Merge tag 'arc-4.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61         CHUNK_ALLOC_NO_FORCE = 0,
62         CHUNK_ALLOC_LIMITED = 1,
63         CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67                                struct btrfs_fs_info *fs_info,
68                                 struct btrfs_delayed_ref_node *node, u64 parent,
69                                 u64 root_objectid, u64 owner_objectid,
70                                 u64 owner_offset, int refs_to_drop,
71                                 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73                                     struct extent_buffer *leaf,
74                                     struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76                                       struct btrfs_fs_info *fs_info,
77                                       u64 parent, u64 root_objectid,
78                                       u64 flags, u64 owner, u64 offset,
79                                       struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81                                      struct btrfs_fs_info *fs_info,
82                                      u64 parent, u64 root_objectid,
83                                      u64 flags, struct btrfs_disk_key *key,
84                                      int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86                           struct btrfs_fs_info *fs_info, u64 flags,
87                           int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89                          struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91                             struct btrfs_space_info *info, u64 bytes,
92                             int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94                                u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96                                      struct btrfs_space_info *space_info,
97                                      u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99                                      struct btrfs_space_info *space_info,
100                                      u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105         smp_mb();
106         return cache->cached == BTRFS_CACHE_FINISHED ||
107                 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112         return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117         atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122         if (atomic_dec_and_test(&cache->count)) {
123                 WARN_ON(cache->pinned > 0);
124                 WARN_ON(cache->reserved > 0);
125
126                 /*
127                  * If not empty, someone is still holding mutex of
128                  * full_stripe_lock, which can only be released by caller.
129                  * And it will definitely cause use-after-free when caller
130                  * tries to release full stripe lock.
131                  *
132                  * No better way to resolve, but only to warn.
133                  */
134                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135                 kfree(cache->free_space_ctl);
136                 kfree(cache);
137         }
138 }
139
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145                                 struct btrfs_block_group_cache *block_group)
146 {
147         struct rb_node **p;
148         struct rb_node *parent = NULL;
149         struct btrfs_block_group_cache *cache;
150
151         spin_lock(&info->block_group_cache_lock);
152         p = &info->block_group_cache_tree.rb_node;
153
154         while (*p) {
155                 parent = *p;
156                 cache = rb_entry(parent, struct btrfs_block_group_cache,
157                                  cache_node);
158                 if (block_group->key.objectid < cache->key.objectid) {
159                         p = &(*p)->rb_left;
160                 } else if (block_group->key.objectid > cache->key.objectid) {
161                         p = &(*p)->rb_right;
162                 } else {
163                         spin_unlock(&info->block_group_cache_lock);
164                         return -EEXIST;
165                 }
166         }
167
168         rb_link_node(&block_group->cache_node, parent, p);
169         rb_insert_color(&block_group->cache_node,
170                         &info->block_group_cache_tree);
171
172         if (info->first_logical_byte > block_group->key.objectid)
173                 info->first_logical_byte = block_group->key.objectid;
174
175         spin_unlock(&info->block_group_cache_lock);
176
177         return 0;
178 }
179
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186                               int contains)
187 {
188         struct btrfs_block_group_cache *cache, *ret = NULL;
189         struct rb_node *n;
190         u64 end, start;
191
192         spin_lock(&info->block_group_cache_lock);
193         n = info->block_group_cache_tree.rb_node;
194
195         while (n) {
196                 cache = rb_entry(n, struct btrfs_block_group_cache,
197                                  cache_node);
198                 end = cache->key.objectid + cache->key.offset - 1;
199                 start = cache->key.objectid;
200
201                 if (bytenr < start) {
202                         if (!contains && (!ret || start < ret->key.objectid))
203                                 ret = cache;
204                         n = n->rb_left;
205                 } else if (bytenr > start) {
206                         if (contains && bytenr <= end) {
207                                 ret = cache;
208                                 break;
209                         }
210                         n = n->rb_right;
211                 } else {
212                         ret = cache;
213                         break;
214                 }
215         }
216         if (ret) {
217                 btrfs_get_block_group(ret);
218                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219                         info->first_logical_byte = ret->key.objectid;
220         }
221         spin_unlock(&info->block_group_cache_lock);
222
223         return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227                                u64 start, u64 num_bytes)
228 {
229         u64 end = start + num_bytes - 1;
230         set_extent_bits(&fs_info->freed_extents[0],
231                         start, end, EXTENT_UPTODATE);
232         set_extent_bits(&fs_info->freed_extents[1],
233                         start, end, EXTENT_UPTODATE);
234         return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238                                   struct btrfs_block_group_cache *cache)
239 {
240         u64 start, end;
241
242         start = cache->key.objectid;
243         end = start + cache->key.offset - 1;
244
245         clear_extent_bits(&fs_info->freed_extents[0],
246                           start, end, EXTENT_UPTODATE);
247         clear_extent_bits(&fs_info->freed_extents[1],
248                           start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252                                  struct btrfs_block_group_cache *cache)
253 {
254         u64 bytenr;
255         u64 *logical;
256         int stripe_len;
257         int i, nr, ret;
258
259         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261                 cache->bytes_super += stripe_len;
262                 ret = add_excluded_extent(fs_info, cache->key.objectid,
263                                           stripe_len);
264                 if (ret)
265                         return ret;
266         }
267
268         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269                 bytenr = btrfs_sb_offset(i);
270                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271                                        bytenr, 0, &logical, &nr, &stripe_len);
272                 if (ret)
273                         return ret;
274
275                 while (nr--) {
276                         u64 start, len;
277
278                         if (logical[nr] > cache->key.objectid +
279                             cache->key.offset)
280                                 continue;
281
282                         if (logical[nr] + stripe_len <= cache->key.objectid)
283                                 continue;
284
285                         start = logical[nr];
286                         if (start < cache->key.objectid) {
287                                 start = cache->key.objectid;
288                                 len = (logical[nr] + stripe_len) - start;
289                         } else {
290                                 len = min_t(u64, stripe_len,
291                                             cache->key.objectid +
292                                             cache->key.offset - start);
293                         }
294
295                         cache->bytes_super += len;
296                         ret = add_excluded_extent(fs_info, start, len);
297                         if (ret) {
298                                 kfree(logical);
299                                 return ret;
300                         }
301                 }
302
303                 kfree(logical);
304         }
305         return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311         struct btrfs_caching_control *ctl;
312
313         spin_lock(&cache->lock);
314         if (!cache->caching_ctl) {
315                 spin_unlock(&cache->lock);
316                 return NULL;
317         }
318
319         ctl = cache->caching_ctl;
320         refcount_inc(&ctl->count);
321         spin_unlock(&cache->lock);
322         return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327         if (refcount_dec_and_test(&ctl->count))
328                 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334         struct btrfs_fs_info *fs_info = block_group->fs_info;
335         u64 start = block_group->key.objectid;
336         u64 len = block_group->key.offset;
337         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338                 fs_info->nodesize : fs_info->sectorsize;
339         u64 step = chunk << 1;
340
341         while (len > chunk) {
342                 btrfs_remove_free_space(block_group, start, chunk);
343                 start += step;
344                 if (len < step)
345                         len = 0;
346                 else
347                         len -= step;
348         }
349 }
350 #endif
351
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358                        struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360         u64 extent_start, extent_end, size, total_added = 0;
361         int ret;
362
363         while (start < end) {
364                 ret = find_first_extent_bit(info->pinned_extents, start,
365                                             &extent_start, &extent_end,
366                                             EXTENT_DIRTY | EXTENT_UPTODATE,
367                                             NULL);
368                 if (ret)
369                         break;
370
371                 if (extent_start <= start) {
372                         start = extent_end + 1;
373                 } else if (extent_start > start && extent_start < end) {
374                         size = extent_start - start;
375                         total_added += size;
376                         ret = btrfs_add_free_space(block_group, start,
377                                                    size);
378                         BUG_ON(ret); /* -ENOMEM or logic error */
379                         start = extent_end + 1;
380                 } else {
381                         break;
382                 }
383         }
384
385         if (start < end) {
386                 size = end - start;
387                 total_added += size;
388                 ret = btrfs_add_free_space(block_group, start, size);
389                 BUG_ON(ret); /* -ENOMEM or logic error */
390         }
391
392         return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398         struct btrfs_fs_info *fs_info = block_group->fs_info;
399         struct btrfs_root *extent_root = fs_info->extent_root;
400         struct btrfs_path *path;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403         u64 total_found = 0;
404         u64 last = 0;
405         u32 nritems;
406         int ret;
407         bool wakeup = true;
408
409         path = btrfs_alloc_path();
410         if (!path)
411                 return -ENOMEM;
412
413         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416         /*
417          * If we're fragmenting we don't want to make anybody think we can
418          * allocate from this block group until we've had a chance to fragment
419          * the free space.
420          */
421         if (btrfs_should_fragment_free_space(block_group))
422                 wakeup = false;
423 #endif
424         /*
425          * We don't want to deadlock with somebody trying to allocate a new
426          * extent for the extent root while also trying to search the extent
427          * root to add free space.  So we skip locking and search the commit
428          * root, since its read-only
429          */
430         path->skip_locking = 1;
431         path->search_commit_root = 1;
432         path->reada = READA_FORWARD;
433
434         key.objectid = last;
435         key.offset = 0;
436         key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440         if (ret < 0)
441                 goto out;
442
443         leaf = path->nodes[0];
444         nritems = btrfs_header_nritems(leaf);
445
446         while (1) {
447                 if (btrfs_fs_closing(fs_info) > 1) {
448                         last = (u64)-1;
449                         break;
450                 }
451
452                 if (path->slots[0] < nritems) {
453                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454                 } else {
455                         ret = find_next_key(path, 0, &key);
456                         if (ret)
457                                 break;
458
459                         if (need_resched() ||
460                             rwsem_is_contended(&fs_info->commit_root_sem)) {
461                                 if (wakeup)
462                                         caching_ctl->progress = last;
463                                 btrfs_release_path(path);
464                                 up_read(&fs_info->commit_root_sem);
465                                 mutex_unlock(&caching_ctl->mutex);
466                                 cond_resched();
467                                 mutex_lock(&caching_ctl->mutex);
468                                 down_read(&fs_info->commit_root_sem);
469                                 goto next;
470                         }
471
472                         ret = btrfs_next_leaf(extent_root, path);
473                         if (ret < 0)
474                                 goto out;
475                         if (ret)
476                                 break;
477                         leaf = path->nodes[0];
478                         nritems = btrfs_header_nritems(leaf);
479                         continue;
480                 }
481
482                 if (key.objectid < last) {
483                         key.objectid = last;
484                         key.offset = 0;
485                         key.type = BTRFS_EXTENT_ITEM_KEY;
486
487                         if (wakeup)
488                                 caching_ctl->progress = last;
489                         btrfs_release_path(path);
490                         goto next;
491                 }
492
493                 if (key.objectid < block_group->key.objectid) {
494                         path->slots[0]++;
495                         continue;
496                 }
497
498                 if (key.objectid >= block_group->key.objectid +
499                     block_group->key.offset)
500                         break;
501
502                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503                     key.type == BTRFS_METADATA_ITEM_KEY) {
504                         total_found += add_new_free_space(block_group,
505                                                           fs_info, last,
506                                                           key.objectid);
507                         if (key.type == BTRFS_METADATA_ITEM_KEY)
508                                 last = key.objectid +
509                                         fs_info->nodesize;
510                         else
511                                 last = key.objectid + key.offset;
512
513                         if (total_found > CACHING_CTL_WAKE_UP) {
514                                 total_found = 0;
515                                 if (wakeup)
516                                         wake_up(&caching_ctl->wait);
517                         }
518                 }
519                 path->slots[0]++;
520         }
521         ret = 0;
522
523         total_found += add_new_free_space(block_group, fs_info, last,
524                                           block_group->key.objectid +
525                                           block_group->key.offset);
526         caching_ctl->progress = (u64)-1;
527
528 out:
529         btrfs_free_path(path);
530         return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535         struct btrfs_block_group_cache *block_group;
536         struct btrfs_fs_info *fs_info;
537         struct btrfs_caching_control *caching_ctl;
538         struct btrfs_root *extent_root;
539         int ret;
540
541         caching_ctl = container_of(work, struct btrfs_caching_control, work);
542         block_group = caching_ctl->block_group;
543         fs_info = block_group->fs_info;
544         extent_root = fs_info->extent_root;
545
546         mutex_lock(&caching_ctl->mutex);
547         down_read(&fs_info->commit_root_sem);
548
549         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550                 ret = load_free_space_tree(caching_ctl);
551         else
552                 ret = load_extent_tree_free(caching_ctl);
553
554         spin_lock(&block_group->lock);
555         block_group->caching_ctl = NULL;
556         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557         spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560         if (btrfs_should_fragment_free_space(block_group)) {
561                 u64 bytes_used;
562
563                 spin_lock(&block_group->space_info->lock);
564                 spin_lock(&block_group->lock);
565                 bytes_used = block_group->key.offset -
566                         btrfs_block_group_used(&block_group->item);
567                 block_group->space_info->bytes_used += bytes_used >> 1;
568                 spin_unlock(&block_group->lock);
569                 spin_unlock(&block_group->space_info->lock);
570                 fragment_free_space(block_group);
571         }
572 #endif
573
574         caching_ctl->progress = (u64)-1;
575
576         up_read(&fs_info->commit_root_sem);
577         free_excluded_extents(fs_info, block_group);
578         mutex_unlock(&caching_ctl->mutex);
579
580         wake_up(&caching_ctl->wait);
581
582         put_caching_control(caching_ctl);
583         btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587                              int load_cache_only)
588 {
589         DEFINE_WAIT(wait);
590         struct btrfs_fs_info *fs_info = cache->fs_info;
591         struct btrfs_caching_control *caching_ctl;
592         int ret = 0;
593
594         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595         if (!caching_ctl)
596                 return -ENOMEM;
597
598         INIT_LIST_HEAD(&caching_ctl->list);
599         mutex_init(&caching_ctl->mutex);
600         init_waitqueue_head(&caching_ctl->wait);
601         caching_ctl->block_group = cache;
602         caching_ctl->progress = cache->key.objectid;
603         refcount_set(&caching_ctl->count, 1);
604         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605                         caching_thread, NULL, NULL);
606
607         spin_lock(&cache->lock);
608         /*
609          * This should be a rare occasion, but this could happen I think in the
610          * case where one thread starts to load the space cache info, and then
611          * some other thread starts a transaction commit which tries to do an
612          * allocation while the other thread is still loading the space cache
613          * info.  The previous loop should have kept us from choosing this block
614          * group, but if we've moved to the state where we will wait on caching
615          * block groups we need to first check if we're doing a fast load here,
616          * so we can wait for it to finish, otherwise we could end up allocating
617          * from a block group who's cache gets evicted for one reason or
618          * another.
619          */
620         while (cache->cached == BTRFS_CACHE_FAST) {
621                 struct btrfs_caching_control *ctl;
622
623                 ctl = cache->caching_ctl;
624                 refcount_inc(&ctl->count);
625                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626                 spin_unlock(&cache->lock);
627
628                 schedule();
629
630                 finish_wait(&ctl->wait, &wait);
631                 put_caching_control(ctl);
632                 spin_lock(&cache->lock);
633         }
634
635         if (cache->cached != BTRFS_CACHE_NO) {
636                 spin_unlock(&cache->lock);
637                 kfree(caching_ctl);
638                 return 0;
639         }
640         WARN_ON(cache->caching_ctl);
641         cache->caching_ctl = caching_ctl;
642         cache->cached = BTRFS_CACHE_FAST;
643         spin_unlock(&cache->lock);
644
645         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646                 mutex_lock(&caching_ctl->mutex);
647                 ret = load_free_space_cache(fs_info, cache);
648
649                 spin_lock(&cache->lock);
650                 if (ret == 1) {
651                         cache->caching_ctl = NULL;
652                         cache->cached = BTRFS_CACHE_FINISHED;
653                         cache->last_byte_to_unpin = (u64)-1;
654                         caching_ctl->progress = (u64)-1;
655                 } else {
656                         if (load_cache_only) {
657                                 cache->caching_ctl = NULL;
658                                 cache->cached = BTRFS_CACHE_NO;
659                         } else {
660                                 cache->cached = BTRFS_CACHE_STARTED;
661                                 cache->has_caching_ctl = 1;
662                         }
663                 }
664                 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666                 if (ret == 1 &&
667                     btrfs_should_fragment_free_space(cache)) {
668                         u64 bytes_used;
669
670                         spin_lock(&cache->space_info->lock);
671                         spin_lock(&cache->lock);
672                         bytes_used = cache->key.offset -
673                                 btrfs_block_group_used(&cache->item);
674                         cache->space_info->bytes_used += bytes_used >> 1;
675                         spin_unlock(&cache->lock);
676                         spin_unlock(&cache->space_info->lock);
677                         fragment_free_space(cache);
678                 }
679 #endif
680                 mutex_unlock(&caching_ctl->mutex);
681
682                 wake_up(&caching_ctl->wait);
683                 if (ret == 1) {
684                         put_caching_control(caching_ctl);
685                         free_excluded_extents(fs_info, cache);
686                         return 0;
687                 }
688         } else {
689                 /*
690                  * We're either using the free space tree or no caching at all.
691                  * Set cached to the appropriate value and wakeup any waiters.
692                  */
693                 spin_lock(&cache->lock);
694                 if (load_cache_only) {
695                         cache->caching_ctl = NULL;
696                         cache->cached = BTRFS_CACHE_NO;
697                 } else {
698                         cache->cached = BTRFS_CACHE_STARTED;
699                         cache->has_caching_ctl = 1;
700                 }
701                 spin_unlock(&cache->lock);
702                 wake_up(&caching_ctl->wait);
703         }
704
705         if (load_cache_only) {
706                 put_caching_control(caching_ctl);
707                 return 0;
708         }
709
710         down_write(&fs_info->commit_root_sem);
711         refcount_inc(&caching_ctl->count);
712         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713         up_write(&fs_info->commit_root_sem);
714
715         btrfs_get_block_group(cache);
716
717         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719         return ret;
720 }
721
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728         return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735                                                  struct btrfs_fs_info *info,
736                                                  u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742                                                   u64 flags)
743 {
744         struct list_head *head = &info->space_info;
745         struct btrfs_space_info *found;
746
747         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749         rcu_read_lock();
750         list_for_each_entry_rcu(found, head, list) {
751                 if (found->flags & flags) {
752                         rcu_read_unlock();
753                         return found;
754                 }
755         }
756         rcu_read_unlock();
757         return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761                              u64 owner, u64 root_objectid)
762 {
763         struct btrfs_space_info *space_info;
764         u64 flags;
765
766         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
769                 else
770                         flags = BTRFS_BLOCK_GROUP_METADATA;
771         } else {
772                 flags = BTRFS_BLOCK_GROUP_DATA;
773         }
774
775         space_info = __find_space_info(fs_info, flags);
776         ASSERT(space_info);
777         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786         struct list_head *head = &info->space_info;
787         struct btrfs_space_info *found;
788
789         rcu_read_lock();
790         list_for_each_entry_rcu(found, head, list)
791                 found->full = 0;
792         rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798         int ret;
799         struct btrfs_key key;
800         struct btrfs_path *path;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805
806         key.objectid = start;
807         key.offset = len;
808         key.type = BTRFS_EXTENT_ITEM_KEY;
809         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810         btrfs_free_path(path);
811         return ret;
812 }
813
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824                              struct btrfs_fs_info *fs_info, u64 bytenr,
825                              u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827         struct btrfs_delayed_ref_head *head;
828         struct btrfs_delayed_ref_root *delayed_refs;
829         struct btrfs_path *path;
830         struct btrfs_extent_item *ei;
831         struct extent_buffer *leaf;
832         struct btrfs_key key;
833         u32 item_size;
834         u64 num_refs;
835         u64 extent_flags;
836         int ret;
837
838         /*
839          * If we don't have skinny metadata, don't bother doing anything
840          * different
841          */
842         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843                 offset = fs_info->nodesize;
844                 metadata = 0;
845         }
846
847         path = btrfs_alloc_path();
848         if (!path)
849                 return -ENOMEM;
850
851         if (!trans) {
852                 path->skip_locking = 1;
853                 path->search_commit_root = 1;
854         }
855
856 search_again:
857         key.objectid = bytenr;
858         key.offset = offset;
859         if (metadata)
860                 key.type = BTRFS_METADATA_ITEM_KEY;
861         else
862                 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865         if (ret < 0)
866                 goto out_free;
867
868         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869                 if (path->slots[0]) {
870                         path->slots[0]--;
871                         btrfs_item_key_to_cpu(path->nodes[0], &key,
872                                               path->slots[0]);
873                         if (key.objectid == bytenr &&
874                             key.type == BTRFS_EXTENT_ITEM_KEY &&
875                             key.offset == fs_info->nodesize)
876                                 ret = 0;
877                 }
878         }
879
880         if (ret == 0) {
881                 leaf = path->nodes[0];
882                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883                 if (item_size >= sizeof(*ei)) {
884                         ei = btrfs_item_ptr(leaf, path->slots[0],
885                                             struct btrfs_extent_item);
886                         num_refs = btrfs_extent_refs(leaf, ei);
887                         extent_flags = btrfs_extent_flags(leaf, ei);
888                 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890                         struct btrfs_extent_item_v0 *ei0;
891                         BUG_ON(item_size != sizeof(*ei0));
892                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
893                                              struct btrfs_extent_item_v0);
894                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
895                         /* FIXME: this isn't correct for data */
896                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898                         BUG();
899 #endif
900                 }
901                 BUG_ON(num_refs == 0);
902         } else {
903                 num_refs = 0;
904                 extent_flags = 0;
905                 ret = 0;
906         }
907
908         if (!trans)
909                 goto out;
910
911         delayed_refs = &trans->transaction->delayed_refs;
912         spin_lock(&delayed_refs->lock);
913         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914         if (head) {
915                 if (!mutex_trylock(&head->mutex)) {
916                         refcount_inc(&head->refs);
917                         spin_unlock(&delayed_refs->lock);
918
919                         btrfs_release_path(path);
920
921                         /*
922                          * Mutex was contended, block until it's released and try
923                          * again
924                          */
925                         mutex_lock(&head->mutex);
926                         mutex_unlock(&head->mutex);
927                         btrfs_put_delayed_ref_head(head);
928                         goto search_again;
929                 }
930                 spin_lock(&head->lock);
931                 if (head->extent_op && head->extent_op->update_flags)
932                         extent_flags |= head->extent_op->flags_to_set;
933                 else
934                         BUG_ON(num_refs == 0);
935
936                 num_refs += head->ref_mod;
937                 spin_unlock(&head->lock);
938                 mutex_unlock(&head->mutex);
939         }
940         spin_unlock(&delayed_refs->lock);
941 out:
942         WARN_ON(num_refs == 0);
943         if (refs)
944                 *refs = num_refs;
945         if (flags)
946                 *flags = extent_flags;
947 out_free:
948         btrfs_free_path(path);
949         return ret;
950 }
951
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060                                   struct btrfs_fs_info *fs_info,
1061                                   struct btrfs_path *path,
1062                                   u64 owner, u32 extra_size)
1063 {
1064         struct btrfs_root *root = fs_info->extent_root;
1065         struct btrfs_extent_item *item;
1066         struct btrfs_extent_item_v0 *ei0;
1067         struct btrfs_extent_ref_v0 *ref0;
1068         struct btrfs_tree_block_info *bi;
1069         struct extent_buffer *leaf;
1070         struct btrfs_key key;
1071         struct btrfs_key found_key;
1072         u32 new_size = sizeof(*item);
1073         u64 refs;
1074         int ret;
1075
1076         leaf = path->nodes[0];
1077         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081                              struct btrfs_extent_item_v0);
1082         refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084         if (owner == (u64)-1) {
1085                 while (1) {
1086                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087                                 ret = btrfs_next_leaf(root, path);
1088                                 if (ret < 0)
1089                                         return ret;
1090                                 BUG_ON(ret > 0); /* Corruption */
1091                                 leaf = path->nodes[0];
1092                         }
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0]);
1095                         BUG_ON(key.objectid != found_key.objectid);
1096                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097                                 path->slots[0]++;
1098                                 continue;
1099                         }
1100                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101                                               struct btrfs_extent_ref_v0);
1102                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1103                         break;
1104                 }
1105         }
1106         btrfs_release_path(path);
1107
1108         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109                 new_size += sizeof(*bi);
1110
1111         new_size -= sizeof(*ei0);
1112         ret = btrfs_search_slot(trans, root, &key, path,
1113                                 new_size + extra_size, 1);
1114         if (ret < 0)
1115                 return ret;
1116         BUG_ON(ret); /* Corruption */
1117
1118         btrfs_extend_item(fs_info, path, new_size);
1119
1120         leaf = path->nodes[0];
1121         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122         btrfs_set_extent_refs(leaf, item, refs);
1123         /* FIXME: get real generation */
1124         btrfs_set_extent_generation(leaf, item, 0);
1125         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126                 btrfs_set_extent_flags(leaf, item,
1127                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129                 bi = (struct btrfs_tree_block_info *)(item + 1);
1130                 /* FIXME: get first key of the block */
1131                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133         } else {
1134                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135         }
1136         btrfs_mark_buffer_dirty(leaf);
1137         return 0;
1138 }
1139 #endif
1140
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147                                      struct btrfs_extent_inline_ref *iref,
1148                                      enum btrfs_inline_ref_type is_data)
1149 {
1150         int type = btrfs_extent_inline_ref_type(eb, iref);
1151         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155             type == BTRFS_SHARED_DATA_REF_KEY ||
1156             type == BTRFS_EXTENT_DATA_REF_KEY) {
1157                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173                                 return type;
1174                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175                                 ASSERT(eb->fs_info);
1176                                 /*
1177                                  * Every shared one has parent tree
1178                                  * block, which must be aligned to
1179                                  * nodesize.
1180                                  */
1181                                 if (offset &&
1182                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1183                                         return type;
1184                         }
1185                 } else {
1186                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187                         return type;
1188                 }
1189         }
1190
1191         btrfs_print_leaf((struct extent_buffer *)eb);
1192         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193                   eb->start, type);
1194         WARN_ON(1);
1195
1196         return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201         u32 high_crc = ~(u32)0;
1202         u32 low_crc = ~(u32)0;
1203         __le64 lenum;
1204
1205         lenum = cpu_to_le64(root_objectid);
1206         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207         lenum = cpu_to_le64(owner);
1208         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209         lenum = cpu_to_le64(offset);
1210         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212         return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216                                      struct btrfs_extent_data_ref *ref)
1217 {
1218         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219                                     btrfs_extent_data_ref_objectid(leaf, ref),
1220                                     btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224                                  struct btrfs_extent_data_ref *ref,
1225                                  u64 root_objectid, u64 owner, u64 offset)
1226 {
1227         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230                 return 0;
1231         return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235                                            struct btrfs_fs_info *fs_info,
1236                                            struct btrfs_path *path,
1237                                            u64 bytenr, u64 parent,
1238                                            u64 root_objectid,
1239                                            u64 owner, u64 offset)
1240 {
1241         struct btrfs_root *root = fs_info->extent_root;
1242         struct btrfs_key key;
1243         struct btrfs_extent_data_ref *ref;
1244         struct extent_buffer *leaf;
1245         u32 nritems;
1246         int ret;
1247         int recow;
1248         int err = -ENOENT;
1249
1250         key.objectid = bytenr;
1251         if (parent) {
1252                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253                 key.offset = parent;
1254         } else {
1255                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256                 key.offset = hash_extent_data_ref(root_objectid,
1257                                                   owner, offset);
1258         }
1259 again:
1260         recow = 0;
1261         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262         if (ret < 0) {
1263                 err = ret;
1264                 goto fail;
1265         }
1266
1267         if (parent) {
1268                 if (!ret)
1269                         return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272                 btrfs_release_path(path);
1273                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274                 if (ret < 0) {
1275                         err = ret;
1276                         goto fail;
1277                 }
1278                 if (!ret)
1279                         return 0;
1280 #endif
1281                 goto fail;
1282         }
1283
1284         leaf = path->nodes[0];
1285         nritems = btrfs_header_nritems(leaf);
1286         while (1) {
1287                 if (path->slots[0] >= nritems) {
1288                         ret = btrfs_next_leaf(root, path);
1289                         if (ret < 0)
1290                                 err = ret;
1291                         if (ret)
1292                                 goto fail;
1293
1294                         leaf = path->nodes[0];
1295                         nritems = btrfs_header_nritems(leaf);
1296                         recow = 1;
1297                 }
1298
1299                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300                 if (key.objectid != bytenr ||
1301                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302                         goto fail;
1303
1304                 ref = btrfs_item_ptr(leaf, path->slots[0],
1305                                      struct btrfs_extent_data_ref);
1306
1307                 if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                           owner, offset)) {
1309                         if (recow) {
1310                                 btrfs_release_path(path);
1311                                 goto again;
1312                         }
1313                         err = 0;
1314                         break;
1315                 }
1316                 path->slots[0]++;
1317         }
1318 fail:
1319         return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323                                            struct btrfs_fs_info *fs_info,
1324                                            struct btrfs_path *path,
1325                                            u64 bytenr, u64 parent,
1326                                            u64 root_objectid, u64 owner,
1327                                            u64 offset, int refs_to_add)
1328 {
1329         struct btrfs_root *root = fs_info->extent_root;
1330         struct btrfs_key key;
1331         struct extent_buffer *leaf;
1332         u32 size;
1333         u32 num_refs;
1334         int ret;
1335
1336         key.objectid = bytenr;
1337         if (parent) {
1338                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339                 key.offset = parent;
1340                 size = sizeof(struct btrfs_shared_data_ref);
1341         } else {
1342                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343                 key.offset = hash_extent_data_ref(root_objectid,
1344                                                   owner, offset);
1345                 size = sizeof(struct btrfs_extent_data_ref);
1346         }
1347
1348         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349         if (ret && ret != -EEXIST)
1350                 goto fail;
1351
1352         leaf = path->nodes[0];
1353         if (parent) {
1354                 struct btrfs_shared_data_ref *ref;
1355                 ref = btrfs_item_ptr(leaf, path->slots[0],
1356                                      struct btrfs_shared_data_ref);
1357                 if (ret == 0) {
1358                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359                 } else {
1360                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361                         num_refs += refs_to_add;
1362                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363                 }
1364         } else {
1365                 struct btrfs_extent_data_ref *ref;
1366                 while (ret == -EEXIST) {
1367                         ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                              struct btrfs_extent_data_ref);
1369                         if (match_extent_data_ref(leaf, ref, root_objectid,
1370                                                   owner, offset))
1371                                 break;
1372                         btrfs_release_path(path);
1373                         key.offset++;
1374                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1375                                                       size);
1376                         if (ret && ret != -EEXIST)
1377                                 goto fail;
1378
1379                         leaf = path->nodes[0];
1380                 }
1381                 ref = btrfs_item_ptr(leaf, path->slots[0],
1382                                      struct btrfs_extent_data_ref);
1383                 if (ret == 0) {
1384                         btrfs_set_extent_data_ref_root(leaf, ref,
1385                                                        root_objectid);
1386                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389                 } else {
1390                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391                         num_refs += refs_to_add;
1392                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393                 }
1394         }
1395         btrfs_mark_buffer_dirty(leaf);
1396         ret = 0;
1397 fail:
1398         btrfs_release_path(path);
1399         return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403                                            struct btrfs_fs_info *fs_info,
1404                                            struct btrfs_path *path,
1405                                            int refs_to_drop, int *last_ref)
1406 {
1407         struct btrfs_key key;
1408         struct btrfs_extent_data_ref *ref1 = NULL;
1409         struct btrfs_shared_data_ref *ref2 = NULL;
1410         struct extent_buffer *leaf;
1411         u32 num_refs = 0;
1412         int ret = 0;
1413
1414         leaf = path->nodes[0];
1415         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419                                       struct btrfs_extent_data_ref);
1420                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423                                       struct btrfs_shared_data_ref);
1424                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427                 struct btrfs_extent_ref_v0 *ref0;
1428                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429                                       struct btrfs_extent_ref_v0);
1430                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432         } else {
1433                 BUG();
1434         }
1435
1436         BUG_ON(num_refs < refs_to_drop);
1437         num_refs -= refs_to_drop;
1438
1439         if (num_refs == 0) {
1440                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441                 *last_ref = 1;
1442         } else {
1443                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448                 else {
1449                         struct btrfs_extent_ref_v0 *ref0;
1450                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451                                         struct btrfs_extent_ref_v0);
1452                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453                 }
1454 #endif
1455                 btrfs_mark_buffer_dirty(leaf);
1456         }
1457         return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461                                           struct btrfs_extent_inline_ref *iref)
1462 {
1463         struct btrfs_key key;
1464         struct extent_buffer *leaf;
1465         struct btrfs_extent_data_ref *ref1;
1466         struct btrfs_shared_data_ref *ref2;
1467         u32 num_refs = 0;
1468         int type;
1469
1470         leaf = path->nodes[0];
1471         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472         if (iref) {
1473                 /*
1474                  * If type is invalid, we should have bailed out earlier than
1475                  * this call.
1476                  */
1477                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482                 } else {
1483                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485                 }
1486         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488                                       struct btrfs_extent_data_ref);
1489                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492                                       struct btrfs_shared_data_ref);
1493                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496                 struct btrfs_extent_ref_v0 *ref0;
1497                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498                                       struct btrfs_extent_ref_v0);
1499                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501         } else {
1502                 WARN_ON(1);
1503         }
1504         return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508                                           struct btrfs_fs_info *fs_info,
1509                                           struct btrfs_path *path,
1510                                           u64 bytenr, u64 parent,
1511                                           u64 root_objectid)
1512 {
1513         struct btrfs_root *root = fs_info->extent_root;
1514         struct btrfs_key key;
1515         int ret;
1516
1517         key.objectid = bytenr;
1518         if (parent) {
1519                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520                 key.offset = parent;
1521         } else {
1522                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523                 key.offset = root_objectid;
1524         }
1525
1526         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527         if (ret > 0)
1528                 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530         if (ret == -ENOENT && parent) {
1531                 btrfs_release_path(path);
1532                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534                 if (ret > 0)
1535                         ret = -ENOENT;
1536         }
1537 #endif
1538         return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542                                           struct btrfs_fs_info *fs_info,
1543                                           struct btrfs_path *path,
1544                                           u64 bytenr, u64 parent,
1545                                           u64 root_objectid)
1546 {
1547         struct btrfs_key key;
1548         int ret;
1549
1550         key.objectid = bytenr;
1551         if (parent) {
1552                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553                 key.offset = parent;
1554         } else {
1555                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556                 key.offset = root_objectid;
1557         }
1558
1559         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560                                       path, &key, 0);
1561         btrfs_release_path(path);
1562         return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567         int type;
1568         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569                 if (parent > 0)
1570                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1571                 else
1572                         type = BTRFS_TREE_BLOCK_REF_KEY;
1573         } else {
1574                 if (parent > 0)
1575                         type = BTRFS_SHARED_DATA_REF_KEY;
1576                 else
1577                         type = BTRFS_EXTENT_DATA_REF_KEY;
1578         }
1579         return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583                          struct btrfs_key *key)
1584
1585 {
1586         for (; level < BTRFS_MAX_LEVEL; level++) {
1587                 if (!path->nodes[level])
1588                         break;
1589                 if (path->slots[level] + 1 >=
1590                     btrfs_header_nritems(path->nodes[level]))
1591                         continue;
1592                 if (level == 0)
1593                         btrfs_item_key_to_cpu(path->nodes[level], key,
1594                                               path->slots[level] + 1);
1595                 else
1596                         btrfs_node_key_to_cpu(path->nodes[level], key,
1597                                               path->slots[level] + 1);
1598                 return 0;
1599         }
1600         return 1;
1601 }
1602
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *       items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618                                  struct btrfs_fs_info *fs_info,
1619                                  struct btrfs_path *path,
1620                                  struct btrfs_extent_inline_ref **ref_ret,
1621                                  u64 bytenr, u64 num_bytes,
1622                                  u64 parent, u64 root_objectid,
1623                                  u64 owner, u64 offset, int insert)
1624 {
1625         struct btrfs_root *root = fs_info->extent_root;
1626         struct btrfs_key key;
1627         struct extent_buffer *leaf;
1628         struct btrfs_extent_item *ei;
1629         struct btrfs_extent_inline_ref *iref;
1630         u64 flags;
1631         u64 item_size;
1632         unsigned long ptr;
1633         unsigned long end;
1634         int extra_size;
1635         int type;
1636         int want;
1637         int ret;
1638         int err = 0;
1639         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640         int needed;
1641
1642         key.objectid = bytenr;
1643         key.type = BTRFS_EXTENT_ITEM_KEY;
1644         key.offset = num_bytes;
1645
1646         want = extent_ref_type(parent, owner);
1647         if (insert) {
1648                 extra_size = btrfs_extent_inline_ref_size(want);
1649                 path->keep_locks = 1;
1650         } else
1651                 extra_size = -1;
1652
1653         /*
1654          * Owner is our parent level, so we can just add one to get the level
1655          * for the block we are interested in.
1656          */
1657         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658                 key.type = BTRFS_METADATA_ITEM_KEY;
1659                 key.offset = owner;
1660         }
1661
1662 again:
1663         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664         if (ret < 0) {
1665                 err = ret;
1666                 goto out;
1667         }
1668
1669         /*
1670          * We may be a newly converted file system which still has the old fat
1671          * extent entries for metadata, so try and see if we have one of those.
1672          */
1673         if (ret > 0 && skinny_metadata) {
1674                 skinny_metadata = false;
1675                 if (path->slots[0]) {
1676                         path->slots[0]--;
1677                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1678                                               path->slots[0]);
1679                         if (key.objectid == bytenr &&
1680                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1681                             key.offset == num_bytes)
1682                                 ret = 0;
1683                 }
1684                 if (ret) {
1685                         key.objectid = bytenr;
1686                         key.type = BTRFS_EXTENT_ITEM_KEY;
1687                         key.offset = num_bytes;
1688                         btrfs_release_path(path);
1689                         goto again;
1690                 }
1691         }
1692
1693         if (ret && !insert) {
1694                 err = -ENOENT;
1695                 goto out;
1696         } else if (WARN_ON(ret)) {
1697                 err = -EIO;
1698                 goto out;
1699         }
1700
1701         leaf = path->nodes[0];
1702         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704         if (item_size < sizeof(*ei)) {
1705                 if (!insert) {
1706                         err = -ENOENT;
1707                         goto out;
1708                 }
1709                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710                                              extra_size);
1711                 if (ret < 0) {
1712                         err = ret;
1713                         goto out;
1714                 }
1715                 leaf = path->nodes[0];
1716                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717         }
1718 #endif
1719         BUG_ON(item_size < sizeof(*ei));
1720
1721         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722         flags = btrfs_extent_flags(leaf, ei);
1723
1724         ptr = (unsigned long)(ei + 1);
1725         end = (unsigned long)ei + item_size;
1726
1727         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728                 ptr += sizeof(struct btrfs_tree_block_info);
1729                 BUG_ON(ptr > end);
1730         }
1731
1732         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733                 needed = BTRFS_REF_TYPE_DATA;
1734         else
1735                 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737         err = -ENOENT;
1738         while (1) {
1739                 if (ptr >= end) {
1740                         WARN_ON(ptr > end);
1741                         break;
1742                 }
1743                 iref = (struct btrfs_extent_inline_ref *)ptr;
1744                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745                 if (type == BTRFS_REF_TYPE_INVALID) {
1746                         err = -EINVAL;
1747                         goto out;
1748                 }
1749
1750                 if (want < type)
1751                         break;
1752                 if (want > type) {
1753                         ptr += btrfs_extent_inline_ref_size(type);
1754                         continue;
1755                 }
1756
1757                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758                         struct btrfs_extent_data_ref *dref;
1759                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760                         if (match_extent_data_ref(leaf, dref, root_objectid,
1761                                                   owner, offset)) {
1762                                 err = 0;
1763                                 break;
1764                         }
1765                         if (hash_extent_data_ref_item(leaf, dref) <
1766                             hash_extent_data_ref(root_objectid, owner, offset))
1767                                 break;
1768                 } else {
1769                         u64 ref_offset;
1770                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771                         if (parent > 0) {
1772                                 if (parent == ref_offset) {
1773                                         err = 0;
1774                                         break;
1775                                 }
1776                                 if (ref_offset < parent)
1777                                         break;
1778                         } else {
1779                                 if (root_objectid == ref_offset) {
1780                                         err = 0;
1781                                         break;
1782                                 }
1783                                 if (ref_offset < root_objectid)
1784                                         break;
1785                         }
1786                 }
1787                 ptr += btrfs_extent_inline_ref_size(type);
1788         }
1789         if (err == -ENOENT && insert) {
1790                 if (item_size + extra_size >=
1791                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792                         err = -EAGAIN;
1793                         goto out;
1794                 }
1795                 /*
1796                  * To add new inline back ref, we have to make sure
1797                  * there is no corresponding back ref item.
