2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
64 * Control how reservations are dealt with.
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114 static int __reserve_metadata_bytes(struct btrfs_root *root,
115 struct btrfs_space_info *space_info,
117 enum btrfs_reserve_flush_enum flush);
118 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
119 struct btrfs_space_info *space_info,
121 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
122 struct btrfs_space_info *space_info,
126 block_group_cache_done(struct btrfs_block_group_cache *cache)
129 return cache->cached == BTRFS_CACHE_FINISHED ||
130 cache->cached == BTRFS_CACHE_ERROR;
133 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
135 return (cache->flags & bits) == bits;
138 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
140 atomic_inc(&cache->count);
143 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
145 if (atomic_dec_and_test(&cache->count)) {
146 WARN_ON(cache->pinned > 0);
147 WARN_ON(cache->reserved > 0);
148 kfree(cache->free_space_ctl);
154 * this adds the block group to the fs_info rb tree for the block group
157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
158 struct btrfs_block_group_cache *block_group)
161 struct rb_node *parent = NULL;
162 struct btrfs_block_group_cache *cache;
164 spin_lock(&info->block_group_cache_lock);
165 p = &info->block_group_cache_tree.rb_node;
169 cache = rb_entry(parent, struct btrfs_block_group_cache,
171 if (block_group->key.objectid < cache->key.objectid) {
173 } else if (block_group->key.objectid > cache->key.objectid) {
176 spin_unlock(&info->block_group_cache_lock);
181 rb_link_node(&block_group->cache_node, parent, p);
182 rb_insert_color(&block_group->cache_node,
183 &info->block_group_cache_tree);
185 if (info->first_logical_byte > block_group->key.objectid)
186 info->first_logical_byte = block_group->key.objectid;
188 spin_unlock(&info->block_group_cache_lock);
194 * This will return the block group at or after bytenr if contains is 0, else
195 * it will return the block group that contains the bytenr
197 static struct btrfs_block_group_cache *
198 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
201 struct btrfs_block_group_cache *cache, *ret = NULL;
205 spin_lock(&info->block_group_cache_lock);
206 n = info->block_group_cache_tree.rb_node;
209 cache = rb_entry(n, struct btrfs_block_group_cache,
211 end = cache->key.objectid + cache->key.offset - 1;
212 start = cache->key.objectid;
214 if (bytenr < start) {
215 if (!contains && (!ret || start < ret->key.objectid))
218 } else if (bytenr > start) {
219 if (contains && bytenr <= end) {
230 btrfs_get_block_group(ret);
231 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
232 info->first_logical_byte = ret->key.objectid;
234 spin_unlock(&info->block_group_cache_lock);
239 static int add_excluded_extent(struct btrfs_root *root,
240 u64 start, u64 num_bytes)
242 u64 end = start + num_bytes - 1;
243 set_extent_bits(&root->fs_info->freed_extents[0],
244 start, end, EXTENT_UPTODATE);
245 set_extent_bits(&root->fs_info->freed_extents[1],
246 start, end, EXTENT_UPTODATE);
250 static void free_excluded_extents(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
255 start = cache->key.objectid;
256 end = start + cache->key.offset - 1;
258 clear_extent_bits(&root->fs_info->freed_extents[0],
259 start, end, EXTENT_UPTODATE);
260 clear_extent_bits(&root->fs_info->freed_extents[1],
261 start, end, EXTENT_UPTODATE);
264 static int exclude_super_stripes(struct btrfs_root *root,
265 struct btrfs_block_group_cache *cache)
272 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
273 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
274 cache->bytes_super += stripe_len;
275 ret = add_excluded_extent(root, cache->key.objectid,
281 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
282 bytenr = btrfs_sb_offset(i);
283 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
284 cache->key.objectid, bytenr,
285 0, &logical, &nr, &stripe_len);
292 if (logical[nr] > cache->key.objectid +
296 if (logical[nr] + stripe_len <= cache->key.objectid)
300 if (start < cache->key.objectid) {
301 start = cache->key.objectid;
302 len = (logical[nr] + stripe_len) - start;
304 len = min_t(u64, stripe_len,
305 cache->key.objectid +
306 cache->key.offset - start);
309 cache->bytes_super += len;
310 ret = add_excluded_extent(root, start, len);
322 static struct btrfs_caching_control *
323 get_caching_control(struct btrfs_block_group_cache *cache)
325 struct btrfs_caching_control *ctl;
327 spin_lock(&cache->lock);
328 if (!cache->caching_ctl) {
329 spin_unlock(&cache->lock);
333 ctl = cache->caching_ctl;
334 atomic_inc(&ctl->count);
335 spin_unlock(&cache->lock);
339 static void put_caching_control(struct btrfs_caching_control *ctl)
341 if (atomic_dec_and_test(&ctl->count))
345 #ifdef CONFIG_BTRFS_DEBUG
346 static void fragment_free_space(struct btrfs_root *root,
347 struct btrfs_block_group_cache *block_group)
349 u64 start = block_group->key.objectid;
350 u64 len = block_group->key.offset;
351 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
352 root->nodesize : root->sectorsize;
353 u64 step = chunk << 1;
355 while (len > chunk) {
356 btrfs_remove_free_space(block_group, start, chunk);
367 * this is only called by cache_block_group, since we could have freed extents
368 * we need to check the pinned_extents for any extents that can't be used yet
369 * since their free space will be released as soon as the transaction commits.
371 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
372 struct btrfs_fs_info *info, u64 start, u64 end)
374 u64 extent_start, extent_end, size, total_added = 0;
377 while (start < end) {
378 ret = find_first_extent_bit(info->pinned_extents, start,
379 &extent_start, &extent_end,
380 EXTENT_DIRTY | EXTENT_UPTODATE,
385 if (extent_start <= start) {
386 start = extent_end + 1;
387 } else if (extent_start > start && extent_start < end) {
388 size = extent_start - start;
390 ret = btrfs_add_free_space(block_group, start,
392 BUG_ON(ret); /* -ENOMEM or logic error */
393 start = extent_end + 1;
402 ret = btrfs_add_free_space(block_group, start, size);
403 BUG_ON(ret); /* -ENOMEM or logic error */
409 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
411 struct btrfs_block_group_cache *block_group;
412 struct btrfs_fs_info *fs_info;
413 struct btrfs_root *extent_root;
414 struct btrfs_path *path;
415 struct extent_buffer *leaf;
416 struct btrfs_key key;
423 block_group = caching_ctl->block_group;
424 fs_info = block_group->fs_info;
425 extent_root = fs_info->extent_root;
427 path = btrfs_alloc_path();
431 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
433 #ifdef CONFIG_BTRFS_DEBUG
435 * If we're fragmenting we don't want to make anybody think we can
436 * allocate from this block group until we've had a chance to fragment
439 if (btrfs_should_fragment_free_space(extent_root, block_group))
443 * We don't want to deadlock with somebody trying to allocate a new
444 * extent for the extent root while also trying to search the extent
445 * root to add free space. So we skip locking and search the commit
446 * root, since its read-only
448 path->skip_locking = 1;
449 path->search_commit_root = 1;
450 path->reada = READA_FORWARD;
454 key.type = BTRFS_EXTENT_ITEM_KEY;
457 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
465 if (btrfs_fs_closing(fs_info) > 1) {
470 if (path->slots[0] < nritems) {
471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
473 ret = find_next_key(path, 0, &key);
477 if (need_resched() ||
478 rwsem_is_contended(&fs_info->commit_root_sem)) {
480 caching_ctl->progress = last;
481 btrfs_release_path(path);
482 up_read(&fs_info->commit_root_sem);
483 mutex_unlock(&caching_ctl->mutex);
485 mutex_lock(&caching_ctl->mutex);
486 down_read(&fs_info->commit_root_sem);
490 ret = btrfs_next_leaf(extent_root, path);
495 leaf = path->nodes[0];
