cd2f5220577fbb466c3926dd12222e899c94c5f4
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49         CHUNK_ALLOC_NO_FORCE = 0,
50         CHUNK_ALLOC_LIMITED = 1,
51         CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55                                struct btrfs_fs_info *fs_info,
56                                 struct btrfs_delayed_ref_node *node, u64 parent,
57                                 u64 root_objectid, u64 owner_objectid,
58                                 u64 owner_offset, int refs_to_drop,
59                                 struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61                                     struct extent_buffer *leaf,
62                                     struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64                                       struct btrfs_fs_info *fs_info,
65                                       u64 parent, u64 root_objectid,
66                                       u64 flags, u64 owner, u64 offset,
67                                       struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69                                      struct btrfs_fs_info *fs_info,
70                                      u64 parent, u64 root_objectid,
71                                      u64 flags, struct btrfs_disk_key *key,
72                                      int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74                           struct btrfs_fs_info *fs_info, u64 flags,
75                           int force);
76 static int find_next_key(struct btrfs_path *path, int level,
77                          struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79                             struct btrfs_space_info *info, u64 bytes,
80                             int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82                                u64 num_bytes);
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84                                      struct btrfs_space_info *space_info,
85                                      u64 num_bytes);
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87                                      struct btrfs_space_info *space_info,
88                                      u64 num_bytes);
89
90 static noinline int
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 {
93         smp_mb();
94         return cache->cached == BTRFS_CACHE_FINISHED ||
95                 cache->cached == BTRFS_CACHE_ERROR;
96 }
97
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99 {
100         return (cache->flags & bits) == bits;
101 }
102
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104 {
105         atomic_inc(&cache->count);
106 }
107
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109 {
110         if (atomic_dec_and_test(&cache->count)) {
111                 WARN_ON(cache->pinned > 0);
112                 WARN_ON(cache->reserved > 0);
113
114                 /*
115                  * If not empty, someone is still holding mutex of
116                  * full_stripe_lock, which can only be released by caller.
117                  * And it will definitely cause use-after-free when caller
118                  * tries to release full stripe lock.
119                  *
120                  * No better way to resolve, but only to warn.
121                  */
122                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123                 kfree(cache->free_space_ctl);
124                 kfree(cache);
125         }
126 }
127
128 /*
129  * this adds the block group to the fs_info rb tree for the block group
130  * cache
131  */
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133                                 struct btrfs_block_group_cache *block_group)
134 {
135         struct rb_node **p;
136         struct rb_node *parent = NULL;
137         struct btrfs_block_group_cache *cache;
138
139         spin_lock(&info->block_group_cache_lock);
140         p = &info->block_group_cache_tree.rb_node;
141
142         while (*p) {
143                 parent = *p;
144                 cache = rb_entry(parent, struct btrfs_block_group_cache,
145                                  cache_node);
146                 if (block_group->key.objectid < cache->key.objectid) {
147                         p = &(*p)->rb_left;
148                 } else if (block_group->key.objectid > cache->key.objectid) {
149                         p = &(*p)->rb_right;
150                 } else {
151                         spin_unlock(&info->block_group_cache_lock);
152                         return -EEXIST;
153                 }
154         }
155
156         rb_link_node(&block_group->cache_node, parent, p);
157         rb_insert_color(&block_group->cache_node,
158                         &info->block_group_cache_tree);
159
160         if (info->first_logical_byte > block_group->key.objectid)
161                 info->first_logical_byte = block_group->key.objectid;
162
163         spin_unlock(&info->block_group_cache_lock);
164
165         return 0;
166 }
167
168 /*
169  * This will return the block group at or after bytenr if contains is 0, else
170  * it will return the block group that contains the bytenr
171  */
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174                               int contains)
175 {
176         struct btrfs_block_group_cache *cache, *ret = NULL;
177         struct rb_node *n;
178         u64 end, start;
179
180         spin_lock(&info->block_group_cache_lock);
181         n = info->block_group_cache_tree.rb_node;
182
183         while (n) {
184                 cache = rb_entry(n, struct btrfs_block_group_cache,
185                                  cache_node);
186                 end = cache->key.objectid + cache->key.offset - 1;
187                 start = cache->key.objectid;
188
189                 if (bytenr < start) {
190                         if (!contains && (!ret || start < ret->key.objectid))
191                                 ret = cache;
192                         n = n->rb_left;
193                 } else if (bytenr > start) {
194                         if (contains && bytenr <= end) {
195                                 ret = cache;
196                                 break;
197                         }
198                         n = n->rb_right;
199                 } else {
200                         ret = cache;
201                         break;
202                 }
203         }
204         if (ret) {
205                 btrfs_get_block_group(ret);
206                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207                         info->first_logical_byte = ret->key.objectid;
208         }
209         spin_unlock(&info->block_group_cache_lock);
210
211         return ret;
212 }
213
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215                                u64 start, u64 num_bytes)
216 {
217         u64 end = start + num_bytes - 1;
218         set_extent_bits(&fs_info->freed_extents[0],
219                         start, end, EXTENT_UPTODATE);
220         set_extent_bits(&fs_info->freed_extents[1],
221                         start, end, EXTENT_UPTODATE);
222         return 0;
223 }
224
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226                                   struct btrfs_block_group_cache *cache)
227 {
228         u64 start, end;
229
230         start = cache->key.objectid;
231         end = start + cache->key.offset - 1;
232
233         clear_extent_bits(&fs_info->freed_extents[0],
234                           start, end, EXTENT_UPTODATE);
235         clear_extent_bits(&fs_info->freed_extents[1],
236                           start, end, EXTENT_UPTODATE);
237 }
238
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240                                  struct btrfs_block_group_cache *cache)
241 {
242         u64 bytenr;
243         u64 *logical;
244         int stripe_len;
245         int i, nr, ret;
246
247         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249                 cache->bytes_super += stripe_len;
250                 ret = add_excluded_extent(fs_info, cache->key.objectid,
251                                           stripe_len);
252                 if (ret)
253                         return ret;
254         }
255
256         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257                 bytenr = btrfs_sb_offset(i);
258                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259                                        bytenr, 0, &logical, &nr, &stripe_len);
260                 if (ret)
261                         return ret;
262
263                 while (nr--) {
264                         u64 start, len;
265
266                         if (logical[nr] > cache->key.objectid +
267                             cache->key.offset)
268                                 continue;
269
270                         if (logical[nr] + stripe_len <= cache->key.objectid)
271                                 continue;
272
273                         start = logical[nr];
274                         if (start < cache->key.objectid) {
275                                 start = cache->key.objectid;
276                                 len = (logical[nr] + stripe_len) - start;
277                         } else {
278                                 len = min_t(u64, stripe_len,
279                                             cache->key.objectid +
280                                             cache->key.offset - start);
281                         }
282
283                         cache->bytes_super += len;
284                         ret = add_excluded_extent(fs_info, start, len);
285                         if (ret) {
286                                 kfree(logical);
287                                 return ret;
288                         }
289                 }
290
291                 kfree(logical);
292         }
293         return 0;
294 }
295
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
298 {
299         struct btrfs_caching_control *ctl;
300
301         spin_lock(&cache->lock);
302         if (!cache->caching_ctl) {
303                 spin_unlock(&cache->lock);
304                 return NULL;
305         }
306
307         ctl = cache->caching_ctl;
308         refcount_inc(&ctl->count);
309         spin_unlock(&cache->lock);
310         return ctl;
311 }
312
313 static void put_caching_control(struct btrfs_caching_control *ctl)
314 {
315         if (refcount_dec_and_test(&ctl->count))
316                 kfree(ctl);
317 }
318
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321 {
322         struct btrfs_fs_info *fs_info = block_group->fs_info;
323         u64 start = block_group->key.objectid;
324         u64 len = block_group->key.offset;
325         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326                 fs_info->nodesize : fs_info->sectorsize;
327         u64 step = chunk << 1;
328
329         while (len > chunk) {
330                 btrfs_remove_free_space(block_group, start, chunk);
331                 start += step;
332                 if (len < step)
333                         len = 0;
334                 else
335                         len -= step;
336         }
337 }
338 #endif
339
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346                        struct btrfs_fs_info *info, u64 start, u64 end)
347 {
348         u64 extent_start, extent_end, size, total_added = 0;
349         int ret;
350
351         while (start < end) {
352                 ret = find_first_extent_bit(info->pinned_extents, start,
353                                             &extent_start, &extent_end,
354                                             EXTENT_DIRTY | EXTENT_UPTODATE,
355                                             NULL);
356                 if (ret)
357                         break;
358
359                 if (extent_start <= start) {
360                         start = extent_end + 1;
361                 } else if (extent_start > start && extent_start < end) {
362                         size = extent_start - start;
363                         total_added += size;
364                         ret = btrfs_add_free_space(block_group, start,
365                                                    size);
366                         BUG_ON(ret); /* -ENOMEM or logic error */
367                         start = extent_end + 1;
368                 } else {
369                         break;
370                 }
371         }
372
373         if (start < end) {
374                 size = end - start;
375                 total_added += size;
376                 ret = btrfs_add_free_space(block_group, start, size);
377                 BUG_ON(ret); /* -ENOMEM or logic error */
378         }
379
380         return total_added;
381 }
382
383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384 {
385         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386         struct btrfs_fs_info *fs_info = block_group->fs_info;
387         struct btrfs_root *extent_root = fs_info->extent_root;
388         struct btrfs_path *path;
389         struct extent_buffer *leaf;
390         struct btrfs_key key;
391         u64 total_found = 0;
392         u64 last = 0;
393         u32 nritems;
394         int ret;
395         bool wakeup = true;
396
397         path = btrfs_alloc_path();
398         if (!path)
399                 return -ENOMEM;
400
401         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 #ifdef CONFIG_BTRFS_DEBUG
404         /*
405          * If we're fragmenting we don't want to make anybody think we can
406          * allocate from this block group until we've had a chance to fragment
407          * the free space.
408          */
409         if (btrfs_should_fragment_free_space(block_group))
410                 wakeup = false;
411 #endif
412         /*
413          * We don't want to deadlock with somebody trying to allocate a new
414          * extent for the extent root while also trying to search the extent
415          * root to add free space.  So we skip locking and search the commit
416          * root, since its read-only
417          */
418         path->skip_locking = 1;
419         path->search_commit_root = 1;
420         path->reada = READA_FORWARD;
421
422         key.objectid = last;
423         key.offset = 0;
424         key.type = BTRFS_EXTENT_ITEM_KEY;
425
426 next:
427         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428         if (ret < 0)
429                 goto out;
430
431         leaf = path->nodes[0];
432         nritems = btrfs_header_nritems(leaf);
433
434         while (1) {
435                 if (btrfs_fs_closing(fs_info) > 1) {
436                         last = (u64)-1;
437                         break;
438                 }
439
440                 if (path->slots[0] < nritems) {
441                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442                 } else {
443                         ret = find_next_key(path, 0, &key);
444                         if (ret)
445                                 break;
446
447                         if (need_resched() ||
448                             rwsem_is_contended(&fs_info->commit_root_sem)) {
449                                 if (wakeup)
450                                         caching_ctl->progress = last;
451                                 btrfs_release_path(path);
452                                 up_read(&fs_info->commit_root_sem);
453                                 mutex_unlock(&caching_ctl->mutex);
454                                 cond_resched();
455                                 mutex_lock(&caching_ctl->mutex);
456                                 down_read(&fs_info->commit_root_sem);
457                                 goto next;
458                         }
459
460                         ret = btrfs_next_leaf(extent_root, path);
461                         if (ret < 0)
462                                 goto out;
463                         if (ret)
464                                 break;
465                         leaf = path->nodes[0];
466                         nritems = btrfs_header_nritems(leaf);
467                         continue;
468                 }
469
470                 if (key.objectid < last) {
471                         key.objectid = last;
472                         key.offset = 0;
473                         key.type = BTRFS_EXTENT_ITEM_KEY;
474
475                         if (wakeup)
476                                 caching_ctl->progress = last;
477                         btrfs_release_path(path);
478                         goto next;
479                 }
480
481                 if (key.objectid < block_group->key.objectid) {
482                         path->slots[0]++;
483                         continue;
484                 }
485
486                 if (key.objectid >= block_group->key.objectid +
487                     block_group->key.offset)
488                         break;
489
490                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491                     key.type == BTRFS_METADATA_ITEM_KEY) {
492                         total_found += add_new_free_space(block_group,
493                                                           fs_info, last,
494                                                           key.objectid);
495                         if (key.type == BTRFS_METADATA_ITEM_KEY)
496                                 last = key.objectid +
497                                         fs_info->nodesize;
498                         else
499                                 last = key.objectid + key.offset;
500
501                         if (total_found > CACHING_CTL_WAKE_UP) {
502                                 total_found = 0;
503                                 if (wakeup)
504                                         wake_up(&caching_ctl->wait);
505                         }
506                 }
507                 path->slots[0]++;
508         }
509         ret = 0;
510
511         total_found += add_new_free_space(block_group, fs_info, last,
512                                           block_group->key.objectid +
513                                           block_group->key.offset);
514         caching_ctl->progress = (u64)-1;
515
516 out:
517         btrfs_free_path(path);
518         return ret;
519 }
520
521 static noinline void caching_thread(struct btrfs_work *work)
522 {
523         struct btrfs_block_group_cache *block_group;
524         struct btrfs_fs_info *fs_info;
525         struct btrfs_caching_control *caching_ctl;
526         int ret;
527
528         caching_ctl = container_of(work, struct btrfs_caching_control, work);
529         block_group = caching_ctl->block_group;
530         fs_info = block_group->fs_info;
531
532         mutex_lock(&caching_ctl->mutex);
533         down_read(&fs_info->commit_root_sem);
534
535         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536                 ret = load_free_space_tree(caching_ctl);
537         else
538                 ret = load_extent_tree_free(caching_ctl);
539
540         spin_lock(&block_group->lock);
541         block_group->caching_ctl = NULL;
542         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543         spin_unlock(&block_group->lock);
544
545 #ifdef CONFIG_BTRFS_DEBUG
546         if (btrfs_should_fragment_free_space(block_group)) {
547                 u64 bytes_used;
548
549                 spin_lock(&block_group->space_info->lock);
550                 spin_lock(&block_group->lock);
551                 bytes_used = block_group->key.offset -
552                         btrfs_block_group_used(&block_group->item);
553                 block_group->space_info->bytes_used += bytes_used >> 1;
554                 spin_unlock(&block_group->lock);
555                 spin_unlock(&block_group->space_info->lock);
556                 fragment_free_space(block_group);
557         }
558 #endif
559
560         caching_ctl->progress = (u64)-1;
561
562         up_read(&fs_info->commit_root_sem);
563         free_excluded_extents(fs_info, block_group);
564         mutex_unlock(&caching_ctl->mutex);
565
566         wake_up(&caching_ctl->wait);
567
568         put_caching_control(caching_ctl);
569         btrfs_put_block_group(block_group);
570 }
571
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
573                              int load_cache_only)
574 {
575         DEFINE_WAIT(wait);
576         struct btrfs_fs_info *fs_info = cache->fs_info;
577         struct btrfs_caching_control *caching_ctl;
578         int ret = 0;
579
580         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581         if (!caching_ctl)
582                 return -ENOMEM;
583
584         INIT_LIST_HEAD(&caching_ctl->list);
585         mutex_init(&caching_ctl->mutex);
586         init_waitqueue_head(&caching_ctl->wait);
587         caching_ctl->block_group = cache;
588         caching_ctl->progress = cache->key.objectid;
589         refcount_set(&caching_ctl->count, 1);
590         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591                         caching_thread, NULL, NULL);
592
593         spin_lock(&cache->lock);
594         /*
595          * This should be a rare occasion, but this could happen I think in the
596          * case where one thread starts to load the space cache info, and then
597          * some other thread starts a transaction commit which tries to do an
598          * allocation while the other thread is still loading the space cache
599          * info.  The previous loop should have kept us from choosing this block
600          * group, but if we've moved to the state where we will wait on caching
601          * block groups we need to first check if we're doing a fast load here,
602          * so we can wait for it to finish, otherwise we could end up allocating
603          * from a block group who's cache gets evicted for one reason or
604          * another.