1798                  * For simplicity, we just do not add new inline back
1799                  * ref if there is any kind of item for this block
1800                  */
1801                 if (find_next_key(path, 0, &key) == 0 &&
1802                     key.objectid == bytenr &&
1803                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804                         err = -EAGAIN;
1805                         goto out;
1806                 }
1807         }
1808         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810         if (insert) {
1811                 path->keep_locks = 0;
1812                 btrfs_unlock_up_safe(path, 1);
1813         }
1814         return err;
1815 }
1816
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822                                  struct btrfs_path *path,
1823                                  struct btrfs_extent_inline_ref *iref,
1824                                  u64 parent, u64 root_objectid,
1825                                  u64 owner, u64 offset, int refs_to_add,
1826                                  struct btrfs_delayed_extent_op *extent_op)
1827 {
1828         struct extent_buffer *leaf;
1829         struct btrfs_extent_item *ei;
1830         unsigned long ptr;
1831         unsigned long end;
1832         unsigned long item_offset;
1833         u64 refs;
1834         int size;
1835         int type;
1836
1837         leaf = path->nodes[0];
1838         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839         item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841         type = extent_ref_type(parent, owner);
1842         size = btrfs_extent_inline_ref_size(type);
1843
1844         btrfs_extend_item(fs_info, path, size);
1845
1846         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847         refs = btrfs_extent_refs(leaf, ei);
1848         refs += refs_to_add;
1849         btrfs_set_extent_refs(leaf, ei, refs);
1850         if (extent_op)
1851                 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853         ptr = (unsigned long)ei + item_offset;
1854         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855         if (ptr < end - size)
1856                 memmove_extent_buffer(leaf, ptr + size, ptr,
1857                                       end - size - ptr);
1858
1859         iref = (struct btrfs_extent_inline_ref *)ptr;
1860         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                 struct btrfs_extent_data_ref *dref;
1863                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869                 struct btrfs_shared_data_ref *sref;
1870                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875         } else {
1876                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877         }
1878         btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882                                  struct btrfs_fs_info *fs_info,
1883                                  struct btrfs_path *path,
1884                                  struct btrfs_extent_inline_ref **ref_ret,
1885                                  u64 bytenr, u64 num_bytes, u64 parent,
1886                                  u64 root_objectid, u64 owner, u64 offset)
1887 {
1888         int ret;
1889
1890         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891                                            bytenr, num_bytes, parent,
1892                                            root_objectid, owner, offset, 0);
1893         if (ret != -ENOENT)
1894                 return ret;
1895
1896         btrfs_release_path(path);
1897         *ref_ret = NULL;
1898
1899         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901                                             parent, root_objectid);
1902         } else {
1903                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904                                              parent, root_objectid, owner,
1905                                              offset);
1906         }
1907         return ret;
1908 }
1909
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915                                   struct btrfs_path *path,
1916                                   struct btrfs_extent_inline_ref *iref,
1917                                   int refs_to_mod,
1918                                   struct btrfs_delayed_extent_op *extent_op,
1919                                   int *last_ref)
1920 {
1921         struct extent_buffer *leaf;
1922         struct btrfs_extent_item *ei;
1923         struct btrfs_extent_data_ref *dref = NULL;
1924         struct btrfs_shared_data_ref *sref = NULL;
1925         unsigned long ptr;
1926         unsigned long end;
1927         u32 item_size;
1928         int size;
1929         int type;
1930         u64 refs;
1931
1932         leaf = path->nodes[0];
1933         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934         refs = btrfs_extent_refs(leaf, ei);
1935         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936         refs += refs_to_mod;
1937         btrfs_set_extent_refs(leaf, ei, refs);
1938         if (extent_op)
1939                 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941         /*
1942          * If type is invalid, we should have bailed out after
1943          * lookup_inline_extent_backref().
1944          */
1945         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950                 refs = btrfs_extent_data_ref_count(leaf, dref);
1951         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953                 refs = btrfs_shared_data_ref_count(leaf, sref);
1954         } else {
1955                 refs = 1;
1956                 BUG_ON(refs_to_mod != -1);
1957         }
1958
1959         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960         refs += refs_to_mod;
1961
1962         if (refs > 0) {
1963                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965                 else
1966                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967         } else {
1968                 *last_ref = 1;
1969                 size =  btrfs_extent_inline_ref_size(type);
1970                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971                 ptr = (unsigned long)iref;
1972                 end = (unsigned long)ei + item_size;
1973                 if (ptr + size < end)
1974                         memmove_extent_buffer(leaf, ptr, ptr + size,
1975                                               end - ptr - size);
1976                 item_size -= size;
1977                 btrfs_truncate_item(fs_info, path, item_size, 1);
1978         }
1979         btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984                                  struct btrfs_fs_info *fs_info,
1985                                  struct btrfs_path *path,
1986                                  u64 bytenr, u64 num_bytes, u64 parent,
1987                                  u64 root_objectid, u64 owner,
1988                                  u64 offset, int refs_to_add,
1989                                  struct btrfs_delayed_extent_op *extent_op)
1990 {
1991         struct btrfs_extent_inline_ref *iref;
1992         int ret;
1993
1994         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995                                            bytenr, num_bytes, parent,
1996                                            root_objectid, owner, offset, 1);
1997         if (ret == 0) {
1998                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999                 update_inline_extent_backref(fs_info, path, iref,
2000                                              refs_to_add, extent_op, NULL);
2001         } else if (ret == -ENOENT) {
2002                 setup_inline_extent_backref(fs_info, path, iref, parent,
2003                                             root_objectid, owner, offset,
2004                                             refs_to_add, extent_op);
2005                 ret = 0;
2006         }
2007         return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011                                  struct btrfs_fs_info *fs_info,
2012                                  struct btrfs_path *path,
2013                                  u64 bytenr, u64 parent, u64 root_objectid,
2014                                  u64 owner, u64 offset, int refs_to_add)
2015 {
2016         int ret;
2017         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018                 BUG_ON(refs_to_add != 1);
2019                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020                                             parent, root_objectid);
2021         } else {
2022                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023                                              parent, root_objectid,
2024                                              owner, offset, refs_to_add);
2025         }
2026         return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030                                  struct btrfs_fs_info *fs_info,
2031                                  struct btrfs_path *path,
2032                                  struct btrfs_extent_inline_ref *iref,
2033                                  int refs_to_drop, int is_data, int *last_ref)
2034 {
2035         int ret = 0;
2036
2037         BUG_ON(!is_data && refs_to_drop != 1);
2038         if (iref) {
2039                 update_inline_extent_backref(fs_info, path, iref,
2040                                              -refs_to_drop, NULL, last_ref);
2041         } else if (is_data) {
2042                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043                                              last_ref);
2044         } else {
2045                 *last_ref = 1;
2046                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047         }
2048         return ret;
2049 }
2050
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053                                u64 *discarded_bytes)
2054 {
2055         int j, ret = 0;
2056         u64 bytes_left, end;
2057         u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059         if (WARN_ON(start != aligned_start)) {
2060                 len -= aligned_start - start;
2061                 len = round_down(len, 1 << 9);
2062                 start = aligned_start;
2063         }
2064
2065         *discarded_bytes = 0;
2066
2067         if (!len)
2068                 return 0;
2069
2070         end = start + len;
2071         bytes_left = len;
2072
2073         /* Skip any superblocks on this device. */
2074         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075                 u64 sb_start = btrfs_sb_offset(j);
2076                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077                 u64 size = sb_start - start;
2078
2079                 if (!in_range(sb_start, start, bytes_left) &&
2080                     !in_range(sb_end, start, bytes_left) &&
2081                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082                         continue;
2083
2084                 /*
2085                  * Superblock spans beginning of range.  Adjust start and
2086                  * try again.
2087                  */
2088                 if (sb_start <= start) {
2089                         start += sb_end - start;
2090                         if (start > end) {
2091                                 bytes_left = 0;
2092                                 break;
2093                         }
2094                         bytes_left = end - start;
2095                         continue;
2096                 }
2097
2098                 if (size) {
2099                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100                                                    GFP_NOFS, 0);
2101                         if (!ret)
2102                                 *discarded_bytes += size;
2103                         else if (ret != -EOPNOTSUPP)
2104                                 return ret;
2105                 }
2106
2107                 start = sb_end;
2108                 if (start > end) {
2109                         bytes_left = 0;
2110                         break;
2111                 }
2112                 bytes_left = end - start;
2113         }
2114
2115         if (bytes_left) {
2116                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117                                            GFP_NOFS, 0);
2118                 if (!ret)
2119                         *discarded_bytes += bytes_left;
2120         }
2121         return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125                          u64 num_bytes, u64 *actual_bytes)
2126 {
2127         int ret;
2128         u64 discarded_bytes = 0;
2129         struct btrfs_bio *bbio = NULL;
2130
2131
2132         /*
2133          * Avoid races with device replace and make sure our bbio has devices
2134          * associated to its stripes that don't go away while we are discarding.
2135          */
2136         btrfs_bio_counter_inc_blocked(fs_info);
2137         /* Tell the block device(s) that the sectors can be discarded */
2138         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139                               &bbio, 0);
2140         /* Error condition is -ENOMEM */
2141         if (!ret) {
2142                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143                 int i;
2144
2145
2146                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147                         u64 bytes;
2148                         struct request_queue *req_q;
2149
2150                         if (!stripe->dev->bdev) {
2151                                 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152                                 continue;
2153                         }
2154                         req_q = bdev_get_queue(stripe->dev->bdev);
2155                         if (!blk_queue_discard(req_q))
2156                                 continue;
2157
2158                         ret = btrfs_issue_discard(stripe->dev->bdev,
2159                                                   stripe->physical,
2160                                                   stripe->length,
2161                                                   &bytes);
2162                         if (!ret)
2163                                 discarded_bytes += bytes;
2164                         else if (ret != -EOPNOTSUPP)
2165                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2166
2167                         /*
2168                          * Just in case we get back EOPNOTSUPP for some reason,
2169                          * just ignore the return value so we don't screw up
2170                          * people calling discard_extent.
2171                          */
2172                         ret = 0;
2173                 }
2174                 btrfs_put_bbio(bbio);
2175         }
2176         btrfs_bio_counter_dec(fs_info);
2177
2178         if (actual_bytes)
2179                 *actual_bytes = discarded_bytes;
2180
2181
2182         if (ret == -EOPNOTSUPP)
2183                 ret = 0;
2184         return ret;
2185 }
2186
2187 /* Can return -ENOMEM */
2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2189                          struct btrfs_root *root,
2190                          u64 bytenr, u64 num_bytes, u64 parent,
2191                          u64 root_objectid, u64 owner, u64 offset)
2192 {
2193         struct btrfs_fs_info *fs_info = root->fs_info;
2194         int old_ref_mod, new_ref_mod;
2195         int ret;
2196
2197         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2199
2200         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201                            owner, offset, BTRFS_ADD_DELAYED_REF);
2202
2203         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2204                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2205                                                  num_bytes, parent,
2206                                                  root_objectid, (int)owner,
2207                                                  BTRFS_ADD_DELAYED_REF, NULL,
2208                                                  &old_ref_mod, &new_ref_mod);
2209         } else {
2210                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2211                                                  num_bytes, parent,
2212                                                  root_objectid, owner, offset,
2213                                                  0, BTRFS_ADD_DELAYED_REF,
2214                                                  &old_ref_mod, &new_ref_mod);
2215         }
2216
2217         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2219
2220         return ret;
2221 }
2222
2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2224                                   struct btrfs_fs_info *fs_info,
2225                                   struct btrfs_delayed_ref_node *node,
2226                                   u64 parent, u64 root_objectid,
2227                                   u64 owner, u64 offset, int refs_to_add,
2228                                   struct btrfs_delayed_extent_op *extent_op)
2229 {
2230         struct btrfs_path *path;
2231         struct extent_buffer *leaf;
2232         struct btrfs_extent_item *item;
2233         struct btrfs_key key;
2234         u64 bytenr = node->bytenr;
2235         u64 num_bytes = node->num_bytes;
2236         u64 refs;
2237         int ret;
2238
2239         path = btrfs_alloc_path();
2240         if (!path)
2241                 return -ENOMEM;
2242
2243         path->reada = READA_FORWARD;
2244         path->leave_spinning = 1;
2245         /* this will setup the path even if it fails to insert the back ref */
2246         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247                                            num_bytes, parent, root_objectid,
2248                                            owner, offset,
2249                                            refs_to_add, extent_op);
2250         if ((ret < 0 && ret != -EAGAIN) || !ret)
2251                 goto out;
2252
2253         /*
2254          * Ok we had -EAGAIN which means we didn't have space to insert and
2255          * inline extent ref, so just update the reference count and add a
2256          * normal backref.
2257          */
2258         leaf = path->nodes[0];
2259         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2260         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261         refs = btrfs_extent_refs(leaf, item);
2262         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263         if (extent_op)
2264                 __run_delayed_extent_op(extent_op, leaf, item);
2265
2266         btrfs_mark_buffer_dirty(leaf);
2267         btrfs_release_path(path);
2268
2269         path->reada = READA_FORWARD;
2270         path->leave_spinning = 1;
2271         /* now insert the actual backref */
2272         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273                                     root_objectid, owner, offset, refs_to_add);
2274         if (ret)
2275                 btrfs_abort_transaction(trans, ret);
2276 out:
2277         btrfs_free_path(path);
2278         return ret;
2279 }
2280
2281 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2282                                 struct btrfs_fs_info *fs_info,
2283                                 struct btrfs_delayed_ref_node *node,
2284                                 struct btrfs_delayed_extent_op *extent_op,
2285                                 int insert_reserved)
2286 {
2287         int ret = 0;
2288         struct btrfs_delayed_data_ref *ref;
2289         struct btrfs_key ins;
2290         u64 parent = 0;
2291         u64 ref_root = 0;
2292         u64 flags = 0;
2293
2294         ins.objectid = node->bytenr;
2295         ins.offset = node->num_bytes;
2296         ins.type = BTRFS_EXTENT_ITEM_KEY;
2297
2298         ref = btrfs_delayed_node_to_data_ref(node);
2299         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2300
2301         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302                 parent = ref->parent;
2303         ref_root = ref->root;
2304
2305         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2306                 if (extent_op)
2307                         flags |= extent_op->flags_to_set;
2308                 ret = alloc_reserved_file_extent(trans, fs_info,
2309                                                  parent, ref_root, flags,
2310                                                  ref->objectid, ref->offset,
2311                                                  &ins, node->ref_mod);
2312         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2313                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2314                                              ref_root, ref->objectid,
2315                                              ref->offset, node->ref_mod,
2316                                              extent_op);
2317         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2318                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2319                                           ref_root, ref->objectid,
2320                                           ref->offset, node->ref_mod,
2321                                           extent_op);
2322         } else {
2323                 BUG();
2324         }
2325         return ret;
2326 }
2327
2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329                                     struct extent_buffer *leaf,
2330                                     struct btrfs_extent_item *ei)
2331 {
2332         u64 flags = btrfs_extent_flags(leaf, ei);
2333         if (extent_op->update_flags) {
2334                 flags |= extent_op->flags_to_set;
2335                 btrfs_set_extent_flags(leaf, ei, flags);
2336         }
2337
2338         if (extent_op->update_key) {
2339                 struct btrfs_tree_block_info *bi;
2340                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2342                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2343         }
2344 }
2345
2346 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2347                                  struct btrfs_fs_info *fs_info,
2348                                  struct btrfs_delayed_ref_head *head,
2349                                  struct btrfs_delayed_extent_op *extent_op)
2350 {
2351         struct btrfs_key key;
2352         struct btrfs_path *path;
2353         struct btrfs_extent_item *ei;
2354         struct extent_buffer *leaf;
2355         u32 item_size;
2356         int ret;
2357         int err = 0;
2358         int metadata = !extent_op->is_data;
2359
2360         if (trans->aborted)
2361                 return 0;
2362
2363         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2364                 metadata = 0;
2365
2366         path = btrfs_alloc_path();
2367         if (!path)
2368                 return -ENOMEM;
2369
2370         key.objectid = head->bytenr;
2371
2372         if (metadata) {
2373                 key.type = BTRFS_METADATA_ITEM_KEY;
2374                 key.offset = extent_op->level;
2375         } else {
2376                 key.type = BTRFS_EXTENT_ITEM_KEY;
2377                 key.offset = head->num_bytes;
2378         }
2379
2380 again:
2381         path->reada = READA_FORWARD;
2382         path->leave_spinning = 1;
2383         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2384         if (ret < 0) {
2385                 err = ret;
2386                 goto out;
2387         }
2388         if (ret > 0) {
2389                 if (metadata) {
2390                         if (path->slots[0] > 0) {
2391                                 path->slots[0]--;
2392                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393                                                       path->slots[0]);
2394                                 if (key.objectid == head->bytenr &&
2395                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2396                                     key.offset == head->num_bytes)
2397                                         ret = 0;
2398                         }
2399                         if (ret > 0) {
2400                                 btrfs_release_path(path);
2401                                 metadata = 0;
2402
2403                                 key.objectid = head->bytenr;
2404                                 key.offset = head->num_bytes;
2405                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2406                                 goto again;
2407                         }
2408                 } else {
2409                         err = -EIO;
2410                         goto out;
2411                 }
2412         }
2413
2414         leaf = path->nodes[0];
2415         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417         if (item_size < sizeof(*ei)) {
2418                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2419                 if (ret < 0) {
2420                         err = ret;
2421                         goto out;
2422                 }
2423                 leaf = path->nodes[0];
2424                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2425         }
2426 #endif
2427         BUG_ON(item_size < sizeof(*ei));
2428         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429         __run_delayed_extent_op(extent_op, leaf, ei);
2430
2431         btrfs_mark_buffer_dirty(leaf);
2432 out:
2433         btrfs_free_path(path);
2434         return err;
2435 }
2436
2437 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2438                                 struct btrfs_fs_info *fs_info,
2439                                 struct btrfs_delayed_ref_node *node,
2440                                 struct btrfs_delayed_extent_op *extent_op,
2441                                 int insert_reserved)
2442 {
2443         int ret = 0;
2444         struct btrfs_delayed_tree_ref *ref;
2445         struct btrfs_key ins;
2446         u64 parent = 0;
2447         u64 ref_root = 0;
2448         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2449
2450         ref = btrfs_delayed_node_to_tree_ref(node);
2451         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2452
2453         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454                 parent = ref->parent;
2455         ref_root = ref->root;
2456
2457         ins.objectid = node->bytenr;
2458         if (skinny_metadata) {
2459                 ins.offset = ref->level;
2460                 ins.type = BTRFS_METADATA_ITEM_KEY;
2461         } else {
2462                 ins.offset = node->num_bytes;
2463                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2464         }
2465
2466         if (node->ref_mod != 1) {
2467                 btrfs_err(fs_info,
2468         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469                           node->bytenr, node->ref_mod, node->action, ref_root,
2470                           parent);
2471                 return -EIO;
2472         }
2473         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2474                 BUG_ON(!extent_op || !extent_op->update_flags);
2475                 ret = alloc_reserved_tree_block(trans, fs_info,
2476                                                 parent, ref_root,
2477                                                 extent_op->flags_to_set,
2478                                                 &extent_op->key,
2479                                                 ref->level, &ins);
2480         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2481                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2482                                              parent, ref_root,
2483                                              ref->level, 0, 1,
2484                                              extent_op);
2485         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2486                 ret = __btrfs_free_extent(trans, fs_info, node,
2487                                           parent, ref_root,
2488                                           ref->level, 0, 1, extent_op);
2489         } else {
2490                 BUG();
2491         }
2492         return ret;
2493 }
2494
2495 /* helper function to actually process a single delayed ref entry */
2496 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2497                                struct btrfs_fs_info *fs_info,
2498                                struct btrfs_delayed_ref_node *node,
2499                                struct btrfs_delayed_extent_op *extent_op,
2500                                int insert_reserved)
2501 {
2502         int ret = 0;
2503
2504         if (trans->aborted) {
2505                 if (insert_reserved)
2506                         btrfs_pin_extent(fs_info, node->bytenr,
2507                                          node->num_bytes, 1);
2508                 return 0;
2509         }
2510
2511         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2513                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2514                                            insert_reserved);
2515         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2517                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2518                                            insert_reserved);
2519         else
2520                 BUG();
2521         return ret;
2522 }
2523
2524 static inline struct btrfs_delayed_ref_node *
2525 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2526 {
2527         struct btrfs_delayed_ref_node *ref;
2528
2529         if (RB_EMPTY_ROOT(&head->ref_tree))
2530                 return NULL;
2531
2532         /*
2533          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534          * This is to prevent a ref count from going down to zero, which deletes
2535          * the extent item from the extent tree, when there still are references
2536          * to add, which would fail because they would not find the extent item.
2537          */
2538         if (!list_empty(&head->ref_add_list))
2539                 return list_first_entry(&head->ref_add_list,
2540                                 struct btrfs_delayed_ref_node, add_list);
2541
2542         ref = rb_entry(rb_first(&head->ref_tree),
2543                        struct btrfs_delayed_ref_node, ref_node);
2544         ASSERT(list_empty(&ref->add_list));
2545         return ref;
2546 }
2547
2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549                                       struct btrfs_delayed_ref_head *head)
2550 {
2551         spin_lock(&delayed_refs->lock);
2552         head->processing = 0;
2553         delayed_refs->num_heads_ready++;
2554         spin_unlock(&delayed_refs->lock);
2555         btrfs_delayed_ref_unlock(head);
2556 }
2557
2558 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559                              struct btrfs_fs_info *fs_info,
2560                              struct btrfs_delayed_ref_head *head)
2561 {
2562         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563         int ret;
2564
2565         if (!extent_op)
2566                 return 0;
2567         head->extent_op = NULL;
2568         if (head->must_insert_reserved) {
2569                 btrfs_free_delayed_extent_op(extent_op);
2570                 return 0;
2571         }
2572         spin_unlock(&head->lock);
2573         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2574         btrfs_free_delayed_extent_op(extent_op);
2575         return ret ? ret : 1;
2576 }
2577
2578 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579                             struct btrfs_fs_info *fs_info,
2580                             struct btrfs_delayed_ref_head *head)
2581 {
2582         struct btrfs_delayed_ref_root *delayed_refs;
2583         int ret;
2584
2585         delayed_refs = &trans->transaction->delayed_refs;
2586
2587         ret = cleanup_extent_op(trans, fs_info, head);
2588         if (ret < 0) {
2589                 unselect_delayed_ref_head(delayed_refs, head);
2590                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591                 return ret;
2592         } else if (ret) {
2593                 return ret;
2594         }
2595
2596         /*
2597          * Need to drop our head ref lock and re-acquire the delayed ref lock
2598          * and then re-check to make sure nobody got added.
2599          */
2600         spin_unlock(&head->lock);
2601         spin_lock(&delayed_refs->lock);
2602         spin_lock(&head->lock);
2603         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2604                 spin_unlock(&head->lock);
2605                 spin_unlock(&delayed_refs->lock);
2606                 return 1;
2607         }
2608         delayed_refs->num_heads--;
2609         rb_erase(&head->href_node, &delayed_refs->href_root);
2610         RB_CLEAR_NODE(&head->href_node);
2611         spin_unlock(&delayed_refs->lock);
2612         spin_unlock(&head->lock);
2613         atomic_dec(&delayed_refs->num_entries);
2614
2615         trace_run_delayed_ref_head(fs_info, head, 0);
2616
2617         if (head->total_ref_mod < 0) {
2618                 struct btrfs_block_group_cache *cache;
2619
2620                 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2621                 ASSERT(cache);
2622                 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2623                                    -head->num_bytes);
2624                 btrfs_put_block_group(cache);
2625
2626                 if (head->is_data) {
2627                         spin_lock(&delayed_refs->lock);
2628                         delayed_refs->pending_csums -= head->num_bytes;
2629                         spin_unlock(&delayed_refs->lock);
2630                 }
2631         }
2632
2633         if (head->must_insert_reserved) {
2634                 btrfs_pin_extent(fs_info, head->bytenr,
2635                                  head->num_bytes, 1);
2636                 if (head->is_data) {
2637                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638                                               head->num_bytes);
2639                 }
2640         }
2641
2642         /* Also free its reserved qgroup space */
2643         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644                                       head->qgroup_reserved);
2645         btrfs_delayed_ref_unlock(head);
2646         btrfs_put_delayed_ref_head(head);
2647         return 0;
2648 }
2649
2650 /*
2651  * Returns 0 on success or if called with an already aborted transaction.
2652  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2653  */
2654 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2655                                              struct btrfs_fs_info *fs_info,
2656                                              unsigned long nr)
2657 {
2658         struct btrfs_delayed_ref_root *delayed_refs;
2659         struct btrfs_delayed_ref_node *ref;
2660         struct btrfs_delayed_ref_head *locked_ref = NULL;
2661         struct btrfs_delayed_extent_op *extent_op;
2662         ktime_t start = ktime_get();
2663         int ret;
2664         unsigned long count = 0;
2665         unsigned long actual_count = 0;
2666         int must_insert_reserved = 0;
2667
2668         delayed_refs = &trans->transaction->delayed_refs;
2669         while (1) {
2670                 if (!locked_ref) {
2671                         if (count >= nr)
2672                                 break;
2673
2674                         spin_lock(&delayed_refs->lock);
2675                         locked_ref = btrfs_select_ref_head(trans);
2676                         if (!locked_ref) {
2677                                 spin_unlock(&delayed_refs->lock);
2678                                 break;
2679                         }
2680
2681                         /* grab the lock that says we are going to process
2682                          * all the refs for this head */
2683                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2684                         spin_unlock(&delayed_refs->lock);
2685                         /*
2686                          * we may have dropped the spin lock to get the head
2687                          * mutex lock, and that might have given someone else
2688                          * time to free the head.  If that's true, it has been
2689                          * removed from our list and we can move on.
2690                          */
2691                         if (ret == -EAGAIN) {
2692                                 locked_ref = NULL;
2693                                 count++;
2694                                 continue;
2695                         }
2696                 }
2697
2698                 /*
2699                  * We need to try and merge add/drops of the same ref since we
2700                  * can run into issues with relocate dropping the implicit ref
2701                  * and then it being added back again before the drop can
2702                  * finish.  If we merged anything we need to re-loop so we can
2703                  * get a good ref.
2704                  * Or we can get node references of the same type that weren't
2705                  * merged when created due to bumps in the tree mod seq, and
2706                  * we need to merge them to prevent adding an inline extent
2707                  * backref before dropping it (triggering a BUG_ON at
2708                  * insert_inline_extent_backref()).
2709                  */
2710                 spin_lock(&locked_ref->lock);
2711                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712                                          locked_ref);
2713
2714                 /*
2715                  * locked_ref is the head node, so we have to go one
2716                  * node back for any delayed ref updates
2717                  */
2718                 ref = select_delayed_ref(locked_ref);
2719
2720                 if (ref && ref->seq &&
2721                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2722                         spin_unlock(&locked_ref->lock);
2723                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2724                         locked_ref = NULL;
2725                         cond_resched();
2726                         count++;
2727                         continue;
2728                 }
2729
2730                 /*
2731                  * We're done processing refs in this ref_head, clean everything
2732                  * up and move on to the next ref_head.
2733                  */
2734                 if (!ref) {
2735                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736                         if (ret > 0 ) {
2737                                 /* We dropped our lock, we need to loop. */
2738                                 ret = 0;
2739                                 continue;
2740                         } else if (ret) {
2741                                 return ret;
2742                         }
2743                         locked_ref = NULL;
2744                         count++;
2745                         continue;
2746                 }
2747
2748                 actual_count++;
2749                 ref->in_tree = 0;
2750                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751                 RB_CLEAR_NODE(&ref->ref_node);
2752                 if (!list_empty(&ref->add_list))
2753                         list_del(&ref->add_list);
2754                 /*
2755                  * When we play the delayed ref, also correct the ref_mod on
2756                  * head
2757                  */
2758                 switch (ref->action) {
2759                 case BTRFS_ADD_DELAYED_REF:
2760                 case BTRFS_ADD_DELAYED_EXTENT:
2761                         locked_ref->ref_mod -= ref->ref_mod;
2762                         break;
2763                 case BTRFS_DROP_DELAYED_REF:
2764                         locked_ref->ref_mod += ref->ref_mod;
2765                         break;
2766                 default:
2767                         WARN_ON(1);
2768                 }
2769                 atomic_dec(&delayed_refs->num_entries);
2770
2771                 /*
2772                  * Record the must-insert_reserved flag before we drop the spin
2773                  * lock.
2774                  */
2775                 must_insert_reserved = locked_ref->must_insert_reserved;
2776                 locked_ref->must_insert_reserved = 0;
2777
2778                 extent_op = locked_ref->extent_op;
2779                 locked_ref->extent_op = NULL;
2780                 spin_unlock(&locked_ref->lock);
2781
2782                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2783                                           must_insert_reserved);
2784
2785                 btrfs_free_delayed_extent_op(extent_op);
2786                 if (ret) {
2787                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2788                         btrfs_put_delayed_ref(ref);
2789                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790                                     ret);
2791                         return ret;
2792                 }
2793
2794                 btrfs_put_delayed_ref(ref);
2795                 count++;
2796                 cond_resched();
2797         }
2798
2799         /*
2800          * We don't want to include ref heads since we can have empty ref heads
2801          * and those will drastically skew our runtime down since we just do
2802          * accounting, no actual extent tree updates.
2803          */
2804         if (actual_count > 0) {
2805                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806                 u64 avg;
2807
2808                 /*
2809                  * We weigh the current average higher than our current runtime
2810                  * to avoid large swings in the average.
2811                  */
2812                 spin_lock(&delayed_refs->lock);
2813                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2814                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2815                 spin_unlock(&delayed_refs->lock);
2816         }
2817         return 0;
2818 }
2819
2820 #ifdef SCRAMBLE_DELAYED_REFS
2821 /*
2822  * Normally delayed refs get processed in ascending bytenr order. This
2823  * correlates in most cases to the order added. To expose dependencies on this
2824  * order, we start to process the tree in the middle instead of the beginning
2825  */
2826 static u64 find_middle(struct rb_root *root)
2827 {
2828         struct rb_node *n = root->rb_node;
2829         struct btrfs_delayed_ref_node *entry;
2830         int alt = 1;
2831         u64 middle;
2832         u64 first = 0, last = 0;
2833
2834         n = rb_first(root);
2835         if (n) {
2836                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837                 first = entry->bytenr;
2838         }
2839         n = rb_last(root);
2840         if (n) {
2841                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842                 last = entry->bytenr;
2843         }
2844         n = root->rb_node;
2845
2846         while (n) {
2847                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848                 WARN_ON(!entry->in_tree);
2849
2850                 middle = entry->bytenr;
2851
2852                 if (alt)
2853                         n = n->rb_left;
2854                 else
2855                         n = n->rb_right;
2856
2857                 alt = 1 - alt;
2858         }
2859         return middle;
2860 }
2861 #endif
2862
2863 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2864 {
2865         u64 num_bytes;
2866
2867         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868                              sizeof(struct btrfs_extent_inline_ref));
2869         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2871
2872         /*
2873          * We don't ever fill up leaves all the way so multiply by 2 just to be
2874          * closer to what we're really going to want to use.
2875          */
2876         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2877 }
2878
2879 /*
2880  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881  * would require to store the csums for that many bytes.
2882  */
2883 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2884 {
2885         u64 csum_size;
2886         u64 num_csums_per_leaf;
2887         u64 num_csums;
2888
2889         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2890         num_csums_per_leaf = div64_u64(csum_size,
2891                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2892         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2893         num_csums += num_csums_per_leaf - 1;
2894         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895         return num_csums;
2896 }
2897
2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2899                                        struct btrfs_fs_info *fs_info)
2900 {
2901         struct btrfs_block_rsv *global_rsv;
2902         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2903         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2904         unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2905         u64 num_bytes, num_dirty_bgs_bytes;
2906         int ret = 0;
2907
2908         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2909         num_heads = heads_to_leaves(fs_info, num_heads);
2910         if (num_heads > 1)
2911                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2912         num_bytes <<= 1;
2913         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914                                                         fs_info->nodesize;
2915         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2916                                                              num_dirty_bgs);
2917         global_rsv = &fs_info->global_block_rsv;
2918
2919         /*
2920          * If we can't allocate any more chunks lets make sure we have _lots_ of
2921          * wiggle room since running delayed refs can create more delayed refs.
2922          */
2923         if (global_rsv->space_info->full) {
2924                 num_dirty_bgs_bytes <<= 1;
2925                 num_bytes <<= 1;
2926         }
2927
2928         spin_lock(&global_rsv->lock);
2929         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2930                 ret = 1;
2931         spin_unlock(&global_rsv->lock);
2932         return ret;
2933 }
2934
2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2936                                        struct btrfs_fs_info *fs_info)
2937 {
2938         u64 num_entries =
2939                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2940         u64 avg_runtime;
2941         u64 val;
2942
2943         smp_mb();
2944         avg_runtime = fs_info->avg_delayed_ref_runtime;
2945         val = num_entries * avg_runtime;
2946         if (val >= NSEC_PER_SEC)
2947                 return 1;
2948         if (val >= NSEC_PER_SEC / 2)
2949                 return 2;
2950
2951         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2952 }
2953
2954 struct async_delayed_refs {
2955         struct btrfs_root *root;
2956         u64 transid;
2957         int count;
2958         int error;
2959         int sync;
2960         struct completion wait;
2961         struct btrfs_work work;
2962 };
2963
2964 static inline struct async_delayed_refs *
2965 to_async_delayed_refs(struct btrfs_work *work)
2966 {
2967         return container_of(work, struct async_delayed_refs, work);
2968 }
2969
2970 static void delayed_ref_async_start(struct btrfs_work *work)
2971 {
2972         struct async_delayed_refs *async = to_async_delayed_refs(work);
2973         struct btrfs_trans_handle *trans;
2974         struct btrfs_fs_info *fs_info = async->root->fs_info;
2975         int ret;
2976
2977         /* if the commit is already started, we don't need to wait here */
2978         if (btrfs_transaction_blocked(fs_info))
2979                 goto done;
2980
2981         trans = btrfs_join_transaction(async->root);
2982         if (IS_ERR(trans)) {
2983                 async->error = PTR_ERR(trans);
2984                 goto done;
2985         }
2986
2987         /*
2988          * trans->sync means that when we call end_transaction, we won't
2989          * wait on delayed refs
2990          */
2991         trans->sync = true;
2992
2993         /* Don't bother flushing if we got into a different transaction */
2994         if (trans->transid > async->transid)
2995                 goto end;
2996
2997         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2998         if (ret)
2999                 async->error = ret;
3000 end:
3001         ret = btrfs_end_transaction(trans);
3002         if (ret && !async->error)
3003                 async->error = ret;
3004 done:
3005         if (async->sync)
3006                 complete(&async->wait);
3007         else
3008                 kfree(async);
3009 }
3010
3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3012                                  unsigned long count, u64 transid, int wait)
3013 {
3014         struct async_delayed_refs *async;
3015         int ret;
3016
3017         async = kmalloc(sizeof(*async), GFP_NOFS);
3018         if (!async)
3019                 return -ENOMEM;
3020
3021         async->root = fs_info->tree_root;
3022         async->count = count;
3023         async->error = 0;
3024         async->transid = transid;
3025         if (wait)
3026                 async->sync = 1;
3027         else
3028                 async->sync = 0;
3029         init_completion(&async->wait);
3030
3031         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032                         delayed_ref_async_start, NULL, NULL);
3033
3034         btrfs_queue_work(fs_info->extent_workers, &async->work);
3035
3036         if (wait) {
3037                 wait_for_completion(&async->wait);
3038                 ret = async->error;
3039                 kfree(async);
3040                 return ret;
3041         }
3042         return 0;
3043 }
3044
3045 /*
3046  * this starts processing the delayed reference count updates and
3047  * extent insertions we have queued up so far.  count can be
3048  * 0, which means to process everything in the tree at the start
3049  * of the run (but not newly added entries), or it can be some target
3050  * number you'd like to process.
3051  *
3052  * Returns 0 on success or if called with an aborted transaction
3053  * Returns <0 on error and aborts the transaction
3054  */
3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3056                            struct btrfs_fs_info *fs_info, unsigned long count)
3057 {
3058         struct rb_node *node;
3059         struct btrfs_delayed_ref_root *delayed_refs;
3060         struct btrfs_delayed_ref_head *head;
3061         int ret;
3062         int run_all = count == (unsigned long)-1;
3063         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3064
3065         /* We'll clean this up in btrfs_cleanup_transaction */
3066         if (trans->aborted)
3067                 return 0;
3068
3069         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3070                 return 0;
3071
3072         delayed_refs = &trans->transaction->delayed_refs;
3073         if (count == 0)
3074                 count = atomic_read(&delayed_refs->num_entries) * 2;
3075
3076 again:
3077 #ifdef SCRAMBLE_DELAYED_REFS
3078         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079 #endif
3080         trans->can_flush_pending_bgs = false;
3081         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3082         if (ret < 0) {
3083                 btrfs_abort_transaction(trans, ret);
3084                 return ret;
3085         }
3086
3087         if (run_all) {
3088                 if (!list_empty(&trans->new_bgs))
3089                         btrfs_create_pending_block_groups(trans, fs_info);
3090
3091                 spin_lock(&delayed_refs->lock);
3092                 node = rb_first(&delayed_refs->href_root);
3093                 if (!node) {
3094                         spin_unlock(&delayed_refs->lock);
3095                         goto out;
3096                 }
3097                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098                                 href_node);
3099                 refcount_inc(&head->refs);
3100                 spin_unlock(&delayed_refs->lock);
3101
3102                 /* Mutex was contended, block until it's released and retry. */
3103                 mutex_lock(&head->mutex);
3104                 mutex_unlock(&head->mutex);
3105
3106                 btrfs_put_delayed_ref_head(head);
3107                 cond_resched();
3108                 goto again;
3109         }
3110 out:
3111         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3112         return 0;
3113 }
3114
3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3116                                 struct btrfs_fs_info *fs_info,
3117                                 u64 bytenr, u64 num_bytes, u64 flags,
3118                                 int level, int is_data)
3119 {
3120         struct btrfs_delayed_extent_op *extent_op;
3121         int ret;
3122
3123         extent_op = btrfs_alloc_delayed_extent_op();
3124         if (!extent_op)
3125                 return -ENOMEM;
3126
3127         extent_op->flags_to_set = flags;
3128         extent_op->update_flags = true;
3129         extent_op->update_key = false;
3130         extent_op->is_data = is_data ? true : false;
3131         extent_op->level = level;
3132
3133         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3134                                           num_bytes, extent_op);
3135         if (ret)
3136                 btrfs_free_delayed_extent_op(extent_op);
3137         return ret;
3138 }
3139
3140 static noinline int check_delayed_ref(struct btrfs_root *root,
3141                                       struct btrfs_path *path,
3142                                       u64 objectid, u64 offset, u64 bytenr)
3143 {
3144         struct btrfs_delayed_ref_head *head;
3145         struct btrfs_delayed_ref_node *ref;
3146         struct btrfs_delayed_data_ref *data_ref;
3147         struct btrfs_delayed_ref_root *delayed_refs;
3148         struct btrfs_transaction *cur_trans;
3149         struct rb_node *node;
3150         int ret = 0;
3151
3152         cur_trans = root->fs_info->running_transaction;
3153         if (!cur_trans)
3154                 return 0;
3155
3156         delayed_refs = &cur_trans->delayed_refs;
3157         spin_lock(&delayed_refs->lock);
3158         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3159         if (!head) {
3160                 spin_unlock(&delayed_refs->lock);
3161                 return 0;
3162         }
3163
3164         if (!mutex_trylock(&head->mutex)) {
3165                 refcount_inc(&head->refs);
3166                 spin_unlock(&delayed_refs->lock);
3167
3168                 btrfs_release_path(path);
3169
3170                 /*
3171                  * Mutex was contended, block until it's released and let
3172                  * caller try again
3173                  */
3174                 mutex_lock(&head->mutex);
3175                 mutex_unlock(&head->mutex);
3176                 btrfs_put_delayed_ref_head(head);
3177                 return -EAGAIN;
3178         }
3179         spin_unlock(&delayed_refs->lock);
3180
3181         spin_lock(&head->lock);
3182         /*
3183          * XXX: We should replace this with a proper search function in the
3184          * future.
3185          */
3186         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3188                 /* If it's a shared ref we know a cross reference exists */
3189                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190                         ret = 1;
3191                         break;
3192                 }
3193
3194                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3195
3196                 /*
3197                  * If our ref doesn't match the one we're currently looking at
3198                  * then we have a cross reference.
