btrfs: move btrfs_raid_group values to btrfs_raid_attr table
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49         CHUNK_ALLOC_NO_FORCE = 0,
50         CHUNK_ALLOC_LIMITED = 1,
51         CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55                                struct btrfs_fs_info *fs_info,
56                                 struct btrfs_delayed_ref_node *node, u64 parent,
57                                 u64 root_objectid, u64 owner_objectid,
58                                 u64 owner_offset, int refs_to_drop,
59                                 struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61                                     struct extent_buffer *leaf,
62                                     struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64                                       struct btrfs_fs_info *fs_info,
65                                       u64 parent, u64 root_objectid,
66                                       u64 flags, u64 owner, u64 offset,
67                                       struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69                                      struct btrfs_fs_info *fs_info,
70                                      u64 parent, u64 root_objectid,
71                                      u64 flags, struct btrfs_disk_key *key,
72                                      int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74                           struct btrfs_fs_info *fs_info, u64 flags,
75                           int force);
76 static int find_next_key(struct btrfs_path *path, int level,
77                          struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79                             struct btrfs_space_info *info, u64 bytes,
80                             int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82                                u64 num_bytes);
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84                                      struct btrfs_space_info *space_info,
85                                      u64 num_bytes);
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87                                      struct btrfs_space_info *space_info,
88                                      u64 num_bytes);
89
90 static noinline int
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 {
93         smp_mb();
94         return cache->cached == BTRFS_CACHE_FINISHED ||
95                 cache->cached == BTRFS_CACHE_ERROR;
96 }
97
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99 {
100         return (cache->flags & bits) == bits;
101 }
102
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104 {
105         atomic_inc(&cache->count);
106 }
107
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109 {
110         if (atomic_dec_and_test(&cache->count)) {
111                 WARN_ON(cache->pinned > 0);
112                 WARN_ON(cache->reserved > 0);
113
114                 /*
115                  * If not empty, someone is still holding mutex of
116                  * full_stripe_lock, which can only be released by caller.
117                  * And it will definitely cause use-after-free when caller
118                  * tries to release full stripe lock.
119                  *
120                  * No better way to resolve, but only to warn.
121                  */
122                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123                 kfree(cache->free_space_ctl);
124                 kfree(cache);
125         }
126 }
127
128 /*
129  * this adds the block group to the fs_info rb tree for the block group
130  * cache
131  */
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133                                 struct btrfs_block_group_cache *block_group)
134 {
135         struct rb_node **p;
136         struct rb_node *parent = NULL;
137         struct btrfs_block_group_cache *cache;
138
139         spin_lock(&info->block_group_cache_lock);
140         p = &info->block_group_cache_tree.rb_node;
141
142         while (*p) {
143                 parent = *p;
144                 cache = rb_entry(parent, struct btrfs_block_group_cache,
145                                  cache_node);
146                 if (block_group->key.objectid < cache->key.objectid) {
147                         p = &(*p)->rb_left;
148                 } else if (block_group->key.objectid > cache->key.objectid) {
149                         p = &(*p)->rb_right;
150                 } else {
151                         spin_unlock(&info->block_group_cache_lock);
152                         return -EEXIST;
153                 }
154         }
155
156         rb_link_node(&block_group->cache_node, parent, p);
157         rb_insert_color(&block_group->cache_node,
158                         &info->block_group_cache_tree);
159
160         if (info->first_logical_byte > block_group->key.objectid)
161                 info->first_logical_byte = block_group->key.objectid;
162
163         spin_unlock(&info->block_group_cache_lock);
164
165         return 0;
166 }
167
168 /*
169  * This will return the block group at or after bytenr if contains is 0, else
170  * it will return the block group that contains the bytenr
171  */
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174                               int contains)
175 {
176         struct btrfs_block_group_cache *cache, *ret = NULL;
177         struct rb_node *n;
178         u64 end, start;
179
180         spin_lock(&info->block_group_cache_lock);
181         n = info->block_group_cache_tree.rb_node;
182
183         while (n) {
184                 cache = rb_entry(n, struct btrfs_block_group_cache,
185                                  cache_node);
186                 end = cache->key.objectid + cache->key.offset - 1;
187                 start = cache->key.objectid;
188
189                 if (bytenr < start) {
190                         if (!contains && (!ret || start < ret->key.objectid))
191                                 ret = cache;
192                         n = n->rb_left;
193                 } else if (bytenr > start) {
194                         if (contains && bytenr <= end) {
195                                 ret = cache;
196                                 break;
197                         }
198                         n = n->rb_right;
199                 } else {
200                         ret = cache;
201                         break;
202                 }
203         }
204         if (ret) {
205                 btrfs_get_block_group(ret);
206                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207                         info->first_logical_byte = ret->key.objectid;
208         }
209         spin_unlock(&info->block_group_cache_lock);
210
211         return ret;
212 }
213
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215                                u64 start, u64 num_bytes)
216 {
217         u64 end = start + num_bytes - 1;
218         set_extent_bits(&fs_info->freed_extents[0],
219                         start, end, EXTENT_UPTODATE);
220         set_extent_bits(&fs_info->freed_extents[1],
221                         start, end, EXTENT_UPTODATE);
222         return 0;
223 }
224
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226                                   struct btrfs_block_group_cache *cache)
227 {
228         u64 start, end;
229
230         start = cache->key.objectid;
231         end = start + cache->key.offset - 1;
232
233         clear_extent_bits(&fs_info->freed_extents[0],
234                           start, end, EXTENT_UPTODATE);
235         clear_extent_bits(&fs_info->freed_extents[1],
236                           start, end, EXTENT_UPTODATE);
237 }
238
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240                                  struct btrfs_block_group_cache *cache)
241 {
242         u64 bytenr;
243         u64 *logical;
244         int stripe_len;
245         int i, nr, ret;
246
247         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249                 cache->bytes_super += stripe_len;
250                 ret = add_excluded_extent(fs_info, cache->key.objectid,
251                                           stripe_len);
252                 if (ret)
253                         return ret;
254         }
255
256         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257                 bytenr = btrfs_sb_offset(i);
258                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259                                        bytenr, 0, &logical, &nr, &stripe_len);
260                 if (ret)
261                         return ret;
262
263                 while (nr--) {
264                         u64 start, len;
265
266                         if (logical[nr] > cache->key.objectid +
267                             cache->key.offset)
268                                 continue;
269
270                         if (logical[nr] + stripe_len <= cache->key.objectid)
271                                 continue;
272
273                         start = logical[nr];
274                         if (start < cache->key.objectid) {
275                                 start = cache->key.objectid;
276                                 len = (logical[nr] + stripe_len) - start;
277                         } else {
278                                 len = min_t(u64, stripe_len,
279                                             cache->key.objectid +
280                                             cache->key.offset - start);
281                         }
282
283                         cache->bytes_super += len;
284                         ret = add_excluded_extent(fs_info, start, len);
285                         if (ret) {
286                                 kfree(logical);
287                                 return ret;
288                         }
289                 }
290
291                 kfree(logical);
292         }
293         return 0;
294 }
295
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
298 {
299         struct btrfs_caching_control *ctl;
300
301         spin_lock(&cache->lock);
302         if (!cache->caching_ctl) {
303                 spin_unlock(&cache->lock);
304                 return NULL;
305         }
306
307         ctl = cache->caching_ctl;
308         refcount_inc(&ctl->count);
309         spin_unlock(&cache->lock);
310         return ctl;
311 }
312
313 static void put_caching_control(struct btrfs_caching_control *ctl)
314 {
315         if (refcount_dec_and_test(&ctl->count))
316                 kfree(ctl);
317 }
318
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321 {
322         struct btrfs_fs_info *fs_info = block_group->fs_info;
323         u64 start = block_group->key.objectid;
324         u64 len = block_group->key.offset;
325         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326                 fs_info->nodesize : fs_info->sectorsize;
327         u64 step = chunk << 1;
328
329         while (len > chunk) {
330                 btrfs_remove_free_space(block_group, start, chunk);
331                 start += step;
332                 if (len < step)
333                         len = 0;
334                 else
335                         len -= step;
336         }
337 }
338 #endif
339
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346                        struct btrfs_fs_info *info, u64 start, u64 end)
347 {
348         u64 extent_start, extent_end, size, total_added = 0;
349         int ret;
350
351         while (start < end) {
352                 ret = find_first_extent_bit(info->pinned_extents, start,
353                                             &extent_start, &extent_end,
354                                             EXTENT_DIRTY | EXTENT_UPTODATE,
355                                             NULL);
356                 if (ret)
357                         break;
358
359                 if (extent_start <= start) {
360                         start = extent_end + 1;
361                 } else if (extent_start > start && extent_start < end) {
362                         size = extent_start - start;
363                         total_added += size;
364                         ret = btrfs_add_free_space(block_group, start,
365                                                    size);
366                         BUG_ON(ret); /* -ENOMEM or logic error */
367                         start = extent_end + 1;
368                 } else {
369                         break;
370                 }
371         }
372
373         if (start < end) {
374                 size = end - start;
375                 total_added += size;
376                 ret = btrfs_add_free_space(block_group, start, size);
377                 BUG_ON(ret); /* -ENOMEM or logic error */
378         }
379
380         return total_added;
381 }
382
383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384 {
385         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386         struct btrfs_fs_info *fs_info = block_group->fs_info;
387         struct btrfs_root *extent_root = fs_info->extent_root;
388         struct btrfs_path *path;
389         struct extent_buffer *leaf;
390         struct btrfs_key key;
391         u64 total_found = 0;
392         u64 last = 0;
393         u32 nritems;
394         int ret;
395         bool wakeup = true;
396
397         path = btrfs_alloc_path();
398         if (!path)
399                 return -ENOMEM;
400
401         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 #ifdef CONFIG_BTRFS_DEBUG
404         /*
405          * If we're fragmenting we don't want to make anybody think we can
406          * allocate from this block group until we've had a chance to fragment
407          * the free space.
408          */
409         if (btrfs_should_fragment_free_space(block_group))
410                 wakeup = false;
411 #endif
412         /*
413          * We don't want to deadlock with somebody trying to allocate a new
414          * extent for the extent root while also trying to search the extent
415          * root to add free space.  So we skip locking and search the commit
416          * root, since its read-only
417          */
418         path->skip_locking = 1;
419         path->search_commit_root = 1;
420         path->reada = READA_FORWARD;
421
422         key.objectid = last;
423         key.offset = 0;
424         key.type = BTRFS_EXTENT_ITEM_KEY;
425
426 next:
427         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428         if (ret < 0)
429                 goto out;
430
431         leaf = path->nodes[0];
432         nritems = btrfs_header_nritems(leaf);
433
434         while (1) {
435                 if (btrfs_fs_closing(fs_info) > 1) {
436                         last = (u64)-1;
437                         break;
438                 }
439
440                 if (path->slots[0] < nritems) {
441                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442                 } else {
443                         ret = find_next_key(path, 0, &key);
444                         if (ret)
445                                 break;
446
447                         if (need_resched() ||
448                             rwsem_is_contended(&fs_info->commit_root_sem)) {
449                                 if (wakeup)
450                                         caching_ctl->progress = last;
451                                 btrfs_release_path(path);
452                                 up_read(&fs_info->commit_root_sem);
453                                 mutex_unlock(&caching_ctl->mutex);
454                                 cond_resched();
455                                 mutex_lock(&caching_ctl->mutex);
456                                 down_read(&fs_info->commit_root_sem);
457                                 goto next;
458                         }
459
460                         ret = btrfs_next_leaf(extent_root, path);
461                         if (ret < 0)
462                                 goto out;
463                         if (ret)
464                                 break;
465                         leaf = path->nodes[0];
466                         nritems = btrfs_header_nritems(leaf);
467                         continue;
468                 }
469
470                 if (key.objectid < last) {
471                         key.objectid = last;
472                         key.offset = 0;
473                         key.type = BTRFS_EXTENT_ITEM_KEY;
474
475                         if (wakeup)
476                                 caching_ctl->progress = last;
477                         btrfs_release_path(path);
478                         goto next;
479                 }
480
481                 if (key.objectid < block_group->key.objectid) {
482                         path->slots[0]++;
483                         continue;
484                 }
485
486                 if (key.objectid >= block_group->key.objectid +
487                     block_group->key.offset)
488                         break;
489
490                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491                     key.type == BTRFS_METADATA_ITEM_KEY) {
492                         total_found += add_new_free_space(block_group,
493                                                           fs_info, last,
494                                                           key.objectid);
495                         if (key.type == BTRFS_METADATA_ITEM_KEY)
496                                 last = key.objectid +
497                                         fs_info->nodesize;
498                         else
499                                 last = key.objectid + key.offset;
500
501                         if (total_found > CACHING_CTL_WAKE_UP) {
502                                 total_found = 0;
503                                 if (wakeup)
504                                         wake_up(&caching_ctl->wait);
505                         }
506                 }
507                 path->slots[0]++;
508         }
509         ret = 0;
510
511         total_found += add_new_free_space(block_group, fs_info, last,
512                                           block_group->key.objectid +
513                                           block_group->key.offset);
514         caching_ctl->progress = (u64)-1;
515
516 out:
517         btrfs_free_path(path);
518         return ret;
519 }
520
521 static noinline void caching_thread(struct btrfs_work *work)
522 {
523         struct btrfs_block_group_cache *block_group;
524         struct btrfs_fs_info *fs_info;
525         struct btrfs_caching_control *caching_ctl;
526         int ret;
527
528         caching_ctl = container_of(work, struct btrfs_caching_control, work);
529         block_group = caching_ctl->block_group;
530         fs_info = block_group->fs_info;
531
532         mutex_lock(&caching_ctl->mutex);
533         down_read(&fs_info->commit_root_sem);
534
535         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536                 ret = load_free_space_tree(caching_ctl);
537         else
538                 ret = load_extent_tree_free(caching_ctl);
539
540         spin_lock(&block_group->lock);
541         block_group->caching_ctl = NULL;
542         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543         spin_unlock(&block_group->lock);
544
545 #ifdef CONFIG_BTRFS_DEBUG
546         if (btrfs_should_fragment_free_space(block_group)) {
547                 u64 bytes_used;
548
549                 spin_lock(&block_group->space_info->lock);
550                 spin_lock(&block_group->lock);
551                 bytes_used = block_group->key.offset -
552                         btrfs_block_group_used(&block_group->item);
553                 block_group->space_info->bytes_used += bytes_used >> 1;
554                 spin_unlock(&block_group->lock);
555                 spin_unlock(&block_group->space_info->lock);
556                 fragment_free_space(block_group);
557         }
558 #endif
559
560         caching_ctl->progress = (u64)-1;
561
562         up_read(&fs_info->commit_root_sem);
563         free_excluded_extents(fs_info, block_group);
564         mutex_unlock(&caching_ctl->mutex);
565
566         wake_up(&caching_ctl->wait);
567
568         put_caching_control(caching_ctl);
569         btrfs_put_block_group(block_group);
570 }
571
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
573                              int load_cache_only)
574 {
575         DEFINE_WAIT(wait);
576         struct btrfs_fs_info *fs_info = cache->fs_info;
577         struct btrfs_caching_control *caching_ctl;
578         int ret = 0;
579
580         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581         if (!caching_ctl)
582                 return -ENOMEM;
583
584         INIT_LIST_HEAD(&caching_ctl->list);
585         mutex_init(&caching_ctl->mutex);
586         init_waitqueue_head(&caching_ctl->wait);
587         caching_ctl->block_group = cache;
588         caching_ctl->progress = cache->key.objectid;
589         refcount_set(&caching_ctl->count, 1);
590         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591                         caching_thread, NULL, NULL);
592
593         spin_lock(&cache->lock);
594         /*
595          * This should be a rare occasion, but this could happen I think in the
596          * case where one thread starts to load the space cache info, and then
597          * some other thread starts a transaction commit which tries to do an
598          * allocation while the other thread is still loading the space cache
599          * info.  The previous loop should have kept us from choosing this block
600          * group, but if we've moved to the state where we will wait on caching
601          * block groups we need to first check if we're doing a fast load here,
602          * so we can wait for it to finish, otherwise we could end up allocating
603          * from a block group who's cache gets evicted for one reason or
604          * another.
605          */
606         while (cache->cached == BTRFS_CACHE_FAST) {
607                 struct btrfs_caching_control *ctl;
608
609                 ctl = cache->caching_ctl;
610                 refcount_inc(&ctl->count);
611                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612                 spin_unlock(&cache->lock);
613
614                 schedule();
615
616                 finish_wait(&ctl->wait, &wait);
617                 put_caching_control(ctl);
618                 spin_lock(&cache->lock);
619         }
620
621         if (cache->cached != BTRFS_CACHE_NO) {
622                 spin_unlock(&cache->lock);
623                 kfree(caching_ctl);
624                 return 0;
625         }
626         WARN_ON(cache->caching_ctl);
627         cache->caching_ctl = caching_ctl;
628         cache->cached = BTRFS_CACHE_FAST;
629         spin_unlock(&cache->lock);
630
631         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632                 mutex_lock(&caching_ctl->mutex);
633                 ret = load_free_space_cache(fs_info, cache);
634
635                 spin_lock(&cache->lock);
636                 if (ret == 1) {
637                         cache->caching_ctl = NULL;
638                         cache->cached = BTRFS_CACHE_FINISHED;
639                         cache->last_byte_to_unpin = (u64)-1;
640                         caching_ctl->progress = (u64)-1;
641                 } else {
642                         if (load_cache_only) {
643                                 cache->caching_ctl = NULL;
644                                 cache->cached = BTRFS_CACHE_NO;
645                         } else {
646                                 cache->cached = BTRFS_CACHE_STARTED;
647                                 cache->has_caching_ctl = 1;
648                         }
649                 }
650                 spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
652                 if (ret == 1 &&
653                     btrfs_should_fragment_free_space(cache)) {
654                         u64 bytes_used;
655
656                         spin_lock(&cache->space_info->lock);
657                         spin_lock(&cache->lock);
658                         bytes_used = cache->key.offset -
659                                 btrfs_block_group_used(&cache->item);
660                         cache->space_info->bytes_used += bytes_used >> 1;
661                         spin_unlock(&cache->lock);
662                         spin_unlock(&cache->space_info->lock);
663                         fragment_free_space(cache);
664                 }
665 #endif
666                 mutex_unlock(&caching_ctl->mutex);
667
668                 wake_up(&caching_ctl->wait);
669                 if (ret == 1) {
670                         put_caching_control(caching_ctl);
671                         free_excluded_extents(fs_info, cache);
672                         return 0;
673                 }
674         } else {
675                 /*
676                  * We're either using the free space tree or no caching at all.
677                  * Set cached to the appropriate value and wakeup any waiters.
678                  */
679                 spin_lock(&cache->lock);
680                 if (load_cache_only) {
681                         cache->caching_ctl = NULL;
682                         cache->cached = BTRFS_CACHE_NO;
683                 } else {
684                         cache->cached = BTRFS_CACHE_STARTED;
685                         cache->has_caching_ctl = 1;
686                 }
687                 spin_unlock(&cache->lock);
688                 wake_up(&caching_ctl->wait);
689         }
690
691         if (load_cache_only) {
692                 put_caching_control(caching_ctl);
693                 return 0;
694         }
695
696         down_write(&fs_info->commit_root_sem);
697         refcount_inc(&caching_ctl->count);
698         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699         up_write(&fs_info->commit_root_sem);
700
701         btrfs_get_block_group(cache);
702
703         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704
705         return ret;
706 }
707
708 /*
709  * return the block group that starts at or after bytenr
710  */
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713 {
714         return block_group_cache_tree_search(info, bytenr, 0);
715 }
716
717 /*
718  * return the block group that contains the given bytenr
719  */
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721                                                  struct btrfs_fs_info *info,
722                                                  u64 bytenr)
723 {
724         return block_group_cache_tree_search(info, bytenr, 1);
725 }
726
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728                                                   u64 flags)
729 {
730         struct list_head *head = &info->space_info;
731         struct btrfs_space_info *found;
732
733         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734
735         rcu_read_lock();
736         list_for_each_entry_rcu(found, head, list) {
737                 if (found->flags & flags) {
738                         rcu_read_unlock();
739                         return found;
740                 }
741         }
742         rcu_read_unlock();
743         return NULL;
744 }
745
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747                              bool metadata, u64 root_objectid)
748 {
749         struct btrfs_space_info *space_info;
750         u64 flags;
751
752         if (metadata) {
753                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
755                 else
756                         flags = BTRFS_BLOCK_GROUP_METADATA;
757         } else {
758                 flags = BTRFS_BLOCK_GROUP_DATA;
759         }
760
761         space_info = __find_space_info(fs_info, flags);
762         ASSERT(space_info);
763         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764 }
765
766 /*
767  * after adding space to the filesystem, we need to clear the full flags
768  * on all the space infos.
769  */
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 {
772         struct list_head *head = &info->space_info;
773         struct btrfs_space_info *found;
774
775         rcu_read_lock();
776         list_for_each_entry_rcu(found, head, list)
777                 found->full = 0;
778         rcu_read_unlock();
779 }
780
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 {
784         int ret;
785         struct btrfs_key key;
786         struct btrfs_path *path;
787
788         path = btrfs_alloc_path();
789         if (!path)
790                 return -ENOMEM;
791
792         key.objectid = start;
793         key.offset = len;
794         key.type = BTRFS_EXTENT_ITEM_KEY;
795         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796         btrfs_free_path(path);
797         return ret;
798 }
799
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810                              struct btrfs_fs_info *fs_info, u64 bytenr,
811                              u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813         struct btrfs_delayed_ref_head *head;
814         struct btrfs_delayed_ref_root *delayed_refs;
815         struct btrfs_path *path;
816         struct btrfs_extent_item *ei;
817         struct extent_buffer *leaf;
818         struct btrfs_key key;
819         u32 item_size;
820         u64 num_refs;
821         u64 extent_flags;
822         int ret;
823
824         /*
825          * If we don't have skinny metadata, don't bother doing anything
826          * different
827          */
828         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829                 offset = fs_info->nodesize;
830                 metadata = 0;
831         }
832
833         path = btrfs_alloc_path();
834         if (!path)
835                 return -ENOMEM;
836
837         if (!trans) {
838                 path->skip_locking = 1;
839                 path->search_commit_root = 1;
840         }
841
842 search_again:
843         key.objectid = bytenr;
844         key.offset = offset;
845         if (metadata)
846                 key.type = BTRFS_METADATA_ITEM_KEY;
847         else
848                 key.type = BTRFS_EXTENT_ITEM_KEY;
849
850         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851         if (ret < 0)
852                 goto out_free;
853
854         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855                 if (path->slots[0]) {
856                         path->slots[0]--;
857                         btrfs_item_key_to_cpu(path->nodes[0], &key,
858                                               path->slots[0]);
859                         if (key.objectid == bytenr &&
860                             key.type == BTRFS_EXTENT_ITEM_KEY &&
861                             key.offset == fs_info->nodesize)
862                                 ret = 0;
863                 }
864         }
865
866         if (ret == 0) {
867                 leaf = path->nodes[0];
868                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869                 if (item_size >= sizeof(*ei)) {
870                         ei = btrfs_item_ptr(leaf, path->slots[0],
871                                             struct btrfs_extent_item);
872                         num_refs = btrfs_extent_refs(leaf, ei);
873                         extent_flags = btrfs_extent_flags(leaf, ei);
874                 } else {
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876                         struct btrfs_extent_item_v0 *ei0;
877                         BUG_ON(item_size != sizeof(*ei0));
878                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
879                                              struct btrfs_extent_item_v0);
880                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
881                         /* FIXME: this isn't correct for data */
882                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 #else
884                         BUG();
885 #endif
886                 }
887                 BUG_ON(num_refs == 0);
888         } else {
889                 num_refs = 0;
890                 extent_flags = 0;
891                 ret = 0;
892         }
893
894         if (!trans)
895                 goto out;
896
897         delayed_refs = &trans->transaction->delayed_refs;
898         spin_lock(&delayed_refs->lock);
899         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900         if (head) {
901                 if (!mutex_trylock(&head->mutex)) {
902                         refcount_inc(&head->refs);
903                         spin_unlock(&delayed_refs->lock);
904
905                         btrfs_release_path(path);
906
907                         /*
908                          * Mutex was contended, block until it's released and try
909                          * again
910                          */
911                         mutex_lock(&head->mutex);
912                         mutex_unlock(&head->mutex);
913                         btrfs_put_delayed_ref_head(head);
914                         goto search_again;
915                 }
916                 spin_lock(&head->lock);
917                 if (head->extent_op && head->extent_op->update_flags)
918                         extent_flags |= head->extent_op->flags_to_set;
919                 else
920                         BUG_ON(num_refs == 0);
921
922                 num_refs += head->ref_mod;
923                 spin_unlock(&head->lock);
924                 mutex_unlock(&head->mutex);
925         }
926         spin_unlock(&delayed_refs->lock);
927 out:
928         WARN_ON(num_refs == 0);
929         if (refs)
930                 *refs = num_refs;
931         if (flags)
932                 *flags = extent_flags;
933 out_free:
934         btrfs_free_path(path);
935         return ret;
936 }
937
938 /*
939  * Back reference rules.  Back refs have three main goals:
940  *
941  * 1) differentiate between all holders of references to an extent so that
942  *    when a reference is dropped we can make sure it was a valid reference
943  *    before freeing the extent.
944  *
945  * 2) Provide enough information to quickly find the holders of an extent
946  *    if we notice a given block is corrupted or bad.
947  *
948  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949  *    maintenance.  This is actually the same as #2, but with a slightly
950  *    different use case.
951  *
952  * There are two kinds of back refs. The implicit back refs is optimized
953  * for pointers in non-shared tree blocks. For a given pointer in a block,
954  * back refs of this kind provide information about the block's owner tree
955  * and the pointer's key. These information allow us to find the block by
956  * b-tree searching. The full back refs is for pointers in tree blocks not
957  * referenced by their owner trees. The location of tree block is recorded
958  * in the back refs. Actually the full back refs is generic, and can be
959  * used in all cases the implicit back refs is used. The major shortcoming
960  * of the full back refs is its overhead. Every time a tree block gets
961  * COWed, we have to update back refs entry for all pointers in it.
962  *
963  * For a newly allocated tree block, we use implicit back refs for
964  * pointers in it. This means most tree related operations only involve
965  * implicit back refs. For a tree block created in old transaction, the
966  * only way to drop a reference to it is COW it. So we can detect the
967  * event that tree block loses its owner tree's reference and do the
968  * back refs conversion.
969  *
970  * When a tree block is COWed through a tree, there are four cases:
971  *
972  * The reference count of the block is one and the tree is the block's
973  * owner tree. Nothing to do in this case.
974  *
975  * The reference count of the block is one and the tree is not the
976  * block's owner tree. In this case, full back refs is used for pointers
977  * in the block. Remove these full back refs, add implicit back refs for
978  * every pointers in the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * the block's owner tree. In this case, implicit back refs is used for
982  * pointers in the block. Add full back refs for every pointers in the
983  * block, increase lower level extents' reference counts. The original
984  * implicit back refs are entailed to the new block.
985  *
986  * The reference count of the block is greater than one and the tree is
987  * not the block's owner tree. Add implicit back refs for every pointer in
988  * the new block, increase lower level extents' reference count.
989  *
990  * Back Reference Key composing:
991  *
992  * The key objectid corresponds to the first byte in the extent,
993  * The key type is used to differentiate between types of back refs.
994  * There are different meanings of the key offset for different types
995  * of back refs.
996  *
997  * File extents can be referenced by:
998  *
999  * - multiple snapshots, subvolumes, or different generations in one subvol
1000  * - different files inside a single subvolume
1001  * - different offsets inside a file (bookend extents in file.c)
1002  *
1003  * The extent ref structure for the implicit back refs has fields for:
1004  *
1005  * - Objectid of the subvolume root
1006  * - objectid of the file holding the reference
1007  * - original offset in the file
1008  * - how many bookend extents
1009  *
1010  * The key offset for the implicit back refs is hash of the first
1011  * three fields.
1012  *
1013  * The extent ref structure for the full back refs has field for:
1014  *
1015  * - number of pointers in the tree leaf
1016  *
1017  * The key offset for the implicit back refs is the first byte of
1018  * the tree leaf
1019  *
1020  * When a file extent is allocated, The implicit back refs is used.
1021  * the fields are filled in:
1022  *
1023  *     (root_key.objectid, inode objectid, offset in file, 1)
1024  *
1025  * When a file extent is removed file truncation, we find the
1026  * corresponding implicit back refs and check the following fields:
1027  *
1028  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1029  *
1030  * Btree extents can be referenced by:
1031  *
1032  * - Different subvolumes
1033  *
1034  * Both the implicit back refs and the full back refs for tree blocks
1035  * only consist of key. The key offset for the implicit back refs is
1036  * objectid of block's owner tree. The key offset for the full back refs
1037  * is the first byte of parent block.
1038  *
1039  * When implicit back refs is used, information about the lowest key and
1040  * level of the tree block are required. These information are stored in
1041  * tree block info structure.
1042  */
1043
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046                                   struct btrfs_fs_info *fs_info,
1047                                   struct btrfs_path *path,
1048                                   u64 owner, u32 extra_size)
1049 {
1050         struct btrfs_root *root = fs_info->extent_root;
1051         struct btrfs_extent_item *item;
1052         struct btrfs_extent_item_v0 *ei0;
1053         struct btrfs_extent_ref_v0 *ref0;
1054         struct btrfs_tree_block_info *bi;
1055         struct extent_buffer *leaf;
1056         struct btrfs_key key;
1057         struct btrfs_key found_key;
1058         u32 new_size = sizeof(*item);
1059         u64 refs;
1060         int ret;
1061
1062         leaf = path->nodes[0];
1063         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067                              struct btrfs_extent_item_v0);
1068         refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070         if (owner == (u64)-1) {
1071                 while (1) {
1072                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073                                 ret = btrfs_next_leaf(root, path);
1074                                 if (ret < 0)
1075                                         return ret;
1076                                 BUG_ON(ret > 0); /* Corruption */
1077                                 leaf = path->nodes[0];
1078                         }
1079                         btrfs_item_key_to_cpu(leaf, &found_key,
1080                                               path->slots[0]);
1081                         BUG_ON(key.objectid != found_key.objectid);
1082                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083                                 path->slots[0]++;
1084                                 continue;
1085                         }
1086                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087                                               struct btrfs_extent_ref_v0);
1088                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1089                         break;
1090                 }
1091         }
1092         btrfs_release_path(path);
1093
1094         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095                 new_size += sizeof(*bi);
1096
1097         new_size -= sizeof(*ei0);
1098         ret = btrfs_search_slot(trans, root, &key, path,
1099                                 new_size + extra_size, 1);
1100         if (ret < 0)
1101                 return ret;
1102         BUG_ON(ret); /* Corruption */
1103
1104         btrfs_extend_item(fs_info, path, new_size);
1105
1106         leaf = path->nodes[0];
1107         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108         btrfs_set_extent_refs(leaf, item, refs);
1109         /* FIXME: get real generation */
1110         btrfs_set_extent_generation(leaf, item, 0);
1111         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112                 btrfs_set_extent_flags(leaf, item,
1113                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115                 bi = (struct btrfs_tree_block_info *)(item + 1);
1116                 /* FIXME: get first key of the block */
1117                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119         } else {
1120                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121         }
1122         btrfs_mark_buffer_dirty(leaf);
1123         return 0;
1124 }
1125 #endif
1126
1127 /*
1128  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131  */
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133                                      struct btrfs_extent_inline_ref *iref,
1134                                      enum btrfs_inline_ref_type is_data)
1135 {
1136         int type = btrfs_extent_inline_ref_type(eb, iref);
1137         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138
1139         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141             type == BTRFS_SHARED_DATA_REF_KEY ||
1142             type == BTRFS_EXTENT_DATA_REF_KEY) {
1143                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145                                 return type;
1146                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147                                 ASSERT(eb->fs_info);
1148                                 /*
1149                                  * Every shared one has parent tree
1150                                  * block, which must be aligned to
1151                                  * nodesize.
1152                                  */
1153                                 if (offset &&
1154                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1155                                         return type;
1156                         }
1157                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1158                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else {
1172                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173                         return type;
1174                 }
1175         }
1176
1177         btrfs_print_leaf((struct extent_buffer *)eb);
1178         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179                   eb->start, type);
1180         WARN_ON(1);
1181
1182         return BTRFS_REF_TYPE_INVALID;
1183 }
1184
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186 {
1187         u32 high_crc = ~(u32)0;
1188         u32 low_crc = ~(u32)0;
1189         __le64 lenum;
1190
1191         lenum = cpu_to_le64(root_objectid);
1192         high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193         lenum = cpu_to_le64(owner);
1194         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195         lenum = cpu_to_le64(offset);
1196         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197
1198         return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 }
1200
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202                                      struct btrfs_extent_data_ref *ref)
1203 {
1204         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205                                     btrfs_extent_data_ref_objectid(leaf, ref),
1206                                     btrfs_extent_data_ref_offset(leaf, ref));
1207 }
1208
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210                                  struct btrfs_extent_data_ref *ref,
1211                                  u64 root_objectid, u64 owner, u64 offset)
1212 {
1213         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216                 return 0;
1217         return 1;
1218 }
1219
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221                                            struct btrfs_fs_info *fs_info,
1222                                            struct btrfs_path *path,
1223                                            u64 bytenr, u64 parent,
1224                                            u64 root_objectid,
1225                                            u64 owner, u64 offset)
1226 {
1227         struct btrfs_root *root = fs_info->extent_root;
1228         struct btrfs_key key;
1229         struct btrfs_extent_data_ref *ref;
1230         struct extent_buffer *leaf;
1231         u32 nritems;
1232         int ret;
1233         int recow;
1234         int err = -ENOENT;
1235
1236         key.objectid = bytenr;
1237         if (parent) {
1238                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239                 key.offset = parent;
1240         } else {
1241                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242                 key.offset = hash_extent_data_ref(root_objectid,
1243                                                   owner, offset);
1244         }
1245 again:
1246         recow = 0;
1247         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248         if (ret < 0) {
1249                 err = ret;
1250                 goto fail;
1251         }
1252
1253         if (parent) {
1254                 if (!ret)
1255                         return 0;
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1258                 btrfs_release_path(path);
1259                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260                 if (ret < 0) {
1261                         err = ret;
1262                         goto fail;
1263                 }
1264                 if (!ret)
1265                         return 0;
1266 #endif
1267                 goto fail;
1268         }
1269
1270         leaf = path->nodes[0];
1271         nritems = btrfs_header_nritems(leaf);
1272         while (1) {
1273                 if (path->slots[0] >= nritems) {
1274                         ret = btrfs_next_leaf(root, path);
1275                         if (ret < 0)
1276                                 err = ret;
1277                         if (ret)
1278                                 goto fail;
1279
1280                         leaf = path->nodes[0];
1281                         nritems = btrfs_header_nritems(leaf);
1282                         recow = 1;
1283                 }
1284
1285                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286                 if (key.objectid != bytenr ||
1287                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288                         goto fail;
1289
1290                 ref = btrfs_item_ptr(leaf, path->slots[0],
1291                                      struct btrfs_extent_data_ref);
1292
1293                 if (match_extent_data_ref(leaf, ref, root_objectid,
1294                                           owner, offset)) {
1295                         if (recow) {
1296                                 btrfs_release_path(path);
1297                                 goto again;
1298                         }
1299                         err = 0;
1300                         break;
1301                 }
1302                 path->slots[0]++;
1303         }
1304 fail:
1305         return err;
1306 }
1307
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309                                            struct btrfs_fs_info *fs_info,
1310                                            struct btrfs_path *path,
1311                                            u64 bytenr, u64 parent,
1312                                            u64 root_objectid, u64 owner,
1313                                            u64 offset, int refs_to_add)
1314 {
1315         struct btrfs_root *root = fs_info->extent_root;
1316         struct btrfs_key key;
1317         struct extent_buffer *leaf;
1318         u32 size;
1319         u32 num_refs;
1320         int ret;
1321
1322         key.objectid = bytenr;
1323         if (parent) {
1324                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325                 key.offset = parent;
1326                 size = sizeof(struct btrfs_shared_data_ref);
1327         } else {
1328                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329                 key.offset = hash_extent_data_ref(root_objectid,
1330                                                   owner, offset);
1331                 size = sizeof(struct btrfs_extent_data_ref);
1332         }
1333
1334         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335         if (ret && ret != -EEXIST)
1336                 goto fail;
1337
1338         leaf = path->nodes[0];
1339         if (parent) {
1340                 struct btrfs_shared_data_ref *ref;
1341                 ref = btrfs_item_ptr(leaf, path->slots[0],
1342                                      struct btrfs_shared_data_ref);
1343                 if (ret == 0) {
1344                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345                 } else {
1346                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347                         num_refs += refs_to_add;
1348                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349                 }
1350         } else {
1351                 struct btrfs_extent_data_ref *ref;
1352                 while (ret == -EEXIST) {
1353                         ref = btrfs_item_ptr(leaf, path->slots[0],
1354                                              struct btrfs_extent_data_ref);
1355                         if (match_extent_data_ref(leaf, ref, root_objectid,
1356                                                   owner, offset))
1357                                 break;
1358                         btrfs_release_path(path);
1359                         key.offset++;
1360                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1361                                                       size);
1362                         if (ret && ret != -EEXIST)
1363                                 goto fail;
1364
1365                         leaf = path->nodes[0];
1366                 }
1367                 ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                      struct btrfs_extent_data_ref);
1369                 if (ret == 0) {
1370                         btrfs_set_extent_data_ref_root(leaf, ref,
1371                                                        root_objectid);
1372                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375                 } else {
1376                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377                         num_refs += refs_to_add;
1378                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379                 }
1380         }
1381         btrfs_mark_buffer_dirty(leaf);
1382         ret = 0;
1383 fail:
1384         btrfs_release_path(path);
1385         return ret;
1386 }
1387
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389                                            struct btrfs_fs_info *fs_info,
1390                                            struct btrfs_path *path,
1391                                            int refs_to_drop, int *last_ref)
1392 {
1393         struct btrfs_key key;
1394         struct btrfs_extent_data_ref *ref1 = NULL;
1395         struct btrfs_shared_data_ref *ref2 = NULL;
1396         struct extent_buffer *leaf;
1397         u32 num_refs = 0;
1398         int ret = 0;
1399
1400         leaf = path->nodes[0];
1401         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402
1403         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405                                       struct btrfs_extent_data_ref);
1406                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409                                       struct btrfs_shared_data_ref);
1410                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413                 struct btrfs_extent_ref_v0 *ref0;
1414                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415                                       struct btrfs_extent_ref_v0);
1416                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418         } else {
1419                 BUG();
1420         }
1421
1422         BUG_ON(num_refs < refs_to_drop);
1423         num_refs -= refs_to_drop;
1424
1425         if (num_refs == 0) {
1426                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427                 *last_ref = 1;
1428         } else {
1429                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434                 else {
1435                         struct btrfs_extent_ref_v0 *ref0;
1436                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437                                         struct btrfs_extent_ref_v0);
1438                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439                 }
1440 #endif
1441                 btrfs_mark_buffer_dirty(leaf);
1442         }
1443         return ret;
1444 }
1445
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447                                           struct btrfs_extent_inline_ref *iref)
1448 {
1449         struct btrfs_key key;
1450         struct extent_buffer *leaf;
1451         struct btrfs_extent_data_ref *ref1;
1452         struct btrfs_shared_data_ref *ref2;
1453         u32 num_refs = 0;
1454         int type;
1455
1456         leaf = path->nodes[0];
1457         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458         if (iref) {
1459                 /*
1460                  * If type is invalid, we should have bailed out earlier than
1461                  * this call.
1462                  */
1463                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468                 } else {
1469                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471                 }
1472         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474                                       struct btrfs_extent_data_ref);
1475                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478                                       struct btrfs_shared_data_ref);
1479                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482                 struct btrfs_extent_ref_v0 *ref0;
1483                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484                                       struct btrfs_extent_ref_v0);
1485                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1486 #endif
1487         } else {
1488                 WARN_ON(1);
1489         }
1490         return num_refs;
1491 }
1492
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494                                           struct btrfs_fs_info *fs_info,
1495                                           struct btrfs_path *path,
1496                                           u64 bytenr, u64 parent,
1497                                           u64 root_objectid)
1498 {
1499         struct btrfs_root *root = fs_info->extent_root;
1500         struct btrfs_key key;
1501         int ret;
1502
1503         key.objectid = bytenr;
1504         if (parent) {
1505                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506                 key.offset = parent;
1507         } else {
1508                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509                 key.offset = root_objectid;
1510         }
1511
1512         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513         if (ret > 0)
1514                 ret = -ENOENT;
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516         if (ret == -ENOENT && parent) {
1517                 btrfs_release_path(path);
1518                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520                 if (ret > 0)
1521                         ret = -ENOENT;
1522         }
1523 #endif
1524         return ret;
1525 }
1526
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528                                           struct btrfs_fs_info *fs_info,
1529                                           struct btrfs_path *path,
1530                                           u64 bytenr, u64 parent,
1531                                           u64 root_objectid)
1532 {
1533         struct btrfs_key key;
1534         int ret;
1535
1536         key.objectid = bytenr;
1537         if (parent) {
1538                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539                 key.offset = parent;
1540         } else {
1541                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542                 key.offset = root_objectid;
1543         }
1544
1545         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546                                       path, &key, 0);
1547         btrfs_release_path(path);
1548         return ret;
1549 }
1550
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1552 {
1553         int type;
1554         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555                 if (parent > 0)
1556                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1557                 else
1558                         type = BTRFS_TREE_BLOCK_REF_KEY;
1559         } else {
1560                 if (parent > 0)
1561                         type = BTRFS_SHARED_DATA_REF_KEY;
1562                 else
1563                         type = BTRFS_EXTENT_DATA_REF_KEY;
1564         }
1565         return type;
1566 }
1567
1568 static int find_next_key(struct btrfs_path *path, int level,
1569                          struct btrfs_key *key)
1570
1571 {
1572         for (; level < BTRFS_MAX_LEVEL; level++) {
1573                 if (!path->nodes[level])
1574                         break;
1575                 if (path->slots[level] + 1 >=
1576                     btrfs_header_nritems(path->nodes[level]))
1577                         continue;
1578                 if (level == 0)
1579                         btrfs_item_key_to_cpu(path->nodes[level], key,
1580                                               path->slots[level] + 1);
1581                 else
1582                         btrfs_node_key_to_cpu(path->nodes[level], key,
1583                                               path->slots[level] + 1);
1584                 return 0;
1585         }
1586         return 1;
1587 }
1588
1589 /*
1590  * look for inline back ref. if back ref is found, *ref_ret is set
1591  * to the address of inline back ref, and 0 is returned.