605          */
606         while (cache->cached == BTRFS_CACHE_FAST) {
607                 struct btrfs_caching_control *ctl;
608
609                 ctl = cache->caching_ctl;
610                 refcount_inc(&ctl->count);
611                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612                 spin_unlock(&cache->lock);
613
614                 schedule();
615
616                 finish_wait(&ctl->wait, &wait);
617                 put_caching_control(ctl);
618                 spin_lock(&cache->lock);
619         }
620
621         if (cache->cached != BTRFS_CACHE_NO) {
622                 spin_unlock(&cache->lock);
623                 kfree(caching_ctl);
624                 return 0;
625         }
626         WARN_ON(cache->caching_ctl);
627         cache->caching_ctl = caching_ctl;
628         cache->cached = BTRFS_CACHE_FAST;
629         spin_unlock(&cache->lock);
630
631         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632                 mutex_lock(&caching_ctl->mutex);
633                 ret = load_free_space_cache(fs_info, cache);
634
635                 spin_lock(&cache->lock);
636                 if (ret == 1) {
637                         cache->caching_ctl = NULL;
638                         cache->cached = BTRFS_CACHE_FINISHED;
639                         cache->last_byte_to_unpin = (u64)-1;
640                         caching_ctl->progress = (u64)-1;
641                 } else {
642                         if (load_cache_only) {
643                                 cache->caching_ctl = NULL;
644                                 cache->cached = BTRFS_CACHE_NO;
645                         } else {
646                                 cache->cached = BTRFS_CACHE_STARTED;
647                                 cache->has_caching_ctl = 1;
648                         }
649                 }
650                 spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
652                 if (ret == 1 &&
653                     btrfs_should_fragment_free_space(cache)) {
654                         u64 bytes_used;
655
656                         spin_lock(&cache->space_info->lock);
657                         spin_lock(&cache->lock);
658                         bytes_used = cache->key.offset -
659                                 btrfs_block_group_used(&cache->item);
660                         cache->space_info->bytes_used += bytes_used >> 1;
661                         spin_unlock(&cache->lock);
662                         spin_unlock(&cache->space_info->lock);
663                         fragment_free_space(cache);
664                 }
665 #endif
666                 mutex_unlock(&caching_ctl->mutex);
667
668                 wake_up(&caching_ctl->wait);
669                 if (ret == 1) {
670                         put_caching_control(caching_ctl);
671                         free_excluded_extents(fs_info, cache);
672                         return 0;
673                 }
674         } else {
675                 /*
676                  * We're either using the free space tree or no caching at all.
677                  * Set cached to the appropriate value and wakeup any waiters.
678                  */
679                 spin_lock(&cache->lock);
680                 if (load_cache_only) {
681                         cache->caching_ctl = NULL;
682                         cache->cached = BTRFS_CACHE_NO;
683                 } else {
684                         cache->cached = BTRFS_CACHE_STARTED;
685                         cache->has_caching_ctl = 1;
686                 }
687                 spin_unlock(&cache->lock);
688                 wake_up(&caching_ctl->wait);
689         }
690
691         if (load_cache_only) {
692                 put_caching_control(caching_ctl);
693                 return 0;
694         }
695
696         down_write(&fs_info->commit_root_sem);
697         refcount_inc(&caching_ctl->count);
698         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699         up_write(&fs_info->commit_root_sem);
700
701         btrfs_get_block_group(cache);
702
703         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704
705         return ret;
706 }
707
708 /*
709  * return the block group that starts at or after bytenr
710  */
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713 {
714         return block_group_cache_tree_search(info, bytenr, 0);
715 }
716
717 /*
718  * return the block group that contains the given bytenr
719  */
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721                                                  struct btrfs_fs_info *info,
722                                                  u64 bytenr)
723 {
724         return block_group_cache_tree_search(info, bytenr, 1);
725 }
726
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728                                                   u64 flags)
729 {
730         struct list_head *head = &info->space_info;
731         struct btrfs_space_info *found;
732
733         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734
735         rcu_read_lock();
736         list_for_each_entry_rcu(found, head, list) {
737                 if (found->flags & flags) {
738                         rcu_read_unlock();
739                         return found;
740                 }
741         }
742         rcu_read_unlock();
743         return NULL;
744 }
745
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747                              bool metadata, u64 root_objectid)
748 {
749         struct btrfs_space_info *space_info;
750         u64 flags;
751
752         if (metadata) {
753                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
755                 else
756                         flags = BTRFS_BLOCK_GROUP_METADATA;
757         } else {
758                 flags = BTRFS_BLOCK_GROUP_DATA;
759         }
760
761         space_info = __find_space_info(fs_info, flags);
762         ASSERT(space_info);
763         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764 }
765
766 /*
767  * after adding space to the filesystem, we need to clear the full flags
768  * on all the space infos.
769  */
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 {
772         struct list_head *head = &info->space_info;
773         struct btrfs_space_info *found;
774
775         rcu_read_lock();
776         list_for_each_entry_rcu(found, head, list)
777                 found->full = 0;
778         rcu_read_unlock();
779 }
780
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 {
784         int ret;
785         struct btrfs_key key;
786         struct btrfs_path *path;
787
788         path = btrfs_alloc_path();
789         if (!path)
790                 return -ENOMEM;
791
792         key.objectid = start;
793         key.offset = len;
794         key.type = BTRFS_EXTENT_ITEM_KEY;
795         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796         btrfs_free_path(path);
797         return ret;
798 }
799
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810                              struct btrfs_fs_info *fs_info, u64 bytenr,
811                              u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813         struct btrfs_delayed_ref_head *head;
814         struct btrfs_delayed_ref_root *delayed_refs;
815         struct btrfs_path *path;
816         struct btrfs_extent_item *ei;
817         struct extent_buffer *leaf;
818         struct btrfs_key key;
819         u32 item_size;
820         u64 num_refs;
821         u64 extent_flags;
822         int ret;
823
824         /*
825          * If we don't have skinny metadata, don't bother doing anything
826          * different
827          */
828         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829                 offset = fs_info->nodesize;
830                 metadata = 0;
831         }
832
833         path = btrfs_alloc_path();
834         if (!path)
835                 return -ENOMEM;
836
837         if (!trans) {
838                 path->skip_locking = 1;
839                 path->search_commit_root = 1;
840         }
841
842 search_again:
843         key.objectid = bytenr;
844         key.offset = offset;
845         if (metadata)
846                 key.type = BTRFS_METADATA_ITEM_KEY;
847         else
848                 key.type = BTRFS_EXTENT_ITEM_KEY;
849
850         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851         if (ret < 0)
852                 goto out_free;
853
854         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855                 if (path->slots[0]) {
856                         path->slots[0]--;
857                         btrfs_item_key_to_cpu(path->nodes[0], &key,
858                                               path->slots[0]);
859                         if (key.objectid == bytenr &&
860                             key.type == BTRFS_EXTENT_ITEM_KEY &&
861                             key.offset == fs_info->nodesize)
862                                 ret = 0;
863                 }
864         }
865
866         if (ret == 0) {
867                 leaf = path->nodes[0];
868                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869                 if (item_size >= sizeof(*ei)) {
870                         ei = btrfs_item_ptr(leaf, path->slots[0],
871                                             struct btrfs_extent_item);
872                         num_refs = btrfs_extent_refs(leaf, ei);
873                         extent_flags = btrfs_extent_flags(leaf, ei);
874                 } else {
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876                         struct btrfs_extent_item_v0 *ei0;
877                         BUG_ON(item_size != sizeof(*ei0));
878                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
879                                              struct btrfs_extent_item_v0);
880                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
881                         /* FIXME: this isn't correct for data */
882                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 #else
884                         BUG();
885 #endif
886                 }
887                 BUG_ON(num_refs == 0);
888         } else {
889                 num_refs = 0;
890                 extent_flags = 0;
891                 ret = 0;
892         }
893
894         if (!trans)
895                 goto out;
896
897         delayed_refs = &trans->transaction->delayed_refs;
898         spin_lock(&delayed_refs->lock);
899         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900         if (head) {
901                 if (!mutex_trylock(&head->mutex)) {
902                         refcount_inc(&head->refs);
903                         spin_unlock(&delayed_refs->lock);
904
905                         btrfs_release_path(path);
906
907                         /*
908                          * Mutex was contended, block until it's released and try
909                          * again
910                          */
911                         mutex_lock(&head->mutex);
912                         mutex_unlock(&head->mutex);
913                         btrfs_put_delayed_ref_head(head);
914                         goto search_again;
915                 }
916                 spin_lock(&head->lock);
917                 if (head->extent_op && head->extent_op->update_flags)
918                         extent_flags |= head->extent_op->flags_to_set;
919                 else
920                         BUG_ON(num_refs == 0);
921
922                 num_refs += head->ref_mod;
923                 spin_unlock(&head->lock);
924                 mutex_unlock(&head->mutex);
925         }
926         spin_unlock(&delayed_refs->lock);
927 out:
928         WARN_ON(num_refs == 0);
929         if (refs)
930                 *refs = num_refs;
931         if (flags)
932                 *flags = extent_flags;
933 out_free:
934         btrfs_free_path(path);
935         return ret;
936 }
937
938 /*
939  * Back reference rules.  Back refs have three main goals:
940  *
941  * 1) differentiate between all holders of references to an extent so that
942  *    when a reference is dropped we can make sure it was a valid reference
943  *    before freeing the extent.
944  *
945  * 2) Provide enough information to quickly find the holders of an extent
946  *    if we notice a given block is corrupted or bad.
947  *
948  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949  *    maintenance.  This is actually the same as #2, but with a slightly
950  *    different use case.
951  *
952  * There are two kinds of back refs. The implicit back refs is optimized
953  * for pointers in non-shared tree blocks. For a given pointer in a block,
954  * back refs of this kind provide information about the block's owner tree
955  * and the pointer's key. These information allow us to find the block by
956  * b-tree searching. The full back refs is for pointers in tree blocks not
957  * referenced by their owner trees. The location of tree block is recorded
958  * in the back refs. Actually the full back refs is generic, and can be
959  * used in all cases the implicit back refs is used. The major shortcoming
960  * of the full back refs is its overhead. Every time a tree block gets
961  * COWed, we have to update back refs entry for all pointers in it.
962  *
963  * For a newly allocated tree block, we use implicit back refs for
964  * pointers in it. This means most tree related operations only involve
965  * implicit back refs. For a tree block created in old transaction, the
966  * only way to drop a reference to it is COW it. So we can detect the
967  * event that tree block loses its owner tree's reference and do the
968  * back refs conversion.
969  *
970  * When a tree block is COWed through a tree, there are four cases:
971  *
972  * The reference count of the block is one and the tree is the block's
973  * owner tree. Nothing to do in this case.
974  *
975  * The reference count of the block is one and the tree is not the
976  * block's owner tree. In this case, full back refs is used for pointers
977  * in the block. Remove these full back refs, add implicit back refs for
978  * every pointers in the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * the block's owner tree. In this case, implicit back refs is used for
982  * pointers in the block. Add full back refs for every pointers in the
983  * block, increase lower level extents' reference counts. The original
984  * implicit back refs are entailed to the new block.
985  *
986  * The reference count of the block is greater than one and the tree is
987  * not the block's owner tree. Add implicit back refs for every pointer in
988  * the new block, increase lower level extents' reference count.
989  *
990  * Back Reference Key composing:
991  *
992  * The key objectid corresponds to the first byte in the extent,
993  * The key type is used to differentiate between types of back refs.
994  * There are different meanings of the key offset for different types
995  * of back refs.
996  *
997  * File extents can be referenced by:
998  *
999  * - multiple snapshots, subvolumes, or different generations in one subvol
1000  * - different files inside a single subvolume
1001  * - different offsets inside a file (bookend extents in file.c)
1002  *
1003  * The extent ref structure for the implicit back refs has fields for:
1004  *
1005  * - Objectid of the subvolume root
1006  * - objectid of the file holding the reference
1007  * - original offset in the file
1008  * - how many bookend extents
1009  *
1010  * The key offset for the implicit back refs is hash of the first
1011  * three fields.
1012  *
1013  * The extent ref structure for the full back refs has field for:
1014  *
1015  * - number of pointers in the tree leaf
1016  *
1017  * The key offset for the implicit back refs is the first byte of
1018  * the tree leaf
1019  *
1020  * When a file extent is allocated, The implicit back refs is used.
1021  * the fields are filled in:
1022  *
1023  *     (root_key.objectid, inode objectid, offset in file, 1)
1024  *
1025  * When a file extent is removed file truncation, we find the
1026  * corresponding implicit back refs and check the following fields:
1027  *
1028  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1029  *
1030  * Btree extents can be referenced by:
1031  *
1032  * - Different subvolumes
1033  *
1034  * Both the implicit back refs and the full back refs for tree blocks
1035  * only consist of key. The key offset for the implicit back refs is
1036  * objectid of block's owner tree. The key offset for the full back refs
1037  * is the first byte of parent block.
1038  *
1039  * When implicit back refs is used, information about the lowest key and
1040  * level of the tree block are required. These information are stored in
1041  * tree block info structure.