3199                  */
3200                 if (data_ref->root != root->root_key.objectid ||
3201                     data_ref->objectid != objectid ||
3202                     data_ref->offset != offset) {
3203                         ret = 1;
3204                         break;
3205                 }
3206         }
3207         spin_unlock(&head->lock);
3208         mutex_unlock(&head->mutex);
3209         return ret;
3210 }
3211
3212 static noinline int check_committed_ref(struct btrfs_root *root,
3213                                         struct btrfs_path *path,
3214                                         u64 objectid, u64 offset, u64 bytenr)
3215 {
3216         struct btrfs_fs_info *fs_info = root->fs_info;
3217         struct btrfs_root *extent_root = fs_info->extent_root;
3218         struct extent_buffer *leaf;
3219         struct btrfs_extent_data_ref *ref;
3220         struct btrfs_extent_inline_ref *iref;
3221         struct btrfs_extent_item *ei;
3222         struct btrfs_key key;
3223         u32 item_size;
3224         int type;
3225         int ret;
3226
3227         key.objectid = bytenr;
3228         key.offset = (u64)-1;
3229         key.type = BTRFS_EXTENT_ITEM_KEY;
3230
3231         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232         if (ret < 0)
3233                 goto out;
3234         BUG_ON(ret == 0); /* Corruption */
3235
3236         ret = -ENOENT;
3237         if (path->slots[0] == 0)
3238                 goto out;
3239
3240         path->slots[0]--;
3241         leaf = path->nodes[0];
3242         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3243
3244         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245                 goto out;
3246
3247         ret = 1;
3248         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250         if (item_size < sizeof(*ei)) {
3251                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252                 goto out;
3253         }
3254 #endif
3255         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3256
3257         if (item_size != sizeof(*ei) +
3258             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259                 goto out;
3260
3261         if (btrfs_extent_generation(leaf, ei) <=
3262             btrfs_root_last_snapshot(&root->root_item))
3263                 goto out;
3264
3265         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3266
3267         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269                 goto out;
3270
3271         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272         if (btrfs_extent_refs(leaf, ei) !=
3273             btrfs_extent_data_ref_count(leaf, ref) ||
3274             btrfs_extent_data_ref_root(leaf, ref) !=
3275             root->root_key.objectid ||
3276             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278                 goto out;
3279
3280         ret = 0;
3281 out:
3282         return ret;
3283 }
3284
3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286                           u64 bytenr)
3287 {
3288         struct btrfs_path *path;
3289         int ret;
3290         int ret2;
3291
3292         path = btrfs_alloc_path();
3293         if (!path)
3294                 return -ENOENT;
3295
3296         do {
3297                 ret = check_committed_ref(root, path, objectid,
3298                                           offset, bytenr);
3299                 if (ret && ret != -ENOENT)
3300                         goto out;
3301
3302                 ret2 = check_delayed_ref(root, path, objectid,
3303                                          offset, bytenr);
3304         } while (ret2 == -EAGAIN);
3305
3306         if (ret2 && ret2 != -ENOENT) {
3307                 ret = ret2;
3308                 goto out;
3309         }
3310
3311         if (ret != -ENOENT || ret2 != -ENOENT)
3312                 ret = 0;
3313 out:
3314         btrfs_free_path(path);
3315         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316                 WARN_ON(ret > 0);
3317         return ret;
3318 }
3319
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321                            struct btrfs_root *root,
3322                            struct extent_buffer *buf,
3323                            int full_backref, int inc)
3324 {
3325         struct btrfs_fs_info *fs_info = root->fs_info;
3326         u64 bytenr;
3327         u64 num_bytes;
3328         u64 parent;
3329         u64 ref_root;
3330         u32 nritems;
3331         struct btrfs_key key;
3332         struct btrfs_file_extent_item *fi;
3333         int i;
3334         int level;
3335         int ret = 0;
3336         int (*process_func)(struct btrfs_trans_handle *,
3337                             struct btrfs_root *,
3338                             u64, u64, u64, u64, u64, u64);
3339
3340
3341         if (btrfs_is_testing(fs_info))
3342                 return 0;
3343
3344         ref_root = btrfs_header_owner(buf);
3345         nritems = btrfs_header_nritems(buf);
3346         level = btrfs_header_level(buf);
3347
3348         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349                 return 0;
3350
3351         if (inc)
3352                 process_func = btrfs_inc_extent_ref;
3353         else
3354                 process_func = btrfs_free_extent;
3355
3356         if (full_backref)
3357                 parent = buf->start;
3358         else
3359                 parent = 0;
3360
3361         for (i = 0; i < nritems; i++) {
3362                 if (level == 0) {
3363                         btrfs_item_key_to_cpu(buf, &key, i);
3364                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3365                                 continue;
3366                         fi = btrfs_item_ptr(buf, i,
3367                                             struct btrfs_file_extent_item);
3368                         if (btrfs_file_extent_type(buf, fi) ==
3369                             BTRFS_FILE_EXTENT_INLINE)
3370                                 continue;
3371                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372                         if (bytenr == 0)
3373                                 continue;
3374
3375                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376                         key.offset -= btrfs_file_extent_offset(buf, fi);
3377                         ret = process_func(trans, root, bytenr, num_bytes,
3378                                            parent, ref_root, key.objectid,
3379                                            key.offset);
3380                         if (ret)
3381                                 goto fail;
3382                 } else {
3383                         bytenr = btrfs_node_blockptr(buf, i);
3384                         num_bytes = fs_info->nodesize;
3385                         ret = process_func(trans, root, bytenr, num_bytes,
3386                                            parent, ref_root, level - 1, 0);
3387                         if (ret)
3388                                 goto fail;
3389                 }
3390         }
3391         return 0;
3392 fail:
3393         return ret;
3394 }
3395
3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397                   struct extent_buffer *buf, int full_backref)
3398 {
3399         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3400 }
3401
3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403                   struct extent_buffer *buf, int full_backref)
3404 {
3405         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3406 }
3407
3408 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409                                  struct btrfs_fs_info *fs_info,
3410                                  struct btrfs_path *path,
3411                                  struct btrfs_block_group_cache *cache)
3412 {
3413         int ret;
3414         struct btrfs_root *extent_root = fs_info->extent_root;
3415         unsigned long bi;
3416         struct extent_buffer *leaf;
3417
3418         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419         if (ret) {
3420                 if (ret > 0)
3421                         ret = -ENOENT;
3422                 goto fail;
3423         }
3424
3425         leaf = path->nodes[0];
3426         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428         btrfs_mark_buffer_dirty(leaf);
3429 fail:
3430         btrfs_release_path(path);
3431         return ret;
3432
3433 }
3434
3435 static struct btrfs_block_group_cache *
3436 next_block_group(struct btrfs_fs_info *fs_info,
3437                  struct btrfs_block_group_cache *cache)
3438 {
3439         struct rb_node *node;
3440
3441         spin_lock(&fs_info->block_group_cache_lock);
3442
3443         /* If our block group was removed, we need a full search. */
3444         if (RB_EMPTY_NODE(&cache->cache_node)) {
3445                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
3447                 spin_unlock(&fs_info->block_group_cache_lock);
3448                 btrfs_put_block_group(cache);
3449                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3450         }
3451         node = rb_next(&cache->cache_node);
3452         btrfs_put_block_group(cache);
3453         if (node) {
3454                 cache = rb_entry(node, struct btrfs_block_group_cache,
3455                                  cache_node);
3456                 btrfs_get_block_group(cache);
3457         } else
3458                 cache = NULL;
3459         spin_unlock(&fs_info->block_group_cache_lock);
3460         return cache;
3461 }
3462
3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464                             struct btrfs_trans_handle *trans,
3465                             struct btrfs_path *path)
3466 {
3467         struct btrfs_fs_info *fs_info = block_group->fs_info;
3468         struct btrfs_root *root = fs_info->tree_root;
3469         struct inode *inode = NULL;
3470         struct extent_changeset *data_reserved = NULL;
3471         u64 alloc_hint = 0;
3472         int dcs = BTRFS_DC_ERROR;
3473         u64 num_pages = 0;
3474         int retries = 0;
3475         int ret = 0;
3476
3477         /*
3478          * If this block group is smaller than 100 megs don't bother caching the
3479          * block group.
3480          */
3481         if (block_group->key.offset < (100 * SZ_1M)) {
3482                 spin_lock(&block_group->lock);
3483                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484                 spin_unlock(&block_group->lock);
3485                 return 0;
3486         }
3487
3488         if (trans->aborted)
3489                 return 0;
3490 again:
3491         inode = lookup_free_space_inode(fs_info, block_group, path);
3492         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493                 ret = PTR_ERR(inode);
3494                 btrfs_release_path(path);
3495                 goto out;
3496         }
3497
3498         if (IS_ERR(inode)) {
3499                 BUG_ON(retries);
3500                 retries++;
3501
3502                 if (block_group->ro)
3503                         goto out_free;
3504
3505                 ret = create_free_space_inode(fs_info, trans, block_group,
3506                                               path);
3507                 if (ret)
3508                         goto out_free;
3509                 goto again;
3510         }
3511
3512         /*
3513          * We want to set the generation to 0, that way if anything goes wrong
3514          * from here on out we know not to trust this cache when we load up next
3515          * time.
3516          */
3517         BTRFS_I(inode)->generation = 0;
3518         ret = btrfs_update_inode(trans, root, inode);
3519         if (ret) {
3520                 /*
3521                  * So theoretically we could recover from this, simply set the
3522                  * super cache generation to 0 so we know to invalidate the
3523                  * cache, but then we'd have to keep track of the block groups
3524                  * that fail this way so we know we _have_ to reset this cache
3525                  * before the next commit or risk reading stale cache.  So to
3526                  * limit our exposure to horrible edge cases lets just abort the
3527                  * transaction, this only happens in really bad situations
3528                  * anyway.
3529                  */
3530                 btrfs_abort_transaction(trans, ret);
3531                 goto out_put;
3532         }
3533         WARN_ON(ret);
3534
3535         /* We've already setup this transaction, go ahead and exit */
3536         if (block_group->cache_generation == trans->transid &&
3537             i_size_read(inode)) {
3538                 dcs = BTRFS_DC_SETUP;
3539                 goto out_put;
3540         }
3541
3542         if (i_size_read(inode) > 0) {
3543                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3544                                         &fs_info->global_block_rsv);
3545                 if (ret)
3546                         goto out_put;
3547
3548                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549                 if (ret)
3550                         goto out_put;
3551         }
3552
3553         spin_lock(&block_group->lock);
3554         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3556                 /*
3557                  * don't bother trying to write stuff out _if_
3558                  * a) we're not cached,
3559                  * b) we're with nospace_cache mount option,
3560                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3561                  */
3562                 dcs = BTRFS_DC_WRITTEN;
3563                 spin_unlock(&block_group->lock);
3564                 goto out_put;
3565         }
3566         spin_unlock(&block_group->lock);
3567
3568         /*
3569          * We hit an ENOSPC when setting up the cache in this transaction, just
3570          * skip doing the setup, we've already cleared the cache so we're safe.
3571          */
3572         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573                 ret = -ENOSPC;
3574                 goto out_put;
3575         }
3576
3577         /*
3578          * Try to preallocate enough space based on how big the block group is.
3579          * Keep in mind this has to include any pinned space which could end up
3580          * taking up quite a bit since it's not folded into the other space
3581          * cache.
3582          */
3583         num_pages = div_u64(block_group->key.offset, SZ_256M);
3584         if (!num_pages)
3585                 num_pages = 1;
3586
3587         num_pages *= 16;
3588         num_pages *= PAGE_SIZE;
3589
3590         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591         if (ret)
3592                 goto out_put;
3593
3594         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595                                               num_pages, num_pages,
3596                                               &alloc_hint);
3597         /*
3598          * Our cache requires contiguous chunks so that we don't modify a bunch
3599          * of metadata or split extents when writing the cache out, which means
3600          * we can enospc if we are heavily fragmented in addition to just normal
3601          * out of space conditions.  So if we hit this just skip setting up any
3602          * other block groups for this transaction, maybe we'll unpin enough
3603          * space the next time around.
3604          */
3605         if (!ret)
3606                 dcs = BTRFS_DC_SETUP;
3607         else if (ret == -ENOSPC)
3608                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3609
3610 out_put:
3611         iput(inode);
3612 out_free:
3613         btrfs_release_path(path);
3614 out:
3615         spin_lock(&block_group->lock);
3616         if (!ret && dcs == BTRFS_DC_SETUP)
3617                 block_group->cache_generation = trans->transid;
3618         block_group->disk_cache_state = dcs;
3619         spin_unlock(&block_group->lock);
3620
3621         extent_changeset_free(data_reserved);
3622         return ret;
3623 }
3624
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626                             struct btrfs_fs_info *fs_info)
3627 {
3628         struct btrfs_block_group_cache *cache, *tmp;
3629         struct btrfs_transaction *cur_trans = trans->transaction;
3630         struct btrfs_path *path;
3631
3632         if (list_empty(&cur_trans->dirty_bgs) ||
3633             !btrfs_test_opt(fs_info, SPACE_CACHE))
3634                 return 0;
3635
3636         path = btrfs_alloc_path();
3637         if (!path)
3638                 return -ENOMEM;
3639
3640         /* Could add new block groups, use _safe just in case */
3641         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642                                  dirty_list) {
3643                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644                         cache_save_setup(cache, trans, path);
3645         }
3646
3647         btrfs_free_path(path);
3648         return 0;
3649 }
3650
3651 /*
3652  * transaction commit does final block group cache writeback during a
3653  * critical section where nothing is allowed to change the FS.  This is
3654  * required in order for the cache to actually match the block group,
3655  * but can introduce a lot of latency into the commit.
3656  *
3657  * So, btrfs_start_dirty_block_groups is here to kick off block group
3658  * cache IO.  There's a chance we'll have to redo some of it if the
3659  * block group changes again during the commit, but it greatly reduces
3660  * the commit latency by getting rid of the easy block groups while
3661  * we're still allowing others to join the commit.
3662  */
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3664                                    struct btrfs_fs_info *fs_info)
3665 {
3666         struct btrfs_block_group_cache *cache;
3667         struct btrfs_transaction *cur_trans = trans->transaction;
3668         int ret = 0;
3669         int should_put;
3670         struct btrfs_path *path = NULL;
3671         LIST_HEAD(dirty);
3672         struct list_head *io = &cur_trans->io_bgs;
3673         int num_started = 0;
3674         int loops = 0;
3675
3676         spin_lock(&cur_trans->dirty_bgs_lock);
3677         if (list_empty(&cur_trans->dirty_bgs)) {
3678                 spin_unlock(&cur_trans->dirty_bgs_lock);
3679                 return 0;
3680         }
3681         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682         spin_unlock(&cur_trans->dirty_bgs_lock);
3683
3684 again:
3685         /*
3686          * make sure all the block groups on our dirty list actually
3687          * exist
3688          */
3689         btrfs_create_pending_block_groups(trans, fs_info);
3690
3691         if (!path) {
3692                 path = btrfs_alloc_path();
3693                 if (!path)
3694                         return -ENOMEM;
3695         }
3696
3697         /*
3698          * cache_write_mutex is here only to save us from balance or automatic
3699          * removal of empty block groups deleting this block group while we are
3700          * writing out the cache
3701          */
3702         mutex_lock(&trans->transaction->cache_write_mutex);
3703         while (!list_empty(&dirty)) {
3704                 cache = list_first_entry(&dirty,
3705                                          struct btrfs_block_group_cache,
3706                                          dirty_list);
3707                 /*
3708                  * this can happen if something re-dirties a block
3709                  * group that is already under IO.  Just wait for it to
3710                  * finish and then do it all again
3711                  */
3712                 if (!list_empty(&cache->io_list)) {
3713                         list_del_init(&cache->io_list);
3714                         btrfs_wait_cache_io(trans, cache, path);
3715                         btrfs_put_block_group(cache);
3716                 }
3717
3718
3719                 /*
3720                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721                  * if it should update the cache_state.  Don't delete
3722                  * until after we wait.
3723                  *
3724                  * Since we're not running in the commit critical section
3725                  * we need the dirty_bgs_lock to protect from update_block_group
3726                  */
3727                 spin_lock(&cur_trans->dirty_bgs_lock);
3728                 list_del_init(&cache->dirty_list);
3729                 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731                 should_put = 1;
3732
3733                 cache_save_setup(cache, trans, path);
3734
3735                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736                         cache->io_ctl.inode = NULL;
3737                         ret = btrfs_write_out_cache(fs_info, trans,
3738                                                     cache, path);
3739                         if (ret == 0 && cache->io_ctl.inode) {
3740                                 num_started++;
3741                                 should_put = 0;
3742
3743                                 /*
3744                                  * the cache_write_mutex is protecting
3745                                  * the io_list
3746                                  */
3747                                 list_add_tail(&cache->io_list, io);
3748                         } else {
3749                                 /*
3750                                  * if we failed to write the cache, the
3751                                  * generation will be bad and life goes on
3752                                  */
3753                                 ret = 0;
3754                         }
3755                 }
3756                 if (!ret) {
3757                         ret = write_one_cache_group(trans, fs_info,
3758                                                     path, cache);
3759                         /*
3760                          * Our block group might still be attached to the list
3761                          * of new block groups in the transaction handle of some
3762                          * other task (struct btrfs_trans_handle->new_bgs). This
3763                          * means its block group item isn't yet in the extent
3764                          * tree. If this happens ignore the error, as we will
3765                          * try again later in the critical section of the
3766                          * transaction commit.
3767                          */
3768                         if (ret == -ENOENT) {
3769                                 ret = 0;
3770                                 spin_lock(&cur_trans->dirty_bgs_lock);
3771                                 if (list_empty(&cache->dirty_list)) {
3772                                         list_add_tail(&cache->dirty_list,
3773                                                       &cur_trans->dirty_bgs);
3774                                         btrfs_get_block_group(cache);
3775                                 }
3776                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3777                         } else if (ret) {
3778                                 btrfs_abort_transaction(trans, ret);
3779                         }
3780                 }
3781
3782                 /* if its not on the io list, we need to put the block group */
3783                 if (should_put)
3784                         btrfs_put_block_group(cache);
3785
3786                 if (ret)
3787                         break;
3788
3789                 /*
3790                  * Avoid blocking other tasks for too long. It might even save
3791                  * us from writing caches for block groups that are going to be
3792                  * removed.
3793                  */
3794                 mutex_unlock(&trans->transaction->cache_write_mutex);
3795                 mutex_lock(&trans->transaction->cache_write_mutex);
3796         }
3797         mutex_unlock(&trans->transaction->cache_write_mutex);
3798
3799         /*
3800          * go through delayed refs for all the stuff we've just kicked off
3801          * and then loop back (just once)
3802          */
3803         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3804         if (!ret && loops == 0) {
3805                 loops++;
3806                 spin_lock(&cur_trans->dirty_bgs_lock);
3807                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3808                 /*
3809                  * dirty_bgs_lock protects us from concurrent block group
3810                  * deletes too (not just cache_write_mutex).
3811                  */
3812                 if (!list_empty(&dirty)) {
3813                         spin_unlock(&cur_trans->dirty_bgs_lock);
3814                         goto again;
3815                 }
3816                 spin_unlock(&cur_trans->dirty_bgs_lock);
3817         } else if (ret < 0) {
3818                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3819         }
3820
3821         btrfs_free_path(path);
3822         return ret;
3823 }
3824
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3826                                    struct btrfs_fs_info *fs_info)
3827 {
3828         struct btrfs_block_group_cache *cache;
3829         struct btrfs_transaction *cur_trans = trans->transaction;
3830         int ret = 0;
3831         int should_put;
3832         struct btrfs_path *path;
3833         struct list_head *io = &cur_trans->io_bgs;
3834         int num_started = 0;
3835
3836         path = btrfs_alloc_path();
3837         if (!path)
3838                 return -ENOMEM;
3839
3840         /*
3841          * Even though we are in the critical section of the transaction commit,
3842          * we can still have concurrent tasks adding elements to this
3843          * transaction's list of dirty block groups. These tasks correspond to
3844          * endio free space workers started when writeback finishes for a
3845          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846          * allocate new block groups as a result of COWing nodes of the root
3847          * tree when updating the free space inode. The writeback for the space
3848          * caches is triggered by an earlier call to
3849          * btrfs_start_dirty_block_groups() and iterations of the following
3850          * loop.
3851          * Also we want to do the cache_save_setup first and then run the
3852          * delayed refs to make sure we have the best chance at doing this all
3853          * in one shot.
3854          */
3855         spin_lock(&cur_trans->dirty_bgs_lock);
3856         while (!list_empty(&cur_trans->dirty_bgs)) {
3857                 cache = list_first_entry(&cur_trans->dirty_bgs,
3858                                          struct btrfs_block_group_cache,
3859                                          dirty_list);
3860
3861                 /*
3862                  * this can happen if cache_save_setup re-dirties a block
3863                  * group that is already under IO.  Just wait for it to
3864                  * finish and then do it all again
3865                  */
3866                 if (!list_empty(&cache->io_list)) {
3867                         spin_unlock(&cur_trans->dirty_bgs_lock);
3868                         list_del_init(&cache->io_list);
3869                         btrfs_wait_cache_io(trans, cache, path);
3870                         btrfs_put_block_group(cache);
3871                         spin_lock(&cur_trans->dirty_bgs_lock);
3872                 }
3873
3874                 /*
3875                  * don't remove from the dirty list until after we've waited
3876                  * on any pending IO
3877                  */
3878                 list_del_init(&cache->dirty_list);
3879                 spin_unlock(&cur_trans->dirty_bgs_lock);
3880                 should_put = 1;
3881
3882                 cache_save_setup(cache, trans, path);
3883
3884                 if (!ret)
3885                         ret = btrfs_run_delayed_refs(trans, fs_info,
3886                                                      (unsigned long) -1);
3887
3888                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889                         cache->io_ctl.inode = NULL;
3890                         ret = btrfs_write_out_cache(fs_info, trans,
3891                                                     cache, path);
3892                         if (ret == 0 && cache->io_ctl.inode) {
3893                                 num_started++;
3894                                 should_put = 0;
3895                                 list_add_tail(&cache->io_list, io);
3896                         } else {
3897                                 /*
3898                                  * if we failed to write the cache, the
3899                                  * generation will be bad and life goes on
3900                                  */
3901                                 ret = 0;
3902                         }
3903                 }
3904                 if (!ret) {
3905                         ret = write_one_cache_group(trans, fs_info,
3906                                                     path, cache);
3907                         /*
3908                          * One of the free space endio workers might have
3909                          * created a new block group while updating a free space
3910                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911                          * and hasn't released its transaction handle yet, in
3912                          * which case the new block group is still attached to
3913                          * its transaction handle and its creation has not
3914                          * finished yet (no block group item in the extent tree
3915                          * yet, etc). If this is the case, wait for all free
3916                          * space endio workers to finish and retry. This is a
3917                          * a very rare case so no need for a more efficient and
3918                          * complex approach.
3919                          */
3920                         if (ret == -ENOENT) {
3921                                 wait_event(cur_trans->writer_wait,
3922                                    atomic_read(&cur_trans->num_writers) == 1);
3923                                 ret = write_one_cache_group(trans, fs_info,
3924                                                             path, cache);
3925                         }
3926                         if (ret)
3927                                 btrfs_abort_transaction(trans, ret);
3928                 }
3929
3930                 /* if its not on the io list, we need to put the block group */
3931                 if (should_put)
3932                         btrfs_put_block_group(cache);
3933                 spin_lock(&cur_trans->dirty_bgs_lock);
3934         }
3935         spin_unlock(&cur_trans->dirty_bgs_lock);
3936
3937         while (!list_empty(io)) {
3938                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3939                                          io_list);
3940                 list_del_init(&cache->io_list);
3941                 btrfs_wait_cache_io(trans, cache, path);
3942                 btrfs_put_block_group(cache);
3943         }
3944
3945         btrfs_free_path(path);
3946         return ret;
3947 }
3948
3949 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3950 {
3951         struct btrfs_block_group_cache *block_group;
3952         int readonly = 0;
3953
3954         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3955         if (!block_group || block_group->ro)
3956                 readonly = 1;
3957         if (block_group)
3958                 btrfs_put_block_group(block_group);
3959         return readonly;
3960 }
3961
3962 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3963 {
3964         struct btrfs_block_group_cache *bg;
3965         bool ret = true;
3966
3967         bg = btrfs_lookup_block_group(fs_info, bytenr);
3968         if (!bg)
3969                 return false;
3970
3971         spin_lock(&bg->lock);
3972         if (bg->ro)
3973                 ret = false;
3974         else
3975                 atomic_inc(&bg->nocow_writers);
3976         spin_unlock(&bg->lock);
3977
3978         /* no put on block group, done by btrfs_dec_nocow_writers */
3979         if (!ret)
3980                 btrfs_put_block_group(bg);
3981
3982         return ret;
3983
3984 }
3985
3986 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3987 {
3988         struct btrfs_block_group_cache *bg;
3989
3990         bg = btrfs_lookup_block_group(fs_info, bytenr);
3991         ASSERT(bg);
3992         if (atomic_dec_and_test(&bg->nocow_writers))
3993                 wake_up_atomic_t(&bg->nocow_writers);
3994         /*
3995          * Once for our lookup and once for the lookup done by a previous call
3996          * to btrfs_inc_nocow_writers()
3997          */
3998         btrfs_put_block_group(bg);
3999         btrfs_put_block_group(bg);
4000 }
4001
4002 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4003 {
4004         wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4005                          TASK_UNINTERRUPTIBLE);
4006 }
4007
4008 static const char *alloc_name(u64 flags)
4009 {
4010         switch (flags) {
4011         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4012                 return "mixed";
4013         case BTRFS_BLOCK_GROUP_METADATA:
4014                 return "metadata";
4015         case BTRFS_BLOCK_GROUP_DATA:
4016                 return "data";
4017         case BTRFS_BLOCK_GROUP_SYSTEM:
4018                 return "system";
4019         default:
4020                 WARN_ON(1);
4021                 return "invalid-combination";
4022         };
4023 }
4024
4025 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4026                              struct btrfs_space_info **new)
4027 {
4028
4029         struct btrfs_space_info *space_info;
4030         int i;
4031         int ret;
4032
4033         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4034         if (!space_info)
4035                 return -ENOMEM;
4036
4037         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4038                                  GFP_KERNEL);
4039         if (ret) {
4040                 kfree(space_info);
4041                 return ret;
4042         }
4043
4044         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4045                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4046         init_rwsem(&space_info->groups_sem);
4047         spin_lock_init(&space_info->lock);
4048         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4049         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4050         init_waitqueue_head(&space_info->wait);
4051         INIT_LIST_HEAD(&space_info->ro_bgs);
4052         INIT_LIST_HEAD(&space_info->tickets);
4053         INIT_LIST_HEAD(&space_info->priority_tickets);
4054
4055         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4056                                     info->space_info_kobj, "%s",
4057                                     alloc_name(space_info->flags));
4058         if (ret) {
4059                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4060                 kfree(space_info);
4061                 return ret;
4062         }
4063
4064         *new = space_info;
4065         list_add_rcu(&space_info->list, &info->space_info);
4066         if (flags & BTRFS_BLOCK_GROUP_DATA)
4067                 info->data_sinfo = space_info;
4068
4069         return ret;
4070 }
4071
4072 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4073                              u64 total_bytes, u64 bytes_used,
4074                              u64 bytes_readonly,
4075                              struct btrfs_space_info **space_info)
4076 {
4077         struct btrfs_space_info *found;
4078         int factor;
4079
4080         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4081                      BTRFS_BLOCK_GROUP_RAID10))
4082                 factor = 2;
4083         else
4084                 factor = 1;
4085
4086         found = __find_space_info(info, flags);
4087         ASSERT(found);
4088         spin_lock(&found->lock);
4089         found->total_bytes += total_bytes;
4090         found->disk_total += total_bytes * factor;
4091         found->bytes_used += bytes_used;
4092         found->disk_used += bytes_used * factor;
4093         found->bytes_readonly += bytes_readonly;
4094         if (total_bytes > 0)
4095                 found->full = 0;
4096         space_info_add_new_bytes(info, found, total_bytes -
4097                                  bytes_used - bytes_readonly);
4098         spin_unlock(&found->lock);
4099         *space_info = found;
4100 }
4101
4102 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4103 {
4104         u64 extra_flags = chunk_to_extended(flags) &
4105                                 BTRFS_EXTENDED_PROFILE_MASK;
4106
4107         write_seqlock(&fs_info->profiles_lock);
4108         if (flags & BTRFS_BLOCK_GROUP_DATA)
4109                 fs_info->avail_data_alloc_bits |= extra_flags;
4110         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4111                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4112         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113                 fs_info->avail_system_alloc_bits |= extra_flags;
4114         write_sequnlock(&fs_info->profiles_lock);
4115 }
4116
4117 /*
4118  * returns target flags in extended format or 0 if restripe for this
4119  * chunk_type is not in progress
4120  *
4121  * should be called with either volume_mutex or balance_lock held
4122  */
4123 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4124 {
4125         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4126         u64 target = 0;
4127
4128         if (!bctl)
4129                 return 0;
4130
4131         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4132             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4133                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4134         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4135                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4137         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4138                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4140         }
4141
4142         return target;
4143 }
4144
4145 /*
4146  * @flags: available profiles in extended format (see ctree.h)
4147  *
4148  * Returns reduced profile in chunk format.  If profile changing is in
4149  * progress (either running or paused) picks the target profile (if it's
4150  * already available), otherwise falls back to plain reducing.
4151  */
4152 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4153 {
4154         u64 num_devices = fs_info->fs_devices->rw_devices;
4155         u64 target;
4156         u64 raid_type;
4157         u64 allowed = 0;
4158
4159         /*
4160          * see if restripe for this chunk_type is in progress, if so
4161          * try to reduce to the target profile
4162          */
4163         spin_lock(&fs_info->balance_lock);
4164         target = get_restripe_target(fs_info, flags);
4165         if (target) {
4166                 /* pick target profile only if it's already available */
4167                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4168                         spin_unlock(&fs_info->balance_lock);
4169                         return extended_to_chunk(target);
4170                 }
4171         }
4172         spin_unlock(&fs_info->balance_lock);
4173
4174         /* First, mask out the RAID levels which aren't possible */
4175         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4176                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4177                         allowed |= btrfs_raid_group[raid_type];
4178         }
4179         allowed &= flags;
4180
4181         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4182                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4183         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4184                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4185         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4186                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4187         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4188                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4189         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4190                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4191
4192         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4193
4194         return extended_to_chunk(flags | allowed);
4195 }
4196
4197 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4198 {
4199         unsigned seq;
4200         u64 flags;
4201
4202         do {
4203                 flags = orig_flags;
4204                 seq = read_seqbegin(&fs_info->profiles_lock);
4205
4206                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4207                         flags |= fs_info->avail_data_alloc_bits;
4208                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4209                         flags |= fs_info->avail_system_alloc_bits;
4210                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4211                         flags |= fs_info->avail_metadata_alloc_bits;
4212         } while (read_seqretry(&fs_info->profiles_lock, seq));
4213
4214         return btrfs_reduce_alloc_profile(fs_info, flags);
4215 }
4216
4217 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4218 {
4219         struct btrfs_fs_info *fs_info = root->fs_info;
4220         u64 flags;
4221         u64 ret;
4222
4223         if (data)
4224                 flags = BTRFS_BLOCK_GROUP_DATA;
4225         else if (root == fs_info->chunk_root)
4226                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4227         else
4228                 flags = BTRFS_BLOCK_GROUP_METADATA;
4229
4230         ret = get_alloc_profile(fs_info, flags);
4231         return ret;
4232 }
4233
4234 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4235 {
4236         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4237 }
4238
4239 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4240 {
4241         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4242 }
4243
4244 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4245 {
4246         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4247 }
4248
4249 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4250                                  bool may_use_included)
4251 {
4252         ASSERT(s_info);
4253         return s_info->bytes_used + s_info->bytes_reserved +
4254                 s_info->bytes_pinned + s_info->bytes_readonly +
4255                 (may_use_included ? s_info->bytes_may_use : 0);
4256 }
4257
4258 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4259 {
4260         struct btrfs_root *root = inode->root;
4261         struct btrfs_fs_info *fs_info = root->fs_info;
4262         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4263         u64 used;
4264         int ret = 0;
4265         int need_commit = 2;
4266         int have_pinned_space;
4267
4268         /* make sure bytes are sectorsize aligned */
4269         bytes = ALIGN(bytes, fs_info->sectorsize);
4270
4271         if (btrfs_is_free_space_inode(inode)) {
4272                 need_commit = 0;
4273                 ASSERT(current->journal_info);
4274         }
4275
4276 again:
4277         /* make sure we have enough space to handle the data first */
4278         spin_lock(&data_sinfo->lock);
4279         used = btrfs_space_info_used(data_sinfo, true);
4280
4281         if (used + bytes > data_sinfo->total_bytes) {
4282                 struct btrfs_trans_handle *trans;
4283
4284                 /*
4285                  * if we don't have enough free bytes in this space then we need
4286                  * to alloc a new chunk.
4287                  */
4288                 if (!data_sinfo->full) {
4289                         u64 alloc_target;
4290
4291                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4292                         spin_unlock(&data_sinfo->lock);
4293
4294                         alloc_target = btrfs_data_alloc_profile(fs_info);
4295                         /*
4296                          * It is ugly that we don't call nolock join
4297                          * transaction for the free space inode case here.
4298                          * But it is safe because we only do the data space
4299                          * reservation for the free space cache in the
4300                          * transaction context, the common join transaction
4301                          * just increase the counter of the current transaction
4302                          * handler, doesn't try to acquire the trans_lock of
4303                          * the fs.
4304                          */
4305                         trans = btrfs_join_transaction(root);
4306                         if (IS_ERR(trans))
4307                                 return PTR_ERR(trans);
4308
4309                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4310                                              CHUNK_ALLOC_NO_FORCE);
4311                         btrfs_end_transaction(trans);
4312                         if (ret < 0) {
4313                                 if (ret != -ENOSPC)
4314                                         return ret;
4315                                 else {
4316                                         have_pinned_space = 1;
4317                                         goto commit_trans;
4318                                 }
4319                         }
4320
4321                         goto again;
4322                 }
4323
4324                 /*
4325                  * If we don't have enough pinned space to deal with this
4326                  * allocation, and no removed chunk in current transaction,
4327                  * don't bother committing the transaction.
4328                  */
4329                 have_pinned_space = percpu_counter_compare(
4330                         &data_sinfo->total_bytes_pinned,
4331                         used + bytes - data_sinfo->total_bytes);
4332                 spin_unlock(&data_sinfo->lock);
4333
4334                 /* commit the current transaction and try again */
4335 commit_trans:
4336                 if (need_commit &&
4337                     !atomic_read(&fs_info->open_ioctl_trans)) {
4338                         need_commit--;
4339
4340                         if (need_commit > 0) {
4341                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4342                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4343                                                          (u64)-1);
4344                         }
4345
4346                         trans = btrfs_join_transaction(root);
4347                         if (IS_ERR(trans))
4348                                 return PTR_ERR(trans);
4349                         if (have_pinned_space >= 0 ||
4350                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4351                                      &trans->transaction->flags) ||
4352                             need_commit > 0) {
4353                                 ret = btrfs_commit_transaction(trans);
4354                                 if (ret)
4355                                         return ret;
4356                                 /*
4357                                  * The cleaner kthread might still be doing iput
4358                                  * operations. Wait for it to finish so that
4359                                  * more space is released.
4360                                  */
4361                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4362                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4363                                 goto again;
4364                         } else {
4365                                 btrfs_end_transaction(trans);
4366                         }
4367                 }
4368
4369                 trace_btrfs_space_reservation(fs_info,
4370                                               "space_info:enospc",
4371                                               data_sinfo->flags, bytes, 1);
4372                 return -ENOSPC;
4373         }
4374         data_sinfo->bytes_may_use += bytes;
4375         trace_btrfs_space_reservation(fs_info, "space_info",
4376                                       data_sinfo->flags, bytes, 1);
4377         spin_unlock(&data_sinfo->lock);
4378
4379         return ret;
4380 }
4381
4382 int btrfs_check_data_free_space(struct inode *inode,
4383                         struct extent_changeset **reserved, u64 start, u64 len)
4384 {
4385         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4386         int ret;
4387
4388         /* align the range */
4389         len = round_up(start + len, fs_info->sectorsize) -
4390               round_down(start, fs_info->sectorsize);
4391         start = round_down(start, fs_info->sectorsize);
4392
4393         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4394         if (ret < 0)
4395                 return ret;
4396
4397         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4398         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4399         if (ret < 0)
4400                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4401         else
4402                 ret = 0;
4403         return ret;
4404 }
4405
4406 /*
4407  * Called if we need to clear a data reservation for this inode
4408  * Normally in a error case.
4409  *
4410  * This one will *NOT* use accurate qgroup reserved space API, just for case
4411  * which we can't sleep and is sure it won't affect qgroup reserved space.
4412  * Like clear_bit_hook().
4413  */
4414 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4415                                             u64 len)
4416 {
4417         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4418         struct btrfs_space_info *data_sinfo;
4419
4420         /* Make sure the range is aligned to sectorsize */
4421         len = round_up(start + len, fs_info->sectorsize) -
4422               round_down(start, fs_info->sectorsize);
4423         start = round_down(start, fs_info->sectorsize);
4424
4425         data_sinfo = fs_info->data_sinfo;
4426         spin_lock(&data_sinfo->lock);
4427         if (WARN_ON(data_sinfo->bytes_may_use < len))
4428                 data_sinfo->bytes_may_use = 0;
4429         else
4430                 data_sinfo->bytes_may_use -= len;
4431         trace_btrfs_space_reservation(fs_info, "space_info",
4432                                       data_sinfo->flags, len, 0);
4433         spin_unlock(&data_sinfo->lock);
4434 }
4435
4436 /*
4437  * Called if we need to clear a data reservation for this inode
4438  * Normally in a error case.
4439  *
4440  * This one will handle the per-inode data rsv map for accurate reserved
4441  * space framework.
4442  */
4443 void btrfs_free_reserved_data_space(struct inode *inode,
4444                         struct extent_changeset *reserved, u64 start, u64 len)
4445 {
4446         struct btrfs_root *root = BTRFS_I(inode)->root;
4447
4448         /* Make sure the range is aligned to sectorsize */
4449         len = round_up(start + len, root->fs_info->sectorsize) -
4450               round_down(start, root->fs_info->sectorsize);
4451         start = round_down(start, root->fs_info->sectorsize);
4452
4453         btrfs_free_reserved_data_space_noquota(inode, start, len);
4454         btrfs_qgroup_free_data(inode, reserved, start, len);
4455 }
4456
4457 static void force_metadata_allocation(struct btrfs_fs_info *info)
4458 {
4459         struct list_head *head = &info->space_info;
4460         struct btrfs_space_info *found;
4461
4462         rcu_read_lock();
4463         list_for_each_entry_rcu(found, head, list) {
4464                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4465                         found->force_alloc = CHUNK_ALLOC_FORCE;
4466         }
4467         rcu_read_unlock();
4468 }
4469
4470 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4471 {
4472         return (global->size << 1);
4473 }
4474
4475 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4476                               struct btrfs_space_info *sinfo, int force)
4477 {
4478         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4479         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4480         u64 thresh;
4481
4482         if (force == CHUNK_ALLOC_FORCE)
4483                 return 1;
4484
4485         /*
4486          * We need to take into account the global rsv because for all intents
4487          * and purposes it's used space.  Don't worry about locking the
4488          * global_rsv, it doesn't change except when the transaction commits.
4489          */
4490         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4491                 bytes_used += calc_global_rsv_need_space(global_rsv);
4492
4493         /*
4494          * in limited mode, we want to have some free space up to
4495          * about 1% of the FS size.
4496          */
4497         if (force == CHUNK_ALLOC_LIMITED) {
4498                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4499                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4500
4501                 if (sinfo->total_bytes - bytes_used < thresh)
4502                         return 1;
4503         }
4504
4505         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4506                 return 0;
4507         return 1;
4508 }
4509
4510 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4511 {
4512         u64 num_dev;
4513
4514         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4515                     BTRFS_BLOCK_GROUP_RAID0 |
4516                     BTRFS_BLOCK_GROUP_RAID5 |
4517                     BTRFS_BLOCK_GROUP_RAID6))
4518                 num_dev = fs_info->fs_devices->rw_devices;
4519         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4520                 num_dev = 2;
4521         else
4522                 num_dev = 1;    /* DUP or single */
4523
4524         return num_dev;
4525 }
4526
4527 /*
4528  * If @is_allocation is true, reserve space in the system space info necessary
4529  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4530  * removing a chunk.
4531  */
4532 void check_system_chunk(struct btrfs_trans_handle *trans,
4533                         struct btrfs_fs_info *fs_info, u64 type)
4534 {
4535         struct btrfs_space_info *info;
4536         u64 left;
4537         u64 thresh;
4538         int ret = 0;
4539         u64 num_devs;
4540
4541         /*
4542          * Needed because we can end up allocating a system chunk and for an
4543          * atomic and race free space reservation in the chunk block reserve.
4544          */
4545         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4546
4547         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4548         spin_lock(&info->lock);
4549         left = info->total_bytes - btrfs_space_info_used(info, true);
4550         spin_unlock(&info->lock);
4551
4552         num_devs = get_profile_num_devs(fs_info, type);
4553
4554         /* num_devs device items to update and 1 chunk item to add or remove */
4555         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4556                 btrfs_calc_trans_metadata_size(fs_info, 1);
4557
4558         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4560                            left, thresh, type);
4561                 dump_space_info(fs_info, info, 0, 0);
4562         }
4563
4564         if (left < thresh) {
4565                 u64 flags = btrfs_system_alloc_profile(fs_info);
4566
4567                 /*
4568                  * Ignore failure to create system chunk. We might end up not
4569                  * needing it, as we might not need to COW all nodes/leafs from
4570                  * the paths we visit in the chunk tree (they were already COWed
4571                  * or created in the current transaction for example).