1592  *
1593  * if back ref isn't found, *ref_ret is set to the address where it
1594  * should be inserted, and -ENOENT is returned.
1595  *
1596  * if insert is true and there are too many inline back refs, the path
1597  * points to the extent item, and -EAGAIN is returned.
1598  *
1599  * NOTE: inline back refs are ordered in the same way that back ref
1600  *       items in the tree are ordered.
1601  */
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604                                  struct btrfs_fs_info *fs_info,
1605                                  struct btrfs_path *path,
1606                                  struct btrfs_extent_inline_ref **ref_ret,
1607                                  u64 bytenr, u64 num_bytes,
1608                                  u64 parent, u64 root_objectid,
1609                                  u64 owner, u64 offset, int insert)
1610 {
1611         struct btrfs_root *root = fs_info->extent_root;
1612         struct btrfs_key key;
1613         struct extent_buffer *leaf;
1614         struct btrfs_extent_item *ei;
1615         struct btrfs_extent_inline_ref *iref;
1616         u64 flags;
1617         u64 item_size;
1618         unsigned long ptr;
1619         unsigned long end;
1620         int extra_size;
1621         int type;
1622         int want;
1623         int ret;
1624         int err = 0;
1625         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626         int needed;
1627
1628         key.objectid = bytenr;
1629         key.type = BTRFS_EXTENT_ITEM_KEY;
1630         key.offset = num_bytes;
1631
1632         want = extent_ref_type(parent, owner);
1633         if (insert) {
1634                 extra_size = btrfs_extent_inline_ref_size(want);
1635                 path->keep_locks = 1;
1636         } else
1637                 extra_size = -1;
1638
1639         /*
1640          * Owner is our parent level, so we can just add one to get the level
1641          * for the block we are interested in.
1642          */
1643         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644                 key.type = BTRFS_METADATA_ITEM_KEY;
1645                 key.offset = owner;
1646         }
1647
1648 again:
1649         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650         if (ret < 0) {
1651                 err = ret;
1652                 goto out;
1653         }
1654
1655         /*
1656          * We may be a newly converted file system which still has the old fat
1657          * extent entries for metadata, so try and see if we have one of those.
1658          */
1659         if (ret > 0 && skinny_metadata) {
1660                 skinny_metadata = false;
1661                 if (path->slots[0]) {
1662                         path->slots[0]--;
1663                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1664                                               path->slots[0]);
1665                         if (key.objectid == bytenr &&
1666                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1667                             key.offset == num_bytes)
1668                                 ret = 0;
1669                 }
1670                 if (ret) {
1671                         key.objectid = bytenr;
1672                         key.type = BTRFS_EXTENT_ITEM_KEY;
1673                         key.offset = num_bytes;
1674                         btrfs_release_path(path);
1675                         goto again;
1676                 }
1677         }
1678
1679         if (ret && !insert) {
1680                 err = -ENOENT;
1681                 goto out;
1682         } else if (WARN_ON(ret)) {
1683                 err = -EIO;
1684                 goto out;
1685         }
1686
1687         leaf = path->nodes[0];
1688         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690         if (item_size < sizeof(*ei)) {
1691                 if (!insert) {
1692                         err = -ENOENT;
1693                         goto out;
1694                 }
1695                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696                                              extra_size);
1697                 if (ret < 0) {
1698                         err = ret;
1699                         goto out;
1700                 }
1701                 leaf = path->nodes[0];
1702                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703         }
1704 #endif
1705         BUG_ON(item_size < sizeof(*ei));
1706
1707         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708         flags = btrfs_extent_flags(leaf, ei);
1709
1710         ptr = (unsigned long)(ei + 1);
1711         end = (unsigned long)ei + item_size;
1712
1713         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714                 ptr += sizeof(struct btrfs_tree_block_info);
1715                 BUG_ON(ptr > end);
1716         }
1717
1718         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719                 needed = BTRFS_REF_TYPE_DATA;
1720         else
1721                 needed = BTRFS_REF_TYPE_BLOCK;
1722
1723         err = -ENOENT;
1724         while (1) {
1725                 if (ptr >= end) {
1726                         WARN_ON(ptr > end);
1727                         break;
1728                 }
1729                 iref = (struct btrfs_extent_inline_ref *)ptr;
1730                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731                 if (type == BTRFS_REF_TYPE_INVALID) {
1732                         err = -EINVAL;
1733                         goto out;
1734                 }
1735
1736                 if (want < type)
1737                         break;
1738                 if (want > type) {
1739                         ptr += btrfs_extent_inline_ref_size(type);
1740                         continue;
1741                 }
1742
1743                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744                         struct btrfs_extent_data_ref *dref;
1745                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746                         if (match_extent_data_ref(leaf, dref, root_objectid,
1747                                                   owner, offset)) {
1748                                 err = 0;
1749                                 break;
1750                         }
1751                         if (hash_extent_data_ref_item(leaf, dref) <
1752                             hash_extent_data_ref(root_objectid, owner, offset))
1753                                 break;
1754                 } else {
1755                         u64 ref_offset;
1756                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757                         if (parent > 0) {
1758                                 if (parent == ref_offset) {
1759                                         err = 0;
1760                                         break;
1761                                 }
1762                                 if (ref_offset < parent)
1763                                         break;
1764                         } else {
1765                                 if (root_objectid == ref_offset) {
1766                                         err = 0;
1767                                         break;
1768                                 }
1769                                 if (ref_offset < root_objectid)
1770                                         break;
1771                         }
1772                 }
1773                 ptr += btrfs_extent_inline_ref_size(type);
1774         }
1775         if (err == -ENOENT && insert) {
1776                 if (item_size + extra_size >=
1777                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778                         err = -EAGAIN;
1779                         goto out;
1780                 }
1781                 /*
1782                  * To add new inline back ref, we have to make sure
1783                  * there is no corresponding back ref item.
1784                  * For simplicity, we just do not add new inline back
1785                  * ref if there is any kind of item for this block
1786                  */
1787                 if (find_next_key(path, 0, &key) == 0 &&
1788                     key.objectid == bytenr &&
1789                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790                         err = -EAGAIN;
1791                         goto out;
1792                 }
1793         }
1794         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795 out:
1796         if (insert) {
1797                 path->keep_locks = 0;
1798                 btrfs_unlock_up_safe(path, 1);
1799         }
1800         return err;
1801 }
1802
1803 /*
1804  * helper to add new inline back ref
1805  */
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808                                  struct btrfs_path *path,
1809                                  struct btrfs_extent_inline_ref *iref,
1810                                  u64 parent, u64 root_objectid,
1811                                  u64 owner, u64 offset, int refs_to_add,
1812                                  struct btrfs_delayed_extent_op *extent_op)
1813 {
1814         struct extent_buffer *leaf;
1815         struct btrfs_extent_item *ei;
1816         unsigned long ptr;
1817         unsigned long end;
1818         unsigned long item_offset;
1819         u64 refs;
1820         int size;
1821         int type;
1822
1823         leaf = path->nodes[0];
1824         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825         item_offset = (unsigned long)iref - (unsigned long)ei;
1826
1827         type = extent_ref_type(parent, owner);
1828         size = btrfs_extent_inline_ref_size(type);
1829
1830         btrfs_extend_item(fs_info, path, size);
1831
1832         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833         refs = btrfs_extent_refs(leaf, ei);
1834         refs += refs_to_add;
1835         btrfs_set_extent_refs(leaf, ei, refs);
1836         if (extent_op)
1837                 __run_delayed_extent_op(extent_op, leaf, ei);
1838
1839         ptr = (unsigned long)ei + item_offset;
1840         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841         if (ptr < end - size)
1842                 memmove_extent_buffer(leaf, ptr + size, ptr,
1843                                       end - size - ptr);
1844
1845         iref = (struct btrfs_extent_inline_ref *)ptr;
1846         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848                 struct btrfs_extent_data_ref *dref;
1849                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855                 struct btrfs_shared_data_ref *sref;
1856                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861         } else {
1862                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863         }
1864         btrfs_mark_buffer_dirty(leaf);
1865 }
1866
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868                                  struct btrfs_fs_info *fs_info,
1869                                  struct btrfs_path *path,
1870                                  struct btrfs_extent_inline_ref **ref_ret,
1871                                  u64 bytenr, u64 num_bytes, u64 parent,
1872                                  u64 root_objectid, u64 owner, u64 offset)
1873 {
1874         int ret;
1875
1876         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877                                            bytenr, num_bytes, parent,
1878                                            root_objectid, owner, offset, 0);
1879         if (ret != -ENOENT)
1880                 return ret;
1881
1882         btrfs_release_path(path);
1883         *ref_ret = NULL;
1884
1885         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887                                             parent, root_objectid);
1888         } else {
1889                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890                                              parent, root_objectid, owner,
1891                                              offset);
1892         }
1893         return ret;
1894 }
1895
1896 /*
1897  * helper to update/remove inline back ref
1898  */
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901                                   struct btrfs_path *path,
1902                                   struct btrfs_extent_inline_ref *iref,
1903                                   int refs_to_mod,
1904                                   struct btrfs_delayed_extent_op *extent_op,
1905                                   int *last_ref)
1906 {
1907         struct extent_buffer *leaf;
1908         struct btrfs_extent_item *ei;
1909         struct btrfs_extent_data_ref *dref = NULL;
1910         struct btrfs_shared_data_ref *sref = NULL;
1911         unsigned long ptr;
1912         unsigned long end;
1913         u32 item_size;
1914         int size;
1915         int type;
1916         u64 refs;
1917
1918         leaf = path->nodes[0];
1919         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920         refs = btrfs_extent_refs(leaf, ei);
1921         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922         refs += refs_to_mod;
1923         btrfs_set_extent_refs(leaf, ei, refs);
1924         if (extent_op)
1925                 __run_delayed_extent_op(extent_op, leaf, ei);
1926
1927         /*
1928          * If type is invalid, we should have bailed out after
1929          * lookup_inline_extent_backref().
1930          */
1931         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933
1934         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936                 refs = btrfs_extent_data_ref_count(leaf, dref);
1937         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939                 refs = btrfs_shared_data_ref_count(leaf, sref);
1940         } else {
1941                 refs = 1;
1942                 BUG_ON(refs_to_mod != -1);
1943         }
1944
1945         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946         refs += refs_to_mod;
1947
1948         if (refs > 0) {
1949                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951                 else
1952                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953         } else {
1954                 *last_ref = 1;
1955                 size =  btrfs_extent_inline_ref_size(type);
1956                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957                 ptr = (unsigned long)iref;
1958                 end = (unsigned long)ei + item_size;
1959                 if (ptr + size < end)
1960                         memmove_extent_buffer(leaf, ptr, ptr + size,
1961                                               end - ptr - size);
1962                 item_size -= size;
1963                 btrfs_truncate_item(fs_info, path, item_size, 1);
1964         }
1965         btrfs_mark_buffer_dirty(leaf);
1966 }
1967
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970                                  struct btrfs_fs_info *fs_info,
1971                                  struct btrfs_path *path,
1972                                  u64 bytenr, u64 num_bytes, u64 parent,
1973                                  u64 root_objectid, u64 owner,
1974                                  u64 offset, int refs_to_add,
1975                                  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977         struct btrfs_extent_inline_ref *iref;
1978         int ret;
1979
1980         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981                                            bytenr, num_bytes, parent,
1982                                            root_objectid, owner, offset, 1);
1983         if (ret == 0) {
1984                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985                 update_inline_extent_backref(fs_info, path, iref,
1986                                              refs_to_add, extent_op, NULL);
1987         } else if (ret == -ENOENT) {
1988                 setup_inline_extent_backref(fs_info, path, iref, parent,
1989                                             root_objectid, owner, offset,
1990                                             refs_to_add, extent_op);
1991                 ret = 0;
1992         }
1993         return ret;
1994 }
1995
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997                                  struct btrfs_fs_info *fs_info,
1998                                  struct btrfs_path *path,
1999                                  u64 bytenr, u64 parent, u64 root_objectid,
2000                                  u64 owner, u64 offset, int refs_to_add)
2001 {
2002         int ret;
2003         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004                 BUG_ON(refs_to_add != 1);
2005                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006                                             parent, root_objectid);
2007         } else {
2008                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009                                              parent, root_objectid,
2010                                              owner, offset, refs_to_add);
2011         }
2012         return ret;
2013 }
2014
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016                                  struct btrfs_fs_info *fs_info,
2017                                  struct btrfs_path *path,
2018                                  struct btrfs_extent_inline_ref *iref,
2019                                  int refs_to_drop, int is_data, int *last_ref)
2020 {
2021         int ret = 0;
2022
2023         BUG_ON(!is_data && refs_to_drop != 1);
2024         if (iref) {
2025                 update_inline_extent_backref(fs_info, path, iref,
2026                                              -refs_to_drop, NULL, last_ref);
2027         } else if (is_data) {
2028                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029                                              last_ref);
2030         } else {
2031                 *last_ref = 1;
2032                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033         }
2034         return ret;
2035 }
2036
2037 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039                                u64 *discarded_bytes)
2040 {
2041         int j, ret = 0;
2042         u64 bytes_left, end;
2043         u64 aligned_start = ALIGN(start, 1 << 9);
2044
2045         if (WARN_ON(start != aligned_start)) {
2046                 len -= aligned_start - start;
2047                 len = round_down(len, 1 << 9);
2048                 start = aligned_start;
2049         }
2050
2051         *discarded_bytes = 0;
2052
2053         if (!len)
2054                 return 0;
2055
2056         end = start + len;
2057         bytes_left = len;
2058
2059         /* Skip any superblocks on this device. */
2060         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061                 u64 sb_start = btrfs_sb_offset(j);
2062                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063                 u64 size = sb_start - start;
2064
2065                 if (!in_range(sb_start, start, bytes_left) &&
2066                     !in_range(sb_end, start, bytes_left) &&
2067                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068                         continue;
2069
2070                 /*
2071                  * Superblock spans beginning of range.  Adjust start and
2072                  * try again.
2073                  */
2074                 if (sb_start <= start) {
2075                         start += sb_end - start;
2076                         if (start > end) {
2077                                 bytes_left = 0;
2078                                 break;
2079                         }
2080                         bytes_left = end - start;
2081                         continue;
2082                 }
2083
2084                 if (size) {
2085                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086                                                    GFP_NOFS, 0);
2087                         if (!ret)
2088                                 *discarded_bytes += size;
2089                         else if (ret != -EOPNOTSUPP)
2090                                 return ret;
2091                 }
2092
2093                 start = sb_end;
2094                 if (start > end) {
2095                         bytes_left = 0;
2096                         break;
2097                 }
2098                 bytes_left = end - start;
2099         }
2100
2101         if (bytes_left) {
2102                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103                                            GFP_NOFS, 0);
2104                 if (!ret)
2105                         *discarded_bytes += bytes_left;
2106         }
2107         return ret;
2108 }
2109
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111                          u64 num_bytes, u64 *actual_bytes)
2112 {
2113         int ret;
2114         u64 discarded_bytes = 0;
2115         struct btrfs_bio *bbio = NULL;
2116
2117
2118         /*
2119          * Avoid races with device replace and make sure our bbio has devices
2120          * associated to its stripes that don't go away while we are discarding.
2121          */
2122         btrfs_bio_counter_inc_blocked(fs_info);
2123         /* Tell the block device(s) that the sectors can be discarded */
2124         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125                               &bbio, 0);
2126         /* Error condition is -ENOMEM */
2127         if (!ret) {
2128                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2129                 int i;
2130
2131
2132                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133                         u64 bytes;
2134                         struct request_queue *req_q;
2135
2136                         if (!stripe->dev->bdev) {
2137                                 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138                                 continue;
2139                         }
2140                         req_q = bdev_get_queue(stripe->dev->bdev);
2141                         if (!blk_queue_discard(req_q))
2142                                 continue;
2143
2144                         ret = btrfs_issue_discard(stripe->dev->bdev,
2145                                                   stripe->physical,
2146                                                   stripe->length,
2147                                                   &bytes);
2148                         if (!ret)
2149                                 discarded_bytes += bytes;
2150                         else if (ret != -EOPNOTSUPP)
2151                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152
2153                         /*
2154                          * Just in case we get back EOPNOTSUPP for some reason,
2155                          * just ignore the return value so we don't screw up
2156                          * people calling discard_extent.
2157                          */
2158                         ret = 0;
2159                 }
2160                 btrfs_put_bbio(bbio);
2161         }
2162         btrfs_bio_counter_dec(fs_info);
2163
2164         if (actual_bytes)
2165                 *actual_bytes = discarded_bytes;
2166
2167
2168         if (ret == -EOPNOTSUPP)
2169                 ret = 0;
2170         return ret;
2171 }
2172
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175                          struct btrfs_root *root,
2176                          u64 bytenr, u64 num_bytes, u64 parent,
2177                          u64 root_objectid, u64 owner, u64 offset)
2178 {
2179         struct btrfs_fs_info *fs_info = root->fs_info;
2180         int old_ref_mod, new_ref_mod;
2181         int ret;
2182
2183         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185
2186         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187                            owner, offset, BTRFS_ADD_DELAYED_REF);
2188
2189         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191                                                  num_bytes, parent,
2192                                                  root_objectid, (int)owner,
2193                                                  BTRFS_ADD_DELAYED_REF, NULL,
2194                                                  &old_ref_mod, &new_ref_mod);
2195         } else {
2196                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197                                                  num_bytes, parent,
2198                                                  root_objectid, owner, offset,
2199                                                  0, BTRFS_ADD_DELAYED_REF,
2200                                                  &old_ref_mod, &new_ref_mod);
2201         }
2202
2203         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2204                 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2205
2206                 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2207         }
2208
2209         return ret;
2210 }
2211
2212 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2213                                   struct btrfs_fs_info *fs_info,
2214                                   struct btrfs_delayed_ref_node *node,
2215                                   u64 parent, u64 root_objectid,
2216                                   u64 owner, u64 offset, int refs_to_add,
2217                                   struct btrfs_delayed_extent_op *extent_op)
2218 {
2219         struct btrfs_path *path;
2220         struct extent_buffer *leaf;
2221         struct btrfs_extent_item *item;
2222         struct btrfs_key key;
2223         u64 bytenr = node->bytenr;
2224         u64 num_bytes = node->num_bytes;
2225         u64 refs;
2226         int ret;
2227
2228         path = btrfs_alloc_path();
2229         if (!path)
2230                 return -ENOMEM;
2231
2232         path->reada = READA_FORWARD;
2233         path->leave_spinning = 1;
2234         /* this will setup the path even if it fails to insert the back ref */
2235         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2236                                            num_bytes, parent, root_objectid,
2237                                            owner, offset,
2238                                            refs_to_add, extent_op);
2239         if ((ret < 0 && ret != -EAGAIN) || !ret)
2240                 goto out;
2241
2242         /*
2243          * Ok we had -EAGAIN which means we didn't have space to insert and
2244          * inline extent ref, so just update the reference count and add a
2245          * normal backref.
2246          */
2247         leaf = path->nodes[0];
2248         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2249         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250         refs = btrfs_extent_refs(leaf, item);
2251         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2252         if (extent_op)
2253                 __run_delayed_extent_op(extent_op, leaf, item);
2254
2255         btrfs_mark_buffer_dirty(leaf);
2256         btrfs_release_path(path);
2257
2258         path->reada = READA_FORWARD;
2259         path->leave_spinning = 1;
2260         /* now insert the actual backref */
2261         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2262                                     root_objectid, owner, offset, refs_to_add);
2263         if (ret)
2264                 btrfs_abort_transaction(trans, ret);
2265 out:
2266         btrfs_free_path(path);
2267         return ret;
2268 }
2269
2270 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2271                                 struct btrfs_fs_info *fs_info,
2272                                 struct btrfs_delayed_ref_node *node,
2273                                 struct btrfs_delayed_extent_op *extent_op,
2274                                 int insert_reserved)
2275 {
2276         int ret = 0;
2277         struct btrfs_delayed_data_ref *ref;
2278         struct btrfs_key ins;
2279         u64 parent = 0;
2280         u64 ref_root = 0;
2281         u64 flags = 0;
2282
2283         ins.objectid = node->bytenr;
2284         ins.offset = node->num_bytes;
2285         ins.type = BTRFS_EXTENT_ITEM_KEY;
2286
2287         ref = btrfs_delayed_node_to_data_ref(node);
2288         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2289
2290         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2291                 parent = ref->parent;
2292         ref_root = ref->root;
2293
2294         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2295                 if (extent_op)
2296                         flags |= extent_op->flags_to_set;
2297                 ret = alloc_reserved_file_extent(trans, fs_info,
2298                                                  parent, ref_root, flags,
2299                                                  ref->objectid, ref->offset,
2300                                                  &ins, node->ref_mod);
2301         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2302                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2303                                              ref_root, ref->objectid,
2304                                              ref->offset, node->ref_mod,
2305                                              extent_op);
2306         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2307                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2308                                           ref_root, ref->objectid,
2309                                           ref->offset, node->ref_mod,
2310                                           extent_op);
2311         } else {
2312                 BUG();
2313         }
2314         return ret;
2315 }
2316
2317 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2318                                     struct extent_buffer *leaf,
2319                                     struct btrfs_extent_item *ei)
2320 {
2321         u64 flags = btrfs_extent_flags(leaf, ei);
2322         if (extent_op->update_flags) {
2323                 flags |= extent_op->flags_to_set;
2324                 btrfs_set_extent_flags(leaf, ei, flags);
2325         }
2326
2327         if (extent_op->update_key) {
2328                 struct btrfs_tree_block_info *bi;
2329                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2330                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2331                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2332         }
2333 }
2334
2335 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2336                                  struct btrfs_fs_info *fs_info,
2337                                  struct btrfs_delayed_ref_head *head,
2338                                  struct btrfs_delayed_extent_op *extent_op)
2339 {
2340         struct btrfs_key key;
2341         struct btrfs_path *path;
2342         struct btrfs_extent_item *ei;
2343         struct extent_buffer *leaf;
2344         u32 item_size;
2345         int ret;
2346         int err = 0;
2347         int metadata = !extent_op->is_data;
2348
2349         if (trans->aborted)
2350                 return 0;
2351
2352         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2353                 metadata = 0;
2354
2355         path = btrfs_alloc_path();
2356         if (!path)
2357                 return -ENOMEM;
2358
2359         key.objectid = head->bytenr;
2360
2361         if (metadata) {
2362                 key.type = BTRFS_METADATA_ITEM_KEY;
2363                 key.offset = extent_op->level;
2364         } else {
2365                 key.type = BTRFS_EXTENT_ITEM_KEY;
2366                 key.offset = head->num_bytes;
2367         }
2368
2369 again:
2370         path->reada = READA_FORWARD;
2371         path->leave_spinning = 1;
2372         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2373         if (ret < 0) {
2374                 err = ret;
2375                 goto out;
2376         }
2377         if (ret > 0) {
2378                 if (metadata) {
2379                         if (path->slots[0] > 0) {
2380                                 path->slots[0]--;
2381                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2382                                                       path->slots[0]);
2383                                 if (key.objectid == head->bytenr &&
2384                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2385                                     key.offset == head->num_bytes)
2386                                         ret = 0;
2387                         }
2388                         if (ret > 0) {
2389                                 btrfs_release_path(path);
2390                                 metadata = 0;
2391
2392                                 key.objectid = head->bytenr;
2393                                 key.offset = head->num_bytes;
2394                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2395                                 goto again;
2396                         }
2397                 } else {
2398                         err = -EIO;
2399                         goto out;
2400                 }
2401         }
2402
2403         leaf = path->nodes[0];
2404         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2406         if (item_size < sizeof(*ei)) {
2407                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2408                 if (ret < 0) {
2409                         err = ret;
2410                         goto out;
2411                 }
2412                 leaf = path->nodes[0];
2413                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414         }
2415 #endif
2416         BUG_ON(item_size < sizeof(*ei));
2417         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418         __run_delayed_extent_op(extent_op, leaf, ei);
2419
2420         btrfs_mark_buffer_dirty(leaf);
2421 out:
2422         btrfs_free_path(path);
2423         return err;
2424 }
2425
2426 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2427                                 struct btrfs_fs_info *fs_info,
2428                                 struct btrfs_delayed_ref_node *node,
2429                                 struct btrfs_delayed_extent_op *extent_op,
2430                                 int insert_reserved)
2431 {
2432         int ret = 0;
2433         struct btrfs_delayed_tree_ref *ref;
2434         struct btrfs_key ins;
2435         u64 parent = 0;
2436         u64 ref_root = 0;
2437         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2438
2439         ref = btrfs_delayed_node_to_tree_ref(node);
2440         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2441
2442         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2443                 parent = ref->parent;
2444         ref_root = ref->root;
2445
2446         ins.objectid = node->bytenr;
2447         if (skinny_metadata) {
2448                 ins.offset = ref->level;
2449                 ins.type = BTRFS_METADATA_ITEM_KEY;
2450         } else {
2451                 ins.offset = node->num_bytes;
2452                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2453         }
2454
2455         if (node->ref_mod != 1) {
2456                 btrfs_err(fs_info,
2457         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2458                           node->bytenr, node->ref_mod, node->action, ref_root,
2459                           parent);
2460                 return -EIO;
2461         }
2462         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2463                 BUG_ON(!extent_op || !extent_op->update_flags);
2464                 ret = alloc_reserved_tree_block(trans, fs_info,
2465                                                 parent, ref_root,
2466                                                 extent_op->flags_to_set,
2467                                                 &extent_op->key,
2468                                                 ref->level, &ins);
2469         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2470                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2471                                              parent, ref_root,
2472                                              ref->level, 0, 1,
2473                                              extent_op);
2474         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2475                 ret = __btrfs_free_extent(trans, fs_info, node,
2476                                           parent, ref_root,
2477                                           ref->level, 0, 1, extent_op);
2478         } else {
2479                 BUG();
2480         }
2481         return ret;
2482 }
2483
2484 /* helper function to actually process a single delayed ref entry */
2485 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2486                                struct btrfs_fs_info *fs_info,
2487                                struct btrfs_delayed_ref_node *node,
2488                                struct btrfs_delayed_extent_op *extent_op,
2489                                int insert_reserved)
2490 {
2491         int ret = 0;
2492
2493         if (trans->aborted) {
2494                 if (insert_reserved)
2495                         btrfs_pin_extent(fs_info, node->bytenr,
2496                                          node->num_bytes, 1);
2497                 return 0;
2498         }
2499
2500         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2501             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2502                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2503                                            insert_reserved);
2504         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2505                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2506                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2507                                            insert_reserved);
2508         else
2509                 BUG();
2510         return ret;
2511 }
2512
2513 static inline struct btrfs_delayed_ref_node *
2514 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2515 {
2516         struct btrfs_delayed_ref_node *ref;
2517
2518         if (RB_EMPTY_ROOT(&head->ref_tree))
2519                 return NULL;
2520
2521         /*
2522          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2523          * This is to prevent a ref count from going down to zero, which deletes
2524          * the extent item from the extent tree, when there still are references
2525          * to add, which would fail because they would not find the extent item.
2526          */
2527         if (!list_empty(&head->ref_add_list))
2528                 return list_first_entry(&head->ref_add_list,
2529                                 struct btrfs_delayed_ref_node, add_list);
2530
2531         ref = rb_entry(rb_first(&head->ref_tree),
2532                        struct btrfs_delayed_ref_node, ref_node);
2533         ASSERT(list_empty(&ref->add_list));
2534         return ref;
2535 }
2536
2537 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2538                                       struct btrfs_delayed_ref_head *head)
2539 {
2540         spin_lock(&delayed_refs->lock);
2541         head->processing = 0;
2542         delayed_refs->num_heads_ready++;
2543         spin_unlock(&delayed_refs->lock);
2544         btrfs_delayed_ref_unlock(head);
2545 }
2546
2547 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2548                              struct btrfs_fs_info *fs_info,
2549                              struct btrfs_delayed_ref_head *head)
2550 {
2551         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2552         int ret;
2553
2554         if (!extent_op)
2555                 return 0;
2556         head->extent_op = NULL;
2557         if (head->must_insert_reserved) {
2558                 btrfs_free_delayed_extent_op(extent_op);
2559                 return 0;
2560         }
2561         spin_unlock(&head->lock);
2562         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2563         btrfs_free_delayed_extent_op(extent_op);
2564         return ret ? ret : 1;
2565 }
2566
2567 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568                             struct btrfs_fs_info *fs_info,
2569                             struct btrfs_delayed_ref_head *head)
2570 {
2571         struct btrfs_delayed_ref_root *delayed_refs;
2572         int ret;
2573
2574         delayed_refs = &trans->transaction->delayed_refs;
2575
2576         ret = cleanup_extent_op(trans, fs_info, head);
2577         if (ret < 0) {
2578                 unselect_delayed_ref_head(delayed_refs, head);
2579                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2580                 return ret;
2581         } else if (ret) {
2582                 return ret;
2583         }
2584
2585         /*
2586          * Need to drop our head ref lock and re-acquire the delayed ref lock
2587          * and then re-check to make sure nobody got added.
2588          */
2589         spin_unlock(&head->lock);
2590         spin_lock(&delayed_refs->lock);
2591         spin_lock(&head->lock);
2592         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2593                 spin_unlock(&head->lock);
2594                 spin_unlock(&delayed_refs->lock);
2595                 return 1;
2596         }
2597         delayed_refs->num_heads--;
2598         rb_erase(&head->href_node, &delayed_refs->href_root);
2599         RB_CLEAR_NODE(&head->href_node);
2600         spin_unlock(&head->lock);
2601         spin_unlock(&delayed_refs->lock);
2602         atomic_dec(&delayed_refs->num_entries);
2603
2604         trace_run_delayed_ref_head(fs_info, head, 0);
2605
2606         if (head->total_ref_mod < 0) {
2607                 struct btrfs_space_info *space_info;
2608                 u64 flags;
2609
2610                 if (head->is_data)
2611                         flags = BTRFS_BLOCK_GROUP_DATA;
2612                 else if (head->is_system)
2613                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
2614                 else
2615                         flags = BTRFS_BLOCK_GROUP_METADATA;
2616                 space_info = __find_space_info(fs_info, flags);
2617                 ASSERT(space_info);
2618                 percpu_counter_add(&space_info->total_bytes_pinned,
2619                                    -head->num_bytes);
2620
2621                 if (head->is_data) {
2622                         spin_lock(&delayed_refs->lock);
2623                         delayed_refs->pending_csums -= head->num_bytes;
2624                         spin_unlock(&delayed_refs->lock);
2625                 }
2626         }
2627
2628         if (head->must_insert_reserved) {
2629                 btrfs_pin_extent(fs_info, head->bytenr,
2630                                  head->num_bytes, 1);
2631                 if (head->is_data) {
2632                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2633                                               head->num_bytes);
2634                 }
2635         }
2636
2637         /* Also free its reserved qgroup space */
2638         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2639                                       head->qgroup_reserved);
2640         btrfs_delayed_ref_unlock(head);
2641         btrfs_put_delayed_ref_head(head);
2642         return 0;
2643 }
2644
2645 /*
2646  * Returns 0 on success or if called with an already aborted transaction.
2647  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2648  */
2649 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2650                                              unsigned long nr)
2651 {
2652         struct btrfs_fs_info *fs_info = trans->fs_info;
2653         struct btrfs_delayed_ref_root *delayed_refs;
2654         struct btrfs_delayed_ref_node *ref;
2655         struct btrfs_delayed_ref_head *locked_ref = NULL;
2656         struct btrfs_delayed_extent_op *extent_op;
2657         ktime_t start = ktime_get();
2658         int ret;
2659         unsigned long count = 0;
2660         unsigned long actual_count = 0;
2661         int must_insert_reserved = 0;
2662
2663         delayed_refs = &trans->transaction->delayed_refs;
2664         while (1) {
2665                 if (!locked_ref) {
2666                         if (count >= nr)
2667                                 break;
2668
2669                         spin_lock(&delayed_refs->lock);
2670                         locked_ref = btrfs_select_ref_head(trans);
2671                         if (!locked_ref) {
2672                                 spin_unlock(&delayed_refs->lock);
2673                                 break;
2674                         }
2675
2676                         /* grab the lock that says we are going to process
2677                          * all the refs for this head */
2678                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2679                         spin_unlock(&delayed_refs->lock);
2680                         /*
2681                          * we may have dropped the spin lock to get the head
2682                          * mutex lock, and that might have given someone else
2683                          * time to free the head.  If that's true, it has been
2684                          * removed from our list and we can move on.
2685                          */
2686                         if (ret == -EAGAIN) {
2687                                 locked_ref = NULL;
2688                                 count++;
2689                                 continue;
2690                         }
2691                 }
2692
2693                 /*
2694                  * We need to try and merge add/drops of the same ref since we
2695                  * can run into issues with relocate dropping the implicit ref
2696                  * and then it being added back again before the drop can
2697                  * finish.  If we merged anything we need to re-loop so we can
2698                  * get a good ref.
2699                  * Or we can get node references of the same type that weren't
2700                  * merged when created due to bumps in the tree mod seq, and
2701                  * we need to merge them to prevent adding an inline extent
2702                  * backref before dropping it (triggering a BUG_ON at
2703                  * insert_inline_extent_backref()).
2704                  */
2705                 spin_lock(&locked_ref->lock);
2706                 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2707
2708                 /*
2709                  * locked_ref is the head node, so we have to go one
2710                  * node back for any delayed ref updates
2711                  */
2712                 ref = select_delayed_ref(locked_ref);
2713
2714                 if (ref && ref->seq &&
2715                     btrfs_check_delayed_seq(fs_info, ref->seq)) {
2716                         spin_unlock(&locked_ref->lock);
2717                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2718                         locked_ref = NULL;
2719                         cond_resched();
2720                         count++;
2721                         continue;
2722                 }
2723
2724                 /*
2725                  * We're done processing refs in this ref_head, clean everything
2726                  * up and move on to the next ref_head.
2727                  */
2728                 if (!ref) {
2729                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2730                         if (ret > 0 ) {
2731                                 /* We dropped our lock, we need to loop. */
2732                                 ret = 0;
2733                                 continue;
2734                         } else if (ret) {
2735                                 return ret;
2736                         }
2737                         locked_ref = NULL;
2738                         count++;
2739                         continue;
2740                 }
2741
2742                 actual_count++;
2743                 ref->in_tree = 0;
2744                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2745                 RB_CLEAR_NODE(&ref->ref_node);
2746                 if (!list_empty(&ref->add_list))
2747                         list_del(&ref->add_list);
2748                 /*
2749                  * When we play the delayed ref, also correct the ref_mod on
2750                  * head
2751                  */
2752                 switch (ref->action) {
2753                 case BTRFS_ADD_DELAYED_REF:
2754                 case BTRFS_ADD_DELAYED_EXTENT:
2755                         locked_ref->ref_mod -= ref->ref_mod;
2756                         break;
2757                 case BTRFS_DROP_DELAYED_REF:
2758                         locked_ref->ref_mod += ref->ref_mod;
2759                         break;
2760                 default:
2761                         WARN_ON(1);
2762                 }
2763                 atomic_dec(&delayed_refs->num_entries);
2764
2765                 /*
2766                  * Record the must-insert_reserved flag before we drop the spin
2767                  * lock.
2768                  */
2769                 must_insert_reserved = locked_ref->must_insert_reserved;
2770                 locked_ref->must_insert_reserved = 0;
2771
2772                 extent_op = locked_ref->extent_op;
2773                 locked_ref->extent_op = NULL;
2774                 spin_unlock(&locked_ref->lock);
2775
2776                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2777                                           must_insert_reserved);
2778
2779                 btrfs_free_delayed_extent_op(extent_op);
2780                 if (ret) {
2781                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2782                         btrfs_put_delayed_ref(ref);
2783                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2784                                     ret);
2785                         return ret;
2786                 }
2787
2788                 btrfs_put_delayed_ref(ref);
2789                 count++;
2790                 cond_resched();
2791         }
2792
2793         /*
2794          * We don't want to include ref heads since we can have empty ref heads
2795          * and those will drastically skew our runtime down since we just do
2796          * accounting, no actual extent tree updates.
2797          */
2798         if (actual_count > 0) {
2799                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2800                 u64 avg;
2801
2802                 /*
2803                  * We weigh the current average higher than our current runtime
2804                  * to avoid large swings in the average.
2805                  */
2806                 spin_lock(&delayed_refs->lock);
2807                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2808                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2809                 spin_unlock(&delayed_refs->lock);
2810         }
2811         return 0;
2812 }
2813
2814 #ifdef SCRAMBLE_DELAYED_REFS
2815 /*
2816  * Normally delayed refs get processed in ascending bytenr order. This
2817  * correlates in most cases to the order added. To expose dependencies on this
2818  * order, we start to process the tree in the middle instead of the beginning
2819  */
2820 static u64 find_middle(struct rb_root *root)
2821 {
2822         struct rb_node *n = root->rb_node;
2823         struct btrfs_delayed_ref_node *entry;
2824         int alt = 1;
2825         u64 middle;
2826         u64 first = 0, last = 0;
2827
2828         n = rb_first(root);
2829         if (n) {
2830                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2831                 first = entry->bytenr;
2832         }
2833         n = rb_last(root);
2834         if (n) {
2835                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2836                 last = entry->bytenr;
2837         }
2838         n = root->rb_node;
2839
2840         while (n) {
2841                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842                 WARN_ON(!entry->in_tree);
2843
2844                 middle = entry->bytenr;
2845
2846                 if (alt)
2847                         n = n->rb_left;
2848                 else
2849                         n = n->rb_right;
2850
2851                 alt = 1 - alt;
2852         }
2853         return middle;
2854 }
2855 #endif
2856
2857 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2858 {
2859         u64 num_bytes;
2860
2861         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2862                              sizeof(struct btrfs_extent_inline_ref));
2863         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2864                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2865
2866         /*
2867          * We don't ever fill up leaves all the way so multiply by 2 just to be
2868          * closer to what we're really going to want to use.
2869          */
2870         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2871 }
2872
2873 /*
2874  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2875  * would require to store the csums for that many bytes.
2876  */
2877 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2878 {
2879         u64 csum_size;
2880         u64 num_csums_per_leaf;
2881         u64 num_csums;
2882
2883         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2884         num_csums_per_leaf = div64_u64(csum_size,
2885                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2886         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2887         num_csums += num_csums_per_leaf - 1;
2888         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2889         return num_csums;
2890 }
2891
2892 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2893                                        struct btrfs_fs_info *fs_info)
2894 {
2895         struct btrfs_block_rsv *global_rsv;
2896         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2897         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2898         unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2899         u64 num_bytes, num_dirty_bgs_bytes;
2900         int ret = 0;
2901
2902         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2903         num_heads = heads_to_leaves(fs_info, num_heads);
2904         if (num_heads > 1)
2905                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2906         num_bytes <<= 1;
2907         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2908                                                         fs_info->nodesize;
2909         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2910                                                              num_dirty_bgs);
2911         global_rsv = &fs_info->global_block_rsv;
2912
2913         /*
2914          * If we can't allocate any more chunks lets make sure we have _lots_ of
2915          * wiggle room since running delayed refs can create more delayed refs.
2916          */
2917         if (global_rsv->space_info->full) {
2918                 num_dirty_bgs_bytes <<= 1;
2919                 num_bytes <<= 1;
2920         }
2921
2922         spin_lock(&global_rsv->lock);
2923         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2924                 ret = 1;
2925         spin_unlock(&global_rsv->lock);
2926         return ret;
2927 }
2928
2929 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2930                                        struct btrfs_fs_info *fs_info)
2931 {
2932         u64 num_entries =
2933                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2934         u64 avg_runtime;
2935         u64 val;
2936
2937         smp_mb();
2938         avg_runtime = fs_info->avg_delayed_ref_runtime;
2939         val = num_entries * avg_runtime;
2940         if (val >= NSEC_PER_SEC)
2941                 return 1;
2942         if (val >= NSEC_PER_SEC / 2)
2943                 return 2;
2944
2945         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2946 }
2947
2948 struct async_delayed_refs {
2949         struct btrfs_root *root;
2950         u64 transid;
2951         int count;
2952         int error;
2953         int sync;
2954         struct completion wait;
2955         struct btrfs_work work;
2956 };
2957
2958 static inline struct async_delayed_refs *
2959 to_async_delayed_refs(struct btrfs_work *work)
2960 {
2961         return container_of(work, struct async_delayed_refs, work);
2962 }
2963
2964 static void delayed_ref_async_start(struct btrfs_work *work)
2965 {
2966         struct async_delayed_refs *async = to_async_delayed_refs(work);
2967         struct btrfs_trans_handle *trans;
2968         struct btrfs_fs_info *fs_info = async->root->fs_info;
2969         int ret;
2970
2971         /* if the commit is already started, we don't need to wait here */
2972         if (btrfs_transaction_blocked(fs_info))
2973                 goto done;
2974
2975         trans = btrfs_join_transaction(async->root);
2976         if (IS_ERR(trans)) {
2977                 async->error = PTR_ERR(trans);
2978                 goto done;
2979         }
2980
2981         /*
2982          * trans->sync means that when we call end_transaction, we won't
2983          * wait on delayed refs
2984          */
2985         trans->sync = true;
2986
2987         /* Don't bother flushing if we got into a different transaction */
2988         if (trans->transid > async->transid)
2989                 goto end;
2990
2991         ret = btrfs_run_delayed_refs(trans, async->count);
2992         if (ret)
2993                 async->error = ret;
2994 end:
2995         ret = btrfs_end_transaction(trans);
2996         if (ret && !async->error)
2997                 async->error = ret;
2998 done:
2999         if (async->sync)
3000                 complete(&async->wait);
3001         else
3002                 kfree(async);
3003 }
3004
3005 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3006                                  unsigned long count, u64 transid, int wait)
3007 {
3008         struct async_delayed_refs *async;
3009         int ret;
3010
3011         async = kmalloc(sizeof(*async), GFP_NOFS);
3012         if (!async)
3013                 return -ENOMEM;
3014
3015         async->root = fs_info->tree_root;
3016         async->count = count;
3017         async->error = 0;
3018         async->transid = transid;
3019         if (wait)
3020                 async->sync = 1;
3021         else
3022                 async->sync = 0;
3023         init_completion(&async->wait);
3024
3025         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3026                         delayed_ref_async_start, NULL, NULL);
3027
3028         btrfs_queue_work(fs_info->extent_workers, &async->work);
3029
3030         if (wait) {
3031                 wait_for_completion(&async->wait);
3032                 ret = async->error;
3033                 kfree(async);
3034                 return ret;
3035         }
3036         return 0;
3037 }
3038
3039 /*
3040  * this starts processing the delayed reference count updates and
3041  * extent insertions we have queued up so far.  count can be
3042  * 0, which means to process everything in the tree at the start
3043  * of the run (but not newly added entries), or it can be some target
3044  * number you'd like to process.