1042  */
1043
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046                                   struct btrfs_fs_info *fs_info,
1047                                   struct btrfs_path *path,
1048                                   u64 owner, u32 extra_size)
1049 {
1050         struct btrfs_root *root = fs_info->extent_root;
1051         struct btrfs_extent_item *item;
1052         struct btrfs_extent_item_v0 *ei0;
1053         struct btrfs_extent_ref_v0 *ref0;
1054         struct btrfs_tree_block_info *bi;
1055         struct extent_buffer *leaf;
1056         struct btrfs_key key;
1057         struct btrfs_key found_key;
1058         u32 new_size = sizeof(*item);
1059         u64 refs;
1060         int ret;
1061
1062         leaf = path->nodes[0];
1063         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067                              struct btrfs_extent_item_v0);
1068         refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070         if (owner == (u64)-1) {
1071                 while (1) {
1072                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073                                 ret = btrfs_next_leaf(root, path);
1074                                 if (ret < 0)
1075                                         return ret;
1076                                 BUG_ON(ret > 0); /* Corruption */
1077                                 leaf = path->nodes[0];
1078                         }
1079                         btrfs_item_key_to_cpu(leaf, &found_key,
1080                                               path->slots[0]);
1081                         BUG_ON(key.objectid != found_key.objectid);
1082                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083                                 path->slots[0]++;
1084                                 continue;
1085                         }
1086                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087                                               struct btrfs_extent_ref_v0);
1088                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1089                         break;
1090                 }
1091         }
1092         btrfs_release_path(path);
1093
1094         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095                 new_size += sizeof(*bi);
1096
1097         new_size -= sizeof(*ei0);
1098         ret = btrfs_search_slot(trans, root, &key, path,
1099                                 new_size + extra_size, 1);
1100         if (ret < 0)
1101                 return ret;
1102         BUG_ON(ret); /* Corruption */
1103
1104         btrfs_extend_item(fs_info, path, new_size);
1105
1106         leaf = path->nodes[0];
1107         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108         btrfs_set_extent_refs(leaf, item, refs);
1109         /* FIXME: get real generation */
1110         btrfs_set_extent_generation(leaf, item, 0);
1111         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112                 btrfs_set_extent_flags(leaf, item,
1113                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115                 bi = (struct btrfs_tree_block_info *)(item + 1);
1116                 /* FIXME: get first key of the block */
1117                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119         } else {
1120                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121         }
1122         btrfs_mark_buffer_dirty(leaf);
1123         return 0;
1124 }
1125 #endif
1126
1127 /*
1128  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131  */
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133                                      struct btrfs_extent_inline_ref *iref,
1134                                      enum btrfs_inline_ref_type is_data)
1135 {
1136         int type = btrfs_extent_inline_ref_type(eb, iref);
1137         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138
1139         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141             type == BTRFS_SHARED_DATA_REF_KEY ||
1142             type == BTRFS_EXTENT_DATA_REF_KEY) {
1143                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145                                 return type;
1146                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147                                 ASSERT(eb->fs_info);
1148                                 /*
1149                                  * Every shared one has parent tree
1150                                  * block, which must be aligned to
1151                                  * nodesize.
1152                                  */
1153                                 if (offset &&
1154                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1155                                         return type;
1156                         }
1157                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1158                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else {
1172                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173                         return type;
1174                 }
1175         }
1176
1177         btrfs_print_leaf((struct extent_buffer *)eb);
1178         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179                   eb->start, type);
1180         WARN_ON(1);
1181
1182         return BTRFS_REF_TYPE_INVALID;
1183 }
1184
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186 {
1187         u32 high_crc = ~(u32)0;
1188         u32 low_crc = ~(u32)0;
1189         __le64 lenum;
1190
1191         lenum = cpu_to_le64(root_objectid);
1192         high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193         lenum = cpu_to_le64(owner);
1194         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195         lenum = cpu_to_le64(offset);
1196         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197
1198         return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 }
1200
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202                                      struct btrfs_extent_data_ref *ref)
1203 {
1204         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205                                     btrfs_extent_data_ref_objectid(leaf, ref),
1206                                     btrfs_extent_data_ref_offset(leaf, ref));
1207 }
1208
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210                                  struct btrfs_extent_data_ref *ref,
1211                                  u64 root_objectid, u64 owner, u64 offset)
1212 {
1213         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216                 return 0;
1217         return 1;
1218 }
1219
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221                                            struct btrfs_fs_info *fs_info,
1222                                            struct btrfs_path *path,
1223                                            u64 bytenr, u64 parent,
1224                                            u64 root_objectid,
1225                                            u64 owner, u64 offset)
1226 {
1227         struct btrfs_root *root = fs_info->extent_root;
1228         struct btrfs_key key;
1229         struct btrfs_extent_data_ref *ref;
1230         struct extent_buffer *leaf;
1231         u32 nritems;
1232         int ret;
1233         int recow;
1234         int err = -ENOENT;
1235
1236         key.objectid = bytenr;
1237         if (parent) {
1238                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239                 key.offset = parent;
1240         } else {
1241                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242                 key.offset = hash_extent_data_ref(root_objectid,
1243                                                   owner, offset);
1244         }
1245 again:
1246         recow = 0;
1247         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248         if (ret < 0) {
1249                 err = ret;
1250                 goto fail;
1251         }
1252
1253         if (parent) {
1254                 if (!ret)
1255                         return 0;
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1258                 btrfs_release_path(path);
1259                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260                 if (ret < 0) {
1261                         err = ret;
1262                         goto fail;
1263                 }
1264                 if (!ret)
1265                         return 0;
1266 #endif
1267                 goto fail;
1268         }
1269
1270         leaf = path->nodes[0];
1271         nritems = btrfs_header_nritems(leaf);
1272         while (1) {
1273                 if (path->slots[0] >= nritems) {
1274                         ret = btrfs_next_leaf(root, path);
1275                         if (ret < 0)
1276                                 err = ret;
1277                         if (ret)
1278                                 goto fail;
1279
1280                         leaf = path->nodes[0];
1281                         nritems = btrfs_header_nritems(leaf);
1282                         recow = 1;
1283                 }
1284
1285                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286                 if (key.objectid != bytenr ||
1287                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288                         goto fail;
1289
1290                 ref = btrfs_item_ptr(leaf, path->slots[0],
1291                                      struct btrfs_extent_data_ref);
1292
1293                 if (match_extent_data_ref(leaf, ref, root_objectid,
1294                                           owner, offset)) {
1295                         if (recow) {
1296                                 btrfs_release_path(path);
1297                                 goto again;
1298                         }
1299                         err = 0;
1300                         break;
1301                 }
1302                 path->slots[0]++;
1303         }
1304 fail:
1305         return err;
1306 }
1307
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309                                            struct btrfs_fs_info *fs_info,
1310                                            struct btrfs_path *path,
1311                                            u64 bytenr, u64 parent,
1312                                            u64 root_objectid, u64 owner,
1313                                            u64 offset, int refs_to_add)
1314 {
1315         struct btrfs_root *root = fs_info->extent_root;
1316         struct btrfs_key key;
1317         struct extent_buffer *leaf;
1318         u32 size;
1319         u32 num_refs;
1320         int ret;
1321
1322         key.objectid = bytenr;
1323         if (parent) {
1324                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325                 key.offset = parent;
1326                 size = sizeof(struct btrfs_shared_data_ref);
1327         } else {
1328                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329                 key.offset = hash_extent_data_ref(root_objectid,
1330                                                   owner, offset);
1331                 size = sizeof(struct btrfs_extent_data_ref);
1332         }
1333
1334         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335         if (ret && ret != -EEXIST)
1336                 goto fail;
1337
1338         leaf = path->nodes[0];
1339         if (parent) {
1340                 struct btrfs_shared_data_ref *ref;
1341                 ref = btrfs_item_ptr(leaf, path->slots[0],
1342                                      struct btrfs_shared_data_ref);
1343                 if (ret == 0) {
1344                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345                 } else {
1346                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347                         num_refs += refs_to_add;
1348                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349                 }
1350         } else {
1351                 struct btrfs_extent_data_ref *ref;
1352                 while (ret == -EEXIST) {
1353                         ref = btrfs_item_ptr(leaf, path->slots[0],
1354                                              struct btrfs_extent_data_ref);
1355                         if (match_extent_data_ref(leaf, ref, root_objectid,
1356                                                   owner, offset))
1357                                 break;
1358                         btrfs_release_path(path);
1359                         key.offset++;
1360                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1361                                                       size);
1362                         if (ret && ret != -EEXIST)
1363                                 goto fail;
1364
1365                         leaf = path->nodes[0];
1366                 }
1367                 ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                      struct btrfs_extent_data_ref);
1369                 if (ret == 0) {
1370                         btrfs_set_extent_data_ref_root(leaf, ref,
1371                                                        root_objectid);
1372                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375                 } else {
1376                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377                         num_refs += refs_to_add;
1378                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379                 }
1380         }
1381         btrfs_mark_buffer_dirty(leaf);
1382         ret = 0;
1383 fail:
1384         btrfs_release_path(path);
1385         return ret;
1386 }
1387
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389                                            struct btrfs_fs_info *fs_info,
1390                                            struct btrfs_path *path,
1391                                            int refs_to_drop, int *last_ref)
1392 {
1393         struct btrfs_key key;
1394         struct btrfs_extent_data_ref *ref1 = NULL;
1395         struct btrfs_shared_data_ref *ref2 = NULL;
1396         struct extent_buffer *leaf;
1397         u32 num_refs = 0;
1398         int ret = 0;
1399
1400         leaf = path->nodes[0];
1401         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402
1403         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405                                       struct btrfs_extent_data_ref);
1406                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409                                       struct btrfs_shared_data_ref);
1410                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413                 struct btrfs_extent_ref_v0 *ref0;
1414                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415                                       struct btrfs_extent_ref_v0);
1416                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418         } else {
1419                 BUG();
1420         }
1421
1422         BUG_ON(num_refs < refs_to_drop);
1423         num_refs -= refs_to_drop;
1424
1425         if (num_refs == 0) {
1426                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427                 *last_ref = 1;
1428         } else {
1429                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434                 else {
1435                         struct btrfs_extent_ref_v0 *ref0;
1436                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437                                         struct btrfs_extent_ref_v0);
1438                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439                 }
1440 #endif
1441                 btrfs_mark_buffer_dirty(leaf);
1442         }
1443         return ret;
1444 }
1445
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447                                           struct btrfs_extent_inline_ref *iref)
1448 {
1449         struct btrfs_key key;
1450         struct extent_buffer *leaf;
1451         struct btrfs_extent_data_ref *ref1;
1452         struct btrfs_shared_data_ref *ref2;
1453         u32 num_refs = 0;
1454         int type;
1455
1456         leaf = path->nodes[0];
1457         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458         if (iref) {
1459                 /*
1460                  * If type is invalid, we should have bailed out earlier than
1461                  * this call.
1462                  */
1463                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468                 } else {
1469                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471                 }
1472         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474                                       struct btrfs_extent_data_ref);
1475                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478                                       struct btrfs_shared_data_ref);
1479                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482                 struct btrfs_extent_ref_v0 *ref0;
1483                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484                                       struct btrfs_extent_ref_v0);
1485                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1486 #endif
1487         } else {
1488                 WARN_ON(1);
1489         }
1490         return num_refs;
1491 }
1492
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494                                           struct btrfs_fs_info *fs_info,
1495                                           struct btrfs_path *path,
1496                                           u64 bytenr, u64 parent,
1497                                           u64 root_objectid)
1498 {
1499         struct btrfs_root *root = fs_info->extent_root;
1500         struct btrfs_key key;
1501         int ret;
1502
1503         key.objectid = bytenr;
1504         if (parent) {
1505                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506                 key.offset = parent;
1507         } else {
1508                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509                 key.offset = root_objectid;
1510         }
1511
1512         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513         if (ret > 0)
1514                 ret = -ENOENT;
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516         if (ret == -ENOENT && parent) {
1517                 btrfs_release_path(path);
1518                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520                 if (ret > 0)
1521                         ret = -ENOENT;
1522         }
1523 #endif
1524         return ret;
1525 }
1526
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528                                           struct btrfs_fs_info *fs_info,
1529                                           struct btrfs_path *path,
1530                                           u64 bytenr, u64 parent,
1531                                           u64 root_objectid)
1532 {
1533         struct btrfs_key key;
1534         int ret;
1535
1536         key.objectid = bytenr;
1537         if (parent) {
1538                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539                 key.offset = parent;
1540         } else {
1541                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542                 key.offset = root_objectid;
1543         }
1544
1545         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546                                       path, &key, 0);
1547         btrfs_release_path(path);
1548         return ret;
1549 }
1550
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1552 {
1553         int type;
1554         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555                 if (parent > 0)
1556                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1557                 else
1558                         type = BTRFS_TREE_BLOCK_REF_KEY;
1559         } else {
1560                 if (parent > 0)
1561                         type = BTRFS_SHARED_DATA_REF_KEY;
1562                 else
1563                         type = BTRFS_EXTENT_DATA_REF_KEY;
1564         }
1565         return type;
1566 }
1567
1568 static int find_next_key(struct btrfs_path *path, int level,
1569                          struct btrfs_key *key)
1570
1571 {
1572         for (; level < BTRFS_MAX_LEVEL; level++) {
1573                 if (!path->nodes[level])
1574                         break;
1575                 if (path->slots[level] + 1 >=
1576                     btrfs_header_nritems(path->nodes[level]))
1577                         continue;
1578                 if (level == 0)
1579                         btrfs_item_key_to_cpu(path->nodes[level], key,
1580                                               path->slots[level] + 1);
1581                 else
1582                         btrfs_node_key_to_cpu(path->nodes[level], key,
1583                                               path->slots[level] + 1);
1584                 return 0;
1585         }
1586         return 1;
1587 }
1588
1589 /*
1590  * look for inline back ref. if back ref is found, *ref_ret is set
1591  * to the address of inline back ref, and 0 is returned.
1592  *
1593  * if back ref isn't found, *ref_ret is set to the address where it
1594  * should be inserted, and -ENOENT is returned.
1595  *
1596  * if insert is true and there are too many inline back refs, the path
1597  * points to the extent item, and -EAGAIN is returned.
1598  *
1599  * NOTE: inline back refs are ordered in the same way that back ref
1600  *       items in the tree are ordered.