4572                  */
4573                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4574         }
4575
4576         if (!ret) {
4577                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4578                                           &fs_info->chunk_block_rsv,
4579                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4580                 if (!ret)
4581                         trans->chunk_bytes_reserved += thresh;
4582         }
4583 }
4584
4585 /*
4586  * If force is CHUNK_ALLOC_FORCE:
4587  *    - return 1 if it successfully allocates a chunk,
4588  *    - return errors including -ENOSPC otherwise.
4589  * If force is NOT CHUNK_ALLOC_FORCE:
4590  *    - return 0 if it doesn't need to allocate a new chunk,
4591  *    - return 1 if it successfully allocates a chunk,
4592  *    - return errors including -ENOSPC otherwise.
4593  */
4594 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4595                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4596 {
4597         struct btrfs_space_info *space_info;
4598         int wait_for_alloc = 0;
4599         int ret = 0;
4600
4601         /* Don't re-enter if we're already allocating a chunk */
4602         if (trans->allocating_chunk)
4603                 return -ENOSPC;
4604
4605         space_info = __find_space_info(fs_info, flags);
4606         if (!space_info) {
4607                 ret = create_space_info(fs_info, flags, &space_info);
4608                 if (ret)
4609                         return ret;
4610         }
4611
4612 again:
4613         spin_lock(&space_info->lock);
4614         if (force < space_info->force_alloc)
4615                 force = space_info->force_alloc;
4616         if (space_info->full) {
4617                 if (should_alloc_chunk(fs_info, space_info, force))
4618                         ret = -ENOSPC;
4619                 else
4620                         ret = 0;
4621                 spin_unlock(&space_info->lock);
4622                 return ret;
4623         }
4624
4625         if (!should_alloc_chunk(fs_info, space_info, force)) {
4626                 spin_unlock(&space_info->lock);
4627                 return 0;
4628         } else if (space_info->chunk_alloc) {
4629                 wait_for_alloc = 1;
4630         } else {
4631                 space_info->chunk_alloc = 1;
4632         }
4633
4634         spin_unlock(&space_info->lock);
4635
4636         mutex_lock(&fs_info->chunk_mutex);
4637
4638         /*
4639          * The chunk_mutex is held throughout the entirety of a chunk
4640          * allocation, so once we've acquired the chunk_mutex we know that the
4641          * other guy is done and we need to recheck and see if we should
4642          * allocate.
4643          */
4644         if (wait_for_alloc) {
4645                 mutex_unlock(&fs_info->chunk_mutex);
4646                 wait_for_alloc = 0;
4647                 goto again;
4648         }
4649
4650         trans->allocating_chunk = true;
4651
4652         /*
4653          * If we have mixed data/metadata chunks we want to make sure we keep
4654          * allocating mixed chunks instead of individual chunks.
4655          */
4656         if (btrfs_mixed_space_info(space_info))
4657                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658
4659         /*
4660          * if we're doing a data chunk, go ahead and make sure that
4661          * we keep a reasonable number of metadata chunks allocated in the
4662          * FS as well.
4663          */
4664         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4665                 fs_info->data_chunk_allocations++;
4666                 if (!(fs_info->data_chunk_allocations %
4667                       fs_info->metadata_ratio))
4668                         force_metadata_allocation(fs_info);
4669         }
4670
4671         /*
4672          * Check if we have enough space in SYSTEM chunk because we may need
4673          * to update devices.
4674          */
4675         check_system_chunk(trans, fs_info, flags);
4676
4677         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4678         trans->allocating_chunk = false;
4679
4680         spin_lock(&space_info->lock);
4681         if (ret < 0 && ret != -ENOSPC)
4682                 goto out;
4683         if (ret)
4684                 space_info->full = 1;
4685         else
4686                 ret = 1;
4687
4688         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4689 out:
4690         space_info->chunk_alloc = 0;
4691         spin_unlock(&space_info->lock);
4692         mutex_unlock(&fs_info->chunk_mutex);
4693         /*
4694          * When we allocate a new chunk we reserve space in the chunk block
4695          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696          * add new nodes/leafs to it if we end up needing to do it when
4697          * inserting the chunk item and updating device items as part of the
4698          * second phase of chunk allocation, performed by
4699          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700          * large number of new block groups to create in our transaction
4701          * handle's new_bgs list to avoid exhausting the chunk block reserve
4702          * in extreme cases - like having a single transaction create many new
4703          * block groups when starting to write out the free space caches of all
4704          * the block groups that were made dirty during the lifetime of the
4705          * transaction.
4706          */
4707         if (trans->can_flush_pending_bgs &&
4708             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4709                 btrfs_create_pending_block_groups(trans, fs_info);
4710                 btrfs_trans_release_chunk_metadata(trans);
4711         }
4712         return ret;
4713 }
4714
4715 static int can_overcommit(struct btrfs_fs_info *fs_info,
4716                           struct btrfs_space_info *space_info, u64 bytes,
4717                           enum btrfs_reserve_flush_enum flush,
4718                           bool system_chunk)
4719 {
4720         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4721         u64 profile;
4722         u64 space_size;
4723         u64 avail;
4724         u64 used;
4725
4726         /* Don't overcommit when in mixed mode. */
4727         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728                 return 0;
4729
4730         if (system_chunk)
4731                 profile = btrfs_system_alloc_profile(fs_info);
4732         else
4733                 profile = btrfs_metadata_alloc_profile(fs_info);
4734
4735         used = btrfs_space_info_used(space_info, false);
4736
4737         /*
4738          * We only want to allow over committing if we have lots of actual space
4739          * free, but if we don't have enough space to handle the global reserve
4740          * space then we could end up having a real enospc problem when trying
4741          * to allocate a chunk or some other such important allocation.
4742          */
4743         spin_lock(&global_rsv->lock);
4744         space_size = calc_global_rsv_need_space(global_rsv);
4745         spin_unlock(&global_rsv->lock);
4746         if (used + space_size >= space_info->total_bytes)
4747                 return 0;
4748
4749         used += space_info->bytes_may_use;
4750
4751         avail = atomic64_read(&fs_info->free_chunk_space);
4752
4753         /*
4754          * If we have dup, raid1 or raid10 then only half of the free
4755          * space is actually useable.  For raid56, the space info used
4756          * doesn't include the parity drive, so we don't have to
4757          * change the math
4758          */
4759         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760                        BTRFS_BLOCK_GROUP_RAID1 |
4761                        BTRFS_BLOCK_GROUP_RAID10))
4762                 avail >>= 1;
4763
4764         /*
4765          * If we aren't flushing all things, let us overcommit up to
4766          * 1/2th of the space. If we can flush, don't let us overcommit
4767          * too much, let it overcommit up to 1/8 of the space.
4768          */
4769         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4770                 avail >>= 3;
4771         else
4772                 avail >>= 1;
4773
4774         if (used + bytes < space_info->total_bytes + avail)
4775                 return 1;
4776         return 0;
4777 }
4778
4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4780                                          unsigned long nr_pages, int nr_items)
4781 {
4782         struct super_block *sb = fs_info->sb;
4783
4784         if (down_read_trylock(&sb->s_umount)) {
4785                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786                 up_read(&sb->s_umount);
4787         } else {
4788                 /*
4789                  * We needn't worry the filesystem going from r/w to r/o though
4790                  * we don't acquire ->s_umount mutex, because the filesystem
4791                  * should guarantee the delalloc inodes list be empty after
4792                  * the filesystem is readonly(all dirty pages are written to
4793                  * the disk).
4794                  */
4795                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4796                 if (!current->journal_info)
4797                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4798         }
4799 }
4800
4801 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4802                                         u64 to_reclaim)
4803 {
4804         u64 bytes;
4805         u64 nr;
4806
4807         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4808         nr = div64_u64(to_reclaim, bytes);
4809         if (!nr)
4810                 nr = 1;
4811         return nr;
4812 }
4813
4814 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4815
4816 /*
4817  * shrink metadata reservation for delalloc
4818  */
4819 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820                             u64 orig, bool wait_ordered)
4821 {
4822         struct btrfs_space_info *space_info;
4823         struct btrfs_trans_handle *trans;
4824         u64 delalloc_bytes;
4825         u64 max_reclaim;
4826         u64 items;
4827         long time_left;
4828         unsigned long nr_pages;
4829         int loops;
4830         enum btrfs_reserve_flush_enum flush;
4831
4832         /* Calc the number of the pages we need flush for space reservation */
4833         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4834         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4835
4836         trans = (struct btrfs_trans_handle *)current->journal_info;
4837         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4838
4839         delalloc_bytes = percpu_counter_sum_positive(
4840                                                 &fs_info->delalloc_bytes);
4841         if (delalloc_bytes == 0) {
4842                 if (trans)
4843                         return;
4844                 if (wait_ordered)
4845                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4846                 return;
4847         }
4848
4849         loops = 0;
4850         while (delalloc_bytes && loops < 3) {
4851                 max_reclaim = min(delalloc_bytes, to_reclaim);
4852                 nr_pages = max_reclaim >> PAGE_SHIFT;
4853                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4854                 /*
4855                  * We need to wait for the async pages to actually start before
4856                  * we do anything.
4857                  */
4858                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4859                 if (!max_reclaim)
4860                         goto skip_async;
4861
4862                 if (max_reclaim <= nr_pages)
4863                         max_reclaim = 0;
4864                 else
4865                         max_reclaim -= nr_pages;
4866
4867                 wait_event(fs_info->async_submit_wait,
4868                            atomic_read(&fs_info->async_delalloc_pages) <=
4869                            (int)max_reclaim);
4870 skip_async:
4871                 if (!trans)
4872                         flush = BTRFS_RESERVE_FLUSH_ALL;
4873                 else
4874                         flush = BTRFS_RESERVE_NO_FLUSH;
4875                 spin_lock(&space_info->lock);
4876                 if (list_empty(&space_info->tickets) &&
4877                     list_empty(&space_info->priority_tickets)) {
4878                         spin_unlock(&space_info->lock);
4879                         break;
4880                 }
4881                 spin_unlock(&space_info->lock);
4882
4883                 loops++;
4884                 if (wait_ordered && !trans) {
4885                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4886                 } else {
4887                         time_left = schedule_timeout_killable(1);
4888                         if (time_left)
4889                                 break;
4890                 }
4891                 delalloc_bytes = percpu_counter_sum_positive(
4892                                                 &fs_info->delalloc_bytes);
4893         }
4894 }
4895
4896 struct reserve_ticket {
4897         u64 bytes;
4898         int error;
4899         struct list_head list;
4900         wait_queue_head_t wait;
4901 };
4902
4903 /**
4904  * maybe_commit_transaction - possibly commit the transaction if its ok to
4905  * @root - the root we're allocating for
4906  * @bytes - the number of bytes we want to reserve
4907  * @force - force the commit
4908  *
4909  * This will check to make sure that committing the transaction will actually
4910  * get us somewhere and then commit the transaction if it does.  Otherwise it
4911  * will return -ENOSPC.
4912  */
4913 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4914                                   struct btrfs_space_info *space_info)
4915 {
4916         struct reserve_ticket *ticket = NULL;
4917         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4918         struct btrfs_trans_handle *trans;
4919         u64 bytes;
4920
4921         trans = (struct btrfs_trans_handle *)current->journal_info;
4922         if (trans)
4923                 return -EAGAIN;
4924
4925         spin_lock(&space_info->lock);
4926         if (!list_empty(&space_info->priority_tickets))
4927                 ticket = list_first_entry(&space_info->priority_tickets,
4928                                           struct reserve_ticket, list);
4929         else if (!list_empty(&space_info->tickets))
4930                 ticket = list_first_entry(&space_info->tickets,
4931                                           struct reserve_ticket, list);
4932         bytes = (ticket) ? ticket->bytes : 0;
4933         spin_unlock(&space_info->lock);
4934
4935         if (!bytes)
4936                 return 0;
4937
4938         /* See if there is enough pinned space to make this reservation */
4939         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4940                                    bytes) >= 0)
4941                 goto commit;
4942
4943         /*
4944          * See if there is some space in the delayed insertion reservation for
4945          * this reservation.
4946          */
4947         if (space_info != delayed_rsv->space_info)
4948                 return -ENOSPC;
4949
4950         spin_lock(&delayed_rsv->lock);
4951         if (delayed_rsv->size > bytes)
4952                 bytes = 0;
4953         else
4954                 bytes -= delayed_rsv->size;
4955         spin_unlock(&delayed_rsv->lock);
4956
4957         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4958                                    bytes) < 0) {
4959                 return -ENOSPC;
4960         }
4961
4962 commit:
4963         trans = btrfs_join_transaction(fs_info->extent_root);
4964         if (IS_ERR(trans))
4965                 return -ENOSPC;
4966
4967         return btrfs_commit_transaction(trans);
4968 }
4969
4970 /*
4971  * Try to flush some data based on policy set by @state. This is only advisory
4972  * and may fail for various reasons. The caller is supposed to examine the
4973  * state of @space_info to detect the outcome.
4974  */
4975 static void flush_space(struct btrfs_fs_info *fs_info,
4976                        struct btrfs_space_info *space_info, u64 num_bytes,
4977                        int state)
4978 {
4979         struct btrfs_root *root = fs_info->extent_root;
4980         struct btrfs_trans_handle *trans;
4981         int nr;
4982         int ret = 0;
4983
4984         switch (state) {
4985         case FLUSH_DELAYED_ITEMS_NR:
4986         case FLUSH_DELAYED_ITEMS:
4987                 if (state == FLUSH_DELAYED_ITEMS_NR)
4988                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4989                 else
4990                         nr = -1;
4991
4992                 trans = btrfs_join_transaction(root);
4993                 if (IS_ERR(trans)) {
4994                         ret = PTR_ERR(trans);
4995                         break;
4996                 }
4997                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4998                 btrfs_end_transaction(trans);
4999                 break;
5000         case FLUSH_DELALLOC:
5001         case FLUSH_DELALLOC_WAIT:
5002                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5003                                 state == FLUSH_DELALLOC_WAIT);
5004                 break;
5005         case ALLOC_CHUNK:
5006                 trans = btrfs_join_transaction(root);
5007                 if (IS_ERR(trans)) {
5008                         ret = PTR_ERR(trans);
5009                         break;
5010                 }
5011                 ret = do_chunk_alloc(trans, fs_info,
5012                                      btrfs_metadata_alloc_profile(fs_info),
5013                                      CHUNK_ALLOC_NO_FORCE);
5014                 btrfs_end_transaction(trans);
5015                 if (ret > 0 || ret == -ENOSPC)
5016                         ret = 0;
5017                 break;
5018         case COMMIT_TRANS:
5019                 ret = may_commit_transaction(fs_info, space_info);
5020                 break;
5021         default:
5022                 ret = -ENOSPC;
5023                 break;
5024         }
5025
5026         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5027                                 ret);
5028         return;
5029 }
5030
5031 static inline u64
5032 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5033                                  struct btrfs_space_info *space_info,
5034                                  bool system_chunk)
5035 {
5036         struct reserve_ticket *ticket;
5037         u64 used;
5038         u64 expected;
5039         u64 to_reclaim = 0;
5040
5041         list_for_each_entry(ticket, &space_info->tickets, list)
5042                 to_reclaim += ticket->bytes;
5043         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5044                 to_reclaim += ticket->bytes;
5045         if (to_reclaim)
5046                 return to_reclaim;
5047
5048         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5049         if (can_overcommit(fs_info, space_info, to_reclaim,
5050                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5051                 return 0;
5052
5053         used = btrfs_space_info_used(space_info, true);
5054
5055         if (can_overcommit(fs_info, space_info, SZ_1M,
5056                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5057                 expected = div_factor_fine(space_info->total_bytes, 95);
5058         else
5059                 expected = div_factor_fine(space_info->total_bytes, 90);
5060
5061         if (used > expected)
5062                 to_reclaim = used - expected;
5063         else
5064                 to_reclaim = 0;
5065         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5066                                      space_info->bytes_reserved);
5067         return to_reclaim;
5068 }
5069
5070 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5071                                         struct btrfs_space_info *space_info,
5072                                         u64 used, bool system_chunk)
5073 {
5074         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5075
5076         /* If we're just plain full then async reclaim just slows us down. */
5077         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5078                 return 0;
5079
5080         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081                                               system_chunk))
5082                 return 0;
5083
5084         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5085                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5086 }
5087
5088 static void wake_all_tickets(struct list_head *head)
5089 {
5090         struct reserve_ticket *ticket;
5091
5092         while (!list_empty(head)) {
5093                 ticket = list_first_entry(head, struct reserve_ticket, list);
5094                 list_del_init(&ticket->list);
5095                 ticket->error = -ENOSPC;
5096                 wake_up(&ticket->wait);
5097         }
5098 }
5099
5100 /*
5101  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5102  * will loop and continuously try to flush as long as we are making progress.
5103  * We count progress as clearing off tickets each time we have to loop.
5104  */
5105 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5106 {
5107         struct btrfs_fs_info *fs_info;
5108         struct btrfs_space_info *space_info;
5109         u64 to_reclaim;
5110         int flush_state;
5111         int commit_cycles = 0;
5112         u64 last_tickets_id;
5113
5114         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5115         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5116
5117         spin_lock(&space_info->lock);
5118         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119                                                       false);
5120         if (!to_reclaim) {
5121                 space_info->flush = 0;
5122                 spin_unlock(&space_info->lock);
5123                 return;
5124         }
5125         last_tickets_id = space_info->tickets_id;
5126         spin_unlock(&space_info->lock);
5127
5128         flush_state = FLUSH_DELAYED_ITEMS_NR;
5129         do {
5130                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5131                 spin_lock(&space_info->lock);
5132                 if (list_empty(&space_info->tickets)) {
5133                         space_info->flush = 0;
5134                         spin_unlock(&space_info->lock);
5135                         return;
5136                 }
5137                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5138                                                               space_info,
5139                                                               false);
5140                 if (last_tickets_id == space_info->tickets_id) {
5141                         flush_state++;
5142                 } else {
5143                         last_tickets_id = space_info->tickets_id;
5144                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5145                         if (commit_cycles)
5146                                 commit_cycles--;
5147                 }
5148
5149                 if (flush_state > COMMIT_TRANS) {
5150                         commit_cycles++;
5151                         if (commit_cycles > 2) {
5152                                 wake_all_tickets(&space_info->tickets);
5153                                 space_info->flush = 0;
5154                         } else {
5155                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5156                         }
5157                 }
5158                 spin_unlock(&space_info->lock);
5159         } while (flush_state <= COMMIT_TRANS);
5160 }
5161
5162 void btrfs_init_async_reclaim_work(struct work_struct *work)
5163 {
5164         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5165 }
5166
5167 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5168                                             struct btrfs_space_info *space_info,
5169                                             struct reserve_ticket *ticket)
5170 {
5171         u64 to_reclaim;
5172         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5173
5174         spin_lock(&space_info->lock);
5175         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5176                                                       false);
5177         if (!to_reclaim) {
5178                 spin_unlock(&space_info->lock);
5179                 return;
5180         }
5181         spin_unlock(&space_info->lock);
5182
5183         do {
5184                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5185                 flush_state++;
5186                 spin_lock(&space_info->lock);
5187                 if (ticket->bytes == 0) {
5188                         spin_unlock(&space_info->lock);
5189                         return;
5190                 }
5191                 spin_unlock(&space_info->lock);
5192
5193                 /*
5194                  * Priority flushers can't wait on delalloc without
5195                  * deadlocking.
5196                  */
5197                 if (flush_state == FLUSH_DELALLOC ||
5198                     flush_state == FLUSH_DELALLOC_WAIT)
5199                         flush_state = ALLOC_CHUNK;
5200         } while (flush_state < COMMIT_TRANS);
5201 }
5202
5203 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5204                                struct btrfs_space_info *space_info,
5205                                struct reserve_ticket *ticket, u64 orig_bytes)
5206
5207 {
5208         DEFINE_WAIT(wait);
5209         int ret = 0;
5210
5211         spin_lock(&space_info->lock);
5212         while (ticket->bytes > 0 && ticket->error == 0) {
5213                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5214                 if (ret) {
5215                         ret = -EINTR;
5216                         break;
5217                 }
5218                 spin_unlock(&space_info->lock);
5219
5220                 schedule();
5221
5222                 finish_wait(&ticket->wait, &wait);
5223                 spin_lock(&space_info->lock);
5224         }
5225         if (!ret)
5226                 ret = ticket->error;
5227         if (!list_empty(&ticket->list))
5228                 list_del_init(&ticket->list);
5229         if (ticket->bytes && ticket->bytes < orig_bytes) {
5230                 u64 num_bytes = orig_bytes - ticket->bytes;
5231                 space_info->bytes_may_use -= num_bytes;
5232                 trace_btrfs_space_reservation(fs_info, "space_info",
5233                                               space_info->flags, num_bytes, 0);
5234         }
5235         spin_unlock(&space_info->lock);
5236
5237         return ret;
5238 }
5239
5240 /**
5241  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242  * @root - the root we're allocating for
5243  * @space_info - the space info we want to allocate from
5244  * @orig_bytes - the number of bytes we want
5245  * @flush - whether or not we can flush to make our reservation
5246  *
5247  * This will reserve orig_bytes number of bytes from the space info associated
5248  * with the block_rsv.  If there is not enough space it will make an attempt to
5249  * flush out space to make room.  It will do this by flushing delalloc if
5250  * possible or committing the transaction.  If flush is 0 then no attempts to
5251  * regain reservations will be made and this will fail if there is not enough
5252  * space already.
5253  */
5254 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5255                                     struct btrfs_space_info *space_info,
5256                                     u64 orig_bytes,
5257                                     enum btrfs_reserve_flush_enum flush,
5258                                     bool system_chunk)
5259 {
5260         struct reserve_ticket ticket;
5261         u64 used;
5262         int ret = 0;
5263
5264         ASSERT(orig_bytes);
5265         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5266
5267         spin_lock(&space_info->lock);
5268         ret = -ENOSPC;
5269         used = btrfs_space_info_used(space_info, true);
5270
5271         /*
5272          * If we have enough space then hooray, make our reservation and carry
5273          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5274          * If not things get more complicated.
5275          */
5276         if (used + orig_bytes <= space_info->total_bytes) {
5277                 space_info->bytes_may_use += orig_bytes;
5278                 trace_btrfs_space_reservation(fs_info, "space_info",
5279                                               space_info->flags, orig_bytes, 1);
5280                 ret = 0;
5281         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5282                                   system_chunk)) {
5283                 space_info->bytes_may_use += orig_bytes;
5284                 trace_btrfs_space_reservation(fs_info, "space_info",
5285                                               space_info->flags, orig_bytes, 1);
5286                 ret = 0;
5287         }
5288
5289         /*
5290          * If we couldn't make a reservation then setup our reservation ticket
5291          * and kick the async worker if it's not already running.
5292          *
5293          * If we are a priority flusher then we just need to add our ticket to
5294          * the list and we will do our own flushing further down.
5295          */
5296         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5297                 ticket.bytes = orig_bytes;
5298                 ticket.error = 0;
5299                 init_waitqueue_head(&ticket.wait);
5300                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5301                         list_add_tail(&ticket.list, &space_info->tickets);
5302                         if (!space_info->flush) {
5303                                 space_info->flush = 1;
5304                                 trace_btrfs_trigger_flush(fs_info,
5305                                                           space_info->flags,
5306                                                           orig_bytes, flush,
5307                                                           "enospc");
5308                                 queue_work(system_unbound_wq,
5309                                            &fs_info->async_reclaim_work);
5310                         }
5311                 } else {
5312                         list_add_tail(&ticket.list,
5313                                       &space_info->priority_tickets);
5314                 }
5315         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5316                 used += orig_bytes;
5317                 /*
5318                  * We will do the space reservation dance during log replay,
5319                  * which means we won't have fs_info->fs_root set, so don't do
5320                  * the async reclaim as we will panic.
5321                  */
5322                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5323                     need_do_async_reclaim(fs_info, space_info,
5324                                           used, system_chunk) &&
5325                     !work_busy(&fs_info->async_reclaim_work)) {
5326                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5327                                                   orig_bytes, flush, "preempt");
5328                         queue_work(system_unbound_wq,
5329                                    &fs_info->async_reclaim_work);
5330                 }
5331         }
5332         spin_unlock(&space_info->lock);
5333         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5334                 return ret;
5335
5336         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5337                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5338                                            orig_bytes);
5339
5340         ret = 0;
5341         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5342         spin_lock(&space_info->lock);
5343         if (ticket.bytes) {
5344                 if (ticket.bytes < orig_bytes) {
5345                         u64 num_bytes = orig_bytes - ticket.bytes;
5346                         space_info->bytes_may_use -= num_bytes;
5347                         trace_btrfs_space_reservation(fs_info, "space_info",
5348                                                       space_info->flags,
5349                                                       num_bytes, 0);
5350
5351                 }
5352                 list_del_init(&ticket.list);
5353                 ret = -ENOSPC;
5354         }
5355         spin_unlock(&space_info->lock);
5356         ASSERT(list_empty(&ticket.list));
5357         return ret;
5358 }
5359
5360 /**
5361  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362  * @root - the root we're allocating for
5363  * @block_rsv - the block_rsv we're allocating for
5364  * @orig_bytes - the number of bytes we want
5365  * @flush - whether or not we can flush to make our reservation
5366  *
5367  * This will reserve orgi_bytes number of bytes from the space info associated
5368  * with the block_rsv.  If there is not enough space it will make an attempt to
5369  * flush out space to make room.  It will do this by flushing delalloc if
5370  * possible or committing the transaction.  If flush is 0 then no attempts to
5371  * regain reservations will be made and this will fail if there is not enough
5372  * space already.
5373  */
5374 static int reserve_metadata_bytes(struct btrfs_root *root,
5375                                   struct btrfs_block_rsv *block_rsv,
5376                                   u64 orig_bytes,
5377                                   enum btrfs_reserve_flush_enum flush)
5378 {
5379         struct btrfs_fs_info *fs_info = root->fs_info;
5380         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5381         int ret;
5382         bool system_chunk = (root == fs_info->chunk_root);
5383
5384         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5385                                        orig_bytes, flush, system_chunk);
5386         if (ret == -ENOSPC &&
5387             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5388                 if (block_rsv != global_rsv &&
5389                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5390                         ret = 0;
5391         }
5392         if (ret == -ENOSPC)
5393                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5394                                               block_rsv->space_info->flags,
5395                                               orig_bytes, 1);
5396         return ret;
5397 }
5398
5399 static struct btrfs_block_rsv *get_block_rsv(
5400                                         const struct btrfs_trans_handle *trans,
5401                                         const struct btrfs_root *root)
5402 {
5403         struct btrfs_fs_info *fs_info = root->fs_info;
5404         struct btrfs_block_rsv *block_rsv = NULL;
5405
5406         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5407             (root == fs_info->csum_root && trans->adding_csums) ||
5408             (root == fs_info->uuid_root))
5409                 block_rsv = trans->block_rsv;
5410
5411         if (!block_rsv)
5412                 block_rsv = root->block_rsv;
5413
5414         if (!block_rsv)
5415                 block_rsv = &fs_info->empty_block_rsv;
5416
5417         return block_rsv;
5418 }
5419
5420 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421                                u64 num_bytes)
5422 {
5423         int ret = -ENOSPC;
5424         spin_lock(&block_rsv->lock);
5425         if (block_rsv->reserved >= num_bytes) {
5426                 block_rsv->reserved -= num_bytes;
5427                 if (block_rsv->reserved < block_rsv->size)
5428                         block_rsv->full = 0;
5429                 ret = 0;
5430         }
5431         spin_unlock(&block_rsv->lock);
5432         return ret;
5433 }
5434
5435 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436                                 u64 num_bytes, int update_size)
5437 {
5438         spin_lock(&block_rsv->lock);
5439         block_rsv->reserved += num_bytes;
5440         if (update_size)
5441                 block_rsv->size += num_bytes;
5442         else if (block_rsv->reserved >= block_rsv->size)
5443                 block_rsv->full = 1;
5444         spin_unlock(&block_rsv->lock);
5445 }
5446
5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448                              struct btrfs_block_rsv *dest, u64 num_bytes,
5449                              int min_factor)
5450 {
5451         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452         u64 min_bytes;
5453
5454         if (global_rsv->space_info != dest->space_info)
5455                 return -ENOSPC;
5456
5457         spin_lock(&global_rsv->lock);
5458         min_bytes = div_factor(global_rsv->size, min_factor);
5459         if (global_rsv->reserved < min_bytes + num_bytes) {
5460                 spin_unlock(&global_rsv->lock);
5461                 return -ENOSPC;
5462         }
5463         global_rsv->reserved -= num_bytes;
5464         if (global_rsv->reserved < global_rsv->size)
5465                 global_rsv->full = 0;
5466         spin_unlock(&global_rsv->lock);
5467
5468         block_rsv_add_bytes(dest, num_bytes, 1);
5469         return 0;
5470 }
5471
5472 /*
5473  * This is for space we already have accounted in space_info->bytes_may_use, so
5474  * basically when we're returning space from block_rsv's.
5475  */
5476 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477                                      struct btrfs_space_info *space_info,
5478                                      u64 num_bytes)
5479 {
5480         struct reserve_ticket *ticket;
5481         struct list_head *head;
5482         u64 used;
5483         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484         bool check_overcommit = false;
5485
5486         spin_lock(&space_info->lock);
5487         head = &space_info->priority_tickets;
5488
5489         /*
5490          * If we are over our limit then we need to check and see if we can
5491          * overcommit, and if we can't then we just need to free up our space
5492          * and not satisfy any requests.
5493          */
5494         used = btrfs_space_info_used(space_info, true);
5495         if (used - num_bytes >= space_info->total_bytes)
5496                 check_overcommit = true;
5497 again:
5498         while (!list_empty(head) && num_bytes) {
5499                 ticket = list_first_entry(head, struct reserve_ticket,
5500                                           list);
5501                 /*
5502                  * We use 0 bytes because this space is already reserved, so
5503                  * adding the ticket space would be a double count.
5504                  */
5505                 if (check_overcommit &&
5506                     !can_overcommit(fs_info, space_info, 0, flush, false))
5507                         break;
5508                 if (num_bytes >= ticket->bytes) {
5509                         list_del_init(&ticket->list);
5510                         num_bytes -= ticket->bytes;
5511                         ticket->bytes = 0;
5512                         space_info->tickets_id++;
5513                         wake_up(&ticket->wait);
5514                 } else {
5515                         ticket->bytes -= num_bytes;
5516                         num_bytes = 0;
5517                 }
5518         }
5519
5520         if (num_bytes && head == &space_info->priority_tickets) {
5521                 head = &space_info->tickets;
5522                 flush = BTRFS_RESERVE_FLUSH_ALL;
5523                 goto again;
5524         }
5525         space_info->bytes_may_use -= num_bytes;
5526         trace_btrfs_space_reservation(fs_info, "space_info",
5527                                       space_info->flags, num_bytes, 0);
5528         spin_unlock(&space_info->lock);
5529 }
5530
5531 /*
5532  * This is for newly allocated space that isn't accounted in
5533  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5534  * we use this helper.
5535  */
5536 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537                                      struct btrfs_space_info *space_info,
5538                                      u64 num_bytes)
5539 {
5540         struct reserve_ticket *ticket;
5541         struct list_head *head = &space_info->priority_tickets;
5542
5543 again:
5544         while (!list_empty(head) && num_bytes) {
5545                 ticket = list_first_entry(head, struct reserve_ticket,
5546                                           list);
5547                 if (num_bytes >= ticket->bytes) {
5548                         trace_btrfs_space_reservation(fs_info, "space_info",
5549                                                       space_info->flags,
5550                                                       ticket->bytes, 1);
5551                         list_del_init(&ticket->list);
5552                         num_bytes -= ticket->bytes;
5553                         space_info->bytes_may_use += ticket->bytes;
5554                         ticket->bytes = 0;
5555                         space_info->tickets_id++;
5556                         wake_up(&ticket->wait);
5557                 } else {
5558                         trace_btrfs_space_reservation(fs_info, "space_info",
5559                                                       space_info->flags,
5560                                                       num_bytes, 1);
5561                         space_info->bytes_may_use += num_bytes;
5562                         ticket->bytes -= num_bytes;
5563                         num_bytes = 0;
5564                 }
5565         }
5566
5567         if (num_bytes && head == &space_info->priority_tickets) {
5568                 head = &space_info->tickets;
5569                 goto again;
5570         }
5571 }
5572
5573 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5574                                     struct btrfs_block_rsv *block_rsv,
5575                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5576 {
5577         struct btrfs_space_info *space_info = block_rsv->space_info;
5578         u64 ret;
5579
5580         spin_lock(&block_rsv->lock);
5581         if (num_bytes == (u64)-1)
5582                 num_bytes = block_rsv->size;
5583         block_rsv->size -= num_bytes;
5584         if (block_rsv->reserved >= block_rsv->size) {
5585                 num_bytes = block_rsv->reserved - block_rsv->size;
5586                 block_rsv->reserved = block_rsv->size;
5587                 block_rsv->full = 1;
5588         } else {
5589                 num_bytes = 0;
5590         }
5591         spin_unlock(&block_rsv->lock);
5592
5593         ret = num_bytes;
5594         if (num_bytes > 0) {
5595                 if (dest) {
5596                         spin_lock(&dest->lock);
5597                         if (!dest->full) {
5598                                 u64 bytes_to_add;
5599
5600                                 bytes_to_add = dest->size - dest->reserved;
5601                                 bytes_to_add = min(num_bytes, bytes_to_add);
5602                                 dest->reserved += bytes_to_add;
5603                                 if (dest->reserved >= dest->size)
5604                                         dest->full = 1;
5605                                 num_bytes -= bytes_to_add;
5606                         }
5607                         spin_unlock(&dest->lock);
5608                 }
5609                 if (num_bytes)
5610                         space_info_add_old_bytes(fs_info, space_info,
5611                                                  num_bytes);
5612         }
5613         return ret;
5614 }
5615
5616 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5617                             struct btrfs_block_rsv *dst, u64 num_bytes,
5618                             int update_size)
5619 {
5620         int ret;
5621
5622         ret = block_rsv_use_bytes(src, num_bytes);
5623         if (ret)
5624                 return ret;
5625
5626         block_rsv_add_bytes(dst, num_bytes, update_size);
5627         return 0;
5628 }
5629
5630 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5631 {
5632         memset(rsv, 0, sizeof(*rsv));
5633         spin_lock_init(&rsv->lock);
5634         rsv->type = type;
5635 }
5636
5637 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5638                                    struct btrfs_block_rsv *rsv,
5639                                    unsigned short type)
5640 {
5641         btrfs_init_block_rsv(rsv, type);
5642         rsv->space_info = __find_space_info(fs_info,
5643                                             BTRFS_BLOCK_GROUP_METADATA);
5644 }
5645
5646 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5647                                               unsigned short type)
5648 {
5649         struct btrfs_block_rsv *block_rsv;
5650
5651         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5652         if (!block_rsv)
5653                 return NULL;
5654
5655         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5656         return block_rsv;
5657 }
5658
5659 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5660                           struct btrfs_block_rsv *rsv)
5661 {
5662         if (!rsv)
5663                 return;
5664         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5665         kfree(rsv);
5666 }
5667
5668 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5669 {
5670         kfree(rsv);
5671 }
5672
5673 int btrfs_block_rsv_add(struct btrfs_root *root,
5674                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5675                         enum btrfs_reserve_flush_enum flush)
5676 {
5677         int ret;
5678
5679         if (num_bytes == 0)
5680                 return 0;
5681
5682         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5683         if (!ret) {
5684                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5685                 return 0;
5686         }
5687
5688         return ret;
5689 }
5690
5691 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5692 {
5693         u64 num_bytes = 0;
5694         int ret = -ENOSPC;
5695
5696         if (!block_rsv)
5697                 return 0;
5698
5699         spin_lock(&block_rsv->lock);
5700         num_bytes = div_factor(block_rsv->size, min_factor);
5701         if (block_rsv->reserved >= num_bytes)
5702                 ret = 0;
5703         spin_unlock(&block_rsv->lock);
5704
5705         return ret;
5706 }
5707
5708 int btrfs_block_rsv_refill(struct btrfs_root *root,
5709                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5710                            enum btrfs_reserve_flush_enum flush)
5711 {
5712         u64 num_bytes = 0;
5713         int ret = -ENOSPC;
5714
5715         if (!block_rsv)
5716                 return 0;
5717
5718         spin_lock(&block_rsv->lock);
5719         num_bytes = min_reserved;
5720         if (block_rsv->reserved >= num_bytes)
5721                 ret = 0;
5722         else
5723                 num_bytes -= block_rsv->reserved;
5724         spin_unlock(&block_rsv->lock);
5725
5726         if (!ret)
5727                 return 0;
5728
5729         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5730         if (!ret) {
5731                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5732                 return 0;
5733         }
5734
5735         return ret;
5736 }
5737
5738 /**
5739  * btrfs_inode_rsv_refill - refill the inode block rsv.
5740  * @inode - the inode we are refilling.
5741  * @flush - the flusing restriction.
5742  *
5743  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5744  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5745  * or return if we already have enough space.  This will also handle the resreve
5746  * tracepoint for the reserved amount.
5747  */
5748 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5749                                   enum btrfs_reserve_flush_enum flush)
5750 {
5751         struct btrfs_root *root = inode->root;
5752         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5753         u64 num_bytes = 0;
5754         int ret = -ENOSPC;
5755
5756         spin_lock(&block_rsv->lock);
5757         if (block_rsv->reserved < block_rsv->size)
5758                 num_bytes = block_rsv->size - block_rsv->reserved;
5759         spin_unlock(&block_rsv->lock);
5760
5761         if (num_bytes == 0)
5762                 return 0;
5763
5764         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5765         if (!ret) {
5766                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5767                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5768                                               btrfs_ino(inode), num_bytes, 1);
5769         }
5770         return ret;
5771 }
5772
5773 /**
5774  * btrfs_inode_rsv_release - release any excessive reservation.
5775  * @inode - the inode we need to release from.
5776  *
5777  * This is the same as btrfs_block_rsv_release, except that it handles the
5778  * tracepoint for the reservation.
5779  */
5780 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5781 {
5782         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5783         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5784         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5785         u64 released = 0;
5786
5787         /*
5788          * Since we statically set the block_rsv->size we just want to say we
5789          * are releasing 0 bytes, and then we'll just get the reservation over
5790          * the size free'd.
5791          */
5792         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5793         if (released > 0)
5794                 trace_btrfs_space_reservation(fs_info, "delalloc",
5795                                               btrfs_ino(inode), released, 0);
5796 }
5797
5798 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5799                              struct btrfs_block_rsv *block_rsv,
5800                              u64 num_bytes)
5801 {
5802         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5803
5804         if (global_rsv == block_rsv ||
5805             block_rsv->space_info != global_rsv->space_info)
5806                 global_rsv = NULL;
5807         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5808 }
5809
5810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5811 {
5812         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5813         struct btrfs_space_info *sinfo = block_rsv->space_info;
5814         u64 num_bytes;
5815
5816         /*
5817          * The global block rsv is based on the size of the extent tree, the
5818          * checksum tree and the root tree.  If the fs is empty we want to set
5819          * it to a minimal amount for safety.
5820          */
5821         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5822                 btrfs_root_used(&fs_info->csum_root->root_item) +
5823                 btrfs_root_used(&fs_info->tree_root->root_item);
5824         num_bytes = max_t(u64, num_bytes, SZ_16M);
5825
5826         spin_lock(&sinfo->lock);
5827         spin_lock(&block_rsv->lock);
5828
5829         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5830
5831         if (block_rsv->reserved < block_rsv->size) {
5832                 num_bytes = btrfs_space_info_used(sinfo, true);
5833                 if (sinfo->total_bytes > num_bytes) {
5834                         num_bytes = sinfo->total_bytes - num_bytes;
5835                         num_bytes = min(num_bytes,
5836                                         block_rsv->size - block_rsv->reserved);
5837                         block_rsv->reserved += num_bytes;
5838                         sinfo->bytes_may_use += num_bytes;
5839                         trace_btrfs_space_reservation(fs_info, "space_info",
5840                                                       sinfo->flags, num_bytes,
5841                                                       1);
5842                 }
5843         } else if (block_rsv->reserved > block_rsv->size) {
5844                 num_bytes = block_rsv->reserved - block_rsv->size;
5845                 sinfo->bytes_may_use -= num_bytes;
5846                 trace_btrfs_space_reservation(fs_info, "space_info",
5847                                       sinfo->flags, num_bytes, 0);
5848                 block_rsv->reserved = block_rsv->size;
5849         }
5850
5851         if (block_rsv->reserved == block_rsv->size)
5852                 block_rsv->full = 1;
5853         else
5854                 block_rsv->full = 0;
5855
5856         spin_unlock(&block_rsv->lock);
5857         spin_unlock(&sinfo->lock);
5858 }
5859
5860 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5861 {
5862         struct btrfs_space_info *space_info;
5863
5864         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5865         fs_info->chunk_block_rsv.space_info = space_info;
5866
5867         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5868         fs_info->global_block_rsv.space_info = space_info;
5869         fs_info->trans_block_rsv.space_info = space_info;
5870         fs_info->empty_block_rsv.space_info = space_info;
5871         fs_info->delayed_block_rsv.space_info = space_info;
5872
5873         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5874         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5875         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5876         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5877         if (fs_info->quota_root)
5878                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5879         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5880
5881         update_global_block_rsv(fs_info);
5882 }
5883
5884 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5885 {
5886         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5887                                 (u64)-1);
5888         WARN_ON(fs_info->trans_block_rsv.size > 0);
5889         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5890         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5891         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5892         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5893         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5894 }
5895
5896 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5897                                   struct btrfs_fs_info *fs_info)
5898 {
5899         if (!trans->block_rsv) {
5900                 ASSERT(!trans->bytes_reserved);
5901                 return;
5902         }
5903
5904         if (!trans->bytes_reserved)
5905                 return;
5906
5907         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5908         trace_btrfs_space_reservation(fs_info, "transaction",
5909                                       trans->transid, trans->bytes_reserved, 0);
5910         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5911                                 trans->bytes_reserved);
5912         trans->bytes_reserved = 0;
5913 }
5914
5915 /*
5916  * To be called after all the new block groups attached to the transaction
5917  * handle have been created (btrfs_create_pending_block_groups()).
