  *
10551                  * So at this point we must be holding the chunk_mutex to avoid
10552                  * any races with chunk allocation (more specifically at
10553                  * volumes.c:contains_pending_extent()), to ensure it always
10554                  * sees the em, either in the pending_chunks list or in the
10555                  * pinned_chunks list.
10556                  */
10557                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10558         }
10559         spin_unlock(&block_group->lock);
10560
10561         if (remove_em) {
10562                 struct extent_map_tree *em_tree;
10563
10564                 em_tree = &fs_info->mapping_tree.map_tree;
10565                 write_lock(&em_tree->lock);
10566                 /*
10567                  * The em might be in the pending_chunks list, so make sure the
10568                  * chunk mutex is locked, since remove_extent_mapping() will
10569                  * delete us from that list.
10570                  */
10571                 remove_extent_mapping(em_tree, em);
10572                 write_unlock(&em_tree->lock);
10573                 /* once for the tree */
10574                 free_extent_map(em);
10575         }
10576
10577         mutex_unlock(&fs_info->chunk_mutex);
10578
10579         ret = remove_block_group_free_space(trans, fs_info, block_group);
10580         if (ret)
10581                 goto out;
10582
10583         btrfs_put_block_group(block_group);
10584         btrfs_put_block_group(block_group);
10585
10586         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10587         if (ret > 0)
10588                 ret = -EIO;
10589         if (ret < 0)
10590                 goto out;
10591
10592         ret = btrfs_del_item(trans, root, path);
10593 out:
10594         btrfs_free_path(path);
10595         return ret;
10596 }
10597
10598 struct btrfs_trans_handle *
10599 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10600                                      const u64 chunk_offset)
10601 {
10602         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10603         struct extent_map *em;
10604         struct map_lookup *map;
10605         unsigned int num_items;
10606
10607         read_lock(&em_tree->lock);
10608         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10609         read_unlock(&em_tree->lock);
10610         ASSERT(em && em->start == chunk_offset);
10611
10612         /*
10613          * We need to reserve 3 + N units from the metadata space info in order
10614          * to remove a block group (done at btrfs_remove_chunk() and at
10615          * btrfs_remove_block_group()), which are used for:
10616          *
10617          * 1 unit for adding the free space inode's orphan (located in the tree
10618          * of tree roots).
10619          * 1 unit for deleting the block group item (located in the extent
10620          * tree).
10621          * 1 unit for deleting the free space item (located in tree of tree
10622          * roots).
10623          * N units for deleting N device extent items corresponding to each
10624          * stripe (located in the device tree).
10625          *
10626          * In order to remove a block group we also need to reserve units in the
10627          * system space info in order to update the chunk tree (update one or
10628          * more device items and remove one chunk item), but this is done at
10629          * btrfs_remove_chunk() through a call to check_system_chunk().
10630          */
10631         map = em->map_lookup;
10632         num_items = 3 + map->num_stripes;
10633         free_extent_map(em);
10634
10635         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10636                                                            num_items, 1);
10637 }
10638
10639 /*
10640  * Process the unused_bgs list and remove any that don't have any allocated
10641  * space inside of them.
10642  */
10643 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10644 {
10645         struct btrfs_block_group_cache *block_group;
10646         struct btrfs_space_info *space_info;
10647         struct btrfs_trans_handle *trans;
10648         int ret = 0;
10649
10650         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10651                 return;
10652
10653         spin_lock(&fs_info->unused_bgs_lock);
10654         while (!list_empty(&fs_info->unused_bgs)) {
10655                 u64 start, end;
10656                 int trimming;
10657
10658                 block_group = list_first_entry(&fs_info->unused_bgs,
10659                                                struct btrfs_block_group_cache,
10660                                                bg_list);
10661                 list_del_init(&block_group->bg_list);
10662
10663                 space_info = block_group->space_info;
10664
10665                 if (ret || btrfs_mixed_space_info(space_info)) {
10666                         btrfs_put_block_group(block_group);
10667                         continue;
10668                 }
10669                 spin_unlock(&fs_info->unused_bgs_lock);
10670
10671                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10672
10673                 /* Don't want to race with allocators so take the groups_sem */
10674                 down_write(&space_info->groups_sem);
10675                 spin_lock(&block_group->lock);
10676                 if (block_group->reserved ||
10677                     btrfs_block_group_used(&block_group->item) ||
10678                     block_group->ro ||
10679                     list_is_singular(&block_group->list)) {
10680                         /*
10681                          * We want to bail if we made new allocations or have
10682                          * outstanding allocations in this block group.  We do
10683                          * the ro check in case balance is currently acting on
10684                          * this block group.