1601  */
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604                                  struct btrfs_fs_info *fs_info,
1605                                  struct btrfs_path *path,
1606                                  struct btrfs_extent_inline_ref **ref_ret,
1607                                  u64 bytenr, u64 num_bytes,
1608                                  u64 parent, u64 root_objectid,
1609                                  u64 owner, u64 offset, int insert)
1610 {
1611         struct btrfs_root *root = fs_info->extent_root;
1612         struct btrfs_key key;
1613         struct extent_buffer *leaf;
1614         struct btrfs_extent_item *ei;
1615         struct btrfs_extent_inline_ref *iref;
1616         u64 flags;
1617         u64 item_size;
1618         unsigned long ptr;
1619         unsigned long end;
1620         int extra_size;
1621         int type;
1622         int want;
1623         int ret;
1624         int err = 0;
1625         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626         int needed;
1627
1628         key.objectid = bytenr;
1629         key.type = BTRFS_EXTENT_ITEM_KEY;
1630         key.offset = num_bytes;
1631
1632         want = extent_ref_type(parent, owner);
1633         if (insert) {
1634                 extra_size = btrfs_extent_inline_ref_size(want);
1635                 path->keep_locks = 1;
1636         } else
1637                 extra_size = -1;
1638
1639         /*
1640          * Owner is our parent level, so we can just add one to get the level
1641          * for the block we are interested in.
1642          */
1643         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644                 key.type = BTRFS_METADATA_ITEM_KEY;
1645                 key.offset = owner;
1646         }
1647
1648 again:
1649         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650         if (ret < 0) {
1651                 err = ret;
1652                 goto out;
1653         }
1654
1655         /*
1656          * We may be a newly converted file system which still has the old fat
1657          * extent entries for metadata, so try and see if we have one of those.
1658          */
1659         if (ret > 0 && skinny_metadata) {
1660                 skinny_metadata = false;
1661                 if (path->slots[0]) {
1662                         path->slots[0]--;
1663                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1664                                               path->slots[0]);
1665                         if (key.objectid == bytenr &&
1666                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1667                             key.offset == num_bytes)
1668                                 ret = 0;
1669                 }
1670                 if (ret) {
1671                         key.objectid = bytenr;
1672                         key.type = BTRFS_EXTENT_ITEM_KEY;
1673                         key.offset = num_bytes;
1674                         btrfs_release_path(path);
1675                         goto again;
1676                 }
1677         }
1678
1679         if (ret && !insert) {
1680                 err = -ENOENT;
1681                 goto out;
1682         } else if (WARN_ON(ret)) {
1683                 err = -EIO;
1684                 goto out;
1685         }
1686
1687         leaf = path->nodes[0];
1688         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690         if (item_size < sizeof(*ei)) {
1691                 if (!insert) {
1692                         err = -ENOENT;
1693                         goto out;
1694                 }
1695                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696                                              extra_size);
1697                 if (ret < 0) {
1698                         err = ret;
1699                         goto out;
1700                 }
1701                 leaf = path->nodes[0];
1702                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703         }
1704 #endif
1705         BUG_ON(item_size < sizeof(*ei));
1706
1707         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708         flags = btrfs_extent_flags(leaf, ei);
1709
1710         ptr = (unsigned long)(ei + 1);
1711         end = (unsigned long)ei + item_size;
1712
1713         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714                 ptr += sizeof(struct btrfs_tree_block_info);
1715                 BUG_ON(ptr > end);
1716         }
1717
1718         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719                 needed = BTRFS_REF_TYPE_DATA;
1720         else
1721                 needed = BTRFS_REF_TYPE_BLOCK;
1722
1723         err = -ENOENT;
1724         while (1) {
1725                 if (ptr >= end) {
1726                         WARN_ON(ptr > end);
1727                         break;
1728                 }
1729                 iref = (struct btrfs_extent_inline_ref *)ptr;
1730                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731                 if (type == BTRFS_REF_TYPE_INVALID) {
1732                         err = -EINVAL;
1733                         goto out;
1734                 }
1735
1736                 if (want < type)
1737                         break;
1738                 if (want > type) {
1739                         ptr += btrfs_extent_inline_ref_size(type);
1740                         continue;
1741                 }
1742
1743                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744                         struct btrfs_extent_data_ref *dref;
1745                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746                         if (match_extent_data_ref(leaf, dref, root_objectid,
1747                                                   owner, offset)) {
1748                                 err = 0;
1749                                 break;
1750                         }
1751                         if (hash_extent_data_ref_item(leaf, dref) <
1752                             hash_extent_data_ref(root_objectid, owner, offset))
1753                                 break;
1754                 } else {
1755                         u64 ref_offset;
1756                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757                         if (parent > 0) {
1758                                 if (parent == ref_offset) {
1759                                         err = 0;
1760                                         break;
1761                                 }
1762                                 if (ref_offset < parent)
1763                                         break;
1764                         } else {
1765                                 if (root_objectid == ref_offset) {
1766                                         err = 0;
1767                                         break;
1768                                 }
1769                                 if (ref_offset < root_objectid)
1770                                         break;
1771                         }
1772                 }
1773                 ptr += btrfs_extent_inline_ref_size(type);
1774         }
1775         if (err == -ENOENT && insert) {
1776                 if (item_size + extra_size >=
1777                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778                         err = -EAGAIN;
1779                         goto out;
1780                 }
1781                 /*
1782                  * To add new inline back ref, we have to make sure
1783                  * there is no corresponding back ref item.
1784                  * For simplicity, we just do not add new inline back
1785                  * ref if there is any kind of item for this block
1786                  */
1787                 if (find_next_key(path, 0, &key) == 0 &&
1788                     key.objectid == bytenr &&
1789                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790                         err = -EAGAIN;
1791                         goto out;
1792                 }
1793         }
1794         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795 out:
1796         if (insert) {
1797                 path->keep_locks = 0;
1798                 btrfs_unlock_up_safe(path, 1);
1799         }
1800         return err;
1801 }
1802
1803 /*
1804  * helper to add new inline back ref
1805  */
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808                                  struct btrfs_path *path,
1809                                  struct btrfs_extent_inline_ref *iref,
1810                                  u64 parent, u64 root_objectid,
1811                                  u64 owner, u64 offset, int refs_to_add,
1812                                  struct btrfs_delayed_extent_op *extent_op)
1813 {
1814         struct extent_buffer *leaf;
1815         struct btrfs_extent_item *ei;
1816         unsigned long ptr;
1817         unsigned long end;
1818         unsigned long item_offset;
1819         u64 refs;
1820         int size;
1821         int type;
1822
1823         leaf = path->nodes[0];
1824         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825         item_offset = (unsigned long)iref - (unsigned long)ei;
1826
1827         type = extent_ref_type(parent, owner);
1828         size = btrfs_extent_inline_ref_size(type);
1829
1830         btrfs_extend_item(fs_info, path, size);
1831
1832         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833         refs = btrfs_extent_refs(leaf, ei);
1834         refs += refs_to_add;
1835         btrfs_set_extent_refs(leaf, ei, refs);
1836         if (extent_op)
1837                 __run_delayed_extent_op(extent_op, leaf, ei);
1838
1839         ptr = (unsigned long)ei + item_offset;
1840         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841         if (ptr < end - size)
1842                 memmove_extent_buffer(leaf, ptr + size, ptr,
1843                                       end - size - ptr);
1844
1845         iref = (struct btrfs_extent_inline_ref *)ptr;
1846         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848                 struct btrfs_extent_data_ref *dref;
1849                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855                 struct btrfs_shared_data_ref *sref;
1856                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861         } else {
1862                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863         }
1864         btrfs_mark_buffer_dirty(leaf);
1865 }
1866
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868                                  struct btrfs_fs_info *fs_info,
1869                                  struct btrfs_path *path,
1870                                  struct btrfs_extent_inline_ref **ref_ret,
1871                                  u64 bytenr, u64 num_bytes, u64 parent,
1872                                  u64 root_objectid, u64 owner, u64 offset)
1873 {
1874         int ret;
1875
1876         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877                                            bytenr, num_bytes, parent,
1878                                            root_objectid, owner, offset, 0);
1879         if (ret != -ENOENT)
1880                 return ret;
1881
1882         btrfs_release_path(path);
1883         *ref_ret = NULL;
1884
1885         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887                                             parent, root_objectid);
1888         } else {
1889                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890                                              parent, root_objectid, owner,
1891                                              offset);
1892         }
1893         return ret;
1894 }
1895
1896 /*
1897  * helper to update/remove inline back ref
1898  */
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901                                   struct btrfs_path *path,
1902                                   struct btrfs_extent_inline_ref *iref,
1903                                   int refs_to_mod,
1904                                   struct btrfs_delayed_extent_op *extent_op,
1905                                   int *last_ref)
1906 {
1907         struct extent_buffer *leaf;
1908         struct btrfs_extent_item *ei;
1909         struct btrfs_extent_data_ref *dref = NULL;
1910         struct btrfs_shared_data_ref *sref = NULL;
1911         unsigned long ptr;
1912         unsigned long end;
1913         u32 item_size;
1914         int size;
1915         int type;
1916         u64 refs;
1917
1918         leaf = path->nodes[0];
1919         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920         refs = btrfs_extent_refs(leaf, ei);
1921         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922         refs += refs_to_mod;
1923         btrfs_set_extent_refs(leaf, ei, refs);
1924         if (extent_op)
1925                 __run_delayed_extent_op(extent_op, leaf, ei);
1926
1927         /*
1928          * If type is invalid, we should have bailed out after
1929          * lookup_inline_extent_backref().
1930          */
1931         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933
1934         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936                 refs = btrfs_extent_data_ref_count(leaf, dref);
1937         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939                 refs = btrfs_shared_data_ref_count(leaf, sref);
1940         } else {
1941                 refs = 1;
1942                 BUG_ON(refs_to_mod != -1);
1943         }
1944
1945         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946         refs += refs_to_mod;
1947
1948         if (refs > 0) {
1949                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951                 else
1952                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953         } else {
1954                 *last_ref = 1;
1955                 size =  btrfs_extent_inline_ref_size(type);
1956                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957                 ptr = (unsigned long)iref;
1958                 end = (unsigned long)ei + item_size;
1959                 if (ptr + size < end)
1960                         memmove_extent_buffer(leaf, ptr, ptr + size,
1961                                               end - ptr - size);
1962                 item_size -= size;
1963                 btrfs_truncate_item(fs_info, path, item_size, 1);
1964         }
1965         btrfs_mark_buffer_dirty(leaf);
1966 }
1967
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970                                  struct btrfs_fs_info *fs_info,
1971                                  struct btrfs_path *path,
1972                                  u64 bytenr, u64 num_bytes, u64 parent,
1973                                  u64 root_objectid, u64 owner,
1974                                  u64 offset, int refs_to_add,
1975                                  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977         struct btrfs_extent_inline_ref *iref;
1978         int ret;
1979
1980         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981                                            bytenr, num_bytes, parent,
1982                                            root_objectid, owner, offset, 1);
1983         if (ret == 0) {
1984                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985                 update_inline_extent_backref(fs_info, path, iref,
1986                                              refs_to_add, extent_op, NULL);
1987         } else if (ret == -ENOENT) {
1988                 setup_inline_extent_backref(fs_info, path, iref, parent,
1989                                             root_objectid, owner, offset,
1990                                             refs_to_add, extent_op);
1991                 ret = 0;
1992         }
1993         return ret;
1994 }
1995
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997                                  struct btrfs_fs_info *fs_info,
1998                                  struct btrfs_path *path,
1999                                  u64 bytenr, u64 parent, u64 root_objectid,
2000                                  u64 owner, u64 offset, int refs_to_add)
2001 {
2002         int ret;
2003         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004                 BUG_ON(refs_to_add != 1);
2005                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006                                             parent, root_objectid);
2007         } else {
2008                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009                                              parent, root_objectid,
2010                                              owner, offset, refs_to_add);
2011         }
2012         return ret;
2013 }
2014
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016                                  struct btrfs_fs_info *fs_info,
2017                                  struct btrfs_path *path,
2018                                  struct btrfs_extent_inline_ref *iref,
2019                                  int refs_to_drop, int is_data, int *last_ref)
2020 {
2021         int ret = 0;
2022
2023         BUG_ON(!is_data && refs_to_drop != 1);
2024         if (iref) {
2025                 update_inline_extent_backref(fs_info, path, iref,
2026                                              -refs_to_drop, NULL, last_ref);
2027         } else if (is_data) {
2028                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029                                              last_ref);
2030         } else {
2031                 *last_ref = 1;
2032                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033         }
2034         return ret;
2035 }
2036
2037 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039                                u64 *discarded_bytes)
2040 {
2041         int j, ret = 0;
2042         u64 bytes_left, end;
2043         u64 aligned_start = ALIGN(start, 1 << 9);
2044
2045         if (WARN_ON(start != aligned_start)) {
2046                 len -= aligned_start - start;
2047                 len = round_down(len, 1 << 9);
2048                 start = aligned_start;
2049         }
2050
2051         *discarded_bytes = 0;
2052
2053         if (!len)
2054                 return 0;
2055
2056         end = start + len;
2057         bytes_left = len;
2058
2059         /* Skip any superblocks on this device. */
2060         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061                 u64 sb_start = btrfs_sb_offset(j);
2062                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063                 u64 size = sb_start - start;
2064
2065                 if (!in_range(sb_start, start, bytes_left) &&
2066                     !in_range(sb_end, start, bytes_left) &&
2067                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068                         continue;
2069
2070                 /*
2071                  * Superblock spans beginning of range.  Adjust start and
2072                  * try again.
2073                  */
2074                 if (sb_start <= start) {
2075                         start += sb_end - start;
2076                         if (start > end) {
2077                                 bytes_left = 0;
2078                                 break;
2079                         }
2080                         bytes_left = end - start;
2081                         continue;
2082                 }
2083
2084                 if (size) {
2085                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086                                                    GFP_NOFS, 0);
2087                         if (!ret)
2088                                 *discarded_bytes += size;
2089                         else if (ret != -EOPNOTSUPP)
2090                                 return ret;
2091                 }
2092
2093                 start = sb_end;
2094                 if (start > end) {
2095                         bytes_left = 0;
2096                         break;
2097                 }
2098                 bytes_left = end - start;
2099         }
2100
2101         if (bytes_left) {
2102                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103                                            GFP_NOFS, 0);
2104                 if (!ret)
2105                         *discarded_bytes += bytes_left;
2106         }
2107         return ret;
2108 }
2109
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111                          u64 num_bytes, u64 *actual_bytes)
2112 {
2113         int ret;
2114         u64 discarded_bytes = 0;
2115         struct btrfs_bio *bbio = NULL;
2116
2117
2118         /*
2119          * Avoid races with device replace and make sure our bbio has devices
2120          * associated to its stripes that don't go away while we are discarding.