3045  *
3046  * Returns 0 on success or if called with an aborted transaction
3047  * Returns <0 on error and aborts the transaction
3048  */
3049 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3050                            unsigned long count)
3051 {
3052         struct btrfs_fs_info *fs_info = trans->fs_info;
3053         struct rb_node *node;
3054         struct btrfs_delayed_ref_root *delayed_refs;
3055         struct btrfs_delayed_ref_head *head;
3056         int ret;
3057         int run_all = count == (unsigned long)-1;
3058         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3059
3060         /* We'll clean this up in btrfs_cleanup_transaction */
3061         if (trans->aborted)
3062                 return 0;
3063
3064         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3065                 return 0;
3066
3067         delayed_refs = &trans->transaction->delayed_refs;
3068         if (count == 0)
3069                 count = atomic_read(&delayed_refs->num_entries) * 2;
3070
3071 again:
3072 #ifdef SCRAMBLE_DELAYED_REFS
3073         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3074 #endif
3075         trans->can_flush_pending_bgs = false;
3076         ret = __btrfs_run_delayed_refs(trans, count);
3077         if (ret < 0) {
3078                 btrfs_abort_transaction(trans, ret);
3079                 return ret;
3080         }
3081
3082         if (run_all) {
3083                 if (!list_empty(&trans->new_bgs))
3084                         btrfs_create_pending_block_groups(trans);
3085
3086                 spin_lock(&delayed_refs->lock);
3087                 node = rb_first(&delayed_refs->href_root);
3088                 if (!node) {
3089                         spin_unlock(&delayed_refs->lock);
3090                         goto out;
3091                 }
3092                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3093                                 href_node);
3094                 refcount_inc(&head->refs);
3095                 spin_unlock(&delayed_refs->lock);
3096
3097                 /* Mutex was contended, block until it's released and retry. */
3098                 mutex_lock(&head->mutex);
3099                 mutex_unlock(&head->mutex);
3100
3101                 btrfs_put_delayed_ref_head(head);
3102                 cond_resched();
3103                 goto again;
3104         }
3105 out:
3106         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3107         return 0;
3108 }
3109
3110 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3111                                 struct btrfs_fs_info *fs_info,
3112                                 u64 bytenr, u64 num_bytes, u64 flags,
3113                                 int level, int is_data)
3114 {
3115         struct btrfs_delayed_extent_op *extent_op;
3116         int ret;
3117
3118         extent_op = btrfs_alloc_delayed_extent_op();
3119         if (!extent_op)
3120                 return -ENOMEM;
3121
3122         extent_op->flags_to_set = flags;
3123         extent_op->update_flags = true;
3124         extent_op->update_key = false;
3125         extent_op->is_data = is_data ? true : false;
3126         extent_op->level = level;
3127
3128         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3129                                           num_bytes, extent_op);
3130         if (ret)
3131                 btrfs_free_delayed_extent_op(extent_op);
3132         return ret;
3133 }
3134
3135 static noinline int check_delayed_ref(struct btrfs_root *root,
3136                                       struct btrfs_path *path,
3137                                       u64 objectid, u64 offset, u64 bytenr)
3138 {
3139         struct btrfs_delayed_ref_head *head;
3140         struct btrfs_delayed_ref_node *ref;
3141         struct btrfs_delayed_data_ref *data_ref;
3142         struct btrfs_delayed_ref_root *delayed_refs;
3143         struct btrfs_transaction *cur_trans;
3144         struct rb_node *node;
3145         int ret = 0;
3146
3147         spin_lock(&root->fs_info->trans_lock);
3148         cur_trans = root->fs_info->running_transaction;
3149         if (cur_trans)
3150                 refcount_inc(&cur_trans->use_count);
3151         spin_unlock(&root->fs_info->trans_lock);
3152         if (!cur_trans)
3153                 return 0;
3154
3155         delayed_refs = &cur_trans->delayed_refs;
3156         spin_lock(&delayed_refs->lock);
3157         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3158         if (!head) {
3159                 spin_unlock(&delayed_refs->lock);
3160                 btrfs_put_transaction(cur_trans);
3161                 return 0;
3162         }
3163
3164         if (!mutex_trylock(&head->mutex)) {
3165                 refcount_inc(&head->refs);
3166                 spin_unlock(&delayed_refs->lock);
3167
3168                 btrfs_release_path(path);
3169
3170                 /*
3171                  * Mutex was contended, block until it's released and let
3172                  * caller try again
3173                  */
3174                 mutex_lock(&head->mutex);
3175                 mutex_unlock(&head->mutex);
3176                 btrfs_put_delayed_ref_head(head);
3177                 btrfs_put_transaction(cur_trans);
3178                 return -EAGAIN;
3179         }
3180         spin_unlock(&delayed_refs->lock);
3181
3182         spin_lock(&head->lock);
3183         /*
3184          * XXX: We should replace this with a proper search function in the
3185          * future.
3186          */
3187         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3188                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3189                 /* If it's a shared ref we know a cross reference exists */
3190                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3191                         ret = 1;
3192                         break;
3193                 }
3194
3195                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3196
3197                 /*
3198                  * If our ref doesn't match the one we're currently looking at
3199                  * then we have a cross reference.
3200                  */
3201                 if (data_ref->root != root->root_key.objectid ||
3202                     data_ref->objectid != objectid ||
3203                     data_ref->offset != offset) {
3204                         ret = 1;
3205                         break;
3206                 }
3207         }
3208         spin_unlock(&head->lock);
3209         mutex_unlock(&head->mutex);
3210         btrfs_put_transaction(cur_trans);
3211         return ret;
3212 }
3213
3214 static noinline int check_committed_ref(struct btrfs_root *root,
3215                                         struct btrfs_path *path,
3216                                         u64 objectid, u64 offset, u64 bytenr)
3217 {
3218         struct btrfs_fs_info *fs_info = root->fs_info;
3219         struct btrfs_root *extent_root = fs_info->extent_root;
3220         struct extent_buffer *leaf;
3221         struct btrfs_extent_data_ref *ref;
3222         struct btrfs_extent_inline_ref *iref;
3223         struct btrfs_extent_item *ei;
3224         struct btrfs_key key;
3225         u32 item_size;
3226         int type;
3227         int ret;
3228
3229         key.objectid = bytenr;
3230         key.offset = (u64)-1;
3231         key.type = BTRFS_EXTENT_ITEM_KEY;
3232
3233         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3234         if (ret < 0)
3235                 goto out;
3236         BUG_ON(ret == 0); /* Corruption */
3237
3238         ret = -ENOENT;
3239         if (path->slots[0] == 0)
3240                 goto out;
3241
3242         path->slots[0]--;
3243         leaf = path->nodes[0];
3244         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3245
3246         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3247                 goto out;
3248
3249         ret = 1;
3250         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3251 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3252         if (item_size < sizeof(*ei)) {
3253                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3254                 goto out;
3255         }
3256 #endif
3257         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3258
3259         if (item_size != sizeof(*ei) +
3260             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3261                 goto out;
3262
3263         if (btrfs_extent_generation(leaf, ei) <=
3264             btrfs_root_last_snapshot(&root->root_item))
3265                 goto out;
3266
3267         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3268
3269         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3270         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3271                 goto out;
3272
3273         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3274         if (btrfs_extent_refs(leaf, ei) !=
3275             btrfs_extent_data_ref_count(leaf, ref) ||
3276             btrfs_extent_data_ref_root(leaf, ref) !=
3277             root->root_key.objectid ||
3278             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3279             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3280                 goto out;
3281
3282         ret = 0;
3283 out:
3284         return ret;
3285 }
3286
3287 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3288                           u64 bytenr)
3289 {
3290         struct btrfs_path *path;
3291         int ret;
3292         int ret2;
3293
3294         path = btrfs_alloc_path();
3295         if (!path)
3296                 return -ENOENT;
3297
3298         do {
3299                 ret = check_committed_ref(root, path, objectid,
3300                                           offset, bytenr);
3301                 if (ret && ret != -ENOENT)
3302                         goto out;
3303
3304                 ret2 = check_delayed_ref(root, path, objectid,
3305                                          offset, bytenr);
3306         } while (ret2 == -EAGAIN);
3307
3308         if (ret2 && ret2 != -ENOENT) {
3309                 ret = ret2;
3310                 goto out;
3311         }
3312
3313         if (ret != -ENOENT || ret2 != -ENOENT)
3314                 ret = 0;
3315 out:
3316         btrfs_free_path(path);
3317         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3318                 WARN_ON(ret > 0);
3319         return ret;
3320 }
3321
3322 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3323                            struct btrfs_root *root,
3324                            struct extent_buffer *buf,
3325                            int full_backref, int inc)
3326 {
3327         struct btrfs_fs_info *fs_info = root->fs_info;
3328         u64 bytenr;
3329         u64 num_bytes;
3330         u64 parent;
3331         u64 ref_root;
3332         u32 nritems;
3333         struct btrfs_key key;
3334         struct btrfs_file_extent_item *fi;
3335         int i;
3336         int level;
3337         int ret = 0;
3338         int (*process_func)(struct btrfs_trans_handle *,
3339                             struct btrfs_root *,
3340                             u64, u64, u64, u64, u64, u64);
3341
3342
3343         if (btrfs_is_testing(fs_info))
3344                 return 0;
3345
3346         ref_root = btrfs_header_owner(buf);
3347         nritems = btrfs_header_nritems(buf);
3348         level = btrfs_header_level(buf);
3349
3350         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3351                 return 0;
3352
3353         if (inc)
3354                 process_func = btrfs_inc_extent_ref;
3355         else
3356                 process_func = btrfs_free_extent;
3357
3358         if (full_backref)
3359                 parent = buf->start;
3360         else
3361                 parent = 0;
3362
3363         for (i = 0; i < nritems; i++) {
3364                 if (level == 0) {
3365                         btrfs_item_key_to_cpu(buf, &key, i);
3366                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3367                                 continue;
3368                         fi = btrfs_item_ptr(buf, i,
3369                                             struct btrfs_file_extent_item);
3370                         if (btrfs_file_extent_type(buf, fi) ==
3371                             BTRFS_FILE_EXTENT_INLINE)
3372                                 continue;
3373                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3374                         if (bytenr == 0)
3375                                 continue;
3376
3377                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3378                         key.offset -= btrfs_file_extent_offset(buf, fi);
3379                         ret = process_func(trans, root, bytenr, num_bytes,
3380                                            parent, ref_root, key.objectid,
3381                                            key.offset);
3382                         if (ret)
3383                                 goto fail;
3384                 } else {
3385                         bytenr = btrfs_node_blockptr(buf, i);
3386                         num_bytes = fs_info->nodesize;
3387                         ret = process_func(trans, root, bytenr, num_bytes,
3388                                            parent, ref_root, level - 1, 0);
3389                         if (ret)
3390                                 goto fail;
3391                 }
3392         }
3393         return 0;
3394 fail:
3395         return ret;
3396 }
3397
3398 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3399                   struct extent_buffer *buf, int full_backref)
3400 {
3401         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3402 }
3403
3404 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3405                   struct extent_buffer *buf, int full_backref)
3406 {
3407         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3408 }
3409
3410 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3411                                  struct btrfs_fs_info *fs_info,
3412                                  struct btrfs_path *path,
3413                                  struct btrfs_block_group_cache *cache)
3414 {
3415         int ret;
3416         struct btrfs_root *extent_root = fs_info->extent_root;
3417         unsigned long bi;
3418         struct extent_buffer *leaf;
3419
3420         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3421         if (ret) {
3422                 if (ret > 0)
3423                         ret = -ENOENT;
3424                 goto fail;
3425         }
3426
3427         leaf = path->nodes[0];
3428         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3429         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3430         btrfs_mark_buffer_dirty(leaf);
3431 fail:
3432         btrfs_release_path(path);
3433         return ret;
3434
3435 }
3436
3437 static struct btrfs_block_group_cache *
3438 next_block_group(struct btrfs_fs_info *fs_info,
3439                  struct btrfs_block_group_cache *cache)
3440 {
3441         struct rb_node *node;
3442
3443         spin_lock(&fs_info->block_group_cache_lock);
3444
3445         /* If our block group was removed, we need a full search. */
3446         if (RB_EMPTY_NODE(&cache->cache_node)) {
3447                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3448
3449                 spin_unlock(&fs_info->block_group_cache_lock);
3450                 btrfs_put_block_group(cache);
3451                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3452         }
3453         node = rb_next(&cache->cache_node);
3454         btrfs_put_block_group(cache);
3455         if (node) {
3456                 cache = rb_entry(node, struct btrfs_block_group_cache,
3457                                  cache_node);
3458                 btrfs_get_block_group(cache);
3459         } else
3460                 cache = NULL;
3461         spin_unlock(&fs_info->block_group_cache_lock);
3462         return cache;
3463 }
3464
3465 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3466                             struct btrfs_trans_handle *trans,
3467                             struct btrfs_path *path)
3468 {
3469         struct btrfs_fs_info *fs_info = block_group->fs_info;
3470         struct btrfs_root *root = fs_info->tree_root;
3471         struct inode *inode = NULL;
3472         struct extent_changeset *data_reserved = NULL;
3473         u64 alloc_hint = 0;
3474         int dcs = BTRFS_DC_ERROR;
3475         u64 num_pages = 0;
3476         int retries = 0;
3477         int ret = 0;
3478
3479         /*
3480          * If this block group is smaller than 100 megs don't bother caching the
3481          * block group.
3482          */
3483         if (block_group->key.offset < (100 * SZ_1M)) {
3484                 spin_lock(&block_group->lock);
3485                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3486                 spin_unlock(&block_group->lock);
3487                 return 0;
3488         }
3489
3490         if (trans->aborted)
3491                 return 0;
3492 again:
3493         inode = lookup_free_space_inode(fs_info, block_group, path);
3494         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3495                 ret = PTR_ERR(inode);
3496                 btrfs_release_path(path);
3497                 goto out;
3498         }
3499
3500         if (IS_ERR(inode)) {
3501                 BUG_ON(retries);
3502                 retries++;
3503
3504                 if (block_group->ro)
3505                         goto out_free;
3506
3507                 ret = create_free_space_inode(fs_info, trans, block_group,
3508                                               path);
3509                 if (ret)
3510                         goto out_free;
3511                 goto again;
3512         }
3513
3514         /*
3515          * We want to set the generation to 0, that way if anything goes wrong
3516          * from here on out we know not to trust this cache when we load up next
3517          * time.
3518          */
3519         BTRFS_I(inode)->generation = 0;
3520         ret = btrfs_update_inode(trans, root, inode);
3521         if (ret) {
3522                 /*
3523                  * So theoretically we could recover from this, simply set the
3524                  * super cache generation to 0 so we know to invalidate the
3525                  * cache, but then we'd have to keep track of the block groups
3526                  * that fail this way so we know we _have_ to reset this cache
3527                  * before the next commit or risk reading stale cache.  So to
3528                  * limit our exposure to horrible edge cases lets just abort the
3529                  * transaction, this only happens in really bad situations
3530                  * anyway.
3531                  */
3532                 btrfs_abort_transaction(trans, ret);
3533                 goto out_put;
3534         }
3535         WARN_ON(ret);
3536
3537         /* We've already setup this transaction, go ahead and exit */
3538         if (block_group->cache_generation == trans->transid &&
3539             i_size_read(inode)) {
3540                 dcs = BTRFS_DC_SETUP;
3541                 goto out_put;
3542         }
3543
3544         if (i_size_read(inode) > 0) {
3545                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3546                                         &fs_info->global_block_rsv);
3547                 if (ret)
3548                         goto out_put;
3549
3550                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3551                 if (ret)
3552                         goto out_put;
3553         }
3554
3555         spin_lock(&block_group->lock);
3556         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3557             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3558                 /*
3559                  * don't bother trying to write stuff out _if_
3560                  * a) we're not cached,
3561                  * b) we're with nospace_cache mount option,
3562                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3563                  */
3564                 dcs = BTRFS_DC_WRITTEN;
3565                 spin_unlock(&block_group->lock);
3566                 goto out_put;
3567         }
3568         spin_unlock(&block_group->lock);
3569
3570         /*
3571          * We hit an ENOSPC when setting up the cache in this transaction, just
3572          * skip doing the setup, we've already cleared the cache so we're safe.
3573          */
3574         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3575                 ret = -ENOSPC;
3576                 goto out_put;
3577         }
3578
3579         /*
3580          * Try to preallocate enough space based on how big the block group is.
3581          * Keep in mind this has to include any pinned space which could end up
3582          * taking up quite a bit since it's not folded into the other space
3583          * cache.
3584          */
3585         num_pages = div_u64(block_group->key.offset, SZ_256M);
3586         if (!num_pages)
3587                 num_pages = 1;
3588
3589         num_pages *= 16;
3590         num_pages *= PAGE_SIZE;
3591
3592         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3593         if (ret)
3594                 goto out_put;
3595
3596         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3597                                               num_pages, num_pages,
3598                                               &alloc_hint);
3599         /*
3600          * Our cache requires contiguous chunks so that we don't modify a bunch
3601          * of metadata or split extents when writing the cache out, which means
3602          * we can enospc if we are heavily fragmented in addition to just normal
3603          * out of space conditions.  So if we hit this just skip setting up any
3604          * other block groups for this transaction, maybe we'll unpin enough
3605          * space the next time around.
3606          */
3607         if (!ret)
3608                 dcs = BTRFS_DC_SETUP;
3609         else if (ret == -ENOSPC)
3610                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3611
3612 out_put:
3613         iput(inode);
3614 out_free:
3615         btrfs_release_path(path);
3616 out:
3617         spin_lock(&block_group->lock);
3618         if (!ret && dcs == BTRFS_DC_SETUP)
3619                 block_group->cache_generation = trans->transid;
3620         block_group->disk_cache_state = dcs;
3621         spin_unlock(&block_group->lock);
3622
3623         extent_changeset_free(data_reserved);
3624         return ret;
3625 }
3626
3627 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3628                             struct btrfs_fs_info *fs_info)
3629 {
3630         struct btrfs_block_group_cache *cache, *tmp;
3631         struct btrfs_transaction *cur_trans = trans->transaction;
3632         struct btrfs_path *path;
3633
3634         if (list_empty(&cur_trans->dirty_bgs) ||
3635             !btrfs_test_opt(fs_info, SPACE_CACHE))
3636                 return 0;
3637
3638         path = btrfs_alloc_path();
3639         if (!path)
3640                 return -ENOMEM;
3641
3642         /* Could add new block groups, use _safe just in case */
3643         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3644                                  dirty_list) {
3645                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3646                         cache_save_setup(cache, trans, path);
3647         }
3648
3649         btrfs_free_path(path);
3650         return 0;
3651 }
3652
3653 /*
3654  * transaction commit does final block group cache writeback during a
3655  * critical section where nothing is allowed to change the FS.  This is
3656  * required in order for the cache to actually match the block group,
3657  * but can introduce a lot of latency into the commit.
3658  *
3659  * So, btrfs_start_dirty_block_groups is here to kick off block group
3660  * cache IO.  There's a chance we'll have to redo some of it if the
3661  * block group changes again during the commit, but it greatly reduces
3662  * the commit latency by getting rid of the easy block groups while
3663  * we're still allowing others to join the commit.
3664  */
3665 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3666 {
3667         struct btrfs_fs_info *fs_info = trans->fs_info;
3668         struct btrfs_block_group_cache *cache;
3669         struct btrfs_transaction *cur_trans = trans->transaction;
3670         int ret = 0;
3671         int should_put;
3672         struct btrfs_path *path = NULL;
3673         LIST_HEAD(dirty);
3674         struct list_head *io = &cur_trans->io_bgs;
3675         int num_started = 0;
3676         int loops = 0;
3677
3678         spin_lock(&cur_trans->dirty_bgs_lock);
3679         if (list_empty(&cur_trans->dirty_bgs)) {
3680                 spin_unlock(&cur_trans->dirty_bgs_lock);
3681                 return 0;
3682         }
3683         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3684         spin_unlock(&cur_trans->dirty_bgs_lock);
3685
3686 again:
3687         /*
3688          * make sure all the block groups on our dirty list actually
3689          * exist
3690          */
3691         btrfs_create_pending_block_groups(trans);
3692
3693         if (!path) {
3694                 path = btrfs_alloc_path();
3695                 if (!path)
3696                         return -ENOMEM;
3697         }
3698
3699         /*
3700          * cache_write_mutex is here only to save us from balance or automatic
3701          * removal of empty block groups deleting this block group while we are
3702          * writing out the cache
3703          */
3704         mutex_lock(&trans->transaction->cache_write_mutex);
3705         while (!list_empty(&dirty)) {
3706                 cache = list_first_entry(&dirty,
3707                                          struct btrfs_block_group_cache,
3708                                          dirty_list);
3709                 /*
3710                  * this can happen if something re-dirties a block
3711                  * group that is already under IO.  Just wait for it to
3712                  * finish and then do it all again
3713                  */
3714                 if (!list_empty(&cache->io_list)) {
3715                         list_del_init(&cache->io_list);
3716                         btrfs_wait_cache_io(trans, cache, path);
3717                         btrfs_put_block_group(cache);
3718                 }
3719
3720
3721                 /*
3722                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3723                  * if it should update the cache_state.  Don't delete
3724                  * until after we wait.
3725                  *
3726                  * Since we're not running in the commit critical section
3727                  * we need the dirty_bgs_lock to protect from update_block_group
3728                  */
3729                 spin_lock(&cur_trans->dirty_bgs_lock);
3730                 list_del_init(&cache->dirty_list);
3731                 spin_unlock(&cur_trans->dirty_bgs_lock);
3732
3733                 should_put = 1;
3734
3735                 cache_save_setup(cache, trans, path);
3736
3737                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3738                         cache->io_ctl.inode = NULL;
3739                         ret = btrfs_write_out_cache(fs_info, trans,
3740                                                     cache, path);
3741                         if (ret == 0 && cache->io_ctl.inode) {
3742                                 num_started++;
3743                                 should_put = 0;
3744
3745                                 /*
3746                                  * The cache_write_mutex is protecting the
3747                                  * io_list, also refer to the definition of
3748                                  * btrfs_transaction::io_bgs for more details
3749                                  */
3750                                 list_add_tail(&cache->io_list, io);
3751                         } else {
3752                                 /*
3753                                  * if we failed to write the cache, the
3754                                  * generation will be bad and life goes on
3755                                  */
3756                                 ret = 0;
3757                         }
3758                 }
3759                 if (!ret) {
3760                         ret = write_one_cache_group(trans, fs_info,
3761                                                     path, cache);
3762                         /*
3763                          * Our block group might still be attached to the list
3764                          * of new block groups in the transaction handle of some
3765                          * other task (struct btrfs_trans_handle->new_bgs). This
3766                          * means its block group item isn't yet in the extent
3767                          * tree. If this happens ignore the error, as we will
3768                          * try again later in the critical section of the
3769                          * transaction commit.
3770                          */
3771                         if (ret == -ENOENT) {
3772                                 ret = 0;
3773                                 spin_lock(&cur_trans->dirty_bgs_lock);
3774                                 if (list_empty(&cache->dirty_list)) {
3775                                         list_add_tail(&cache->dirty_list,
3776                                                       &cur_trans->dirty_bgs);
3777                                         btrfs_get_block_group(cache);
3778                                 }
3779                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3780                         } else if (ret) {
3781                                 btrfs_abort_transaction(trans, ret);
3782                         }
3783                 }
3784
3785                 /* if its not on the io list, we need to put the block group */
3786                 if (should_put)
3787                         btrfs_put_block_group(cache);
3788
3789                 if (ret)
3790                         break;
3791
3792                 /*
3793                  * Avoid blocking other tasks for too long. It might even save
3794                  * us from writing caches for block groups that are going to be
3795                  * removed.
3796                  */
3797                 mutex_unlock(&trans->transaction->cache_write_mutex);
3798                 mutex_lock(&trans->transaction->cache_write_mutex);
3799         }
3800         mutex_unlock(&trans->transaction->cache_write_mutex);
3801
3802         /*
3803          * go through delayed refs for all the stuff we've just kicked off
3804          * and then loop back (just once)
3805          */
3806         ret = btrfs_run_delayed_refs(trans, 0);
3807         if (!ret && loops == 0) {
3808                 loops++;
3809                 spin_lock(&cur_trans->dirty_bgs_lock);
3810                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3811                 /*
3812                  * dirty_bgs_lock protects us from concurrent block group
3813                  * deletes too (not just cache_write_mutex).
3814                  */
3815                 if (!list_empty(&dirty)) {
3816                         spin_unlock(&cur_trans->dirty_bgs_lock);
3817                         goto again;
3818                 }
3819                 spin_unlock(&cur_trans->dirty_bgs_lock);
3820         } else if (ret < 0) {
3821                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3822         }
3823
3824         btrfs_free_path(path);
3825         return ret;
3826 }
3827
3828 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3829                                    struct btrfs_fs_info *fs_info)
3830 {
3831         struct btrfs_block_group_cache *cache;
3832         struct btrfs_transaction *cur_trans = trans->transaction;
3833         int ret = 0;
3834         int should_put;
3835         struct btrfs_path *path;
3836         struct list_head *io = &cur_trans->io_bgs;
3837         int num_started = 0;
3838
3839         path = btrfs_alloc_path();
3840         if (!path)
3841                 return -ENOMEM;
3842
3843         /*
3844          * Even though we are in the critical section of the transaction commit,
3845          * we can still have concurrent tasks adding elements to this
3846          * transaction's list of dirty block groups. These tasks correspond to
3847          * endio free space workers started when writeback finishes for a
3848          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3849          * allocate new block groups as a result of COWing nodes of the root
3850          * tree when updating the free space inode. The writeback for the space
3851          * caches is triggered by an earlier call to
3852          * btrfs_start_dirty_block_groups() and iterations of the following
3853          * loop.
3854          * Also we want to do the cache_save_setup first and then run the
3855          * delayed refs to make sure we have the best chance at doing this all
3856          * in one shot.
3857          */
3858         spin_lock(&cur_trans->dirty_bgs_lock);
3859         while (!list_empty(&cur_trans->dirty_bgs)) {
3860                 cache = list_first_entry(&cur_trans->dirty_bgs,
3861                                          struct btrfs_block_group_cache,
3862                                          dirty_list);
3863
3864                 /*
3865                  * this can happen if cache_save_setup re-dirties a block
3866                  * group that is already under IO.  Just wait for it to
3867                  * finish and then do it all again
3868                  */
3869                 if (!list_empty(&cache->io_list)) {
3870                         spin_unlock(&cur_trans->dirty_bgs_lock);
3871                         list_del_init(&cache->io_list);
3872                         btrfs_wait_cache_io(trans, cache, path);
3873                         btrfs_put_block_group(cache);
3874                         spin_lock(&cur_trans->dirty_bgs_lock);
3875                 }
3876
3877                 /*
3878                  * don't remove from the dirty list until after we've waited
3879                  * on any pending IO
3880                  */
3881                 list_del_init(&cache->dirty_list);
3882                 spin_unlock(&cur_trans->dirty_bgs_lock);
3883                 should_put = 1;
3884
3885                 cache_save_setup(cache, trans, path);
3886
3887                 if (!ret)
3888                         ret = btrfs_run_delayed_refs(trans,
3889                                                      (unsigned long) -1);
3890
3891                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3892                         cache->io_ctl.inode = NULL;
3893                         ret = btrfs_write_out_cache(fs_info, trans,
3894                                                     cache, path);
3895                         if (ret == 0 && cache->io_ctl.inode) {
3896                                 num_started++;
3897                                 should_put = 0;
3898                                 list_add_tail(&cache->io_list, io);
3899                         } else {
3900                                 /*
3901                                  * if we failed to write the cache, the
3902                                  * generation will be bad and life goes on
3903                                  */
3904                                 ret = 0;
3905                         }
3906                 }
3907                 if (!ret) {
3908                         ret = write_one_cache_group(trans, fs_info,
3909                                                     path, cache);
3910                         /*
3911                          * One of the free space endio workers might have
3912                          * created a new block group while updating a free space
3913                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3914                          * and hasn't released its transaction handle yet, in
3915                          * which case the new block group is still attached to
3916                          * its transaction handle and its creation has not
3917                          * finished yet (no block group item in the extent tree
3918                          * yet, etc). If this is the case, wait for all free
3919                          * space endio workers to finish and retry. This is a
3920                          * a very rare case so no need for a more efficient and
3921                          * complex approach.
3922                          */
3923                         if (ret == -ENOENT) {
3924                                 wait_event(cur_trans->writer_wait,
3925                                    atomic_read(&cur_trans->num_writers) == 1);
3926                                 ret = write_one_cache_group(trans, fs_info,
3927                                                             path, cache);
3928                         }
3929                         if (ret)
3930                                 btrfs_abort_transaction(trans, ret);
3931                 }
3932
3933                 /* if its not on the io list, we need to put the block group */
3934                 if (should_put)
3935                         btrfs_put_block_group(cache);
3936                 spin_lock(&cur_trans->dirty_bgs_lock);
3937         }
3938         spin_unlock(&cur_trans->dirty_bgs_lock);
3939
3940         /*
3941          * Refer to the definition of io_bgs member for details why it's safe
3942          * to use it without any locking
3943          */
3944         while (!list_empty(io)) {
3945                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3946                                          io_list);
3947                 list_del_init(&cache->io_list);
3948                 btrfs_wait_cache_io(trans, cache, path);
3949                 btrfs_put_block_group(cache);
3950         }
3951
3952         btrfs_free_path(path);
3953         return ret;
3954 }
3955
3956 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3957 {
3958         struct btrfs_block_group_cache *block_group;
3959         int readonly = 0;
3960
3961         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3962         if (!block_group || block_group->ro)
3963                 readonly = 1;
3964         if (block_group)
3965                 btrfs_put_block_group(block_group);
3966         return readonly;
3967 }
3968
3969 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3970 {
3971         struct btrfs_block_group_cache *bg;
3972         bool ret = true;
3973
3974         bg = btrfs_lookup_block_group(fs_info, bytenr);
3975         if (!bg)
3976                 return false;
3977
3978         spin_lock(&bg->lock);
3979         if (bg->ro)
3980                 ret = false;
3981         else
3982                 atomic_inc(&bg->nocow_writers);
3983         spin_unlock(&bg->lock);
3984
3985         /* no put on block group, done by btrfs_dec_nocow_writers */
3986         if (!ret)
3987                 btrfs_put_block_group(bg);
3988
3989         return ret;
3990
3991 }
3992
3993 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3994 {
3995         struct btrfs_block_group_cache *bg;
3996
3997         bg = btrfs_lookup_block_group(fs_info, bytenr);
3998         ASSERT(bg);
3999         if (atomic_dec_and_test(&bg->nocow_writers))
4000                 wake_up_var(&bg->nocow_writers);
4001         /*
4002          * Once for our lookup and once for the lookup done by a previous call
4003          * to btrfs_inc_nocow_writers()
4004          */
4005         btrfs_put_block_group(bg);
4006         btrfs_put_block_group(bg);
4007 }
4008
4009 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4010 {
4011         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4012 }
4013
4014 static const char *alloc_name(u64 flags)
4015 {
4016         switch (flags) {
4017         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4018                 return "mixed";
4019         case BTRFS_BLOCK_GROUP_METADATA:
4020                 return "metadata";
4021         case BTRFS_BLOCK_GROUP_DATA:
4022                 return "data";
4023         case BTRFS_BLOCK_GROUP_SYSTEM:
4024                 return "system";
4025         default:
4026                 WARN_ON(1);
4027                 return "invalid-combination";
4028         };
4029 }
4030
4031 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4032                              struct btrfs_space_info **new)
4033 {
4034
4035         struct btrfs_space_info *space_info;
4036         int i;
4037         int ret;
4038
4039         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4040         if (!space_info)
4041                 return -ENOMEM;
4042
4043         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4044                                  GFP_KERNEL);
4045         if (ret) {
4046                 kfree(space_info);
4047                 return ret;
4048         }
4049
4050         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4051                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4052         init_rwsem(&space_info->groups_sem);
4053         spin_lock_init(&space_info->lock);
4054         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4055         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4056         init_waitqueue_head(&space_info->wait);
4057         INIT_LIST_HEAD(&space_info->ro_bgs);
4058         INIT_LIST_HEAD(&space_info->tickets);
4059         INIT_LIST_HEAD(&space_info->priority_tickets);
4060
4061         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4062                                     info->space_info_kobj, "%s",
4063                                     alloc_name(space_info->flags));
4064         if (ret) {
4065                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4066                 kfree(space_info);
4067                 return ret;
4068         }
4069
4070         *new = space_info;
4071         list_add_rcu(&space_info->list, &info->space_info);
4072         if (flags & BTRFS_BLOCK_GROUP_DATA)
4073                 info->data_sinfo = space_info;
4074
4075         return ret;
4076 }
4077
4078 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4079                              u64 total_bytes, u64 bytes_used,
4080                              u64 bytes_readonly,
4081                              struct btrfs_space_info **space_info)
4082 {
4083         struct btrfs_space_info *found;
4084         int factor;
4085
4086         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4087                      BTRFS_BLOCK_GROUP_RAID10))
4088                 factor = 2;
4089         else
4090                 factor = 1;
4091
4092         found = __find_space_info(info, flags);
4093         ASSERT(found);
4094         spin_lock(&found->lock);
4095         found->total_bytes += total_bytes;
4096         found->disk_total += total_bytes * factor;
4097         found->bytes_used += bytes_used;
4098         found->disk_used += bytes_used * factor;
4099         found->bytes_readonly += bytes_readonly;
4100         if (total_bytes > 0)
4101                 found->full = 0;
4102         space_info_add_new_bytes(info, found, total_bytes -
4103                                  bytes_used - bytes_readonly);
4104         spin_unlock(&found->lock);
4105         *space_info = found;
4106 }
4107
4108 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4109 {
4110         u64 extra_flags = chunk_to_extended(flags) &
4111                                 BTRFS_EXTENDED_PROFILE_MASK;
4112
4113         write_seqlock(&fs_info->profiles_lock);
4114         if (flags & BTRFS_BLOCK_GROUP_DATA)
4115                 fs_info->avail_data_alloc_bits |= extra_flags;
4116         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4117                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4118         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4119                 fs_info->avail_system_alloc_bits |= extra_flags;
4120         write_sequnlock(&fs_info->profiles_lock);
4121 }
4122
4123 /*
4124  * returns target flags in extended format or 0 if restripe for this
4125  * chunk_type is not in progress
4126  *
4127  * should be called with balance_lock held
4128  */
4129 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4130 {
4131         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132         u64 target = 0;
4133
4134         if (!bctl)
4135                 return 0;
4136
4137         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4138             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4140         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4141                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4142                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4143         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4144                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4145                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4146         }
4147
4148         return target;
4149 }
4150
4151 /*
4152  * @flags: available profiles in extended format (see ctree.h)
4153  *
4154  * Returns reduced profile in chunk format.  If profile changing is in
4155  * progress (either running or paused) picks the target profile (if it's
4156  * already available), otherwise falls back to plain reducing.
4157  */
4158 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4159 {
4160         u64 num_devices = fs_info->fs_devices->rw_devices;
4161         u64 target;
4162         u64 raid_type;
4163         u64 allowed = 0;
4164
4165         /*
4166          * see if restripe for this chunk_type is in progress, if so
4167          * try to reduce to the target profile
4168          */
4169         spin_lock(&fs_info->balance_lock);
4170         target = get_restripe_target(fs_info, flags);
4171         if (target) {
4172                 /* pick target profile only if it's already available */
4173                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4174                         spin_unlock(&fs_info->balance_lock);
4175                         return extended_to_chunk(target);
4176                 }
4177         }
4178         spin_unlock(&fs_info->balance_lock);
4179
4180         /* First, mask out the RAID levels which aren't possible */
4181         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4182                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4183                         allowed |= btrfs_raid_array[raid_type].bg_flag;
4184         }
4185         allowed &= flags;
4186
4187         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4188                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4189         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4190                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4191         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4192                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4193         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4194                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4195         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4196                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4197
4198         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4199
4200         return extended_to_chunk(flags | allowed);
4201 }
4202
4203 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4204 {
4205         unsigned seq;
4206         u64 flags;
4207
4208         do {
4209                 flags = orig_flags;
4210                 seq = read_seqbegin(&fs_info->profiles_lock);
4211
4212                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4213                         flags |= fs_info->avail_data_alloc_bits;
4214                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4215                         flags |= fs_info->avail_system_alloc_bits;
4216                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4217                         flags |= fs_info->avail_metadata_alloc_bits;
4218         } while (read_seqretry(&fs_info->profiles_lock, seq));
4219
4220         return btrfs_reduce_alloc_profile(fs_info, flags);
4221 }
4222
4223 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4224 {
4225         struct btrfs_fs_info *fs_info = root->fs_info;
4226         u64 flags;
4227         u64 ret;
4228
4229         if (data)
4230                 flags = BTRFS_BLOCK_GROUP_DATA;
4231         else if (root == fs_info->chunk_root)
4232                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4233         else
4234                 flags = BTRFS_BLOCK_GROUP_METADATA;
4235
4236         ret = get_alloc_profile(fs_info, flags);
4237         return ret;
4238 }
4239
4240 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4241 {
4242         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4243 }
4244
4245 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4246 {
4247         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4248 }
4249
4250 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4251 {
4252         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253 }
4254
4255 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4256                                  bool may_use_included)
4257 {
4258         ASSERT(s_info);
4259         return s_info->bytes_used + s_info->bytes_reserved +
4260                 s_info->bytes_pinned + s_info->bytes_readonly +
4261                 (may_use_included ? s_info->bytes_may_use : 0);
4262 }
4263
4264 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4265 {
4266         struct btrfs_root *root = inode->root;
4267         struct btrfs_fs_info *fs_info = root->fs_info;
4268         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4269         u64 used;
4270         int ret = 0;
4271         int need_commit = 2;
4272         int have_pinned_space;
4273
4274         /* make sure bytes are sectorsize aligned */
4275         bytes = ALIGN(bytes, fs_info->sectorsize);
4276
4277         if (btrfs_is_free_space_inode(inode)) {
4278                 need_commit = 0;
4279                 ASSERT(current->journal_info);
4280         }
4281
4282 again:
4283         /* make sure we have enough space to handle the data first */
4284         spin_lock(&data_sinfo->lock);
4285         used = btrfs_space_info_used(data_sinfo, true);
4286
4287         if (used + bytes > data_sinfo->total_bytes) {
4288                 struct btrfs_trans_handle *trans;
4289
4290                 /*
4291                  * if we don't have enough free bytes in this space then we need
4292                  * to alloc a new chunk.
4293                  */
4294                 if (!data_sinfo->full) {
4295                         u64 alloc_target;
4296
4297                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4298                         spin_unlock(&data_sinfo->lock);
4299
4300                         alloc_target = btrfs_data_alloc_profile(fs_info);
4301                         /*
4302                          * It is ugly that we don't call nolock join
4303                          * transaction for the free space inode case here.
4304                          * But it is safe because we only do the data space
4305                          * reservation for the free space cache in the
4306                          * transaction context, the common join transaction
4307                          * just increase the counter of the current transaction
4308                          * handler, doesn't try to acquire the trans_lock of
4309                          * the fs.
4310                          */
4311                         trans = btrfs_join_transaction(root);
4312                         if (IS_ERR(trans))
4313                                 return PTR_ERR(trans);
4314
4315                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4316                                              CHUNK_ALLOC_NO_FORCE);
4317                         btrfs_end_transaction(trans);
4318                         if (ret < 0) {
4319                                 if (ret != -ENOSPC)
4320                                         return ret;
4321                                 else {
4322                                         have_pinned_space = 1;
4323                                         goto commit_trans;
4324                                 }
4325                         }
4326
4327                         goto again;
4328                 }
4329
4330                 /*
4331                  * If we don't have enough pinned space to deal with this
4332                  * allocation, and no removed chunk in current transaction,
4333                  * don't bother committing the transaction.
4334                  */
4335                 have_pinned_space = percpu_counter_compare(
4336                         &data_sinfo->total_bytes_pinned,
4337                         used + bytes - data_sinfo->total_bytes);
4338                 spin_unlock(&data_sinfo->lock);
4339
4340                 /* commit the current transaction and try again */
4341 commit_trans:
4342                 if (need_commit) {
4343                         need_commit--;
4344
4345                         if (need_commit > 0) {
4346                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4347                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4348                                                          (u64)-1);
4349                         }
4350
4351                         trans = btrfs_join_transaction(root);
4352                         if (IS_ERR(trans))
4353                                 return PTR_ERR(trans);
4354                         if (have_pinned_space >= 0 ||
4355                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4356                                      &trans->transaction->flags) ||
4357                             need_commit > 0) {
4358                                 ret = btrfs_commit_transaction(trans);
4359                                 if (ret)
4360                                         return ret;
4361                                 /*
4362                                  * The cleaner kthread might still be doing iput
4363                                  * operations. Wait for it to finish so that
4364                                  * more space is released.
4365                                  */
4366                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4367                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4368                                 goto again;
4369                         } else {
4370                                 btrfs_end_transaction(trans);
4371                         }
4372                 }
4373
4374                 trace_btrfs_space_reservation(fs_info,
4375                                               "space_info:enospc",
4376                                               data_sinfo->flags, bytes, 1);
4377                 return -ENOSPC;
4378         }
4379         data_sinfo->bytes_may_use += bytes;
4380         trace_btrfs_space_reservation(fs_info, "space_info",
4381                                       data_sinfo->flags, bytes, 1);
4382         spin_unlock(&data_sinfo->lock);
4383
4384         return ret;
4385 }
4386
4387 int btrfs_check_data_free_space(struct inode *inode,
4388                         struct extent_changeset **reserved, u64 start, u64 len)
4389 {
4390         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4391         int ret;
4392
4393         /* align the range */
4394         len = round_up(start + len, fs_info->sectorsize) -
4395               round_down(start, fs_info->sectorsize);
4396         start = round_down(start, fs_info->sectorsize);
4397
4398         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4399         if (ret < 0)
4400                 return ret;
4401
4402         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4403         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4404         if (ret < 0)
4405                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4406         else
4407                 ret = 0;
4408         return ret;
4409 }
4410
4411 /*
4412  * Called if we need to clear a data reservation for this inode
4413  * Normally in a error case.