496 nritems = btrfs_header_nritems(leaf);
500 if (key.objectid < last) {
503 key.type = BTRFS_EXTENT_ITEM_KEY;
506 caching_ctl->progress = last;
507 btrfs_release_path(path);
511 if (key.objectid < block_group->key.objectid) {
516 if (key.objectid >= block_group->key.objectid +
517 block_group->key.offset)
520 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
521 key.type == BTRFS_METADATA_ITEM_KEY) {
522 total_found += add_new_free_space(block_group,
525 if (key.type == BTRFS_METADATA_ITEM_KEY)
526 last = key.objectid +
527 fs_info->tree_root->nodesize;
529 last = key.objectid + key.offset;
531 if (total_found > CACHING_CTL_WAKE_UP) {
534 wake_up(&caching_ctl->wait);
541 total_found += add_new_free_space(block_group, fs_info, last,
542 block_group->key.objectid +
543 block_group->key.offset);
544 caching_ctl->progress = (u64)-1;
547 btrfs_free_path(path);
551 static noinline void caching_thread(struct btrfs_work *work)
553 struct btrfs_block_group_cache *block_group;
554 struct btrfs_fs_info *fs_info;
555 struct btrfs_caching_control *caching_ctl;
556 struct btrfs_root *extent_root;
559 caching_ctl = container_of(work, struct btrfs_caching_control, work);
560 block_group = caching_ctl->block_group;
561 fs_info = block_group->fs_info;
562 extent_root = fs_info->extent_root;
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
567 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
568 ret = load_free_space_tree(caching_ctl);
570 ret = load_extent_tree_free(caching_ctl);
572 spin_lock(&block_group->lock);
573 block_group->caching_ctl = NULL;
574 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
575 spin_unlock(&block_group->lock);
577 #ifdef CONFIG_BTRFS_DEBUG
578 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
581 spin_lock(&block_group->space_info->lock);
582 spin_lock(&block_group->lock);
583 bytes_used = block_group->key.offset -
584 btrfs_block_group_used(&block_group->item);
585 block_group->space_info->bytes_used += bytes_used >> 1;
586 spin_unlock(&block_group->lock);
587 spin_unlock(&block_group->space_info->lock);
588 fragment_free_space(extent_root, block_group);
592 caching_ctl->progress = (u64)-1;
594 up_read(&fs_info->commit_root_sem);
595 free_excluded_extents(fs_info->extent_root, block_group);
596 mutex_unlock(&caching_ctl->mutex);
598 wake_up(&caching_ctl->wait);
600 put_caching_control(caching_ctl);
601 btrfs_put_block_group(block_group);
604 static int cache_block_group(struct btrfs_block_group_cache *cache,
608 struct btrfs_fs_info *fs_info = cache->fs_info;
609 struct btrfs_caching_control *caching_ctl;
612 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
616 INIT_LIST_HEAD(&caching_ctl->list);
617 mutex_init(&caching_ctl->mutex);
618 init_waitqueue_head(&caching_ctl->wait);
619 caching_ctl->block_group = cache;
620 caching_ctl->progress = cache->key.objectid;
621 atomic_set(&caching_ctl->count, 1);
622 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
623 caching_thread, NULL, NULL);
625 spin_lock(&cache->lock);
627 * This should be a rare occasion, but this could happen I think in the
628 * case where one thread starts to load the space cache info, and then
629 * some other thread starts a transaction commit which tries to do an
630 * allocation while the other thread is still loading the space cache
631 * info. The previous loop should have kept us from choosing this block
632 * group, but if we've moved to the state where we will wait on caching
633 * block groups we need to first check if we're doing a fast load here,
634 * so we can wait for it to finish, otherwise we could end up allocating
635 * from a block group who's cache gets evicted for one reason or
638 while (cache->cached == BTRFS_CACHE_FAST) {
639 struct btrfs_caching_control *ctl;
641 ctl = cache->caching_ctl;
642 atomic_inc(&ctl->count);
643 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
644 spin_unlock(&cache->lock);
648 finish_wait(&ctl->wait, &wait);
649 put_caching_control(ctl);
650 spin_lock(&cache->lock);
653 if (cache->cached != BTRFS_CACHE_NO) {
654 spin_unlock(&cache->lock);
658 WARN_ON(cache->caching_ctl);
659 cache->caching_ctl = caching_ctl;
660 cache->cached = BTRFS_CACHE_FAST;
661 spin_unlock(&cache->lock);
663 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
664 mutex_lock(&caching_ctl->mutex);
665 ret = load_free_space_cache(fs_info, cache);
667 spin_lock(&cache->lock);
669 cache->caching_ctl = NULL;
670 cache->cached = BTRFS_CACHE_FINISHED;
671 cache->last_byte_to_unpin = (u64)-1;
672 caching_ctl->progress = (u64)-1;
674 if (load_cache_only) {
675 cache->caching_ctl = NULL;
676 cache->cached = BTRFS_CACHE_NO;
678 cache->cached = BTRFS_CACHE_STARTED;
679 cache->has_caching_ctl = 1;
682 spin_unlock(&cache->lock);
683 #ifdef CONFIG_BTRFS_DEBUG
685 btrfs_should_fragment_free_space(fs_info->extent_root,
689 spin_lock(&cache->space_info->lock);
690 spin_lock(&cache->lock);
691 bytes_used = cache->key.offset -
692 btrfs_block_group_used(&cache->item);
693 cache->space_info->bytes_used += bytes_used >> 1;
694 spin_unlock(&cache->lock);
695 spin_unlock(&cache->space_info->lock);
696 fragment_free_space(fs_info->extent_root, cache);
699 mutex_unlock(&caching_ctl->mutex);
701 wake_up(&caching_ctl->wait);
703 put_caching_control(caching_ctl);
704 free_excluded_extents(fs_info->extent_root, cache);
709 * We're either using the free space tree or no caching at all.
710 * Set cached to the appropriate value and wakeup any waiters.
712 spin_lock(&cache->lock);
713 if (load_cache_only) {
714 cache->caching_ctl = NULL;
715 cache->cached = BTRFS_CACHE_NO;
717 cache->cached = BTRFS_CACHE_STARTED;
718 cache->has_caching_ctl = 1;
720 spin_unlock(&cache->lock);
721 wake_up(&caching_ctl->wait);
724 if (load_cache_only) {
725 put_caching_control(caching_ctl);
729 down_write(&fs_info->commit_root_sem);
730 atomic_inc(&caching_ctl->count);
731 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
732 up_write(&fs_info->commit_root_sem);
734 btrfs_get_block_group(cache);
736 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
742 * return the block group that starts at or after bytenr
744 static struct btrfs_block_group_cache *
745 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
747 struct btrfs_block_group_cache *cache;
749 cache = block_group_cache_tree_search(info, bytenr, 0);
755 * return the block group that contains the given bytenr
757 struct btrfs_block_group_cache *btrfs_lookup_block_group(
758 struct btrfs_fs_info *info,
761 struct btrfs_block_group_cache *cache;
763 cache = block_group_cache_tree_search(info, bytenr, 1);
768 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
771 struct list_head *head = &info->space_info;
772 struct btrfs_space_info *found;
774 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
777 list_for_each_entry_rcu(found, head, list) {
778 if (found->flags & flags) {
788 * after adding space to the filesystem, we need to clear the full flags
789 * on all the space infos.
791 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
793 struct list_head *head = &info->space_info;
794 struct btrfs_space_info *found;
797 list_for_each_entry_rcu(found, head, list)
802 /* simple helper to search for an existing data extent at a given offset */
803 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
806 struct btrfs_key key;
807 struct btrfs_path *path;
809 path = btrfs_alloc_path();
813 key.objectid = start;
815 key.type = BTRFS_EXTENT_ITEM_KEY;
816 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
818 btrfs_free_path(path);
823 * helper function to lookup reference count and flags of a tree block.
825 * the head node for delayed ref is used to store the sum of all the
826 * reference count modifications queued up in the rbtree. the head
827 * node may also store the extent flags to set. This way you can check
828 * to see what the reference count and extent flags would be if all of
829 * the delayed refs are not processed.