2121          */
2122         btrfs_bio_counter_inc_blocked(fs_info);
2123         /* Tell the block device(s) that the sectors can be discarded */
2124         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125                               &bbio, 0);
2126         /* Error condition is -ENOMEM */
2127         if (!ret) {
2128                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2129                 int i;
2130
2131
2132                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133                         u64 bytes;
2134                         struct request_queue *req_q;
2135
2136                         if (!stripe->dev->bdev) {
2137                                 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138                                 continue;
2139                         }
2140                         req_q = bdev_get_queue(stripe->dev->bdev);
2141                         if (!blk_queue_discard(req_q))
2142                                 continue;
2143
2144                         ret = btrfs_issue_discard(stripe->dev->bdev,
2145                                                   stripe->physical,
2146                                                   stripe->length,
2147                                                   &bytes);
2148                         if (!ret)
2149                                 discarded_bytes += bytes;
2150                         else if (ret != -EOPNOTSUPP)
2151                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152
2153                         /*
2154                          * Just in case we get back EOPNOTSUPP for some reason,
2155                          * just ignore the return value so we don't screw up
2156                          * people calling discard_extent.
2157                          */
2158                         ret = 0;
2159                 }
2160                 btrfs_put_bbio(bbio);
2161         }
2162         btrfs_bio_counter_dec(fs_info);
2163
2164         if (actual_bytes)
2165                 *actual_bytes = discarded_bytes;
2166
2167
2168         if (ret == -EOPNOTSUPP)
2169                 ret = 0;
2170         return ret;
2171 }
2172
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175                          struct btrfs_root *root,
2176                          u64 bytenr, u64 num_bytes, u64 parent,
2177                          u64 root_objectid, u64 owner, u64 offset)
2178 {
2179         struct btrfs_fs_info *fs_info = root->fs_info;
2180         int old_ref_mod, new_ref_mod;
2181         int ret;
2182
2183         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185
2186         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187                            owner, offset, BTRFS_ADD_DELAYED_REF);
2188
2189         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191                                                  num_bytes, parent,
2192                                                  root_objectid, (int)owner,
2193                                                  BTRFS_ADD_DELAYED_REF, NULL,
2194                                                  &old_ref_mod, &new_ref_mod);
2195         } else {
2196                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197                                                  num_bytes, parent,
2198                                                  root_objectid, owner, offset,
2199                                                  0, BTRFS_ADD_DELAYED_REF,
2200                                                  &old_ref_mod, &new_ref_mod);
2201         }
2202
2203         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2204                 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2205
2206                 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2207         }
2208
2209         return ret;
2210 }
2211
2212 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2213                                   struct btrfs_fs_info *fs_info,
2214                                   struct btrfs_delayed_ref_node *node,
2215                                   u64 parent, u64 root_objectid,
2216                                   u64 owner, u64 offset, int refs_to_add,
2217                                   struct btrfs_delayed_extent_op *extent_op)
2218 {
2219         struct btrfs_path *path;
2220         struct extent_buffer *leaf;
2221         struct btrfs_extent_item *item;
2222         struct btrfs_key key;
2223         u64 bytenr = node->bytenr;
2224         u64 num_bytes = node->num_bytes;
2225         u64 refs;
2226         int ret;
2227
2228         path = btrfs_alloc_path();
2229         if (!path)
2230                 return -ENOMEM;
2231
2232         path->reada = READA_FORWARD;
2233         path->leave_spinning = 1;
2234         /* this will setup the path even if it fails to insert the back ref */
2235         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2236                                            num_bytes, parent, root_objectid,
2237                                            owner, offset,
2238                                            refs_to_add, extent_op);
2239         if ((ret < 0 && ret != -EAGAIN) || !ret)
2240                 goto out;
2241
2242         /*
2243          * Ok we had -EAGAIN which means we didn't have space to insert and
2244          * inline extent ref, so just update the reference count and add a
2245          * normal backref.
2246          */
2247         leaf = path->nodes[0];
2248         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2249         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250         refs = btrfs_extent_refs(leaf, item);
2251         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2252         if (extent_op)
2253                 __run_delayed_extent_op(extent_op, leaf, item);
2254
2255         btrfs_mark_buffer_dirty(leaf);
2256         btrfs_release_path(path);
2257
2258         path->reada = READA_FORWARD;
2259         path->leave_spinning = 1;
2260         /* now insert the actual backref */
2261         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2262                                     root_objectid, owner, offset, refs_to_add);
2263         if (ret)
2264                 btrfs_abort_transaction(trans, ret);
2265 out:
2266         btrfs_free_path(path);
2267         return ret;
2268 }
2269
2270 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2271                                 struct btrfs_fs_info *fs_info,
2272                                 struct btrfs_delayed_ref_node *node,
2273                                 struct btrfs_delayed_extent_op *extent_op,
2274                                 int insert_reserved)
2275 {
2276         int ret = 0;
2277         struct btrfs_delayed_data_ref *ref;
2278         struct btrfs_key ins;
2279         u64 parent = 0;
2280         u64 ref_root = 0;
2281         u64 flags = 0;
2282
2283         ins.objectid = node->bytenr;
2284         ins.offset = node->num_bytes;
2285         ins.type = BTRFS_EXTENT_ITEM_KEY;
2286
2287         ref = btrfs_delayed_node_to_data_ref(node);
2288         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2289
2290         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2291                 parent = ref->parent;
2292         ref_root = ref->root;
2293
2294         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2295                 if (extent_op)
2296                         flags |= extent_op->flags_to_set;
2297                 ret = alloc_reserved_file_extent(trans, fs_info,
2298                                                  parent, ref_root, flags,
2299                                                  ref->objectid, ref->offset,
2300                                                  &ins, node->ref_mod);
2301         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2302                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2303                                              ref_root, ref->objectid,
2304                                              ref->offset, node->ref_mod,
2305                                              extent_op);
2306         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2307                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2308                                           ref_root, ref->objectid,
2309                                           ref->offset, node->ref_mod,
2310                                           extent_op);
2311         } else {
2312                 BUG();
2313         }
2314         return ret;
2315 }
2316
2317 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2318                                     struct extent_buffer *leaf,
2319                                     struct btrfs_extent_item *ei)
2320 {
2321         u64 flags = btrfs_extent_flags(leaf, ei);
2322         if (extent_op->update_flags) {
2323                 flags |= extent_op->flags_to_set;
2324                 btrfs_set_extent_flags(leaf, ei, flags);
2325         }
2326
2327         if (extent_op->update_key) {
2328                 struct btrfs_tree_block_info *bi;
2329                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2330                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2331                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2332         }
2333 }
2334
2335 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2336                                  struct btrfs_fs_info *fs_info,
2337                                  struct btrfs_delayed_ref_head *head,
2338                                  struct btrfs_delayed_extent_op *extent_op)
2339 {
2340         struct btrfs_key key;
2341         struct btrfs_path *path;
2342         struct btrfs_extent_item *ei;
2343         struct extent_buffer *leaf;
2344         u32 item_size;
2345         int ret;
2346         int err = 0;
2347         int metadata = !extent_op->is_data;
2348
2349         if (trans->aborted)
2350                 return 0;
2351
2352         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2353                 metadata = 0;
2354
2355         path = btrfs_alloc_path();
2356         if (!path)
2357                 return -ENOMEM;
2358
2359         key.objectid = head->bytenr;
2360
2361         if (metadata) {
2362                 key.type = BTRFS_METADATA_ITEM_KEY;
2363                 key.offset = extent_op->level;
2364         } else {
2365                 key.type = BTRFS_EXTENT_ITEM_KEY;
2366                 key.offset = head->num_bytes;
2367         }
2368
2369 again:
2370         path->reada = READA_FORWARD;
2371         path->leave_spinning = 1;
2372         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2373         if (ret < 0) {
2374                 err = ret;
2375                 goto out;
2376         }
2377         if (ret > 0) {
2378                 if (metadata) {
2379                         if (path->slots[0] > 0) {
2380                                 path->slots[0]--;
2381                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2382                                                       path->slots[0]);
2383                                 if (key.objectid == head->bytenr &&
2384                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2385                                     key.offset == head->num_bytes)
2386                                         ret = 0;
2387                         }
2388                         if (ret > 0) {
2389                                 btrfs_release_path(path);
2390                                 metadata = 0;
2391
2392                                 key.objectid = head->bytenr;
2393                                 key.offset = head->num_bytes;
2394                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2395                                 goto again;
2396                         }
2397                 } else {
2398                         err = -EIO;
2399                         goto out;
2400                 }
2401         }
2402
2403         leaf = path->nodes[0];
2404         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2406         if (item_size < sizeof(*ei)) {
2407                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2408                 if (ret < 0) {
2409                         err = ret;
2410                         goto out;
2411                 }
2412                 leaf = path->nodes[0];
2413                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414         }
2415 #endif
2416         BUG_ON(item_size < sizeof(*ei));
2417         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418         __run_delayed_extent_op(extent_op, leaf, ei);
2419
2420         btrfs_mark_buffer_dirty(leaf);
2421 out:
2422         btrfs_free_path(path);
2423         return err;
2424 }
2425
2426 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2427                                 struct btrfs_fs_info *fs_info,
2428                                 struct btrfs_delayed_ref_node *node,
2429                                 struct btrfs_delayed_extent_op *extent_op,
2430                                 int insert_reserved)
2431 {
2432         int ret = 0;
2433         struct btrfs_delayed_tree_ref *ref;
2434         struct btrfs_key ins;
2435         u64 parent = 0;
2436         u64 ref_root = 0;
2437         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2438
2439         ref = btrfs_delayed_node_to_tree_ref(node);
2440         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2441
2442         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2443                 parent = ref->parent;
2444         ref_root = ref->root;
2445
2446         ins.objectid = node->bytenr;
2447         if (skinny_metadata) {
2448                 ins.offset = ref->level;
2449                 ins.type = BTRFS_METADATA_ITEM_KEY;
2450         } else {
2451                 ins.offset = node->num_bytes;
2452                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2453         }
2454
2455         if (node->ref_mod != 1) {
2456                 btrfs_err(fs_info,
2457         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2458                           node->bytenr, node->ref_mod, node->action, ref_root,
2459                           parent);
2460                 return -EIO;
2461         }
2462         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2463                 BUG_ON(!extent_op || !extent_op->update_flags);
2464                 ret = alloc_reserved_tree_block(trans, fs_info,
2465                                                 parent, ref_root,
2466                                                 extent_op->flags_to_set,
2467                                                 &extent_op->key,
2468                                                 ref->level, &ins);
2469         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2470                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2471                                              parent, ref_root,
2472                                              ref->level, 0, 1,
2473                                              extent_op);
2474         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2475                 ret = __btrfs_free_extent(trans, fs_info, node,
2476                                           parent, ref_root,
2477                                           ref->level, 0, 1, extent_op);
2478         } else {
2479                 BUG();
2480         }
2481         return ret;
2482 }
2483
2484 /* helper function to actually process a single delayed ref entry */
2485 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2486                                struct btrfs_fs_info *fs_info,
2487                                struct btrfs_delayed_ref_node *node,
2488                                struct btrfs_delayed_extent_op *extent_op,
2489                                int insert_reserved)
2490 {
2491         int ret = 0;
2492
2493         if (trans->aborted) {
2494                 if (insert_reserved)
2495                         btrfs_pin_extent(fs_info, node->bytenr,
2496                                          node->num_bytes, 1);
2497                 return 0;
2498         }
2499
2500         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2501             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2502                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2503                                            insert_reserved);
2504         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2505                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2506                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2507                                            insert_reserved);
2508         else
2509                 BUG();
2510         return ret;
2511 }
2512
2513 static inline struct btrfs_delayed_ref_node *
2514 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2515 {
2516         struct btrfs_delayed_ref_node *ref;
2517
2518         if (RB_EMPTY_ROOT(&head->ref_tree))
2519                 return NULL;
2520
2521         /*
2522          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2523          * This is to prevent a ref count from going down to zero, which deletes
2524          * the extent item from the extent tree, when there still are references
2525          * to add, which would fail because they would not find the extent item.
2526          */
2527         if (!list_empty(&head->ref_add_list))
2528                 return list_first_entry(&head->ref_add_list,
2529                                 struct btrfs_delayed_ref_node, add_list);
2530
2531         ref = rb_entry(rb_first(&head->ref_tree),
2532                        struct btrfs_delayed_ref_node, ref_node);
2533         ASSERT(list_empty(&ref->add_list));
2534         return ref;
2535 }
2536
2537 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2538                                       struct btrfs_delayed_ref_head *head)
2539 {
2540         spin_lock(&delayed_refs->lock);
2541         head->processing = 0;
2542         delayed_refs->num_heads_ready++;
2543         spin_unlock(&delayed_refs->lock);
2544         btrfs_delayed_ref_unlock(head);
2545 }
2546
2547 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2548                              struct btrfs_fs_info *fs_info,
2549                              struct btrfs_delayed_ref_head *head)
2550 {
2551         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2552         int ret;
2553
2554         if (!extent_op)
2555                 return 0;
2556         head->extent_op = NULL;
2557         if (head->must_insert_reserved) {
2558                 btrfs_free_delayed_extent_op(extent_op);
2559                 return 0;
2560         }
2561         spin_unlock(&head->lock);
2562         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2563         btrfs_free_delayed_extent_op(extent_op);
2564         return ret ? ret : 1;
2565 }
2566
2567 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568                             struct btrfs_fs_info *fs_info,
2569                             struct btrfs_delayed_ref_head *head)
2570 {
2571         struct btrfs_delayed_ref_root *delayed_refs;
2572         int ret;
2573
2574         delayed_refs = &trans->transaction->delayed_refs;
2575
2576         ret = cleanup_extent_op(trans, fs_info, head);
2577         if (ret < 0) {
2578                 unselect_delayed_ref_head(delayed_refs, head);
2579                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2580                 return ret;
2581         } else if (ret) {
2582                 return ret;
2583         }
2584
2585         /*
2586          * Need to drop our head ref lock and re-acquire the delayed ref lock
2587          * and then re-check to make sure nobody got added.