4414  *
4415  * This one will *NOT* use accurate qgroup reserved space API, just for case
4416  * which we can't sleep and is sure it won't affect qgroup reserved space.
4417  * Like clear_bit_hook().
4418  */
4419 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4420                                             u64 len)
4421 {
4422         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4423         struct btrfs_space_info *data_sinfo;
4424
4425         /* Make sure the range is aligned to sectorsize */
4426         len = round_up(start + len, fs_info->sectorsize) -
4427               round_down(start, fs_info->sectorsize);
4428         start = round_down(start, fs_info->sectorsize);
4429
4430         data_sinfo = fs_info->data_sinfo;
4431         spin_lock(&data_sinfo->lock);
4432         if (WARN_ON(data_sinfo->bytes_may_use < len))
4433                 data_sinfo->bytes_may_use = 0;
4434         else
4435                 data_sinfo->bytes_may_use -= len;
4436         trace_btrfs_space_reservation(fs_info, "space_info",
4437                                       data_sinfo->flags, len, 0);
4438         spin_unlock(&data_sinfo->lock);
4439 }
4440
4441 /*
4442  * Called if we need to clear a data reservation for this inode
4443  * Normally in a error case.
4444  *
4445  * This one will handle the per-inode data rsv map for accurate reserved
4446  * space framework.
4447  */
4448 void btrfs_free_reserved_data_space(struct inode *inode,
4449                         struct extent_changeset *reserved, u64 start, u64 len)
4450 {
4451         struct btrfs_root *root = BTRFS_I(inode)->root;
4452
4453         /* Make sure the range is aligned to sectorsize */
4454         len = round_up(start + len, root->fs_info->sectorsize) -
4455               round_down(start, root->fs_info->sectorsize);
4456         start = round_down(start, root->fs_info->sectorsize);
4457
4458         btrfs_free_reserved_data_space_noquota(inode, start, len);
4459         btrfs_qgroup_free_data(inode, reserved, start, len);
4460 }
4461
4462 static void force_metadata_allocation(struct btrfs_fs_info *info)
4463 {
4464         struct list_head *head = &info->space_info;
4465         struct btrfs_space_info *found;
4466
4467         rcu_read_lock();
4468         list_for_each_entry_rcu(found, head, list) {
4469                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4470                         found->force_alloc = CHUNK_ALLOC_FORCE;
4471         }
4472         rcu_read_unlock();
4473 }
4474
4475 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4476 {
4477         return (global->size << 1);
4478 }
4479
4480 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4481                               struct btrfs_space_info *sinfo, int force)
4482 {
4483         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4484         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4485         u64 thresh;
4486
4487         if (force == CHUNK_ALLOC_FORCE)
4488                 return 1;
4489
4490         /*
4491          * We need to take into account the global rsv because for all intents
4492          * and purposes it's used space.  Don't worry about locking the
4493          * global_rsv, it doesn't change except when the transaction commits.
4494          */
4495         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4496                 bytes_used += calc_global_rsv_need_space(global_rsv);
4497
4498         /*
4499          * in limited mode, we want to have some free space up to
4500          * about 1% of the FS size.
4501          */
4502         if (force == CHUNK_ALLOC_LIMITED) {
4503                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4504                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4505
4506                 if (sinfo->total_bytes - bytes_used < thresh)
4507                         return 1;
4508         }
4509
4510         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4511                 return 0;
4512         return 1;
4513 }
4514
4515 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4516 {
4517         u64 num_dev;
4518
4519         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4520                     BTRFS_BLOCK_GROUP_RAID0 |
4521                     BTRFS_BLOCK_GROUP_RAID5 |
4522                     BTRFS_BLOCK_GROUP_RAID6))
4523                 num_dev = fs_info->fs_devices->rw_devices;
4524         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4525                 num_dev = 2;
4526         else
4527                 num_dev = 1;    /* DUP or single */
4528
4529         return num_dev;
4530 }
4531
4532 /*
4533  * If @is_allocation is true, reserve space in the system space info necessary
4534  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4535  * removing a chunk.
4536  */
4537 void check_system_chunk(struct btrfs_trans_handle *trans,
4538                         struct btrfs_fs_info *fs_info, u64 type)
4539 {
4540         struct btrfs_space_info *info;
4541         u64 left;
4542         u64 thresh;
4543         int ret = 0;
4544         u64 num_devs;
4545
4546         /*
4547          * Needed because we can end up allocating a system chunk and for an
4548          * atomic and race free space reservation in the chunk block reserve.
4549          */
4550         lockdep_assert_held(&fs_info->chunk_mutex);
4551
4552         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4553         spin_lock(&info->lock);
4554         left = info->total_bytes - btrfs_space_info_used(info, true);
4555         spin_unlock(&info->lock);
4556
4557         num_devs = get_profile_num_devs(fs_info, type);
4558
4559         /* num_devs device items to update and 1 chunk item to add or remove */
4560         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4561                 btrfs_calc_trans_metadata_size(fs_info, 1);
4562
4563         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4564                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4565                            left, thresh, type);
4566                 dump_space_info(fs_info, info, 0, 0);
4567         }
4568
4569         if (left < thresh) {
4570                 u64 flags = btrfs_system_alloc_profile(fs_info);
4571
4572                 /*
4573                  * Ignore failure to create system chunk. We might end up not
4574                  * needing it, as we might not need to COW all nodes/leafs from
4575                  * the paths we visit in the chunk tree (they were already COWed
4576                  * or created in the current transaction for example).
4577                  */
4578                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4579         }
4580
4581         if (!ret) {
4582                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4583                                           &fs_info->chunk_block_rsv,
4584                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4585                 if (!ret)
4586                         trans->chunk_bytes_reserved += thresh;
4587         }
4588 }
4589
4590 /*
4591  * If force is CHUNK_ALLOC_FORCE:
4592  *    - return 1 if it successfully allocates a chunk,
4593  *    - return errors including -ENOSPC otherwise.
4594  * If force is NOT CHUNK_ALLOC_FORCE:
4595  *    - return 0 if it doesn't need to allocate a new chunk,
4596  *    - return 1 if it successfully allocates a chunk,
4597  *    - return errors including -ENOSPC otherwise.
4598  */
4599 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4600                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4601 {
4602         struct btrfs_space_info *space_info;
4603         int wait_for_alloc = 0;
4604         int ret = 0;
4605
4606         /* Don't re-enter if we're already allocating a chunk */
4607         if (trans->allocating_chunk)
4608                 return -ENOSPC;
4609
4610         space_info = __find_space_info(fs_info, flags);
4611         ASSERT(space_info);
4612
4613 again:
4614         spin_lock(&space_info->lock);
4615         if (force < space_info->force_alloc)
4616                 force = space_info->force_alloc;
4617         if (space_info->full) {
4618                 if (should_alloc_chunk(fs_info, space_info, force))
4619                         ret = -ENOSPC;
4620                 else
4621                         ret = 0;
4622                 spin_unlock(&space_info->lock);
4623                 return ret;
4624         }
4625
4626         if (!should_alloc_chunk(fs_info, space_info, force)) {
4627                 spin_unlock(&space_info->lock);
4628                 return 0;
4629         } else if (space_info->chunk_alloc) {
4630                 wait_for_alloc = 1;
4631         } else {
4632                 space_info->chunk_alloc = 1;
4633         }
4634
4635         spin_unlock(&space_info->lock);
4636
4637         mutex_lock(&fs_info->chunk_mutex);
4638
4639         /*
4640          * The chunk_mutex is held throughout the entirety of a chunk
4641          * allocation, so once we've acquired the chunk_mutex we know that the
4642          * other guy is done and we need to recheck and see if we should
4643          * allocate.
4644          */
4645         if (wait_for_alloc) {
4646                 mutex_unlock(&fs_info->chunk_mutex);
4647                 wait_for_alloc = 0;
4648                 cond_resched();
4649                 goto again;
4650         }
4651
4652         trans->allocating_chunk = true;
4653
4654         /*
4655          * If we have mixed data/metadata chunks we want to make sure we keep
4656          * allocating mixed chunks instead of individual chunks.
4657          */
4658         if (btrfs_mixed_space_info(space_info))
4659                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4660
4661         /*
4662          * if we're doing a data chunk, go ahead and make sure that
4663          * we keep a reasonable number of metadata chunks allocated in the
4664          * FS as well.
4665          */
4666         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4667                 fs_info->data_chunk_allocations++;
4668                 if (!(fs_info->data_chunk_allocations %
4669                       fs_info->metadata_ratio))
4670                         force_metadata_allocation(fs_info);
4671         }
4672
4673         /*
4674          * Check if we have enough space in SYSTEM chunk because we may need
4675          * to update devices.
4676          */
4677         check_system_chunk(trans, fs_info, flags);
4678
4679         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4680         trans->allocating_chunk = false;
4681
4682         spin_lock(&space_info->lock);
4683         if (ret < 0) {
4684                 if (ret == -ENOSPC)
4685                         space_info->full = 1;
4686                 else
4687                         goto out;
4688         } else {
4689                 ret = 1;
4690         }
4691
4692         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4693 out:
4694         space_info->chunk_alloc = 0;
4695         spin_unlock(&space_info->lock);
4696         mutex_unlock(&fs_info->chunk_mutex);
4697         /*
4698          * When we allocate a new chunk we reserve space in the chunk block
4699          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4700          * add new nodes/leafs to it if we end up needing to do it when
4701          * inserting the chunk item and updating device items as part of the
4702          * second phase of chunk allocation, performed by
4703          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4704          * large number of new block groups to create in our transaction
4705          * handle's new_bgs list to avoid exhausting the chunk block reserve
4706          * in extreme cases - like having a single transaction create many new
4707          * block groups when starting to write out the free space caches of all
4708          * the block groups that were made dirty during the lifetime of the
4709          * transaction.
4710          */
4711         if (trans->can_flush_pending_bgs &&
4712             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4713                 btrfs_create_pending_block_groups(trans);
4714                 btrfs_trans_release_chunk_metadata(trans);
4715         }
4716         return ret;
4717 }
4718
4719 static int can_overcommit(struct btrfs_fs_info *fs_info,
4720                           struct btrfs_space_info *space_info, u64 bytes,
4721                           enum btrfs_reserve_flush_enum flush,
4722                           bool system_chunk)
4723 {
4724         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4725         u64 profile;
4726         u64 space_size;
4727         u64 avail;
4728         u64 used;
4729
4730         /* Don't overcommit when in mixed mode. */
4731         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4732                 return 0;
4733
4734         if (system_chunk)
4735                 profile = btrfs_system_alloc_profile(fs_info);
4736         else
4737                 profile = btrfs_metadata_alloc_profile(fs_info);
4738
4739         used = btrfs_space_info_used(space_info, false);
4740
4741         /*
4742          * We only want to allow over committing if we have lots of actual space
4743          * free, but if we don't have enough space to handle the global reserve
4744          * space then we could end up having a real enospc problem when trying
4745          * to allocate a chunk or some other such important allocation.
4746          */
4747         spin_lock(&global_rsv->lock);
4748         space_size = calc_global_rsv_need_space(global_rsv);
4749         spin_unlock(&global_rsv->lock);
4750         if (used + space_size >= space_info->total_bytes)
4751                 return 0;
4752
4753         used += space_info->bytes_may_use;
4754
4755         avail = atomic64_read(&fs_info->free_chunk_space);
4756
4757         /*
4758          * If we have dup, raid1 or raid10 then only half of the free
4759          * space is actually useable.  For raid56, the space info used
4760          * doesn't include the parity drive, so we don't have to
4761          * change the math
4762          */
4763         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4764                        BTRFS_BLOCK_GROUP_RAID1 |
4765                        BTRFS_BLOCK_GROUP_RAID10))
4766                 avail >>= 1;
4767
4768         /*
4769          * If we aren't flushing all things, let us overcommit up to
4770          * 1/2th of the space. If we can flush, don't let us overcommit
4771          * too much, let it overcommit up to 1/8 of the space.
4772          */
4773         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4774                 avail >>= 3;
4775         else
4776                 avail >>= 1;
4777
4778         if (used + bytes < space_info->total_bytes + avail)
4779                 return 1;
4780         return 0;
4781 }
4782
4783 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4784                                          unsigned long nr_pages, int nr_items)
4785 {
4786         struct super_block *sb = fs_info->sb;
4787
4788         if (down_read_trylock(&sb->s_umount)) {
4789                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4790                 up_read(&sb->s_umount);
4791         } else {
4792                 /*
4793                  * We needn't worry the filesystem going from r/w to r/o though
4794                  * we don't acquire ->s_umount mutex, because the filesystem
4795                  * should guarantee the delalloc inodes list be empty after
4796                  * the filesystem is readonly(all dirty pages are written to
4797                  * the disk).
4798                  */
4799                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4800                 if (!current->journal_info)
4801                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4802         }
4803 }
4804
4805 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4806                                         u64 to_reclaim)
4807 {
4808         u64 bytes;
4809         u64 nr;
4810
4811         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4812         nr = div64_u64(to_reclaim, bytes);
4813         if (!nr)
4814                 nr = 1;
4815         return nr;
4816 }
4817
4818 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4819
4820 /*
4821  * shrink metadata reservation for delalloc
4822  */
4823 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4824                             u64 orig, bool wait_ordered)
4825 {
4826         struct btrfs_space_info *space_info;
4827         struct btrfs_trans_handle *trans;
4828         u64 delalloc_bytes;
4829         u64 max_reclaim;
4830         u64 items;
4831         long time_left;
4832         unsigned long nr_pages;
4833         int loops;
4834
4835         /* Calc the number of the pages we need flush for space reservation */
4836         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4837         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4838
4839         trans = (struct btrfs_trans_handle *)current->journal_info;
4840         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4841
4842         delalloc_bytes = percpu_counter_sum_positive(
4843                                                 &fs_info->delalloc_bytes);
4844         if (delalloc_bytes == 0) {
4845                 if (trans)
4846                         return;
4847                 if (wait_ordered)
4848                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4849                 return;
4850         }
4851
4852         loops = 0;
4853         while (delalloc_bytes && loops < 3) {
4854                 max_reclaim = min(delalloc_bytes, to_reclaim);
4855                 nr_pages = max_reclaim >> PAGE_SHIFT;
4856                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4857                 /*
4858                  * We need to wait for the async pages to actually start before
4859                  * we do anything.
4860                  */
4861                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4862                 if (!max_reclaim)
4863                         goto skip_async;
4864
4865                 if (max_reclaim <= nr_pages)
4866                         max_reclaim = 0;
4867                 else
4868                         max_reclaim -= nr_pages;
4869
4870                 wait_event(fs_info->async_submit_wait,
4871                            atomic_read(&fs_info->async_delalloc_pages) <=
4872                            (int)max_reclaim);
4873 skip_async:
4874                 spin_lock(&space_info->lock);
4875                 if (list_empty(&space_info->tickets) &&
4876                     list_empty(&space_info->priority_tickets)) {
4877                         spin_unlock(&space_info->lock);
4878                         break;
4879                 }
4880                 spin_unlock(&space_info->lock);
4881
4882                 loops++;
4883                 if (wait_ordered && !trans) {
4884                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4885                 } else {
4886                         time_left = schedule_timeout_killable(1);
4887                         if (time_left)
4888                                 break;
4889                 }
4890                 delalloc_bytes = percpu_counter_sum_positive(
4891                                                 &fs_info->delalloc_bytes);
4892         }
4893 }
4894
4895 struct reserve_ticket {
4896         u64 bytes;
4897         int error;
4898         struct list_head list;
4899         wait_queue_head_t wait;
4900 };
4901
4902 /**
4903  * maybe_commit_transaction - possibly commit the transaction if its ok to
4904  * @root - the root we're allocating for
4905  * @bytes - the number of bytes we want to reserve
4906  * @force - force the commit
4907  *
4908  * This will check to make sure that committing the transaction will actually
4909  * get us somewhere and then commit the transaction if it does.  Otherwise it
4910  * will return -ENOSPC.
4911  */
4912 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4913                                   struct btrfs_space_info *space_info)
4914 {
4915         struct reserve_ticket *ticket = NULL;
4916         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4917         struct btrfs_trans_handle *trans;
4918         u64 bytes;
4919
4920         trans = (struct btrfs_trans_handle *)current->journal_info;
4921         if (trans)
4922                 return -EAGAIN;
4923
4924         spin_lock(&space_info->lock);
4925         if (!list_empty(&space_info->priority_tickets))
4926                 ticket = list_first_entry(&space_info->priority_tickets,
4927                                           struct reserve_ticket, list);
4928         else if (!list_empty(&space_info->tickets))
4929                 ticket = list_first_entry(&space_info->tickets,
4930                                           struct reserve_ticket, list);
4931         bytes = (ticket) ? ticket->bytes : 0;
4932         spin_unlock(&space_info->lock);
4933
4934         if (!bytes)
4935                 return 0;
4936
4937         /* See if there is enough pinned space to make this reservation */
4938         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4939                                    bytes) >= 0)
4940                 goto commit;
4941
4942         /*
4943          * See if there is some space in the delayed insertion reservation for
4944          * this reservation.
4945          */
4946         if (space_info != delayed_rsv->space_info)
4947                 return -ENOSPC;
4948
4949         spin_lock(&delayed_rsv->lock);
4950         if (delayed_rsv->size > bytes)
4951                 bytes = 0;
4952         else
4953                 bytes -= delayed_rsv->size;
4954         spin_unlock(&delayed_rsv->lock);
4955
4956         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4957                                    bytes) < 0) {
4958                 return -ENOSPC;
4959         }
4960
4961 commit:
4962         trans = btrfs_join_transaction(fs_info->extent_root);
4963         if (IS_ERR(trans))
4964                 return -ENOSPC;
4965
4966         return btrfs_commit_transaction(trans);
4967 }
4968
4969 /*
4970  * Try to flush some data based on policy set by @state. This is only advisory
4971  * and may fail for various reasons. The caller is supposed to examine the
4972  * state of @space_info to detect the outcome.
4973  */
4974 static void flush_space(struct btrfs_fs_info *fs_info,
4975                        struct btrfs_space_info *space_info, u64 num_bytes,
4976                        int state)
4977 {
4978         struct btrfs_root *root = fs_info->extent_root;
4979         struct btrfs_trans_handle *trans;
4980         int nr;
4981         int ret = 0;
4982
4983         switch (state) {
4984         case FLUSH_DELAYED_ITEMS_NR:
4985         case FLUSH_DELAYED_ITEMS:
4986                 if (state == FLUSH_DELAYED_ITEMS_NR)
4987                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4988                 else
4989                         nr = -1;
4990
4991                 trans = btrfs_join_transaction(root);
4992                 if (IS_ERR(trans)) {
4993                         ret = PTR_ERR(trans);
4994                         break;
4995                 }
4996                 ret = btrfs_run_delayed_items_nr(trans, nr);
4997                 btrfs_end_transaction(trans);
4998                 break;
4999         case FLUSH_DELALLOC:
5000         case FLUSH_DELALLOC_WAIT:
5001                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5002                                 state == FLUSH_DELALLOC_WAIT);
5003                 break;
5004         case ALLOC_CHUNK:
5005                 trans = btrfs_join_transaction(root);
5006                 if (IS_ERR(trans)) {
5007                         ret = PTR_ERR(trans);
5008                         break;
5009                 }
5010                 ret = do_chunk_alloc(trans, fs_info,
5011                                      btrfs_metadata_alloc_profile(fs_info),
5012                                      CHUNK_ALLOC_NO_FORCE);
5013                 btrfs_end_transaction(trans);
5014                 if (ret > 0 || ret == -ENOSPC)
5015                         ret = 0;
5016                 break;
5017         case COMMIT_TRANS:
5018                 ret = may_commit_transaction(fs_info, space_info);
5019                 break;
5020         default:
5021                 ret = -ENOSPC;
5022                 break;
5023         }
5024
5025         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5026                                 ret);
5027         return;
5028 }
5029
5030 static inline u64
5031 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5032                                  struct btrfs_space_info *space_info,
5033                                  bool system_chunk)
5034 {
5035         struct reserve_ticket *ticket;
5036         u64 used;
5037         u64 expected;
5038         u64 to_reclaim = 0;
5039
5040         list_for_each_entry(ticket, &space_info->tickets, list)
5041                 to_reclaim += ticket->bytes;
5042         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5043                 to_reclaim += ticket->bytes;
5044         if (to_reclaim)
5045                 return to_reclaim;
5046
5047         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5048         if (can_overcommit(fs_info, space_info, to_reclaim,
5049                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050                 return 0;
5051
5052         used = btrfs_space_info_used(space_info, true);
5053
5054         if (can_overcommit(fs_info, space_info, SZ_1M,
5055                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5056                 expected = div_factor_fine(space_info->total_bytes, 95);
5057         else
5058                 expected = div_factor_fine(space_info->total_bytes, 90);
5059
5060         if (used > expected)
5061                 to_reclaim = used - expected;
5062         else
5063                 to_reclaim = 0;
5064         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5065                                      space_info->bytes_reserved);
5066         return to_reclaim;
5067 }
5068
5069 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5070                                         struct btrfs_space_info *space_info,
5071                                         u64 used, bool system_chunk)
5072 {
5073         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5074
5075         /* If we're just plain full then async reclaim just slows us down. */
5076         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5077                 return 0;
5078
5079         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5080                                               system_chunk))
5081                 return 0;
5082
5083         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5084                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5085 }
5086
5087 static void wake_all_tickets(struct list_head *head)
5088 {
5089         struct reserve_ticket *ticket;
5090
5091         while (!list_empty(head)) {
5092                 ticket = list_first_entry(head, struct reserve_ticket, list);
5093                 list_del_init(&ticket->list);
5094                 ticket->error = -ENOSPC;
5095                 wake_up(&ticket->wait);
5096         }
5097 }
5098
5099 /*
5100  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5101  * will loop and continuously try to flush as long as we are making progress.
5102  * We count progress as clearing off tickets each time we have to loop.
5103  */
5104 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5105 {
5106         struct btrfs_fs_info *fs_info;
5107         struct btrfs_space_info *space_info;
5108         u64 to_reclaim;
5109         int flush_state;
5110         int commit_cycles = 0;
5111         u64 last_tickets_id;
5112
5113         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5114         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5115
5116         spin_lock(&space_info->lock);
5117         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5118                                                       false);
5119         if (!to_reclaim) {
5120                 space_info->flush = 0;
5121                 spin_unlock(&space_info->lock);
5122                 return;
5123         }
5124         last_tickets_id = space_info->tickets_id;
5125         spin_unlock(&space_info->lock);
5126
5127         flush_state = FLUSH_DELAYED_ITEMS_NR;
5128         do {
5129                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5130                 spin_lock(&space_info->lock);
5131                 if (list_empty(&space_info->tickets)) {
5132                         space_info->flush = 0;
5133                         spin_unlock(&space_info->lock);
5134                         return;
5135                 }
5136                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5137                                                               space_info,
5138                                                               false);
5139                 if (last_tickets_id == space_info->tickets_id) {
5140                         flush_state++;
5141                 } else {
5142                         last_tickets_id = space_info->tickets_id;
5143                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5144                         if (commit_cycles)
5145                                 commit_cycles--;
5146                 }
5147
5148                 if (flush_state > COMMIT_TRANS) {
5149                         commit_cycles++;
5150                         if (commit_cycles > 2) {
5151                                 wake_all_tickets(&space_info->tickets);
5152                                 space_info->flush = 0;
5153                         } else {
5154                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5155                         }
5156                 }
5157                 spin_unlock(&space_info->lock);
5158         } while (flush_state <= COMMIT_TRANS);
5159 }
5160
5161 void btrfs_init_async_reclaim_work(struct work_struct *work)
5162 {
5163         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5164 }
5165
5166 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5167                                             struct btrfs_space_info *space_info,
5168                                             struct reserve_ticket *ticket)
5169 {
5170         u64 to_reclaim;
5171         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5172
5173         spin_lock(&space_info->lock);
5174         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5175                                                       false);
5176         if (!to_reclaim) {
5177                 spin_unlock(&space_info->lock);
5178                 return;
5179         }
5180         spin_unlock(&space_info->lock);
5181
5182         do {
5183                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5184                 flush_state++;
5185                 spin_lock(&space_info->lock);
5186                 if (ticket->bytes == 0) {
5187                         spin_unlock(&space_info->lock);
5188                         return;
5189                 }
5190                 spin_unlock(&space_info->lock);
5191
5192                 /*
5193                  * Priority flushers can't wait on delalloc without
5194                  * deadlocking.
5195                  */
5196                 if (flush_state == FLUSH_DELALLOC ||
5197                     flush_state == FLUSH_DELALLOC_WAIT)
5198                         flush_state = ALLOC_CHUNK;
5199         } while (flush_state < COMMIT_TRANS);
5200 }
5201
5202 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5203                                struct btrfs_space_info *space_info,
5204                                struct reserve_ticket *ticket, u64 orig_bytes)
5205
5206 {
5207         DEFINE_WAIT(wait);
5208         int ret = 0;
5209
5210         spin_lock(&space_info->lock);
5211         while (ticket->bytes > 0 && ticket->error == 0) {
5212                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5213                 if (ret) {
5214                         ret = -EINTR;
5215                         break;
5216                 }
5217                 spin_unlock(&space_info->lock);
5218
5219                 schedule();
5220
5221                 finish_wait(&ticket->wait, &wait);
5222                 spin_lock(&space_info->lock);
5223         }
5224         if (!ret)
5225                 ret = ticket->error;
5226         if (!list_empty(&ticket->list))
5227                 list_del_init(&ticket->list);
5228         if (ticket->bytes && ticket->bytes < orig_bytes) {
5229                 u64 num_bytes = orig_bytes - ticket->bytes;
5230                 space_info->bytes_may_use -= num_bytes;
5231                 trace_btrfs_space_reservation(fs_info, "space_info",
5232                                               space_info->flags, num_bytes, 0);
5233         }
5234         spin_unlock(&space_info->lock);
5235
5236         return ret;
5237 }
5238
5239 /**
5240  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241  * @root - the root we're allocating for
5242  * @space_info - the space info we want to allocate from
5243  * @orig_bytes - the number of bytes we want
5244  * @flush - whether or not we can flush to make our reservation
5245  *
5246  * This will reserve orig_bytes number of bytes from the space info associated
5247  * with the block_rsv.  If there is not enough space it will make an attempt to
5248  * flush out space to make room.  It will do this by flushing delalloc if
5249  * possible or committing the transaction.  If flush is 0 then no attempts to
5250  * regain reservations will be made and this will fail if there is not enough
5251  * space already.
5252  */
5253 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5254                                     struct btrfs_space_info *space_info,
5255                                     u64 orig_bytes,
5256                                     enum btrfs_reserve_flush_enum flush,
5257                                     bool system_chunk)
5258 {
5259         struct reserve_ticket ticket;
5260         u64 used;
5261         int ret = 0;
5262
5263         ASSERT(orig_bytes);
5264         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5265
5266         spin_lock(&space_info->lock);
5267         ret = -ENOSPC;
5268         used = btrfs_space_info_used(space_info, true);
5269
5270         /*
5271          * If we have enough space then hooray, make our reservation and carry
5272          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5273          * If not things get more complicated.
5274          */
5275         if (used + orig_bytes <= space_info->total_bytes) {
5276                 space_info->bytes_may_use += orig_bytes;
5277                 trace_btrfs_space_reservation(fs_info, "space_info",
5278                                               space_info->flags, orig_bytes, 1);
5279                 ret = 0;
5280         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5281                                   system_chunk)) {
5282                 space_info->bytes_may_use += orig_bytes;
5283                 trace_btrfs_space_reservation(fs_info, "space_info",
5284                                               space_info->flags, orig_bytes, 1);
5285                 ret = 0;
5286         }
5287
5288         /*
5289          * If we couldn't make a reservation then setup our reservation ticket
5290          * and kick the async worker if it's not already running.
5291          *
5292          * If we are a priority flusher then we just need to add our ticket to
5293          * the list and we will do our own flushing further down.
5294          */
5295         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5296                 ticket.bytes = orig_bytes;
5297                 ticket.error = 0;
5298                 init_waitqueue_head(&ticket.wait);
5299                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5300                         list_add_tail(&ticket.list, &space_info->tickets);
5301                         if (!space_info->flush) {
5302                                 space_info->flush = 1;
5303                                 trace_btrfs_trigger_flush(fs_info,
5304                                                           space_info->flags,
5305                                                           orig_bytes, flush,
5306                                                           "enospc");
5307                                 queue_work(system_unbound_wq,
5308                                            &fs_info->async_reclaim_work);
5309                         }
5310                 } else {
5311                         list_add_tail(&ticket.list,
5312                                       &space_info->priority_tickets);
5313                 }
5314         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5315                 used += orig_bytes;
5316                 /*
5317                  * We will do the space reservation dance during log replay,
5318                  * which means we won't have fs_info->fs_root set, so don't do
5319                  * the async reclaim as we will panic.
5320                  */
5321                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5322                     need_do_async_reclaim(fs_info, space_info,
5323                                           used, system_chunk) &&
5324                     !work_busy(&fs_info->async_reclaim_work)) {
5325                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5326                                                   orig_bytes, flush, "preempt");
5327                         queue_work(system_unbound_wq,
5328                                    &fs_info->async_reclaim_work);
5329                 }
5330         }
5331         spin_unlock(&space_info->lock);
5332         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5333                 return ret;
5334
5335         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5336                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5337                                            orig_bytes);
5338
5339         ret = 0;
5340         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5341         spin_lock(&space_info->lock);
5342         if (ticket.bytes) {
5343                 if (ticket.bytes < orig_bytes) {
5344                         u64 num_bytes = orig_bytes - ticket.bytes;
5345                         space_info->bytes_may_use -= num_bytes;
5346                         trace_btrfs_space_reservation(fs_info, "space_info",
5347                                                       space_info->flags,
5348                                                       num_bytes, 0);
5349
5350                 }
5351                 list_del_init(&ticket.list);
5352                 ret = -ENOSPC;
5353         }
5354         spin_unlock(&space_info->lock);
5355         ASSERT(list_empty(&ticket.list));
5356         return ret;
5357 }
5358
5359 /**
5360  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5361  * @root - the root we're allocating for
5362  * @block_rsv - the block_rsv we're allocating for
5363  * @orig_bytes - the number of bytes we want
5364  * @flush - whether or not we can flush to make our reservation
5365  *
5366  * This will reserve orgi_bytes number of bytes from the space info associated
5367  * with the block_rsv.  If there is not enough space it will make an attempt to
5368  * flush out space to make room.  It will do this by flushing delalloc if
5369  * possible or committing the transaction.  If flush is 0 then no attempts to
5370  * regain reservations will be made and this will fail if there is not enough
5371  * space already.
5372  */
5373 static int reserve_metadata_bytes(struct btrfs_root *root,
5374                                   struct btrfs_block_rsv *block_rsv,
5375                                   u64 orig_bytes,
5376                                   enum btrfs_reserve_flush_enum flush)
5377 {
5378         struct btrfs_fs_info *fs_info = root->fs_info;
5379         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5380         int ret;
5381         bool system_chunk = (root == fs_info->chunk_root);
5382
5383         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5384                                        orig_bytes, flush, system_chunk);
5385         if (ret == -ENOSPC &&
5386             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5387                 if (block_rsv != global_rsv &&
5388                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5389                         ret = 0;
5390         }
5391         if (ret == -ENOSPC) {
5392                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5393                                               block_rsv->space_info->flags,
5394                                               orig_bytes, 1);
5395
5396                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5397                         dump_space_info(fs_info, block_rsv->space_info,
5398                                         orig_bytes, 0);
5399         }
5400         return ret;
5401 }
5402
5403 static struct btrfs_block_rsv *get_block_rsv(
5404                                         const struct btrfs_trans_handle *trans,
5405                                         const struct btrfs_root *root)
5406 {
5407         struct btrfs_fs_info *fs_info = root->fs_info;
5408         struct btrfs_block_rsv *block_rsv = NULL;
5409
5410         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5411             (root == fs_info->csum_root && trans->adding_csums) ||
5412             (root == fs_info->uuid_root))
5413                 block_rsv = trans->block_rsv;
5414
5415         if (!block_rsv)
5416                 block_rsv = root->block_rsv;
5417
5418         if (!block_rsv)
5419                 block_rsv = &fs_info->empty_block_rsv;
5420
5421         return block_rsv;
5422 }
5423
5424 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5425                                u64 num_bytes)
5426 {
5427         int ret = -ENOSPC;
5428         spin_lock(&block_rsv->lock);
5429         if (block_rsv->reserved >= num_bytes) {
5430                 block_rsv->reserved -= num_bytes;
5431                 if (block_rsv->reserved < block_rsv->size)
5432                         block_rsv->full = 0;
5433                 ret = 0;
5434         }
5435         spin_unlock(&block_rsv->lock);
5436         return ret;
5437 }
5438
5439 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5440                                 u64 num_bytes, int update_size)
5441 {
5442         spin_lock(&block_rsv->lock);
5443         block_rsv->reserved += num_bytes;
5444         if (update_size)
5445                 block_rsv->size += num_bytes;
5446         else if (block_rsv->reserved >= block_rsv->size)
5447                 block_rsv->full = 1;
5448         spin_unlock(&block_rsv->lock);
5449 }
5450
5451 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5452                              struct btrfs_block_rsv *dest, u64 num_bytes,
5453                              int min_factor)
5454 {
5455         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5456         u64 min_bytes;
5457
5458         if (global_rsv->space_info != dest->space_info)
5459                 return -ENOSPC;
5460
5461         spin_lock(&global_rsv->lock);
5462         min_bytes = div_factor(global_rsv->size, min_factor);
5463         if (global_rsv->reserved < min_bytes + num_bytes) {
5464                 spin_unlock(&global_rsv->lock);
5465                 return -ENOSPC;
5466         }
5467         global_rsv->reserved -= num_bytes;
5468         if (global_rsv->reserved < global_rsv->size)
5469                 global_rsv->full = 0;
5470         spin_unlock(&global_rsv->lock);
5471
5472         block_rsv_add_bytes(dest, num_bytes, 1);
5473         return 0;
5474 }
5475
5476 /*
5477  * This is for space we already have accounted in space_info->bytes_may_use, so
5478  * basically when we're returning space from block_rsv's.
5479  */
5480 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5481                                      struct btrfs_space_info *space_info,
5482                                      u64 num_bytes)
5483 {
5484         struct reserve_ticket *ticket;
5485         struct list_head *head;
5486         u64 used;
5487         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5488         bool check_overcommit = false;
5489
5490         spin_lock(&space_info->lock);
5491         head = &space_info->priority_tickets;
5492
5493         /*
5494          * If we are over our limit then we need to check and see if we can
5495          * overcommit, and if we can't then we just need to free up our space
5496          * and not satisfy any requests.
5497          */
5498         used = btrfs_space_info_used(space_info, true);
5499         if (used - num_bytes >= space_info->total_bytes)
5500                 check_overcommit = true;
5501 again:
5502         while (!list_empty(head) && num_bytes) {
5503                 ticket = list_first_entry(head, struct reserve_ticket,
5504                                           list);
5505                 /*
5506                  * We use 0 bytes because this space is already reserved, so
5507                  * adding the ticket space would be a double count.
5508                  */
5509                 if (check_overcommit &&
5510                     !can_overcommit(fs_info, space_info, 0, flush, false))
5511                         break;
5512                 if (num_bytes >= ticket->bytes) {
5513                         list_del_init(&ticket->list);
5514                         num_bytes -= ticket->bytes;
5515                         ticket->bytes = 0;
5516                         space_info->tickets_id++;
5517                         wake_up(&ticket->wait);
5518                 } else {
5519                         ticket->bytes -= num_bytes;
5520                         num_bytes = 0;
5521                 }
5522         }
5523
5524         if (num_bytes && head == &space_info->priority_tickets) {
5525                 head = &space_info->tickets;
5526                 flush = BTRFS_RESERVE_FLUSH_ALL;
5527                 goto again;
5528         }
5529         space_info->bytes_may_use -= num_bytes;
5530         trace_btrfs_space_reservation(fs_info, "space_info",
5531                                       space_info->flags, num_bytes, 0);
5532         spin_unlock(&space_info->lock);
5533 }
5534
5535 /*
5536  * This is for newly allocated space that isn't accounted in
5537  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5538  * we use this helper.
5539  */
5540 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5541                                      struct btrfs_space_info *space_info,
5542                                      u64 num_bytes)
5543 {
5544         struct reserve_ticket *ticket;
5545         struct list_head *head = &space_info->priority_tickets;
5546
5547 again:
5548         while (!list_empty(head) && num_bytes) {
5549                 ticket = list_first_entry(head, struct reserve_ticket,
5550                                           list);
5551                 if (num_bytes >= ticket->bytes) {
5552                         trace_btrfs_space_reservation(fs_info, "space_info",
5553                                                       space_info->flags,
5554                                                       ticket->bytes, 1);
5555                         list_del_init(&ticket->list);
5556                         num_bytes -= ticket->bytes;
5557                         space_info->bytes_may_use += ticket->bytes;
5558                         ticket->bytes = 0;
5559                         space_info->tickets_id++;
5560                         wake_up(&ticket->wait);
5561                 } else {
5562                         trace_btrfs_space_reservation(fs_info, "space_info",
5563                                                       space_info->flags,
5564                                                       num_bytes, 1);
5565                         space_info->bytes_may_use += num_bytes;
5566                         ticket->bytes -= num_bytes;
5567                         num_bytes = 0;
5568                 }
5569         }
5570
5571         if (num_bytes && head == &space_info->priority_tickets) {
5572                 head = &space_info->tickets;
5573                 goto again;
5574         }
5575 }
5576
5577 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5578                                     struct btrfs_block_rsv *block_rsv,
5579                                     struct btrfs_block_rsv *dest, u64 num_bytes,
5580                                     u64 *qgroup_to_release_ret)
5581 {
5582         struct btrfs_space_info *space_info = block_rsv->space_info;
5583         u64 qgroup_to_release = 0;
5584         u64 ret;
5585
5586         spin_lock(&block_rsv->lock);
5587         if (num_bytes == (u64)-1) {
5588                 num_bytes = block_rsv->size;
5589                 qgroup_to_release = block_rsv->qgroup_rsv_size;
5590         }
5591         block_rsv->size -= num_bytes;
5592         if (block_rsv->reserved >= block_rsv->size) {
5593                 num_bytes = block_rsv->reserved - block_rsv->size;
5594                 block_rsv->reserved = block_rsv->size;
5595                 block_rsv->full = 1;
5596         } else {
5597                 num_bytes = 0;
5598         }
5599         if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5600                 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5601                                     block_rsv->qgroup_rsv_size;
5602                 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5603         } else {
5604                 qgroup_to_release = 0;
5605         }
5606         spin_unlock(&block_rsv->lock);
5607
5608         ret = num_bytes;
5609         if (num_bytes > 0) {
5610                 if (dest) {
5611                         spin_lock(&dest->lock);
5612                         if (!dest->full) {
5613                                 u64 bytes_to_add;
5614
5615                                 bytes_to_add = dest->size - dest->reserved;
5616                                 bytes_to_add = min(num_bytes, bytes_to_add);
5617                                 dest->reserved += bytes_to_add;
5618                                 if (dest->reserved >= dest->size)
5619                                         dest->full = 1;
5620                                 num_bytes -= bytes_to_add;
5621                         }
5622                         spin_unlock(&dest->lock);
5623                 }
5624                 if (num_bytes)
5625                         space_info_add_old_bytes(fs_info, space_info,
5626                                                  num_bytes);
5627         }
5628         if (qgroup_to_release_ret)
5629                 *qgroup_to_release_ret = qgroup_to_release;
5630         return ret;
5631 }
5632
5633 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5634                             struct btrfs_block_rsv *dst, u64 num_bytes,
5635                             int update_size)
5636 {
5637         int ret;
5638
5639         ret = block_rsv_use_bytes(src, num_bytes);
5640         if (ret)
5641                 return ret;
5642
5643         block_rsv_add_bytes(dst, num_bytes, update_size);
5644         return 0;
5645 }
5646
5647 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5648 {
5649         memset(rsv, 0, sizeof(*rsv));
5650         spin_lock_init(&rsv->lock);
5651         rsv->type = type;
5652 }
5653
5654 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5655                                    struct btrfs_block_rsv *rsv,
5656                                    unsigned short type)
5657 {
5658         btrfs_init_block_rsv(rsv, type);
5659         rsv->space_info = __find_space_info(fs_info,
5660                                             BTRFS_BLOCK_GROUP_METADATA);
5661 }
5662
5663 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5664                                               unsigned short type)
5665 {
5666         struct btrfs_block_rsv *block_rsv;
5667
5668         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5669         if (!block_rsv)
5670                 return NULL;
5671
5672         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5673         return block_rsv;
5674 }
5675
5676 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5677                           struct btrfs_block_rsv *rsv)
5678 {
5679         if (!rsv)
5680                 return;
5681         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5682         kfree(rsv);
5683 }
5684
5685 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5686 {
5687         kfree(rsv);
5688 }
5689
5690 int btrfs_block_rsv_add(struct btrfs_root *root,
5691                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5692                         enum btrfs_reserve_flush_enum flush)
5693 {
5694         int ret;
5695
5696         if (num_bytes == 0)
5697                 return 0;
5698
5699         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5700         if (!ret) {
5701                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5702                 return 0;
5703         }
5704
5705         return ret;
5706 }
5707
5708 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5709 {
5710         u64 num_bytes = 0;
5711         int ret = -ENOSPC;
5712
5713         if (!block_rsv)
5714                 return 0;
5715
5716         spin_lock(&block_rsv->lock);
5717         num_bytes = div_factor(block_rsv->size, min_factor);
5718         if (block_rsv->reserved >= num_bytes)
5719                 ret = 0;
5720         spin_unlock(&block_rsv->lock);
5721
5722         return ret;
5723 }
5724
5725 int btrfs_block_rsv_refill(struct btrfs_root *root,
5726                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5727                            enum btrfs_reserve_flush_enum flush)
5728 {
5729         u64 num_bytes = 0;
5730         int ret = -ENOSPC;
5731
5732         if (!block_rsv)
5733                 return 0;
5734
5735         spin_lock(&block_rsv->lock);
5736         num_bytes = min_reserved;
5737         if (block_rsv->reserved >= num_bytes)
5738                 ret = 0;
5739         else
5740                 num_bytes -= block_rsv->reserved;
5741         spin_unlock(&block_rsv->lock);
5742
5743         if (!ret)
5744                 return 0;
5745
5746         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5747         if (!ret) {
5748                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5749                 return 0;
5750         }
5751
5752         return ret;
5753 }
5754
5755 /**
5756  * btrfs_inode_rsv_refill - refill the inode block rsv.