831 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root, u64 bytenr,
833 u64 offset, int metadata, u64 *refs, u64 *flags)
835 struct btrfs_delayed_ref_head *head;
836 struct btrfs_delayed_ref_root *delayed_refs;
837 struct btrfs_path *path;
838 struct btrfs_extent_item *ei;
839 struct extent_buffer *leaf;
840 struct btrfs_key key;
847 * If we don't have skinny metadata, don't bother doing anything
850 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
851 offset = root->nodesize;
855 path = btrfs_alloc_path();
860 path->skip_locking = 1;
861 path->search_commit_root = 1;
865 key.objectid = bytenr;
868 key.type = BTRFS_METADATA_ITEM_KEY;
870 key.type = BTRFS_EXTENT_ITEM_KEY;
872 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
877 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
878 if (path->slots[0]) {
880 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 if (key.objectid == bytenr &&
883 key.type == BTRFS_EXTENT_ITEM_KEY &&
884 key.offset == root->nodesize)
890 leaf = path->nodes[0];
891 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
892 if (item_size >= sizeof(*ei)) {
893 ei = btrfs_item_ptr(leaf, path->slots[0],
894 struct btrfs_extent_item);
895 num_refs = btrfs_extent_refs(leaf, ei);
896 extent_flags = btrfs_extent_flags(leaf, ei);
898 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
899 struct btrfs_extent_item_v0 *ei0;
900 BUG_ON(item_size != sizeof(*ei0));
901 ei0 = btrfs_item_ptr(leaf, path->slots[0],
902 struct btrfs_extent_item_v0);
903 num_refs = btrfs_extent_refs_v0(leaf, ei0);
904 /* FIXME: this isn't correct for data */
905 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
910 BUG_ON(num_refs == 0);
920 delayed_refs = &trans->transaction->delayed_refs;
921 spin_lock(&delayed_refs->lock);
922 head = btrfs_find_delayed_ref_head(trans, bytenr);
924 if (!mutex_trylock(&head->mutex)) {
925 atomic_inc(&head->node.refs);
926 spin_unlock(&delayed_refs->lock);
928 btrfs_release_path(path);
931 * Mutex was contended, block until it's released and try
934 mutex_lock(&head->mutex);
935 mutex_unlock(&head->mutex);
936 btrfs_put_delayed_ref(&head->node);
939 spin_lock(&head->lock);
940 if (head->extent_op && head->extent_op->update_flags)
941 extent_flags |= head->extent_op->flags_to_set;
943 BUG_ON(num_refs == 0);
945 num_refs += head->node.ref_mod;
946 spin_unlock(&head->lock);
947 mutex_unlock(&head->mutex);
949 spin_unlock(&delayed_refs->lock);
951 WARN_ON(num_refs == 0);
955 *flags = extent_flags;
957 btrfs_free_path(path);
962 * Back reference rules. Back refs have three main goals:
964 * 1) differentiate between all holders of references to an extent so that
965 * when a reference is dropped we can make sure it was a valid reference
966 * before freeing the extent.
968 * 2) Provide enough information to quickly find the holders of an extent
969 * if we notice a given block is corrupted or bad.
971 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
972 * maintenance. This is actually the same as #2, but with a slightly
973 * different use case.
975 * There are two kinds of back refs. The implicit back refs is optimized
976 * for pointers in non-shared tree blocks. For a given pointer in a block,
977 * back refs of this kind provide information about the block's owner tree
978 * and the pointer's key. These information allow us to find the block by
979 * b-tree searching. The full back refs is for pointers in tree blocks not
980 * referenced by their owner trees. The location of tree block is recorded
981 * in the back refs. Actually the full back refs is generic, and can be
982 * used in all cases the implicit back refs is used. The major shortcoming
983 * of the full back refs is its overhead. Every time a tree block gets
984 * COWed, we have to update back refs entry for all pointers in it.
986 * For a newly allocated tree block, we use implicit back refs for
987 * pointers in it. This means most tree related operations only involve
988 * implicit back refs. For a tree block created in old transaction, the
989 * only way to drop a reference to it is COW it. So we can detect the
990 * event that tree block loses its owner tree's reference and do the
991 * back refs conversion.
993 * When a tree block is COWed through a tree, there are four cases:
995 * The reference count of the block is one and the tree is the block's
996 * owner tree. Nothing to do in this case.
998 * The reference count of the block is one and the tree is not the
999 * block's owner tree. In this case, full back refs is used for pointers
1000 * in the block. Remove these full back refs, add implicit back refs for
1001 * every pointers in the new block.
1003 * The reference count of the block is greater than one and the tree is
1004 * the block's owner tree. In this case, implicit back refs is used for
1005 * pointers in the block. Add full back refs for every pointers in the
1006 * block, increase lower level extents' reference counts. The original
1007 * implicit back refs are entailed to the new block.
1009 * The reference count of the block is greater than one and the tree is
1010 * not the block's owner tree. Add implicit back refs for every pointer in
1011 * the new block, increase lower level extents' reference count.
1013 * Back Reference Key composing:
1015 * The key objectid corresponds to the first byte in the extent,
1016 * The key type is used to differentiate between types of back refs.
1017 * There are different meanings of the key offset for different types
1020 * File extents can be referenced by:
1022 * - multiple snapshots, subvolumes, or different generations in one subvol
1023 * - different files inside a single subvolume
1024 * - different offsets inside a file (bookend extents in file.c)
1026 * The extent ref structure for the implicit back refs has fields for:
1028 * - Objectid of the subvolume root
1029 * - objectid of the file holding the reference
1030 * - original offset in the file
1031 * - how many bookend extents
1033 * The key offset for the implicit back refs is hash of the first
1036 * The extent ref structure for the full back refs has field for:
1038 * - number of pointers in the tree leaf
1040 * The key offset for the implicit back refs is the first byte of
1043 * When a file extent is allocated, The implicit back refs is used.
1044 * the fields are filled in:
1046 * (root_key.objectid, inode objectid, offset in file, 1)
1048 * When a file extent is removed file truncation, we find the
1049 * corresponding implicit back refs and check the following fields:
1051 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1053 * Btree extents can be referenced by:
1055 * - Different subvolumes
1057 * Both the implicit back refs and the full back refs for tree blocks
1058 * only consist of key. The key offset for the implicit back refs is
1059 * objectid of block's owner tree. The key offset for the full back refs
1060 * is the first byte of parent block.
1062 * When implicit back refs is used, information about the lowest key and
1063 * level of the tree block are required. These information are stored in
1064 * tree block info structure.