2588          */
2589         spin_unlock(&head->lock);
2590         spin_lock(&delayed_refs->lock);
2591         spin_lock(&head->lock);
2592         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2593                 spin_unlock(&head->lock);
2594                 spin_unlock(&delayed_refs->lock);
2595                 return 1;
2596         }
2597         delayed_refs->num_heads--;
2598         rb_erase(&head->href_node, &delayed_refs->href_root);
2599         RB_CLEAR_NODE(&head->href_node);
2600         spin_unlock(&head->lock);
2601         spin_unlock(&delayed_refs->lock);
2602         atomic_dec(&delayed_refs->num_entries);
2603
2604         trace_run_delayed_ref_head(fs_info, head, 0);
2605
2606         if (head->total_ref_mod < 0) {
2607                 struct btrfs_space_info *space_info;
2608                 u64 flags;
2609
2610                 if (head->is_data)
2611                         flags = BTRFS_BLOCK_GROUP_DATA;
2612                 else if (head->is_system)
2613                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
2614                 else
2615                         flags = BTRFS_BLOCK_GROUP_METADATA;
2616                 space_info = __find_space_info(fs_info, flags);
2617                 ASSERT(space_info);
2618                 percpu_counter_add(&space_info->total_bytes_pinned,
2619                                    -head->num_bytes);
2620
2621                 if (head->is_data) {
2622                         spin_lock(&delayed_refs->lock);
2623                         delayed_refs->pending_csums -= head->num_bytes;
2624                         spin_unlock(&delayed_refs->lock);
2625                 }
2626         }
2627
2628         if (head->must_insert_reserved) {
2629                 btrfs_pin_extent(fs_info, head->bytenr,
2630                                  head->num_bytes, 1);
2631                 if (head->is_data) {
2632                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2633                                               head->num_bytes);
2634                 }
2635         }
2636
2637         /* Also free its reserved qgroup space */
2638         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2639                                       head->qgroup_reserved);
2640         btrfs_delayed_ref_unlock(head);
2641         btrfs_put_delayed_ref_head(head);
2642         return 0;
2643 }
2644
2645 /*
2646  * Returns 0 on success or if called with an already aborted transaction.
2647  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2648  */
2649 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2650                                              unsigned long nr)
2651 {
2652         struct btrfs_fs_info *fs_info = trans->fs_info;
2653         struct btrfs_delayed_ref_root *delayed_refs;
2654         struct btrfs_delayed_ref_node *ref;
2655         struct btrfs_delayed_ref_head *locked_ref = NULL;
2656         struct btrfs_delayed_extent_op *extent_op;
2657         ktime_t start = ktime_get();
2658         int ret;
2659         unsigned long count = 0;
2660         unsigned long actual_count = 0;
2661         int must_insert_reserved = 0;
2662
2663         delayed_refs = &trans->transaction->delayed_refs;
2664         while (1) {
2665                 if (!locked_ref) {
2666                         if (count >= nr)
2667                                 break;
2668
2669                         spin_lock(&delayed_refs->lock);
2670                         locked_ref = btrfs_select_ref_head(trans);
2671                         if (!locked_ref) {
2672                                 spin_unlock(&delayed_refs->lock);
2673                                 break;
2674                         }
2675
2676                         /* grab the lock that says we are going to process
2677                          * all the refs for this head */
2678                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2679                         spin_unlock(&delayed_refs->lock);
2680                         /*
2681                          * we may have dropped the spin lock to get the head
2682                          * mutex lock, and that might have given someone else
2683                          * time to free the head.  If that's true, it has been
2684                          * removed from our list and we can move on.
2685                          */
2686                         if (ret == -EAGAIN) {
2687                                 locked_ref = NULL;
2688                                 count++;
2689                                 continue;
2690                         }
2691                 }
2692
2693                 /*
2694                  * We need to try and merge add/drops of the same ref since we
2695                  * can run into issues with relocate dropping the implicit ref
2696                  * and then it being added back again before the drop can
2697                  * finish.  If we merged anything we need to re-loop so we can
2698                  * get a good ref.
2699                  * Or we can get node references of the same type that weren't
2700                  * merged when created due to bumps in the tree mod seq, and
2701                  * we need to merge them to prevent adding an inline extent
2702                  * backref before dropping it (triggering a BUG_ON at
2703                  * insert_inline_extent_backref()).
2704                  */
2705                 spin_lock(&locked_ref->lock);
2706                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2707                                          locked_ref);
2708
2709                 /*
2710                  * locked_ref is the head node, so we have to go one
2711                  * node back for any delayed ref updates
2712                  */
2713                 ref = select_delayed_ref(locked_ref);
2714
2715                 if (ref && ref->seq &&
2716                     btrfs_check_delayed_seq(fs_info, ref->seq)) {
2717                         spin_unlock(&locked_ref->lock);
2718                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2719                         locked_ref = NULL;
2720                         cond_resched();
2721                         count++;
2722                         continue;
2723                 }
2724
2725                 /*
2726                  * We're done processing refs in this ref_head, clean everything
2727                  * up and move on to the next ref_head.
2728                  */
2729                 if (!ref) {
2730                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2731                         if (ret > 0 ) {
2732                                 /* We dropped our lock, we need to loop. */
2733                                 ret = 0;
2734                                 continue;
2735                         } else if (ret) {
2736                                 return ret;
2737                         }
2738                         locked_ref = NULL;
2739                         count++;
2740                         continue;
2741                 }
2742
2743                 actual_count++;
2744                 ref->in_tree = 0;
2745                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2746                 RB_CLEAR_NODE(&ref->ref_node);
2747                 if (!list_empty(&ref->add_list))
2748                         list_del(&ref->add_list);
2749                 /*
2750                  * When we play the delayed ref, also correct the ref_mod on
2751                  * head
2752                  */
2753                 switch (ref->action) {
2754                 case BTRFS_ADD_DELAYED_REF:
2755                 case BTRFS_ADD_DELAYED_EXTENT:
2756                         locked_ref->ref_mod -= ref->ref_mod;
2757                         break;
2758                 case BTRFS_DROP_DELAYED_REF:
2759                         locked_ref->ref_mod += ref->ref_mod;
2760                         break;
2761                 default:
2762                         WARN_ON(1);
2763                 }
2764                 atomic_dec(&delayed_refs->num_entries);
2765
2766                 /*
2767                  * Record the must-insert_reserved flag before we drop the spin
2768                  * lock.
2769                  */
2770                 must_insert_reserved = locked_ref->must_insert_reserved;
2771                 locked_ref->must_insert_reserved = 0;
2772
2773                 extent_op = locked_ref->extent_op;
2774                 locked_ref->extent_op = NULL;
2775                 spin_unlock(&locked_ref->lock);
2776
2777                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2778                                           must_insert_reserved);
2779
2780                 btrfs_free_delayed_extent_op(extent_op);
2781                 if (ret) {
2782                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2783                         btrfs_put_delayed_ref(ref);
2784                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2785                                     ret);
2786                         return ret;
2787                 }
2788
2789                 btrfs_put_delayed_ref(ref);
2790                 count++;
2791                 cond_resched();
2792         }
2793
2794         /*
2795          * We don't want to include ref heads since we can have empty ref heads
2796          * and those will drastically skew our runtime down since we just do
2797          * accounting, no actual extent tree updates.
2798          */
2799         if (actual_count > 0) {
2800                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2801                 u64 avg;
2802
2803                 /*
2804                  * We weigh the current average higher than our current runtime
2805                  * to avoid large swings in the average.
2806                  */
2807                 spin_lock(&delayed_refs->lock);
2808                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2809                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2810                 spin_unlock(&delayed_refs->lock);
2811         }
2812         return 0;
2813 }
2814
2815 #ifdef SCRAMBLE_DELAYED_REFS
2816 /*
2817  * Normally delayed refs get processed in ascending bytenr order. This
2818  * correlates in most cases to the order added. To expose dependencies on this
2819  * order, we start to process the tree in the middle instead of the beginning
2820  */
2821 static u64 find_middle(struct rb_root *root)
2822 {
2823         struct rb_node *n = root->rb_node;
2824         struct btrfs_delayed_ref_node *entry;
2825         int alt = 1;
2826         u64 middle;
2827         u64 first = 0, last = 0;
2828
2829         n = rb_first(root);
2830         if (n) {
2831                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2832                 first = entry->bytenr;
2833         }
2834         n = rb_last(root);
2835         if (n) {
2836                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837                 last = entry->bytenr;
2838         }
2839         n = root->rb_node;
2840
2841         while (n) {
2842                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2843                 WARN_ON(!entry->in_tree);
2844
2845                 middle = entry->bytenr;
2846
2847                 if (alt)
2848                         n = n->rb_left;
2849                 else
2850                         n = n->rb_right;
2851
2852                 alt = 1 - alt;
2853         }
2854         return middle;
2855 }
2856 #endif
2857
2858 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2859 {
2860         u64 num_bytes;
2861
2862         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2863                              sizeof(struct btrfs_extent_inline_ref));
2864         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2865                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2866
2867         /*
2868          * We don't ever fill up leaves all the way so multiply by 2 just to be
2869          * closer to what we're really going to want to use.
2870          */
2871         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2872 }
2873
2874 /*
2875  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2876  * would require to store the csums for that many bytes.
2877  */
2878 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2879 {
2880         u64 csum_size;
2881         u64 num_csums_per_leaf;
2882         u64 num_csums;
2883
2884         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2885         num_csums_per_leaf = div64_u64(csum_size,
2886                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2887         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2888         num_csums += num_csums_per_leaf - 1;
2889         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2890         return num_csums;
2891 }
2892
2893 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2894                                        struct btrfs_fs_info *fs_info)
2895 {
2896         struct btrfs_block_rsv *global_rsv;
2897         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2898         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2899         unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2900         u64 num_bytes, num_dirty_bgs_bytes;
2901         int ret = 0;
2902
2903         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2904         num_heads = heads_to_leaves(fs_info, num_heads);
2905         if (num_heads > 1)
2906                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2907         num_bytes <<= 1;
2908         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2909                                                         fs_info->nodesize;
2910         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2911                                                              num_dirty_bgs);
2912         global_rsv = &fs_info->global_block_rsv;
2913
2914         /*
2915          * If we can't allocate any more chunks lets make sure we have _lots_ of
2916          * wiggle room since running delayed refs can create more delayed refs.
2917          */
2918         if (global_rsv->space_info->full) {
2919                 num_dirty_bgs_bytes <<= 1;
2920                 num_bytes <<= 1;
2921         }
2922
2923         spin_lock(&global_rsv->lock);
2924         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2925                 ret = 1;
2926         spin_unlock(&global_rsv->lock);
2927         return ret;
2928 }
2929
2930 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2931                                        struct btrfs_fs_info *fs_info)
2932 {
2933         u64 num_entries =
2934                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2935         u64 avg_runtime;
2936         u64 val;
2937
2938         smp_mb();
2939         avg_runtime = fs_info->avg_delayed_ref_runtime;
2940         val = num_entries * avg_runtime;
2941         if (val >= NSEC_PER_SEC)
2942                 return 1;
2943         if (val >= NSEC_PER_SEC / 2)
2944                 return 2;
2945
2946         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2947 }
2948
2949 struct async_delayed_refs {
2950         struct btrfs_root *root;
2951         u64 transid;
2952         int count;
2953         int error;
2954         int sync;
2955         struct completion wait;
2956         struct btrfs_work work;
2957 };
2958
2959 static inline struct async_delayed_refs *
2960 to_async_delayed_refs(struct btrfs_work *work)
2961 {
2962         return container_of(work, struct async_delayed_refs, work);
2963 }
2964
2965 static void delayed_ref_async_start(struct btrfs_work *work)
2966 {
2967         struct async_delayed_refs *async = to_async_delayed_refs(work);
2968         struct btrfs_trans_handle *trans;
2969         struct btrfs_fs_info *fs_info = async->root->fs_info;
2970         int ret;
2971
2972         /* if the commit is already started, we don't need to wait here */
2973         if (btrfs_transaction_blocked(fs_info))
2974                 goto done;
2975
2976         trans = btrfs_join_transaction(async->root);
2977         if (IS_ERR(trans)) {
2978                 async->error = PTR_ERR(trans);
2979                 goto done;
2980         }
2981
2982         /*
2983          * trans->sync means that when we call end_transaction, we won't
2984          * wait on delayed refs
2985          */
2986         trans->sync = true;
2987
2988         /* Don't bother flushing if we got into a different transaction */
2989         if (trans->transid > async->transid)
2990                 goto end;
2991
2992         ret = btrfs_run_delayed_refs(trans, async->count);
2993         if (ret)
2994                 async->error = ret;
2995 end:
2996         ret = btrfs_end_transaction(trans);
2997         if (ret && !async->error)
2998                 async->error = ret;
2999 done:
3000         if (async->sync)
3001                 complete(&async->wait);
3002         else
3003                 kfree(async);
3004 }
3005
3006 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3007                                  unsigned long count, u64 transid, int wait)
3008 {
3009         struct async_delayed_refs *async;
3010         int ret;
3011
3012         async = kmalloc(sizeof(*async), GFP_NOFS);
3013         if (!async)
3014                 return -ENOMEM;
3015
3016         async->root = fs_info->tree_root;
3017         async->count = count;
3018         async->error = 0;
3019         async->transid = transid;
3020         if (wait)
3021                 async->sync = 1;
3022         else
3023                 async->sync = 0;
3024         init_completion(&async->wait);
3025
3026         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3027                         delayed_ref_async_start, NULL, NULL);
3028
3029         btrfs_queue_work(fs_info->extent_workers, &async->work);
3030
3031         if (wait) {
3032                 wait_for_completion(&async->wait);
3033                 ret = async->error;
3034                 kfree(async);
3035                 return ret;
3036         }
3037         return 0;
3038 }
3039
3040 /*
3041  * this starts processing the delayed reference count updates and
3042  * extent insertions we have queued up so far.  count can be
3043  * 0, which means to process everything in the tree at the start
3044  * of the run (but not newly added entries), or it can be some target
3045  * number you'd like to process.