5757  * @inode - the inode we are refilling.
5758  * @flush - the flusing restriction.
5759  *
5760  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5761  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5762  * or return if we already have enough space.  This will also handle the resreve
5763  * tracepoint for the reserved amount.
5764  */
5765 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5766                                   enum btrfs_reserve_flush_enum flush)
5767 {
5768         struct btrfs_root *root = inode->root;
5769         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5770         u64 num_bytes = 0;
5771         u64 qgroup_num_bytes = 0;
5772         int ret = -ENOSPC;
5773
5774         spin_lock(&block_rsv->lock);
5775         if (block_rsv->reserved < block_rsv->size)
5776                 num_bytes = block_rsv->size - block_rsv->reserved;
5777         if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5778                 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5779                                    block_rsv->qgroup_rsv_reserved;
5780         spin_unlock(&block_rsv->lock);
5781
5782         if (num_bytes == 0)
5783                 return 0;
5784
5785         ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5786         if (ret)
5787                 return ret;
5788         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5789         if (!ret) {
5790                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5791                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5792                                               btrfs_ino(inode), num_bytes, 1);
5793
5794                 /* Don't forget to increase qgroup_rsv_reserved */
5795                 spin_lock(&block_rsv->lock);
5796                 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5797                 spin_unlock(&block_rsv->lock);
5798         } else
5799                 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5800         return ret;
5801 }
5802
5803 /**
5804  * btrfs_inode_rsv_release - release any excessive reservation.
5805  * @inode - the inode we need to release from.
5806  * @qgroup_free - free or convert qgroup meta.
5807  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5808  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5809  *   @qgroup_free is true for error handling, and false for normal release.
5810  *
5811  * This is the same as btrfs_block_rsv_release, except that it handles the
5812  * tracepoint for the reservation.
5813  */
5814 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5815 {
5816         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5817         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5818         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5819         u64 released = 0;
5820         u64 qgroup_to_release = 0;
5821
5822         /*
5823          * Since we statically set the block_rsv->size we just want to say we
5824          * are releasing 0 bytes, and then we'll just get the reservation over
5825          * the size free'd.
5826          */
5827         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5828                                            &qgroup_to_release);
5829         if (released > 0)
5830                 trace_btrfs_space_reservation(fs_info, "delalloc",
5831                                               btrfs_ino(inode), released, 0);
5832         if (qgroup_free)
5833                 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5834         else
5835                 btrfs_qgroup_convert_reserved_meta(inode->root,
5836                                                    qgroup_to_release);
5837 }
5838
5839 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5840                              struct btrfs_block_rsv *block_rsv,
5841                              u64 num_bytes)
5842 {
5843         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5844
5845         if (global_rsv == block_rsv ||
5846             block_rsv->space_info != global_rsv->space_info)
5847                 global_rsv = NULL;
5848         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5849 }
5850
5851 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5852 {
5853         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5854         struct btrfs_space_info *sinfo = block_rsv->space_info;
5855         u64 num_bytes;
5856
5857         /*
5858          * The global block rsv is based on the size of the extent tree, the
5859          * checksum tree and the root tree.  If the fs is empty we want to set
5860          * it to a minimal amount for safety.
5861          */
5862         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5863                 btrfs_root_used(&fs_info->csum_root->root_item) +
5864                 btrfs_root_used(&fs_info->tree_root->root_item);
5865         num_bytes = max_t(u64, num_bytes, SZ_16M);
5866
5867         spin_lock(&sinfo->lock);
5868         spin_lock(&block_rsv->lock);
5869
5870         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5871
5872         if (block_rsv->reserved < block_rsv->size) {
5873                 num_bytes = btrfs_space_info_used(sinfo, true);
5874                 if (sinfo->total_bytes > num_bytes) {
5875                         num_bytes = sinfo->total_bytes - num_bytes;
5876                         num_bytes = min(num_bytes,
5877                                         block_rsv->size - block_rsv->reserved);
5878                         block_rsv->reserved += num_bytes;
5879                         sinfo->bytes_may_use += num_bytes;
5880                         trace_btrfs_space_reservation(fs_info, "space_info",
5881                                                       sinfo->flags, num_bytes,
5882                                                       1);
5883                 }
5884         } else if (block_rsv->reserved > block_rsv->size) {
5885                 num_bytes = block_rsv->reserved - block_rsv->size;
5886                 sinfo->bytes_may_use -= num_bytes;
5887                 trace_btrfs_space_reservation(fs_info, "space_info",
5888                                       sinfo->flags, num_bytes, 0);
5889                 block_rsv->reserved = block_rsv->size;
5890         }
5891
5892         if (block_rsv->reserved == block_rsv->size)
5893                 block_rsv->full = 1;
5894         else
5895                 block_rsv->full = 0;
5896
5897         spin_unlock(&block_rsv->lock);
5898         spin_unlock(&sinfo->lock);
5899 }
5900
5901 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5902 {
5903         struct btrfs_space_info *space_info;
5904
5905         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5906         fs_info->chunk_block_rsv.space_info = space_info;
5907
5908         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5909         fs_info->global_block_rsv.space_info = space_info;
5910         fs_info->trans_block_rsv.space_info = space_info;
5911         fs_info->empty_block_rsv.space_info = space_info;
5912         fs_info->delayed_block_rsv.space_info = space_info;
5913
5914         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5915         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5916         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5917         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5918         if (fs_info->quota_root)
5919                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5920         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5921
5922         update_global_block_rsv(fs_info);
5923 }
5924
5925 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5926 {
5927         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5928                                 (u64)-1, NULL);
5929         WARN_ON(fs_info->trans_block_rsv.size > 0);
5930         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5931         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5932         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5933         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5934         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5935 }
5936
5937
5938 /*
5939  * To be called after all the new block groups attached to the transaction
5940  * handle have been created (btrfs_create_pending_block_groups()).
5941  */
5942 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5943 {
5944         struct btrfs_fs_info *fs_info = trans->fs_info;
5945
5946         if (!trans->chunk_bytes_reserved)
5947                 return;
5948
5949         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5950
5951         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5952                                 trans->chunk_bytes_reserved, NULL);
5953         trans->chunk_bytes_reserved = 0;
5954 }
5955
5956 /* Can only return 0 or -ENOSPC */
5957 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5958                                   struct btrfs_inode *inode)
5959 {
5960         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5961         struct btrfs_root *root = inode->root;
5962         /*
5963          * We always use trans->block_rsv here as we will have reserved space
5964          * for our orphan when starting the transaction, using get_block_rsv()
5965          * here will sometimes make us choose the wrong block rsv as we could be
5966          * doing a reloc inode for a non refcounted root.
5967          */
5968         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5969         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5970
5971         /*
5972          * We need to hold space in order to delete our orphan item once we've
5973          * added it, so this takes the reservation so we can release it later
5974          * when we are truly done with the orphan item.
5975          */
5976         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5977
5978         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5979                         num_bytes, 1);
5980         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5981 }
5982
5983 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5984 {
5985         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5986         struct btrfs_root *root = inode->root;
5987         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5988
5989         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5990                         num_bytes, 0);
5991         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5992 }
5993
5994 /*
5995  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5996  * root: the root of the parent directory
5997  * rsv: block reservation
5998  * items: the number of items that we need do reservation
5999  * qgroup_reserved: used to return the reserved size in qgroup
6000  *
6001  * This function is used to reserve the space for snapshot/subvolume
6002  * creation and deletion. Those operations are different with the
6003  * common file/directory operations, they change two fs/file trees
6004  * and root tree, the number of items that the qgroup reserves is
6005  * different with the free space reservation. So we can not use
6006  * the space reservation mechanism in start_transaction().
6007  */
6008 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6009                                      struct btrfs_block_rsv *rsv,
6010                                      int items,
6011                                      u64 *qgroup_reserved,
6012                                      bool use_global_rsv)
6013 {
6014         u64 num_bytes;
6015         int ret;
6016         struct btrfs_fs_info *fs_info = root->fs_info;
6017         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6018
6019         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6020                 /* One for parent inode, two for dir entries */
6021                 num_bytes = 3 * fs_info->nodesize;
6022                 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
6023                 if (ret)
6024                         return ret;
6025         } else {
6026                 num_bytes = 0;
6027         }
6028
6029         *qgroup_reserved = num_bytes;
6030
6031         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6032         rsv->space_info = __find_space_info(fs_info,
6033                                             BTRFS_BLOCK_GROUP_METADATA);
6034         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6035                                   BTRFS_RESERVE_FLUSH_ALL);
6036
6037         if (ret == -ENOSPC && use_global_rsv)
6038                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6039
6040         if (ret && *qgroup_reserved)
6041                 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6042
6043         return ret;
6044 }
6045
6046 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6047                                       struct btrfs_block_rsv *rsv)
6048 {
6049         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6050 }
6051
6052 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6053                                                  struct btrfs_inode *inode)
6054 {
6055         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6056         u64 reserve_size = 0;
6057         u64 qgroup_rsv_size = 0;
6058         u64 csum_leaves;
6059         unsigned outstanding_extents;
6060
6061         lockdep_assert_held(&inode->lock);
6062         outstanding_extents = inode->outstanding_extents;
6063         if (outstanding_extents)
6064                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6065                                                 outstanding_extents + 1);
6066         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6067                                                  inode->csum_bytes);
6068         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6069                                                        csum_leaves);
6070         /*
6071          * For qgroup rsv, the calculation is very simple:
6072          * account one nodesize for each outstanding extent
6073          *
6074          * This is overestimating in most cases.
6075          */
6076         qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6077
6078         spin_lock(&block_rsv->lock);
6079         block_rsv->size = reserve_size;
6080         block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6081         spin_unlock(&block_rsv->lock);
6082 }
6083
6084 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6085 {
6086         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6087         unsigned nr_extents;
6088         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6089         int ret = 0;
6090         bool delalloc_lock = true;
6091
6092         /* If we are a free space inode we need to not flush since we will be in
6093          * the middle of a transaction commit.  We also don't need the delalloc
6094          * mutex since we won't race with anybody.  We need this mostly to make
6095          * lockdep shut its filthy mouth.
6096          *
6097          * If we have a transaction open (can happen if we call truncate_block
6098          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6099          */
6100         if (btrfs_is_free_space_inode(inode)) {
6101                 flush = BTRFS_RESERVE_NO_FLUSH;
6102                 delalloc_lock = false;
6103         } else {
6104                 if (current->journal_info)
6105                         flush = BTRFS_RESERVE_FLUSH_LIMIT;
6106
6107                 if (btrfs_transaction_in_commit(fs_info))
6108                         schedule_timeout(1);
6109         }
6110
6111         if (delalloc_lock)
6112                 mutex_lock(&inode->delalloc_mutex);
6113
6114         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6115
6116         /* Add our new extents and calculate the new rsv size. */
6117         spin_lock(&inode->lock);
6118         nr_extents = count_max_extents(num_bytes);
6119         btrfs_mod_outstanding_extents(inode, nr_extents);
6120         inode->csum_bytes += num_bytes;
6121         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6122         spin_unlock(&inode->lock);
6123
6124         ret = btrfs_inode_rsv_refill(inode, flush);
6125         if (unlikely(ret))
6126                 goto out_fail;
6127
6128         if (delalloc_lock)
6129                 mutex_unlock(&inode->delalloc_mutex);
6130         return 0;
6131
6132 out_fail:
6133         spin_lock(&inode->lock);
6134         nr_extents = count_max_extents(num_bytes);
6135         btrfs_mod_outstanding_extents(inode, -nr_extents);
6136         inode->csum_bytes -= num_bytes;
6137         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6138         spin_unlock(&inode->lock);
6139
6140         btrfs_inode_rsv_release(inode, true);
6141         if (delalloc_lock)
6142                 mutex_unlock(&inode->delalloc_mutex);
6143         return ret;
6144 }
6145
6146 /**
6147  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6148  * @inode: the inode to release the reservation for.
6149  * @num_bytes: the number of bytes we are releasing.
6150  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6151  *
6152  * This will release the metadata reservation for an inode.  This can be called
6153  * once we complete IO for a given set of bytes to release their metadata
6154  * reservations, or on error for the same reason.
6155  */
6156 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6157                                      bool qgroup_free)
6158 {
6159         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6160
6161         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6162         spin_lock(&inode->lock);
6163         inode->csum_bytes -= num_bytes;
6164         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6165         spin_unlock(&inode->lock);
6166
6167         if (btrfs_is_testing(fs_info))
6168                 return;
6169
6170         btrfs_inode_rsv_release(inode, qgroup_free);
6171 }
6172
6173 /**
6174  * btrfs_delalloc_release_extents - release our outstanding_extents
6175  * @inode: the inode to balance the reservation for.
6176  * @num_bytes: the number of bytes we originally reserved with
6177  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6178  *
6179  * When we reserve space we increase outstanding_extents for the extents we may
6180  * add.  Once we've set the range as delalloc or created our ordered extents we
6181  * have outstanding_extents to track the real usage, so we use this to free our
6182  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6183  * with btrfs_delalloc_reserve_metadata.
6184  */
6185 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6186                                     bool qgroup_free)
6187 {
6188         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6189         unsigned num_extents;
6190
6191         spin_lock(&inode->lock);
6192         num_extents = count_max_extents(num_bytes);
6193         btrfs_mod_outstanding_extents(inode, -num_extents);
6194         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6195         spin_unlock(&inode->lock);
6196
6197         if (btrfs_is_testing(fs_info))
6198                 return;
6199
6200         btrfs_inode_rsv_release(inode, qgroup_free);
6201 }
6202
6203 /**
6204  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6205  * delalloc
6206  * @inode: inode we're writing to
6207  * @start: start range we are writing to
6208  * @len: how long the range we are writing to
6209  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6210  *            current reservation.
6211  *
6212  * This will do the following things
6213  *
6214  * o reserve space in data space info for num bytes
6215  *   and reserve precious corresponding qgroup space
6216  *   (Done in check_data_free_space)
6217  *
6218  * o reserve space for metadata space, based on the number of outstanding
6219  *   extents and how much csums will be needed
6220  *   also reserve metadata space in a per root over-reserve method.
6221  * o add to the inodes->delalloc_bytes
6222  * o add it to the fs_info's delalloc inodes list.
6223  *   (Above 3 all done in delalloc_reserve_metadata)
6224  *
6225  * Return 0 for success
6226  * Return <0 for error(-ENOSPC or -EQUOT)
6227  */
6228 int btrfs_delalloc_reserve_space(struct inode *inode,
6229                         struct extent_changeset **reserved, u64 start, u64 len)
6230 {
6231         int ret;
6232
6233         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6234         if (ret < 0)
6235                 return ret;
6236         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6237         if (ret < 0)
6238                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6239         return ret;
6240 }
6241
6242 /**
6243  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6244  * @inode: inode we're releasing space for
6245  * @start: start position of the space already reserved
6246  * @len: the len of the space already reserved
6247  * @release_bytes: the len of the space we consumed or didn't use
6248  *
6249  * This function will release the metadata space that was not used and will
6250  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6251  * list if there are no delalloc bytes left.
6252  * Also it will handle the qgroup reserved space.
6253  */
6254 void btrfs_delalloc_release_space(struct inode *inode,
6255                                   struct extent_changeset *reserved,
6256                                   u64 start, u64 len, bool qgroup_free)
6257 {
6258         btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6259         btrfs_free_reserved_data_space(inode, reserved, start, len);
6260 }
6261
6262 static int update_block_group(struct btrfs_trans_handle *trans,
6263                               struct btrfs_fs_info *info, u64 bytenr,
6264                               u64 num_bytes, int alloc)
6265 {
6266         struct btrfs_block_group_cache *cache = NULL;
6267         u64 total = num_bytes;
6268         u64 old_val;
6269         u64 byte_in_group;
6270         int factor;
6271
6272         /* block accounting for super block */
6273         spin_lock(&info->delalloc_root_lock);
6274         old_val = btrfs_super_bytes_used(info->super_copy);
6275         if (alloc)
6276                 old_val += num_bytes;
6277         else
6278                 old_val -= num_bytes;
6279         btrfs_set_super_bytes_used(info->super_copy, old_val);
6280         spin_unlock(&info->delalloc_root_lock);
6281
6282         while (total) {
6283                 cache = btrfs_lookup_block_group(info, bytenr);
6284                 if (!cache)
6285                         return -ENOENT;
6286                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6287                                     BTRFS_BLOCK_GROUP_RAID1 |
6288                                     BTRFS_BLOCK_GROUP_RAID10))
6289                         factor = 2;
6290                 else
6291                         factor = 1;
6292                 /*
6293                  * If this block group has free space cache written out, we
6294                  * need to make sure to load it if we are removing space.  This
6295                  * is because we need the unpinning stage to actually add the
6296                  * space back to the block group, otherwise we will leak space.
6297                  */
6298                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6299                         cache_block_group(cache, 1);
6300
6301                 byte_in_group = bytenr - cache->key.objectid;
6302                 WARN_ON(byte_in_group > cache->key.offset);
6303
6304                 spin_lock(&cache->space_info->lock);
6305                 spin_lock(&cache->lock);
6306
6307                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6308                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6309                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6310
6311                 old_val = btrfs_block_group_used(&cache->item);
6312                 num_bytes = min(total, cache->key.offset - byte_in_group);
6313                 if (alloc) {
6314                         old_val += num_bytes;
6315                         btrfs_set_block_group_used(&cache->item, old_val);
6316                         cache->reserved -= num_bytes;
6317                         cache->space_info->bytes_reserved -= num_bytes;
6318                         cache->space_info->bytes_used += num_bytes;
6319                         cache->space_info->disk_used += num_bytes * factor;
6320                         spin_unlock(&cache->lock);
6321                         spin_unlock(&cache->space_info->lock);
6322                 } else {
6323                         old_val -= num_bytes;
6324                         btrfs_set_block_group_used(&cache->item, old_val);
6325                         cache->pinned += num_bytes;
6326                         cache->space_info->bytes_pinned += num_bytes;
6327                         cache->space_info->bytes_used -= num_bytes;
6328                         cache->space_info->disk_used -= num_bytes * factor;
6329                         spin_unlock(&cache->lock);
6330                         spin_unlock(&cache->space_info->lock);
6331
6332                         trace_btrfs_space_reservation(info, "pinned",
6333                                                       cache->space_info->flags,
6334                                                       num_bytes, 1);
6335                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6336                                            num_bytes);
6337                         set_extent_dirty(info->pinned_extents,
6338                                          bytenr, bytenr + num_bytes - 1,
6339                                          GFP_NOFS | __GFP_NOFAIL);
6340                 }
6341
6342                 spin_lock(&trans->transaction->dirty_bgs_lock);
6343                 if (list_empty(&cache->dirty_list)) {
6344                         list_add_tail(&cache->dirty_list,
6345                                       &trans->transaction->dirty_bgs);
6346                                 trans->transaction->num_dirty_bgs++;
6347                         btrfs_get_block_group(cache);
6348                 }
6349                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6350
6351                 /*
6352                  * No longer have used bytes in this block group, queue it for
6353                  * deletion. We do this after adding the block group to the
6354                  * dirty list to avoid races between cleaner kthread and space
6355                  * cache writeout.
6356                  */
6357                 if (!alloc && old_val == 0) {
6358                         spin_lock(&info->unused_bgs_lock);
6359                         if (list_empty(&cache->bg_list)) {
6360                                 btrfs_get_block_group(cache);
6361                                 list_add_tail(&cache->bg_list,
6362                                               &info->unused_bgs);
6363                         }
6364                         spin_unlock(&info->unused_bgs_lock);
6365                 }
6366
6367                 btrfs_put_block_group(cache);
6368                 total -= num_bytes;
6369                 bytenr += num_bytes;
6370         }
6371         return 0;
6372 }
6373
6374 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6375 {
6376         struct btrfs_block_group_cache *cache;
6377         u64 bytenr;
6378
6379         spin_lock(&fs_info->block_group_cache_lock);
6380         bytenr = fs_info->first_logical_byte;
6381         spin_unlock(&fs_info->block_group_cache_lock);
6382
6383         if (bytenr < (u64)-1)
6384                 return bytenr;
6385
6386         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6387         if (!cache)
6388                 return 0;
6389
6390         bytenr = cache->key.objectid;
6391         btrfs_put_block_group(cache);
6392
6393         return bytenr;
6394 }
6395
6396 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6397                            struct btrfs_block_group_cache *cache,
6398                            u64 bytenr, u64 num_bytes, int reserved)
6399 {
6400         spin_lock(&cache->space_info->lock);
6401         spin_lock(&cache->lock);
6402         cache->pinned += num_bytes;
6403         cache->space_info->bytes_pinned += num_bytes;
6404         if (reserved) {
6405                 cache->reserved -= num_bytes;
6406                 cache->space_info->bytes_reserved -= num_bytes;
6407         }
6408         spin_unlock(&cache->lock);
6409         spin_unlock(&cache->space_info->lock);
6410
6411         trace_btrfs_space_reservation(fs_info, "pinned",
6412                                       cache->space_info->flags, num_bytes, 1);
6413         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6414         set_extent_dirty(fs_info->pinned_extents, bytenr,
6415                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6416         return 0;
6417 }
6418
6419 /*
6420  * this function must be called within transaction
6421  */
6422 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6423                      u64 bytenr, u64 num_bytes, int reserved)
6424 {
6425         struct btrfs_block_group_cache *cache;
6426
6427         cache = btrfs_lookup_block_group(fs_info, bytenr);
6428         BUG_ON(!cache); /* Logic error */
6429
6430         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6431
6432         btrfs_put_block_group(cache);
6433         return 0;
6434 }
6435
6436 /*
6437  * this function must be called within transaction
6438  */
6439 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6440                                     u64 bytenr, u64 num_bytes)
6441 {
6442         struct btrfs_block_group_cache *cache;
6443         int ret;
6444
6445         cache = btrfs_lookup_block_group(fs_info, bytenr);
6446         if (!cache)
6447                 return -EINVAL;
6448
6449         /*
6450          * pull in the free space cache (if any) so that our pin
6451          * removes the free space from the cache.  We have load_only set
6452          * to one because the slow code to read in the free extents does check
6453          * the pinned extents.
6454          */
6455         cache_block_group(cache, 1);
6456
6457         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6458
6459         /* remove us from the free space cache (if we're there at all) */
6460         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6461         btrfs_put_block_group(cache);
6462         return ret;
6463 }
6464
6465 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6466                                    u64 start, u64 num_bytes)
6467 {
6468         int ret;
6469         struct btrfs_block_group_cache *block_group;
6470         struct btrfs_caching_control *caching_ctl;
6471
6472         block_group = btrfs_lookup_block_group(fs_info, start);
6473         if (!block_group)
6474                 return -EINVAL;
6475
6476         cache_block_group(block_group, 0);
6477         caching_ctl = get_caching_control(block_group);
6478
6479         if (!caching_ctl) {
6480                 /* Logic error */
6481                 BUG_ON(!block_group_cache_done(block_group));
6482                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6483         } else {
6484                 mutex_lock(&caching_ctl->mutex);
6485
6486                 if (start >= caching_ctl->progress) {
6487                         ret = add_excluded_extent(fs_info, start, num_bytes);
6488                 } else if (start + num_bytes <= caching_ctl->progress) {
6489                         ret = btrfs_remove_free_space(block_group,
6490                                                       start, num_bytes);
6491                 } else {
6492                         num_bytes = caching_ctl->progress - start;
6493                         ret = btrfs_remove_free_space(block_group,
6494                                                       start, num_bytes);
6495                         if (ret)
6496                                 goto out_lock;
6497
6498                         num_bytes = (start + num_bytes) -
6499                                 caching_ctl->progress;
6500                         start = caching_ctl->progress;
6501                         ret = add_excluded_extent(fs_info, start, num_bytes);
6502                 }
6503 out_lock:
6504                 mutex_unlock(&caching_ctl->mutex);
6505                 put_caching_control(caching_ctl);
6506         }
6507         btrfs_put_block_group(block_group);
6508         return ret;
6509 }
6510
6511 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6512                                  struct extent_buffer *eb)
6513 {
6514         struct btrfs_file_extent_item *item;
6515         struct btrfs_key key;
6516         int found_type;
6517         int i;
6518
6519         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6520                 return 0;
6521
6522         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6523                 btrfs_item_key_to_cpu(eb, &key, i);
6524                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6525                         continue;
6526                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6527                 found_type = btrfs_file_extent_type(eb, item);
6528                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6529                         continue;
6530                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6531                         continue;
6532                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6533                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6534                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6535         }
6536
6537         return 0;
6538 }
6539
6540 static void
6541 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6542 {
6543         atomic_inc(&bg->reservations);
6544 }
6545
6546 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6547                                         const u64 start)
6548 {
6549         struct btrfs_block_group_cache *bg;
6550
6551         bg = btrfs_lookup_block_group(fs_info, start);
6552         ASSERT(bg);
6553         if (atomic_dec_and_test(&bg->reservations))
6554                 wake_up_var(&bg->reservations);
6555         btrfs_put_block_group(bg);
6556 }
6557
6558 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6559 {
6560         struct btrfs_space_info *space_info = bg->space_info;
6561
6562         ASSERT(bg->ro);
6563
6564         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6565                 return;
6566
6567         /*
6568          * Our block group is read only but before we set it to read only,
6569          * some task might have had allocated an extent from it already, but it
6570          * has not yet created a respective ordered extent (and added it to a
6571          * root's list of ordered extents).
6572          * Therefore wait for any task currently allocating extents, since the
6573          * block group's reservations counter is incremented while a read lock
6574          * on the groups' semaphore is held and decremented after releasing
6575          * the read access on that semaphore and creating the ordered extent.
6576          */
6577         down_write(&space_info->groups_sem);
6578         up_write(&space_info->groups_sem);
6579
6580         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6581 }
6582
6583 /**
6584  * btrfs_add_reserved_bytes - update the block_group and space info counters
6585  * @cache:      The cache we are manipulating
6586  * @ram_bytes:  The number of bytes of file content, and will be same to
6587  *              @num_bytes except for the compress path.
6588  * @num_bytes:  The number of bytes in question
6589  * @delalloc:   The blocks are allocated for the delalloc write
6590  *
6591  * This is called by the allocator when it reserves space. If this is a
6592  * reservation and the block group has become read only we cannot make the
6593  * reservation and return -EAGAIN, otherwise this function always succeeds.
6594  */
6595 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6596                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6597 {
6598         struct btrfs_space_info *space_info = cache->space_info;
6599         int ret = 0;
6600
6601         spin_lock(&space_info->lock);
6602         spin_lock(&cache->lock);
6603         if (cache->ro) {
6604                 ret = -EAGAIN;
6605         } else {
6606                 cache->reserved += num_bytes;
6607                 space_info->bytes_reserved += num_bytes;
6608
6609                 trace_btrfs_space_reservation(cache->fs_info,
6610                                 "space_info", space_info->flags,
6611                                 ram_bytes, 0);
6612                 space_info->bytes_may_use -= ram_bytes;
6613                 if (delalloc)
6614                         cache->delalloc_bytes += num_bytes;
6615         }
6616         spin_unlock(&cache->lock);
6617         spin_unlock(&space_info->lock);
6618         return ret;
6619 }
6620
6621 /**
6622  * btrfs_free_reserved_bytes - update the block_group and space info counters
6623  * @cache:      The cache we are manipulating
6624  * @num_bytes:  The number of bytes in question
6625  * @delalloc:   The blocks are allocated for the delalloc write
6626  *
6627  * This is called by somebody who is freeing space that was never actually used
6628  * on disk.  For example if you reserve some space for a new leaf in transaction
6629  * A and before transaction A commits you free that leaf, you call this with
6630  * reserve set to 0 in order to clear the reservation.
6631  */
6632
6633 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6634                                      u64 num_bytes, int delalloc)
6635 {
6636         struct btrfs_space_info *space_info = cache->space_info;
6637         int ret = 0;
6638
6639         spin_lock(&space_info->lock);
6640         spin_lock(&cache->lock);
6641         if (cache->ro)
6642                 space_info->bytes_readonly += num_bytes;
6643         cache->reserved -= num_bytes;
6644         space_info->bytes_reserved -= num_bytes;
6645
6646         if (delalloc)
6647                 cache->delalloc_bytes -= num_bytes;
6648         spin_unlock(&cache->lock);
6649         spin_unlock(&space_info->lock);
6650         return ret;
6651 }
6652 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6653 {
6654         struct btrfs_caching_control *next;
6655         struct btrfs_caching_control *caching_ctl;
6656         struct btrfs_block_group_cache *cache;
6657
6658         down_write(&fs_info->commit_root_sem);
6659
6660         list_for_each_entry_safe(caching_ctl, next,
6661                                  &fs_info->caching_block_groups, list) {
6662                 cache = caching_ctl->block_group;
6663                 if (block_group_cache_done(cache)) {
6664                         cache->last_byte_to_unpin = (u64)-1;
6665                         list_del_init(&caching_ctl->list);
6666                         put_caching_control(caching_ctl);
6667                 } else {
6668                         cache->last_byte_to_unpin = caching_ctl->progress;
6669                 }
6670         }
6671
6672         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6673                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6674         else
6675                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6676
6677         up_write(&fs_info->commit_root_sem);
6678
6679         update_global_block_rsv(fs_info);
6680 }
6681
6682 /*
6683  * Returns the free cluster for the given space info and sets empty_cluster to
6684  * what it should be based on the mount options.
6685  */
6686 static struct btrfs_free_cluster *
6687 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6688                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6689 {
6690         struct btrfs_free_cluster *ret = NULL;
6691
6692         *empty_cluster = 0;
6693         if (btrfs_mixed_space_info(space_info))
6694                 return ret;
6695
6696         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6697                 ret = &fs_info->meta_alloc_cluster;
6698                 if (btrfs_test_opt(fs_info, SSD))
6699                         *empty_cluster = SZ_2M;
6700                 else
6701                         *empty_cluster = SZ_64K;
6702         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6703                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6704                 *empty_cluster = SZ_2M;
6705                 ret = &fs_info->data_alloc_cluster;
6706         }
6707
6708         return ret;
6709 }
6710
6711 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6712                               u64 start, u64 end,
6713                               const bool return_free_space)
6714 {
6715         struct btrfs_block_group_cache *cache = NULL;
6716         struct btrfs_space_info *space_info;
6717         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6718         struct btrfs_free_cluster *cluster = NULL;
6719         u64 len;
6720         u64 total_unpinned = 0;
6721         u64 empty_cluster = 0;
6722         bool readonly;
6723
6724         while (start <= end) {
6725                 readonly = false;
6726                 if (!cache ||
6727                     start >= cache->key.objectid + cache->key.offset) {
6728                         if (cache)
6729                                 btrfs_put_block_group(cache);
6730                         total_unpinned = 0;
6731                         cache = btrfs_lookup_block_group(fs_info, start);
6732                         BUG_ON(!cache); /* Logic error */
6733
6734                         cluster = fetch_cluster_info(fs_info,
6735                                                      cache->space_info,
6736                                                      &empty_cluster);
6737                         empty_cluster <<= 1;
6738                 }
6739
6740                 len = cache->key.objectid + cache->key.offset - start;
6741                 len = min(len, end + 1 - start);
6742
6743                 if (start < cache->last_byte_to_unpin) {
6744                         len = min(len, cache->last_byte_to_unpin - start);
6745                         if (return_free_space)
6746                                 btrfs_add_free_space(cache, start, len);
6747                 }
6748
6749                 start += len;
6750                 total_unpinned += len;
6751                 space_info = cache->space_info;
6752
6753                 /*
6754                  * If this space cluster has been marked as fragmented and we've
6755                  * unpinned enough in this block group to potentially allow a
6756                  * cluster to be created inside of it go ahead and clear the
6757                  * fragmented check.
6758                  */
6759                 if (cluster && cluster->fragmented &&
6760                     total_unpinned > empty_cluster) {
6761                         spin_lock(&cluster->lock);
6762                         cluster->fragmented = 0;
6763                         spin_unlock(&cluster->lock);
6764                 }
6765
6766                 spin_lock(&space_info->lock);
6767                 spin_lock(&cache->lock);
6768                 cache->pinned -= len;
6769                 space_info->bytes_pinned -= len;
6770
6771                 trace_btrfs_space_reservation(fs_info, "pinned",
6772                                               space_info->flags, len, 0);
6773                 space_info->max_extent_size = 0;
6774                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6775                 if (cache->ro) {
6776                         space_info->bytes_readonly += len;
6777                         readonly = true;
6778                 }
6779                 spin_unlock(&cache->lock);
6780                 if (!readonly && return_free_space &&
6781                     global_rsv->space_info == space_info) {
6782                         u64 to_add = len;
6783
6784                         spin_lock(&global_rsv->lock);
6785                         if (!global_rsv->full) {
6786                                 to_add = min(len, global_rsv->size -
6787                                              global_rsv->reserved);
6788                                 global_rsv->reserved += to_add;
6789                                 space_info->bytes_may_use += to_add;
6790                                 if (global_rsv->reserved >= global_rsv->size)
6791                                         global_rsv->full = 1;
6792                                 trace_btrfs_space_reservation(fs_info,
6793                                                               "space_info",
6794                                                               space_info->flags,
6795                                                               to_add, 1);
6796                                 len -= to_add;
6797                         }
6798                         spin_unlock(&global_rsv->lock);
6799                         /* Add to any tickets we may have */
6800                         if (len)
6801                                 space_info_add_new_bytes(fs_info, space_info,
6802                                                          len);
6803                 }
6804                 spin_unlock(&space_info->lock);
6805         }
6806
6807         if (cache)
6808                 btrfs_put_block_group(cache);
6809         return 0;
6810 }
6811
6812 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6813 {
6814         struct btrfs_fs_info *fs_info = trans->fs_info;
6815         struct btrfs_block_group_cache *block_group, *tmp;
6816         struct list_head *deleted_bgs;
6817         struct extent_io_tree *unpin;
6818         u64 start;
6819         u64 end;
6820         int ret;
6821
6822         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6823                 unpin = &fs_info->freed_extents[1];
6824         else
6825                 unpin = &fs_info->freed_extents[0];
6826
6827         while (!trans->aborted) {
6828                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6829                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6830                                             EXTENT_DIRTY, NULL);
6831                 if (ret) {
6832                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6833                         break;
6834                 }
6835
6836                 if (btrfs_test_opt(fs_info, DISCARD))
6837                         ret = btrfs_discard_extent(fs_info, start,
6838                                                    end + 1 - start, NULL);
6839
6840                 clear_extent_dirty(unpin, start, end);
6841                 unpin_extent_range(fs_info, start, end, true);
6842                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6843                 cond_resched();
6844         }
6845
6846         /*
6847          * Transaction is finished.  We don't need the lock anymore.  We
6848          * do need to clean up the block groups in case of a transaction
6849          * abort.
6850          */
6851         deleted_bgs = &trans->transaction->deleted_bgs;
6852         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6853                 u64 trimmed = 0;
6854
6855                 ret = -EROFS;
6856                 if (!trans->aborted)
6857                         ret = btrfs_discard_extent(fs_info,
6858                                                    block_group->key.objectid,
6859                                                    block_group->key.offset,
6860                                                    &trimmed);
6861
6862                 list_del_init(&block_group->bg_list);
6863                 btrfs_put_block_group_trimming(block_group);
6864                 btrfs_put_block_group(block_group);
6865
6866                 if (ret) {
6867                         const char *errstr = btrfs_decode_error(ret);
6868                         btrfs_warn(fs_info,
6869                            "discard failed while removing blockgroup: errno=%d %s",
6870                                    ret, errstr);
6871                 }
6872         }
6873
6874         return 0;
6875 }
6876
6877 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6878                                 struct btrfs_fs_info *info,
6879                                 struct btrfs_delayed_ref_node *node, u64 parent,
6880                                 u64 root_objectid, u64 owner_objectid,
6881                                 u64 owner_offset, int refs_to_drop,
6882                                 struct btrfs_delayed_extent_op *extent_op)
6883 {
6884         struct btrfs_key key;
6885         struct btrfs_path *path;
6886         struct btrfs_root *extent_root = info->extent_root;
6887         struct extent_buffer *leaf;
6888         struct btrfs_extent_item *ei;
6889         struct btrfs_extent_inline_ref *iref;
6890         int ret;
6891         int is_data;
6892         int extent_slot = 0;
6893         int found_extent = 0;
6894         int num_to_del = 1;
6895         u32 item_size;
6896         u64 refs;
6897         u64 bytenr = node->bytenr;
6898         u64 num_bytes = node->num_bytes;
6899         int last_ref = 0;
6900         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6901
6902         path = btrfs_alloc_path();
6903         if (!path)
6904                 return -ENOMEM;
6905
6906         path->reada = READA_FORWARD;
6907         path->leave_spinning = 1;
6908
6909         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6910         BUG_ON(!is_data && refs_to_drop != 1);
6911
6912         if (is_data)
6913                 skinny_metadata = false;
6914
6915         ret = lookup_extent_backref(trans, info, path, &iref,
6916                                     bytenr, num_bytes, parent,
6917                                     root_objectid, owner_objectid,
6918                                     owner_offset);
6919         if (ret == 0) {
6920                 extent_slot = path->slots[0];
6921                 while (extent_slot >= 0) {
6922                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6923                                               extent_slot);
6924                         if (key.objectid != bytenr)
6925                                 break;
6926                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6927                             key.offset == num_bytes) {
6928                                 found_extent = 1;
6929                                 break;
6930                         }
6931                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6932                             key.offset == owner_objectid) {
6933                                 found_extent = 1;
6934                                 break;
6935                         }
6936                         if (path->slots[0] - extent_slot > 5)
6937                                 break;
6938                         extent_slot--;
6939                 }
6940 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6941                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6942                 if (found_extent && item_size < sizeof(*ei))
6943                         found_extent = 0;
6944 #endif
6945                 if (!found_extent) {
6946                         BUG_ON(iref);
6947                         ret = remove_extent_backref(trans, info, path, NULL,
6948                                                     refs_to_drop,
6949                                                     is_data, &last_ref);
6950                         if (ret) {
6951                                 btrfs_abort_transaction(trans, ret);
6952                                 goto out;
6953                         }
6954                         btrfs_release_path(path);
6955                         path->leave_spinning = 1;
6956
6957                         key.objectid = bytenr;
6958                         key.type = BTRFS_EXTENT_ITEM_KEY;
6959                         key.offset = num_bytes;
6960
6961                         if (!is_data && skinny_metadata) {
6962                                 key.type = BTRFS_METADATA_ITEM_KEY;
6963                                 key.offset = owner_objectid;
6964                         }
6965
6966                         ret = btrfs_search_slot(trans, extent_root,
6967                                                 &key, path, -1, 1);
6968                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6969                                 /*
6970                                  * Couldn't find our skinny metadata item,
6971                                  * see if we have ye olde extent item.
6972                                  */
6973                                 path->slots[0]--;
6974                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6975                                                       path->slots[0]);
6976                                 if (key.objectid == bytenr &&
6977                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6978                                     key.offset == num_bytes)
6979                                         ret = 0;
6980                         }
6981
6982                         if (ret > 0 && skinny_metadata) {
6983                                 skinny_metadata = false;
6984                                 key.objectid = bytenr;
6985                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6986                                 key.offset = num_bytes;
6987                                 btrfs_release_path(path);
6988                                 ret = btrfs_search_slot(trans, extent_root,
6989                                                         &key, path, -1, 1);
6990                         }
6991
6992                         if (ret) {
6993                                 btrfs_err(info,
6994                                           "umm, got %d back from search, was looking for %llu",
6995                                           ret, bytenr);
6996                                 if (ret > 0)
6997                                         btrfs_print_leaf(path->nodes[0]);
6998                         }
6999                         if (ret < 0) {
7000                                 btrfs_abort_transaction(trans, ret);
7001                                 goto out;
7002                         }
7003                         extent_slot = path->slots[0];
7004                 }
7005         } else if (WARN_ON(ret == -ENOENT)) {
7006                 btrfs_print_leaf(path->nodes[0]);
7007                 btrfs_err(info,
7008                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7009                         bytenr, parent, root_objectid, owner_objectid,
7010                         owner_offset);
7011                 btrfs_abort_transaction(trans, ret);
7012                 goto out;
7013         } else {
7014                 btrfs_abort_transaction(trans, ret);
7015                 goto out;
7016         }
7017
7018         leaf = path->nodes[0];
7019         item_size = btrfs_item_size_nr(leaf, extent_slot);
7020 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7021         if (item_size < sizeof(*ei)) {
7022                 BUG_ON(found_extent || extent_slot != path->slots[0]);
7023                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7024                                              0);
7025                 if (ret < 0) {
7026                         btrfs_abort_transaction(trans, ret);
7027                         goto out;
7028                 }
7029
7030                 btrfs_release_path(path);
7031                 path->leave_spinning = 1;
7032
7033                 key.objectid = bytenr;
7034                 key.type = BTRFS_EXTENT_ITEM_KEY;
7035                 key.offset = num_bytes;
7036
7037                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7038                                         -1, 1);
7039                 if (ret) {
7040                         btrfs_err(info,
7041                                   "umm, got %d back from search, was looking for %llu",
7042                                 ret, bytenr);
7043                         btrfs_print_leaf(path->nodes[0]);
7044                 }
7045                 if (ret < 0) {
7046                         btrfs_abort_transaction(trans, ret);
7047                         goto out;
7048                 }
7049
7050                 extent_slot = path->slots[0];
7051                 leaf = path->nodes[0];
7052                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7053         }
7054 #endif
7055         BUG_ON(item_size < sizeof(*ei));
7056         ei = btrfs_item_ptr(leaf, extent_slot,
7057                             struct btrfs_extent_item);
7058         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7059             key.type == BTRFS_EXTENT_ITEM_KEY) {
7060                 struct btrfs_tree_block_info *bi;
7061                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7062                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7063                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7064         }
7065
7066         refs = btrfs_extent_refs(leaf, ei);
7067         if (refs < refs_to_drop) {
7068                 btrfs_err(info,
7069                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7070                           refs_to_drop, refs, bytenr);
7071                 ret = -EINVAL;
7072                 btrfs_abort_transaction(trans, ret);
7073                 goto out;
7074         }
7075         refs -= refs_to_drop;
7076
7077         if (refs > 0) {
7078                 if (extent_op)
7079                         __run_delayed_extent_op(extent_op, leaf, ei);
7080                 /*
7081                  * In the case of inline back ref, reference count will
7082                  * be updated by remove_extent_backref
7083                  */
7084                 if (iref) {
7085                         BUG_ON(!found_extent);
7086                 } else {
7087                         btrfs_set_extent_refs(leaf, ei, refs);
7088                         btrfs_mark_buffer_dirty(leaf);
7089                 }
7090                 if (found_extent) {
7091                         ret = remove_extent_backref(trans, info, path,
7092                                                     iref, refs_to_drop,
7093                                                     is_data, &last_ref);
7094                         if (ret) {
7095                                 btrfs_abort_transaction(trans, ret);
7096                                 goto out;
7097                         }
7098                 }
7099         } else {
7100                 if (found_extent) {
7101                         BUG_ON(is_data && refs_to_drop !=
7102                                extent_data_ref_count(path, iref));
7103                         if (iref) {
7104                                 BUG_ON(path->slots[0] != extent_slot);
7105                         } else {
7106                                 BUG_ON(path->slots[0] != extent_slot + 1);
7107                                 path->slots[0] = extent_slot;
7108                                 num_to_del = 2;
7109                         }
7110                 }
7111
7112                 last_ref = 1;
7113                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7114                                       num_to_del);
7115                 if (ret) {
7116                         btrfs_abort_transaction(trans, ret);
7117                         goto out;
7118                 }
7119                 btrfs_release_path(path);
7120
7121                 if (is_data) {
7122                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7123                         if (ret) {
7124                                 btrfs_abort_transaction(trans, ret);
7125                                 goto out;
7126                         }
7127                 }
7128
7129                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7130                 if (ret) {
7131                         btrfs_abort_transaction(trans, ret);
7132                         goto out;
7133                 }
7134
7135                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7136                 if (ret) {
7137                         btrfs_abort_transaction(trans, ret);
7138                         goto out;
7139                 }
7140         }
7141         btrfs_release_path(path);
7142
7143 out:
7144         btrfs_free_path(path);
7145         return ret;
7146 }
7147
7148 /*
7149  * when we free an block, it is possible (and likely) that we free the last
7150  * delayed ref for that extent as well.  This searches the delayed ref tree for
7151  * a given extent, and if there are no other delayed refs to be processed, it
7152  * removes it from the tree.