1067 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1068 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root,
1070 struct btrfs_path *path,
1071 u64 owner, u32 extra_size)
1073 struct btrfs_extent_item *item;
1074 struct btrfs_extent_item_v0 *ei0;
1075 struct btrfs_extent_ref_v0 *ref0;
1076 struct btrfs_tree_block_info *bi;
1077 struct extent_buffer *leaf;
1078 struct btrfs_key key;
1079 struct btrfs_key found_key;
1080 u32 new_size = sizeof(*item);
1084 leaf = path->nodes[0];
1085 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1087 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1088 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_item_v0);
1090 refs = btrfs_extent_refs_v0(leaf, ei0);
1092 if (owner == (u64)-1) {
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1098 BUG_ON(ret > 0); /* Corruption */
1099 leaf = path->nodes[0];
1101 btrfs_item_key_to_cpu(leaf, &found_key,
1103 BUG_ON(key.objectid != found_key.objectid);
1104 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1108 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1109 struct btrfs_extent_ref_v0);
1110 owner = btrfs_ref_objectid_v0(leaf, ref0);
1114 btrfs_release_path(path);
1116 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1117 new_size += sizeof(*bi);
1119 new_size -= sizeof(*ei0);
1120 ret = btrfs_search_slot(trans, root, &key, path,
1121 new_size + extra_size, 1);
1124 BUG_ON(ret); /* Corruption */
1126 btrfs_extend_item(root, path, new_size);
1128 leaf = path->nodes[0];
1129 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1130 btrfs_set_extent_refs(leaf, item, refs);
1131 /* FIXME: get real generation */
1132 btrfs_set_extent_generation(leaf, item, 0);
1133 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1134 btrfs_set_extent_flags(leaf, item,
1135 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1136 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1137 bi = (struct btrfs_tree_block_info *)(item + 1);
1138 /* FIXME: get first key of the block */
1139 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1140 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1142 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1144 btrfs_mark_buffer_dirty(leaf);
1149 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1151 u32 high_crc = ~(u32)0;
1152 u32 low_crc = ~(u32)0;
1155 lenum = cpu_to_le64(root_objectid);
1156 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1157 lenum = cpu_to_le64(owner);
1158 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1159 lenum = cpu_to_le64(offset);
1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1162 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1166 struct btrfs_extent_data_ref *ref)
1168 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1169 btrfs_extent_data_ref_objectid(leaf, ref),
1170 btrfs_extent_data_ref_offset(leaf, ref));
1173 static int match_extent_data_ref(struct extent_buffer *leaf,
1174 struct btrfs_extent_data_ref *ref,
1175 u64 root_objectid, u64 owner, u64 offset)
1177 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1178 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1179 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1184 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1185 struct btrfs_root *root,
1186 struct btrfs_path *path,
1187 u64 bytenr, u64 parent,
1189 u64 owner, u64 offset)
1191 struct btrfs_key key;
1192 struct btrfs_extent_data_ref *ref;
1193 struct extent_buffer *leaf;
1199 key.objectid = bytenr;
1201 key.type = BTRFS_SHARED_DATA_REF_KEY;
1202 key.offset = parent;
1204 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1205 key.offset = hash_extent_data_ref(root_objectid,
1210 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1219 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 key.type = BTRFS_EXTENT_REF_V0_KEY;
1221 btrfs_release_path(path);
1222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1236 if (path->slots[0] >= nritems) {
1237 ret = btrfs_next_leaf(root, path);
1243 leaf = path->nodes[0];
1244 nritems = btrfs_header_nritems(leaf);
1248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 if (key.objectid != bytenr ||
1250 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1253 ref = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1256 if (match_extent_data_ref(leaf, ref, root_objectid,
1259 btrfs_release_path(path);
1271 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 u64 bytenr, u64 parent,
1275 u64 root_objectid, u64 owner,
1276 u64 offset, int refs_to_add)
1278 struct btrfs_key key;
1279 struct extent_buffer *leaf;
1284 key.objectid = bytenr;
1286 key.type = BTRFS_SHARED_DATA_REF_KEY;
1287 key.offset = parent;
1288 size = sizeof(struct btrfs_shared_data_ref);
1290 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1291 key.offset = hash_extent_data_ref(root_objectid,
1293 size = sizeof(struct btrfs_extent_data_ref);
1296 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1297 if (ret && ret != -EEXIST)
1300 leaf = path->nodes[0];
1302 struct btrfs_shared_data_ref *ref;
1303 ref = btrfs_item_ptr(leaf, path->slots[0],
1304 struct btrfs_shared_data_ref);
1306 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1308 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1309 num_refs += refs_to_add;
1310 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1313 struct btrfs_extent_data_ref *ref;
1314 while (ret == -EEXIST) {
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (match_extent_data_ref(leaf, ref, root_objectid,
1320 btrfs_release_path(path);
1322 ret = btrfs_insert_empty_item(trans, root, path, &key,
1324 if (ret && ret != -EEXIST)
1327 leaf = path->nodes[0];
1329 ref = btrfs_item_ptr(leaf, path->slots[0],
1330 struct btrfs_extent_data_ref);
1332 btrfs_set_extent_data_ref_root(leaf, ref,
1334 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1335 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1336 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1338 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1339 num_refs += refs_to_add;
1340 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1343 btrfs_mark_buffer_dirty(leaf);
1346 btrfs_release_path(path);
1350 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root,
1352 struct btrfs_path *path,
1353 int refs_to_drop, int *last_ref)
1355 struct btrfs_key key;
1356 struct btrfs_extent_data_ref *ref1 = NULL;
1357 struct btrfs_shared_data_ref *ref2 = NULL;
1358 struct extent_buffer *leaf;
1362 leaf = path->nodes[0];
1363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1366 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_data_ref);
1368 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1369 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1370 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_shared_data_ref);
1372 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 num_refs = btrfs_ref_count_v0(leaf, ref0);
1384 BUG_ON(num_refs < refs_to_drop);
1385 num_refs -= refs_to_drop;
1387 if (num_refs == 0) {
1388 ret = btrfs_del_item(trans, root, path);
1391 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1392 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1393 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1394 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1395 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 struct btrfs_extent_ref_v0 *ref0;
1398 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1399 struct btrfs_extent_ref_v0);
1400 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1403 btrfs_mark_buffer_dirty(leaf);
1408 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1409 struct btrfs_extent_inline_ref *iref)
1411 struct btrfs_key key;
1412 struct extent_buffer *leaf;
1413 struct btrfs_extent_data_ref *ref1;
1414 struct btrfs_shared_data_ref *ref2;
1417 leaf = path->nodes[0];
1418 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1420 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1421 BTRFS_EXTENT_DATA_REF_KEY) {
1422 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1423 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1425 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1426 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1428 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1429 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_data_ref);
1431 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1432 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1433 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_shared_data_ref);
1435 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1436 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1437 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1438 struct btrfs_extent_ref_v0 *ref0;
1439 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1440 struct btrfs_extent_ref_v0);
1441 num_refs = btrfs_ref_count_v0(leaf, ref0);
1449 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct btrfs_path *path,
1452 u64 bytenr, u64 parent,
1455 struct btrfs_key key;
1458 key.objectid = bytenr;
1460 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1461 key.offset = parent;
1463 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1464 key.offset = root_objectid;
1467 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1470 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1471 if (ret == -ENOENT && parent) {
1472 btrfs_release_path(path);
1473 key.type = BTRFS_EXTENT_REF_V0_KEY;
1474 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1482 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1483 struct btrfs_root *root,
1484 struct btrfs_path *path,
1485 u64 bytenr, u64 parent,
1488 struct btrfs_key key;
1491 key.objectid = bytenr;
1493 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1494 key.offset = parent;
1496 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1497 key.offset = root_objectid;
1500 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1501 btrfs_release_path(path);
1505 static inline int extent_ref_type(u64 parent, u64 owner)
1508 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 type = BTRFS_SHARED_BLOCK_REF_KEY;
1512 type = BTRFS_TREE_BLOCK_REF_KEY;
1515 type = BTRFS_SHARED_DATA_REF_KEY;
1517 type = BTRFS_EXTENT_DATA_REF_KEY;
1522 static int find_next_key(struct btrfs_path *path, int level,
1523 struct btrfs_key *key)
1526 for (; level < BTRFS_MAX_LEVEL; level++) {
1527 if (!path->nodes[level])
1529 if (path->slots[level] + 1 >=
1530 btrfs_header_nritems(path->nodes[level]))
1533 btrfs_item_key_to_cpu(path->nodes[level], key,
1534 path->slots[level] + 1);
1536 btrfs_node_key_to_cpu(path->nodes[level], key,
1537 path->slots[level] + 1);
1544 * look for inline back ref. if back ref is found, *ref_ret is set
1545 * to the address of inline back ref, and 0 is returned.
1547 * if back ref isn't found, *ref_ret is set to the address where it
1548 * should be inserted, and -ENOENT is returned.
1550 * if insert is true and there are too many inline back refs, the path
1551 * points to the extent item, and -EAGAIN is returned.
1553 * NOTE: inline back refs are ordered in the same way that back ref
1554 * items in the tree are ordered.