3046  *
3047  * Returns 0 on success or if called with an aborted transaction
3048  * Returns <0 on error and aborts the transaction
3049  */
3050 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3051                            unsigned long count)
3052 {
3053         struct btrfs_fs_info *fs_info = trans->fs_info;
3054         struct rb_node *node;
3055         struct btrfs_delayed_ref_root *delayed_refs;
3056         struct btrfs_delayed_ref_head *head;
3057         int ret;
3058         int run_all = count == (unsigned long)-1;
3059         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3060
3061         /* We'll clean this up in btrfs_cleanup_transaction */
3062         if (trans->aborted)
3063                 return 0;
3064
3065         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3066                 return 0;
3067
3068         delayed_refs = &trans->transaction->delayed_refs;
3069         if (count == 0)
3070                 count = atomic_read(&delayed_refs->num_entries) * 2;
3071
3072 again:
3073 #ifdef SCRAMBLE_DELAYED_REFS
3074         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3075 #endif
3076         trans->can_flush_pending_bgs = false;
3077         ret = __btrfs_run_delayed_refs(trans, count);
3078         if (ret < 0) {
3079                 btrfs_abort_transaction(trans, ret);
3080                 return ret;
3081         }
3082
3083         if (run_all) {
3084                 if (!list_empty(&trans->new_bgs))
3085                         btrfs_create_pending_block_groups(trans);
3086
3087                 spin_lock(&delayed_refs->lock);
3088                 node = rb_first(&delayed_refs->href_root);
3089                 if (!node) {
3090                         spin_unlock(&delayed_refs->lock);
3091                         goto out;
3092                 }
3093                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3094                                 href_node);
3095                 refcount_inc(&head->refs);
3096                 spin_unlock(&delayed_refs->lock);
3097
3098                 /* Mutex was contended, block until it's released and retry. */
3099                 mutex_lock(&head->mutex);
3100                 mutex_unlock(&head->mutex);
3101
3102                 btrfs_put_delayed_ref_head(head);
3103                 cond_resched();
3104                 goto again;
3105         }
3106 out:
3107         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3108         return 0;
3109 }
3110
3111 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3112                                 struct btrfs_fs_info *fs_info,
3113                                 u64 bytenr, u64 num_bytes, u64 flags,
3114                                 int level, int is_data)
3115 {
3116         struct btrfs_delayed_extent_op *extent_op;
3117         int ret;
3118
3119         extent_op = btrfs_alloc_delayed_extent_op();
3120         if (!extent_op)
3121                 return -ENOMEM;
3122
3123         extent_op->flags_to_set = flags;
3124         extent_op->update_flags = true;
3125         extent_op->update_key = false;
3126         extent_op->is_data = is_data ? true : false;
3127         extent_op->level = level;
3128
3129         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3130                                           num_bytes, extent_op);
3131         if (ret)
3132                 btrfs_free_delayed_extent_op(extent_op);
3133         return ret;
3134 }
3135
3136 static noinline int check_delayed_ref(struct btrfs_root *root,
3137                                       struct btrfs_path *path,
3138                                       u64 objectid, u64 offset, u64 bytenr)
3139 {
3140         struct btrfs_delayed_ref_head *head;
3141         struct btrfs_delayed_ref_node *ref;
3142         struct btrfs_delayed_data_ref *data_ref;
3143         struct btrfs_delayed_ref_root *delayed_refs;
3144         struct btrfs_transaction *cur_trans;
3145         struct rb_node *node;
3146         int ret = 0;
3147
3148         spin_lock(&root->fs_info->trans_lock);
3149         cur_trans = root->fs_info->running_transaction;
3150         if (cur_trans)
3151                 refcount_inc(&cur_trans->use_count);
3152         spin_unlock(&root->fs_info->trans_lock);
3153         if (!cur_trans)
3154                 return 0;
3155
3156         delayed_refs = &cur_trans->delayed_refs;
3157         spin_lock(&delayed_refs->lock);
3158         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3159         if (!head) {
3160                 spin_unlock(&delayed_refs->lock);
3161                 btrfs_put_transaction(cur_trans);
3162                 return 0;
3163         }
3164
3165         if (!mutex_trylock(&head->mutex)) {
3166                 refcount_inc(&head->refs);
3167                 spin_unlock(&delayed_refs->lock);
3168
3169                 btrfs_release_path(path);
3170
3171                 /*
3172                  * Mutex was contended, block until it's released and let
3173                  * caller try again
3174                  */
3175                 mutex_lock(&head->mutex);
3176                 mutex_unlock(&head->mutex);
3177                 btrfs_put_delayed_ref_head(head);
3178                 btrfs_put_transaction(cur_trans);
3179                 return -EAGAIN;
3180         }
3181         spin_unlock(&delayed_refs->lock);
3182
3183         spin_lock(&head->lock);
3184         /*
3185          * XXX: We should replace this with a proper search function in the
3186          * future.
3187          */
3188         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3189                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3190                 /* If it's a shared ref we know a cross reference exists */
3191                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3192                         ret = 1;
3193                         break;
3194                 }
3195
3196                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3197
3198                 /*
3199                  * If our ref doesn't match the one we're currently looking at
3200                  * then we have a cross reference.
3201                  */
3202                 if (data_ref->root != root->root_key.objectid ||
3203                     data_ref->objectid != objectid ||
3204                     data_ref->offset != offset) {
3205                         ret = 1;
3206                         break;
3207                 }
3208         }
3209         spin_unlock(&head->lock);
3210         mutex_unlock(&head->mutex);
3211         btrfs_put_transaction(cur_trans);
3212         return ret;
3213 }
3214
3215 static noinline int check_committed_ref(struct btrfs_root *root,
3216                                         struct btrfs_path *path,
3217                                         u64 objectid, u64 offset, u64 bytenr)
3218 {
3219         struct btrfs_fs_info *fs_info = root->fs_info;
3220         struct btrfs_root *extent_root = fs_info->extent_root;
3221         struct extent_buffer *leaf;
3222         struct btrfs_extent_data_ref *ref;
3223         struct btrfs_extent_inline_ref *iref;
3224         struct btrfs_extent_item *ei;
3225         struct btrfs_key key;
3226         u32 item_size;
3227         int type;
3228         int ret;
3229
3230         key.objectid = bytenr;
3231         key.offset = (u64)-1;
3232         key.type = BTRFS_EXTENT_ITEM_KEY;
3233
3234         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3235         if (ret < 0)
3236                 goto out;
3237         BUG_ON(ret == 0); /* Corruption */
3238
3239         ret = -ENOENT;
3240         if (path->slots[0] == 0)
3241                 goto out;
3242
3243         path->slots[0]--;
3244         leaf = path->nodes[0];
3245         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3246
3247         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3248                 goto out;
3249
3250         ret = 1;
3251         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3252 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3253         if (item_size < sizeof(*ei)) {
3254                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3255                 goto out;
3256         }
3257 #endif
3258         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3259
3260         if (item_size != sizeof(*ei) +
3261             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3262                 goto out;
3263
3264         if (btrfs_extent_generation(leaf, ei) <=
3265             btrfs_root_last_snapshot(&root->root_item))
3266                 goto out;
3267
3268         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3269
3270         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3271         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3272                 goto out;
3273
3274         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3275         if (btrfs_extent_refs(leaf, ei) !=
3276             btrfs_extent_data_ref_count(leaf, ref) ||
3277             btrfs_extent_data_ref_root(leaf, ref) !=
3278             root->root_key.objectid ||
3279             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3280             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3281                 goto out;
3282
3283         ret = 0;
3284 out:
3285         return ret;
3286 }
3287
3288 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3289                           u64 bytenr)
3290 {
3291         struct btrfs_path *path;
3292         int ret;
3293         int ret2;
3294
3295         path = btrfs_alloc_path();
3296         if (!path)
3297                 return -ENOENT;
3298
3299         do {
3300                 ret = check_committed_ref(root, path, objectid,
3301                                           offset, bytenr);
3302                 if (ret && ret != -ENOENT)
3303                         goto out;
3304
3305                 ret2 = check_delayed_ref(root, path, objectid,
3306                                          offset, bytenr);
3307         } while (ret2 == -EAGAIN);
3308
3309         if (ret2 && ret2 != -ENOENT) {
3310                 ret = ret2;
3311                 goto out;
3312         }
3313
3314         if (ret != -ENOENT || ret2 != -ENOENT)
3315                 ret = 0;
3316 out:
3317         btrfs_free_path(path);
3318         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3319                 WARN_ON(ret > 0);
3320         return ret;
3321 }
3322
3323 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3324                            struct btrfs_root *root,
3325                            struct extent_buffer *buf,
3326                            int full_backref, int inc)
3327 {
3328         struct btrfs_fs_info *fs_info = root->fs_info;
3329         u64 bytenr;
3330         u64 num_bytes;
3331         u64 parent;
3332         u64 ref_root;
3333         u32 nritems;
3334         struct btrfs_key key;
3335         struct btrfs_file_extent_item *fi;
3336         int i;
3337         int level;
3338         int ret = 0;
3339         int (*process_func)(struct btrfs_trans_handle *,
3340                             struct btrfs_root *,
3341                             u64, u64, u64, u64, u64, u64);
3342
3343
3344         if (btrfs_is_testing(fs_info))
3345                 return 0;
3346
3347         ref_root = btrfs_header_owner(buf);
3348         nritems = btrfs_header_nritems(buf);
3349         level = btrfs_header_level(buf);
3350
3351         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3352                 return 0;
3353
3354         if (inc)
3355                 process_func = btrfs_inc_extent_ref;
3356         else
3357                 process_func = btrfs_free_extent;
3358
3359         if (full_backref)
3360                 parent = buf->start;
3361         else
3362                 parent = 0;
3363
3364         for (i = 0; i < nritems; i++) {
3365                 if (level == 0) {
3366                         btrfs_item_key_to_cpu(buf, &key, i);
3367                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3368                                 continue;
3369                         fi = btrfs_item_ptr(buf, i,
3370                                             struct btrfs_file_extent_item);
3371                         if (btrfs_file_extent_type(buf, fi) ==
3372                             BTRFS_FILE_EXTENT_INLINE)
3373                                 continue;
3374                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3375                         if (bytenr == 0)
3376                                 continue;
3377
3378                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3379                         key.offset -= btrfs_file_extent_offset(buf, fi);
3380                         ret = process_func(trans, root, bytenr, num_bytes,
3381                                            parent, ref_root, key.objectid,
3382                                            key.offset);
3383                         if (ret)
3384                                 goto fail;
3385                 } else {
3386                         bytenr = btrfs_node_blockptr(buf, i);
3387                         num_bytes = fs_info->nodesize;
3388                         ret = process_func(trans, root, bytenr, num_bytes,
3389                                            parent, ref_root, level - 1, 0);
3390                         if (ret)
3391                                 goto fail;
3392                 }
3393         }
3394         return 0;
3395 fail:
3396         return ret;
3397 }
3398
3399 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3400                   struct extent_buffer *buf, int full_backref)
3401 {
3402         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3403 }
3404
3405 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3406                   struct extent_buffer *buf, int full_backref)
3407 {
3408         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3409 }
3410
3411 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3412                                  struct btrfs_fs_info *fs_info,
3413                                  struct btrfs_path *path,
3414                                  struct btrfs_block_group_cache *cache)
3415 {
3416         int ret;
3417         struct btrfs_root *extent_root = fs_info->extent_root;
3418         unsigned long bi;
3419         struct extent_buffer *leaf;
3420
3421         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3422         if (ret) {
3423                 if (ret > 0)
3424                         ret = -ENOENT;
3425                 goto fail;
3426         }
3427
3428         leaf = path->nodes[0];
3429         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3430         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3431         btrfs_mark_buffer_dirty(leaf);
3432 fail:
3433         btrfs_release_path(path);
3434         return ret;
3435
3436 }
3437
3438 static struct btrfs_block_group_cache *
3439 next_block_group(struct btrfs_fs_info *fs_info,
3440                  struct btrfs_block_group_cache *cache)
3441 {
3442         struct rb_node *node;
3443
3444         spin_lock(&fs_info->block_group_cache_lock);
3445
3446         /* If our block group was removed, we need a full search. */
3447         if (RB_EMPTY_NODE(&cache->cache_node)) {
3448                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3449
3450                 spin_unlock(&fs_info->block_group_cache_lock);
3451                 btrfs_put_block_group(cache);
3452                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3453         }
3454         node = rb_next(&cache->cache_node);
3455         btrfs_put_block_group(cache);
3456         if (node) {
3457                 cache = rb_entry(node, struct btrfs_block_group_cache,
3458                                  cache_node);
3459                 btrfs_get_block_group(cache);
3460         } else
3461                 cache = NULL;
3462         spin_unlock(&fs_info->block_group_cache_lock);
3463         return cache;
3464 }
3465
3466 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3467                             struct btrfs_trans_handle *trans,
3468                             struct btrfs_path *path)
3469 {
3470         struct btrfs_fs_info *fs_info = block_group->fs_info;
3471         struct btrfs_root *root = fs_info->tree_root;
3472         struct inode *inode = NULL;
3473         struct extent_changeset *data_reserved = NULL;
3474         u64 alloc_hint = 0;
3475         int dcs = BTRFS_DC_ERROR;
3476         u64 num_pages = 0;
3477         int retries = 0;
3478         int ret = 0;
3479
3480         /*
3481          * If this block group is smaller than 100 megs don't bother caching the
3482          * block group.
3483          */
3484         if (block_group->key.offset < (100 * SZ_1M)) {
3485                 spin_lock(&block_group->lock);
3486                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3487                 spin_unlock(&block_group->lock);
3488                 return 0;
3489         }
3490
3491         if (trans->aborted)
3492                 return 0;
3493 again:
3494         inode = lookup_free_space_inode(fs_info, block_group, path);
3495         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3496                 ret = PTR_ERR(inode);
3497                 btrfs_release_path(path);
3498                 goto out;
3499         }
3500
3501         if (IS_ERR(inode)) {
3502                 BUG_ON(retries);
3503                 retries++;
3504
3505                 if (block_group->ro)
3506                         goto out_free;
3507
3508                 ret = create_free_space_inode(fs_info, trans, block_group,
3509                                               path);
3510                 if (ret)
3511                         goto out_free;
3512                 goto again;
3513         }
3514
3515         /*
3516          * We want to set the generation to 0, that way if anything goes wrong
3517          * from here on out we know not to trust this cache when we load up next
3518          * time.
3519          */
3520         BTRFS_I(inode)->generation = 0;
3521         ret = btrfs_update_inode(trans, root, inode);
3522         if (ret) {
3523                 /*
3524                  * So theoretically we could recover from this, simply set the
3525                  * super cache generation to 0 so we know to invalidate the
3526                  * cache, but then we'd have to keep track of the block groups
3527                  * that fail this way so we know we _have_ to reset this cache
3528                  * before the next commit or risk reading stale cache.  So to
3529                  * limit our exposure to horrible edge cases lets just abort the
3530                  * transaction, this only happens in really bad situations
3531                  * anyway.
3532                  */
3533                 btrfs_abort_transaction(trans, ret);
3534                 goto out_put;
3535         }
3536         WARN_ON(ret);
3537
3538         /* We've already setup this transaction, go ahead and exit */
3539         if (block_group->cache_generation == trans->transid &&
3540             i_size_read(inode)) {
3541                 dcs = BTRFS_DC_SETUP;
3542                 goto out_put;
3543         }
3544
3545         if (i_size_read(inode) > 0) {
3546                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3547                                         &fs_info->global_block_rsv);
3548                 if (ret)
3549                         goto out_put;
3550
3551                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3552                 if (ret)
3553                         goto out_put;
3554         }
3555
3556         spin_lock(&block_group->lock);
3557         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3558             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3559                 /*
3560                  * don't bother trying to write stuff out _if_
3561                  * a) we're not cached,
3562                  * b) we're with nospace_cache mount option,
3563                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3564                  */
3565                 dcs = BTRFS_DC_WRITTEN;
3566                 spin_unlock(&block_group->lock);
3567                 goto out_put;
3568         }
3569         spin_unlock(&block_group->lock);
3570
3571         /*
3572          * We hit an ENOSPC when setting up the cache in this transaction, just
3573          * skip doing the setup, we've already cleared the cache so we're safe.