10685                          */
10686                         spin_unlock(&block_group->lock);
10687                         up_write(&space_info->groups_sem);
10688                         goto next;
10689                 }
10690                 spin_unlock(&block_group->lock);
10691
10692                 /* We don't want to force the issue, only flip if it's ok. */
10693                 ret = inc_block_group_ro(block_group, 0);
10694                 up_write(&space_info->groups_sem);
10695                 if (ret < 0) {
10696                         ret = 0;
10697                         goto next;
10698                 }
10699
10700                 /*
10701                  * Want to do this before we do anything else so we can recover
10702                  * properly if we fail to join the transaction.
10703                  */
10704                 trans = btrfs_start_trans_remove_block_group(fs_info,
10705                                                      block_group->key.objectid);
10706                 if (IS_ERR(trans)) {
10707                         btrfs_dec_block_group_ro(block_group);
10708                         ret = PTR_ERR(trans);
10709                         goto next;
10710                 }
10711
10712                 /*
10713                  * We could have pending pinned extents for this block group,
10714                  * just delete them, we don't care about them anymore.
10715                  */
10716                 start = block_group->key.objectid;
10717                 end = start + block_group->key.offset - 1;
10718                 /*
10719                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10720                  * btrfs_finish_extent_commit(). If we are at transaction N,
10721                  * another task might be running finish_extent_commit() for the
10722                  * previous transaction N - 1, and have seen a range belonging
10723                  * to the block group in freed_extents[] before we were able to
10724                  * clear the whole block group range from freed_extents[]. This
10725                  * means that task can lookup for the block group after we
10726                  * unpinned it from freed_extents[] and removed it, leading to
10727                  * a BUG_ON() at btrfs_unpin_extent_range().
10728                  */
10729                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10730                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10731                                   EXTENT_DIRTY);
10732                 if (ret) {
10733                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10734                         btrfs_dec_block_group_ro(block_group);
10735                         goto end_trans;
10736                 }
10737                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10738                                   EXTENT_DIRTY);
10739                 if (ret) {
10740                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10741                         btrfs_dec_block_group_ro(block_group);
10742                         goto end_trans;
10743                 }
10744                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10745
10746                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10747                 spin_lock(&space_info->lock);
10748                 spin_lock(&block_group->lock);
10749
10750                 space_info->bytes_pinned -= block_group->pinned;
10751                 space_info->bytes_readonly += block_group->pinned;
10752                 percpu_counter_add(&space_info->total_bytes_pinned,
10753                                    -block_group->pinned);
10754                 block_group->pinned = 0;
10755
10756                 spin_unlock(&block_group->lock);
10757                 spin_unlock(&space_info->lock);
10758
10759                 /* DISCARD can flip during remount */
10760                 trimming = btrfs_test_opt(fs_info, DISCARD);
10761
10762                 /* Implicit trim during transaction commit. */
10763                 if (trimming)
10764                         btrfs_get_block_group_trimming(block_group);
10765
10766                 /*
10767                  * Btrfs_remove_chunk will abort the transaction if things go
10768                  * horribly wrong.
10769                  */
10770                 ret = btrfs_remove_chunk(trans, fs_info,
10771                                          block_group->key.objectid);
10772
10773                 if (ret) {
10774                         if (trimming)
10775                                 btrfs_put_block_group_trimming(block_group);
10776                         goto end_trans;
10777                 }
10778
10779                 /*
10780                  * If we're not mounted with -odiscard, we can just forget
10781                  * about this block group. Otherwise we'll need to wait
10782                  * until transaction commit to do the actual discard.
10783                  */
10784                 if (trimming) {
10785                         spin_lock(&fs_info->unused_bgs_lock);
10786                         /*
10787                          * A concurrent scrub might have added us to the list
10788                          * fs_info->unused_bgs, so use a list_move operation
10789                          * to add the block group to the deleted_bgs list.