5918  */
5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920 {
5921         struct btrfs_fs_info *fs_info = trans->fs_info;
5922
5923         if (!trans->chunk_bytes_reserved)
5924                 return;
5925
5926         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927
5928         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5929                                 trans->chunk_bytes_reserved);
5930         trans->chunk_bytes_reserved = 0;
5931 }
5932
5933 /* Can only return 0 or -ENOSPC */
5934 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5935                                   struct btrfs_inode *inode)
5936 {
5937         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938         struct btrfs_root *root = inode->root;
5939         /*
5940          * We always use trans->block_rsv here as we will have reserved space
5941          * for our orphan when starting the transaction, using get_block_rsv()
5942          * here will sometimes make us choose the wrong block rsv as we could be
5943          * doing a reloc inode for a non refcounted root.
5944          */
5945         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5946         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5947
5948         /*
5949          * We need to hold space in order to delete our orphan item once we've
5950          * added it, so this takes the reservation so we can release it later
5951          * when we are truly done with the orphan item.
5952          */
5953         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5954
5955         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5956                         num_bytes, 1);
5957         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5958 }
5959
5960 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5961 {
5962         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5963         struct btrfs_root *root = inode->root;
5964         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5965
5966         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5967                         num_bytes, 0);
5968         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5969 }
5970
5971 /*
5972  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5973  * root: the root of the parent directory
5974  * rsv: block reservation
5975  * items: the number of items that we need do reservation
5976  * qgroup_reserved: used to return the reserved size in qgroup
5977  *
5978  * This function is used to reserve the space for snapshot/subvolume
5979  * creation and deletion. Those operations are different with the
5980  * common file/directory operations, they change two fs/file trees
5981  * and root tree, the number of items that the qgroup reserves is
5982  * different with the free space reservation. So we can not use
5983  * the space reservation mechanism in start_transaction().
5984  */
5985 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5986                                      struct btrfs_block_rsv *rsv,
5987                                      int items,
5988                                      u64 *qgroup_reserved,
5989                                      bool use_global_rsv)
5990 {
5991         u64 num_bytes;
5992         int ret;
5993         struct btrfs_fs_info *fs_info = root->fs_info;
5994         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5995
5996         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5997                 /* One for parent inode, two for dir entries */
5998                 num_bytes = 3 * fs_info->nodesize;
5999                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
6000                 if (ret)
6001                         return ret;
6002         } else {
6003                 num_bytes = 0;
6004         }
6005
6006         *qgroup_reserved = num_bytes;
6007
6008         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6009         rsv->space_info = __find_space_info(fs_info,
6010                                             BTRFS_BLOCK_GROUP_METADATA);
6011         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6012                                   BTRFS_RESERVE_FLUSH_ALL);
6013
6014         if (ret == -ENOSPC && use_global_rsv)
6015                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6016
6017         if (ret && *qgroup_reserved)
6018                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6019
6020         return ret;
6021 }
6022
6023 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6024                                       struct btrfs_block_rsv *rsv)
6025 {
6026         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6027 }
6028
6029 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6030                                                  struct btrfs_inode *inode)
6031 {
6032         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6033         u64 reserve_size = 0;
6034         u64 csum_leaves;
6035         unsigned outstanding_extents;
6036
6037         lockdep_assert_held(&inode->lock);
6038         outstanding_extents = inode->outstanding_extents;
6039         if (outstanding_extents)
6040                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6041                                                 outstanding_extents + 1);
6042         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6043                                                  inode->csum_bytes);
6044         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6045                                                        csum_leaves);
6046
6047         spin_lock(&block_rsv->lock);
6048         block_rsv->size = reserve_size;
6049         spin_unlock(&block_rsv->lock);
6050 }
6051
6052 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6053 {
6054         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6055         struct btrfs_root *root = inode->root;
6056         unsigned nr_extents;
6057         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6058         int ret = 0;
6059         bool delalloc_lock = true;
6060
6061         /* If we are a free space inode we need to not flush since we will be in
6062          * the middle of a transaction commit.  We also don't need the delalloc
6063          * mutex since we won't race with anybody.  We need this mostly to make
6064          * lockdep shut its filthy mouth.
6065          *
6066          * If we have a transaction open (can happen if we call truncate_block
6067          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6068          */
6069         if (btrfs_is_free_space_inode(inode)) {
6070                 flush = BTRFS_RESERVE_NO_FLUSH;
6071                 delalloc_lock = false;
6072         } else if (current->journal_info) {
6073                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6074         }
6075
6076         if (flush != BTRFS_RESERVE_NO_FLUSH &&
6077             btrfs_transaction_in_commit(fs_info))
6078                 schedule_timeout(1);
6079
6080         if (delalloc_lock)
6081                 mutex_lock(&inode->delalloc_mutex);
6082
6083         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6084
6085         /* Add our new extents and calculate the new rsv size. */
6086         spin_lock(&inode->lock);
6087         nr_extents = count_max_extents(num_bytes);
6088         btrfs_mod_outstanding_extents(inode, nr_extents);
6089         inode->csum_bytes += num_bytes;
6090         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6091         spin_unlock(&inode->lock);
6092
6093         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6094                 ret = btrfs_qgroup_reserve_meta(root,
6095                                 nr_extents * fs_info->nodesize, true);
6096                 if (ret)
6097                         goto out_fail;
6098         }
6099
6100         ret = btrfs_inode_rsv_refill(inode, flush);
6101         if (unlikely(ret)) {
6102                 btrfs_qgroup_free_meta(root,
6103                                        nr_extents * fs_info->nodesize);
6104                 goto out_fail;
6105         }
6106
6107         if (delalloc_lock)
6108                 mutex_unlock(&inode->delalloc_mutex);
6109         return 0;
6110
6111 out_fail:
6112         spin_lock(&inode->lock);
6113         nr_extents = count_max_extents(num_bytes);
6114         btrfs_mod_outstanding_extents(inode, -nr_extents);
6115         inode->csum_bytes -= num_bytes;
6116         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6117         spin_unlock(&inode->lock);
6118
6119         btrfs_inode_rsv_release(inode);
6120         if (delalloc_lock)
6121                 mutex_unlock(&inode->delalloc_mutex);
6122         return ret;
6123 }
6124
6125 /**
6126  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6127  * @inode: the inode to release the reservation for.
6128  * @num_bytes: the number of bytes we are releasing.
6129  *
6130  * This will release the metadata reservation for an inode.  This can be called
6131  * once we complete IO for a given set of bytes to release their metadata
6132  * reservations, or on error for the same reason.
6133  */
6134 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6135 {
6136         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6137
6138         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6139         spin_lock(&inode->lock);
6140         inode->csum_bytes -= num_bytes;
6141         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6142         spin_unlock(&inode->lock);
6143
6144         if (btrfs_is_testing(fs_info))
6145                 return;
6146
6147         btrfs_inode_rsv_release(inode);
6148 }
6149
6150 /**
6151  * btrfs_delalloc_release_extents - release our outstanding_extents
6152  * @inode: the inode to balance the reservation for.
6153  * @num_bytes: the number of bytes we originally reserved with
6154  *
6155  * When we reserve space we increase outstanding_extents for the extents we may
6156  * add.  Once we've set the range as delalloc or created our ordered extents we
6157  * have outstanding_extents to track the real usage, so we use this to free our
6158  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6159  * with btrfs_delalloc_reserve_metadata.
6160  */
6161 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6162 {
6163         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6164         unsigned num_extents;
6165
6166         spin_lock(&inode->lock);
6167         num_extents = count_max_extents(num_bytes);
6168         btrfs_mod_outstanding_extents(inode, -num_extents);
6169         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6170         spin_unlock(&inode->lock);
6171
6172         if (btrfs_is_testing(fs_info))
6173                 return;
6174
6175         btrfs_inode_rsv_release(inode);
6176 }
6177
6178 /**
6179  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6180  * delalloc
6181  * @inode: inode we're writing to
6182  * @start: start range we are writing to
6183  * @len: how long the range we are writing to
6184  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6185  *            current reservation.
6186  *
6187  * This will do the following things
6188  *
6189  * o reserve space in data space info for num bytes
6190  *   and reserve precious corresponding qgroup space
6191  *   (Done in check_data_free_space)
6192  *
6193  * o reserve space for metadata space, based on the number of outstanding
6194  *   extents and how much csums will be needed
6195  *   also reserve metadata space in a per root over-reserve method.
6196  * o add to the inodes->delalloc_bytes
6197  * o add it to the fs_info's delalloc inodes list.
6198  *   (Above 3 all done in delalloc_reserve_metadata)
6199  *
6200  * Return 0 for success
6201  * Return <0 for error(-ENOSPC or -EQUOT)
6202  */
6203 int btrfs_delalloc_reserve_space(struct inode *inode,
6204                         struct extent_changeset **reserved, u64 start, u64 len)
6205 {
6206         int ret;
6207
6208         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6209         if (ret < 0)
6210                 return ret;
6211         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6212         if (ret < 0)
6213                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6214         return ret;
6215 }
6216
6217 /**
6218  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6219  * @inode: inode we're releasing space for
6220  * @start: start position of the space already reserved
6221  * @len: the len of the space already reserved
6222  * @release_bytes: the len of the space we consumed or didn't use
6223  *
6224  * This function will release the metadata space that was not used and will
6225  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6226  * list if there are no delalloc bytes left.
6227  * Also it will handle the qgroup reserved space.
6228  */
6229 void btrfs_delalloc_release_space(struct inode *inode,
6230                                   struct extent_changeset *reserved,
6231                                   u64 start, u64 len)
6232 {
6233         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6234         btrfs_free_reserved_data_space(inode, reserved, start, len);
6235 }
6236
6237 static int update_block_group(struct btrfs_trans_handle *trans,
6238                               struct btrfs_fs_info *info, u64 bytenr,
6239                               u64 num_bytes, int alloc)
6240 {
6241         struct btrfs_block_group_cache *cache = NULL;
6242         u64 total = num_bytes;
6243         u64 old_val;
6244         u64 byte_in_group;
6245         int factor;
6246
6247         /* block accounting for super block */
6248         spin_lock(&info->delalloc_root_lock);
6249         old_val = btrfs_super_bytes_used(info->super_copy);
6250         if (alloc)
6251                 old_val += num_bytes;
6252         else
6253                 old_val -= num_bytes;
6254         btrfs_set_super_bytes_used(info->super_copy, old_val);
6255         spin_unlock(&info->delalloc_root_lock);
6256
6257         while (total) {
6258                 cache = btrfs_lookup_block_group(info, bytenr);
6259                 if (!cache)
6260                         return -ENOENT;
6261                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6262                                     BTRFS_BLOCK_GROUP_RAID1 |
6263                                     BTRFS_BLOCK_GROUP_RAID10))
6264                         factor = 2;
6265                 else
6266                         factor = 1;
6267                 /*
6268                  * If this block group has free space cache written out, we
6269                  * need to make sure to load it if we are removing space.  This
6270                  * is because we need the unpinning stage to actually add the
6271                  * space back to the block group, otherwise we will leak space.
6272                  */
6273                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6274                         cache_block_group(cache, 1);
6275
6276                 byte_in_group = bytenr - cache->key.objectid;
6277                 WARN_ON(byte_in_group > cache->key.offset);
6278
6279                 spin_lock(&cache->space_info->lock);
6280                 spin_lock(&cache->lock);
6281
6282                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6283                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6284                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6285
6286                 old_val = btrfs_block_group_used(&cache->item);
6287                 num_bytes = min(total, cache->key.offset - byte_in_group);
6288                 if (alloc) {
6289                         old_val += num_bytes;
6290                         btrfs_set_block_group_used(&cache->item, old_val);
6291                         cache->reserved -= num_bytes;
6292                         cache->space_info->bytes_reserved -= num_bytes;
6293                         cache->space_info->bytes_used += num_bytes;
6294                         cache->space_info->disk_used += num_bytes * factor;
6295                         spin_unlock(&cache->lock);
6296                         spin_unlock(&cache->space_info->lock);
6297                 } else {
6298                         old_val -= num_bytes;
6299                         btrfs_set_block_group_used(&cache->item, old_val);
6300                         cache->pinned += num_bytes;
6301                         cache->space_info->bytes_pinned += num_bytes;
6302                         cache->space_info->bytes_used -= num_bytes;
6303                         cache->space_info->disk_used -= num_bytes * factor;
6304                         spin_unlock(&cache->lock);
6305                         spin_unlock(&cache->space_info->lock);
6306
6307                         trace_btrfs_space_reservation(info, "pinned",
6308                                                       cache->space_info->flags,
6309                                                       num_bytes, 1);
6310                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6311                                            num_bytes);
6312                         set_extent_dirty(info->pinned_extents,
6313                                          bytenr, bytenr + num_bytes - 1,
6314                                          GFP_NOFS | __GFP_NOFAIL);
6315                 }
6316
6317                 spin_lock(&trans->transaction->dirty_bgs_lock);
6318                 if (list_empty(&cache->dirty_list)) {
6319                         list_add_tail(&cache->dirty_list,
6320                                       &trans->transaction->dirty_bgs);
6321                                 trans->transaction->num_dirty_bgs++;
6322                         btrfs_get_block_group(cache);
6323                 }
6324                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6325
6326                 /*
6327                  * No longer have used bytes in this block group, queue it for
6328                  * deletion. We do this after adding the block group to the
6329                  * dirty list to avoid races between cleaner kthread and space
6330                  * cache writeout.
6331                  */
6332                 if (!alloc && old_val == 0) {
6333                         spin_lock(&info->unused_bgs_lock);
6334                         if (list_empty(&cache->bg_list)) {
6335                                 btrfs_get_block_group(cache);
6336                                 list_add_tail(&cache->bg_list,
6337                                               &info->unused_bgs);
6338                         }
6339                         spin_unlock(&info->unused_bgs_lock);
6340                 }
6341
6342                 btrfs_put_block_group(cache);
6343                 total -= num_bytes;
6344                 bytenr += num_bytes;
6345         }
6346         return 0;
6347 }
6348
6349 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6350 {
6351         struct btrfs_block_group_cache *cache;
6352         u64 bytenr;
6353
6354         spin_lock(&fs_info->block_group_cache_lock);
6355         bytenr = fs_info->first_logical_byte;
6356         spin_unlock(&fs_info->block_group_cache_lock);
6357
6358         if (bytenr < (u64)-1)
6359                 return bytenr;
6360
6361         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6362         if (!cache)
6363                 return 0;
6364
6365         bytenr = cache->key.objectid;
6366         btrfs_put_block_group(cache);
6367
6368         return bytenr;
6369 }
6370
6371 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6372                            struct btrfs_block_group_cache *cache,
6373                            u64 bytenr, u64 num_bytes, int reserved)
6374 {
6375         spin_lock(&cache->space_info->lock);
6376         spin_lock(&cache->lock);
6377         cache->pinned += num_bytes;
6378         cache->space_info->bytes_pinned += num_bytes;
6379         if (reserved) {
6380                 cache->reserved -= num_bytes;
6381                 cache->space_info->bytes_reserved -= num_bytes;
6382         }
6383         spin_unlock(&cache->lock);
6384         spin_unlock(&cache->space_info->lock);
6385
6386         trace_btrfs_space_reservation(fs_info, "pinned",
6387                                       cache->space_info->flags, num_bytes, 1);
6388         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6389         set_extent_dirty(fs_info->pinned_extents, bytenr,
6390                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6391         return 0;
6392 }
6393
6394 /*
6395  * this function must be called within transaction
6396  */
6397 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6398                      u64 bytenr, u64 num_bytes, int reserved)
6399 {
6400         struct btrfs_block_group_cache *cache;
6401
6402         cache = btrfs_lookup_block_group(fs_info, bytenr);
6403         BUG_ON(!cache); /* Logic error */
6404
6405         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6406
6407         btrfs_put_block_group(cache);
6408         return 0;
6409 }
6410
6411 /*
6412  * this function must be called within transaction
6413  */
6414 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6415                                     u64 bytenr, u64 num_bytes)
6416 {
6417         struct btrfs_block_group_cache *cache;
6418         int ret;
6419
6420         cache = btrfs_lookup_block_group(fs_info, bytenr);
6421         if (!cache)
6422                 return -EINVAL;
6423
6424         /*
6425          * pull in the free space cache (if any) so that our pin
6426          * removes the free space from the cache.  We have load_only set
6427          * to one because the slow code to read in the free extents does check
6428          * the pinned extents.
6429          */
6430         cache_block_group(cache, 1);
6431
6432         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6433
6434         /* remove us from the free space cache (if we're there at all) */
6435         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6436         btrfs_put_block_group(cache);
6437         return ret;
6438 }
6439
6440 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6441                                    u64 start, u64 num_bytes)
6442 {
6443         int ret;
6444         struct btrfs_block_group_cache *block_group;
6445         struct btrfs_caching_control *caching_ctl;
6446
6447         block_group = btrfs_lookup_block_group(fs_info, start);
6448         if (!block_group)
6449                 return -EINVAL;
6450
6451         cache_block_group(block_group, 0);
6452         caching_ctl = get_caching_control(block_group);
6453
6454         if (!caching_ctl) {
6455                 /* Logic error */
6456                 BUG_ON(!block_group_cache_done(block_group));
6457                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6458         } else {
6459                 mutex_lock(&caching_ctl->mutex);
6460
6461                 if (start >= caching_ctl->progress) {
6462                         ret = add_excluded_extent(fs_info, start, num_bytes);
6463                 } else if (start + num_bytes <= caching_ctl->progress) {
6464                         ret = btrfs_remove_free_space(block_group,
6465                                                       start, num_bytes);
6466                 } else {
6467                         num_bytes = caching_ctl->progress - start;
6468                         ret = btrfs_remove_free_space(block_group,
6469                                                       start, num_bytes);
6470                         if (ret)
6471                                 goto out_lock;
6472
6473                         num_bytes = (start + num_bytes) -
6474                                 caching_ctl->progress;
6475                         start = caching_ctl->progress;
6476                         ret = add_excluded_extent(fs_info, start, num_bytes);
6477                 }
6478 out_lock:
6479                 mutex_unlock(&caching_ctl->mutex);
6480                 put_caching_control(caching_ctl);
6481         }
6482         btrfs_put_block_group(block_group);
6483         return ret;
6484 }
6485
6486 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6487                                  struct extent_buffer *eb)
6488 {
6489         struct btrfs_file_extent_item *item;
6490         struct btrfs_key key;
6491         int found_type;
6492         int i;
6493
6494         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6495                 return 0;
6496
6497         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6498                 btrfs_item_key_to_cpu(eb, &key, i);
6499                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6500                         continue;
6501                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6502                 found_type = btrfs_file_extent_type(eb, item);
6503                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6504                         continue;
6505                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6506                         continue;
6507                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6508                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6509                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6510         }
6511
6512         return 0;
6513 }
6514
6515 static void
6516 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6517 {
6518         atomic_inc(&bg->reservations);
6519 }
6520
6521 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522                                         const u64 start)
6523 {
6524         struct btrfs_block_group_cache *bg;
6525
6526         bg = btrfs_lookup_block_group(fs_info, start);
6527         ASSERT(bg);
6528         if (atomic_dec_and_test(&bg->reservations))
6529                 wake_up_atomic_t(&bg->reservations);
6530         btrfs_put_block_group(bg);
6531 }
6532
6533 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6534 {
6535         struct btrfs_space_info *space_info = bg->space_info;
6536
6537         ASSERT(bg->ro);
6538
6539         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6540                 return;
6541
6542         /*
6543          * Our block group is read only but before we set it to read only,
6544          * some task might have had allocated an extent from it already, but it
6545          * has not yet created a respective ordered extent (and added it to a
6546          * root's list of ordered extents).
6547          * Therefore wait for any task currently allocating extents, since the
6548          * block group's reservations counter is incremented while a read lock
6549          * on the groups' semaphore is held and decremented after releasing
6550          * the read access on that semaphore and creating the ordered extent.
6551          */
6552         down_write(&space_info->groups_sem);
6553         up_write(&space_info->groups_sem);
6554
6555         wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6556                          TASK_UNINTERRUPTIBLE);
6557 }
6558
6559 /**
6560  * btrfs_add_reserved_bytes - update the block_group and space info counters
6561  * @cache:      The cache we are manipulating
6562  * @ram_bytes:  The number of bytes of file content, and will be same to
6563  *              @num_bytes except for the compress path.
6564  * @num_bytes:  The number of bytes in question
6565  * @delalloc:   The blocks are allocated for the delalloc write
6566  *
6567  * This is called by the allocator when it reserves space. If this is a
6568  * reservation and the block group has become read only we cannot make the
6569  * reservation and return -EAGAIN, otherwise this function always succeeds.
6570  */
6571 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6572                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6573 {
6574         struct btrfs_space_info *space_info = cache->space_info;
6575         int ret = 0;
6576
6577         spin_lock(&space_info->lock);
6578         spin_lock(&cache->lock);
6579         if (cache->ro) {
6580                 ret = -EAGAIN;
6581         } else {
6582                 cache->reserved += num_bytes;
6583                 space_info->bytes_reserved += num_bytes;
6584
6585                 trace_btrfs_space_reservation(cache->fs_info,
6586                                 "space_info", space_info->flags,
6587                                 ram_bytes, 0);
6588                 space_info->bytes_may_use -= ram_bytes;
6589                 if (delalloc)
6590                         cache->delalloc_bytes += num_bytes;
6591         }
6592         spin_unlock(&cache->lock);
6593         spin_unlock(&space_info->lock);
6594         return ret;
6595 }
6596
6597 /**
6598  * btrfs_free_reserved_bytes - update the block_group and space info counters
6599  * @cache:      The cache we are manipulating
6600  * @num_bytes:  The number of bytes in question
6601  * @delalloc:   The blocks are allocated for the delalloc write
6602  *
6603  * This is called by somebody who is freeing space that was never actually used
6604  * on disk.  For example if you reserve some space for a new leaf in transaction
6605  * A and before transaction A commits you free that leaf, you call this with
6606  * reserve set to 0 in order to clear the reservation.
6607  */
6608
6609 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6610                                      u64 num_bytes, int delalloc)
6611 {
6612         struct btrfs_space_info *space_info = cache->space_info;
6613         int ret = 0;
6614
6615         spin_lock(&space_info->lock);
6616         spin_lock(&cache->lock);
6617         if (cache->ro)
6618                 space_info->bytes_readonly += num_bytes;
6619         cache->reserved -= num_bytes;
6620         space_info->bytes_reserved -= num_bytes;
6621
6622         if (delalloc)
6623                 cache->delalloc_bytes -= num_bytes;
6624         spin_unlock(&cache->lock);
6625         spin_unlock(&space_info->lock);
6626         return ret;
6627 }
6628 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6629 {
6630         struct btrfs_caching_control *next;
6631         struct btrfs_caching_control *caching_ctl;
6632         struct btrfs_block_group_cache *cache;
6633
6634         down_write(&fs_info->commit_root_sem);
6635
6636         list_for_each_entry_safe(caching_ctl, next,
6637                                  &fs_info->caching_block_groups, list) {
6638                 cache = caching_ctl->block_group;
6639                 if (block_group_cache_done(cache)) {
6640                         cache->last_byte_to_unpin = (u64)-1;
6641                         list_del_init(&caching_ctl->list);
6642                         put_caching_control(caching_ctl);
6643                 } else {
6644                         cache->last_byte_to_unpin = caching_ctl->progress;
6645                 }
6646         }
6647
6648         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6649                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6650         else
6651                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6652
6653         up_write(&fs_info->commit_root_sem);
6654
6655         update_global_block_rsv(fs_info);
6656 }
6657
6658 /*
6659  * Returns the free cluster for the given space info and sets empty_cluster to
6660  * what it should be based on the mount options.
6661  */
6662 static struct btrfs_free_cluster *
6663 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6664                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6665 {
6666         struct btrfs_free_cluster *ret = NULL;
6667
6668         *empty_cluster = 0;
6669         if (btrfs_mixed_space_info(space_info))
6670                 return ret;
6671
6672         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6673                 ret = &fs_info->meta_alloc_cluster;
6674                 if (btrfs_test_opt(fs_info, SSD))
6675                         *empty_cluster = SZ_2M;
6676                 else
6677                         *empty_cluster = SZ_64K;
6678         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6679                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6680                 *empty_cluster = SZ_2M;
6681                 ret = &fs_info->data_alloc_cluster;
6682         }
6683
6684         return ret;
6685 }
6686
6687 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6688                               u64 start, u64 end,
6689                               const bool return_free_space)
6690 {
6691         struct btrfs_block_group_cache *cache = NULL;
6692         struct btrfs_space_info *space_info;
6693         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6694         struct btrfs_free_cluster *cluster = NULL;
6695         u64 len;
6696         u64 total_unpinned = 0;
6697         u64 empty_cluster = 0;
6698         bool readonly;
6699
6700         while (start <= end) {
6701                 readonly = false;
6702                 if (!cache ||
6703                     start >= cache->key.objectid + cache->key.offset) {
6704                         if (cache)
6705                                 btrfs_put_block_group(cache);
6706                         total_unpinned = 0;
6707                         cache = btrfs_lookup_block_group(fs_info, start);
6708                         BUG_ON(!cache); /* Logic error */
6709
6710                         cluster = fetch_cluster_info(fs_info,
6711                                                      cache->space_info,
6712                                                      &empty_cluster);
6713                         empty_cluster <<= 1;
6714                 }
6715
6716                 len = cache->key.objectid + cache->key.offset - start;
6717                 len = min(len, end + 1 - start);
6718
6719                 if (start < cache->last_byte_to_unpin) {
6720                         len = min(len, cache->last_byte_to_unpin - start);
6721                         if (return_free_space)
6722                                 btrfs_add_free_space(cache, start, len);
6723                 }
6724
6725                 start += len;
6726                 total_unpinned += len;
6727                 space_info = cache->space_info;
6728
6729                 /*
6730                  * If this space cluster has been marked as fragmented and we've
6731                  * unpinned enough in this block group to potentially allow a
6732                  * cluster to be created inside of it go ahead and clear the
6733                  * fragmented check.
6734                  */
6735                 if (cluster && cluster->fragmented &&
6736                     total_unpinned > empty_cluster) {
6737                         spin_lock(&cluster->lock);
6738                         cluster->fragmented = 0;
6739                         spin_unlock(&cluster->lock);
6740                 }
6741
6742                 spin_lock(&space_info->lock);
6743                 spin_lock(&cache->lock);
6744                 cache->pinned -= len;
6745                 space_info->bytes_pinned -= len;
6746
6747                 trace_btrfs_space_reservation(fs_info, "pinned",
6748                                               space_info->flags, len, 0);
6749                 space_info->max_extent_size = 0;
6750                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6751                 if (cache->ro) {
6752                         space_info->bytes_readonly += len;
6753                         readonly = true;
6754                 }
6755                 spin_unlock(&cache->lock);
6756                 if (!readonly && return_free_space &&
6757                     global_rsv->space_info == space_info) {
6758                         u64 to_add = len;
6759
6760                         spin_lock(&global_rsv->lock);
6761                         if (!global_rsv->full) {
6762                                 to_add = min(len, global_rsv->size -
6763                                              global_rsv->reserved);
6764                                 global_rsv->reserved += to_add;
6765                                 space_info->bytes_may_use += to_add;
6766                                 if (global_rsv->reserved >= global_rsv->size)
6767                                         global_rsv->full = 1;
6768                                 trace_btrfs_space_reservation(fs_info,
6769                                                               "space_info",
6770                                                               space_info->flags,
6771                                                               to_add, 1);
6772                                 len -= to_add;
6773                         }
6774                         spin_unlock(&global_rsv->lock);
6775                         /* Add to any tickets we may have */
6776                         if (len)
6777                                 space_info_add_new_bytes(fs_info, space_info,
6778                                                          len);
6779                 }
6780                 spin_unlock(&space_info->lock);
6781         }
6782
6783         if (cache)
6784                 btrfs_put_block_group(cache);
6785         return 0;
6786 }
6787
6788 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6789                                struct btrfs_fs_info *fs_info)
6790 {
6791         struct btrfs_block_group_cache *block_group, *tmp;
6792         struct list_head *deleted_bgs;
6793         struct extent_io_tree *unpin;
6794         u64 start;
6795         u64 end;
6796         int ret;
6797
6798         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6799                 unpin = &fs_info->freed_extents[1];
6800         else
6801                 unpin = &fs_info->freed_extents[0];
6802
6803         while (!trans->aborted) {
6804                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6805                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6806                                             EXTENT_DIRTY, NULL);
6807                 if (ret) {
6808                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6809                         break;
6810                 }
6811
6812                 if (btrfs_test_opt(fs_info, DISCARD))
6813                         ret = btrfs_discard_extent(fs_info, start,
6814                                                    end + 1 - start, NULL);
6815
6816                 clear_extent_dirty(unpin, start, end);
6817                 unpin_extent_range(fs_info, start, end, true);
6818                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6819                 cond_resched();
6820         }
6821
6822         /*
6823          * Transaction is finished.  We don't need the lock anymore.  We
6824          * do need to clean up the block groups in case of a transaction
6825          * abort.
6826          */
6827         deleted_bgs = &trans->transaction->deleted_bgs;
6828         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6829                 u64 trimmed = 0;
6830
6831                 ret = -EROFS;
6832                 if (!trans->aborted)
6833                         ret = btrfs_discard_extent(fs_info,
6834                                                    block_group->key.objectid,
6835                                                    block_group->key.offset,
6836                                                    &trimmed);
6837
6838                 list_del_init(&block_group->bg_list);
6839                 btrfs_put_block_group_trimming(block_group);
6840                 btrfs_put_block_group(block_group);
6841
6842                 if (ret) {
6843                         const char *errstr = btrfs_decode_error(ret);
6844                         btrfs_warn(fs_info,
6845                            "discard failed while removing blockgroup: errno=%d %s",
6846                                    ret, errstr);
6847                 }
6848         }
6849
6850         return 0;
6851 }
6852
6853 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6854                                 struct btrfs_fs_info *info,
6855                                 struct btrfs_delayed_ref_node *node, u64 parent,
6856                                 u64 root_objectid, u64 owner_objectid,
6857                                 u64 owner_offset, int refs_to_drop,
6858                                 struct btrfs_delayed_extent_op *extent_op)
6859 {
6860         struct btrfs_key key;
6861         struct btrfs_path *path;
6862         struct btrfs_root *extent_root = info->extent_root;
6863         struct extent_buffer *leaf;
6864         struct btrfs_extent_item *ei;
6865         struct btrfs_extent_inline_ref *iref;
6866         int ret;
6867         int is_data;
6868         int extent_slot = 0;
6869         int found_extent = 0;
6870         int num_to_del = 1;
6871         u32 item_size;
6872         u64 refs;
6873         u64 bytenr = node->bytenr;
6874         u64 num_bytes = node->num_bytes;
6875         int last_ref = 0;
6876         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6877
6878         path = btrfs_alloc_path();
6879         if (!path)
6880                 return -ENOMEM;
6881
6882         path->reada = READA_FORWARD;
6883         path->leave_spinning = 1;
6884
6885         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6886         BUG_ON(!is_data && refs_to_drop != 1);
6887
6888         if (is_data)
6889                 skinny_metadata = false;
6890
6891         ret = lookup_extent_backref(trans, info, path, &iref,
6892                                     bytenr, num_bytes, parent,
6893                                     root_objectid, owner_objectid,
6894                                     owner_offset);
6895         if (ret == 0) {
6896                 extent_slot = path->slots[0];
6897                 while (extent_slot >= 0) {
6898                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6899                                               extent_slot);
6900                         if (key.objectid != bytenr)
6901                                 break;
6902                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6903                             key.offset == num_bytes) {
6904                                 found_extent = 1;
6905                                 break;
6906                         }
6907                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6908                             key.offset == owner_objectid) {
6909                                 found_extent = 1;
6910                                 break;
6911                         }
6912                         if (path->slots[0] - extent_slot > 5)
6913                                 break;
6914                         extent_slot--;
6915                 }
6916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6917                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6918                 if (found_extent && item_size < sizeof(*ei))
6919                         found_extent = 0;
6920 #endif
6921                 if (!found_extent) {
6922                         BUG_ON(iref);
6923                         ret = remove_extent_backref(trans, info, path, NULL,
6924                                                     refs_to_drop,
6925                                                     is_data, &last_ref);
6926                         if (ret) {
6927                                 btrfs_abort_transaction(trans, ret);
6928                                 goto out;
6929                         }
6930                         btrfs_release_path(path);
6931                         path->leave_spinning = 1;
6932
6933                         key.objectid = bytenr;
6934                         key.type = BTRFS_EXTENT_ITEM_KEY;
6935                         key.offset = num_bytes;
6936
6937                         if (!is_data && skinny_metadata) {
6938                                 key.type = BTRFS_METADATA_ITEM_KEY;
6939                                 key.offset = owner_objectid;
6940                         }
6941
6942                         ret = btrfs_search_slot(trans, extent_root,
6943                                                 &key, path, -1, 1);
6944                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6945                                 /*
6946                                  * Couldn't find our skinny metadata item,
6947                                  * see if we have ye olde extent item.
6948                                  */
6949                                 path->slots[0]--;
6950                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6951                                                       path->slots[0]);
6952                                 if (key.objectid == bytenr &&
6953                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6954                                     key.offset == num_bytes)
6955                                         ret = 0;
6956                         }
6957
6958                         if (ret > 0 && skinny_metadata) {
6959                                 skinny_metadata = false;
6960                                 key.objectid = bytenr;
6961                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6962                                 key.offset = num_bytes;
6963                                 btrfs_release_path(path);
6964                                 ret = btrfs_search_slot(trans, extent_root,
6965                                                         &key, path, -1, 1);
6966                         }
6967
6968                         if (ret) {
6969                                 btrfs_err(info,
6970                                           "umm, got %d back from search, was looking for %llu",
6971                                           ret, bytenr);
6972                                 if (ret > 0)
6973                                         btrfs_print_leaf(path->nodes[0]);
6974                         }
6975                         if (ret < 0) {
6976                                 btrfs_abort_transaction(trans, ret);
6977                                 goto out;
6978                         }
6979                         extent_slot = path->slots[0];
6980                 }
6981         } else if (WARN_ON(ret == -ENOENT)) {
6982                 btrfs_print_leaf(path->nodes[0]);
6983                 btrfs_err(info,
6984                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6985                         bytenr, parent, root_objectid, owner_objectid,
6986                         owner_offset);
6987                 btrfs_abort_transaction(trans, ret);
6988                 goto out;
6989         } else {
6990                 btrfs_abort_transaction(trans, ret);
6991                 goto out;
6992         }
6993
6994         leaf = path->nodes[0];
6995         item_size = btrfs_item_size_nr(leaf, extent_slot);
6996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6997         if (item_size < sizeof(*ei)) {
6998                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6999                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7000                                              0);
7001                 if (ret < 0) {
7002                         btrfs_abort_transaction(trans, ret);
7003                         goto out;
7004                 }
7005
7006                 btrfs_release_path(path);
7007                 path->leave_spinning = 1;
7008
7009                 key.objectid = bytenr;
7010                 key.type = BTRFS_EXTENT_ITEM_KEY;
7011                 key.offset = num_bytes;
7012
7013                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7014                                         -1, 1);
7015                 if (ret) {
7016                         btrfs_err(info,
7017                                   "umm, got %d back from search, was looking for %llu",
7018                                 ret, bytenr);
7019                         btrfs_print_leaf(path->nodes[0]);
7020                 }
7021                 if (ret < 0) {
7022                         btrfs_abort_transaction(trans, ret);
7023                         goto out;
7024                 }
7025
7026                 extent_slot = path->slots[0];
7027                 leaf = path->nodes[0];
7028                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7029         }
7030 #endif
7031         BUG_ON(item_size < sizeof(*ei));
7032         ei = btrfs_item_ptr(leaf, extent_slot,
7033                             struct btrfs_extent_item);
7034         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7035             key.type == BTRFS_EXTENT_ITEM_KEY) {
7036                 struct btrfs_tree_block_info *bi;
7037                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7038                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7039                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7040         }
7041
7042         refs = btrfs_extent_refs(leaf, ei);
7043         if (refs < refs_to_drop) {
7044                 btrfs_err(info,
7045                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7046                           refs_to_drop, refs, bytenr);
7047                 ret = -EINVAL;
7048                 btrfs_abort_transaction(trans, ret);
7049                 goto out;
7050         }
7051         refs -= refs_to_drop;
7052
7053         if (refs > 0) {
7054                 if (extent_op)
7055                         __run_delayed_extent_op(extent_op, leaf, ei);
7056                 /*
7057                  * In the case of inline back ref, reference count will
7058                  * be updated by remove_extent_backref
7059                  */
7060                 if (iref) {
7061                         BUG_ON(!found_extent);
7062                 } else {
7063                         btrfs_set_extent_refs(leaf, ei, refs);
7064                         btrfs_mark_buffer_dirty(leaf);
7065                 }
7066                 if (found_extent) {
7067                         ret = remove_extent_backref(trans, info, path,
7068                                                     iref, refs_to_drop,
7069                                                     is_data, &last_ref);
7070                         if (ret) {
7071                                 btrfs_abort_transaction(trans, ret);
7072                                 goto out;
7073                         }
7074                 }
7075         } else {
7076                 if (found_extent) {
7077                         BUG_ON(is_data && refs_to_drop !=
7078                                extent_data_ref_count(path, iref));
7079                         if (iref) {
7080                                 BUG_ON(path->slots[0] != extent_slot);
7081                         } else {
7082                                 BUG_ON(path->slots[0] != extent_slot + 1);
7083                                 path->slots[0] = extent_slot;
7084                                 num_to_del = 2;
7085                         }
7086                 }
7087
7088                 last_ref = 1;
7089                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7090                                       num_to_del);
7091                 if (ret) {
7092                         btrfs_abort_transaction(trans, ret);
7093                         goto out;
7094                 }
7095                 btrfs_release_path(path);
7096
7097                 if (is_data) {
7098                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7099                         if (ret) {
7100                                 btrfs_abort_transaction(trans, ret);
7101                                 goto out;
7102                         }
7103                 }
7104
7105                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7106                 if (ret) {
7107                         btrfs_abort_transaction(trans, ret);
7108                         goto out;
7109                 }
7110
7111                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7112                 if (ret) {
7113                         btrfs_abort_transaction(trans, ret);
7114                         goto out;
7115                 }
7116         }
7117         btrfs_release_path(path);
7118
7119 out:
7120         btrfs_free_path(path);
7121         return ret;
7122 }
7123
7124 /*
7125  * when we free an block, it is possible (and likely) that we free the last
7126  * delayed ref for that extent as well.  This searches the delayed ref tree for
7127  * a given extent, and if there are no other delayed refs to be processed, it
7128  * removes it from the tree.
7129  */
7130 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7131                                       u64 bytenr)
7132 {
7133         struct btrfs_delayed_ref_head *head;
7134         struct btrfs_delayed_ref_root *delayed_refs;
7135         int ret = 0;
7136
7137         delayed_refs = &trans->transaction->delayed_refs;
7138         spin_lock(&delayed_refs->lock);
7139         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7140         if (!head)
7141                 goto out_delayed_unlock;
7142
7143         spin_lock(&head->lock);
7144         if (!RB_EMPTY_ROOT(&head->ref_tree))
7145                 goto out;
7146
7147         if (head->extent_op) {
7148                 if (!head->must_insert_reserved)
7149                         goto out;
7150                 btrfs_free_delayed_extent_op(head->extent_op);
7151                 head->extent_op = NULL;
7152         }
7153
7154         /*
7155          * waiting for the lock here would deadlock.  If someone else has it
7156          * locked they are already in the process of dropping it anyway
7157          */
7158         if (!mutex_trylock(&head->mutex))
7159                 goto out;
7160
7161         /*
7162          * at this point we have a head with no other entries.  Go
7163          * ahead and process it.