1556 static noinline_for_stack
1557 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1558 struct btrfs_root *root,
1559 struct btrfs_path *path,
1560 struct btrfs_extent_inline_ref **ref_ret,
1561 u64 bytenr, u64 num_bytes,
1562 u64 parent, u64 root_objectid,
1563 u64 owner, u64 offset, int insert)
1565 struct btrfs_key key;
1566 struct extent_buffer *leaf;
1567 struct btrfs_extent_item *ei;
1568 struct btrfs_extent_inline_ref *iref;
1578 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1581 key.objectid = bytenr;
1582 key.type = BTRFS_EXTENT_ITEM_KEY;
1583 key.offset = num_bytes;
1585 want = extent_ref_type(parent, owner);
1587 extra_size = btrfs_extent_inline_ref_size(want);
1588 path->keep_locks = 1;
1593 * Owner is our parent level, so we can just add one to get the level
1594 * for the block we are interested in.
1596 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1597 key.type = BTRFS_METADATA_ITEM_KEY;
1602 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1609 * We may be a newly converted file system which still has the old fat
1610 * extent entries for metadata, so try and see if we have one of those.
1612 if (ret > 0 && skinny_metadata) {
1613 skinny_metadata = false;
1614 if (path->slots[0]) {
1616 btrfs_item_key_to_cpu(path->nodes[0], &key,
1618 if (key.objectid == bytenr &&
1619 key.type == BTRFS_EXTENT_ITEM_KEY &&
1620 key.offset == num_bytes)
1624 key.objectid = bytenr;
1625 key.type = BTRFS_EXTENT_ITEM_KEY;
1626 key.offset = num_bytes;
1627 btrfs_release_path(path);
1632 if (ret && !insert) {
1635 } else if (WARN_ON(ret)) {
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1643 if (item_size < sizeof(*ei)) {
1648 ret = convert_extent_item_v0(trans, root, path, owner,
1654 leaf = path->nodes[0];
1655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1658 BUG_ON(item_size < sizeof(*ei));
1660 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1661 flags = btrfs_extent_flags(leaf, ei);
1663 ptr = (unsigned long)(ei + 1);
1664 end = (unsigned long)ei + item_size;
1666 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1667 ptr += sizeof(struct btrfs_tree_block_info);
1677 iref = (struct btrfs_extent_inline_ref *)ptr;
1678 type = btrfs_extent_inline_ref_type(leaf, iref);
1682 ptr += btrfs_extent_inline_ref_size(type);
1686 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1687 struct btrfs_extent_data_ref *dref;
1688 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1689 if (match_extent_data_ref(leaf, dref, root_objectid,
1694 if (hash_extent_data_ref_item(leaf, dref) <
1695 hash_extent_data_ref(root_objectid, owner, offset))
1699 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1701 if (parent == ref_offset) {
1705 if (ref_offset < parent)
1708 if (root_objectid == ref_offset) {
1712 if (ref_offset < root_objectid)
1716 ptr += btrfs_extent_inline_ref_size(type);
1718 if (err == -ENOENT && insert) {
1719 if (item_size + extra_size >=
1720 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1725 * To add new inline back ref, we have to make sure
1726 * there is no corresponding back ref item.
1727 * For simplicity, we just do not add new inline back
1728 * ref if there is any kind of item for this block
1730 if (find_next_key(path, 0, &key) == 0 &&
1731 key.objectid == bytenr &&
1732 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1737 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1740 path->keep_locks = 0;
1741 btrfs_unlock_up_safe(path, 1);
1747 * helper to add new inline back ref
1749 static noinline_for_stack
1750 void setup_inline_extent_backref(struct btrfs_root *root,
1751 struct btrfs_path *path,
1752 struct btrfs_extent_inline_ref *iref,
1753 u64 parent, u64 root_objectid,
1754 u64 owner, u64 offset, int refs_to_add,
1755 struct btrfs_delayed_extent_op *extent_op)
1757 struct extent_buffer *leaf;
1758 struct btrfs_extent_item *ei;
1761 unsigned long item_offset;
1766 leaf = path->nodes[0];
1767 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1768 item_offset = (unsigned long)iref - (unsigned long)ei;
1770 type = extent_ref_type(parent, owner);
1771 size = btrfs_extent_inline_ref_size(type);
1773 btrfs_extend_item(root, path, size);
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 refs += refs_to_add;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1782 ptr = (unsigned long)ei + item_offset;
1783 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1784 if (ptr < end - size)
1785 memmove_extent_buffer(leaf, ptr + size, ptr,
1788 iref = (struct btrfs_extent_inline_ref *)ptr;
1789 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 struct btrfs_extent_data_ref *dref;
1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1794 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1795 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1796 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1797 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1798 struct btrfs_shared_data_ref *sref;
1799 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1801 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1802 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1803 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1805 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1807 btrfs_mark_buffer_dirty(leaf);
1810 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_path *path,
1813 struct btrfs_extent_inline_ref **ref_ret,
1814 u64 bytenr, u64 num_bytes, u64 parent,
1815 u64 root_objectid, u64 owner, u64 offset)
1819 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1820 bytenr, num_bytes, parent,
1821 root_objectid, owner, offset, 0);
1825 btrfs_release_path(path);
1828 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1829 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1832 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1833 root_objectid, owner, offset);
1839 * helper to update/remove inline back ref
1841 static noinline_for_stack
1842 void update_inline_extent_backref(struct btrfs_root *root,
1843 struct btrfs_path *path,
1844 struct btrfs_extent_inline_ref *iref,
1846 struct btrfs_delayed_extent_op *extent_op,
1849 struct extent_buffer *leaf;
1850 struct btrfs_extent_item *ei;
1851 struct btrfs_extent_data_ref *dref = NULL;
1852 struct btrfs_shared_data_ref *sref = NULL;
1860 leaf = path->nodes[0];
1861 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1862 refs = btrfs_extent_refs(leaf, ei);
1863 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1864 refs += refs_to_mod;
1865 btrfs_set_extent_refs(leaf, ei, refs);
1867 __run_delayed_extent_op(extent_op, leaf, ei);
1869 type = btrfs_extent_inline_ref_type(leaf, iref);
1871 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1873 refs = btrfs_extent_data_ref_count(leaf, dref);
1874 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1875 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1876 refs = btrfs_shared_data_ref_count(leaf, sref);
1879 BUG_ON(refs_to_mod != -1);
1882 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1883 refs += refs_to_mod;
1886 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1887 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1889 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1892 size = btrfs_extent_inline_ref_size(type);
1893 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1894 ptr = (unsigned long)iref;
1895 end = (unsigned long)ei + item_size;
1896 if (ptr + size < end)
1897 memmove_extent_buffer(leaf, ptr, ptr + size,
1900 btrfs_truncate_item(root, path, item_size, 1);
1902 btrfs_mark_buffer_dirty(leaf);
1905 static noinline_for_stack
1906 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1907 struct btrfs_root *root,
1908 struct btrfs_path *path,
1909 u64 bytenr, u64 num_bytes, u64 parent,
1910 u64 root_objectid, u64 owner,
1911 u64 offset, int refs_to_add,
1912 struct btrfs_delayed_extent_op *extent_op)
1914 struct btrfs_extent_inline_ref *iref;
1917 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1918 bytenr, num_bytes, parent,
1919 root_objectid, owner, offset, 1);
1921 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1922 update_inline_extent_backref(root, path, iref,
1923 refs_to_add, extent_op, NULL);
1924 } else if (ret == -ENOENT) {
1925 setup_inline_extent_backref(root, path, iref, parent,
1926 root_objectid, owner, offset,
1927 refs_to_add, extent_op);
1933 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root,
1935 struct btrfs_path *path,
1936 u64 bytenr, u64 parent, u64 root_objectid,
1937 u64 owner, u64 offset, int refs_to_add)
1940 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1941 BUG_ON(refs_to_add != 1);
1942 ret = insert_tree_block_ref(trans, root, path, bytenr,
1943 parent, root_objectid);
1945 ret = insert_extent_data_ref(trans, root, path, bytenr,
1946 parent, root_objectid,
1947 owner, offset, refs_to_add);
1952 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_path *path,
1955 struct btrfs_extent_inline_ref *iref,
1956 int refs_to_drop, int is_data, int *last_ref)
1960 BUG_ON(!is_data && refs_to_drop != 1);
1962 update_inline_extent_backref(root, path, iref,
1963 -refs_to_drop, NULL, last_ref);
1964 } else if (is_data) {
1965 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1969 ret = btrfs_del_item(trans, root, path);
1974 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1975 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1976 u64 *discarded_bytes)
1979 u64 bytes_left, end;
1980 u64 aligned_start = ALIGN(start, 1 << 9);
1982 if (WARN_ON(start != aligned_start)) {
1983 len -= aligned_start - start;
1984 len = round_down(len, 1 << 9);
1985 start = aligned_start;
1988 *discarded_bytes = 0;
1996 /* Skip any superblocks on this device. */
1997 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1998 u64 sb_start = btrfs_sb_offset(j);
1999 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2000 u64 size = sb_start - start;
2002 if (!in_range(sb_start, start, bytes_left) &&
2003 !in_range(sb_end, start, bytes_left) &&
2004 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2008 * Superblock spans beginning of range. Adjust start and
2011 if (sb_start <= start) {
2012 start += sb_end - start;
2017 bytes_left = end - start;
2022 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2025 *discarded_bytes += size;
2026 else if (ret != -EOPNOTSUPP)
2035 bytes_left = end - start;
2039 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2042 *discarded_bytes += bytes_left;
2047 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2048 u64 num_bytes, u64 *actual_bytes)
2051 u64 discarded_bytes = 0;
2052 struct btrfs_bio *bbio = NULL;
2056 * Avoid races with device replace and make sure our bbio has devices
2057 * associated to its stripes that don't go away while we are discarding.