10790                          */
10791                         list_move(&block_group->bg_list,
10792                                   &trans->transaction->deleted_bgs);
10793                         spin_unlock(&fs_info->unused_bgs_lock);
10794                         btrfs_get_block_group(block_group);
10795                 }
10796 end_trans:
10797                 btrfs_end_transaction(trans);
10798 next:
10799                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10800                 btrfs_put_block_group(block_group);
10801                 spin_lock(&fs_info->unused_bgs_lock);
10802         }
10803         spin_unlock(&fs_info->unused_bgs_lock);
10804 }
10805
10806 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10807 {
10808         struct btrfs_space_info *space_info;
10809         struct btrfs_super_block *disk_super;
10810         u64 features;
10811         u64 flags;
10812         int mixed = 0;
10813         int ret;
10814
10815         disk_super = fs_info->super_copy;
10816         if (!btrfs_super_root(disk_super))
10817                 return -EINVAL;
10818
10819         features = btrfs_super_incompat_flags(disk_super);
10820         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10821                 mixed = 1;
10822
10823         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10824         ret = create_space_info(fs_info, flags, &space_info);
10825         if (ret)
10826                 goto out;
10827
10828         if (mixed) {
10829                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10830                 ret = create_space_info(fs_info, flags, &space_info);
10831         } else {
10832                 flags = BTRFS_BLOCK_GROUP_METADATA;
10833                 ret = create_space_info(fs_info, flags, &space_info);
10834                 if (ret)
10835                         goto out;
10836
10837                 flags = BTRFS_BLOCK_GROUP_DATA;
10838                 ret = create_space_info(fs_info, flags, &space_info);
10839         }
10840 out:
10841         return ret;
10842 }
10843
10844 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10845                                    u64 start, u64 end)
10846 {
10847         return unpin_extent_range(fs_info, start, end, false);
10848 }
10849
10850 /*
10851  * It used to be that old block groups would be left around forever.
10852  * Iterating over them would be enough to trim unused space.  Since we
10853  * now automatically remove them, we also need to iterate over unallocated
10854  * space.
10855  *
10856  * We don't want a transaction for this since the discard may take a
10857  * substantial amount of time.  We don't require that a transaction be
10858  * running, but we do need to take a running transaction into account
10859  * to ensure that we're not discarding chunks that were released in
10860  * the current transaction.
10861  *
10862  * Holding the chunks lock will prevent other threads from allocating
10863  * or releasing chunks, but it won't prevent a running transaction
10864  * from committing and releasing the memory that the pending chunks
10865  * list head uses.  For that, we need to take a reference to the
10866  * transaction.
10867  */
10868 static int btrfs_trim_free_extents(struct btrfs_device *device,
10869                                    u64 minlen, u64 *trimmed)
10870 {
10871         u64 start = 0, len = 0;
10872         int ret;
10873
10874         *trimmed = 0;
10875
10876         /* Not writeable = nothing to do. */
10877         if (!device->writeable)
10878                 return 0;
10879
10880         /* No free space = nothing to do. */
10881         if (device->total_bytes <= device->bytes_used)
10882                 return 0;
10883
10884         ret = 0;
10885
10886         while (1) {
10887                 struct btrfs_fs_info *fs_info = device->fs_info;
10888                 struct btrfs_transaction *trans;
10889                 u64 bytes;
10890
10891                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10892                 if (ret)
10893                         return ret;
10894
10895                 down_read(&fs_info->commit_root_sem);
10896
10897                 spin_lock(&fs_info->trans_lock);
10898                 trans = fs_info->running_transaction;
10899                 if (trans)
10900                         refcount_inc(&trans->use_count);
10901                 spin_unlock(&fs_info->trans_lock);
10902
10903                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10904                                                  &start, &len);
10905                 if (trans)
10906                         btrfs_put_transaction(trans);
10907
10908                 if (ret) {
10909                         up_read(&fs_info->commit_root_sem);
10910                         mutex_unlock(&fs_info->chunk_mutex);
10911                         if (ret == -ENOSPC)
10912                                 ret = 0;
10913                         break;
10914                 }
10915
10916                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10917                 up_read(&fs_info->commit_root_sem);
10918                 mutex_unlock(&fs_info->chunk_mutex);
10919
10920                 if (ret)
10921                         break;
10922
10923                 start += len;
10924                 *trimmed += bytes;
10925
10926                 if (fatal_signal_pending(current)) {
10927                         ret = -ERESTARTSYS;
10928                         break;
10929                 }
10930
10931                 cond_resched();
10932         }
10933
10934         return ret;
10935 }
10936
10937 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10938 {
10939         struct btrfs_block_group_cache *cache = NULL;
10940         struct btrfs_device *device;
10941         struct list_head *devices;
10942         u64 group_trimmed;
10943         u64 start;
10944         u64 end;
10945         u64 trimmed = 0;
10946         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10947         int ret = 0;
10948
10949         /*
10950          * try to trim all FS space, our block group may start from non-zero.