7164          */
7165         rb_erase(&head->href_node, &delayed_refs->href_root);
7166         RB_CLEAR_NODE(&head->href_node);
7167         atomic_dec(&delayed_refs->num_entries);
7168
7169         /*
7170          * we don't take a ref on the node because we're removing it from the
7171          * tree, so we just steal the ref the tree was holding.
7172          */
7173         delayed_refs->num_heads--;
7174         if (head->processing == 0)
7175                 delayed_refs->num_heads_ready--;
7176         head->processing = 0;
7177         spin_unlock(&head->lock);
7178         spin_unlock(&delayed_refs->lock);
7179
7180         BUG_ON(head->extent_op);
7181         if (head->must_insert_reserved)
7182                 ret = 1;
7183
7184         mutex_unlock(&head->mutex);
7185         btrfs_put_delayed_ref_head(head);
7186         return ret;
7187 out:
7188         spin_unlock(&head->lock);
7189
7190 out_delayed_unlock:
7191         spin_unlock(&delayed_refs->lock);
7192         return 0;
7193 }
7194
7195 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7196                            struct btrfs_root *root,
7197                            struct extent_buffer *buf,
7198                            u64 parent, int last_ref)
7199 {
7200         struct btrfs_fs_info *fs_info = root->fs_info;
7201         int pin = 1;
7202         int ret;
7203
7204         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7205                 int old_ref_mod, new_ref_mod;
7206
7207                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7208                                    root->root_key.objectid,
7209                                    btrfs_header_level(buf), 0,
7210                                    BTRFS_DROP_DELAYED_REF);
7211                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7212                                                  buf->len, parent,
7213                                                  root->root_key.objectid,
7214                                                  btrfs_header_level(buf),
7215                                                  BTRFS_DROP_DELAYED_REF, NULL,
7216                                                  &old_ref_mod, &new_ref_mod);
7217                 BUG_ON(ret); /* -ENOMEM */
7218                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7219         }
7220
7221         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7222                 struct btrfs_block_group_cache *cache;
7223
7224                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225                         ret = check_ref_cleanup(trans, buf->start);
7226                         if (!ret)
7227                                 goto out;
7228                 }
7229
7230                 pin = 0;
7231                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7232
7233                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7234                         pin_down_extent(fs_info, cache, buf->start,
7235                                         buf->len, 1);
7236                         btrfs_put_block_group(cache);
7237                         goto out;
7238                 }
7239
7240                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7241
7242                 btrfs_add_free_space(cache, buf->start, buf->len);
7243                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7244                 btrfs_put_block_group(cache);
7245                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7246         }
7247 out:
7248         if (pin)
7249                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7250                                  root->root_key.objectid);
7251
7252         if (last_ref) {
7253                 /*
7254                  * Deleting the buffer, clear the corrupt flag since it doesn't
7255                  * matter anymore.
7256                  */
7257                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7258         }
7259 }
7260
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7263                       struct btrfs_root *root,
7264                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7265                       u64 owner, u64 offset)
7266 {
7267         struct btrfs_fs_info *fs_info = root->fs_info;
7268         int old_ref_mod, new_ref_mod;
7269         int ret;
7270
7271         if (btrfs_is_testing(fs_info))
7272                 return 0;
7273
7274         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7275                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7276                                    root_objectid, owner, offset,
7277                                    BTRFS_DROP_DELAYED_REF);
7278
7279         /*
7280          * tree log blocks never actually go into the extent allocation
7281          * tree, just update pinning info and exit early.
7282          */
7283         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7284                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7285                 /* unlocks the pinned mutex */
7286                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7287                 old_ref_mod = new_ref_mod = 0;
7288                 ret = 0;
7289         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7290                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7291                                                  num_bytes, parent,
7292                                                  root_objectid, (int)owner,
7293                                                  BTRFS_DROP_DELAYED_REF, NULL,
7294                                                  &old_ref_mod, &new_ref_mod);
7295         } else {
7296                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7297                                                  num_bytes, parent,
7298                                                  root_objectid, owner, offset,
7299                                                  0, BTRFS_DROP_DELAYED_REF,
7300                                                  &old_ref_mod, &new_ref_mod);
7301         }
7302
7303         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7304                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7305
7306         return ret;
7307 }
7308
7309 /*
7310  * when we wait for progress in the block group caching, its because
7311  * our allocation attempt failed at least once.  So, we must sleep
7312  * and let some progress happen before we try again.
7313  *
7314  * This function will sleep at least once waiting for new free space to
7315  * show up, and then it will check the block group free space numbers
7316  * for our min num_bytes.  Another option is to have it go ahead
7317  * and look in the rbtree for a free extent of a given size, but this
7318  * is a good start.
7319  *
7320  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7321  * any of the information in this block group.
7322  */
7323 static noinline void
7324 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7325                                 u64 num_bytes)
7326 {
7327         struct btrfs_caching_control *caching_ctl;
7328
7329         caching_ctl = get_caching_control(cache);
7330         if (!caching_ctl)
7331                 return;
7332
7333         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7334                    (cache->free_space_ctl->free_space >= num_bytes));
7335
7336         put_caching_control(caching_ctl);
7337 }
7338
7339 static noinline int
7340 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7341 {
7342         struct btrfs_caching_control *caching_ctl;
7343         int ret = 0;
7344
7345         caching_ctl = get_caching_control(cache);
7346         if (!caching_ctl)
7347                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7348
7349         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7350         if (cache->cached == BTRFS_CACHE_ERROR)
7351                 ret = -EIO;
7352         put_caching_control(caching_ctl);
7353         return ret;
7354 }
7355
7356 int __get_raid_index(u64 flags)
7357 {
7358         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7359                 return BTRFS_RAID_RAID10;
7360         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7361                 return BTRFS_RAID_RAID1;
7362         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7363                 return BTRFS_RAID_DUP;
7364         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7365                 return BTRFS_RAID_RAID0;
7366         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7367                 return BTRFS_RAID_RAID5;
7368         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7369                 return BTRFS_RAID_RAID6;
7370
7371         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7372 }
7373
7374 int get_block_group_index(struct btrfs_block_group_cache *cache)
7375 {
7376         return __get_raid_index(cache->flags);
7377 }
7378
7379 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7380         [BTRFS_RAID_RAID10]     = "raid10",
7381         [BTRFS_RAID_RAID1]      = "raid1",
7382         [BTRFS_RAID_DUP]        = "dup",
7383         [BTRFS_RAID_RAID0]      = "raid0",
7384         [BTRFS_RAID_SINGLE]     = "single",
7385         [BTRFS_RAID_RAID5]      = "raid5",
7386         [BTRFS_RAID_RAID6]      = "raid6",
7387 };
7388
7389 static const char *get_raid_name(enum btrfs_raid_types type)
7390 {
7391         if (type >= BTRFS_NR_RAID_TYPES)
7392                 return NULL;
7393
7394         return btrfs_raid_type_names[type];
7395 }
7396
7397 enum btrfs_loop_type {
7398         LOOP_CACHING_NOWAIT = 0,
7399         LOOP_CACHING_WAIT = 1,
7400         LOOP_ALLOC_CHUNK = 2,
7401         LOOP_NO_EMPTY_SIZE = 3,
7402 };
7403
7404 static inline void
7405 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7406                        int delalloc)
7407 {
7408         if (delalloc)
7409                 down_read(&cache->data_rwsem);
7410 }
7411
7412 static inline void
7413 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7414                        int delalloc)
7415 {
7416         btrfs_get_block_group(cache);
7417         if (delalloc)
7418                 down_read(&cache->data_rwsem);
7419 }
7420
7421 static struct btrfs_block_group_cache *
7422 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7423                    struct btrfs_free_cluster *cluster,
7424                    int delalloc)
7425 {
7426         struct btrfs_block_group_cache *used_bg = NULL;
7427
7428         spin_lock(&cluster->refill_lock);
7429         while (1) {
7430                 used_bg = cluster->block_group;
7431                 if (!used_bg)
7432                         return NULL;
7433
7434                 if (used_bg == block_group)
7435                         return used_bg;
7436
7437                 btrfs_get_block_group(used_bg);
7438
7439                 if (!delalloc)
7440                         return used_bg;
7441
7442                 if (down_read_trylock(&used_bg->data_rwsem))
7443                         return used_bg;
7444
7445                 spin_unlock(&cluster->refill_lock);
7446
7447                 /* We should only have one-level nested. */
7448                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7449
7450                 spin_lock(&cluster->refill_lock);
7451                 if (used_bg == cluster->block_group)
7452                         return used_bg;
7453
7454                 up_read(&used_bg->data_rwsem);
7455                 btrfs_put_block_group(used_bg);
7456         }
7457 }
7458
7459 static inline void
7460 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7461                          int delalloc)
7462 {
7463         if (delalloc)
7464                 up_read(&cache->data_rwsem);
7465         btrfs_put_block_group(cache);
7466 }
7467
7468 /*
7469  * walks the btree of allocated extents and find a hole of a given size.
7470  * The key ins is changed to record the hole:
7471  * ins->objectid == start position
7472  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7473  * ins->offset == the size of the hole.
7474  * Any available blocks before search_start are skipped.
7475  *
7476  * If there is no suitable free space, we will record the max size of
7477  * the free space extent currently.
7478  */
7479 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7480                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7481                                 u64 hint_byte, struct btrfs_key *ins,
7482                                 u64 flags, int delalloc)
7483 {
7484         int ret = 0;
7485         struct btrfs_root *root = fs_info->extent_root;
7486         struct btrfs_free_cluster *last_ptr = NULL;
7487         struct btrfs_block_group_cache *block_group = NULL;
7488         u64 search_start = 0;
7489         u64 max_extent_size = 0;
7490         u64 empty_cluster = 0;
7491         struct btrfs_space_info *space_info;
7492         int loop = 0;
7493         int index = __get_raid_index(flags);
7494         bool failed_cluster_refill = false;
7495         bool failed_alloc = false;
7496         bool use_cluster = true;
7497         bool have_caching_bg = false;
7498         bool orig_have_caching_bg = false;
7499         bool full_search = false;
7500
7501         WARN_ON(num_bytes < fs_info->sectorsize);
7502         ins->type = BTRFS_EXTENT_ITEM_KEY;
7503         ins->objectid = 0;
7504         ins->offset = 0;
7505
7506         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7507
7508         space_info = __find_space_info(fs_info, flags);
7509         if (!space_info) {
7510                 btrfs_err(fs_info, "No space info for %llu", flags);
7511                 return -ENOSPC;
7512         }
7513
7514         /*
7515          * If our free space is heavily fragmented we may not be able to make
7516          * big contiguous allocations, so instead of doing the expensive search
7517          * for free space, simply return ENOSPC with our max_extent_size so we
7518          * can go ahead and search for a more manageable chunk.
7519          *
7520          * If our max_extent_size is large enough for our allocation simply
7521          * disable clustering since we will likely not be able to find enough
7522          * space to create a cluster and induce latency trying.
7523          */
7524         if (unlikely(space_info->max_extent_size)) {
7525                 spin_lock(&space_info->lock);
7526                 if (space_info->max_extent_size &&
7527                     num_bytes > space_info->max_extent_size) {
7528                         ins->offset = space_info->max_extent_size;
7529                         spin_unlock(&space_info->lock);
7530                         return -ENOSPC;
7531                 } else if (space_info->max_extent_size) {
7532                         use_cluster = false;
7533                 }
7534                 spin_unlock(&space_info->lock);
7535         }
7536
7537         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7538         if (last_ptr) {
7539                 spin_lock(&last_ptr->lock);
7540                 if (last_ptr->block_group)
7541                         hint_byte = last_ptr->window_start;
7542                 if (last_ptr->fragmented) {
7543                         /*
7544                          * We still set window_start so we can keep track of the
7545                          * last place we found an allocation to try and save
7546                          * some time.
7547                          */
7548                         hint_byte = last_ptr->window_start;
7549                         use_cluster = false;
7550                 }
7551                 spin_unlock(&last_ptr->lock);
7552         }
7553
7554         search_start = max(search_start, first_logical_byte(fs_info, 0));
7555         search_start = max(search_start, hint_byte);
7556         if (search_start == hint_byte) {
7557                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7558                 /*
7559                  * we don't want to use the block group if it doesn't match our
7560                  * allocation bits, or if its not cached.
7561                  *
7562                  * However if we are re-searching with an ideal block group
7563                  * picked out then we don't care that the block group is cached.
7564                  */
7565                 if (block_group && block_group_bits(block_group, flags) &&
7566                     block_group->cached != BTRFS_CACHE_NO) {
7567                         down_read(&space_info->groups_sem);
7568                         if (list_empty(&block_group->list) ||
7569                             block_group->ro) {
7570                                 /*
7571                                  * someone is removing this block group,
7572                                  * we can't jump into the have_block_group
7573                                  * target because our list pointers are not
7574                                  * valid
7575                                  */
7576                                 btrfs_put_block_group(block_group);
7577                                 up_read(&space_info->groups_sem);
7578                         } else {
7579                                 index = get_block_group_index(block_group);
7580                                 btrfs_lock_block_group(block_group, delalloc);
7581                                 goto have_block_group;
7582                         }
7583                 } else if (block_group) {
7584                         btrfs_put_block_group(block_group);
7585                 }
7586         }
7587 search:
7588         have_caching_bg = false;
7589         if (index == 0 || index == __get_raid_index(flags))
7590                 full_search = true;
7591         down_read(&space_info->groups_sem);
7592         list_for_each_entry(block_group, &space_info->block_groups[index],
7593                             list) {
7594                 u64 offset;
7595                 int cached;
7596
7597                 /* If the block group is read-only, we can skip it entirely. */
7598                 if (unlikely(block_group->ro))
7599                         continue;
7600
7601                 btrfs_grab_block_group(block_group, delalloc);
7602                 search_start = block_group->key.objectid;
7603
7604                 /*
7605                  * this can happen if we end up cycling through all the
7606                  * raid types, but we want to make sure we only allocate
7607                  * for the proper type.
7608                  */
7609                 if (!block_group_bits(block_group, flags)) {
7610                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7611                                 BTRFS_BLOCK_GROUP_RAID1 |
7612                                 BTRFS_BLOCK_GROUP_RAID5 |
7613                                 BTRFS_BLOCK_GROUP_RAID6 |
7614                                 BTRFS_BLOCK_GROUP_RAID10;
7615
7616                         /*
7617                          * if they asked for extra copies and this block group
7618                          * doesn't provide them, bail.  This does allow us to
7619                          * fill raid0 from raid1.
7620                          */
7621                         if ((flags & extra) && !(block_group->flags & extra))
7622                                 goto loop;
7623                 }
7624
7625 have_block_group:
7626                 cached = block_group_cache_done(block_group);
7627                 if (unlikely(!cached)) {
7628                         have_caching_bg = true;
7629                         ret = cache_block_group(block_group, 0);
7630                         BUG_ON(ret < 0);
7631                         ret = 0;
7632                 }
7633
7634                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7635                         goto loop;
7636
7637                 /*
7638                  * Ok we want to try and use the cluster allocator, so
7639                  * lets look there
7640                  */
7641                 if (last_ptr && use_cluster) {
7642                         struct btrfs_block_group_cache *used_block_group;
7643                         unsigned long aligned_cluster;
7644                         /*
7645                          * the refill lock keeps out other
7646                          * people trying to start a new cluster
7647                          */
7648                         used_block_group = btrfs_lock_cluster(block_group,
7649                                                               last_ptr,
7650                                                               delalloc);
7651                         if (!used_block_group)
7652                                 goto refill_cluster;
7653
7654                         if (used_block_group != block_group &&
7655                             (used_block_group->ro ||
7656                              !block_group_bits(used_block_group, flags)))
7657                                 goto release_cluster;
7658
7659                         offset = btrfs_alloc_from_cluster(used_block_group,
7660                                                 last_ptr,
7661                                                 num_bytes,
7662                                                 used_block_group->key.objectid,
7663                                                 &max_extent_size);
7664                         if (offset) {
7665                                 /* we have a block, we're done */
7666                                 spin_unlock(&last_ptr->refill_lock);
7667                                 trace_btrfs_reserve_extent_cluster(fs_info,
7668                                                 used_block_group,
7669                                                 search_start, num_bytes);
7670                                 if (used_block_group != block_group) {
7671                                         btrfs_release_block_group(block_group,
7672                                                                   delalloc);
7673                                         block_group = used_block_group;
7674                                 }
7675                                 goto checks;
7676                         }
7677
7678                         WARN_ON(last_ptr->block_group != used_block_group);
7679 release_cluster:
7680                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7681                          * set up a new clusters, so lets just skip it
7682                          * and let the allocator find whatever block
7683                          * it can find.  If we reach this point, we
7684                          * will have tried the cluster allocator
7685                          * plenty of times and not have found
7686                          * anything, so we are likely way too
7687                          * fragmented for the clustering stuff to find
7688                          * anything.
7689                          *
7690                          * However, if the cluster is taken from the
7691                          * current block group, release the cluster
7692                          * first, so that we stand a better chance of
7693                          * succeeding in the unclustered
7694                          * allocation.  */
7695                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7696                             used_block_group != block_group) {
7697                                 spin_unlock(&last_ptr->refill_lock);
7698                                 btrfs_release_block_group(used_block_group,
7699                                                           delalloc);
7700                                 goto unclustered_alloc;
7701                         }
7702
7703                         /*
7704                          * this cluster didn't work out, free it and
7705                          * start over
7706                          */
7707                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7708
7709                         if (used_block_group != block_group)
7710                                 btrfs_release_block_group(used_block_group,
7711                                                           delalloc);
7712 refill_cluster:
7713                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7714                                 spin_unlock(&last_ptr->refill_lock);
7715                                 goto unclustered_alloc;
7716                         }
7717
7718                         aligned_cluster = max_t(unsigned long,
7719                                                 empty_cluster + empty_size,
7720                                               block_group->full_stripe_len);
7721
7722                         /* allocate a cluster in this block group */
7723                         ret = btrfs_find_space_cluster(fs_info, block_group,
7724                                                        last_ptr, search_start,
7725                                                        num_bytes,
7726                                                        aligned_cluster);
7727                         if (ret == 0) {
7728                                 /*
7729                                  * now pull our allocation out of this
7730                                  * cluster
7731                                  */
7732                                 offset = btrfs_alloc_from_cluster(block_group,
7733                                                         last_ptr,
7734                                                         num_bytes,
7735                                                         search_start,
7736                                                         &max_extent_size);
7737                                 if (offset) {
7738                                         /* we found one, proceed */
7739                                         spin_unlock(&last_ptr->refill_lock);
7740                                         trace_btrfs_reserve_extent_cluster(fs_info,
7741                                                 block_group, search_start,
7742                                                 num_bytes);
7743                                         goto checks;
7744                                 }
7745                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7746                                    && !failed_cluster_refill) {
7747                                 spin_unlock(&last_ptr->refill_lock);
7748
7749                                 failed_cluster_refill = true;
7750                                 wait_block_group_cache_progress(block_group,
7751                                        num_bytes + empty_cluster + empty_size);
7752                                 goto have_block_group;
7753                         }
7754
7755                         /*
7756                          * at this point we either didn't find a cluster
7757                          * or we weren't able to allocate a block from our
7758                          * cluster.  Free the cluster we've been trying
7759                          * to use, and go to the next block group
7760                          */
7761                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7762                         spin_unlock(&last_ptr->refill_lock);
7763                         goto loop;
7764                 }
7765
7766 unclustered_alloc:
7767                 /*
7768                  * We are doing an unclustered alloc, set the fragmented flag so
7769                  * we don't bother trying to setup a cluster again until we get
7770                  * more space.
7771                  */
7772                 if (unlikely(last_ptr)) {
7773                         spin_lock(&last_ptr->lock);
7774                         last_ptr->fragmented = 1;
7775                         spin_unlock(&last_ptr->lock);
7776                 }
7777                 if (cached) {
7778                         struct btrfs_free_space_ctl *ctl =
7779                                 block_group->free_space_ctl;
7780
7781                         spin_lock(&ctl->tree_lock);
7782                         if (ctl->free_space <
7783                             num_bytes + empty_cluster + empty_size) {
7784                                 if (ctl->free_space > max_extent_size)
7785                                         max_extent_size = ctl->free_space;
7786                                 spin_unlock(&ctl->tree_lock);
7787                                 goto loop;
7788                         }
7789                         spin_unlock(&ctl->tree_lock);
7790                 }
7791
7792                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7793                                                     num_bytes, empty_size,
7794                                                     &max_extent_size);
7795                 /*
7796                  * If we didn't find a chunk, and we haven't failed on this
7797                  * block group before, and this block group is in the middle of
7798                  * caching and we are ok with waiting, then go ahead and wait
7799                  * for progress to be made, and set failed_alloc to true.
7800                  *
7801                  * If failed_alloc is true then we've already waited on this
7802                  * block group once and should move on to the next block group.
7803                  */
7804                 if (!offset && !failed_alloc && !cached &&
7805                     loop > LOOP_CACHING_NOWAIT) {
7806                         wait_block_group_cache_progress(block_group,
7807                                                 num_bytes + empty_size);
7808                         failed_alloc = true;
7809                         goto have_block_group;
7810                 } else if (!offset) {
7811                         goto loop;
7812                 }
7813 checks:
7814                 search_start = ALIGN(offset, fs_info->stripesize);
7815
7816                 /* move on to the next group */
7817                 if (search_start + num_bytes >
7818                     block_group->key.objectid + block_group->key.offset) {
7819                         btrfs_add_free_space(block_group, offset, num_bytes);
7820                         goto loop;
7821                 }
7822
7823                 if (offset < search_start)
7824                         btrfs_add_free_space(block_group, offset,
7825                                              search_start - offset);
7826                 BUG_ON(offset > search_start);
7827
7828                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7829                                 num_bytes, delalloc);
7830                 if (ret == -EAGAIN) {
7831                         btrfs_add_free_space(block_group, offset, num_bytes);
7832                         goto loop;
7833                 }
7834                 btrfs_inc_block_group_reservations(block_group);
7835
7836                 /* we are all good, lets return */
7837                 ins->objectid = search_start;
7838                 ins->offset = num_bytes;
7839
7840                 trace_btrfs_reserve_extent(fs_info, block_group,
7841                                            search_start, num_bytes);
7842                 btrfs_release_block_group(block_group, delalloc);
7843                 break;
7844 loop:
7845                 failed_cluster_refill = false;
7846                 failed_alloc = false;
7847                 BUG_ON(index != get_block_group_index(block_group));
7848                 btrfs_release_block_group(block_group, delalloc);
7849                 cond_resched();
7850         }
7851         up_read(&space_info->groups_sem);
7852
7853         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7854                 && !orig_have_caching_bg)
7855                 orig_have_caching_bg = true;
7856
7857         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7858                 goto search;
7859
7860         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7861                 goto search;
7862
7863         /*
7864          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7865          *                      caching kthreads as we move along
7866          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7867          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7868          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7869          *                      again
7870          */
7871         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7872                 index = 0;
7873                 if (loop == LOOP_CACHING_NOWAIT) {
7874                         /*
7875                          * We want to skip the LOOP_CACHING_WAIT step if we
7876                          * don't have any uncached bgs and we've already done a
7877                          * full search through.
7878                          */
7879                         if (orig_have_caching_bg || !full_search)
7880                                 loop = LOOP_CACHING_WAIT;
7881                         else
7882                                 loop = LOOP_ALLOC_CHUNK;
7883                 } else {
7884                         loop++;
7885                 }
7886
7887                 if (loop == LOOP_ALLOC_CHUNK) {
7888                         struct btrfs_trans_handle *trans;
7889                         int exist = 0;
7890
7891                         trans = current->journal_info;
7892                         if (trans)
7893                                 exist = 1;
7894                         else
7895                                 trans = btrfs_join_transaction(root);
7896
7897                         if (IS_ERR(trans)) {
7898                                 ret = PTR_ERR(trans);
7899                                 goto out;
7900                         }
7901
7902                         ret = do_chunk_alloc(trans, fs_info, flags,
7903                                              CHUNK_ALLOC_FORCE);
7904
7905                         /*
7906                          * If we can't allocate a new chunk we've already looped
7907                          * through at least once, move on to the NO_EMPTY_SIZE
7908                          * case.
7909                          */
7910                         if (ret == -ENOSPC)
7911                                 loop = LOOP_NO_EMPTY_SIZE;
7912
7913                         /*
7914                          * Do not bail out on ENOSPC since we
7915                          * can do more things.
7916                          */
7917                         if (ret < 0 && ret != -ENOSPC)
7918                                 btrfs_abort_transaction(trans, ret);
7919                         else
7920                                 ret = 0;
7921                         if (!exist)
7922                                 btrfs_end_transaction(trans);
7923                         if (ret)
7924                                 goto out;
7925                 }
7926
7927                 if (loop == LOOP_NO_EMPTY_SIZE) {
7928                         /*
7929                          * Don't loop again if we already have no empty_size and
7930                          * no empty_cluster.
7931                          */
7932                         if (empty_size == 0 &&
7933                             empty_cluster == 0) {
7934                                 ret = -ENOSPC;
7935                                 goto out;
7936                         }
7937                         empty_size = 0;
7938                         empty_cluster = 0;
7939                 }
7940
7941                 goto search;
7942         } else if (!ins->objectid) {
7943                 ret = -ENOSPC;
7944         } else if (ins->objectid) {
7945                 if (!use_cluster && last_ptr) {
7946                         spin_lock(&last_ptr->lock);
7947                         last_ptr->window_start = ins->objectid;
7948                         spin_unlock(&last_ptr->lock);
7949                 }
7950                 ret = 0;
7951         }
7952 out:
7953         if (ret == -ENOSPC) {
7954                 spin_lock(&space_info->lock);
7955                 space_info->max_extent_size = max_extent_size;
7956                 spin_unlock(&space_info->lock);
7957                 ins->offset = max_extent_size;
7958         }
7959         return ret;
7960 }
7961
7962 static void dump_space_info(struct btrfs_fs_info *fs_info,
7963                             struct btrfs_space_info *info, u64 bytes,
7964                             int dump_block_groups)
7965 {
7966         struct btrfs_block_group_cache *cache;
7967         int index = 0;
7968
7969         spin_lock(&info->lock);
7970         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7971                    info->flags,
7972                    info->total_bytes - btrfs_space_info_used(info, true),
7973                    info->full ? "" : "not ");
7974         btrfs_info(fs_info,
7975                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7976                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7977                 info->bytes_reserved, info->bytes_may_use,
7978                 info->bytes_readonly);
7979         spin_unlock(&info->lock);
7980
7981         if (!dump_block_groups)
7982                 return;
7983
7984         down_read(&info->groups_sem);
7985 again:
7986         list_for_each_entry(cache, &info->block_groups[index], list) {
7987                 spin_lock(&cache->lock);
7988                 btrfs_info(fs_info,
7989                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7990                         cache->key.objectid, cache->key.offset,
7991                         btrfs_block_group_used(&cache->item), cache->pinned,
7992                         cache->reserved, cache->ro ? "[readonly]" : "");
7993                 btrfs_dump_free_space(cache, bytes);
7994                 spin_unlock(&cache->lock);
7995         }
7996         if (++index < BTRFS_NR_RAID_TYPES)
7997                 goto again;
7998         up_read(&info->groups_sem);
7999 }
8000
8001 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8002                          u64 num_bytes, u64 min_alloc_size,
8003                          u64 empty_size, u64 hint_byte,
8004                          struct btrfs_key *ins, int is_data, int delalloc)
8005 {
8006         struct btrfs_fs_info *fs_info = root->fs_info;
8007         bool final_tried = num_bytes == min_alloc_size;
8008         u64 flags;
8009         int ret;
8010
8011         flags = get_alloc_profile_by_root(root, is_data);
8012 again:
8013         WARN_ON(num_bytes < fs_info->sectorsize);
8014         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8015                                hint_byte, ins, flags, delalloc);
8016         if (!ret && !is_data) {
8017                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8018         } else if (ret == -ENOSPC) {
8019                 if (!final_tried && ins->offset) {
8020                         num_bytes = min(num_bytes >> 1, ins->offset);
8021                         num_bytes = round_down(num_bytes,
8022                                                fs_info->sectorsize);
8023                         num_bytes = max(num_bytes, min_alloc_size);
8024                         ram_bytes = num_bytes;
8025                         if (num_bytes == min_alloc_size)
8026                                 final_tried = true;
8027                         goto again;
8028                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8029                         struct btrfs_space_info *sinfo;
8030
8031                         sinfo = __find_space_info(fs_info, flags);
8032                         btrfs_err(fs_info,
8033                                   "allocation failed flags %llu, wanted %llu",
8034                                   flags, num_bytes);
8035                         if (sinfo)
8036                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8037                 }
8038         }
8039
8040         return ret;
8041 }
8042
8043 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8044                                         u64 start, u64 len,
8045                                         int pin, int delalloc)
8046 {
8047         struct btrfs_block_group_cache *cache;
8048         int ret = 0;
8049
8050         cache = btrfs_lookup_block_group(fs_info, start);
8051         if (!cache) {
8052                 btrfs_err(fs_info, "Unable to find block group for %llu",
8053                           start);
8054                 return -ENOSPC;
8055         }
8056
8057         if (pin)
8058                 pin_down_extent(fs_info, cache, start, len, 1);
8059         else {
8060                 if (btrfs_test_opt(fs_info, DISCARD))
8061                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8062                 btrfs_add_free_space(cache, start, len);
8063                 btrfs_free_reserved_bytes(cache, len, delalloc);
8064                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8065         }
8066
8067         btrfs_put_block_group(cache);
8068         return ret;
8069 }
8070
8071 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8072                                u64 start, u64 len, int delalloc)
8073 {
8074         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8075 }
8076
8077 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8078                                        u64 start, u64 len)
8079 {
8080         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8081 }
8082
8083 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8084                                       struct btrfs_fs_info *fs_info,
8085                                       u64 parent, u64 root_objectid,
8086                                       u64 flags, u64 owner, u64 offset,
8087                                       struct btrfs_key *ins, int ref_mod)
8088 {
8089         int ret;
8090         struct btrfs_extent_item *extent_item;
8091         struct btrfs_extent_inline_ref *iref;
8092         struct btrfs_path *path;
8093         struct extent_buffer *leaf;
8094         int type;
8095         u32 size;
8096
8097         if (parent > 0)
8098                 type = BTRFS_SHARED_DATA_REF_KEY;
8099         else
8100                 type = BTRFS_EXTENT_DATA_REF_KEY;
8101
8102         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8103
8104         path = btrfs_alloc_path();
8105         if (!path)
8106                 return -ENOMEM;
8107
8108         path->leave_spinning = 1;
8109         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8110                                       ins, size);
8111         if (ret) {
8112                 btrfs_free_path(path);
8113                 return ret;
8114         }
8115
8116         leaf = path->nodes[0];
8117         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8118                                      struct btrfs_extent_item);
8119         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8120         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8121         btrfs_set_extent_flags(leaf, extent_item,
8122                                flags | BTRFS_EXTENT_FLAG_DATA);
8123
8124         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8125         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8126         if (parent > 0) {
8127                 struct btrfs_shared_data_ref *ref;
8128                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8129                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8130                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8131         } else {
8132                 struct btrfs_extent_data_ref *ref;
8133                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8134                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8135                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8136                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8137                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8138         }
8139
8140         btrfs_mark_buffer_dirty(path->nodes[0]);
8141         btrfs_free_path(path);
8142
8143         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8144                                           ins->offset);
8145         if (ret)
8146                 return ret;
8147
8148         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8149         if (ret) { /* -ENOENT, logic error */
8150                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8151                         ins->objectid, ins->offset);
8152                 BUG();
8153         }
8154         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8155         return ret;
8156 }
8157
8158 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8159                                      struct btrfs_fs_info *fs_info,
8160                                      u64 parent, u64 root_objectid,
8161                                      u64 flags, struct btrfs_disk_key *key,
8162                                      int level, struct btrfs_key *ins)
8163 {
8164         int ret;
8165         struct btrfs_extent_item *extent_item;
8166         struct btrfs_tree_block_info *block_info;
8167         struct btrfs_extent_inline_ref *iref;
8168         struct btrfs_path *path;
8169         struct extent_buffer *leaf;
8170         u32 size = sizeof(*extent_item) + sizeof(*iref);
8171         u64 num_bytes = ins->offset;
8172         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8173
8174         if (!skinny_metadata)
8175                 size += sizeof(*block_info);
8176
8177         path = btrfs_alloc_path();
8178         if (!path) {
8179                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8180                                                    fs_info->nodesize);
8181                 return -ENOMEM;
8182         }
8183
8184         path->leave_spinning = 1;
8185         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8186                                       ins, size);
8187         if (ret) {
8188                 btrfs_free_path(path);
8189                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8190                                                    fs_info->nodesize);
8191                 return ret;
8192         }
8193
8194         leaf = path->nodes[0];
8195         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8196                                      struct btrfs_extent_item);
8197         btrfs_set_extent_refs(leaf, extent_item, 1);
8198         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8199         btrfs_set_extent_flags(leaf, extent_item,
8200                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8201
8202         if (skinny_metadata) {
8203                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8204                 num_bytes = fs_info->nodesize;
8205         } else {
8206                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8207                 btrfs_set_tree_block_key(leaf, block_info, key);
8208                 btrfs_set_tree_block_level(leaf, block_info, level);
8209                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8210         }
8211
8212         if (parent > 0) {
8213                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8214                 btrfs_set_extent_inline_ref_type(leaf, iref,
8215                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8216                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8217         } else {
8218                 btrfs_set_extent_inline_ref_type(leaf, iref,
8219                                                  BTRFS_TREE_BLOCK_REF_KEY);
8220                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8221         }
8222
8223         btrfs_mark_buffer_dirty(leaf);
8224         btrfs_free_path(path);
8225
8226         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8227                                           num_bytes);
8228         if (ret)
8229                 return ret;
8230
8231         ret = update_block_group(trans, fs_info, ins->objectid,
8232                                  fs_info->nodesize, 1);
8233         if (ret) { /* -ENOENT, logic error */
8234                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8235                         ins->objectid, ins->offset);
8236                 BUG();
8237         }
8238
8239         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8240                                           fs_info->nodesize);
8241         return ret;
8242 }
8243
8244 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8245                                      struct btrfs_root *root, u64 owner,
8246                                      u64 offset, u64 ram_bytes,
8247                                      struct btrfs_key *ins)
8248 {
8249         struct btrfs_fs_info *fs_info = root->fs_info;
8250         int ret;
8251
8252         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8253
8254         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8255                            root->root_key.objectid, owner, offset,
8256                            BTRFS_ADD_DELAYED_EXTENT);
8257
8258         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8259                                          ins->offset, 0,
8260                                          root->root_key.objectid, owner,
8261                                          offset, ram_bytes,
8262                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8263         return ret;
8264 }
8265
8266 /*
8267  * this is used by the tree logging recovery code.  It records that
8268  * an extent has been allocated and makes sure to clear the free
8269  * space cache bits as well
8270  */
8271 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8272                                    struct btrfs_fs_info *fs_info,
8273                                    u64 root_objectid, u64 owner, u64 offset,
8274                                    struct btrfs_key *ins)
8275 {
8276         int ret;
8277         struct btrfs_block_group_cache *block_group;
8278         struct btrfs_space_info *space_info;
8279
8280         /*
8281          * Mixed block groups will exclude before processing the log so we only
8282          * need to do the exclude dance if this fs isn't mixed.
8283          */
8284         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8285                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8286                                               ins->offset);
8287                 if (ret)
8288                         return ret;
8289         }
8290
8291         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8292         if (!block_group)
8293                 return -EINVAL;
8294
8295         space_info = block_group->space_info;
8296         spin_lock(&space_info->lock);
8297         spin_lock(&block_group->lock);
8298         space_info->bytes_reserved += ins->offset;
8299         block_group->reserved += ins->offset;
8300         spin_unlock(&block_group->lock);
8301         spin_unlock(&space_info->lock);
8302
8303         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8304                                          0, owner, offset, ins, 1);
8305         btrfs_put_block_group(block_group);
8306         return ret;
8307 }
8308
8309 static struct extent_buffer *
8310 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8311                       u64 bytenr, int level)
8312 {
8313         struct btrfs_fs_info *fs_info = root->fs_info;
8314         struct extent_buffer *buf;
8315
8316         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8317         if (IS_ERR(buf))
8318                 return buf;
8319
8320         btrfs_set_header_generation(buf, trans->transid);
8321         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8322         btrfs_tree_lock(buf);
8323         clean_tree_block(fs_info, buf);
8324         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8325
8326         btrfs_set_lock_blocking(buf);
8327         set_extent_buffer_uptodate(buf);
8328
8329         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8330                 buf->log_index = root->log_transid % 2;
8331                 /*
8332                  * we allow two log transactions at a time, use different
8333                  * EXENT bit to differentiate dirty pages.
8334                  */
8335                 if (buf->log_index == 0)
8336                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8337                                         buf->start + buf->len - 1, GFP_NOFS);
8338                 else
8339                         set_extent_new(&root->dirty_log_pages, buf->start,
8340                                         buf->start + buf->len - 1);
8341         } else {
8342                 buf->log_index = -1;
8343                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8344                          buf->start + buf->len - 1, GFP_NOFS);
8345         }
8346         trans->dirty = true;
8347         /* this returns a buffer locked for blocking */
8348         return buf;
8349 }
8350
8351 static struct btrfs_block_rsv *
8352 use_block_rsv(struct btrfs_trans_handle *trans,
8353               struct btrfs_root *root, u32 blocksize)
8354 {
8355         struct btrfs_fs_info *fs_info = root->fs_info;
8356         struct btrfs_block_rsv *block_rsv;
8357         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8358         int ret;
8359         bool global_updated = false;
8360
8361         block_rsv = get_block_rsv(trans, root);
8362
8363         if (unlikely(block_rsv->size == 0))
8364                 goto try_reserve;
8365 again:
8366         ret = block_rsv_use_bytes(block_rsv, blocksize);
8367         if (!ret)
8368                 return block_rsv;
8369
8370         if (block_rsv->failfast)
8371                 return ERR_PTR(ret);
8372
8373         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8374                 global_updated = true;
8375                 update_global_block_rsv(fs_info);
8376                 goto again;
8377         }
8378
8379         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8380                 static DEFINE_RATELIMIT_STATE(_rs,
8381                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8382                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8383                 if (__ratelimit(&_rs))
8384                         WARN(1, KERN_DEBUG
8385                                 "BTRFS: block rsv returned %d\n", ret);
8386         }
8387 try_reserve:
8388         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8389                                      BTRFS_RESERVE_NO_FLUSH);
8390         if (!ret)
8391                 return block_rsv;
8392         /*
8393          * If we couldn't reserve metadata bytes try and use some from
8394          * the global reserve if its space type is the same as the global
8395          * reservation.
8396          */
8397         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8398             block_rsv->space_info == global_rsv->space_info) {
8399                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8400                 if (!ret)
8401                         return global_rsv;
8402         }
8403         return ERR_PTR(ret);
8404 }
8405
8406 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8407                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8408 {
8409         block_rsv_add_bytes(block_rsv, blocksize, 0);
8410         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8411 }
8412
8413 /*
8414  * finds a free extent and does all the dirty work required for allocation
8415  * returns the tree buffer or an ERR_PTR on error.