2059 btrfs_bio_counter_inc_blocked(root->fs_info);
2060 /* Tell the block device(s) that the sectors can be discarded */
2061 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2062 bytenr, &num_bytes, &bbio, 0);
2063 /* Error condition is -ENOMEM */
2065 struct btrfs_bio_stripe *stripe = bbio->stripes;
2069 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2071 if (!stripe->dev->can_discard)
2074 ret = btrfs_issue_discard(stripe->dev->bdev,
2079 discarded_bytes += bytes;
2080 else if (ret != -EOPNOTSUPP)
2081 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2084 * Just in case we get back EOPNOTSUPP for some reason,
2085 * just ignore the return value so we don't screw up
2086 * people calling discard_extent.
2090 btrfs_put_bbio(bbio);
2092 btrfs_bio_counter_dec(root->fs_info);
2095 *actual_bytes = discarded_bytes;
2098 if (ret == -EOPNOTSUPP)
2103 /* Can return -ENOMEM */
2104 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 u64 bytenr, u64 num_bytes, u64 parent,
2107 u64 root_objectid, u64 owner, u64 offset)
2110 struct btrfs_fs_info *fs_info = root->fs_info;
2112 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2113 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2115 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2116 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2118 parent, root_objectid, (int)owner,
2119 BTRFS_ADD_DELAYED_REF, NULL);
2121 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2122 num_bytes, parent, root_objectid,
2124 BTRFS_ADD_DELAYED_REF, NULL);
2129 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2130 struct btrfs_root *root,
2131 struct btrfs_delayed_ref_node *node,
2132 u64 parent, u64 root_objectid,
2133 u64 owner, u64 offset, int refs_to_add,
2134 struct btrfs_delayed_extent_op *extent_op)
2136 struct btrfs_fs_info *fs_info = root->fs_info;
2137 struct btrfs_path *path;
2138 struct extent_buffer *leaf;
2139 struct btrfs_extent_item *item;
2140 struct btrfs_key key;
2141 u64 bytenr = node->bytenr;
2142 u64 num_bytes = node->num_bytes;
2146 path = btrfs_alloc_path();
2150 path->reada = READA_FORWARD;
2151 path->leave_spinning = 1;
2152 /* this will setup the path even if it fails to insert the back ref */
2153 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2154 bytenr, num_bytes, parent,
2155 root_objectid, owner, offset,
2156 refs_to_add, extent_op);
2157 if ((ret < 0 && ret != -EAGAIN) || !ret)
2161 * Ok we had -EAGAIN which means we didn't have space to insert and
2162 * inline extent ref, so just update the reference count and add a
2165 leaf = path->nodes[0];
2166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2167 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2168 refs = btrfs_extent_refs(leaf, item);
2169 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2171 __run_delayed_extent_op(extent_op, leaf, item);
2173 btrfs_mark_buffer_dirty(leaf);
2174 btrfs_release_path(path);
2176 path->reada = READA_FORWARD;
2177 path->leave_spinning = 1;
2178 /* now insert the actual backref */
2179 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2180 path, bytenr, parent, root_objectid,
2181 owner, offset, refs_to_add);
2183 btrfs_abort_transaction(trans, root, ret);
2185 btrfs_free_path(path);
2189 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_delayed_ref_node *node,
2192 struct btrfs_delayed_extent_op *extent_op,
2193 int insert_reserved)
2196 struct btrfs_delayed_data_ref *ref;
2197 struct btrfs_key ins;
2202 ins.objectid = node->bytenr;
2203 ins.offset = node->num_bytes;
2204 ins.type = BTRFS_EXTENT_ITEM_KEY;
2206 ref = btrfs_delayed_node_to_data_ref(node);
2207 trace_run_delayed_data_ref(node, ref, node->action);
2209 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2210 parent = ref->parent;
2211 ref_root = ref->root;
2213 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 flags |= extent_op->flags_to_set;
2216 ret = alloc_reserved_file_extent(trans, root,
2217 parent, ref_root, flags,
2218 ref->objectid, ref->offset,
2219 &ins, node->ref_mod);
2220 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2221 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2222 ref_root, ref->objectid,
2223 ref->offset, node->ref_mod,
2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 ret = __btrfs_free_extent(trans, root, node, parent,
2227 ref_root, ref->objectid,
2228 ref->offset, node->ref_mod,
2236 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2237 struct extent_buffer *leaf,
2238 struct btrfs_extent_item *ei)
2240 u64 flags = btrfs_extent_flags(leaf, ei);
2241 if (extent_op->update_flags) {
2242 flags |= extent_op->flags_to_set;
2243 btrfs_set_extent_flags(leaf, ei, flags);
2246 if (extent_op->update_key) {
2247 struct btrfs_tree_block_info *bi;
2248 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2249 bi = (struct btrfs_tree_block_info *)(ei + 1);
2250 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2254 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2255 struct btrfs_root *root,
2256 struct btrfs_delayed_ref_node *node,
2257 struct btrfs_delayed_extent_op *extent_op)
2259 struct btrfs_key key;
2260 struct btrfs_path *path;
2261 struct btrfs_extent_item *ei;
2262 struct extent_buffer *leaf;
2266 int metadata = !extent_op->is_data;
2271 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2274 path = btrfs_alloc_path();
2278 key.objectid = node->bytenr;
2281 key.type = BTRFS_METADATA_ITEM_KEY;
2282 key.offset = extent_op->level;
2284 key.type = BTRFS_EXTENT_ITEM_KEY;
2285 key.offset = node->num_bytes;
2289 path->reada = READA_FORWARD;
2290 path->leave_spinning = 1;
2291 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2299 if (path->slots[0] > 0) {
2301 btrfs_item_key_to_cpu(path->nodes[0], &key,
2303 if (key.objectid == node->bytenr &&
2304 key.type == BTRFS_EXTENT_ITEM_KEY &&
2305 key.offset == node->num_bytes)
2309 btrfs_release_path(path);
2312 key.objectid = node->bytenr;
2313 key.offset = node->num_bytes;
2314 key.type = BTRFS_EXTENT_ITEM_KEY;
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2326 if (item_size < sizeof(*ei)) {
2327 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2337 BUG_ON(item_size < sizeof(*ei));
2338 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2339 __run_delayed_extent_op(extent_op, leaf, ei);
2341 btrfs_mark_buffer_dirty(leaf);
2343 btrfs_free_path(path);
2347 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2348 struct btrfs_root *root,
2349 struct btrfs_delayed_ref_node *node,
2350 struct btrfs_delayed_extent_op *extent_op,
2351 int insert_reserved)
2354 struct btrfs_delayed_tree_ref *ref;
2355 struct btrfs_key ins;
2358 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2361 ref = btrfs_delayed_node_to_tree_ref(node);
2362 trace_run_delayed_tree_ref(node, ref, node->action);
2364 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2365 parent = ref->parent;
2366 ref_root = ref->root;
2368 ins.objectid = node->bytenr;
2369 if (skinny_metadata) {
2370 ins.offset = ref->level;
2371 ins.type = BTRFS_METADATA_ITEM_KEY;
2373 ins.offset = node->num_bytes;
2374 ins.type = BTRFS_EXTENT_ITEM_KEY;
2377 BUG_ON(node->ref_mod != 1);
2378 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2379 BUG_ON(!extent_op || !extent_op->update_flags);