10951          */
10952         if (range->len == total_bytes)
10953                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10954         else
10955                 cache = btrfs_lookup_block_group(fs_info, range->start);
10956
10957         while (cache) {
10958                 if (cache->key.objectid >= (range->start + range->len)) {
10959                         btrfs_put_block_group(cache);
10960                         break;
10961                 }
10962
10963                 start = max(range->start, cache->key.objectid);
10964                 end = min(range->start + range->len,
10965                                 cache->key.objectid + cache->key.offset);
10966
10967                 if (end - start >= range->minlen) {
10968                         if (!block_group_cache_done(cache)) {
10969                                 ret = cache_block_group(cache, 0);
10970                                 if (ret) {
10971                                         btrfs_put_block_group(cache);
10972                                         break;
10973                                 }
10974                                 ret = wait_block_group_cache_done(cache);
10975                                 if (ret) {
10976                                         btrfs_put_block_group(cache);
10977                                         break;
10978                                 }
10979                         }
10980                         ret = btrfs_trim_block_group(cache,
10981                                                      &group_trimmed,
10982                                                      start,
10983                                                      end,
10984                                                      range->minlen);
10985
10986                         trimmed += group_trimmed;
10987                         if (ret) {
10988                                 btrfs_put_block_group(cache);
10989                                 break;
10990                         }
10991                 }
10992
10993                 cache = next_block_group(fs_info, cache);
10994         }
10995
10996         mutex_lock(&fs_info->fs_devices->device_list_mutex);
10997         devices = &fs_info->fs_devices->alloc_list;
10998         list_for_each_entry(device, devices, dev_alloc_list) {
10999                 ret = btrfs_trim_free_extents(device, range->minlen,
11000                                               &group_trimmed);
11001                 if (ret)
11002                         break;
11003
11004                 trimmed += group_trimmed;
11005         }
11006         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11007
11008         range->len = trimmed;
11009         return ret;
11010 }
11011
11012 /*
11013  * btrfs_{start,end}_write_no_snapshotting() are similar to
11014  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11015  * data into the page cache through nocow before the subvolume is snapshoted,
11016  * but flush the data into disk after the snapshot creation, or to prevent
11017  * operations while snapshotting is ongoing and that cause the snapshot to be
11018  * inconsistent (writes followed by expanding truncates for example).
11019  */
11020 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11021 {
11022         percpu_counter_dec(&root->subv_writers->counter);
11023         /*
11024          * Make sure counter is updated before we wake up waiters.
11025          */
11026         smp_mb();
11027         if (waitqueue_active(&root->subv_writers->wait))
11028                 wake_up(&root->subv_writers->wait);
11029 }
11030
11031 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11032 {
11033         if (atomic_read(&root->will_be_snapshotted))
11034                 return 0;
11035
11036         percpu_counter_inc(&root->subv_writers->counter);
11037         /*
11038          * Make sure counter is updated before we check for snapshot creation.
11039          */
11040         smp_mb();
11041         if (atomic_read(&root->will_be_snapshotted)) {
11042                 btrfs_end_write_no_snapshotting(root);
11043                 return 0;
11044         }
11045         return 1;
11046 }
11047
11048 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11049 {
11050         while (true) {
11051                 int ret;
11052
11053                 ret = btrfs_start_write_no_snapshotting(root);
11054                 if (ret)
11055                         break;
11056                 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11057                                  TASK_UNINTERRUPTIBLE);
11058         }
11059 }