8416  */
8417 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8418                                              struct btrfs_root *root,
8419                                              u64 parent, u64 root_objectid,
8420                                              const struct btrfs_disk_key *key,
8421                                              int level, u64 hint,
8422                                              u64 empty_size)
8423 {
8424         struct btrfs_fs_info *fs_info = root->fs_info;
8425         struct btrfs_key ins;
8426         struct btrfs_block_rsv *block_rsv;
8427         struct extent_buffer *buf;
8428         struct btrfs_delayed_extent_op *extent_op;
8429         u64 flags = 0;
8430         int ret;
8431         u32 blocksize = fs_info->nodesize;
8432         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8433
8434 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8435         if (btrfs_is_testing(fs_info)) {
8436                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8437                                             level);
8438                 if (!IS_ERR(buf))
8439                         root->alloc_bytenr += blocksize;
8440                 return buf;
8441         }
8442 #endif
8443
8444         block_rsv = use_block_rsv(trans, root, blocksize);
8445         if (IS_ERR(block_rsv))
8446                 return ERR_CAST(block_rsv);
8447
8448         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8449                                    empty_size, hint, &ins, 0, 0);
8450         if (ret)
8451                 goto out_unuse;
8452
8453         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8454         if (IS_ERR(buf)) {
8455                 ret = PTR_ERR(buf);
8456                 goto out_free_reserved;
8457         }
8458
8459         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8460                 if (parent == 0)
8461                         parent = ins.objectid;
8462                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8463         } else
8464                 BUG_ON(parent > 0);
8465
8466         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8467                 extent_op = btrfs_alloc_delayed_extent_op();
8468                 if (!extent_op) {
8469                         ret = -ENOMEM;
8470                         goto out_free_buf;
8471                 }
8472                 if (key)
8473                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8474                 else
8475                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8476                 extent_op->flags_to_set = flags;
8477                 extent_op->update_key = skinny_metadata ? false : true;
8478                 extent_op->update_flags = true;
8479                 extent_op->is_data = false;
8480                 extent_op->level = level;
8481
8482                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8483                                    root_objectid, level, 0,
8484                                    BTRFS_ADD_DELAYED_EXTENT);
8485                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8486                                                  ins.offset, parent,
8487                                                  root_objectid, level,
8488                                                  BTRFS_ADD_DELAYED_EXTENT,
8489                                                  extent_op, NULL, NULL);
8490                 if (ret)
8491                         goto out_free_delayed;
8492         }
8493         return buf;
8494
8495 out_free_delayed:
8496         btrfs_free_delayed_extent_op(extent_op);
8497 out_free_buf:
8498         free_extent_buffer(buf);
8499 out_free_reserved:
8500         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8501 out_unuse:
8502         unuse_block_rsv(fs_info, block_rsv, blocksize);
8503         return ERR_PTR(ret);
8504 }
8505
8506 struct walk_control {
8507         u64 refs[BTRFS_MAX_LEVEL];
8508         u64 flags[BTRFS_MAX_LEVEL];
8509         struct btrfs_key update_progress;
8510         int stage;
8511         int level;
8512         int shared_level;
8513         int update_ref;
8514         int keep_locks;
8515         int reada_slot;
8516         int reada_count;
8517         int for_reloc;
8518 };
8519
8520 #define DROP_REFERENCE  1
8521 #define UPDATE_BACKREF  2
8522
8523 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8524                                      struct btrfs_root *root,
8525                                      struct walk_control *wc,
8526                                      struct btrfs_path *path)
8527 {
8528         struct btrfs_fs_info *fs_info = root->fs_info;
8529         u64 bytenr;
8530         u64 generation;
8531         u64 refs;
8532         u64 flags;
8533         u32 nritems;
8534         struct btrfs_key key;
8535         struct extent_buffer *eb;
8536         int ret;
8537         int slot;
8538         int nread = 0;
8539
8540         if (path->slots[wc->level] < wc->reada_slot) {
8541                 wc->reada_count = wc->reada_count * 2 / 3;
8542                 wc->reada_count = max(wc->reada_count, 2);
8543         } else {
8544                 wc->reada_count = wc->reada_count * 3 / 2;
8545                 wc->reada_count = min_t(int, wc->reada_count,
8546                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8547         }
8548
8549         eb = path->nodes[wc->level];
8550         nritems = btrfs_header_nritems(eb);
8551
8552         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8553                 if (nread >= wc->reada_count)
8554                         break;
8555
8556                 cond_resched();
8557                 bytenr = btrfs_node_blockptr(eb, slot);
8558                 generation = btrfs_node_ptr_generation(eb, slot);
8559
8560                 if (slot == path->slots[wc->level])
8561                         goto reada;
8562
8563                 if (wc->stage == UPDATE_BACKREF &&
8564                     generation <= root->root_key.offset)
8565                         continue;
8566
8567                 /* We don't lock the tree block, it's OK to be racy here */
8568                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8569                                                wc->level - 1, 1, &refs,
8570                                                &flags);
8571                 /* We don't care about errors in readahead. */
8572                 if (ret < 0)
8573                         continue;
8574                 BUG_ON(refs == 0);
8575
8576                 if (wc->stage == DROP_REFERENCE) {
8577                         if (refs == 1)
8578                                 goto reada;
8579
8580                         if (wc->level == 1 &&
8581                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8582                                 continue;
8583                         if (!wc->update_ref ||
8584                             generation <= root->root_key.offset)
8585                                 continue;
8586                         btrfs_node_key_to_cpu(eb, &key, slot);
8587                         ret = btrfs_comp_cpu_keys(&key,
8588                                                   &wc->update_progress);
8589                         if (ret < 0)
8590                                 continue;
8591                 } else {
8592                         if (wc->level == 1 &&
8593                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8594                                 continue;
8595                 }
8596 reada:
8597                 readahead_tree_block(fs_info, bytenr);
8598                 nread++;
8599         }
8600         wc->reada_slot = slot;
8601 }
8602
8603 /*
8604  * helper to process tree block while walking down the tree.
8605  *
8606  * when wc->stage == UPDATE_BACKREF, this function updates
8607  * back refs for pointers in the block.
8608  *
8609  * NOTE: return value 1 means we should stop walking down.
8610  */
8611 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8612                                    struct btrfs_root *root,
8613                                    struct btrfs_path *path,
8614                                    struct walk_control *wc, int lookup_info)
8615 {
8616         struct btrfs_fs_info *fs_info = root->fs_info;
8617         int level = wc->level;
8618         struct extent_buffer *eb = path->nodes[level];
8619         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8620         int ret;
8621
8622         if (wc->stage == UPDATE_BACKREF &&
8623             btrfs_header_owner(eb) != root->root_key.objectid)
8624                 return 1;
8625
8626         /*
8627          * when reference count of tree block is 1, it won't increase
8628          * again. once full backref flag is set, we never clear it.
8629          */
8630         if (lookup_info &&
8631             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8632              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8633                 BUG_ON(!path->locks[level]);
8634                 ret = btrfs_lookup_extent_info(trans, fs_info,
8635                                                eb->start, level, 1,
8636                                                &wc->refs[level],
8637                                                &wc->flags[level]);
8638                 BUG_ON(ret == -ENOMEM);
8639                 if (ret)
8640                         return ret;
8641                 BUG_ON(wc->refs[level] == 0);
8642         }
8643
8644         if (wc->stage == DROP_REFERENCE) {
8645                 if (wc->refs[level] > 1)
8646                         return 1;
8647
8648                 if (path->locks[level] && !wc->keep_locks) {
8649                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8650                         path->locks[level] = 0;
8651                 }
8652                 return 0;
8653         }
8654
8655         /* wc->stage == UPDATE_BACKREF */
8656         if (!(wc->flags[level] & flag)) {
8657                 BUG_ON(!path->locks[level]);
8658                 ret = btrfs_inc_ref(trans, root, eb, 1);
8659                 BUG_ON(ret); /* -ENOMEM */
8660                 ret = btrfs_dec_ref(trans, root, eb, 0);
8661                 BUG_ON(ret); /* -ENOMEM */
8662                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8663                                                   eb->len, flag,
8664                                                   btrfs_header_level(eb), 0);
8665                 BUG_ON(ret); /* -ENOMEM */
8666                 wc->flags[level] |= flag;
8667         }
8668
8669         /*
8670          * the block is shared by multiple trees, so it's not good to
8671          * keep the tree lock
8672          */
8673         if (path->locks[level] && level > 0) {
8674                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8675                 path->locks[level] = 0;
8676         }
8677         return 0;
8678 }
8679
8680 /*
8681  * helper to process tree block pointer.
8682  *
8683  * when wc->stage == DROP_REFERENCE, this function checks
8684  * reference count of the block pointed to. if the block
8685  * is shared and we need update back refs for the subtree
8686  * rooted at the block, this function changes wc->stage to
8687  * UPDATE_BACKREF. if the block is shared and there is no
8688  * need to update back, this function drops the reference
8689  * to the block.
8690  *
8691  * NOTE: return value 1 means we should stop walking down.
8692  */
8693 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8694                                  struct btrfs_root *root,
8695                                  struct btrfs_path *path,
8696                                  struct walk_control *wc, int *lookup_info)
8697 {
8698         struct btrfs_fs_info *fs_info = root->fs_info;
8699         u64 bytenr;
8700         u64 generation;
8701         u64 parent;
8702         u32 blocksize;
8703         struct btrfs_key key;
8704         struct extent_buffer *next;
8705         int level = wc->level;
8706         int reada = 0;
8707         int ret = 0;
8708         bool need_account = false;
8709
8710         generation = btrfs_node_ptr_generation(path->nodes[level],
8711                                                path->slots[level]);
8712         /*
8713          * if the lower level block was created before the snapshot
8714          * was created, we know there is no need to update back refs
8715          * for the subtree
8716          */
8717         if (wc->stage == UPDATE_BACKREF &&
8718             generation <= root->root_key.offset) {
8719                 *lookup_info = 1;
8720                 return 1;
8721         }
8722
8723         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8724         blocksize = fs_info->nodesize;
8725
8726         next = find_extent_buffer(fs_info, bytenr);
8727         if (!next) {
8728                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8729                 if (IS_ERR(next))
8730                         return PTR_ERR(next);
8731
8732                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8733                                                level - 1);
8734                 reada = 1;
8735         }
8736         btrfs_tree_lock(next);
8737         btrfs_set_lock_blocking(next);
8738
8739         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8740                                        &wc->refs[level - 1],
8741                                        &wc->flags[level - 1]);
8742         if (ret < 0)
8743                 goto out_unlock;
8744
8745         if (unlikely(wc->refs[level - 1] == 0)) {
8746                 btrfs_err(fs_info, "Missing references.");
8747                 ret = -EIO;
8748                 goto out_unlock;
8749         }
8750         *lookup_info = 0;
8751
8752         if (wc->stage == DROP_REFERENCE) {
8753                 if (wc->refs[level - 1] > 1) {
8754                         need_account = true;
8755                         if (level == 1 &&
8756                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8757                                 goto skip;
8758
8759                         if (!wc->update_ref ||
8760                             generation <= root->root_key.offset)
8761                                 goto skip;
8762
8763                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8764                                               path->slots[level]);
8765                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8766                         if (ret < 0)
8767                                 goto skip;
8768
8769                         wc->stage = UPDATE_BACKREF;
8770                         wc->shared_level = level - 1;
8771                 }
8772         } else {
8773                 if (level == 1 &&
8774                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8775                         goto skip;
8776         }
8777
8778         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8779                 btrfs_tree_unlock(next);
8780                 free_extent_buffer(next);
8781                 next = NULL;
8782                 *lookup_info = 1;
8783         }
8784
8785         if (!next) {
8786                 if (reada && level == 1)
8787                         reada_walk_down(trans, root, wc, path);
8788                 next = read_tree_block(fs_info, bytenr, generation);
8789                 if (IS_ERR(next)) {
8790                         return PTR_ERR(next);
8791                 } else if (!extent_buffer_uptodate(next)) {
8792                         free_extent_buffer(next);
8793                         return -EIO;
8794                 }
8795                 btrfs_tree_lock(next);
8796                 btrfs_set_lock_blocking(next);
8797         }
8798
8799         level--;
8800         ASSERT(level == btrfs_header_level(next));
8801         if (level != btrfs_header_level(next)) {
8802                 btrfs_err(root->fs_info, "mismatched level");
8803                 ret = -EIO;
8804                 goto out_unlock;
8805         }
8806         path->nodes[level] = next;
8807         path->slots[level] = 0;
8808         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8809         wc->level = level;
8810         if (wc->level == 1)
8811                 wc->reada_slot = 0;
8812         return 0;
8813 skip:
8814         wc->refs[level - 1] = 0;
8815         wc->flags[level - 1] = 0;
8816         if (wc->stage == DROP_REFERENCE) {
8817                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8818                         parent = path->nodes[level]->start;
8819                 } else {
8820                         ASSERT(root->root_key.objectid ==
8821                                btrfs_header_owner(path->nodes[level]));
8822                         if (root->root_key.objectid !=
8823                             btrfs_header_owner(path->nodes[level])) {
8824                                 btrfs_err(root->fs_info,
8825                                                 "mismatched block owner");
8826                                 ret = -EIO;
8827                                 goto out_unlock;
8828                         }
8829                         parent = 0;
8830                 }
8831
8832                 if (need_account) {
8833                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8834                                                          generation, level - 1);
8835                         if (ret) {
8836                                 btrfs_err_rl(fs_info,
8837                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8838                                              ret);
8839                         }
8840                 }
8841                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8842                                         parent, root->root_key.objectid,
8843                                         level - 1, 0);
8844                 if (ret)
8845                         goto out_unlock;
8846         }
8847
8848         *lookup_info = 1;
8849         ret = 1;
8850
8851 out_unlock:
8852         btrfs_tree_unlock(next);
8853         free_extent_buffer(next);
8854
8855         return ret;
8856 }
8857
8858 /*
8859  * helper to process tree block while walking up the tree.
8860  *
8861  * when wc->stage == DROP_REFERENCE, this function drops
8862  * reference count on the block.
8863  *
8864  * when wc->stage == UPDATE_BACKREF, this function changes
8865  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8866  * to UPDATE_BACKREF previously while processing the block.
8867  *
8868  * NOTE: return value 1 means we should stop walking up.
8869  */
8870 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8871                                  struct btrfs_root *root,
8872                                  struct btrfs_path *path,
8873                                  struct walk_control *wc)
8874 {
8875         struct btrfs_fs_info *fs_info = root->fs_info;
8876         int ret;
8877         int level = wc->level;
8878         struct extent_buffer *eb = path->nodes[level];
8879         u64 parent = 0;
8880
8881         if (wc->stage == UPDATE_BACKREF) {
8882                 BUG_ON(wc->shared_level < level);
8883                 if (level < wc->shared_level)
8884                         goto out;
8885
8886                 ret = find_next_key(path, level + 1, &wc->update_progress);
8887                 if (ret > 0)
8888                         wc->update_ref = 0;
8889
8890                 wc->stage = DROP_REFERENCE;
8891                 wc->shared_level = -1;
8892                 path->slots[level] = 0;
8893
8894                 /*
8895                  * check reference count again if the block isn't locked.
8896                  * we should start walking down the tree again if reference
8897                  * count is one.
8898                  */
8899                 if (!path->locks[level]) {
8900                         BUG_ON(level == 0);
8901                         btrfs_tree_lock(eb);
8902                         btrfs_set_lock_blocking(eb);
8903                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8904
8905                         ret = btrfs_lookup_extent_info(trans, fs_info,
8906                                                        eb->start, level, 1,
8907                                                        &wc->refs[level],
8908                                                        &wc->flags[level]);
8909                         if (ret < 0) {
8910                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8911                                 path->locks[level] = 0;
8912                                 return ret;
8913                         }
8914                         BUG_ON(wc->refs[level] == 0);
8915                         if (wc->refs[level] == 1) {
8916                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8917                                 path->locks[level] = 0;
8918                                 return 1;
8919                         }
8920                 }
8921         }
8922
8923         /* wc->stage == DROP_REFERENCE */
8924         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8925
8926         if (wc->refs[level] == 1) {
8927                 if (level == 0) {
8928                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8929                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8930                         else
8931                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8932                         BUG_ON(ret); /* -ENOMEM */
8933                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8934                         if (ret) {
8935                                 btrfs_err_rl(fs_info,
8936                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8937                                              ret);
8938                         }
8939                 }
8940                 /* make block locked assertion in clean_tree_block happy */
8941                 if (!path->locks[level] &&
8942                     btrfs_header_generation(eb) == trans->transid) {
8943                         btrfs_tree_lock(eb);
8944                         btrfs_set_lock_blocking(eb);
8945                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8946                 }
8947                 clean_tree_block(fs_info, eb);
8948         }
8949
8950         if (eb == root->node) {
8951                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8952                         parent = eb->start;
8953                 else
8954                         BUG_ON(root->root_key.objectid !=
8955                                btrfs_header_owner(eb));
8956         } else {
8957                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8958                         parent = path->nodes[level + 1]->start;
8959                 else
8960                         BUG_ON(root->root_key.objectid !=
8961                                btrfs_header_owner(path->nodes[level + 1]));
8962         }
8963
8964         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8965 out:
8966         wc->refs[level] = 0;
8967         wc->flags[level] = 0;
8968         return 0;
8969 }
8970
8971 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8972                                    struct btrfs_root *root,
8973                                    struct btrfs_path *path,
8974                                    struct walk_control *wc)
8975 {
8976         int level = wc->level;
8977         int lookup_info = 1;
8978         int ret;
8979
8980         while (level >= 0) {
8981                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8982                 if (ret > 0)
8983                         break;
8984
8985                 if (level == 0)
8986                         break;
8987
8988                 if (path->slots[level] >=
8989                     btrfs_header_nritems(path->nodes[level]))
8990                         break;
8991
8992                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8993                 if (ret > 0) {
8994                         path->slots[level]++;
8995                         continue;
8996                 } else if (ret < 0)
8997                         return ret;
8998                 level = wc->level;
8999         }
9000         return 0;
9001 }
9002
9003 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9004                                  struct btrfs_root *root,
9005                                  struct btrfs_path *path,
9006                                  struct walk_control *wc, int max_level)
9007 {
9008         int level = wc->level;
9009         int ret;
9010
9011         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9012         while (level < max_level && path->nodes[level]) {
9013                 wc->level = level;
9014                 if (path->slots[level] + 1 <
9015                     btrfs_header_nritems(path->nodes[level])) {
9016                         path->slots[level]++;
9017                         return 0;
9018                 } else {
9019                         ret = walk_up_proc(trans, root, path, wc);
9020                         if (ret > 0)
9021                                 return 0;
9022
9023                         if (path->locks[level]) {
9024                                 btrfs_tree_unlock_rw(path->nodes[level],
9025                                                      path->locks[level]);
9026                                 path->locks[level] = 0;
9027                         }
9028                         free_extent_buffer(path->nodes[level]);
9029                         path->nodes[level] = NULL;
9030                         level++;
9031                 }
9032         }
9033         return 1;
9034 }
9035
9036 /*
9037  * drop a subvolume tree.
9038  *
9039  * this function traverses the tree freeing any blocks that only
9040  * referenced by the tree.
9041  *
9042  * when a shared tree block is found. this function decreases its
9043  * reference count by one. if update_ref is true, this function
9044  * also make sure backrefs for the shared block and all lower level
9045  * blocks are properly updated.
9046  *
9047  * If called with for_reloc == 0, may exit early with -EAGAIN
9048  */
9049 int btrfs_drop_snapshot(struct btrfs_root *root,
9050                          struct btrfs_block_rsv *block_rsv, int update_ref,
9051                          int for_reloc)
9052 {
9053         struct btrfs_fs_info *fs_info = root->fs_info;
9054         struct btrfs_path *path;
9055         struct btrfs_trans_handle *trans;
9056         struct btrfs_root *tree_root = fs_info->tree_root;
9057         struct btrfs_root_item *root_item = &root->root_item;
9058         struct walk_control *wc;
9059         struct btrfs_key key;
9060         int err = 0;
9061         int ret;
9062         int level;
9063         bool root_dropped = false;
9064
9065         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9066
9067         path = btrfs_alloc_path();
9068         if (!path) {
9069                 err = -ENOMEM;
9070                 goto out;
9071         }
9072
9073         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9074         if (!wc) {
9075                 btrfs_free_path(path);
9076                 err = -ENOMEM;
9077                 goto out;
9078         }
9079
9080         trans = btrfs_start_transaction(tree_root, 0);
9081         if (IS_ERR(trans)) {
9082                 err = PTR_ERR(trans);
9083                 goto out_free;
9084         }
9085
9086         if (block_rsv)
9087                 trans->block_rsv = block_rsv;
9088
9089         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9090                 level = btrfs_header_level(root->node);
9091                 path->nodes[level] = btrfs_lock_root_node(root);
9092                 btrfs_set_lock_blocking(path->nodes[level]);
9093                 path->slots[level] = 0;
9094                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9095                 memset(&wc->update_progress, 0,
9096                        sizeof(wc->update_progress));
9097         } else {
9098                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9099                 memcpy(&wc->update_progress, &key,
9100                        sizeof(wc->update_progress));
9101
9102                 level = root_item->drop_level;
9103                 BUG_ON(level == 0);
9104                 path->lowest_level = level;
9105                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9106                 path->lowest_level = 0;
9107                 if (ret < 0) {
9108                         err = ret;
9109                         goto out_end_trans;
9110                 }
9111                 WARN_ON(ret > 0);
9112
9113                 /*
9114                  * unlock our path, this is safe because only this
9115                  * function is allowed to delete this snapshot
9116                  */
9117                 btrfs_unlock_up_safe(path, 0);
9118
9119                 level = btrfs_header_level(root->node);
9120                 while (1) {
9121                         btrfs_tree_lock(path->nodes[level]);
9122                         btrfs_set_lock_blocking(path->nodes[level]);
9123                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9124
9125                         ret = btrfs_lookup_extent_info(trans, fs_info,
9126                                                 path->nodes[level]->start,
9127                                                 level, 1, &wc->refs[level],
9128                                                 &wc->flags[level]);
9129                         if (ret < 0) {
9130                                 err = ret;
9131                                 goto out_end_trans;
9132                         }
9133                         BUG_ON(wc->refs[level] == 0);
9134
9135                         if (level == root_item->drop_level)
9136                                 break;
9137
9138                         btrfs_tree_unlock(path->nodes[level]);
9139                         path->locks[level] = 0;
9140                         WARN_ON(wc->refs[level] != 1);
9141                         level--;
9142                 }
9143         }
9144
9145         wc->level = level;
9146         wc->shared_level = -1;
9147         wc->stage = DROP_REFERENCE;
9148         wc->update_ref = update_ref;
9149         wc->keep_locks = 0;
9150         wc->for_reloc = for_reloc;
9151         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9152
9153         while (1) {
9154
9155                 ret = walk_down_tree(trans, root, path, wc);
9156                 if (ret < 0) {
9157                         err = ret;
9158                         break;
9159                 }
9160
9161                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9162                 if (ret < 0) {
9163                         err = ret;
9164                         break;
9165                 }
9166
9167                 if (ret > 0) {
9168                         BUG_ON(wc->stage != DROP_REFERENCE);
9169                         break;
9170                 }
9171
9172                 if (wc->stage == DROP_REFERENCE) {
9173                         level = wc->level;
9174                         btrfs_node_key(path->nodes[level],
9175                                        &root_item->drop_progress,
9176                                        path->slots[level]);
9177                         root_item->drop_level = level;
9178                 }
9179
9180                 BUG_ON(wc->level == 0);
9181                 if (btrfs_should_end_transaction(trans) ||
9182                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9183                         ret = btrfs_update_root(trans, tree_root,
9184                                                 &root->root_key,
9185                                                 root_item);
9186                         if (ret) {
9187                                 btrfs_abort_transaction(trans, ret);
9188                                 err = ret;
9189                                 goto out_end_trans;
9190                         }
9191
9192                         btrfs_end_transaction_throttle(trans);
9193                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9194                                 btrfs_debug(fs_info,
9195                                             "drop snapshot early exit");
9196                                 err = -EAGAIN;
9197                                 goto out_free;
9198                         }
9199
9200                         trans = btrfs_start_transaction(tree_root, 0);
9201                         if (IS_ERR(trans)) {
9202                                 err = PTR_ERR(trans);
9203                                 goto out_free;
9204                         }
9205                         if (block_rsv)
9206                                 trans->block_rsv = block_rsv;
9207                 }
9208         }
9209         btrfs_release_path(path);
9210         if (err)
9211                 goto out_end_trans;
9212
9213         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9214         if (ret) {
9215                 btrfs_abort_transaction(trans, ret);
9216                 err = ret;
9217                 goto out_end_trans;
9218         }
9219
9220         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9221                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9222                                       NULL, NULL);
9223                 if (ret < 0) {
9224                         btrfs_abort_transaction(trans, ret);
9225                         err = ret;
9226                         goto out_end_trans;
9227                 } else if (ret > 0) {
9228                         /* if we fail to delete the orphan item this time
9229                          * around, it'll get picked up the next time.
9230                          *
9231                          * The most common failure here is just -ENOENT.
9232                          */
9233                         btrfs_del_orphan_item(trans, tree_root,
9234                                               root->root_key.objectid);
9235                 }
9236         }
9237
9238         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9239                 btrfs_add_dropped_root(trans, root);
9240         } else {
9241                 free_extent_buffer(root->node);
9242                 free_extent_buffer(root->commit_root);
9243                 btrfs_put_fs_root(root);
9244         }
9245         root_dropped = true;
9246 out_end_trans:
9247         btrfs_end_transaction_throttle(trans);
9248 out_free:
9249         kfree(wc);
9250         btrfs_free_path(path);
9251 out:
9252         /*
9253          * So if we need to stop dropping the snapshot for whatever reason we
9254          * need to make sure to add it back to the dead root list so that we
9255          * keep trying to do the work later.  This also cleans up roots if we
9256          * don't have it in the radix (like when we recover after a power fail
9257          * or unmount) so we don't leak memory.
9258          */
9259         if (!for_reloc && !root_dropped)
9260                 btrfs_add_dead_root(root);
9261         if (err && err != -EAGAIN)
9262                 btrfs_handle_fs_error(fs_info, err, NULL);
9263         return err;
9264 }
9265
9266 /*
9267  * drop subtree rooted at tree block 'node'.
9268  *
9269  * NOTE: this function will unlock and release tree block 'node'
9270  * only used by relocation code
9271  */
9272 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9273                         struct btrfs_root *root,
9274                         struct extent_buffer *node,
9275                         struct extent_buffer *parent)
9276 {
9277         struct btrfs_fs_info *fs_info = root->fs_info;
9278         struct btrfs_path *path;
9279         struct walk_control *wc;
9280         int level;
9281         int parent_level;
9282         int ret = 0;
9283         int wret;
9284
9285         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9286
9287         path = btrfs_alloc_path();
9288         if (!path)
9289                 return -ENOMEM;
9290
9291         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9292         if (!wc) {
9293                 btrfs_free_path(path);
9294                 return -ENOMEM;
9295         }
9296
9297         btrfs_assert_tree_locked(parent);
9298         parent_level = btrfs_header_level(parent);
9299         extent_buffer_get(parent);
9300         path->nodes[parent_level] = parent;
9301         path->slots[parent_level] = btrfs_header_nritems(parent);
9302
9303         btrfs_assert_tree_locked(node);
9304         level = btrfs_header_level(node);
9305         path->nodes[level] = node;
9306         path->slots[level] = 0;
9307         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9308
9309         wc->refs[parent_level] = 1;
9310         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9311         wc->level = level;
9312         wc->shared_level = -1;
9313         wc->stage = DROP_REFERENCE;
9314         wc->update_ref = 0;
9315         wc->keep_locks = 1;
9316         wc->for_reloc = 1;
9317         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9318
9319         while (1) {
9320                 wret = walk_down_tree(trans, root, path, wc);
9321                 if (wret < 0) {
9322                         ret = wret;
9323                         break;
9324                 }
9325
9326                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9327                 if (wret < 0)
9328                         ret = wret;
9329                 if (wret != 0)
9330                         break;
9331         }
9332
9333         kfree(wc);
9334         btrfs_free_path(path);
9335         return ret;
9336 }
9337
9338 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9339 {
9340         u64 num_devices;
9341         u64 stripped;
9342
9343         /*
9344          * if restripe for this chunk_type is on pick target profile and
9345          * return, otherwise do the usual balance
9346          */
9347         stripped = get_restripe_target(fs_info, flags);
9348         if (stripped)
9349                 return extended_to_chunk(stripped);
9350
9351         num_devices = fs_info->fs_devices->rw_devices;
9352
9353         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9354                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9355                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9356
9357         if (num_devices == 1) {
9358                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9359                 stripped = flags & ~stripped;
9360
9361                 /* turn raid0 into single device chunks */
9362                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9363                         return stripped;
9364
9365                 /* turn mirroring into duplication */
9366                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9367                              BTRFS_BLOCK_GROUP_RAID10))
9368                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9369         } else {
9370                 /* they already had raid on here, just return */
9371                 if (flags & stripped)
9372                         return flags;
9373
9374                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9375                 stripped = flags & ~stripped;
9376
9377                 /* switch duplicated blocks with raid1 */
9378                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9379                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9380
9381                 /* this is drive concat, leave it alone */
9382         }
9383
9384         return flags;
9385 }
9386
9387 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9388 {
9389         struct btrfs_space_info *sinfo = cache->space_info;
9390         u64 num_bytes;
9391         u64 min_allocable_bytes;
9392         int ret = -ENOSPC;
9393
9394         /*
9395          * We need some metadata space and system metadata space for
9396          * allocating chunks in some corner cases until we force to set
9397          * it to be readonly.
9398          */
9399         if ((sinfo->flags &
9400              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9401             !force)
9402                 min_allocable_bytes = SZ_1M;
9403         else
9404                 min_allocable_bytes = 0;
9405
9406         spin_lock(&sinfo->lock);
9407         spin_lock(&cache->lock);
9408
9409         if (cache->ro) {
9410                 cache->ro++;
9411                 ret = 0;
9412                 goto out;
9413         }
9414
9415         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9416                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9417
9418         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9419             min_allocable_bytes <= sinfo->total_bytes) {
9420                 sinfo->bytes_readonly += num_bytes;
9421                 cache->ro++;
9422                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9423                 ret = 0;
9424         }
9425 out:
9426         spin_unlock(&cache->lock);
9427         spin_unlock(&sinfo->lock);
9428         return ret;
9429 }
9430
9431 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9432                              struct btrfs_block_group_cache *cache)
9433
9434 {
9435         struct btrfs_trans_handle *trans;
9436         u64 alloc_flags;
9437         int ret;
9438
9439 again:
9440         trans = btrfs_join_transaction(fs_info->extent_root);
9441         if (IS_ERR(trans))
9442                 return PTR_ERR(trans);
9443
9444         /*
9445          * we're not allowed to set block groups readonly after the dirty
9446          * block groups cache has started writing.  If it already started,
9447          * back off and let this transaction commit
9448          */
9449         mutex_lock(&fs_info->ro_block_group_mutex);
9450         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9451                 u64 transid = trans->transid;
9452
9453                 mutex_unlock(&fs_info->ro_block_group_mutex);
9454                 btrfs_end_transaction(trans);
9455
9456                 ret = btrfs_wait_for_commit(fs_info, transid);
9457                 if (ret)
9458                         return ret;
9459                 goto again;
9460         }
9461
9462         /*
9463          * if we are changing raid levels, try to allocate a corresponding
9464          * block group with the new raid level.
9465          */
9466         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9467         if (alloc_flags != cache->flags) {
9468                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9469                                      CHUNK_ALLOC_FORCE);
9470                 /*
9471                  * ENOSPC is allowed here, we may have enough space
9472                  * already allocated at the new raid level to
9473                  * carry on
9474                  */
9475                 if (ret == -ENOSPC)
9476                         ret = 0;
9477                 if (ret < 0)
9478                         goto out;
9479         }
9480
9481         ret = inc_block_group_ro(cache, 0);
9482         if (!ret)
9483                 goto out;
9484         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9485         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9486                              CHUNK_ALLOC_FORCE);
9487         if (ret < 0)
9488                 goto out;
9489         ret = inc_block_group_ro(cache, 0);
9490 out:
9491         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9492                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9493                 mutex_lock(&fs_info->chunk_mutex);
9494                 check_system_chunk(trans, fs_info, alloc_flags);
9495                 mutex_unlock(&fs_info->chunk_mutex);
9496         }
9497         mutex_unlock(&fs_info->ro_block_group_mutex);
9498
9499         btrfs_end_transaction(trans);
9500         return ret;
9501 }
9502
9503 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9504                             struct btrfs_fs_info *fs_info, u64 type)
9505 {
9506         u64 alloc_flags = get_alloc_profile(fs_info, type);
9507
9508         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9509 }
9510
9511 /*
9512  * helper to account the unused space of all the readonly block group in the
9513  * space_info. takes mirrors into account.
9514  */
9515 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9516 {
9517         struct btrfs_block_group_cache *block_group;
9518         u64 free_bytes = 0;
9519         int factor;
9520
9521         /* It's df, we don't care if it's racy */
9522         if (list_empty(&sinfo->ro_bgs))
9523                 return 0;
9524
9525         spin_lock(&sinfo->lock);
9526         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9527                 spin_lock(&block_group->lock);
9528
9529                 if (!block_group->ro) {
9530                         spin_unlock(&block_group->lock);
9531                         continue;
9532                 }
9533
9534                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9535                                           BTRFS_BLOCK_GROUP_RAID10 |
9536                                           BTRFS_BLOCK_GROUP_DUP))
9537                         factor = 2;
9538                 else
9539                         factor = 1;
9540
9541                 free_bytes += (block_group->key.offset -
9542                                btrfs_block_group_used(&block_group->item)) *
9543                                factor;
9544
9545                 spin_unlock(&block_group->lock);
9546         }
9547         spin_unlock(&sinfo->lock);
9548
9549         return free_bytes;
9550 }
9551
9552 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9553 {
9554         struct btrfs_space_info *sinfo = cache->space_info;
9555         u64 num_bytes;
9556
9557         BUG_ON(!cache->ro);
9558
9559         spin_lock(&sinfo->lock);
9560         spin_lock(&cache->lock);
9561         if (!--cache->ro) {
9562                 num_bytes = cache->key.offset - cache->reserved -
9563                             cache->pinned - cache->bytes_super -
9564                             btrfs_block_group_used(&cache->item);
9565                 sinfo->bytes_readonly -= num_bytes;
9566                 list_del_init(&cache->ro_list);
9567         }
9568         spin_unlock(&cache->lock);
9569         spin_unlock(&sinfo->lock);
9570 }
9571
9572 /*
9573  * checks to see if its even possible to relocate this block group.
9574  *
9575  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9576  * ok to go ahead and try.
9577  */
9578 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9579 {
9580         struct btrfs_root *root = fs_info->extent_root;
9581         struct btrfs_block_group_cache *block_group;
9582         struct btrfs_space_info *space_info;
9583         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9584         struct btrfs_device *device;
9585         struct btrfs_trans_handle *trans;
9586         u64 min_free;
9587         u64 dev_min = 1;
9588         u64 dev_nr = 0;
9589         u64 target;
9590         int debug;
9591         int index;
9592         int full = 0;
9593         int ret = 0;
9594
9595         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9596
9597         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9598
9599         /* odd, couldn't find the block group, leave it alone */
9600         if (!block_group) {
9601                 if (debug)
9602                         btrfs_warn(fs_info,
9603                                    "can't find block group for bytenr %llu",
9604                                    bytenr);
9605                 return -1;
9606         }
9607
9608         min_free = btrfs_block_group_used(&block_group->item);
9609
9610         /* no bytes used, we're good */
9611         if (!min_free)
9612                 goto out;
9613
9614         space_info = block_group->space_info;
9615         spin_lock(&space_info->lock);
9616
9617         full = space_info->full;
9618
9619         /*
9620          * if this is the last block group we have in this space, we can't
9621          * relocate it unless we're able to allocate a new chunk below.
9622          *
9623          * Otherwise, we need to make sure we have room in the space to handle
9624          * all of the extents from this block group.  If we can, we're good
9625          */
9626         if ((space_info->total_bytes != block_group->key.offset) &&
9627             (btrfs_space_info_used(space_info, false) + min_free <
9628              space_info->total_bytes)) {
9629                 spin_unlock(&space_info->lock);
9630                 goto out;
9631         }
9632         spin_unlock(&space_info->lock);
9633
9634         /*
9635          * ok we don't have enough space, but maybe we have free space on our
9636          * devices to allocate new chunks for relocation, so loop through our
9637          * alloc devices and guess if we have enough space.  if this block
9638          * group is going to be restriped, run checks against the target
9639          * profile instead of the current one.
9640          */
9641         ret = -1;
9642
9643         /*
9644          * index:
9645          *      0: raid10
9646          *      1: raid1
9647          *      2: dup
9648          *      3: raid0
9649          *      4: single
9650          */
9651         target = get_restripe_target(fs_info, block_group->flags);
9652         if (target) {
9653                 index = __get_raid_index(extended_to_chunk(target));
9654         } else {
9655                 /*
9656                  * this is just a balance, so if we were marked as full
9657                  * we know there is no space for a new chunk
9658                  */
9659                 if (full) {
9660                         if (debug)
9661                                 btrfs_warn(fs_info,
9662                                            "no space to alloc new chunk for block group %llu",
9663                                            block_group->key.objectid);
9664                         goto out;
9665                 }
9666
9667                 index = get_block_group_index(block_group);
9668         }
9669
9670         if (index == BTRFS_RAID_RAID10) {
9671                 dev_min = 4;
9672                 /* Divide by 2 */
9673                 min_free >>= 1;
9674         } else if (index == BTRFS_RAID_RAID1) {
9675                 dev_min = 2;
9676         } else if (index == BTRFS_RAID_DUP) {
9677                 /* Multiply by 2 */
9678                 min_free <<= 1;
9679         } else if (index == BTRFS_RAID_RAID0) {
9680                 dev_min = fs_devices->rw_devices;
9681                 min_free = div64_u64(min_free, dev_min);
9682         }
9683
9684         /* We need to do this so that we can look at pending chunks */
9685         trans = btrfs_join_transaction(root);
9686         if (IS_ERR(trans)) {
9687                 ret = PTR_ERR(trans);
9688                 goto out;
9689         }
9690
9691         mutex_lock(&fs_info->chunk_mutex);
9692         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9693                 u64 dev_offset;
9694
9695                 /*
9696                  * check to make sure we can actually find a chunk with enough
9697                  * space to fit our block group in.
9698                  */
9699                 if (device->total_bytes > device->bytes_used + min_free &&
9700                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9701                         ret = find_free_dev_extent(trans, device, min_free,
9702                                                    &dev_offset, NULL);
9703                         if (!ret)
9704                                 dev_nr++;
9705
9706                         if (dev_nr >= dev_min)
9707                                 break;
9708
9709                         ret = -1;
9710                 }
9711         }
9712         if (debug && ret == -1)
9713                 btrfs_warn(fs_info,
9714                            "no space to allocate a new chunk for block group %llu",
9715                            block_group->key.objectid);
9716         mutex_unlock(&fs_info->chunk_mutex);
9717         btrfs_end_transaction(trans);
9718 out:
9719         btrfs_put_block_group(block_group);
9720         return ret;
9721 }
9722
9723 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9724                                   struct btrfs_path *path,
9725                                   struct btrfs_key *key)
9726 {
9727         struct btrfs_root *root = fs_info->extent_root;
9728         int ret = 0;
9729         struct btrfs_key found_key;
9730         struct extent_buffer *leaf;
9731         int slot;
9732
9733         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9734         if (ret < 0)
9735                 goto out;
9736
9737         while (1) {
9738                 slot = path->slots[0];
9739                 leaf = path->nodes[0];
9740                 if (slot >= btrfs_header_nritems(leaf)) {
9741                         ret = btrfs_next_leaf(root, path);
9742                         if (ret == 0)
9743                                 continue;
9744                         if (ret < 0)
9745                                 goto out;
9746                         break;
9747                 }
9748                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9749
9750                 if (found_key.objectid >= key->objectid &&
9751                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9752                         struct extent_map_tree *em_tree;
9753                         struct extent_map *em;
9754
9755                         em_tree = &root->fs_info->mapping_tree.map_tree;
9756                         read_lock(&em_tree->lock);
9757                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9758                                                    found_key.offset);
9759                         read_unlock(&em_tree->lock);
9760                         if (!em) {
9761                                 btrfs_err(fs_info,
9762                         "logical %llu len %llu found bg but no related chunk",
9763                                           found_key.objectid, found_key.offset);
9764                                 ret = -ENOENT;
9765                         } else {
9766                                 ret = 0;
9767                         }
9768                         free_extent_map(em);
9769                         goto out;
9770                 }
9771                 path->slots[0]++;
9772         }
9773 out:
9774         return ret;
9775 }
9776
9777 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9778 {
9779         struct btrfs_block_group_cache *block_group;
9780         u64 last = 0;
9781
9782         while (1) {
9783                 struct inode *inode;
9784
9785                 block_group = btrfs_lookup_first_block_group(info, last);
9786                 while (block_group) {
9787                         spin_lock(&block_group->lock);
9788                         if (block_group->iref)
9789                                 break;
9790                         spin_unlock(&block_group->lock);
9791                         block_group = next_block_group(info, block_group);
9792                 }
9793                 if (!block_group) {
9794                         if (last == 0)
9795                                 break;
9796                         last = 0;
9797                         continue;
9798                 }
9799
9800                 inode = block_group->inode;
9801                 block_group->iref = 0;
9802                 block_group->inode = NULL;
9803                 spin_unlock(&block_group->lock);
9804                 ASSERT(block_group->io_ctl.inode == NULL);
9805                 iput(inode);
9806                 last = block_group->key.objectid + block_group->key.offset;
9807                 btrfs_put_block_group(block_group);
9808         }
9809 }
9810
9811 /*
9812  * Must be called only after stopping all workers, since we could have block
9813  * group caching kthreads running, and therefore they could race with us if we
9814  * freed the block groups before stopping them.
9815  */
9816 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9817 {
9818         struct btrfs_block_group_cache *block_group;
9819         struct btrfs_space_info *space_info;
9820         struct btrfs_caching_control *caching_ctl;
9821         struct rb_node *n;
9822
9823         down_write(&info->commit_root_sem);
9824         while (!list_empty(&info->caching_block_groups)) {
9825                 caching_ctl = list_entry(info->caching_block_groups.next,
9826                                          struct btrfs_caching_control, list);
9827                 list_del(&caching_ctl->list);
9828                 put_caching_control(caching_ctl);
9829         }
9830         up_write(&info->commit_root_sem);
9831
9832         spin_lock(&info->unused_bgs_lock);
9833         while (!list_empty(&info->unused_bgs)) {
9834                 block_group = list_first_entry(&info->unused_bgs,
9835                                                struct btrfs_block_group_cache,
9836                                                bg_list);
9837                 list_del_init(&block_group->bg_list);
9838                 btrfs_put_block_group(block_group);
9839         }
9840         spin_unlock(&info->unused_bgs_lock);
9841
9842         spin_lock(&info->block_group_cache_lock);
9843         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9844                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9845                                        cache_node);
9846                 rb_erase(&block_group->cache_node,
9847                          &info->block_group_cache_tree);
9848                 RB_CLEAR_NODE(&block_group->cache_node);
9849                 spin_unlock(&info->block_group_cache_lock);
9850
9851                 down_write(&block_group->space_info->groups_sem);
9852                 list_del(&block_group->list);
9853                 up_write(&block_group->space_info->groups_sem);
9854
9855                 /*
9856                  * We haven't cached this block group, which means we could
9857                  * possibly have excluded extents on this block group.