7153  */
7154 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7155                                       u64 bytenr)
7156 {
7157         struct btrfs_delayed_ref_head *head;
7158         struct btrfs_delayed_ref_root *delayed_refs;
7159         int ret = 0;
7160
7161         delayed_refs = &trans->transaction->delayed_refs;
7162         spin_lock(&delayed_refs->lock);
7163         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7164         if (!head)
7165                 goto out_delayed_unlock;
7166
7167         spin_lock(&head->lock);
7168         if (!RB_EMPTY_ROOT(&head->ref_tree))
7169                 goto out;
7170
7171         if (head->extent_op) {
7172                 if (!head->must_insert_reserved)
7173                         goto out;
7174                 btrfs_free_delayed_extent_op(head->extent_op);
7175                 head->extent_op = NULL;
7176         }
7177
7178         /*
7179          * waiting for the lock here would deadlock.  If someone else has it
7180          * locked they are already in the process of dropping it anyway
7181          */
7182         if (!mutex_trylock(&head->mutex))
7183                 goto out;
7184
7185         /*
7186          * at this point we have a head with no other entries.  Go
7187          * ahead and process it.
7188          */
7189         rb_erase(&head->href_node, &delayed_refs->href_root);
7190         RB_CLEAR_NODE(&head->href_node);
7191         atomic_dec(&delayed_refs->num_entries);
7192
7193         /*
7194          * we don't take a ref on the node because we're removing it from the
7195          * tree, so we just steal the ref the tree was holding.
7196          */
7197         delayed_refs->num_heads--;
7198         if (head->processing == 0)
7199                 delayed_refs->num_heads_ready--;
7200         head->processing = 0;
7201         spin_unlock(&head->lock);
7202         spin_unlock(&delayed_refs->lock);
7203
7204         BUG_ON(head->extent_op);
7205         if (head->must_insert_reserved)
7206                 ret = 1;
7207
7208         mutex_unlock(&head->mutex);
7209         btrfs_put_delayed_ref_head(head);
7210         return ret;
7211 out:
7212         spin_unlock(&head->lock);
7213
7214 out_delayed_unlock:
7215         spin_unlock(&delayed_refs->lock);
7216         return 0;
7217 }
7218
7219 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7220                            struct btrfs_root *root,
7221                            struct extent_buffer *buf,
7222                            u64 parent, int last_ref)
7223 {
7224         struct btrfs_fs_info *fs_info = root->fs_info;
7225         int pin = 1;
7226         int ret;
7227
7228         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7229                 int old_ref_mod, new_ref_mod;
7230
7231                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7232                                    root->root_key.objectid,
7233                                    btrfs_header_level(buf), 0,
7234                                    BTRFS_DROP_DELAYED_REF);
7235                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7236                                                  buf->len, parent,
7237                                                  root->root_key.objectid,
7238                                                  btrfs_header_level(buf),
7239                                                  BTRFS_DROP_DELAYED_REF, NULL,
7240                                                  &old_ref_mod, &new_ref_mod);
7241                 BUG_ON(ret); /* -ENOMEM */
7242                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7243         }
7244
7245         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7246                 struct btrfs_block_group_cache *cache;
7247
7248                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7249                         ret = check_ref_cleanup(trans, buf->start);
7250                         if (!ret)
7251                                 goto out;
7252                 }
7253
7254                 pin = 0;
7255                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7256
7257                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7258                         pin_down_extent(fs_info, cache, buf->start,
7259                                         buf->len, 1);
7260                         btrfs_put_block_group(cache);
7261                         goto out;
7262                 }
7263
7264                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7265
7266                 btrfs_add_free_space(cache, buf->start, buf->len);
7267                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7268                 btrfs_put_block_group(cache);
7269                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7270         }
7271 out:
7272         if (pin)
7273                 add_pinned_bytes(fs_info, buf->len, true,
7274                                  root->root_key.objectid);
7275
7276         if (last_ref) {
7277                 /*
7278                  * Deleting the buffer, clear the corrupt flag since it doesn't
7279                  * matter anymore.
7280                  */
7281                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7282         }
7283 }
7284
7285 /* Can return -ENOMEM */
7286 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7287                       struct btrfs_root *root,
7288                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7289                       u64 owner, u64 offset)
7290 {
7291         struct btrfs_fs_info *fs_info = root->fs_info;
7292         int old_ref_mod, new_ref_mod;
7293         int ret;
7294
7295         if (btrfs_is_testing(fs_info))
7296                 return 0;
7297
7298         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7299                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7300                                    root_objectid, owner, offset,
7301                                    BTRFS_DROP_DELAYED_REF);
7302
7303         /*
7304          * tree log blocks never actually go into the extent allocation
7305          * tree, just update pinning info and exit early.
7306          */
7307         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7308                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7309                 /* unlocks the pinned mutex */
7310                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7311                 old_ref_mod = new_ref_mod = 0;
7312                 ret = 0;
7313         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7314                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7315                                                  num_bytes, parent,
7316                                                  root_objectid, (int)owner,
7317                                                  BTRFS_DROP_DELAYED_REF, NULL,
7318                                                  &old_ref_mod, &new_ref_mod);
7319         } else {
7320                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7321                                                  num_bytes, parent,
7322                                                  root_objectid, owner, offset,
7323                                                  0, BTRFS_DROP_DELAYED_REF,
7324                                                  &old_ref_mod, &new_ref_mod);
7325         }
7326
7327         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7328                 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7329
7330                 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7331         }
7332
7333         return ret;
7334 }
7335
7336 /*
7337  * when we wait for progress in the block group caching, its because
7338  * our allocation attempt failed at least once.  So, we must sleep
7339  * and let some progress happen before we try again.
7340  *
7341  * This function will sleep at least once waiting for new free space to
7342  * show up, and then it will check the block group free space numbers
7343  * for our min num_bytes.  Another option is to have it go ahead
7344  * and look in the rbtree for a free extent of a given size, but this
7345  * is a good start.
7346  *
7347  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7348  * any of the information in this block group.
7349  */
7350 static noinline void
7351 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7352                                 u64 num_bytes)
7353 {
7354         struct btrfs_caching_control *caching_ctl;
7355
7356         caching_ctl = get_caching_control(cache);
7357         if (!caching_ctl)
7358                 return;
7359
7360         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7361                    (cache->free_space_ctl->free_space >= num_bytes));
7362
7363         put_caching_control(caching_ctl);
7364 }
7365
7366 static noinline int
7367 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7368 {
7369         struct btrfs_caching_control *caching_ctl;
7370         int ret = 0;
7371
7372         caching_ctl = get_caching_control(cache);
7373         if (!caching_ctl)
7374                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7375
7376         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7377         if (cache->cached == BTRFS_CACHE_ERROR)
7378                 ret = -EIO;
7379         put_caching_control(caching_ctl);
7380         return ret;
7381 }
7382
7383 enum btrfs_loop_type {
7384         LOOP_CACHING_NOWAIT = 0,
7385         LOOP_CACHING_WAIT = 1,
7386         LOOP_ALLOC_CHUNK = 2,
7387         LOOP_NO_EMPTY_SIZE = 3,
7388 };
7389
7390 static inline void
7391 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7392                        int delalloc)
7393 {
7394         if (delalloc)
7395                 down_read(&cache->data_rwsem);
7396 }
7397
7398 static inline void
7399 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7400                        int delalloc)
7401 {
7402         btrfs_get_block_group(cache);
7403         if (delalloc)
7404                 down_read(&cache->data_rwsem);
7405 }
7406
7407 static struct btrfs_block_group_cache *
7408 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7409                    struct btrfs_free_cluster *cluster,
7410                    int delalloc)
7411 {
7412         struct btrfs_block_group_cache *used_bg = NULL;
7413
7414         spin_lock(&cluster->refill_lock);
7415         while (1) {
7416                 used_bg = cluster->block_group;
7417                 if (!used_bg)
7418                         return NULL;
7419
7420                 if (used_bg == block_group)
7421                         return used_bg;
7422
7423                 btrfs_get_block_group(used_bg);
7424
7425                 if (!delalloc)
7426                         return used_bg;
7427
7428                 if (down_read_trylock(&used_bg->data_rwsem))
7429                         return used_bg;
7430
7431                 spin_unlock(&cluster->refill_lock);
7432
7433                 /* We should only have one-level nested. */
7434                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7435
7436                 spin_lock(&cluster->refill_lock);
7437                 if (used_bg == cluster->block_group)
7438                         return used_bg;
7439
7440                 up_read(&used_bg->data_rwsem);
7441                 btrfs_put_block_group(used_bg);
7442         }
7443 }
7444
7445 static inline void
7446 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7447                          int delalloc)
7448 {
7449         if (delalloc)
7450                 up_read(&cache->data_rwsem);
7451         btrfs_put_block_group(cache);
7452 }
7453
7454 /*
7455  * walks the btree of allocated extents and find a hole of a given size.
7456  * The key ins is changed to record the hole:
7457  * ins->objectid == start position
7458  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7459  * ins->offset == the size of the hole.
7460  * Any available blocks before search_start are skipped.
7461  *
7462  * If there is no suitable free space, we will record the max size of
7463  * the free space extent currently.
7464  */
7465 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7466                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7467                                 u64 hint_byte, struct btrfs_key *ins,
7468                                 u64 flags, int delalloc)
7469 {
7470         int ret = 0;
7471         struct btrfs_root *root = fs_info->extent_root;
7472         struct btrfs_free_cluster *last_ptr = NULL;
7473         struct btrfs_block_group_cache *block_group = NULL;
7474         u64 search_start = 0;
7475         u64 max_extent_size = 0;
7476         u64 empty_cluster = 0;
7477         struct btrfs_space_info *space_info;
7478         int loop = 0;
7479         int index = btrfs_bg_flags_to_raid_index(flags);
7480         bool failed_cluster_refill = false;
7481         bool failed_alloc = false;
7482         bool use_cluster = true;
7483         bool have_caching_bg = false;
7484         bool orig_have_caching_bg = false;
7485         bool full_search = false;
7486
7487         WARN_ON(num_bytes < fs_info->sectorsize);
7488         ins->type = BTRFS_EXTENT_ITEM_KEY;
7489         ins->objectid = 0;
7490         ins->offset = 0;
7491
7492         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7493
7494         space_info = __find_space_info(fs_info, flags);
7495         if (!space_info) {
7496                 btrfs_err(fs_info, "No space info for %llu", flags);
7497                 return -ENOSPC;
7498         }
7499
7500         /*
7501          * If our free space is heavily fragmented we may not be able to make
7502          * big contiguous allocations, so instead of doing the expensive search
7503          * for free space, simply return ENOSPC with our max_extent_size so we
7504          * can go ahead and search for a more manageable chunk.
7505          *
7506          * If our max_extent_size is large enough for our allocation simply
7507          * disable clustering since we will likely not be able to find enough
7508          * space to create a cluster and induce latency trying.
7509          */
7510         if (unlikely(space_info->max_extent_size)) {
7511                 spin_lock(&space_info->lock);
7512                 if (space_info->max_extent_size &&
7513                     num_bytes > space_info->max_extent_size) {
7514                         ins->offset = space_info->max_extent_size;
7515                         spin_unlock(&space_info->lock);
7516                         return -ENOSPC;
7517                 } else if (space_info->max_extent_size) {
7518                         use_cluster = false;
7519                 }
7520                 spin_unlock(&space_info->lock);
7521         }
7522
7523         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7524         if (last_ptr) {
7525                 spin_lock(&last_ptr->lock);
7526                 if (last_ptr->block_group)
7527                         hint_byte = last_ptr->window_start;
7528                 if (last_ptr->fragmented) {
7529                         /*
7530                          * We still set window_start so we can keep track of the
7531                          * last place we found an allocation to try and save
7532                          * some time.
7533                          */
7534                         hint_byte = last_ptr->window_start;
7535                         use_cluster = false;
7536                 }
7537                 spin_unlock(&last_ptr->lock);
7538         }
7539
7540         search_start = max(search_start, first_logical_byte(fs_info, 0));
7541         search_start = max(search_start, hint_byte);
7542         if (search_start == hint_byte) {
7543                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7544                 /*
7545                  * we don't want to use the block group if it doesn't match our
7546                  * allocation bits, or if its not cached.
7547                  *
7548                  * However if we are re-searching with an ideal block group
7549                  * picked out then we don't care that the block group is cached.
7550                  */
7551                 if (block_group && block_group_bits(block_group, flags) &&
7552                     block_group->cached != BTRFS_CACHE_NO) {
7553                         down_read(&space_info->groups_sem);
7554                         if (list_empty(&block_group->list) ||
7555                             block_group->ro) {
7556                                 /*
7557                                  * someone is removing this block group,
7558                                  * we can't jump into the have_block_group
7559                                  * target because our list pointers are not
7560                                  * valid
7561                                  */
7562                                 btrfs_put_block_group(block_group);
7563                                 up_read(&space_info->groups_sem);
7564                         } else {
7565                                 index = btrfs_bg_flags_to_raid_index(
7566                                                 block_group->flags);
7567                                 btrfs_lock_block_group(block_group, delalloc);
7568                                 goto have_block_group;
7569                         }
7570                 } else if (block_group) {
7571                         btrfs_put_block_group(block_group);
7572                 }
7573         }
7574 search:
7575         have_caching_bg = false;
7576         if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7577                 full_search = true;
7578         down_read(&space_info->groups_sem);
7579         list_for_each_entry(block_group, &space_info->block_groups[index],
7580                             list) {
7581                 u64 offset;
7582                 int cached;
7583
7584                 /* If the block group is read-only, we can skip it entirely. */
7585                 if (unlikely(block_group->ro))
7586                         continue;
7587
7588                 btrfs_grab_block_group(block_group, delalloc);
7589                 search_start = block_group->key.objectid;
7590
7591                 /*
7592                  * this can happen if we end up cycling through all the
7593                  * raid types, but we want to make sure we only allocate
7594                  * for the proper type.
7595                  */
7596                 if (!block_group_bits(block_group, flags)) {
7597                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7598                                 BTRFS_BLOCK_GROUP_RAID1 |
7599                                 BTRFS_BLOCK_GROUP_RAID5 |
7600                                 BTRFS_BLOCK_GROUP_RAID6 |
7601                                 BTRFS_BLOCK_GROUP_RAID10;
7602
7603                         /*
7604                          * if they asked for extra copies and this block group
7605                          * doesn't provide them, bail.  This does allow us to
7606                          * fill raid0 from raid1.
7607                          */
7608                         if ((flags & extra) && !(block_group->flags & extra))
7609                                 goto loop;
7610                 }
7611
7612 have_block_group:
7613                 cached = block_group_cache_done(block_group);
7614                 if (unlikely(!cached)) {
7615                         have_caching_bg = true;
7616                         ret = cache_block_group(block_group, 0);
7617                         BUG_ON(ret < 0);
7618                         ret = 0;
7619                 }
7620
7621                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7622                         goto loop;
7623
7624                 /*
7625                  * Ok we want to try and use the cluster allocator, so
7626                  * lets look there
7627                  */
7628                 if (last_ptr && use_cluster) {
7629                         struct btrfs_block_group_cache *used_block_group;
7630                         unsigned long aligned_cluster;
7631                         /*
7632                          * the refill lock keeps out other
7633                          * people trying to start a new cluster
7634                          */
7635                         used_block_group = btrfs_lock_cluster(block_group,
7636                                                               last_ptr,
7637                                                               delalloc);
7638                         if (!used_block_group)
7639                                 goto refill_cluster;
7640
7641                         if (used_block_group != block_group &&
7642                             (used_block_group->ro ||
7643                              !block_group_bits(used_block_group, flags)))
7644                                 goto release_cluster;
7645
7646                         offset = btrfs_alloc_from_cluster(used_block_group,
7647                                                 last_ptr,
7648                                                 num_bytes,
7649                                                 used_block_group->key.objectid,
7650                                                 &max_extent_size);
7651                         if (offset) {
7652                                 /* we have a block, we're done */
7653                                 spin_unlock(&last_ptr->refill_lock);
7654                                 trace_btrfs_reserve_extent_cluster(fs_info,
7655                                                 used_block_group,
7656                                                 search_start, num_bytes);
7657                                 if (used_block_group != block_group) {
7658                                         btrfs_release_block_group(block_group,
7659                                                                   delalloc);
7660                                         block_group = used_block_group;
7661                                 }
7662                                 goto checks;
7663                         }
7664
7665                         WARN_ON(last_ptr->block_group != used_block_group);
7666 release_cluster:
7667                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7668                          * set up a new clusters, so lets just skip it
7669                          * and let the allocator find whatever block
7670                          * it can find.  If we reach this point, we
7671                          * will have tried the cluster allocator
7672                          * plenty of times and not have found
7673                          * anything, so we are likely way too
7674                          * fragmented for the clustering stuff to find
7675                          * anything.
7676                          *
7677                          * However, if the cluster is taken from the
7678                          * current block group, release the cluster
7679                          * first, so that we stand a better chance of
7680                          * succeeding in the unclustered
7681                          * allocation.  */
7682                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7683                             used_block_group != block_group) {
7684                                 spin_unlock(&last_ptr->refill_lock);
7685                                 btrfs_release_block_group(used_block_group,
7686                                                           delalloc);
7687                                 goto unclustered_alloc;
7688                         }
7689
7690                         /*
7691                          * this cluster didn't work out, free it and
7692                          * start over
7693                          */
7694                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7695
7696                         if (used_block_group != block_group)
7697                                 btrfs_release_block_group(used_block_group,
7698                                                           delalloc);
7699 refill_cluster:
7700                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7701                                 spin_unlock(&last_ptr->refill_lock);
7702                                 goto unclustered_alloc;
7703                         }
7704
7705                         aligned_cluster = max_t(unsigned long,
7706                                                 empty_cluster + empty_size,
7707                                               block_group->full_stripe_len);
7708
7709                         /* allocate a cluster in this block group */
7710                         ret = btrfs_find_space_cluster(fs_info, block_group,
7711                                                        last_ptr, search_start,
7712                                                        num_bytes,
7713                                                        aligned_cluster);
7714                         if (ret == 0) {
7715                                 /*
7716                                  * now pull our allocation out of this
7717                                  * cluster
7718                                  */
7719                                 offset = btrfs_alloc_from_cluster(block_group,
7720                                                         last_ptr,
7721                                                         num_bytes,
7722                                                         search_start,
7723                                                         &max_extent_size);
7724                                 if (offset) {
7725                                         /* we found one, proceed */
7726                                         spin_unlock(&last_ptr->refill_lock);
7727                                         trace_btrfs_reserve_extent_cluster(fs_info,
7728                                                 block_group, search_start,
7729                                                 num_bytes);
7730                                         goto checks;
7731                                 }
7732                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7733                                    && !failed_cluster_refill) {
7734                                 spin_unlock(&last_ptr->refill_lock);
7735
7736                                 failed_cluster_refill = true;
7737                                 wait_block_group_cache_progress(block_group,
7738                                        num_bytes + empty_cluster + empty_size);
7739                                 goto have_block_group;
7740                         }
7741
7742                         /*
7743                          * at this point we either didn't find a cluster
7744                          * or we weren't able to allocate a block from our
7745                          * cluster.  Free the cluster we've been trying
7746                          * to use, and go to the next block group
7747                          */
7748                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7749                         spin_unlock(&last_ptr->refill_lock);
7750                         goto loop;
7751                 }
7752
7753 unclustered_alloc:
7754                 /*
7755                  * We are doing an unclustered alloc, set the fragmented flag so
7756                  * we don't bother trying to setup a cluster again until we get
7757                  * more space.
7758                  */
7759                 if (unlikely(last_ptr)) {
7760                         spin_lock(&last_ptr->lock);
7761                         last_ptr->fragmented = 1;
7762                         spin_unlock(&last_ptr->lock);
7763                 }
7764                 if (cached) {
7765                         struct btrfs_free_space_ctl *ctl =
7766                                 block_group->free_space_ctl;
7767
7768                         spin_lock(&ctl->tree_lock);
7769                         if (ctl->free_space <
7770                             num_bytes + empty_cluster + empty_size) {
7771                                 if (ctl->free_space > max_extent_size)
7772                                         max_extent_size = ctl->free_space;
7773                                 spin_unlock(&ctl->tree_lock);
7774                                 goto loop;
7775                         }
7776                         spin_unlock(&ctl->tree_lock);
7777                 }
7778
7779                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7780                                                     num_bytes, empty_size,
7781                                                     &max_extent_size);
7782                 /*
7783                  * If we didn't find a chunk, and we haven't failed on this
7784                  * block group before, and this block group is in the middle of
7785                  * caching and we are ok with waiting, then go ahead and wait
7786                  * for progress to be made, and set failed_alloc to true.
7787                  *
7788                  * If failed_alloc is true then we've already waited on this
7789                  * block group once and should move on to the next block group.
7790                  */
7791                 if (!offset && !failed_alloc && !cached &&
7792                     loop > LOOP_CACHING_NOWAIT) {
7793                         wait_block_group_cache_progress(block_group,
7794                                                 num_bytes + empty_size);
7795                         failed_alloc = true;
7796                         goto have_block_group;
7797                 } else if (!offset) {
7798                         goto loop;
7799                 }
7800 checks:
7801                 search_start = ALIGN(offset, fs_info->stripesize);
7802
7803                 /* move on to the next group */
7804                 if (search_start + num_bytes >
7805                     block_group->key.objectid + block_group->key.offset) {
7806                         btrfs_add_free_space(block_group, offset, num_bytes);
7807                         goto loop;
7808                 }
7809
7810                 if (offset < search_start)
7811                         btrfs_add_free_space(block_group, offset,
7812                                              search_start - offset);
7813                 BUG_ON(offset > search_start);
7814
7815                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7816                                 num_bytes, delalloc);
7817                 if (ret == -EAGAIN) {
7818                         btrfs_add_free_space(block_group, offset, num_bytes);
7819                         goto loop;
7820                 }
7821                 btrfs_inc_block_group_reservations(block_group);
7822
7823                 /* we are all good, lets return */
7824                 ins->objectid = search_start;
7825                 ins->offset = num_bytes;
7826
7827                 trace_btrfs_reserve_extent(fs_info, block_group,
7828                                            search_start, num_bytes);
7829                 btrfs_release_block_group(block_group, delalloc);
7830                 break;
7831 loop:
7832                 failed_cluster_refill = false;
7833                 failed_alloc = false;
7834                 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7835                        index);
7836                 btrfs_release_block_group(block_group, delalloc);
7837                 cond_resched();
7838         }
7839         up_read(&space_info->groups_sem);
7840
7841         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7842                 && !orig_have_caching_bg)
7843                 orig_have_caching_bg = true;
7844
7845         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7846                 goto search;
7847
7848         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7849                 goto search;
7850
7851         /*
7852          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7853          *                      caching kthreads as we move along
7854          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7855          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7856          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7857          *                      again
7858          */
7859         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7860                 index = 0;
7861                 if (loop == LOOP_CACHING_NOWAIT) {
7862                         /*
7863                          * We want to skip the LOOP_CACHING_WAIT step if we
7864                          * don't have any uncached bgs and we've already done a
7865                          * full search through.
7866                          */
7867                         if (orig_have_caching_bg || !full_search)
7868                                 loop = LOOP_CACHING_WAIT;
7869                         else
7870                                 loop = LOOP_ALLOC_CHUNK;
7871                 } else {
7872                         loop++;
7873                 }
7874
7875                 if (loop == LOOP_ALLOC_CHUNK) {
7876                         struct btrfs_trans_handle *trans;
7877                         int exist = 0;
7878
7879                         trans = current->journal_info;
7880                         if (trans)
7881                                 exist = 1;
7882                         else
7883                                 trans = btrfs_join_transaction(root);
7884
7885                         if (IS_ERR(trans)) {
7886                                 ret = PTR_ERR(trans);
7887                                 goto out;
7888                         }
7889
7890                         ret = do_chunk_alloc(trans, fs_info, flags,
7891                                              CHUNK_ALLOC_FORCE);
7892
7893                         /*
7894                          * If we can't allocate a new chunk we've already looped
7895                          * through at least once, move on to the NO_EMPTY_SIZE
7896                          * case.
7897                          */
7898                         if (ret == -ENOSPC)
7899                                 loop = LOOP_NO_EMPTY_SIZE;
7900
7901                         /*
7902                          * Do not bail out on ENOSPC since we
7903                          * can do more things.
7904                          */
7905                         if (ret < 0 && ret != -ENOSPC)
7906                                 btrfs_abort_transaction(trans, ret);
7907                         else
7908                                 ret = 0;
7909                         if (!exist)
7910                                 btrfs_end_transaction(trans);
7911                         if (ret)
7912                                 goto out;
7913                 }
7914
7915                 if (loop == LOOP_NO_EMPTY_SIZE) {
7916                         /*
7917                          * Don't loop again if we already have no empty_size and
7918                          * no empty_cluster.
7919                          */
7920                         if (empty_size == 0 &&
7921                             empty_cluster == 0) {
7922                                 ret = -ENOSPC;
7923                                 goto out;
7924                         }
7925                         empty_size = 0;
7926                         empty_cluster = 0;
7927                 }
7928
7929                 goto search;
7930         } else if (!ins->objectid) {
7931                 ret = -ENOSPC;
7932         } else if (ins->objectid) {
7933                 if (!use_cluster && last_ptr) {
7934                         spin_lock(&last_ptr->lock);
7935                         last_ptr->window_start = ins->objectid;
7936                         spin_unlock(&last_ptr->lock);
7937                 }
7938                 ret = 0;
7939         }
7940 out:
7941         if (ret == -ENOSPC) {
7942                 spin_lock(&space_info->lock);
7943                 space_info->max_extent_size = max_extent_size;
7944                 spin_unlock(&space_info->lock);
7945                 ins->offset = max_extent_size;
7946         }
7947         return ret;
7948 }
7949
7950 static void dump_space_info(struct btrfs_fs_info *fs_info,
7951                             struct btrfs_space_info *info, u64 bytes,
7952                             int dump_block_groups)
7953 {
7954         struct btrfs_block_group_cache *cache;
7955         int index = 0;
7956
7957         spin_lock(&info->lock);
7958         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7959                    info->flags,
7960                    info->total_bytes - btrfs_space_info_used(info, true),
7961                    info->full ? "" : "not ");
7962         btrfs_info(fs_info,
7963                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7964                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7965                 info->bytes_reserved, info->bytes_may_use,
7966                 info->bytes_readonly);
7967         spin_unlock(&info->lock);
7968
7969         if (!dump_block_groups)
7970                 return;
7971
7972         down_read(&info->groups_sem);
7973 again:
7974         list_for_each_entry(cache, &info->block_groups[index], list) {
7975                 spin_lock(&cache->lock);
7976                 btrfs_info(fs_info,
7977                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7978                         cache->key.objectid, cache->key.offset,
7979                         btrfs_block_group_used(&cache->item), cache->pinned,
7980                         cache->reserved, cache->ro ? "[readonly]" : "");
7981                 btrfs_dump_free_space(cache, bytes);
7982                 spin_unlock(&cache->lock);
7983         }
7984         if (++index < BTRFS_NR_RAID_TYPES)
7985                 goto again;
7986         up_read(&info->groups_sem);
7987 }
7988
7989 /*
7990  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7991  *                        hole that is at least as big as @num_bytes.
7992  *
7993  * @root           -    The root that will contain this extent
7994  *
7995  * @ram_bytes      -    The amount of space in ram that @num_bytes take. This
7996  *                      is used for accounting purposes. This value differs
7997  *                      from @num_bytes only in the case of compressed extents.
7998  *
7999  * @num_bytes      -    Number of bytes to allocate on-disk.
8000  *
8001  * @min_alloc_size -    Indicates the minimum amount of space that the
8002  *                      allocator should try to satisfy. In some cases
8003  *                      @num_bytes may be larger than what is required and if
8004  *                      the filesystem is fragmented then allocation fails.
8005  *                      However, the presence of @min_alloc_size gives a
8006  *                      chance to try and satisfy the smaller allocation.
8007  *
8008  * @empty_size     -    A hint that you plan on doing more COW. This is the
8009  *                      size in bytes the allocator should try to find free
8010  *                      next to the block it returns.  This is just a hint and
8011  *                      may be ignored by the allocator.
8012  *
8013  * @hint_byte      -    Hint to the allocator to start searching above the byte
8014  *                      address passed. It might be ignored.
8015  *
8016  * @ins            -    This key is modified to record the found hole. It will
8017  *                      have the following values:
8018  *                      ins->objectid == start position
8019  *                      ins->flags = BTRFS_EXTENT_ITEM_KEY
8020  *                      ins->offset == the size of the hole.
8021  *
8022  * @is_data        -    Boolean flag indicating whether an extent is
8023  *                      allocated for data (true) or metadata (false)
8024  *
8025  * @delalloc       -    Boolean flag indicating whether this allocation is for
8026  *                      delalloc or not. If 'true' data_rwsem of block groups
8027  *                      is going to be acquired.
8028  *
8029  *
8030  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8031  * case -ENOSPC is returned then @ins->offset will contain the size of the
8032  * largest available hole the allocator managed to find.
8033  */
8034 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8035                          u64 num_bytes, u64 min_alloc_size,
8036                          u64 empty_size, u64 hint_byte,
8037                          struct btrfs_key *ins, int is_data, int delalloc)
8038 {
8039         struct btrfs_fs_info *fs_info = root->fs_info;
8040         bool final_tried = num_bytes == min_alloc_size;
8041         u64 flags;
8042         int ret;
8043
8044         flags = get_alloc_profile_by_root(root, is_data);
8045 again:
8046         WARN_ON(num_bytes < fs_info->sectorsize);
8047         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8048                                hint_byte, ins, flags, delalloc);
8049         if (!ret && !is_data) {
8050                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8051         } else if (ret == -ENOSPC) {
8052                 if (!final_tried && ins->offset) {
8053                         num_bytes = min(num_bytes >> 1, ins->offset);
8054                         num_bytes = round_down(num_bytes,
8055                                                fs_info->sectorsize);
8056                         num_bytes = max(num_bytes, min_alloc_size);
8057                         ram_bytes = num_bytes;
8058                         if (num_bytes == min_alloc_size)
8059                                 final_tried = true;
8060                         goto again;
8061                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8062                         struct btrfs_space_info *sinfo;
8063
8064                         sinfo = __find_space_info(fs_info, flags);
8065                         btrfs_err(fs_info,
8066                                   "allocation failed flags %llu, wanted %llu",
8067                                   flags, num_bytes);
8068                         if (sinfo)
8069                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8070                 }
8071         }
8072
8073         return ret;
8074 }
8075
8076 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8077                                         u64 start, u64 len,
8078                                         int pin, int delalloc)
8079 {
8080         struct btrfs_block_group_cache *cache;
8081         int ret = 0;
8082
8083         cache = btrfs_lookup_block_group(fs_info, start);
8084         if (!cache) {
8085                 btrfs_err(fs_info, "Unable to find block group for %llu",
8086                           start);
8087                 return -ENOSPC;
8088         }
8089
8090         if (pin)
8091                 pin_down_extent(fs_info, cache, start, len, 1);
8092         else {
8093                 if (btrfs_test_opt(fs_info, DISCARD))
8094                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8095                 btrfs_add_free_space(cache, start, len);
8096                 btrfs_free_reserved_bytes(cache, len, delalloc);
8097                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8098         }
8099
8100         btrfs_put_block_group(cache);
8101         return ret;
8102 }
8103
8104 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8105                                u64 start, u64 len, int delalloc)
8106 {
8107         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8108 }
8109
8110 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8111                                        u64 start, u64 len)
8112 {
8113         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8114 }
8115
8116 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8117                                       struct btrfs_fs_info *fs_info,
8118                                       u64 parent, u64 root_objectid,
8119                                       u64 flags, u64 owner, u64 offset,
8120                                       struct btrfs_key *ins, int ref_mod)
8121 {
8122         int ret;
8123         struct btrfs_extent_item *extent_item;
8124         struct btrfs_extent_inline_ref *iref;
8125         struct btrfs_path *path;
8126         struct extent_buffer *leaf;
8127         int type;
8128         u32 size;
8129
8130         if (parent > 0)
8131                 type = BTRFS_SHARED_DATA_REF_KEY;
8132         else
8133                 type = BTRFS_EXTENT_DATA_REF_KEY;
8134
8135         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8136
8137         path = btrfs_alloc_path();
8138         if (!path)
8139                 return -ENOMEM;
8140
8141         path->leave_spinning = 1;
8142         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8143                                       ins, size);
8144         if (ret) {
8145                 btrfs_free_path(path);
8146                 return ret;
8147         }
8148
8149         leaf = path->nodes[0];
8150         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8151                                      struct btrfs_extent_item);
8152         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8153         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8154         btrfs_set_extent_flags(leaf, extent_item,
8155                                flags | BTRFS_EXTENT_FLAG_DATA);
8156
8157         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8158         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8159         if (parent > 0) {
8160                 struct btrfs_shared_data_ref *ref;
8161                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8162                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8163                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8164         } else {
8165                 struct btrfs_extent_data_ref *ref;
8166                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8167                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8168                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8169                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8170                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8171         }
8172
8173         btrfs_mark_buffer_dirty(path->nodes[0]);
8174         btrfs_free_path(path);
8175
8176         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8177                                           ins->offset);
8178         if (ret)
8179                 return ret;
8180
8181         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8182         if (ret) { /* -ENOENT, logic error */
8183                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8184                         ins->objectid, ins->offset);
8185                 BUG();
8186         }
8187         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8188         return ret;
8189 }
8190
8191 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8192                                      struct btrfs_fs_info *fs_info,
8193                                      u64 parent, u64 root_objectid,
8194                                      u64 flags, struct btrfs_disk_key *key,
8195                                      int level, struct btrfs_key *ins)
8196 {
8197         int ret;
8198         struct btrfs_extent_item *extent_item;
8199         struct btrfs_tree_block_info *block_info;
8200         struct btrfs_extent_inline_ref *iref;
8201         struct btrfs_path *path;
8202         struct extent_buffer *leaf;
8203         u32 size = sizeof(*extent_item) + sizeof(*iref);
8204         u64 num_bytes = ins->offset;
8205         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8206
8207         if (!skinny_metadata)
8208                 size += sizeof(*block_info);
8209
8210         path = btrfs_alloc_path();
8211         if (!path) {
8212                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8213                                                    fs_info->nodesize);
8214                 return -ENOMEM;
8215         }
8216
8217         path->leave_spinning = 1;
8218         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8219                                       ins, size);
8220         if (ret) {
8221                 btrfs_free_path(path);
8222                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8223                                                    fs_info->nodesize);
8224                 return ret;
8225         }
8226
8227         leaf = path->nodes[0];
8228         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8229                                      struct btrfs_extent_item);
8230         btrfs_set_extent_refs(leaf, extent_item, 1);
8231         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8232         btrfs_set_extent_flags(leaf, extent_item,
8233                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8234
8235         if (skinny_metadata) {
8236                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8237                 num_bytes = fs_info->nodesize;
8238         } else {
8239                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8240                 btrfs_set_tree_block_key(leaf, block_info, key);
8241                 btrfs_set_tree_block_level(leaf, block_info, level);
8242                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8243         }
8244
8245         if (parent > 0) {
8246                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8247                 btrfs_set_extent_inline_ref_type(leaf, iref,
8248                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8249                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8250         } else {
8251                 btrfs_set_extent_inline_ref_type(leaf, iref,
8252                                                  BTRFS_TREE_BLOCK_REF_KEY);
8253                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8254         }
8255
8256         btrfs_mark_buffer_dirty(leaf);
8257         btrfs_free_path(path);
8258
8259         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8260                                           num_bytes);
8261         if (ret)
8262                 return ret;
8263
8264         ret = update_block_group(trans, fs_info, ins->objectid,
8265                                  fs_info->nodesize, 1);
8266         if (ret) { /* -ENOENT, logic error */
8267                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8268                         ins->objectid, ins->offset);
8269                 BUG();
8270         }
8271
8272         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8273                                           fs_info->nodesize);
8274         return ret;
8275 }
8276
8277 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8278                                      struct btrfs_root *root, u64 owner,
8279                                      u64 offset, u64 ram_bytes,
8280                                      struct btrfs_key *ins)
8281 {
8282         struct btrfs_fs_info *fs_info = root->fs_info;
8283         int ret;
8284
8285         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8286
8287         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8288                            root->root_key.objectid, owner, offset,
8289                            BTRFS_ADD_DELAYED_EXTENT);
8290
8291         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8292                                          ins->offset, 0,
8293                                          root->root_key.objectid, owner,
8294                                          offset, ram_bytes,
8295                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8296         return ret;
8297 }
8298
8299 /*
8300  * this is used by the tree logging recovery code.  It records that
8301  * an extent has been allocated and makes sure to clear the free
8302  * space cache bits as well
8303  */
8304 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8305                                    struct btrfs_fs_info *fs_info,
8306                                    u64 root_objectid, u64 owner, u64 offset,
8307                                    struct btrfs_key *ins)
8308 {
8309         int ret;
8310         struct btrfs_block_group_cache *block_group;
8311         struct btrfs_space_info *space_info;
8312
8313         /*
8314          * Mixed block groups will exclude before processing the log so we only
8315          * need to do the exclude dance if this fs isn't mixed.
8316          */
8317         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8318                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8319                                               ins->offset);
8320                 if (ret)
8321                         return ret;
8322         }
8323
8324         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8325         if (!block_group)
8326                 return -EINVAL;
8327
8328         space_info = block_group->space_info;
8329         spin_lock(&space_info->lock);
8330         spin_lock(&block_group->lock);
8331         space_info->bytes_reserved += ins->offset;
8332         block_group->reserved += ins->offset;
8333         spin_unlock(&block_group->lock);
8334         spin_unlock(&space_info->lock);
8335
8336         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8337                                          0, owner, offset, ins, 1);
8338         btrfs_put_block_group(block_group);
8339         return ret;
8340 }
8341
8342 static struct extent_buffer *
8343 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8344                       u64 bytenr, int level)
8345 {
8346         struct btrfs_fs_info *fs_info = root->fs_info;
8347         struct extent_buffer *buf;
8348
8349         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8350         if (IS_ERR(buf))
8351                 return buf;
8352
8353         btrfs_set_header_generation(buf, trans->transid);
8354         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8355         btrfs_tree_lock(buf);
8356         clean_tree_block(fs_info, buf);
8357         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8358
8359         btrfs_set_lock_blocking(buf);
8360         set_extent_buffer_uptodate(buf);
8361
8362         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8363                 buf->log_index = root->log_transid % 2;
8364                 /*
8365                  * we allow two log transactions at a time, use different
8366                  * EXENT bit to differentiate dirty pages.
8367                  */
8368                 if (buf->log_index == 0)
8369                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8370                                         buf->start + buf->len - 1, GFP_NOFS);
8371                 else
8372                         set_extent_new(&root->dirty_log_pages, buf->start,
8373                                         buf->start + buf->len - 1);
8374         } else {
8375                 buf->log_index = -1;
8376                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8377                          buf->start + buf->len - 1, GFP_NOFS);
8378         }
8379         trans->dirty = true;
8380         /* this returns a buffer locked for blocking */
8381         return buf;
8382 }
8383
8384 static struct btrfs_block_rsv *
8385 use_block_rsv(struct btrfs_trans_handle *trans,
8386               struct btrfs_root *root, u32 blocksize)
8387 {
8388         struct btrfs_fs_info *fs_info = root->fs_info;
8389         struct btrfs_block_rsv *block_rsv;
8390         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8391         int ret;
8392         bool global_updated = false;
8393
8394         block_rsv = get_block_rsv(trans, root);
8395
8396         if (unlikely(block_rsv->size == 0))
8397                 goto try_reserve;
8398 again:
8399         ret = block_rsv_use_bytes(block_rsv, blocksize);
8400         if (!ret)
8401                 return block_rsv;
8402
8403         if (block_rsv->failfast)
8404                 return ERR_PTR(ret);
8405
8406         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8407                 global_updated = true;
8408                 update_global_block_rsv(fs_info);
8409                 goto again;
8410         }
8411
8412         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8413                 static DEFINE_RATELIMIT_STATE(_rs,
8414                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8415                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8416                 if (__ratelimit(&_rs))
8417                         WARN(1, KERN_DEBUG
8418                                 "BTRFS: block rsv returned %d\n", ret);
8419         }
8420 try_reserve:
8421         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8422                                      BTRFS_RESERVE_NO_FLUSH);
8423         if (!ret)
8424                 return block_rsv;
8425         /*
8426          * If we couldn't reserve metadata bytes try and use some from
8427          * the global reserve if its space type is the same as the global
8428          * reservation.