2380 ret = alloc_reserved_tree_block(trans, root,
2382 extent_op->flags_to_set,
2385 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2386 ret = __btrfs_inc_extent_ref(trans, root, node,
2390 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2391 ret = __btrfs_free_extent(trans, root, node,
2393 ref->level, 0, 1, extent_op);
2400 /* helper function to actually process a single delayed ref entry */
2401 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2402 struct btrfs_root *root,
2403 struct btrfs_delayed_ref_node *node,
2404 struct btrfs_delayed_extent_op *extent_op,
2405 int insert_reserved)
2409 if (trans->aborted) {
2410 if (insert_reserved)
2411 btrfs_pin_extent(root, node->bytenr,
2412 node->num_bytes, 1);
2416 if (btrfs_delayed_ref_is_head(node)) {
2417 struct btrfs_delayed_ref_head *head;
2419 * we've hit the end of the chain and we were supposed
2420 * to insert this extent into the tree. But, it got
2421 * deleted before we ever needed to insert it, so all
2422 * we have to do is clean up the accounting
2425 head = btrfs_delayed_node_to_head(node);
2426 trace_run_delayed_ref_head(node, head, node->action);
2428 if (insert_reserved) {
2429 btrfs_pin_extent(root, node->bytenr,
2430 node->num_bytes, 1);
2431 if (head->is_data) {
2432 ret = btrfs_del_csums(trans, root,
2438 /* Also free its reserved qgroup space */
2439 btrfs_qgroup_free_delayed_ref(root->fs_info,
2440 head->qgroup_ref_root,
2441 head->qgroup_reserved);
2445 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2446 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2449 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2450 node->type == BTRFS_SHARED_DATA_REF_KEY)
2451 ret = run_delayed_data_ref(trans, root, node, extent_op,
2458 static inline struct btrfs_delayed_ref_node *
2459 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2461 struct btrfs_delayed_ref_node *ref;
2463 if (list_empty(&head->ref_list))
2467 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2468 * This is to prevent a ref count from going down to zero, which deletes
2469 * the extent item from the extent tree, when there still are references
2470 * to add, which would fail because they would not find the extent item.
2472 list_for_each_entry(ref, &head->ref_list, list) {
2473 if (ref->action == BTRFS_ADD_DELAYED_REF)
2477 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2482 * Returns 0 on success or if called with an already aborted transaction.
2483 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2485 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2486 struct btrfs_root *root,
2489 struct btrfs_delayed_ref_root *delayed_refs;
2490 struct btrfs_delayed_ref_node *ref;
2491 struct btrfs_delayed_ref_head *locked_ref = NULL;
2492 struct btrfs_delayed_extent_op *extent_op;
2493 struct btrfs_fs_info *fs_info = root->fs_info;
2494 ktime_t start = ktime_get();
2496 unsigned long count = 0;
2497 unsigned long actual_count = 0;
2498 int must_insert_reserved = 0;
2500 delayed_refs = &trans->transaction->delayed_refs;
2506 spin_lock(&delayed_refs->lock);
2507 locked_ref = btrfs_select_ref_head(trans);
2509 spin_unlock(&delayed_refs->lock);
2513 /* grab the lock that says we are going to process
2514 * all the refs for this head */
2515 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2516 spin_unlock(&delayed_refs->lock);
2518 * we may have dropped the spin lock to get the head
2519 * mutex lock, and that might have given someone else
2520 * time to free the head. If that's true, it has been
2521 * removed from our list and we can move on.
2523 if (ret == -EAGAIN) {
2531 * We need to try and merge add/drops of the same ref since we
2532 * can run into issues with relocate dropping the implicit ref
2533 * and then it being added back again before the drop can
2534 * finish. If we merged anything we need to re-loop so we can
2536 * Or we can get node references of the same type that weren't
2537 * merged when created due to bumps in the tree mod seq, and
2538 * we need to merge them to prevent adding an inline extent
2539 * backref before dropping it (triggering a BUG_ON at
2540 * insert_inline_extent_backref()).
2542 spin_lock(&locked_ref->lock);
2543 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2547 * locked_ref is the head node, so we have to go one
2548 * node back for any delayed ref updates
2550 ref = select_delayed_ref(locked_ref);
2552 if (ref && ref->seq &&
2553 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2554 spin_unlock(&locked_ref->lock);
2555 btrfs_delayed_ref_unlock(locked_ref);
2556 spin_lock(&delayed_refs->lock);
2557 locked_ref->processing = 0;
2558 delayed_refs->num_heads_ready++;
2559 spin_unlock(&delayed_refs->lock);
2567 * record the must insert reserved flag before we
2568 * drop the spin lock.
2570 must_insert_reserved = locked_ref->must_insert_reserved;
2571 locked_ref->must_insert_reserved = 0;
2573 extent_op = locked_ref->extent_op;
2574 locked_ref->extent_op = NULL;
2579 /* All delayed refs have been processed, Go ahead
2580 * and send the head node to run_one_delayed_ref,
2581 * so that any accounting fixes can happen
2583 ref = &locked_ref->node;
2585 if (extent_op && must_insert_reserved) {
2586 btrfs_free_delayed_extent_op(extent_op);
2591 spin_unlock(&locked_ref->lock);
2592 ret = run_delayed_extent_op(trans, root,
2594 btrfs_free_delayed_extent_op(extent_op);
2598 * Need to reset must_insert_reserved if
2599 * there was an error so the abort stuff
2600 * can cleanup the reserved space
2603 if (must_insert_reserved)
2604 locked_ref->must_insert_reserved = 1;
2605 locked_ref->processing = 0;
2606 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2607 btrfs_delayed_ref_unlock(locked_ref);
2614 * Need to drop our head ref lock and re-acquire the
2615 * delayed ref lock and then re-check to make sure
2618 spin_unlock(&locked_ref->lock);
2619 spin_lock(&delayed_refs->lock);
2620 spin_lock(&locked_ref->lock);
2621 if (!list_empty(&locked_ref->ref_list) ||
2622 locked_ref->extent_op) {
2623 spin_unlock(&locked_ref->lock);
2624 spin_unlock(&delayed_refs->lock);
2628 delayed_refs->num_heads--;
2629 rb_erase(&locked_ref->href_node,
2630 &delayed_refs->href_root);
2631 spin_unlock(&delayed_refs->lock);
2635 list_del(&ref->list);
2637 atomic_dec(&delayed_refs->num_entries);
2639 if (!btrfs_delayed_ref_is_head(ref)) {
2641 * when we play the delayed ref, also correct the
2644 switch (ref->action) {
2645 case BTRFS_ADD_DELAYED_REF:
2646 case BTRFS_ADD_DELAYED_EXTENT:
2647 locked_ref->node.ref_mod -= ref->ref_mod;
2649 case BTRFS_DROP_DELAYED_REF:
2650 locked_ref->node.ref_mod += ref->ref_mod;
2656 spin_unlock(&locked_ref->lock);
2658 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2659 must_insert_reserved);
2661 btrfs_free_delayed_extent_op(extent_op);
2663 locked_ref->processing = 0;
2664 btrfs_delayed_ref_unlock(locked_ref);
2665 btrfs_put_delayed_ref(ref);
2666 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2671 * If this node is a head, that means all the refs in this head
2672 * have been dealt with, and we will pick the next head to deal
2673 * with, so we must unlock the head and drop it from the cluster
2674 * list before we release it.