9858                  */
9859                 if (block_group->cached == BTRFS_CACHE_NO ||
9860                     block_group->cached == BTRFS_CACHE_ERROR)
9861                         free_excluded_extents(info, block_group);
9862
9863                 btrfs_remove_free_space_cache(block_group);
9864                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9865                 ASSERT(list_empty(&block_group->dirty_list));
9866                 ASSERT(list_empty(&block_group->io_list));
9867                 ASSERT(list_empty(&block_group->bg_list));
9868                 ASSERT(atomic_read(&block_group->count) == 1);
9869                 btrfs_put_block_group(block_group);
9870
9871                 spin_lock(&info->block_group_cache_lock);
9872         }
9873         spin_unlock(&info->block_group_cache_lock);
9874
9875         /* now that all the block groups are freed, go through and
9876          * free all the space_info structs.  This is only called during
9877          * the final stages of unmount, and so we know nobody is
9878          * using them.  We call synchronize_rcu() once before we start,
9879          * just to be on the safe side.
9880          */
9881         synchronize_rcu();
9882
9883         release_global_block_rsv(info);
9884
9885         while (!list_empty(&info->space_info)) {
9886                 int i;
9887
9888                 space_info = list_entry(info->space_info.next,
9889                                         struct btrfs_space_info,
9890                                         list);
9891
9892                 /*
9893                  * Do not hide this behind enospc_debug, this is actually
9894                  * important and indicates a real bug if this happens.
9895                  */
9896                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9897                             space_info->bytes_reserved > 0 ||
9898                             space_info->bytes_may_use > 0))
9899                         dump_space_info(info, space_info, 0, 0);
9900                 list_del(&space_info->list);
9901                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9902                         struct kobject *kobj;
9903                         kobj = space_info->block_group_kobjs[i];
9904                         space_info->block_group_kobjs[i] = NULL;
9905                         if (kobj) {
9906                                 kobject_del(kobj);
9907                                 kobject_put(kobj);
9908                         }
9909                 }
9910                 kobject_del(&space_info->kobj);
9911                 kobject_put(&space_info->kobj);
9912         }
9913         return 0;
9914 }
9915
9916 static void link_block_group(struct btrfs_block_group_cache *cache)
9917 {
9918         struct btrfs_space_info *space_info = cache->space_info;
9919         int index = get_block_group_index(cache);
9920         bool first = false;
9921
9922         down_write(&space_info->groups_sem);
9923         if (list_empty(&space_info->block_groups[index]))
9924                 first = true;
9925         list_add_tail(&cache->list, &space_info->block_groups[index]);
9926         up_write(&space_info->groups_sem);
9927
9928         if (first) {
9929                 struct raid_kobject *rkobj;
9930                 int ret;
9931
9932                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9933                 if (!rkobj)
9934                         goto out_err;
9935                 rkobj->raid_type = index;
9936                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9937                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9938                                   "%s", get_raid_name(index));
9939                 if (ret) {
9940                         kobject_put(&rkobj->kobj);
9941                         goto out_err;
9942                 }
9943                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9944         }
9945
9946         return;
9947 out_err:
9948         btrfs_warn(cache->fs_info,
9949                    "failed to add kobject for block cache, ignoring");
9950 }
9951
9952 static struct btrfs_block_group_cache *
9953 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9954                                u64 start, u64 size)
9955 {
9956         struct btrfs_block_group_cache *cache;
9957
9958         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9959         if (!cache)
9960                 return NULL;
9961
9962         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9963                                         GFP_NOFS);
9964         if (!cache->free_space_ctl) {
9965                 kfree(cache);
9966                 return NULL;
9967         }
9968
9969         cache->key.objectid = start;
9970         cache->key.offset = size;
9971         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9972
9973         cache->fs_info = fs_info;
9974         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9975         set_free_space_tree_thresholds(cache);
9976
9977         atomic_set(&cache->count, 1);
9978         spin_lock_init(&cache->lock);
9979         init_rwsem(&cache->data_rwsem);
9980         INIT_LIST_HEAD(&cache->list);
9981         INIT_LIST_HEAD(&cache->cluster_list);
9982         INIT_LIST_HEAD(&cache->bg_list);
9983         INIT_LIST_HEAD(&cache->ro_list);
9984         INIT_LIST_HEAD(&cache->dirty_list);
9985         INIT_LIST_HEAD(&cache->io_list);
9986         btrfs_init_free_space_ctl(cache);
9987         atomic_set(&cache->trimming, 0);
9988         mutex_init(&cache->free_space_lock);
9989         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9990
9991         return cache;
9992 }
9993
9994 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9995 {
9996         struct btrfs_path *path;
9997         int ret;
9998         struct btrfs_block_group_cache *cache;
9999         struct btrfs_space_info *space_info;
10000         struct btrfs_key key;
10001         struct btrfs_key found_key;
10002         struct extent_buffer *leaf;
10003         int need_clear = 0;
10004         u64 cache_gen;
10005         u64 feature;
10006         int mixed;
10007
10008         feature = btrfs_super_incompat_flags(info->super_copy);
10009         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10010
10011         key.objectid = 0;
10012         key.offset = 0;
10013         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10014         path = btrfs_alloc_path();
10015         if (!path)
10016                 return -ENOMEM;
10017         path->reada = READA_FORWARD;
10018
10019         cache_gen = btrfs_super_cache_generation(info->super_copy);
10020         if (btrfs_test_opt(info, SPACE_CACHE) &&
10021             btrfs_super_generation(info->super_copy) != cache_gen)
10022                 need_clear = 1;
10023         if (btrfs_test_opt(info, CLEAR_CACHE))
10024                 need_clear = 1;
10025
10026         while (1) {
10027                 ret = find_first_block_group(info, path, &key);
10028                 if (ret > 0)
10029                         break;
10030                 if (ret != 0)
10031                         goto error;
10032
10033                 leaf = path->nodes[0];
10034                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10035
10036                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10037                                                        found_key.offset);
10038                 if (!cache) {
10039                         ret = -ENOMEM;
10040                         goto error;
10041                 }
10042
10043                 if (need_clear) {
10044                         /*
10045                          * When we mount with old space cache, we need to
10046                          * set BTRFS_DC_CLEAR and set dirty flag.
10047                          *
10048                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10049                          *    truncate the old free space cache inode and
10050                          *    setup a new one.
10051                          * b) Setting 'dirty flag' makes sure that we flush
10052                          *    the new space cache info onto disk.
10053                          */
10054                         if (btrfs_test_opt(info, SPACE_CACHE))
10055                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10056                 }
10057
10058                 read_extent_buffer(leaf, &cache->item,
10059                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10060                                    sizeof(cache->item));
10061                 cache->flags = btrfs_block_group_flags(&cache->item);
10062                 if (!mixed &&
10063                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10064                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10065                         btrfs_err(info,
10066 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10067                                   cache->key.objectid);
10068                         ret = -EINVAL;
10069                         goto error;
10070                 }
10071
10072                 key.objectid = found_key.objectid + found_key.offset;
10073                 btrfs_release_path(path);
10074
10075                 /*
10076                  * We need to exclude the super stripes now so that the space
10077                  * info has super bytes accounted for, otherwise we'll think
10078                  * we have more space than we actually do.
10079                  */
10080                 ret = exclude_super_stripes(info, cache);
10081                 if (ret) {
10082                         /*
10083                          * We may have excluded something, so call this just in
10084                          * case.
10085                          */
10086                         free_excluded_extents(info, cache);
10087                         btrfs_put_block_group(cache);
10088                         goto error;
10089                 }
10090
10091                 /*
10092                  * check for two cases, either we are full, and therefore
10093                  * don't need to bother with the caching work since we won't
10094                  * find any space, or we are empty, and we can just add all
10095                  * the space in and be done with it.  This saves us _alot_ of
10096                  * time, particularly in the full case.
10097                  */
10098                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10099                         cache->last_byte_to_unpin = (u64)-1;
10100                         cache->cached = BTRFS_CACHE_FINISHED;
10101                         free_excluded_extents(info, cache);
10102                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10103                         cache->last_byte_to_unpin = (u64)-1;
10104                         cache->cached = BTRFS_CACHE_FINISHED;
10105                         add_new_free_space(cache, info,
10106                                            found_key.objectid,
10107                                            found_key.objectid +
10108                                            found_key.offset);
10109                         free_excluded_extents(info, cache);
10110                 }
10111
10112                 ret = btrfs_add_block_group_cache(info, cache);
10113                 if (ret) {
10114                         btrfs_remove_free_space_cache(cache);
10115                         btrfs_put_block_group(cache);
10116                         goto error;
10117                 }
10118
10119                 trace_btrfs_add_block_group(info, cache, 0);
10120                 update_space_info(info, cache->flags, found_key.offset,
10121                                   btrfs_block_group_used(&cache->item),
10122                                   cache->bytes_super, &space_info);
10123
10124                 cache->space_info = space_info;
10125
10126                 link_block_group(cache);
10127
10128                 set_avail_alloc_bits(info, cache->flags);
10129                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10130                         inc_block_group_ro(cache, 1);
10131                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10132                         spin_lock(&info->unused_bgs_lock);
10133                         /* Should always be true but just in case. */
10134                         if (list_empty(&cache->bg_list)) {
10135                                 btrfs_get_block_group(cache);
10136                                 list_add_tail(&cache->bg_list,
10137                                               &info->unused_bgs);
10138                         }
10139                         spin_unlock(&info->unused_bgs_lock);
10140                 }
10141         }
10142
10143         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10144                 if (!(get_alloc_profile(info, space_info->flags) &
10145                       (BTRFS_BLOCK_GROUP_RAID10 |
10146                        BTRFS_BLOCK_GROUP_RAID1 |
10147                        BTRFS_BLOCK_GROUP_RAID5 |
10148                        BTRFS_BLOCK_GROUP_RAID6 |
10149                        BTRFS_BLOCK_GROUP_DUP)))
10150                         continue;
10151                 /*
10152                  * avoid allocating from un-mirrored block group if there are
10153                  * mirrored block groups.
10154                  */
10155                 list_for_each_entry(cache,
10156                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10157                                 list)
10158                         inc_block_group_ro(cache, 1);
10159                 list_for_each_entry(cache,
10160                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10161                                 list)
10162                         inc_block_group_ro(cache, 1);
10163         }
10164
10165         init_global_block_rsv(info);
10166         ret = 0;
10167 error:
10168         btrfs_free_path(path);
10169         return ret;
10170 }
10171
10172 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10173                                        struct btrfs_fs_info *fs_info)
10174 {
10175         struct btrfs_block_group_cache *block_group, *tmp;
10176         struct btrfs_root *extent_root = fs_info->extent_root;
10177         struct btrfs_block_group_item item;
10178         struct btrfs_key key;
10179         int ret = 0;
10180         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10181
10182         trans->can_flush_pending_bgs = false;
10183         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10184                 if (ret)
10185                         goto next;
10186
10187                 spin_lock(&block_group->lock);
10188                 memcpy(&item, &block_group->item, sizeof(item));
10189                 memcpy(&key, &block_group->key, sizeof(key));
10190                 spin_unlock(&block_group->lock);
10191
10192                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10193                                         sizeof(item));
10194                 if (ret)
10195                         btrfs_abort_transaction(trans, ret);
10196                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10197                                                key.offset);
10198                 if (ret)
10199                         btrfs_abort_transaction(trans, ret);
10200                 add_block_group_free_space(trans, fs_info, block_group);
10201                 /* already aborted the transaction if it failed. */
10202 next:
10203                 list_del_init(&block_group->bg_list);
10204         }
10205         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10206 }
10207
10208 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10209                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10210                            u64 type, u64 chunk_offset, u64 size)
10211 {
10212         struct btrfs_block_group_cache *cache;
10213         int ret;
10214
10215         btrfs_set_log_full_commit(fs_info, trans);
10216
10217         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10218         if (!cache)
10219                 return -ENOMEM;
10220
10221         btrfs_set_block_group_used(&cache->item, bytes_used);
10222         btrfs_set_block_group_chunk_objectid(&cache->item,
10223                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10224         btrfs_set_block_group_flags(&cache->item, type);
10225
10226         cache->flags = type;
10227         cache->last_byte_to_unpin = (u64)-1;
10228         cache->cached = BTRFS_CACHE_FINISHED;
10229         cache->needs_free_space = 1;
10230         ret = exclude_super_stripes(fs_info, cache);
10231         if (ret) {
10232                 /*
10233                  * We may have excluded something, so call this just in
10234                  * case.
10235                  */
10236                 free_excluded_extents(fs_info, cache);
10237                 btrfs_put_block_group(cache);
10238                 return ret;
10239         }
10240
10241         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10242
10243         free_excluded_extents(fs_info, cache);
10244
10245 #ifdef CONFIG_BTRFS_DEBUG
10246         if (btrfs_should_fragment_free_space(cache)) {
10247                 u64 new_bytes_used = size - bytes_used;
10248
10249                 bytes_used += new_bytes_used >> 1;
10250                 fragment_free_space(cache);
10251         }
10252 #endif
10253         /*
10254          * Ensure the corresponding space_info object is created and
10255          * assigned to our block group. We want our bg to be added to the rbtree
10256          * with its ->space_info set.
10257          */
10258         cache->space_info = __find_space_info(fs_info, cache->flags);
10259         if (!cache->space_info) {
10260                 ret = create_space_info(fs_info, cache->flags,
10261                                        &cache->space_info);
10262                 if (ret) {
10263                         btrfs_remove_free_space_cache(cache);
10264                         btrfs_put_block_group(cache);
10265                         return ret;
10266                 }
10267         }
10268
10269         ret = btrfs_add_block_group_cache(fs_info, cache);
10270         if (ret) {
10271                 btrfs_remove_free_space_cache(cache);
10272                 btrfs_put_block_group(cache);
10273                 return ret;
10274         }
10275
10276         /*
10277          * Now that our block group has its ->space_info set and is inserted in
10278          * the rbtree, update the space info's counters.
10279          */
10280         trace_btrfs_add_block_group(fs_info, cache, 1);
10281         update_space_info(fs_info, cache->flags, size, bytes_used,
10282                                 cache->bytes_super, &cache->space_info);
10283         update_global_block_rsv(fs_info);
10284
10285         link_block_group(cache);
10286
10287         list_add_tail(&cache->bg_list, &trans->new_bgs);
10288
10289         set_avail_alloc_bits(fs_info, type);
10290         return 0;
10291 }
10292
10293 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10294 {
10295         u64 extra_flags = chunk_to_extended(flags) &
10296                                 BTRFS_EXTENDED_PROFILE_MASK;
10297
10298         write_seqlock(&fs_info->profiles_lock);
10299         if (flags & BTRFS_BLOCK_GROUP_DATA)
10300                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10301         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10302                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10303         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10304                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10305         write_sequnlock(&fs_info->profiles_lock);
10306 }
10307
10308 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10309                              struct btrfs_fs_info *fs_info, u64 group_start,
10310                              struct extent_map *em)
10311 {
10312         struct btrfs_root *root = fs_info->extent_root;
10313         struct btrfs_path *path;
10314         struct btrfs_block_group_cache *block_group;
10315         struct btrfs_free_cluster *cluster;
10316         struct btrfs_root *tree_root = fs_info->tree_root;
10317         struct btrfs_key key;
10318         struct inode *inode;
10319         struct kobject *kobj = NULL;
10320         int ret;
10321         int index;
10322         int factor;
10323         struct btrfs_caching_control *caching_ctl = NULL;
10324         bool remove_em;
10325
10326         block_group = btrfs_lookup_block_group(fs_info, group_start);
10327         BUG_ON(!block_group);
10328         BUG_ON(!block_group->ro);
10329
10330         /*
10331          * Free the reserved super bytes from this block group before
10332          * remove it.
10333          */
10334         free_excluded_extents(fs_info, block_group);
10335         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10336                                   block_group->key.offset);
10337
10338         memcpy(&key, &block_group->key, sizeof(key));
10339         index = get_block_group_index(block_group);
10340         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10341                                   BTRFS_BLOCK_GROUP_RAID1 |
10342                                   BTRFS_BLOCK_GROUP_RAID10))
10343                 factor = 2;
10344         else
10345                 factor = 1;
10346
10347         /* make sure this block group isn't part of an allocation cluster */
10348         cluster = &fs_info->data_alloc_cluster;
10349         spin_lock(&cluster->refill_lock);
10350         btrfs_return_cluster_to_free_space(block_group, cluster);
10351         spin_unlock(&cluster->refill_lock);
10352
10353         /*
10354          * make sure this block group isn't part of a metadata
10355          * allocation cluster
10356          */
10357         cluster = &fs_info->meta_alloc_cluster;
10358         spin_lock(&cluster->refill_lock);
10359         btrfs_return_cluster_to_free_space(block_group, cluster);
10360         spin_unlock(&cluster->refill_lock);
10361
10362         path = btrfs_alloc_path();
10363         if (!path) {
10364                 ret = -ENOMEM;
10365                 goto out;
10366         }
10367
10368         /*
10369          * get the inode first so any iput calls done for the io_list
10370          * aren't the final iput (no unlinks allowed now)
10371          */
10372         inode = lookup_free_space_inode(fs_info, block_group, path);
10373
10374         mutex_lock(&trans->transaction->cache_write_mutex);
10375         /*
10376          * make sure our free spache cache IO is done before remove the
10377          * free space inode
10378          */
10379         spin_lock(&trans->transaction->dirty_bgs_lock);
10380         if (!list_empty(&block_group->io_list)) {
10381                 list_del_init(&block_group->io_list);
10382
10383                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10384
10385                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10386                 btrfs_wait_cache_io(trans, block_group, path);
10387                 btrfs_put_block_group(block_group);
10388                 spin_lock(&trans->transaction->dirty_bgs_lock);
10389         }
10390
10391         if (!list_empty(&block_group->dirty_list)) {
10392                 list_del_init(&block_group->dirty_list);
10393                 btrfs_put_block_group(block_group);
10394         }
10395         spin_unlock(&trans->transaction->dirty_bgs_lock);
10396         mutex_unlock(&trans->transaction->cache_write_mutex);
10397
10398         if (!IS_ERR(inode)) {
10399                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10400                 if (ret) {
10401                         btrfs_add_delayed_iput(inode);
10402                         goto out;
10403                 }
10404                 clear_nlink(inode);
10405                 /* One for the block groups ref */
10406                 spin_lock(&block_group->lock);
10407                 if (block_group->iref) {
10408                         block_group->iref = 0;
10409                         block_group->inode = NULL;
10410                         spin_unlock(&block_group->lock);
10411                         iput(inode);
10412                 } else {
10413                         spin_unlock(&block_group->lock);
10414                 }
10415                 /* One for our lookup ref */
10416                 btrfs_add_delayed_iput(inode);
10417         }
10418
10419         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10420         key.offset = block_group->key.objectid;
10421         key.type = 0;
10422
10423         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10424         if (ret < 0)
10425                 goto out;
10426         if (ret > 0)
10427                 btrfs_release_path(path);
10428         if (ret == 0) {
10429                 ret = btrfs_del_item(trans, tree_root, path);
10430                 if (ret)
10431                         goto out;
10432                 btrfs_release_path(path);
10433         }
10434
10435         spin_lock(&fs_info->block_group_cache_lock);
10436         rb_erase(&block_group->cache_node,
10437                  &fs_info->block_group_cache_tree);
10438         RB_CLEAR_NODE(&block_group->cache_node);
10439
10440         if (fs_info->first_logical_byte == block_group->key.objectid)
10441                 fs_info->first_logical_byte = (u64)-1;
10442         spin_unlock(&fs_info->block_group_cache_lock);
10443
10444         down_write(&block_group->space_info->groups_sem);
10445         /*
10446          * we must use list_del_init so people can check to see if they
10447          * are still on the list after taking the semaphore
10448          */
10449         list_del_init(&block_group->list);
10450         if (list_empty(&block_group->space_info->block_groups[index])) {
10451                 kobj = block_group->space_info->block_group_kobjs[index];
10452                 block_group->space_info->block_group_kobjs[index] = NULL;
10453                 clear_avail_alloc_bits(fs_info, block_group->flags);
10454         }
10455         up_write(&block_group->space_info->groups_sem);
10456         if (kobj) {
10457                 kobject_del(kobj);
10458                 kobject_put(kobj);
10459         }
10460
10461         if (block_group->has_caching_ctl)
10462                 caching_ctl = get_caching_control(block_group);
10463         if (block_group->cached == BTRFS_CACHE_STARTED)
10464                 wait_block_group_cache_done(block_group);
10465         if (block_group->has_caching_ctl) {
10466                 down_write(&fs_info->commit_root_sem);
10467                 if (!caching_ctl) {
10468                         struct btrfs_caching_control *ctl;
10469
10470                         list_for_each_entry(ctl,
10471                                     &fs_info->caching_block_groups, list)
10472                                 if (ctl->block_group == block_group) {
10473                                         caching_ctl = ctl;
10474                                         refcount_inc(&caching_ctl->count);
10475                                         break;
10476                                 }
10477                 }
10478                 if (caching_ctl)
10479                         list_del_init(&caching_ctl->list);
10480                 up_write(&fs_info->commit_root_sem);
10481                 if (caching_ctl) {
10482                         /* Once for the caching bgs list and once for us. */
10483                         put_caching_control(caching_ctl);
10484                         put_caching_control(caching_ctl);
10485                 }
10486         }
10487
10488         spin_lock(&trans->transaction->dirty_bgs_lock);
10489         if (!list_empty(&block_group->dirty_list)) {
10490                 WARN_ON(1);
10491         }
10492         if (!list_empty(&block_group->io_list)) {
10493                 WARN_ON(1);
10494         }
10495         spin_unlock(&trans->transaction->dirty_bgs_lock);
10496         btrfs_remove_free_space_cache(block_group);
10497
10498         spin_lock(&block_group->space_info->lock);
10499         list_del_init(&block_group->ro_list);
10500
10501         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10502                 WARN_ON(block_group->space_info->total_bytes
10503                         < block_group->key.offset);
10504                 WARN_ON(block_group->space_info->bytes_readonly
10505                         < block_group->key.offset);
10506                 WARN_ON(block_group->space_info->disk_total
10507                         < block_group->key.offset * factor);
10508         }
10509         block_group->space_info->total_bytes -= block_group->key.offset;
10510         block_group->space_info->bytes_readonly -= block_group->key.offset;
10511         block_group->space_info->disk_total -= block_group->key.offset * factor;
10512
10513         spin_unlock(&block_group->space_info->lock);
10514
10515         memcpy(&key, &block_group->key, sizeof(key));
10516
10517         mutex_lock(&fs_info->chunk_mutex);
10518         if (!list_empty(&em->list)) {
10519                 /* We're in the transaction->pending_chunks list. */
10520                 free_extent_map(em);
10521         }
10522         spin_lock(&block_group->lock);
10523         block_group->removed = 1;
10524         /*
10525          * At this point trimming can't start on this block group, because we
10526          * removed the block group from the tree fs_info->block_group_cache_tree
10527          * so no one can't find it anymore and even if someone already got this
10528          * block group before we removed it from the rbtree, they have already
10529          * incremented block_group->trimming - if they didn't, they won't find
10530          * any free space entries because we already removed them all when we
10531          * called btrfs_remove_free_space_cache().
10532          *
10533          * And we must not remove the extent map from the fs_info->mapping_tree
10534          * to prevent the same logical address range and physical device space
10535          * ranges from being reused for a new block group. This is because our
10536          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10537          * completely transactionless, so while it is trimming a range the
10538          * currently running transaction might finish and a new one start,
10539          * allowing for new block groups to be created that can reuse the same
10540          * physical device locations unless we take this special care.
10541          *
10542          * There may also be an implicit trim operation if the file system
10543          * is mounted with -odiscard. The same protections must remain
10544          * in place until the extents have been discarded completely when
10545          * the transaction commit has completed.
10546          */
10547         remove_em = (atomic_read(&block_group->trimming) == 0);
10548         /*
10549          * Make sure a trimmer task always sees the em in the pinned_chunks list
10550          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10551          * before checking block_group->removed).
10552          */
10553         if (!remove_em) {
10554                 /*
10555                  * Our em might be in trans->transaction->pending_chunks which
10556                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10557                  * and so is the fs_info->pinned_chunks list.
10558                  *
10559                  * So at this point we must be holding the chunk_mutex to avoid
10560                  * any races with chunk allocation (more specifically at
10561                  * volumes.c:contains_pending_extent()), to ensure it always
10562                  * sees the em, either in the pending_chunks list or in the
10563                  * pinned_chunks list.
10564                  */
10565                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10566         }
10567         spin_unlock(&block_group->lock);
10568
10569         if (remove_em) {
10570                 struct extent_map_tree *em_tree;
10571
10572                 em_tree = &fs_info->mapping_tree.map_tree;
10573                 write_lock(&em_tree->lock);
10574                 /*
10575                  * The em might be in the pending_chunks list, so make sure the
10576                  * chunk mutex is locked, since remove_extent_mapping() will
10577                  * delete us from that list.
10578                  */
10579                 remove_extent_mapping(em_tree, em);
10580                 write_unlock(&em_tree->lock);
10581                 /* once for the tree */
10582                 free_extent_map(em);
10583         }
10584
10585         mutex_unlock(&fs_info->chunk_mutex);
10586
10587         ret = remove_block_group_free_space(trans, fs_info, block_group);
10588         if (ret)
10589                 goto out;
10590
10591         btrfs_put_block_group(block_group);
10592         btrfs_put_block_group(block_group);
10593
10594         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10595         if (ret > 0)
10596                 ret = -EIO;
10597         if (ret < 0)
10598                 goto out;
10599
10600         ret = btrfs_del_item(trans, root, path);
10601 out:
10602         btrfs_free_path(path);
10603         return ret;
10604 }
10605
10606 struct btrfs_trans_handle *
10607 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10608                                      const u64 chunk_offset)
10609 {
10610         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10611         struct extent_map *em;
10612         struct map_lookup *map;
10613         unsigned int num_items;
10614
10615         read_lock(&em_tree->lock);
10616         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10617         read_unlock(&em_tree->lock);
10618         ASSERT(em && em->start == chunk_offset);
10619
10620         /*
10621          * We need to reserve 3 + N units from the metadata space info in order
10622          * to remove a block group (done at btrfs_remove_chunk() and at
10623          * btrfs_remove_block_group()), which are used for:
10624          *
10625          * 1 unit for adding the free space inode's orphan (located in the tree
10626          * of tree roots).
10627          * 1 unit for deleting the block group item (located in the extent
10628          * tree).
10629          * 1 unit for deleting the free space item (located in tree of tree
10630          * roots).
10631          * N units for deleting N device extent items corresponding to each
10632          * stripe (located in the device tree).
10633          *
10634          * In order to remove a block group we also need to reserve units in the
10635          * system space info in order to update the chunk tree (update one or
10636          * more device items and remove one chunk item), but this is done at
10637          * btrfs_remove_chunk() through a call to check_system_chunk().
10638          */
10639         map = em->map_lookup;
10640         num_items = 3 + map->num_stripes;
10641         free_extent_map(em);
10642
10643         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10644                                                            num_items, 1);
10645 }
10646
10647 /*
10648  * Process the unused_bgs list and remove any that don't have any allocated
10649  * space inside of them.
10650  */
10651 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10652 {
10653         struct btrfs_block_group_cache *block_group;
10654         struct btrfs_space_info *space_info;
10655         struct btrfs_trans_handle *trans;
10656         int ret = 0;
10657
10658         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10659                 return;
10660
10661         spin_lock(&fs_info->unused_bgs_lock);
10662         while (!list_empty(&fs_info->unused_bgs)) {
10663                 u64 start, end;
10664                 int trimming;
10665
10666                 block_group = list_first_entry(&fs_info->unused_bgs,
10667                                                struct btrfs_block_group_cache,
10668                                                bg_list);
10669                 list_del_init(&block_group->bg_list);
10670
10671                 space_info = block_group->space_info;
10672
10673                 if (ret || btrfs_mixed_space_info(space_info)) {
10674                         btrfs_put_block_group(block_group);
10675                         continue;
10676                 }
10677                 spin_unlock(&fs_info->unused_bgs_lock);
10678
10679                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10680
10681                 /* Don't want to race with allocators so take the groups_sem */
10682                 down_write(&space_info->groups_sem);
10683                 spin_lock(&block_group->lock);
10684                 if (block_group->reserved ||
10685                     btrfs_block_group_used(&block_group->item) ||
10686                     block_group->ro ||
10687                     list_is_singular(&block_group->list)) {
10688                         /*
10689                          * We want to bail if we made new allocations or have
10690                          * outstanding allocations in this block group.  We do
10691                          * the ro check in case balance is currently acting on
10692                          * this block group.
10693                          */
10694                         spin_unlock(&block_group->lock);
10695                         up_write(&space_info->groups_sem);
10696                         goto next;
10697                 }
10698                 spin_unlock(&block_group->lock);
10699
10700                 /* We don't want to force the issue, only flip if it's ok. */
10701                 ret = inc_block_group_ro(block_group, 0);
10702                 up_write(&space_info->groups_sem);
10703                 if (ret < 0) {
10704                         ret = 0;
10705                         goto next;
10706                 }
10707
10708                 /*
10709                  * Want to do this before we do anything else so we can recover
10710                  * properly if we fail to join the transaction.
10711                  */
10712                 trans = btrfs_start_trans_remove_block_group(fs_info,
10713                                                      block_group->key.objectid);
10714                 if (IS_ERR(trans)) {
10715                         btrfs_dec_block_group_ro(block_group);
10716                         ret = PTR_ERR(trans);
10717                         goto next;
10718                 }
10719
10720                 /*
10721                  * We could have pending pinned extents for this block group,
10722                  * just delete them, we don't care about them anymore.
10723                  */
10724                 start = block_group->key.objectid;
10725                 end = start + block_group->key.offset - 1;
10726                 /*
10727                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10728                  * btrfs_finish_extent_commit(). If we are at transaction N,
10729                  * another task might be running finish_extent_commit() for the
10730                  * previous transaction N - 1, and have seen a range belonging
10731                  * to the block group in freed_extents[] before we were able to
10732                  * clear the whole block group range from freed_extents[]. This
10733                  * means that task can lookup for the block group after we
10734                  * unpinned it from freed_extents[] and removed it, leading to
10735                  * a BUG_ON() at btrfs_unpin_extent_range().
10736                  */
10737                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10738                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10739                                   EXTENT_DIRTY);
10740                 if (ret) {
10741                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10742                         btrfs_dec_block_group_ro(block_group);
10743                         goto end_trans;
10744                 }
10745                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10746                                   EXTENT_DIRTY);
10747                 if (ret) {
10748                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10749                         btrfs_dec_block_group_ro(block_group);
10750                         goto end_trans;
10751                 }
10752                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10753
10754                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10755                 spin_lock(&space_info->lock);
10756                 spin_lock(&block_group->lock);
10757
10758                 space_info->bytes_pinned -= block_group->pinned;
10759                 space_info->bytes_readonly += block_group->pinned;
10760                 percpu_counter_add(&space_info->total_bytes_pinned,
10761                                    -block_group->pinned);
10762                 block_group->pinned = 0;
10763
10764                 spin_unlock(&block_group->lock);
10765                 spin_unlock(&space_info->lock);
10766
10767                 /* DISCARD can flip during remount */
10768                 trimming = btrfs_test_opt(fs_info, DISCARD);
10769
10770                 /* Implicit trim during transaction commit. */
10771                 if (trimming)
10772                         btrfs_get_block_group_trimming(block_group);
10773
10774                 /*
10775                  * Btrfs_remove_chunk will abort the transaction if things go
10776                  * horribly wrong.
10777                  */
10778                 ret = btrfs_remove_chunk(trans, fs_info,
10779                                          block_group->key.objectid);
10780
10781                 if (ret) {
10782                         if (trimming)
10783                                 btrfs_put_block_group_trimming(block_group);
10784                         goto end_trans;
10785                 }
10786
10787                 /*
10788                  * If we're not mounted with -odiscard, we can just forget
10789                  * about this block group. Otherwise we'll need to wait
10790                  * until transaction commit to do the actual discard.
10791                  */
10792                 if (trimming) {
10793                         spin_lock(&fs_info->unused_bgs_lock);
10794                         /*
10795                          * A concurrent scrub might have added us to the list
10796                          * fs_info->unused_bgs, so use a list_move operation
10797                          * to add the block group to the deleted_bgs list.
10798                          */
10799                         list_move(&block_group->bg_list,
10800                                   &trans->transaction->deleted_bgs);
10801                         spin_unlock(&fs_info->unused_bgs_lock);
10802                         btrfs_get_block_group(block_group);
10803                 }
10804 end_trans:
10805                 btrfs_end_transaction(trans);
10806 next:
10807                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10808                 btrfs_put_block_group(block_group);
10809                 spin_lock(&fs_info->unused_bgs_lock);
10810         }
10811         spin_unlock(&fs_info->unused_bgs_lock);
10812 }
10813
10814 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10815 {
10816         struct btrfs_space_info *space_info;
10817         struct btrfs_super_block *disk_super;
10818         u64 features;
10819         u64 flags;
10820         int mixed = 0;
10821         int ret;
10822
10823         disk_super = fs_info->super_copy;
10824         if (!btrfs_super_root(disk_super))
10825                 return -EINVAL;
10826
10827         features = btrfs_super_incompat_flags(disk_super);
10828         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10829                 mixed = 1;
10830
10831         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10832         ret = create_space_info(fs_info, flags, &space_info);
10833         if (ret)
10834                 goto out;
10835
10836         if (mixed) {
10837                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10838                 ret = create_space_info(fs_info, flags, &space_info);
10839         } else {
10840                 flags = BTRFS_BLOCK_GROUP_METADATA;
10841                 ret = create_space_info(fs_info, flags, &space_info);
10842                 if (ret)
10843                         goto out;
10844
10845                 flags = BTRFS_BLOCK_GROUP_DATA;
10846                 ret = create_space_info(fs_info, flags, &space_info);
10847         }
10848 out:
10849         return ret;
10850 }
10851
10852 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10853                                    u64 start, u64 end)
10854 {
10855         return unpin_extent_range(fs_info, start, end, false);
10856 }
10857
10858 /*
10859  * It used to be that old block groups would be left around forever.
10860  * Iterating over them would be enough to trim unused space.  Since we
10861  * now automatically remove them, we also need to iterate over unallocated
10862  * space.
10863  *
10864  * We don't want a transaction for this since the discard may take a
10865  * substantial amount of time.  We don't require that a transaction be
10866  * running, but we do need to take a running transaction into account
10867  * to ensure that we're not discarding chunks that were released in
10868  * the current transaction.
10869  *
10870  * Holding the chunks lock will prevent other threads from allocating
10871  * or releasing chunks, but it won't prevent a running transaction
10872  * from committing and releasing the memory that the pending chunks
10873  * list head uses.  For that, we need to take a reference to the
10874  * transaction.
10875  */
10876 static int btrfs_trim_free_extents(struct btrfs_device *device,
10877                                    u64 minlen, u64 *trimmed)
10878 {
10879         u64 start = 0, len = 0;
10880         int ret;
10881
10882         *trimmed = 0;
10883
10884         /* Not writeable = nothing to do. */
10885         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10886                 return 0;
10887
10888         /* No free space = nothing to do. */
10889         if (device->total_bytes <= device->bytes_used)
10890                 return 0;
10891
10892         ret = 0;
10893
10894         while (1) {
10895                 struct btrfs_fs_info *fs_info = device->fs_info;
10896                 struct btrfs_transaction *trans;
10897                 u64 bytes;
10898
10899                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10900                 if (ret)
10901                         return ret;
10902
10903                 down_read(&fs_info->commit_root_sem);
10904
10905                 spin_lock(&fs_info->trans_lock);
10906                 trans = fs_info->running_transaction;
10907                 if (trans)
10908                         refcount_inc(&trans->use_count);
10909                 spin_unlock(&fs_info->trans_lock);
10910
10911                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10912                                                  &start, &len);
10913                 if (trans)
10914                         btrfs_put_transaction(trans);
10915
10916                 if (ret) {
10917                         up_read(&fs_info->commit_root_sem);
10918                         mutex_unlock(&fs_info->chunk_mutex);
10919                         if (ret == -ENOSPC)
10920                                 ret = 0;
10921                         break;
10922                 }
10923
10924                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10925                 up_read(&fs_info->commit_root_sem);
10926                 mutex_unlock(&fs_info->chunk_mutex);
10927
10928                 if (ret)
10929                         break;
10930
10931                 start += len;
10932                 *trimmed += bytes;
10933
10934                 if (fatal_signal_pending(current)) {
10935                         ret = -ERESTARTSYS;
10936                         break;
10937                 }
10938
10939                 cond_resched();
10940         }
10941
10942         return ret;
10943 }
10944
10945 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10946 {
10947         struct btrfs_block_group_cache *cache = NULL;
10948         struct btrfs_device *device;
10949         struct list_head *devices;
10950         u64 group_trimmed;
10951         u64 start;
10952         u64 end;
10953         u64 trimmed = 0;
10954         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10955         int ret = 0;
10956
10957         /*
10958          * try to trim all FS space, our block group may start from non-zero.
10959          */
10960         if (range->len == total_bytes)
10961                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10962         else
10963                 cache = btrfs_lookup_block_group(fs_info, range->start);
10964
10965         while (cache) {
10966                 if (cache->key.objectid >= (range->start + range->len)) {
10967                         btrfs_put_block_group(cache);
10968                         break;
10969                 }
10970
10971                 start = max(range->start, cache->key.objectid);
10972                 end = min(range->start + range->len,
10973                                 cache->key.objectid + cache->key.offset);
10974
10975                 if (end - start >= range->minlen) {
10976                         if (!block_group_cache_done(cache)) {
10977                                 ret = cache_block_group(cache, 0);
10978                                 if (ret) {
10979                                         btrfs_put_block_group(cache);
10980                                         break;
10981                                 }
10982                                 ret = wait_block_group_cache_done(cache);
10983                                 if (ret) {
10984                                         btrfs_put_block_group(cache);
10985                                         break;
10986                                 }
10987                         }
10988                         ret = btrfs_trim_block_group(cache,
10989                                                      &group_trimmed,
10990                                                      start,
10991                                                      end,
10992                                                      range->minlen);
10993
10994                         trimmed += group_trimmed;
10995                         if (ret) {
10996                                 btrfs_put_block_group(cache);
10997                                 break;
10998                         }
10999                 }
11000
11001                 cache = next_block_group(fs_info, cache);
11002         }
11003
11004         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11005         devices = &fs_info->fs_devices->alloc_list;
11006         list_for_each_entry(device, devices, dev_alloc_list) {
11007                 ret = btrfs_trim_free_extents(device, range->minlen,
11008                                               &group_trimmed);
11009                 if (ret)
11010                         break;
11011
11012                 trimmed += group_trimmed;
11013         }
11014         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11015
11016         range->len = trimmed;
11017         return ret;
11018 }
11019
11020 /*
11021  * btrfs_{start,end}_write_no_snapshotting() are similar to
11022  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11023  * data into the page cache through nocow before the subvolume is snapshoted,
11024  * but flush the data into disk after the snapshot creation, or to prevent
11025  * operations while snapshotting is ongoing and that cause the snapshot to be
11026  * inconsistent (writes followed by expanding truncates for example).
11027  */
11028 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11029 {
11030         percpu_counter_dec(&root->subv_writers->counter);
11031         /*
11032          * Make sure counter is updated before we wake up waiters.
11033          */
11034         smp_mb();
11035         if (waitqueue_active(&root->subv_writers->wait))
11036                 wake_up(&root->subv_writers->wait);
11037 }
11038
11039 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11040 {
11041         if (atomic_read(&root->will_be_snapshotted))
11042                 return 0;
11043
11044         percpu_counter_inc(&root->subv_writers->counter);
11045         /*
11046          * Make sure counter is updated before we check for snapshot creation.
11047          */
11048         smp_mb();
11049         if (atomic_read(&root->will_be_snapshotted)) {
11050                 btrfs_end_write_no_snapshotting(root);
11051                 return 0;
11052         }
11053         return 1;
11054 }
11055
11056 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11057 {
11058         while (true) {
11059                 int ret;
11060
11061                 ret = btrfs_start_write_no_snapshotting(root);
11062                 if (ret)
11063                         break;
11064                 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11065                                  TASK_UNINTERRUPTIBLE);
11066         }
11067 }