8429          */
8430         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8431             block_rsv->space_info == global_rsv->space_info) {
8432                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8433                 if (!ret)
8434                         return global_rsv;
8435         }
8436         return ERR_PTR(ret);
8437 }
8438
8439 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8440                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8441 {
8442         block_rsv_add_bytes(block_rsv, blocksize, 0);
8443         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8444 }
8445
8446 /*
8447  * finds a free extent and does all the dirty work required for allocation
8448  * returns the tree buffer or an ERR_PTR on error.
8449  */
8450 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8451                                              struct btrfs_root *root,
8452                                              u64 parent, u64 root_objectid,
8453                                              const struct btrfs_disk_key *key,
8454                                              int level, u64 hint,
8455                                              u64 empty_size)
8456 {
8457         struct btrfs_fs_info *fs_info = root->fs_info;
8458         struct btrfs_key ins;
8459         struct btrfs_block_rsv *block_rsv;
8460         struct extent_buffer *buf;
8461         struct btrfs_delayed_extent_op *extent_op;
8462         u64 flags = 0;
8463         int ret;
8464         u32 blocksize = fs_info->nodesize;
8465         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8466
8467 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8468         if (btrfs_is_testing(fs_info)) {
8469                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8470                                             level);
8471                 if (!IS_ERR(buf))
8472                         root->alloc_bytenr += blocksize;
8473                 return buf;
8474         }
8475 #endif
8476
8477         block_rsv = use_block_rsv(trans, root, blocksize);
8478         if (IS_ERR(block_rsv))
8479                 return ERR_CAST(block_rsv);
8480
8481         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8482                                    empty_size, hint, &ins, 0, 0);
8483         if (ret)
8484                 goto out_unuse;
8485
8486         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8487         if (IS_ERR(buf)) {
8488                 ret = PTR_ERR(buf);
8489                 goto out_free_reserved;
8490         }
8491
8492         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8493                 if (parent == 0)
8494                         parent = ins.objectid;
8495                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8496         } else
8497                 BUG_ON(parent > 0);
8498
8499         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8500                 extent_op = btrfs_alloc_delayed_extent_op();
8501                 if (!extent_op) {
8502                         ret = -ENOMEM;
8503                         goto out_free_buf;
8504                 }
8505                 if (key)
8506                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8507                 else
8508                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8509                 extent_op->flags_to_set = flags;
8510                 extent_op->update_key = skinny_metadata ? false : true;
8511                 extent_op->update_flags = true;
8512                 extent_op->is_data = false;
8513                 extent_op->level = level;
8514
8515                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8516                                    root_objectid, level, 0,
8517                                    BTRFS_ADD_DELAYED_EXTENT);
8518                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8519                                                  ins.offset, parent,
8520                                                  root_objectid, level,
8521                                                  BTRFS_ADD_DELAYED_EXTENT,
8522                                                  extent_op, NULL, NULL);
8523                 if (ret)
8524                         goto out_free_delayed;
8525         }
8526         return buf;
8527
8528 out_free_delayed:
8529         btrfs_free_delayed_extent_op(extent_op);
8530 out_free_buf:
8531         free_extent_buffer(buf);
8532 out_free_reserved:
8533         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8534 out_unuse:
8535         unuse_block_rsv(fs_info, block_rsv, blocksize);
8536         return ERR_PTR(ret);
8537 }
8538
8539 struct walk_control {
8540         u64 refs[BTRFS_MAX_LEVEL];
8541         u64 flags[BTRFS_MAX_LEVEL];
8542         struct btrfs_key update_progress;
8543         int stage;
8544         int level;
8545         int shared_level;
8546         int update_ref;
8547         int keep_locks;
8548         int reada_slot;
8549         int reada_count;
8550         int for_reloc;
8551 };
8552
8553 #define DROP_REFERENCE  1
8554 #define UPDATE_BACKREF  2
8555
8556 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8557                                      struct btrfs_root *root,
8558                                      struct walk_control *wc,
8559                                      struct btrfs_path *path)
8560 {
8561         struct btrfs_fs_info *fs_info = root->fs_info;
8562         u64 bytenr;
8563         u64 generation;
8564         u64 refs;
8565         u64 flags;
8566         u32 nritems;
8567         struct btrfs_key key;
8568         struct extent_buffer *eb;
8569         int ret;
8570         int slot;
8571         int nread = 0;
8572
8573         if (path->slots[wc->level] < wc->reada_slot) {
8574                 wc->reada_count = wc->reada_count * 2 / 3;
8575                 wc->reada_count = max(wc->reada_count, 2);
8576         } else {
8577                 wc->reada_count = wc->reada_count * 3 / 2;
8578                 wc->reada_count = min_t(int, wc->reada_count,
8579                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8580         }
8581
8582         eb = path->nodes[wc->level];
8583         nritems = btrfs_header_nritems(eb);
8584
8585         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8586                 if (nread >= wc->reada_count)
8587                         break;
8588
8589                 cond_resched();
8590                 bytenr = btrfs_node_blockptr(eb, slot);
8591                 generation = btrfs_node_ptr_generation(eb, slot);
8592
8593                 if (slot == path->slots[wc->level])
8594                         goto reada;
8595
8596                 if (wc->stage == UPDATE_BACKREF &&
8597                     generation <= root->root_key.offset)
8598                         continue;
8599
8600                 /* We don't lock the tree block, it's OK to be racy here */
8601                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8602                                                wc->level - 1, 1, &refs,
8603                                                &flags);
8604                 /* We don't care about errors in readahead. */
8605                 if (ret < 0)
8606                         continue;
8607                 BUG_ON(refs == 0);
8608
8609                 if (wc->stage == DROP_REFERENCE) {
8610                         if (refs == 1)
8611                                 goto reada;
8612
8613                         if (wc->level == 1 &&
8614                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8615                                 continue;
8616                         if (!wc->update_ref ||
8617                             generation <= root->root_key.offset)
8618                                 continue;
8619                         btrfs_node_key_to_cpu(eb, &key, slot);
8620                         ret = btrfs_comp_cpu_keys(&key,
8621                                                   &wc->update_progress);
8622                         if (ret < 0)
8623                                 continue;
8624                 } else {
8625                         if (wc->level == 1 &&
8626                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8627                                 continue;
8628                 }
8629 reada:
8630                 readahead_tree_block(fs_info, bytenr);
8631                 nread++;
8632         }
8633         wc->reada_slot = slot;
8634 }
8635
8636 /*
8637  * helper to process tree block while walking down the tree.
8638  *
8639  * when wc->stage == UPDATE_BACKREF, this function updates
8640  * back refs for pointers in the block.
8641  *
8642  * NOTE: return value 1 means we should stop walking down.
8643  */
8644 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8645                                    struct btrfs_root *root,
8646                                    struct btrfs_path *path,
8647                                    struct walk_control *wc, int lookup_info)
8648 {
8649         struct btrfs_fs_info *fs_info = root->fs_info;
8650         int level = wc->level;
8651         struct extent_buffer *eb = path->nodes[level];
8652         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8653         int ret;
8654
8655         if (wc->stage == UPDATE_BACKREF &&
8656             btrfs_header_owner(eb) != root->root_key.objectid)
8657                 return 1;
8658
8659         /*
8660          * when reference count of tree block is 1, it won't increase
8661          * again. once full backref flag is set, we never clear it.
8662          */
8663         if (lookup_info &&
8664             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8665              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8666                 BUG_ON(!path->locks[level]);
8667                 ret = btrfs_lookup_extent_info(trans, fs_info,
8668                                                eb->start, level, 1,
8669                                                &wc->refs[level],
8670                                                &wc->flags[level]);
8671                 BUG_ON(ret == -ENOMEM);
8672                 if (ret)
8673                         return ret;
8674                 BUG_ON(wc->refs[level] == 0);
8675         }
8676
8677         if (wc->stage == DROP_REFERENCE) {
8678                 if (wc->refs[level] > 1)
8679                         return 1;
8680
8681                 if (path->locks[level] && !wc->keep_locks) {
8682                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8683                         path->locks[level] = 0;
8684                 }
8685                 return 0;
8686         }
8687
8688         /* wc->stage == UPDATE_BACKREF */
8689         if (!(wc->flags[level] & flag)) {
8690                 BUG_ON(!path->locks[level]);
8691                 ret = btrfs_inc_ref(trans, root, eb, 1);
8692                 BUG_ON(ret); /* -ENOMEM */
8693                 ret = btrfs_dec_ref(trans, root, eb, 0);
8694                 BUG_ON(ret); /* -ENOMEM */
8695                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8696                                                   eb->len, flag,
8697                                                   btrfs_header_level(eb), 0);
8698                 BUG_ON(ret); /* -ENOMEM */
8699                 wc->flags[level] |= flag;
8700         }
8701
8702         /*
8703          * the block is shared by multiple trees, so it's not good to
8704          * keep the tree lock
8705          */
8706         if (path->locks[level] && level > 0) {
8707                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8708                 path->locks[level] = 0;
8709         }
8710         return 0;
8711 }
8712
8713 /*
8714  * helper to process tree block pointer.
8715  *
8716  * when wc->stage == DROP_REFERENCE, this function checks
8717  * reference count of the block pointed to. if the block
8718  * is shared and we need update back refs for the subtree
8719  * rooted at the block, this function changes wc->stage to
8720  * UPDATE_BACKREF. if the block is shared and there is no
8721  * need to update back, this function drops the reference
8722  * to the block.
8723  *
8724  * NOTE: return value 1 means we should stop walking down.
8725  */
8726 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8727                                  struct btrfs_root *root,
8728                                  struct btrfs_path *path,
8729                                  struct walk_control *wc, int *lookup_info)
8730 {
8731         struct btrfs_fs_info *fs_info = root->fs_info;
8732         u64 bytenr;
8733         u64 generation;
8734         u64 parent;
8735         u32 blocksize;
8736         struct btrfs_key key;
8737         struct btrfs_key first_key;
8738         struct extent_buffer *next;
8739         int level = wc->level;
8740         int reada = 0;
8741         int ret = 0;
8742         bool need_account = false;
8743
8744         generation = btrfs_node_ptr_generation(path->nodes[level],
8745                                                path->slots[level]);
8746         /*
8747          * if the lower level block was created before the snapshot
8748          * was created, we know there is no need to update back refs
8749          * for the subtree
8750          */
8751         if (wc->stage == UPDATE_BACKREF &&
8752             generation <= root->root_key.offset) {
8753                 *lookup_info = 1;
8754                 return 1;
8755         }
8756
8757         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8758         btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8759                               path->slots[level]);
8760         blocksize = fs_info->nodesize;
8761
8762         next = find_extent_buffer(fs_info, bytenr);
8763         if (!next) {
8764                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8765                 if (IS_ERR(next))
8766                         return PTR_ERR(next);
8767
8768                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8769                                                level - 1);
8770                 reada = 1;
8771         }
8772         btrfs_tree_lock(next);
8773         btrfs_set_lock_blocking(next);
8774
8775         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8776                                        &wc->refs[level - 1],
8777                                        &wc->flags[level - 1]);
8778         if (ret < 0)
8779                 goto out_unlock;
8780
8781         if (unlikely(wc->refs[level - 1] == 0)) {
8782                 btrfs_err(fs_info, "Missing references.");
8783                 ret = -EIO;
8784                 goto out_unlock;
8785         }
8786         *lookup_info = 0;
8787
8788         if (wc->stage == DROP_REFERENCE) {
8789                 if (wc->refs[level - 1] > 1) {
8790                         need_account = true;
8791                         if (level == 1 &&
8792                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8793                                 goto skip;
8794
8795                         if (!wc->update_ref ||
8796                             generation <= root->root_key.offset)
8797                                 goto skip;
8798
8799                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8800                                               path->slots[level]);
8801                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8802                         if (ret < 0)
8803                                 goto skip;
8804
8805                         wc->stage = UPDATE_BACKREF;
8806                         wc->shared_level = level - 1;
8807                 }
8808         } else {
8809                 if (level == 1 &&
8810                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8811                         goto skip;
8812         }
8813
8814         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8815                 btrfs_tree_unlock(next);
8816                 free_extent_buffer(next);
8817                 next = NULL;
8818                 *lookup_info = 1;
8819         }
8820
8821         if (!next) {
8822                 if (reada && level == 1)
8823                         reada_walk_down(trans, root, wc, path);
8824                 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8825                                        &first_key);
8826                 if (IS_ERR(next)) {
8827                         return PTR_ERR(next);
8828                 } else if (!extent_buffer_uptodate(next)) {
8829                         free_extent_buffer(next);
8830                         return -EIO;
8831                 }
8832                 btrfs_tree_lock(next);
8833                 btrfs_set_lock_blocking(next);
8834         }
8835
8836         level--;
8837         ASSERT(level == btrfs_header_level(next));
8838         if (level != btrfs_header_level(next)) {
8839                 btrfs_err(root->fs_info, "mismatched level");
8840                 ret = -EIO;
8841                 goto out_unlock;
8842         }
8843         path->nodes[level] = next;
8844         path->slots[level] = 0;
8845         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8846         wc->level = level;
8847         if (wc->level == 1)
8848                 wc->reada_slot = 0;
8849         return 0;
8850 skip:
8851         wc->refs[level - 1] = 0;
8852         wc->flags[level - 1] = 0;
8853         if (wc->stage == DROP_REFERENCE) {
8854                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8855                         parent = path->nodes[level]->start;
8856                 } else {
8857                         ASSERT(root->root_key.objectid ==
8858                                btrfs_header_owner(path->nodes[level]));
8859                         if (root->root_key.objectid !=
8860                             btrfs_header_owner(path->nodes[level])) {
8861                                 btrfs_err(root->fs_info,
8862                                                 "mismatched block owner");
8863                                 ret = -EIO;
8864                                 goto out_unlock;
8865                         }
8866                         parent = 0;
8867                 }
8868
8869                 if (need_account) {
8870                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8871                                                          generation, level - 1);
8872                         if (ret) {
8873                                 btrfs_err_rl(fs_info,
8874                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8875                                              ret);
8876                         }
8877                 }
8878                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8879                                         parent, root->root_key.objectid,
8880                                         level - 1, 0);
8881                 if (ret)
8882                         goto out_unlock;
8883         }
8884
8885         *lookup_info = 1;
8886         ret = 1;
8887
8888 out_unlock:
8889         btrfs_tree_unlock(next);
8890         free_extent_buffer(next);
8891
8892         return ret;
8893 }
8894
8895 /*
8896  * helper to process tree block while walking up the tree.
8897  *
8898  * when wc->stage == DROP_REFERENCE, this function drops
8899  * reference count on the block.
8900  *
8901  * when wc->stage == UPDATE_BACKREF, this function changes
8902  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8903  * to UPDATE_BACKREF previously while processing the block.
8904  *
8905  * NOTE: return value 1 means we should stop walking up.
8906  */
8907 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8908                                  struct btrfs_root *root,
8909                                  struct btrfs_path *path,
8910                                  struct walk_control *wc)
8911 {
8912         struct btrfs_fs_info *fs_info = root->fs_info;
8913         int ret;
8914         int level = wc->level;
8915         struct extent_buffer *eb = path->nodes[level];
8916         u64 parent = 0;
8917
8918         if (wc->stage == UPDATE_BACKREF) {
8919                 BUG_ON(wc->shared_level < level);
8920                 if (level < wc->shared_level)
8921                         goto out;
8922
8923                 ret = find_next_key(path, level + 1, &wc->update_progress);
8924                 if (ret > 0)
8925                         wc->update_ref = 0;
8926
8927                 wc->stage = DROP_REFERENCE;
8928                 wc->shared_level = -1;
8929                 path->slots[level] = 0;
8930
8931                 /*
8932                  * check reference count again if the block isn't locked.
8933                  * we should start walking down the tree again if reference
8934                  * count is one.
8935                  */
8936                 if (!path->locks[level]) {
8937                         BUG_ON(level == 0);
8938                         btrfs_tree_lock(eb);
8939                         btrfs_set_lock_blocking(eb);
8940                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8941
8942                         ret = btrfs_lookup_extent_info(trans, fs_info,
8943                                                        eb->start, level, 1,
8944                                                        &wc->refs[level],
8945                                                        &wc->flags[level]);
8946                         if (ret < 0) {
8947                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8948                                 path->locks[level] = 0;
8949                                 return ret;
8950                         }
8951                         BUG_ON(wc->refs[level] == 0);
8952                         if (wc->refs[level] == 1) {
8953                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8954                                 path->locks[level] = 0;
8955                                 return 1;
8956                         }
8957                 }
8958         }
8959
8960         /* wc->stage == DROP_REFERENCE */
8961         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8962
8963         if (wc->refs[level] == 1) {
8964                 if (level == 0) {
8965                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8966                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8967                         else
8968                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8969                         BUG_ON(ret); /* -ENOMEM */
8970                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8971                         if (ret) {
8972                                 btrfs_err_rl(fs_info,
8973                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8974                                              ret);
8975                         }
8976                 }
8977                 /* make block locked assertion in clean_tree_block happy */
8978                 if (!path->locks[level] &&
8979                     btrfs_header_generation(eb) == trans->transid) {
8980                         btrfs_tree_lock(eb);
8981                         btrfs_set_lock_blocking(eb);
8982                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8983                 }
8984                 clean_tree_block(fs_info, eb);
8985         }
8986
8987         if (eb == root->node) {
8988                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8989                         parent = eb->start;
8990                 else
8991                         BUG_ON(root->root_key.objectid !=
8992                                btrfs_header_owner(eb));
8993         } else {
8994                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8995                         parent = path->nodes[level + 1]->start;
8996                 else
8997                         BUG_ON(root->root_key.objectid !=
8998                                btrfs_header_owner(path->nodes[level + 1]));
8999         }
9000
9001         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9002 out:
9003         wc->refs[level] = 0;
9004         wc->flags[level] = 0;
9005         return 0;
9006 }
9007
9008 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9009                                    struct btrfs_root *root,
9010                                    struct btrfs_path *path,
9011                                    struct walk_control *wc)
9012 {
9013         int level = wc->level;
9014         int lookup_info = 1;
9015         int ret;
9016
9017         while (level >= 0) {
9018                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9019                 if (ret > 0)
9020                         break;
9021
9022                 if (level == 0)
9023                         break;
9024
9025                 if (path->slots[level] >=
9026                     btrfs_header_nritems(path->nodes[level]))
9027                         break;
9028
9029                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9030                 if (ret > 0) {
9031                         path->slots[level]++;
9032                         continue;
9033                 } else if (ret < 0)
9034                         return ret;
9035                 level = wc->level;
9036         }
9037         return 0;
9038 }
9039
9040 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9041                                  struct btrfs_root *root,
9042                                  struct btrfs_path *path,
9043                                  struct walk_control *wc, int max_level)
9044 {
9045         int level = wc->level;
9046         int ret;
9047
9048         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9049         while (level < max_level && path->nodes[level]) {
9050                 wc->level = level;
9051                 if (path->slots[level] + 1 <
9052                     btrfs_header_nritems(path->nodes[level])) {
9053                         path->slots[level]++;
9054                         return 0;
9055                 } else {
9056                         ret = walk_up_proc(trans, root, path, wc);
9057                         if (ret > 0)
9058                                 return 0;
9059
9060                         if (path->locks[level]) {
9061                                 btrfs_tree_unlock_rw(path->nodes[level],
9062                                                      path->locks[level]);
9063                                 path->locks[level] = 0;
9064                         }
9065                         free_extent_buffer(path->nodes[level]);
9066                         path->nodes[level] = NULL;
9067                         level++;
9068                 }
9069         }
9070         return 1;
9071 }
9072
9073 /*
9074  * drop a subvolume tree.
9075  *
9076  * this function traverses the tree freeing any blocks that only
9077  * referenced by the tree.
9078  *
9079  * when a shared tree block is found. this function decreases its
9080  * reference count by one. if update_ref is true, this function
9081  * also make sure backrefs for the shared block and all lower level
9082  * blocks are properly updated.
9083  *
9084  * If called with for_reloc == 0, may exit early with -EAGAIN
9085  */
9086 int btrfs_drop_snapshot(struct btrfs_root *root,
9087                          struct btrfs_block_rsv *block_rsv, int update_ref,
9088                          int for_reloc)
9089 {
9090         struct btrfs_fs_info *fs_info = root->fs_info;
9091         struct btrfs_path *path;
9092         struct btrfs_trans_handle *trans;
9093         struct btrfs_root *tree_root = fs_info->tree_root;
9094         struct btrfs_root_item *root_item = &root->root_item;
9095         struct walk_control *wc;
9096         struct btrfs_key key;
9097         int err = 0;
9098         int ret;
9099         int level;
9100         bool root_dropped = false;
9101
9102         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9103
9104         path = btrfs_alloc_path();
9105         if (!path) {
9106                 err = -ENOMEM;
9107                 goto out;
9108         }
9109
9110         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9111         if (!wc) {
9112                 btrfs_free_path(path);
9113                 err = -ENOMEM;
9114                 goto out;
9115         }
9116
9117         trans = btrfs_start_transaction(tree_root, 0);
9118         if (IS_ERR(trans)) {
9119                 err = PTR_ERR(trans);
9120                 goto out_free;
9121         }
9122
9123         if (block_rsv)
9124                 trans->block_rsv = block_rsv;
9125
9126         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9127                 level = btrfs_header_level(root->node);
9128                 path->nodes[level] = btrfs_lock_root_node(root);
9129                 btrfs_set_lock_blocking(path->nodes[level]);
9130                 path->slots[level] = 0;
9131                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9132                 memset(&wc->update_progress, 0,
9133                        sizeof(wc->update_progress));
9134         } else {
9135                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9136                 memcpy(&wc->update_progress, &key,
9137                        sizeof(wc->update_progress));
9138
9139                 level = root_item->drop_level;
9140                 BUG_ON(level == 0);
9141                 path->lowest_level = level;
9142                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9143                 path->lowest_level = 0;
9144                 if (ret < 0) {
9145                         err = ret;
9146                         goto out_end_trans;
9147                 }
9148                 WARN_ON(ret > 0);
9149
9150                 /*
9151                  * unlock our path, this is safe because only this
9152                  * function is allowed to delete this snapshot
9153                  */
9154                 btrfs_unlock_up_safe(path, 0);
9155
9156                 level = btrfs_header_level(root->node);
9157                 while (1) {
9158                         btrfs_tree_lock(path->nodes[level]);
9159                         btrfs_set_lock_blocking(path->nodes[level]);
9160                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9161
9162                         ret = btrfs_lookup_extent_info(trans, fs_info,
9163                                                 path->nodes[level]->start,
9164                                                 level, 1, &wc->refs[level],
9165                                                 &wc->flags[level]);
9166                         if (ret < 0) {
9167                                 err = ret;
9168                                 goto out_end_trans;
9169                         }
9170                         BUG_ON(wc->refs[level] == 0);
9171
9172                         if (level == root_item->drop_level)
9173                                 break;
9174
9175                         btrfs_tree_unlock(path->nodes[level]);
9176                         path->locks[level] = 0;
9177                         WARN_ON(wc->refs[level] != 1);
9178                         level--;
9179                 }
9180         }
9181
9182         wc->level = level;
9183         wc->shared_level = -1;
9184         wc->stage = DROP_REFERENCE;
9185         wc->update_ref = update_ref;
9186         wc->keep_locks = 0;
9187         wc->for_reloc = for_reloc;
9188         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9189
9190         while (1) {
9191
9192                 ret = walk_down_tree(trans, root, path, wc);
9193                 if (ret < 0) {
9194                         err = ret;
9195                         break;
9196                 }
9197
9198                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9199                 if (ret < 0) {
9200                         err = ret;
9201                         break;
9202                 }
9203
9204                 if (ret > 0) {
9205                         BUG_ON(wc->stage != DROP_REFERENCE);
9206                         break;
9207                 }
9208
9209                 if (wc->stage == DROP_REFERENCE) {
9210                         level = wc->level;
9211                         btrfs_node_key(path->nodes[level],
9212                                        &root_item->drop_progress,
9213                                        path->slots[level]);
9214                         root_item->drop_level = level;
9215                 }
9216
9217                 BUG_ON(wc->level == 0);
9218                 if (btrfs_should_end_transaction(trans) ||
9219                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9220                         ret = btrfs_update_root(trans, tree_root,
9221                                                 &root->root_key,
9222                                                 root_item);
9223                         if (ret) {
9224                                 btrfs_abort_transaction(trans, ret);
9225                                 err = ret;
9226                                 goto out_end_trans;
9227                         }
9228
9229                         btrfs_end_transaction_throttle(trans);
9230                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9231                                 btrfs_debug(fs_info,
9232                                             "drop snapshot early exit");
9233                                 err = -EAGAIN;
9234                                 goto out_free;
9235                         }
9236
9237                         trans = btrfs_start_transaction(tree_root, 0);
9238                         if (IS_ERR(trans)) {
9239                                 err = PTR_ERR(trans);
9240                                 goto out_free;
9241                         }
9242                         if (block_rsv)
9243                                 trans->block_rsv = block_rsv;
9244                 }
9245         }
9246         btrfs_release_path(path);
9247         if (err)
9248                 goto out_end_trans;
9249
9250         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9251         if (ret) {
9252                 btrfs_abort_transaction(trans, ret);
9253                 err = ret;
9254                 goto out_end_trans;
9255         }
9256
9257         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9258                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9259                                       NULL, NULL);
9260                 if (ret < 0) {
9261                         btrfs_abort_transaction(trans, ret);
9262                         err = ret;
9263                         goto out_end_trans;
9264                 } else if (ret > 0) {
9265                         /* if we fail to delete the orphan item this time
9266                          * around, it'll get picked up the next time.
9267                          *
9268                          * The most common failure here is just -ENOENT.
9269                          */
9270                         btrfs_del_orphan_item(trans, tree_root,
9271                                               root->root_key.objectid);
9272                 }
9273         }
9274
9275         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9276                 btrfs_add_dropped_root(trans, root);
9277         } else {
9278                 free_extent_buffer(root->node);
9279                 free_extent_buffer(root->commit_root);
9280                 btrfs_put_fs_root(root);
9281         }
9282         root_dropped = true;
9283 out_end_trans:
9284         btrfs_end_transaction_throttle(trans);
9285 out_free:
9286         kfree(wc);
9287         btrfs_free_path(path);
9288 out:
9289         /*
9290          * So if we need to stop dropping the snapshot for whatever reason we
9291          * need to make sure to add it back to the dead root list so that we
9292          * keep trying to do the work later.  This also cleans up roots if we
9293          * don't have it in the radix (like when we recover after a power fail
9294          * or unmount) so we don't leak memory.
9295          */
9296         if (!for_reloc && !root_dropped)
9297                 btrfs_add_dead_root(root);
9298         if (err && err != -EAGAIN)
9299                 btrfs_handle_fs_error(fs_info, err, NULL);
9300         return err;
9301 }
9302
9303 /*
9304  * drop subtree rooted at tree block 'node'.
9305  *
9306  * NOTE: this function will unlock and release tree block 'node'
9307  * only used by relocation code
9308  */
9309 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9310                         struct btrfs_root *root,
9311                         struct extent_buffer *node,
9312                         struct extent_buffer *parent)
9313 {
9314         struct btrfs_fs_info *fs_info = root->fs_info;
9315         struct btrfs_path *path;
9316         struct walk_control *wc;
9317         int level;
9318         int parent_level;
9319         int ret = 0;
9320         int wret;
9321
9322         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9323
9324         path = btrfs_alloc_path();
9325         if (!path)
9326                 return -ENOMEM;
9327
9328         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9329         if (!wc) {
9330                 btrfs_free_path(path);
9331                 return -ENOMEM;
9332         }
9333
9334         btrfs_assert_tree_locked(parent);
9335         parent_level = btrfs_header_level(parent);
9336         extent_buffer_get(parent);
9337         path->nodes[parent_level] = parent;
9338         path->slots[parent_level] = btrfs_header_nritems(parent);
9339
9340         btrfs_assert_tree_locked(node);
9341         level = btrfs_header_level(node);
9342         path->nodes[level] = node;
9343         path->slots[level] = 0;
9344         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9345
9346         wc->refs[parent_level] = 1;
9347         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9348         wc->level = level;
9349         wc->shared_level = -1;
9350         wc->stage = DROP_REFERENCE;
9351         wc->update_ref = 0;
9352         wc->keep_locks = 1;
9353         wc->for_reloc = 1;
9354         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9355
9356         while (1) {
9357                 wret = walk_down_tree(trans, root, path, wc);
9358                 if (wret < 0) {
9359                         ret = wret;
9360                         break;
9361                 }
9362
9363                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9364                 if (wret < 0)
9365                         ret = wret;
9366                 if (wret != 0)
9367                         break;
9368         }
9369
9370         kfree(wc);
9371         btrfs_free_path(path);
9372         return ret;
9373 }
9374
9375 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9376 {
9377         u64 num_devices;
9378         u64 stripped;
9379
9380         /*
9381          * if restripe for this chunk_type is on pick target profile and
9382          * return, otherwise do the usual balance
9383          */
9384         stripped = get_restripe_target(fs_info, flags);
9385         if (stripped)
9386                 return extended_to_chunk(stripped);
9387
9388         num_devices = fs_info->fs_devices->rw_devices;
9389
9390         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9391                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9392                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9393
9394         if (num_devices == 1) {
9395                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9396                 stripped = flags & ~stripped;
9397
9398                 /* turn raid0 into single device chunks */
9399                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9400                         return stripped;
9401
9402                 /* turn mirroring into duplication */
9403                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9404                              BTRFS_BLOCK_GROUP_RAID10))
9405                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9406         } else {
9407                 /* they already had raid on here, just return */
9408                 if (flags & stripped)
9409                         return flags;
9410
9411                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9412                 stripped = flags & ~stripped;
9413
9414                 /* switch duplicated blocks with raid1 */
9415                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9416                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9417
9418                 /* this is drive concat, leave it alone */
9419         }
9420
9421         return flags;
9422 }
9423
9424 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9425 {
9426         struct btrfs_space_info *sinfo = cache->space_info;
9427         u64 num_bytes;
9428         u64 min_allocable_bytes;
9429         int ret = -ENOSPC;
9430
9431         /*
9432          * We need some metadata space and system metadata space for
9433          * allocating chunks in some corner cases until we force to set
9434          * it to be readonly.
9435          */
9436         if ((sinfo->flags &
9437              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9438             !force)
9439                 min_allocable_bytes = SZ_1M;
9440         else
9441                 min_allocable_bytes = 0;
9442
9443         spin_lock(&sinfo->lock);
9444         spin_lock(&cache->lock);
9445
9446         if (cache->ro) {
9447                 cache->ro++;
9448                 ret = 0;
9449                 goto out;
9450         }
9451
9452         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9453                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9454
9455         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9456             min_allocable_bytes <= sinfo->total_bytes) {
9457                 sinfo->bytes_readonly += num_bytes;
9458                 cache->ro++;
9459                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9460                 ret = 0;
9461         }
9462 out:
9463         spin_unlock(&cache->lock);
9464         spin_unlock(&sinfo->lock);
9465         return ret;
9466 }
9467
9468 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9469                              struct btrfs_block_group_cache *cache)
9470
9471 {
9472         struct btrfs_trans_handle *trans;
9473         u64 alloc_flags;
9474         int ret;
9475
9476 again:
9477         trans = btrfs_join_transaction(fs_info->extent_root);
9478         if (IS_ERR(trans))
9479                 return PTR_ERR(trans);
9480
9481         /*
9482          * we're not allowed to set block groups readonly after the dirty
9483          * block groups cache has started writing.  If it already started,
9484          * back off and let this transaction commit
9485          */
9486         mutex_lock(&fs_info->ro_block_group_mutex);
9487         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9488                 u64 transid = trans->transid;
9489
9490                 mutex_unlock(&fs_info->ro_block_group_mutex);
9491                 btrfs_end_transaction(trans);
9492
9493                 ret = btrfs_wait_for_commit(fs_info, transid);
9494                 if (ret)
9495                         return ret;
9496                 goto again;
9497         }
9498
9499         /*
9500          * if we are changing raid levels, try to allocate a corresponding
9501          * block group with the new raid level.
9502          */
9503         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9504         if (alloc_flags != cache->flags) {
9505                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9506                                      CHUNK_ALLOC_FORCE);
9507                 /*
9508                  * ENOSPC is allowed here, we may have enough space
9509                  * already allocated at the new raid level to
9510                  * carry on
9511                  */
9512                 if (ret == -ENOSPC)
9513                         ret = 0;
9514                 if (ret < 0)
9515                         goto out;
9516         }
9517
9518         ret = inc_block_group_ro(cache, 0);
9519         if (!ret)
9520                 goto out;
9521         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9522         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9523                              CHUNK_ALLOC_FORCE);
9524         if (ret < 0)
9525                 goto out;
9526         ret = inc_block_group_ro(cache, 0);
9527 out:
9528         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9529                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9530                 mutex_lock(&fs_info->chunk_mutex);
9531                 check_system_chunk(trans, fs_info, alloc_flags);
9532                 mutex_unlock(&fs_info->chunk_mutex);
9533         }
9534         mutex_unlock(&fs_info->ro_block_group_mutex);
9535
9536         btrfs_end_transaction(trans);
9537         return ret;
9538 }
9539
9540 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9541                             struct btrfs_fs_info *fs_info, u64 type)
9542 {
9543         u64 alloc_flags = get_alloc_profile(fs_info, type);
9544
9545         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9546 }
9547
9548 /*
9549  * helper to account the unused space of all the readonly block group in the
9550  * space_info. takes mirrors into account.
9551  */
9552 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9553 {
9554         struct btrfs_block_group_cache *block_group;
9555         u64 free_bytes = 0;
9556         int factor;
9557
9558         /* It's df, we don't care if it's racy */
9559         if (list_empty(&sinfo->ro_bgs))
9560                 return 0;
9561
9562         spin_lock(&sinfo->lock);
9563         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9564                 spin_lock(&block_group->lock);
9565
9566                 if (!block_group->ro) {
9567                         spin_unlock(&block_group->lock);
9568                         continue;
9569                 }
9570
9571                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9572                                           BTRFS_BLOCK_GROUP_RAID10 |
9573                                           BTRFS_BLOCK_GROUP_DUP))
9574                         factor = 2;
9575                 else
9576                         factor = 1;
9577
9578                 free_bytes += (block_group->key.offset -
9579                                btrfs_block_group_used(&block_group->item)) *
9580                                factor;
9581
9582                 spin_unlock(&block_group->lock);
9583         }
9584         spin_unlock(&sinfo->lock);
9585
9586         return free_bytes;
9587 }
9588
9589 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9590 {
9591         struct btrfs_space_info *sinfo = cache->space_info;
9592         u64 num_bytes;
9593
9594         BUG_ON(!cache->ro);
9595
9596         spin_lock(&sinfo->lock);
9597         spin_lock(&cache->lock);
9598         if (!--cache->ro) {
9599                 num_bytes = cache->key.offset - cache->reserved -
9600                             cache->pinned - cache->bytes_super -
9601                             btrfs_block_group_used(&cache->item);
9602                 sinfo->bytes_readonly -= num_bytes;
9603                 list_del_init(&cache->ro_list);
9604         }
9605         spin_unlock(&cache->lock);
9606         spin_unlock(&sinfo->lock);
9607 }
9608
9609 /*
9610  * checks to see if its even possible to relocate this block group.
9611  *
9612  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9613  * ok to go ahead and try.
9614  */
9615 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9616 {
9617         struct btrfs_root *root = fs_info->extent_root;
9618         struct btrfs_block_group_cache *block_group;
9619         struct btrfs_space_info *space_info;
9620         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9621         struct btrfs_device *device;
9622         struct btrfs_trans_handle *trans;
9623         u64 min_free;
9624         u64 dev_min = 1;
9625         u64 dev_nr = 0;
9626         u64 target;
9627         int debug;
9628         int index;
9629         int full = 0;
9630         int ret = 0;
9631
9632         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9633
9634         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9635
9636         /* odd, couldn't find the block group, leave it alone */
9637         if (!block_group) {
9638                 if (debug)
9639                         btrfs_warn(fs_info,
9640                                    "can't find block group for bytenr %llu",
9641                                    bytenr);
9642                 return -1;
9643         }
9644
9645         min_free = btrfs_block_group_used(&block_group->item);
9646
9647         /* no bytes used, we're good */
9648         if (!min_free)
9649                 goto out;
9650
9651         space_info = block_group->space_info;
9652         spin_lock(&space_info->lock);
9653
9654         full = space_info->full;
9655
9656         /*
9657          * if this is the last block group we have in this space, we can't
9658          * relocate it unless we're able to allocate a new chunk below.
9659          *
9660          * Otherwise, we need to make sure we have room in the space to handle
9661          * all of the extents from this block group.  If we can, we're good
9662          */
9663         if ((space_info->total_bytes != block_group->key.offset) &&
9664             (btrfs_space_info_used(space_info, false) + min_free <
9665              space_info->total_bytes)) {
9666                 spin_unlock(&space_info->lock);
9667                 goto out;
9668         }
9669         spin_unlock(&space_info->lock);
9670
9671         /*
9672          * ok we don't have enough space, but maybe we have free space on our
9673          * devices to allocate new chunks for relocation, so loop through our
9674          * alloc devices and guess if we have enough space.  if this block
9675          * group is going to be restriped, run checks against the target
9676          * profile instead of the current one.
9677          */
9678         ret = -1;
9679
9680         /*
9681          * index:
9682          *      0: raid10
9683          *      1: raid1
9684          *      2: dup
9685          *      3: raid0
9686          *      4: single
9687          */
9688         target = get_restripe_target(fs_info, block_group->flags);
9689         if (target) {
9690                 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9691         } else {
9692                 /*
9693                  * this is just a balance, so if we were marked as full
9694                  * we know there is no space for a new chunk
9695                  */
9696                 if (full) {
9697                         if (debug)
9698                                 btrfs_warn(fs_info,
9699                                            "no space to alloc new chunk for block group %llu",
9700                                            block_group->key.objectid);
9701                         goto out;
9702                 }
9703
9704                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9705         }
9706
9707         if (index == BTRFS_RAID_RAID10) {
9708                 dev_min = 4;
9709                 /* Divide by 2 */
9710                 min_free >>= 1;
9711         } else if (index == BTRFS_RAID_RAID1) {
9712                 dev_min = 2;
9713         } else if (index == BTRFS_RAID_DUP) {
9714                 /* Multiply by 2 */
9715                 min_free <<= 1;
9716         } else if (index == BTRFS_RAID_RAID0) {
9717                 dev_min = fs_devices->rw_devices;
9718                 min_free = div64_u64(min_free, dev_min);
9719         }
9720
9721         /* We need to do this so that we can look at pending chunks */
9722         trans = btrfs_join_transaction(root);
9723         if (IS_ERR(trans)) {
9724                 ret = PTR_ERR(trans);
9725                 goto out;
9726         }
9727
9728         mutex_lock(&fs_info->chunk_mutex);
9729         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9730                 u64 dev_offset;
9731
9732                 /*
9733                  * check to make sure we can actually find a chunk with enough
9734                  * space to fit our block group in.
9735                  */
9736                 if (device->total_bytes > device->bytes_used + min_free &&
9737                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9738                         ret = find_free_dev_extent(trans, device, min_free,
9739                                                    &dev_offset, NULL);
9740                         if (!ret)
9741                                 dev_nr++;
9742
9743                         if (dev_nr >= dev_min)
9744                                 break;
9745
9746                         ret = -1;
9747                 }
9748         }
9749         if (debug && ret == -1)
9750                 btrfs_warn(fs_info,
9751                            "no space to allocate a new chunk for block group %llu",
9752                            block_group->key.objectid);
9753         mutex_unlock(&fs_info->chunk_mutex);
9754         btrfs_end_transaction(trans);
9755 out:
9756         btrfs_put_block_group(block_group);
9757         return ret;
9758 }
9759
9760 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9761                                   struct btrfs_path *path,
9762                                   struct btrfs_key *key)
9763 {
9764         struct btrfs_root *root = fs_info->extent_root;
9765         int ret = 0;
9766         struct btrfs_key found_key;
9767         struct extent_buffer *leaf;
9768         int slot;
9769
9770         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9771         if (ret < 0)
9772                 goto out;
9773
9774         while (1) {
9775                 slot = path->slots[0];
9776                 leaf = path->nodes[0];
9777                 if (slot >= btrfs_header_nritems(leaf)) {
9778                         ret = btrfs_next_leaf(root, path);
9779                         if (ret == 0)
9780                                 continue;
9781                         if (ret < 0)
9782                                 goto out;
9783                         break;
9784                 }
9785                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9786
9787                 if (found_key.objectid >= key->objectid &&
9788                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9789                         struct extent_map_tree *em_tree;
9790                         struct extent_map *em;
9791
9792                         em_tree = &root->fs_info->mapping_tree.map_tree;
9793                         read_lock(&em_tree->lock);
9794                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9795                                                    found_key.offset);
9796                         read_unlock(&em_tree->lock);
9797                         if (!em) {
9798                                 btrfs_err(fs_info,
9799                         "logical %llu len %llu found bg but no related chunk",
9800                                           found_key.objectid, found_key.offset);
9801                                 ret = -ENOENT;
9802                         } else {
9803                                 ret = 0;
9804                         }
9805                         free_extent_map(em);
9806                         goto out;
9807                 }
9808                 path->slots[0]++;
9809         }
9810 out:
9811         return ret;
9812 }
9813
9814 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9815 {
9816         struct btrfs_block_group_cache *block_group;
9817         u64 last = 0;
9818
9819         while (1) {
9820                 struct inode *inode;
9821
9822                 block_group = btrfs_lookup_first_block_group(info, last);
9823                 while (block_group) {
9824                         spin_lock(&block_group->lock);
9825                         if (block_group->iref)
9826                                 break;
9827                         spin_unlock(&block_group->lock);
9828                         block_group = next_block_group(info, block_group);
9829                 }
9830                 if (!block_group) {
9831                         if (last == 0)
9832                                 break;
9833                         last = 0;
9834                         continue;
9835                 }
9836
9837                 inode = block_group->inode;
9838                 block_group->iref = 0;
9839                 block_group->inode = NULL;
9840                 spin_unlock(&block_group->lock);
9841                 ASSERT(block_group->io_ctl.inode == NULL);
9842                 iput(inode);
9843                 last = block_group->key.objectid + block_group->key.offset;
9844                 btrfs_put_block_group(block_group);
9845         }
9846 }
9847
9848 /*
9849  * Must be called only after stopping all workers, since we could have block
9850  * group caching kthreads running, and therefore they could race with us if we
9851  * freed the block groups before stopping them.