2676 if (btrfs_delayed_ref_is_head(ref)) {
2677 if (locked_ref->is_data &&
2678 locked_ref->total_ref_mod < 0) {
2679 spin_lock(&delayed_refs->lock);
2680 delayed_refs->pending_csums -= ref->num_bytes;
2681 spin_unlock(&delayed_refs->lock);
2683 btrfs_delayed_ref_unlock(locked_ref);
2686 btrfs_put_delayed_ref(ref);
2692 * We don't want to include ref heads since we can have empty ref heads
2693 * and those will drastically skew our runtime down since we just do
2694 * accounting, no actual extent tree updates.
2696 if (actual_count > 0) {
2697 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2701 * We weigh the current average higher than our current runtime
2702 * to avoid large swings in the average.
2704 spin_lock(&delayed_refs->lock);
2705 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2706 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2707 spin_unlock(&delayed_refs->lock);
2712 #ifdef SCRAMBLE_DELAYED_REFS
2714 * Normally delayed refs get processed in ascending bytenr order. This
2715 * correlates in most cases to the order added. To expose dependencies on this
2716 * order, we start to process the tree in the middle instead of the beginning
2718 static u64 find_middle(struct rb_root *root)
2720 struct rb_node *n = root->rb_node;
2721 struct btrfs_delayed_ref_node *entry;
2724 u64 first = 0, last = 0;
2728 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2729 first = entry->bytenr;
2733 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 last = entry->bytenr;
2739 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2740 WARN_ON(!entry->in_tree);
2742 middle = entry->bytenr;
2755 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2759 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2760 sizeof(struct btrfs_extent_inline_ref));
2761 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2762 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2765 * We don't ever fill up leaves all the way so multiply by 2 just to be
2766 * closer to what we're really going to want to use.
2768 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2772 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2773 * would require to store the csums for that many bytes.
2775 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2778 u64 num_csums_per_leaf;
2781 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2782 num_csums_per_leaf = div64_u64(csum_size,
2783 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2784 num_csums = div64_u64(csum_bytes, root->sectorsize);
2785 num_csums += num_csums_per_leaf - 1;
2786 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2790 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root)
2793 struct btrfs_block_rsv *global_rsv;
2794 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2795 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2796 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2797 u64 num_bytes, num_dirty_bgs_bytes;
2800 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2801 num_heads = heads_to_leaves(root, num_heads);
2803 num_bytes += (num_heads - 1) * root->nodesize;
2805 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2806 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2808 global_rsv = &root->fs_info->global_block_rsv;
2811 * If we can't allocate any more chunks lets make sure we have _lots_ of
2812 * wiggle room since running delayed refs can create more delayed refs.
2814 if (global_rsv->space_info->full) {
2815 num_dirty_bgs_bytes <<= 1;
2819 spin_lock(&global_rsv->lock);
2820 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2822 spin_unlock(&global_rsv->lock);
2826 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2827 struct btrfs_root *root)
2829 struct btrfs_fs_info *fs_info = root->fs_info;
2831 atomic_read(&trans->transaction->delayed_refs.num_entries);
2836 avg_runtime = fs_info->avg_delayed_ref_runtime;
2837 val = num_entries * avg_runtime;
2838 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2840 if (val >= NSEC_PER_SEC / 2)
2843 return btrfs_check_space_for_delayed_refs(trans, root);
2846 struct async_delayed_refs {
2847 struct btrfs_root *root;
2852 struct completion wait;
2853 struct btrfs_work work;
2856 static void delayed_ref_async_start(struct btrfs_work *work)
2858 struct async_delayed_refs *async;
2859 struct btrfs_trans_handle *trans;
2862 async = container_of(work, struct async_delayed_refs, work);
2864 /* if the commit is already started, we don't need to wait here */
2865 if (btrfs_transaction_blocked(async->root->fs_info))
2868 trans = btrfs_join_transaction(async->root);
2869 if (IS_ERR(trans)) {
2870 async->error = PTR_ERR(trans);
2875 * trans->sync means that when we call end_transaction, we won't
2876 * wait on delayed refs
2880 /* Don't bother flushing if we got into a different transaction */
2881 if (trans->transid > async->transid)
2884 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2888 ret = btrfs_end_transaction(trans, async->root);
2889 if (ret && !async->error)
2893 complete(&async->wait);
2898 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2899 unsigned long count, u64 transid, int wait)
2901 struct async_delayed_refs *async;
2904 async = kmalloc(sizeof(*async), GFP_NOFS);
2908 async->root = root->fs_info->tree_root;
2909 async->count = count;
2911 async->transid = transid;
2916 init_completion(&async->wait);
2918 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2919 delayed_ref_async_start, NULL, NULL);
2921 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2924 wait_for_completion(&async->wait);
2933 * this starts processing the delayed reference count updates and
2934 * extent insertions we have queued up so far. count can be
2935 * 0, which means to process everything in the tree at the start
2936 * of the run (but not newly added entries), or it can be some target
2937 * number you'd like to process.
2939 * Returns 0 on success or if called with an aborted transaction
2940 * Returns <0 on error and aborts the transaction
2942 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2943 struct btrfs_root *root, unsigned long count)
2945 struct rb_node *node;
2946 struct btrfs_delayed_ref_root *delayed_refs;
2947 struct btrfs_delayed_ref_head *head;
2949 int run_all = count == (unsigned long)-1;
2950 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952 /* We'll clean this up in btrfs_cleanup_transaction */
2956 if (root->fs_info->creating_free_space_tree)
2959 if (root == root->fs_info->extent_root)
2960 root = root->fs_info->tree_root;
2962 delayed_refs = &trans->transaction->delayed_refs;
2964 count = atomic_read(&delayed_refs->num_entries) * 2;
2967 #ifdef SCRAMBLE_DELAYED_REFS
2968 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2970 trans->can_flush_pending_bgs = false;
2971 ret = __btrfs_run_delayed_refs(trans, root, count);
2973 btrfs_abort_transaction(trans, root, ret);
2978 if (!list_empty(&trans->new_bgs))
2979 btrfs_create_pending_block_groups(trans, root);
2981 spin_lock(&delayed_refs->lock);
2982 node = rb_first(&delayed_refs->href_root);
2984 spin_unlock(&delayed_refs->lock);
2987 count = (unsigned long)-1;
2990 head = rb_entry(node, struct btrfs_delayed_ref_head,
2992 if (btrfs_delayed_ref_is_head(&head->node)) {
2993 struct btrfs_delayed_ref_node *ref;
2996 atomic_inc(&ref->refs);
2998 spin_unlock(&delayed_refs->lock);
3000 * Mutex was contended, block until it's
3001 * released and try again
3003 mutex_lock(&head->mutex);
3004 mutex_unlock(&head->mutex);
3006 btrfs_put_delayed_ref(ref);
3012 node = rb_next(node);
3014 spin_unlock(&delayed_refs->lock);
3019 assert_qgroups_uptodate(trans);
3020 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3024 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3025 struct btrfs_root *root,
3026 u64 bytenr, u64 num_bytes, u64 flags,
3027 int level, int is_data)
3029 struct btrfs_delayed_extent_op *extent_op;
3032 extent_op = btrfs_alloc_delayed_extent_op();
3036 extent_op->flags_to_set = flags;
3037 extent_op->update_flags = true;
3038 extent_op->update_key = false;
3039 extent_op->is_data = is_data ? true : false;