9852  */
9853 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9854 {
9855         struct btrfs_block_group_cache *block_group;
9856         struct btrfs_space_info *space_info;
9857         struct btrfs_caching_control *caching_ctl;
9858         struct rb_node *n;
9859
9860         down_write(&info->commit_root_sem);
9861         while (!list_empty(&info->caching_block_groups)) {
9862                 caching_ctl = list_entry(info->caching_block_groups.next,
9863                                          struct btrfs_caching_control, list);
9864                 list_del(&caching_ctl->list);
9865                 put_caching_control(caching_ctl);
9866         }
9867         up_write(&info->commit_root_sem);
9868
9869         spin_lock(&info->unused_bgs_lock);
9870         while (!list_empty(&info->unused_bgs)) {
9871                 block_group = list_first_entry(&info->unused_bgs,
9872                                                struct btrfs_block_group_cache,
9873                                                bg_list);
9874                 list_del_init(&block_group->bg_list);
9875                 btrfs_put_block_group(block_group);
9876         }
9877         spin_unlock(&info->unused_bgs_lock);
9878
9879         spin_lock(&info->block_group_cache_lock);
9880         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9881                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9882                                        cache_node);
9883                 rb_erase(&block_group->cache_node,
9884                          &info->block_group_cache_tree);
9885                 RB_CLEAR_NODE(&block_group->cache_node);
9886                 spin_unlock(&info->block_group_cache_lock);
9887
9888                 down_write(&block_group->space_info->groups_sem);
9889                 list_del(&block_group->list);
9890                 up_write(&block_group->space_info->groups_sem);
9891
9892                 /*
9893                  * We haven't cached this block group, which means we could
9894                  * possibly have excluded extents on this block group.
9895                  */
9896                 if (block_group->cached == BTRFS_CACHE_NO ||
9897                     block_group->cached == BTRFS_CACHE_ERROR)
9898                         free_excluded_extents(info, block_group);
9899
9900                 btrfs_remove_free_space_cache(block_group);
9901                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9902                 ASSERT(list_empty(&block_group->dirty_list));
9903                 ASSERT(list_empty(&block_group->io_list));
9904                 ASSERT(list_empty(&block_group->bg_list));
9905                 ASSERT(atomic_read(&block_group->count) == 1);
9906                 btrfs_put_block_group(block_group);
9907
9908                 spin_lock(&info->block_group_cache_lock);
9909         }
9910         spin_unlock(&info->block_group_cache_lock);
9911
9912         /* now that all the block groups are freed, go through and
9913          * free all the space_info structs.  This is only called during
9914          * the final stages of unmount, and so we know nobody is
9915          * using them.  We call synchronize_rcu() once before we start,
9916          * just to be on the safe side.
9917          */
9918         synchronize_rcu();
9919
9920         release_global_block_rsv(info);
9921
9922         while (!list_empty(&info->space_info)) {
9923                 int i;
9924
9925                 space_info = list_entry(info->space_info.next,
9926                                         struct btrfs_space_info,
9927                                         list);
9928
9929                 /*
9930                  * Do not hide this behind enospc_debug, this is actually
9931                  * important and indicates a real bug if this happens.
9932                  */
9933                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9934                             space_info->bytes_reserved > 0 ||
9935                             space_info->bytes_may_use > 0))
9936                         dump_space_info(info, space_info, 0, 0);
9937                 list_del(&space_info->list);
9938                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9939                         struct kobject *kobj;
9940                         kobj = space_info->block_group_kobjs[i];
9941                         space_info->block_group_kobjs[i] = NULL;
9942                         if (kobj) {
9943                                 kobject_del(kobj);
9944                                 kobject_put(kobj);
9945                         }
9946                 }
9947                 kobject_del(&space_info->kobj);
9948                 kobject_put(&space_info->kobj);
9949         }
9950         return 0;
9951 }
9952
9953 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9954 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9955 {
9956         struct btrfs_space_info *space_info;
9957         struct raid_kobject *rkobj;
9958         LIST_HEAD(list);
9959         int index;
9960         int ret = 0;
9961
9962         spin_lock(&fs_info->pending_raid_kobjs_lock);
9963         list_splice_init(&fs_info->pending_raid_kobjs, &list);
9964         spin_unlock(&fs_info->pending_raid_kobjs_lock);
9965
9966         list_for_each_entry(rkobj, &list, list) {
9967                 space_info = __find_space_info(fs_info, rkobj->flags);
9968                 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9969
9970                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9971                                   "%s", get_raid_name(index));
9972                 if (ret) {
9973                         kobject_put(&rkobj->kobj);
9974                         break;
9975                 }
9976         }
9977         if (ret)
9978                 btrfs_warn(fs_info,
9979                            "failed to add kobject for block cache, ignoring");
9980 }
9981
9982 static void link_block_group(struct btrfs_block_group_cache *cache)
9983 {
9984         struct btrfs_space_info *space_info = cache->space_info;
9985         struct btrfs_fs_info *fs_info = cache->fs_info;
9986         int index = btrfs_bg_flags_to_raid_index(cache->flags);
9987         bool first = false;
9988
9989         down_write(&space_info->groups_sem);
9990         if (list_empty(&space_info->block_groups[index]))
9991                 first = true;
9992         list_add_tail(&cache->list, &space_info->block_groups[index]);
9993         up_write(&space_info->groups_sem);
9994
9995         if (first) {
9996                 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9997                 if (!rkobj) {
9998                         btrfs_warn(cache->fs_info,
9999                                 "couldn't alloc memory for raid level kobject");
10000                         return;
10001                 }
10002                 rkobj->flags = cache->flags;
10003                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10004
10005                 spin_lock(&fs_info->pending_raid_kobjs_lock);
10006                 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10007                 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10008                 space_info->block_group_kobjs[index] = &rkobj->kobj;
10009         }
10010 }
10011
10012 static struct btrfs_block_group_cache *
10013 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10014                                u64 start, u64 size)
10015 {
10016         struct btrfs_block_group_cache *cache;
10017
10018         cache = kzalloc(sizeof(*cache), GFP_NOFS);
10019         if (!cache)
10020                 return NULL;
10021
10022         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10023                                         GFP_NOFS);
10024         if (!cache->free_space_ctl) {
10025                 kfree(cache);
10026                 return NULL;
10027         }
10028
10029         cache->key.objectid = start;
10030         cache->key.offset = size;
10031         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10032
10033         cache->fs_info = fs_info;
10034         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10035         set_free_space_tree_thresholds(cache);
10036
10037         atomic_set(&cache->count, 1);
10038         spin_lock_init(&cache->lock);
10039         init_rwsem(&cache->data_rwsem);
10040         INIT_LIST_HEAD(&cache->list);
10041         INIT_LIST_HEAD(&cache->cluster_list);
10042         INIT_LIST_HEAD(&cache->bg_list);
10043         INIT_LIST_HEAD(&cache->ro_list);
10044         INIT_LIST_HEAD(&cache->dirty_list);
10045         INIT_LIST_HEAD(&cache->io_list);
10046         btrfs_init_free_space_ctl(cache);
10047         atomic_set(&cache->trimming, 0);
10048         mutex_init(&cache->free_space_lock);
10049         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10050
10051         return cache;
10052 }
10053
10054 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10055 {
10056         struct btrfs_path *path;
10057         int ret;
10058         struct btrfs_block_group_cache *cache;
10059         struct btrfs_space_info *space_info;
10060         struct btrfs_key key;
10061         struct btrfs_key found_key;
10062         struct extent_buffer *leaf;
10063         int need_clear = 0;
10064         u64 cache_gen;
10065         u64 feature;
10066         int mixed;
10067
10068         feature = btrfs_super_incompat_flags(info->super_copy);
10069         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10070
10071         key.objectid = 0;
10072         key.offset = 0;
10073         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10074         path = btrfs_alloc_path();
10075         if (!path)
10076                 return -ENOMEM;
10077         path->reada = READA_FORWARD;
10078
10079         cache_gen = btrfs_super_cache_generation(info->super_copy);
10080         if (btrfs_test_opt(info, SPACE_CACHE) &&
10081             btrfs_super_generation(info->super_copy) != cache_gen)
10082                 need_clear = 1;
10083         if (btrfs_test_opt(info, CLEAR_CACHE))
10084                 need_clear = 1;
10085
10086         while (1) {
10087                 ret = find_first_block_group(info, path, &key);
10088                 if (ret > 0)
10089                         break;
10090                 if (ret != 0)
10091                         goto error;
10092
10093                 leaf = path->nodes[0];
10094                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10095
10096                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10097                                                        found_key.offset);
10098                 if (!cache) {
10099                         ret = -ENOMEM;
10100                         goto error;
10101                 }
10102
10103                 if (need_clear) {
10104                         /*
10105                          * When we mount with old space cache, we need to
10106                          * set BTRFS_DC_CLEAR and set dirty flag.
10107                          *
10108                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10109                          *    truncate the old free space cache inode and
10110                          *    setup a new one.
10111                          * b) Setting 'dirty flag' makes sure that we flush
10112                          *    the new space cache info onto disk.
10113                          */
10114                         if (btrfs_test_opt(info, SPACE_CACHE))
10115                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10116                 }
10117
10118                 read_extent_buffer(leaf, &cache->item,
10119                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10120                                    sizeof(cache->item));
10121                 cache->flags = btrfs_block_group_flags(&cache->item);
10122                 if (!mixed &&
10123                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10124                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10125                         btrfs_err(info,
10126 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10127                                   cache->key.objectid);
10128                         ret = -EINVAL;
10129                         goto error;
10130                 }
10131
10132                 key.objectid = found_key.objectid + found_key.offset;
10133                 btrfs_release_path(path);
10134
10135                 /*
10136                  * We need to exclude the super stripes now so that the space
10137                  * info has super bytes accounted for, otherwise we'll think
10138                  * we have more space than we actually do.
10139                  */
10140                 ret = exclude_super_stripes(info, cache);
10141                 if (ret) {
10142                         /*
10143                          * We may have excluded something, so call this just in
10144                          * case.
10145                          */
10146                         free_excluded_extents(info, cache);
10147                         btrfs_put_block_group(cache);
10148                         goto error;
10149                 }
10150
10151                 /*
10152                  * check for two cases, either we are full, and therefore
10153                  * don't need to bother with the caching work since we won't
10154                  * find any space, or we are empty, and we can just add all
10155                  * the space in and be done with it.  This saves us _alot_ of
10156                  * time, particularly in the full case.
10157                  */
10158                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10159                         cache->last_byte_to_unpin = (u64)-1;
10160                         cache->cached = BTRFS_CACHE_FINISHED;
10161                         free_excluded_extents(info, cache);
10162                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10163                         cache->last_byte_to_unpin = (u64)-1;
10164                         cache->cached = BTRFS_CACHE_FINISHED;
10165                         add_new_free_space(cache, info,
10166                                            found_key.objectid,
10167                                            found_key.objectid +
10168                                            found_key.offset);
10169                         free_excluded_extents(info, cache);
10170                 }
10171
10172                 ret = btrfs_add_block_group_cache(info, cache);
10173                 if (ret) {
10174                         btrfs_remove_free_space_cache(cache);
10175                         btrfs_put_block_group(cache);
10176                         goto error;
10177                 }
10178
10179                 trace_btrfs_add_block_group(info, cache, 0);
10180                 update_space_info(info, cache->flags, found_key.offset,
10181                                   btrfs_block_group_used(&cache->item),
10182                                   cache->bytes_super, &space_info);
10183
10184                 cache->space_info = space_info;
10185
10186                 link_block_group(cache);
10187
10188                 set_avail_alloc_bits(info, cache->flags);
10189                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10190                         inc_block_group_ro(cache, 1);
10191                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10192                         spin_lock(&info->unused_bgs_lock);
10193                         /* Should always be true but just in case. */
10194                         if (list_empty(&cache->bg_list)) {
10195                                 btrfs_get_block_group(cache);
10196                                 list_add_tail(&cache->bg_list,
10197                                               &info->unused_bgs);
10198                         }
10199                         spin_unlock(&info->unused_bgs_lock);
10200                 }
10201         }
10202
10203         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10204                 if (!(get_alloc_profile(info, space_info->flags) &
10205                       (BTRFS_BLOCK_GROUP_RAID10 |
10206                        BTRFS_BLOCK_GROUP_RAID1 |
10207                        BTRFS_BLOCK_GROUP_RAID5 |
10208                        BTRFS_BLOCK_GROUP_RAID6 |
10209                        BTRFS_BLOCK_GROUP_DUP)))
10210                         continue;
10211                 /*
10212                  * avoid allocating from un-mirrored block group if there are
10213                  * mirrored block groups.
10214                  */
10215                 list_for_each_entry(cache,
10216                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10217                                 list)
10218                         inc_block_group_ro(cache, 1);
10219                 list_for_each_entry(cache,
10220                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10221                                 list)
10222                         inc_block_group_ro(cache, 1);
10223         }
10224
10225         btrfs_add_raid_kobjects(info);
10226         init_global_block_rsv(info);
10227         ret = 0;
10228 error:
10229         btrfs_free_path(path);
10230         return ret;
10231 }
10232
10233 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10234 {
10235         struct btrfs_fs_info *fs_info = trans->fs_info;
10236         struct btrfs_block_group_cache *block_group, *tmp;
10237         struct btrfs_root *extent_root = fs_info->extent_root;
10238         struct btrfs_block_group_item item;
10239         struct btrfs_key key;
10240         int ret = 0;
10241         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10242
10243         trans->can_flush_pending_bgs = false;
10244         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10245                 if (ret)
10246                         goto next;
10247
10248                 spin_lock(&block_group->lock);
10249                 memcpy(&item, &block_group->item, sizeof(item));
10250                 memcpy(&key, &block_group->key, sizeof(key));
10251                 spin_unlock(&block_group->lock);
10252
10253                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10254                                         sizeof(item));
10255                 if (ret)
10256                         btrfs_abort_transaction(trans, ret);
10257                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10258                                                key.offset);
10259                 if (ret)
10260                         btrfs_abort_transaction(trans, ret);
10261                 add_block_group_free_space(trans, fs_info, block_group);
10262                 /* already aborted the transaction if it failed. */
10263 next:
10264                 list_del_init(&block_group->bg_list);
10265         }
10266         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10267 }
10268
10269 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10270                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10271                            u64 type, u64 chunk_offset, u64 size)
10272 {
10273         struct btrfs_block_group_cache *cache;
10274         int ret;
10275
10276         btrfs_set_log_full_commit(fs_info, trans);
10277
10278         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10279         if (!cache)
10280                 return -ENOMEM;
10281
10282         btrfs_set_block_group_used(&cache->item, bytes_used);
10283         btrfs_set_block_group_chunk_objectid(&cache->item,
10284                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10285         btrfs_set_block_group_flags(&cache->item, type);
10286
10287         cache->flags = type;
10288         cache->last_byte_to_unpin = (u64)-1;
10289         cache->cached = BTRFS_CACHE_FINISHED;
10290         cache->needs_free_space = 1;
10291         ret = exclude_super_stripes(fs_info, cache);
10292         if (ret) {
10293                 /*
10294                  * We may have excluded something, so call this just in
10295                  * case.
10296                  */
10297                 free_excluded_extents(fs_info, cache);
10298                 btrfs_put_block_group(cache);
10299                 return ret;
10300         }
10301
10302         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10303
10304         free_excluded_extents(fs_info, cache);
10305
10306 #ifdef CONFIG_BTRFS_DEBUG
10307         if (btrfs_should_fragment_free_space(cache)) {
10308                 u64 new_bytes_used = size - bytes_used;
10309
10310                 bytes_used += new_bytes_used >> 1;
10311                 fragment_free_space(cache);
10312         }
10313 #endif
10314         /*
10315          * Ensure the corresponding space_info object is created and
10316          * assigned to our block group. We want our bg to be added to the rbtree
10317          * with its ->space_info set.
10318          */
10319         cache->space_info = __find_space_info(fs_info, cache->flags);
10320         ASSERT(cache->space_info);
10321
10322         ret = btrfs_add_block_group_cache(fs_info, cache);
10323         if (ret) {
10324                 btrfs_remove_free_space_cache(cache);
10325                 btrfs_put_block_group(cache);
10326                 return ret;
10327         }
10328
10329         /*
10330          * Now that our block group has its ->space_info set and is inserted in
10331          * the rbtree, update the space info's counters.
10332          */
10333         trace_btrfs_add_block_group(fs_info, cache, 1);
10334         update_space_info(fs_info, cache->flags, size, bytes_used,
10335                                 cache->bytes_super, &cache->space_info);
10336         update_global_block_rsv(fs_info);
10337
10338         link_block_group(cache);
10339
10340         list_add_tail(&cache->bg_list, &trans->new_bgs);
10341
10342         set_avail_alloc_bits(fs_info, type);
10343         return 0;
10344 }
10345
10346 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10347 {
10348         u64 extra_flags = chunk_to_extended(flags) &
10349                                 BTRFS_EXTENDED_PROFILE_MASK;
10350
10351         write_seqlock(&fs_info->profiles_lock);
10352         if (flags & BTRFS_BLOCK_GROUP_DATA)
10353                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10354         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10355                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10356         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10357                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10358         write_sequnlock(&fs_info->profiles_lock);
10359 }
10360
10361 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10362                              struct btrfs_fs_info *fs_info, u64 group_start,
10363                              struct extent_map *em)
10364 {
10365         struct btrfs_root *root = fs_info->extent_root;
10366         struct btrfs_path *path;
10367         struct btrfs_block_group_cache *block_group;
10368         struct btrfs_free_cluster *cluster;
10369         struct btrfs_root *tree_root = fs_info->tree_root;
10370         struct btrfs_key key;
10371         struct inode *inode;
10372         struct kobject *kobj = NULL;
10373         int ret;
10374         int index;
10375         int factor;
10376         struct btrfs_caching_control *caching_ctl = NULL;
10377         bool remove_em;
10378
10379         block_group = btrfs_lookup_block_group(fs_info, group_start);
10380         BUG_ON(!block_group);
10381         BUG_ON(!block_group->ro);
10382
10383         /*
10384          * Free the reserved super bytes from this block group before
10385          * remove it.
10386          */
10387         free_excluded_extents(fs_info, block_group);
10388         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10389                                   block_group->key.offset);
10390
10391         memcpy(&key, &block_group->key, sizeof(key));
10392         index = btrfs_bg_flags_to_raid_index(block_group->flags);
10393         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10394                                   BTRFS_BLOCK_GROUP_RAID1 |
10395                                   BTRFS_BLOCK_GROUP_RAID10))
10396                 factor = 2;
10397         else
10398                 factor = 1;
10399
10400         /* make sure this block group isn't part of an allocation cluster */
10401         cluster = &fs_info->data_alloc_cluster;
10402         spin_lock(&cluster->refill_lock);
10403         btrfs_return_cluster_to_free_space(block_group, cluster);
10404         spin_unlock(&cluster->refill_lock);
10405
10406         /*
10407          * make sure this block group isn't part of a metadata
10408          * allocation cluster
10409          */
10410         cluster = &fs_info->meta_alloc_cluster;
10411         spin_lock(&cluster->refill_lock);
10412         btrfs_return_cluster_to_free_space(block_group, cluster);
10413         spin_unlock(&cluster->refill_lock);
10414
10415         path = btrfs_alloc_path();
10416         if (!path) {
10417                 ret = -ENOMEM;
10418                 goto out;
10419         }
10420
10421         /*
10422          * get the inode first so any iput calls done for the io_list
10423          * aren't the final iput (no unlinks allowed now)
10424          */
10425         inode = lookup_free_space_inode(fs_info, block_group, path);
10426
10427         mutex_lock(&trans->transaction->cache_write_mutex);
10428         /*
10429          * make sure our free spache cache IO is done before remove the
10430          * free space inode
10431          */
10432         spin_lock(&trans->transaction->dirty_bgs_lock);
10433         if (!list_empty(&block_group->io_list)) {
10434                 list_del_init(&block_group->io_list);
10435
10436                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10437
10438                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10439                 btrfs_wait_cache_io(trans, block_group, path);
10440                 btrfs_put_block_group(block_group);
10441                 spin_lock(&trans->transaction->dirty_bgs_lock);
10442         }
10443
10444         if (!list_empty(&block_group->dirty_list)) {
10445                 list_del_init(&block_group->dirty_list);
10446                 btrfs_put_block_group(block_group);
10447         }
10448         spin_unlock(&trans->transaction->dirty_bgs_lock);
10449         mutex_unlock(&trans->transaction->cache_write_mutex);
10450
10451         if (!IS_ERR(inode)) {
10452                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10453                 if (ret) {
10454                         btrfs_add_delayed_iput(inode);
10455                         goto out;
10456                 }
10457                 clear_nlink(inode);
10458                 /* One for the block groups ref */
10459                 spin_lock(&block_group->lock);
10460                 if (block_group->iref) {
10461                         block_group->iref = 0;
10462                         block_group->inode = NULL;
10463                         spin_unlock(&block_group->lock);
10464                         iput(inode);
10465                 } else {
10466                         spin_unlock(&block_group->lock);
10467                 }
10468                 /* One for our lookup ref */
10469                 btrfs_add_delayed_iput(inode);
10470         }
10471
10472         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10473         key.offset = block_group->key.objectid;
10474         key.type = 0;
10475
10476         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10477         if (ret < 0)
10478                 goto out;
10479         if (ret > 0)
10480                 btrfs_release_path(path);
10481         if (ret == 0) {
10482                 ret = btrfs_del_item(trans, tree_root, path);
10483                 if (ret)
10484                         goto out;
10485                 btrfs_release_path(path);
10486         }
10487
10488         spin_lock(&fs_info->block_group_cache_lock);
10489         rb_erase(&block_group->cache_node,
10490                  &fs_info->block_group_cache_tree);
10491         RB_CLEAR_NODE(&block_group->cache_node);
10492
10493         if (fs_info->first_logical_byte == block_group->key.objectid)
10494                 fs_info->first_logical_byte = (u64)-1;
10495         spin_unlock(&fs_info->block_group_cache_lock);
10496
10497         down_write(&block_group->space_info->groups_sem);
10498         /*
10499          * we must use list_del_init so people can check to see if they
10500          * are still on the list after taking the semaphore
10501          */
10502         list_del_init(&block_group->list);
10503         if (list_empty(&block_group->space_info->block_groups[index])) {
10504                 kobj = block_group->space_info->block_group_kobjs[index];
10505                 block_group->space_info->block_group_kobjs[index] = NULL;
10506                 clear_avail_alloc_bits(fs_info, block_group->flags);
10507         }
10508         up_write(&block_group->space_info->groups_sem);
10509         if (kobj) {
10510                 kobject_del(kobj);
10511                 kobject_put(kobj);
10512         }
10513
10514         if (block_group->has_caching_ctl)
10515                 caching_ctl = get_caching_control(block_group);
10516         if (block_group->cached == BTRFS_CACHE_STARTED)
10517                 wait_block_group_cache_done(block_group);
10518         if (block_group->has_caching_ctl) {
10519                 down_write(&fs_info->commit_root_sem);
10520                 if (!caching_ctl) {
10521                         struct btrfs_caching_control *ctl;
10522
10523                         list_for_each_entry(ctl,
10524                                     &fs_info->caching_block_groups, list)
10525                                 if (ctl->block_group == block_group) {
10526                                         caching_ctl = ctl;
10527                                         refcount_inc(&caching_ctl->count);
10528                                         break;
10529                                 }
10530                 }
10531                 if (caching_ctl)
10532                         list_del_init(&caching_ctl->list);
10533                 up_write(&fs_info->commit_root_sem);
10534                 if (caching_ctl) {
10535                         /* Once for the caching bgs list and once for us. */
10536                         put_caching_control(caching_ctl);
10537                         put_caching_control(caching_ctl);
10538                 }
10539         }
10540
10541         spin_lock(&trans->transaction->dirty_bgs_lock);
10542         if (!list_empty(&block_group->dirty_list)) {
10543                 WARN_ON(1);
10544         }
10545         if (!list_empty(&block_group->io_list)) {
10546                 WARN_ON(1);
10547         }
10548         spin_unlock(&trans->transaction->dirty_bgs_lock);
10549         btrfs_remove_free_space_cache(block_group);
10550
10551         spin_lock(&block_group->space_info->lock);
10552         list_del_init(&block_group->ro_list);
10553
10554         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10555                 WARN_ON(block_group->space_info->total_bytes
10556                         < block_group->key.offset);
10557                 WARN_ON(block_group->space_info->bytes_readonly
10558                         < block_group->key.offset);
10559                 WARN_ON(block_group->space_info->disk_total
10560                         < block_group->key.offset * factor);
10561         }
10562         block_group->space_info->total_bytes -= block_group->key.offset;
10563         block_group->space_info->bytes_readonly -= block_group->key.offset;
10564         block_group->space_info->disk_total -= block_group->key.offset * factor;
10565
10566         spin_unlock(&block_group->space_info->lock);
10567
10568         memcpy(&key, &block_group->key, sizeof(key));
10569
10570         mutex_lock(&fs_info->chunk_mutex);
10571         if (!list_empty(&em->list)) {
10572                 /* We're in the transaction->pending_chunks list. */
10573                 free_extent_map(em);
10574         }
10575         spin_lock(&block_group->lock);
10576         block_group->removed = 1;
10577         /*
10578          * At this point trimming can't start on this block group, because we
10579          * removed the block group from the tree fs_info->block_group_cache_tree
10580          * so no one can't find it anymore and even if someone already got this
10581          * block group before we removed it from the rbtree, they have already
10582          * incremented block_group->trimming - if they didn't, they won't find
10583          * any free space entries because we already removed them all when we
10584          * called btrfs_remove_free_space_cache().
10585          *
10586          * And we must not remove the extent map from the fs_info->mapping_tree
10587          * to prevent the same logical address range and physical device space
10588          * ranges from being reused for a new block group. This is because our
10589          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10590          * completely transactionless, so while it is trimming a range the
10591          * currently running transaction might finish and a new one start,
10592          * allowing for new block groups to be created that can reuse the same
10593          * physical device locations unless we take this special care.
10594          *
10595          * There may also be an implicit trim operation if the file system
10596          * is mounted with -odiscard. The same protections must remain
10597          * in place until the extents have been discarded completely when
10598          * the transaction commit has completed.
10599          */
10600         remove_em = (atomic_read(&block_group->trimming) == 0);
10601         /*
10602          * Make sure a trimmer task always sees the em in the pinned_chunks list
10603          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10604          * before checking block_group->removed).
10605          */
10606         if (!remove_em) {
10607                 /*
10608                  * Our em might be in trans->transaction->pending_chunks which
10609                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10610                  * and so is the fs_info->pinned_chunks list.
10611                  *
10612                  * So at this point we must be holding the chunk_mutex to avoid
10613                  * any races with chunk allocation (more specifically at
10614                  * volumes.c:contains_pending_extent()), to ensure it always
10615                  * sees the em, either in the pending_chunks list or in the
10616                  * pinned_chunks list.
10617                  */
10618                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10619         }
10620         spin_unlock(&block_group->lock);
10621
10622         if (remove_em) {
10623                 struct extent_map_tree *em_tree;
10624
10625                 em_tree = &fs_info->mapping_tree.map_tree;
10626                 write_lock(&em_tree->lock);
10627                 /*
10628                  * The em might be in the pending_chunks list, so make sure the
10629                  * chunk mutex is locked, since remove_extent_mapping() will
10630                  * delete us from that list.
10631                  */
10632                 remove_extent_mapping(em_tree, em);
10633                 write_unlock(&em_tree->lock);
10634                 /* once for the tree */
10635                 free_extent_map(em);
10636         }
10637
10638         mutex_unlock(&fs_info->chunk_mutex);
10639
10640         ret = remove_block_group_free_space(trans, fs_info, block_group);
10641         if (ret)
10642                 goto out;
10643
10644         btrfs_put_block_group(block_group);
10645         btrfs_put_block_group(block_group);
10646
10647         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10648         if (ret > 0)
10649                 ret = -EIO;
10650         if (ret < 0)
10651                 goto out;
10652
10653         ret = btrfs_del_item(trans, root, path);
10654 out:
10655         btrfs_free_path(path);
10656         return ret;
10657 }
10658
10659 struct btrfs_trans_handle *
10660 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10661                                      const u64 chunk_offset)
10662 {
10663         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10664         struct extent_map *em;
10665         struct map_lookup *map;
10666         unsigned int num_items;
10667
10668         read_lock(&em_tree->lock);
10669         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10670         read_unlock(&em_tree->lock);
10671         ASSERT(em && em->start == chunk_offset);
10672
10673         /*
10674          * We need to reserve 3 + N units from the metadata space info in order
10675          * to remove a block group (done at btrfs_remove_chunk() and at
10676          * btrfs_remove_block_group()), which are used for:
10677          *
10678          * 1 unit for adding the free space inode's orphan (located in the tree
10679          * of tree roots).
10680          * 1 unit for deleting the block group item (located in the extent
10681          * tree).
10682          * 1 unit for deleting the free space item (located in tree of tree
10683          * roots).
10684          * N units for deleting N device extent items corresponding to each
10685          * stripe (located in the device tree).
10686          *
10687          * In order to remove a block group we also need to reserve units in the
10688          * system space info in order to update the chunk tree (update one or
10689          * more device items and remove one chunk item), but this is done at
10690          * btrfs_remove_chunk() through a call to check_system_chunk().
10691          */
10692         map = em->map_lookup;
10693         num_items = 3 + map->num_stripes;
10694         free_extent_map(em);
10695
10696         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10697                                                            num_items, 1);
10698 }
10699
10700 /*
10701  * Process the unused_bgs list and remove any that don't have any allocated
10702  * space inside of them.
10703  */
10704 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10705 {
10706         struct btrfs_block_group_cache *block_group;
10707         struct btrfs_space_info *space_info;
10708         struct btrfs_trans_handle *trans;
10709         int ret = 0;
10710
10711         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10712                 return;
10713
10714         spin_lock(&fs_info->unused_bgs_lock);
10715         while (!list_empty(&fs_info->unused_bgs)) {
10716                 u64 start, end;
10717                 int trimming;
10718
10719                 block_group = list_first_entry(&fs_info->unused_bgs,
10720                                                struct btrfs_block_group_cache,
10721                                                bg_list);
10722                 list_del_init(&block_group->bg_list);
10723
10724                 space_info = block_group->space_info;
10725
10726                 if (ret || btrfs_mixed_space_info(space_info)) {
10727                         btrfs_put_block_group(block_group);
10728                         continue;
10729                 }
10730                 spin_unlock(&fs_info->unused_bgs_lock);
10731
10732                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10733
10734                 /* Don't want to race with allocators so take the groups_sem */
10735                 down_write(&space_info->groups_sem);
10736                 spin_lock(&block_group->lock);
10737                 if (block_group->reserved ||
10738                     btrfs_block_group_used(&block_group->item) ||
10739                     block_group->ro ||
10740                     list_is_singular(&block_group->list)) {
10741                         /*
10742                          * We want to bail if we made new allocations or have
10743                          * outstanding allocations in this block group.  We do
10744                          * the ro check in case balance is currently acting on
10745                          * this block group.
10746                          */
10747                         spin_unlock(&block_group->lock);
10748                         up_write(&space_info->groups_sem);
10749                         goto next;
10750                 }
10751                 spin_unlock(&block_group->lock);
10752
10753                 /* We don't want to force the issue, only flip if it's ok. */
10754                 ret = inc_block_group_ro(block_group, 0);
10755                 up_write(&space_info->groups_sem);
10756                 if (ret < 0) {
10757                         ret = 0;
10758                         goto next;
10759                 }
10760
10761                 /*
10762                  * Want to do this before we do anything else so we can recover
10763                  * properly if we fail to join the transaction.
10764                  */
10765                 trans = btrfs_start_trans_remove_block_group(fs_info,
10766                                                      block_group->key.objectid);
10767                 if (IS_ERR(trans)) {
10768                         btrfs_dec_block_group_ro(block_group);
10769                         ret = PTR_ERR(trans);
10770                         goto next;
10771                 }
10772
10773                 /*
10774                  * We could have pending pinned extents for this block group,
10775                  * just delete them, we don't care about them anymore.
10776                  */
10777                 start = block_group->key.objectid;
10778                 end = start + block_group->key.offset - 1;
10779                 /*
10780                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10781                  * btrfs_finish_extent_commit(). If we are at transaction N,
10782                  * another task might be running finish_extent_commit() for the
10783                  * previous transaction N - 1, and have seen a range belonging
10784                  * to the block group in freed_extents[] before we were able to
10785                  * clear the whole block group range from freed_extents[]. This
10786                  * means that task can lookup for the block group after we
10787                  * unpinned it from freed_extents[] and removed it, leading to
10788                  * a BUG_ON() at btrfs_unpin_extent_range().
10789                  */
10790                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10791                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10792                                   EXTENT_DIRTY);
10793                 if (ret) {
10794                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10795                         btrfs_dec_block_group_ro(block_group);
10796                         goto end_trans;
10797                 }
10798                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10799                                   EXTENT_DIRTY);
10800                 if (ret) {
10801                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10802                         btrfs_dec_block_group_ro(block_group);
10803                         goto end_trans;
10804                 }
10805                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10806
10807                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10808                 spin_lock(&space_info->lock);
10809                 spin_lock(&block_group->lock);
10810
10811                 space_info->bytes_pinned -= block_group->pinned;
10812                 space_info->bytes_readonly += block_group->pinned;
10813                 percpu_counter_add(&space_info->total_bytes_pinned,
10814                                    -block_group->pinned);
10815                 block_group->pinned = 0;
10816
10817                 spin_unlock(&block_group->lock);
10818                 spin_unlock(&space_info->lock);
10819
10820                 /* DISCARD can flip during remount */
10821                 trimming = btrfs_test_opt(fs_info, DISCARD);
10822
10823                 /* Implicit trim during transaction commit. */
10824                 if (trimming)
10825                         btrfs_get_block_group_trimming(block_group);
10826
10827                 /*
10828                  * Btrfs_remove_chunk will abort the transaction if things go
10829                  * horribly wrong.
10830                  */
10831                 ret = btrfs_remove_chunk(trans, fs_info,
10832                                          block_group->key.objectid);
10833
10834                 if (ret) {
10835                         if (trimming)
10836                                 btrfs_put_block_group_trimming(block_group);
10837                         goto end_trans;
10838                 }
10839
10840                 /*
10841                  * If we're not mounted with -odiscard, we can just forget
10842                  * about this block group. Otherwise we'll need to wait
10843                  * until transaction commit to do the actual discard.
10844                  */
10845                 if (trimming) {
10846                         spin_lock(&fs_info->unused_bgs_lock);
10847                         /*
10848                          * A concurrent scrub might have added us to the list
10849                          * fs_info->unused_bgs, so use a list_move operation
10850                          * to add the block group to the deleted_bgs list.
10851                          */
10852                         list_move(&block_group->bg_list,
10853                                   &trans->transaction->deleted_bgs);
10854                         spin_unlock(&fs_info->unused_bgs_lock);
10855                         btrfs_get_block_group(block_group);
10856                 }
10857 end_trans:
10858                 btrfs_end_transaction(trans);
10859 next:
10860                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10861                 btrfs_put_block_group(block_group);
10862                 spin_lock(&fs_info->unused_bgs_lock);
10863         }
10864         spin_unlock(&fs_info->unused_bgs_lock);
10865 }
10866
10867 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10868 {
10869         struct btrfs_space_info *space_info;
10870         struct btrfs_super_block *disk_super;
10871         u64 features;
10872         u64 flags;
10873         int mixed = 0;
10874         int ret;
10875
10876         disk_super = fs_info->super_copy;
10877         if (!btrfs_super_root(disk_super))
10878                 return -EINVAL;
10879
10880         features = btrfs_super_incompat_flags(disk_super);
10881         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10882                 mixed = 1;
10883
10884         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10885         ret = create_space_info(fs_info, flags, &space_info);
10886         if (ret)
10887                 goto out;
10888
10889         if (mixed) {
10890                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10891                 ret = create_space_info(fs_info, flags, &space_info);
10892         } else {
10893                 flags = BTRFS_BLOCK_GROUP_METADATA;
10894                 ret = create_space_info(fs_info, flags, &space_info);
10895                 if (ret)
10896                         goto out;
10897
10898                 flags = BTRFS_BLOCK_GROUP_DATA;
10899                 ret = create_space_info(fs_info, flags, &space_info);
10900         }
10901 out:
10902         return ret;
10903 }
10904
10905 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10906                                    u64 start, u64 end)
10907 {
10908         return unpin_extent_range(fs_info, start, end, false);
10909 }
10910
10911 /*
10912  * It used to be that old block groups would be left around forever.
10913  * Iterating over them would be enough to trim unused space.  Since we
10914  * now automatically remove them, we also need to iterate over unallocated
10915  * space.
10916  *
10917  * We don't want a transaction for this since the discard may take a
10918  * substantial amount of time.  We don't require that a transaction be
10919  * running, but we do need to take a running transaction into account
10920  * to ensure that we're not discarding chunks that were released in
10921  * the current transaction.
10922  *
10923  * Holding the chunks lock will prevent other threads from allocating
10924  * or releasing chunks, but it won't prevent a running transaction
10925  * from committing and releasing the memory that the pending chunks
10926  * list head uses.  For that, we need to take a reference to the
10927  * transaction.
10928  */
10929 static int btrfs_trim_free_extents(struct btrfs_device *device,
10930                                    u64 minlen, u64 *trimmed)
10931 {
10932         u64 start = 0, len = 0;
10933         int ret;
10934
10935         *trimmed = 0;
10936
10937         /* Not writeable = nothing to do. */
10938         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10939                 return 0;
10940
10941         /* No free space = nothing to do. */
10942         if (device->total_bytes <= device->bytes_used)
10943                 return 0;
10944
10945         ret = 0;
10946
10947         while (1) {
10948                 struct btrfs_fs_info *fs_info = device->fs_info;
10949                 struct btrfs_transaction *trans;
10950                 u64 bytes;
10951
10952                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10953                 if (ret)
10954                         return ret;
10955
10956                 down_read(&fs_info->commit_root_sem);
10957
10958                 spin_lock(&fs_info->trans_lock);
10959                 trans = fs_info->running_transaction;
10960                 if (trans)
10961                         refcount_inc(&trans->use_count);
10962                 spin_unlock(&fs_info->trans_lock);
10963
10964                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10965                                                  &start, &len);
10966                 if (trans)
10967                         btrfs_put_transaction(trans);
10968
10969                 if (ret) {
10970                         up_read(&fs_info->commit_root_sem);
10971                         mutex_unlock(&fs_info->chunk_mutex);
10972                         if (ret == -ENOSPC)
10973                                 ret = 0;
10974                         break;
10975                 }
10976
10977                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10978                 up_read(&fs_info->commit_root_sem);
10979                 mutex_unlock(&fs_info->chunk_mutex);
10980
10981                 if (ret)
10982                         break;
10983
10984                 start += len;
10985                 *trimmed += bytes;
10986
10987                 if (fatal_signal_pending(current)) {
10988                         ret = -ERESTARTSYS;
10989                         break;
10990                 }
10991
10992                 cond_resched();
10993         }
10994
10995         return ret;
10996 }
10997
10998 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10999 {
11000         struct btrfs_block_group_cache *cache = NULL;
11001         struct btrfs_device *device;
11002         struct list_head *devices;
11003         u64 group_trimmed;
11004         u64 start;
11005         u64 end;
11006         u64 trimmed = 0;
11007         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11008         int ret = 0;
11009
11010         /*
11011          * try to trim all FS space, our block group may start from non-zero.
11012          */
11013         if (range->len == total_bytes)
11014                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11015         else
11016                 cache = btrfs_lookup_block_group(fs_info, range->start);
11017
11018         while (cache) {
11019                 if (cache->key.objectid >= (range->start + range->len)) {
11020                         btrfs_put_block_group(cache);
11021                         break;
11022                 }
11023
11024                 start = max(range->start, cache->key.objectid);
11025                 end = min(range->start + range->len,
11026                                 cache->key.objectid + cache->key.offset);
11027
11028                 if (end - start >= range->minlen) {
11029                         if (!block_group_cache_done(cache)) {
11030                                 ret = cache_block_group(cache, 0);
11031                                 if (ret) {
11032                                         btrfs_put_block_group(cache);
11033                                         break;
11034                                 }
11035                                 ret = wait_block_group_cache_done(cache);
11036                                 if (ret) {
11037                                         btrfs_put_block_group(cache);
11038                                         break;
11039                                 }
11040                         }
11041                         ret = btrfs_trim_block_group(cache,
11042                                                      &group_trimmed,
11043                                                      start,
11044                                                      end,
11045                                                      range->minlen);
11046
11047                         trimmed += group_trimmed;
11048                         if (ret) {
11049                                 btrfs_put_block_group(cache);
11050                                 break;
11051                         }
11052                 }
11053
11054                 cache = next_block_group(fs_info, cache);
11055         }
11056
11057         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11058         devices = &fs_info->fs_devices->alloc_list;
11059         list_for_each_entry(device, devices, dev_alloc_list) {
11060                 ret = btrfs_trim_free_extents(device, range->minlen,
11061                                               &group_trimmed);
11062                 if (ret)
11063                         break;
11064
11065                 trimmed += group_trimmed;
11066         }
11067         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11068
11069         range->len = trimmed;
11070         return ret;
11071 }
11072
11073 /*
11074  * btrfs_{start,end}_write_no_snapshotting() are similar to
11075  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11076  * data into the page cache through nocow before the subvolume is snapshoted,
11077  * but flush the data into disk after the snapshot creation, or to prevent
11078  * operations while snapshotting is ongoing and that cause the snapshot to be
11079  * inconsistent (writes followed by expanding truncates for example).
11080  */
11081 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11082 {
11083         percpu_counter_dec(&root->subv_writers->counter);
11084         /*
11085          * Make sure counter is updated before we wake up waiters.
11086          */
11087         smp_mb();
11088         if (waitqueue_active(&root->subv_writers->wait))
11089                 wake_up(&root->subv_writers->wait);
11090 }
11091
11092 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11093 {
11094         if (atomic_read(&root->will_be_snapshotted))
11095                 return 0;
11096
11097         percpu_counter_inc(&root->subv_writers->counter);
11098         /*
11099          * Make sure counter is updated before we check for snapshot creation.
11100          */
11101         smp_mb();
11102         if (atomic_read(&root->will_be_snapshotted)) {
11103                 btrfs_end_write_no_snapshotting(root);
11104                 return 0;
11105         }
11106         return 1;
11107 }
11108
11109 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11110 {
11111         while (true) {
11112                 int ret;
11113
11114                 ret = btrfs_start_write_no_snapshotting(root);
11115                 if (ret)
11116                         break;
11117                 wait_var_event(&root->will_be_snapshotted,
11118                                !atomic_read(&root->will_be_snapshotted));
11119         }
11120 }