3574          */
3575         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3576                 ret = -ENOSPC;
3577                 goto out_put;
3578         }
3579
3580         /*
3581          * Try to preallocate enough space based on how big the block group is.
3582          * Keep in mind this has to include any pinned space which could end up
3583          * taking up quite a bit since it's not folded into the other space
3584          * cache.
3585          */
3586         num_pages = div_u64(block_group->key.offset, SZ_256M);
3587         if (!num_pages)
3588                 num_pages = 1;
3589
3590         num_pages *= 16;
3591         num_pages *= PAGE_SIZE;
3592
3593         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3594         if (ret)
3595                 goto out_put;
3596
3597         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3598                                               num_pages, num_pages,
3599                                               &alloc_hint);
3600         /*
3601          * Our cache requires contiguous chunks so that we don't modify a bunch
3602          * of metadata or split extents when writing the cache out, which means
3603          * we can enospc if we are heavily fragmented in addition to just normal
3604          * out of space conditions.  So if we hit this just skip setting up any
3605          * other block groups for this transaction, maybe we'll unpin enough
3606          * space the next time around.
3607          */
3608         if (!ret)
3609                 dcs = BTRFS_DC_SETUP;
3610         else if (ret == -ENOSPC)
3611                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3612
3613 out_put:
3614         iput(inode);
3615 out_free:
3616         btrfs_release_path(path);
3617 out:
3618         spin_lock(&block_group->lock);
3619         if (!ret && dcs == BTRFS_DC_SETUP)
3620                 block_group->cache_generation = trans->transid;
3621         block_group->disk_cache_state = dcs;
3622         spin_unlock(&block_group->lock);
3623
3624         extent_changeset_free(data_reserved);
3625         return ret;
3626 }
3627
3628 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3629                             struct btrfs_fs_info *fs_info)
3630 {
3631         struct btrfs_block_group_cache *cache, *tmp;
3632         struct btrfs_transaction *cur_trans = trans->transaction;
3633         struct btrfs_path *path;
3634
3635         if (list_empty(&cur_trans->dirty_bgs) ||
3636             !btrfs_test_opt(fs_info, SPACE_CACHE))
3637                 return 0;
3638
3639         path = btrfs_alloc_path();
3640         if (!path)
3641                 return -ENOMEM;
3642
3643         /* Could add new block groups, use _safe just in case */
3644         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3645                                  dirty_list) {
3646                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3647                         cache_save_setup(cache, trans, path);
3648         }
3649
3650         btrfs_free_path(path);
3651         return 0;
3652 }
3653
3654 /*
3655  * transaction commit does final block group cache writeback during a
3656  * critical section where nothing is allowed to change the FS.  This is
3657  * required in order for the cache to actually match the block group,
3658  * but can introduce a lot of latency into the commit.
3659  *
3660  * So, btrfs_start_dirty_block_groups is here to kick off block group
3661  * cache IO.  There's a chance we'll have to redo some of it if the
3662  * block group changes again during the commit, but it greatly reduces
3663  * the commit latency by getting rid of the easy block groups while
3664  * we're still allowing others to join the commit.
3665  */
3666 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3667 {
3668         struct btrfs_fs_info *fs_info = trans->fs_info;
3669         struct btrfs_block_group_cache *cache;
3670         struct btrfs_transaction *cur_trans = trans->transaction;
3671         int ret = 0;
3672         int should_put;
3673         struct btrfs_path *path = NULL;
3674         LIST_HEAD(dirty);
3675         struct list_head *io = &cur_trans->io_bgs;
3676         int num_started = 0;
3677         int loops = 0;
3678
3679         spin_lock(&cur_trans->dirty_bgs_lock);
3680         if (list_empty(&cur_trans->dirty_bgs)) {
3681                 spin_unlock(&cur_trans->dirty_bgs_lock);
3682                 return 0;
3683         }
3684         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3685         spin_unlock(&cur_trans->dirty_bgs_lock);
3686
3687 again:
3688         /*
3689          * make sure all the block groups on our dirty list actually
3690          * exist
3691          */
3692         btrfs_create_pending_block_groups(trans);
3693
3694         if (!path) {
3695                 path = btrfs_alloc_path();
3696                 if (!path)
3697                         return -ENOMEM;
3698         }
3699
3700         /*
3701          * cache_write_mutex is here only to save us from balance or automatic
3702          * removal of empty block groups deleting this block group while we are
3703          * writing out the cache
3704          */
3705         mutex_lock(&trans->transaction->cache_write_mutex);
3706         while (!list_empty(&dirty)) {
3707                 cache = list_first_entry(&dirty,
3708                                          struct btrfs_block_group_cache,
3709                                          dirty_list);
3710                 /*
3711                  * this can happen if something re-dirties a block
3712                  * group that is already under IO.  Just wait for it to
3713                  * finish and then do it all again
3714                  */
3715                 if (!list_empty(&cache->io_list)) {
3716                         list_del_init(&cache->io_list);
3717                         btrfs_wait_cache_io(trans, cache, path);
3718                         btrfs_put_block_group(cache);
3719                 }
3720
3721
3722                 /*
3723                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3724                  * if it should update the cache_state.  Don't delete
3725                  * until after we wait.
3726                  *
3727                  * Since we're not running in the commit critical section
3728                  * we need the dirty_bgs_lock to protect from update_block_group
3729                  */
3730                 spin_lock(&cur_trans->dirty_bgs_lock);
3731                 list_del_init(&cache->dirty_list);
3732                 spin_unlock(&cur_trans->dirty_bgs_lock);
3733
3734                 should_put = 1;
3735
3736                 cache_save_setup(cache, trans, path);
3737
3738                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3739                         cache->io_ctl.inode = NULL;
3740                         ret = btrfs_write_out_cache(fs_info, trans,
3741                                                     cache, path);
3742                         if (ret == 0 && cache->io_ctl.inode) {
3743                                 num_started++;
3744                                 should_put = 0;
3745
3746                                 /*
3747                                  * The cache_write_mutex is protecting the
3748                                  * io_list, also refer to the definition of
3749                                  * btrfs_transaction::io_bgs for more details
3750                                  */
3751                                 list_add_tail(&cache->io_list, io);
3752                         } else {
3753                                 /*
3754                                  * if we failed to write the cache, the
3755                                  * generation will be bad and life goes on
3756                                  */
3757                                 ret = 0;
3758                         }
3759                 }
3760                 if (!ret) {
3761                         ret = write_one_cache_group(trans, fs_info,
3762                                                     path, cache);
3763                         /*
3764                          * Our block group might still be attached to the list
3765                          * of new block groups in the transaction handle of some
3766                          * other task (struct btrfs_trans_handle->new_bgs). This
3767                          * means its block group item isn't yet in the extent
3768                          * tree. If this happens ignore the error, as we will
3769                          * try again later in the critical section of the
3770                          * transaction commit.
3771                          */
3772                         if (ret == -ENOENT) {
3773                                 ret = 0;
3774                                 spin_lock(&cur_trans->dirty_bgs_lock);
3775                                 if (list_empty(&cache->dirty_list)) {
3776                                         list_add_tail(&cache->dirty_list,
3777                                                       &cur_trans->dirty_bgs);
3778                                         btrfs_get_block_group(cache);
3779                                 }
3780                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3781                         } else if (ret) {
3782                                 btrfs_abort_transaction(trans, ret);
3783                         }
3784                 }
3785
3786                 /* if its not on the io list, we need to put the block group */
3787                 if (should_put)
3788                         btrfs_put_block_group(cache);
3789
3790                 if (ret)
3791                         break;
3792
3793                 /*
3794                  * Avoid blocking other tasks for too long. It might even save
3795                  * us from writing caches for block groups that are going to be
3796                  * removed.
3797                  */
3798                 mutex_unlock(&trans->transaction->cache_write_mutex);
3799                 mutex_lock(&trans->transaction->cache_write_mutex);
3800         }
3801         mutex_unlock(&trans->transaction->cache_write_mutex);
3802
3803         /*
3804          * go through delayed refs for all the stuff we've just kicked off
3805          * and then loop back (just once)
3806          */
3807         ret = btrfs_run_delayed_refs(trans, 0);
3808         if (!ret && loops == 0) {
3809                 loops++;
3810                 spin_lock(&cur_trans->dirty_bgs_lock);
3811                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3812                 /*
3813                  * dirty_bgs_lock protects us from concurrent block group
3814                  * deletes too (not just cache_write_mutex).
3815                  */
3816                 if (!list_empty(&dirty)) {
3817                         spin_unlock(&cur_trans->dirty_bgs_lock);
3818                         goto again;
3819                 }
3820                 spin_unlock(&cur_trans->dirty_bgs_lock);
3821         } else if (ret < 0) {
3822                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3823         }
3824
3825         btrfs_free_path(path);
3826         return ret;
3827 }
3828
3829 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3830                                    struct btrfs_fs_info *fs_info)
3831 {
3832         struct btrfs_block_group_cache *cache;
3833         struct btrfs_transaction *cur_trans = trans->transaction;
3834         int ret = 0;
3835         int should_put;
3836         struct btrfs_path *path;
3837         struct list_head *io = &cur_trans->io_bgs;
3838         int num_started = 0;
3839
3840         path = btrfs_alloc_path();
3841         if (!path)
3842                 return -ENOMEM;
3843
3844         /*
3845          * Even though we are in the critical section of the transaction commit,
3846          * we can still have concurrent tasks adding elements to this
3847          * transaction's list of dirty block groups. These tasks correspond to
3848          * endio free space workers started when writeback finishes for a
3849          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3850          * allocate new block groups as a result of COWing nodes of the root
3851          * tree when updating the free space inode. The writeback for the space
3852          * caches is triggered by an earlier call to
3853          * btrfs_start_dirty_block_groups() and iterations of the following
3854          * loop.
3855          * Also we want to do the cache_save_setup first and then run the
3856          * delayed refs to make sure we have the best chance at doing this all
3857          * in one shot.
3858          */
3859         spin_lock(&cur_trans->dirty_bgs_lock);
3860         while (!list_empty(&cur_trans->dirty_bgs)) {
3861                 cache = list_first_entry(&cur_trans->dirty_bgs,
3862                                          struct btrfs_block_group_cache,
3863                                          dirty_list);
3864
3865                 /*
3866                  * this can happen if cache_save_setup re-dirties a block
3867                  * group that is already under IO.  Just wait for it to
3868                  * finish and then do it all again
3869                  */
3870                 if (!list_empty(&cache->io_list)) {
3871                         spin_unlock(&cur_trans->dirty_bgs_lock);
3872                         list_del_init(&cache->io_list);
3873                         btrfs_wait_cache_io(trans, cache, path);
3874                         btrfs_put_block_group(cache);
3875                         spin_lock(&cur_trans->dirty_bgs_lock);
3876                 }
3877
3878                 /*
3879                  * don't remove from the dirty list until after we've waited
3880                  * on any pending IO
3881                  */
3882                 list_del_init(&cache->dirty_list);
3883                 spin_unlock(&cur_trans->dirty_bgs_lock);
3884                 should_put = 1;
3885
3886                 cache_save_setup(cache, trans, path);
3887
3888                 if (!ret)
3889                         ret = btrfs_run_delayed_refs(trans,
3890                                                      (unsigned long) -1);
3891
3892                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3893                         cache->io_ctl.inode = NULL;
3894                         ret = btrfs_write_out_cache(fs_info, trans,
3895                                                     cache, path);
3896                         if (ret == 0 && cache->io_ctl.inode) {
3897                                 num_started++;
3898                                 should_put = 0;
3899                                 list_add_tail(&cache->io_list, io);
3900                         } else {
3901                                 /*
3902                                  * if we failed to write the cache, the
3903                                  * generation will be bad and life goes on
3904                                  */
3905                                 ret = 0;
3906                         }
3907                 }
3908                 if (!ret) {
3909                         ret = write_one_cache_group(trans, fs_info,
3910                                                     path, cache);
3911                         /*
3912                          * One of the free space endio workers might have
3913                          * created a new block group while updating a free space
3914                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3915                          * and hasn't released its transaction handle yet, in
3916                          * which case the new block group is still attached to
3917                          * its transaction handle and its creation has not
3918                          * finished yet (no block group item in the extent tree
3919                          * yet, etc). If this is the case, wait for all free
3920                          * space endio workers to finish and retry. This is a
3921                          * a very rare case so no need for a more efficient and
3922                          * complex approach.
3923                          */
3924                         if (ret == -ENOENT) {
3925                                 wait_event(cur_trans->writer_wait,
3926                                    atomic_read(&cur_trans->num_writers) == 1);
3927                                 ret = write_one_cache_group(trans, fs_info,
3928                                                             path, cache);
3929                         }
3930                         if (ret)
3931                                 btrfs_abort_transaction(trans, ret);
3932                 }
3933
3934                 /* if its not on the io list, we need to put the block group */
3935                 if (should_put)
3936                         btrfs_put_block_group(cache);
3937                 spin_lock(&cur_trans->dirty_bgs_lock);
3938         }
3939         spin_unlock(&cur_trans->dirty_bgs_lock);
3940
3941         /*
3942          * Refer to the definition of io_bgs member for details why it's safe
3943          * to use it without any locking
3944          */
3945         while (!list_empty(io)) {
3946                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3947                                          io_list);
3948                 list_del_init(&cache->io_list);
3949                 btrfs_wait_cache_io(trans, cache, path);
3950                 btrfs_put_block_group(cache);
3951         }
3952
3953         btrfs_free_path(path);
3954         return ret;
3955 }
3956
3957 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3958 {
3959         struct btrfs_block_group_cache *block_group;
3960         int readonly = 0;
3961
3962         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3963         if (!block_group || block_group->ro)
3964                 readonly = 1;
3965         if (block_group)
3966                 btrfs_put_block_group(block_group);
3967         return readonly;
3968 }
3969
3970 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3971 {
3972         struct btrfs_block_group_cache *bg;
3973         bool ret = true;
3974
3975         bg = btrfs_lookup_block_group(fs_info, bytenr);
3976         if (!bg)
3977                 return false;
3978
3979         spin_lock(&bg->lock);
3980         if (bg->ro)
3981                 ret = false;
3982         else
3983                 atomic_inc(&bg->nocow_writers);
3984         spin_unlock(&bg->lock);
3985
3986         /* no put on block group, done by btrfs_dec_nocow_writers */
3987         if (!ret)
3988                 btrfs_put_block_group(bg);
3989
3990         return ret;
3991
3992 }
3993
3994 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3995 {
3996         struct btrfs_block_group_cache *bg;
3997
3998         bg = btrfs_lookup_block_group(fs_info, bytenr);
3999         ASSERT(bg);
4000         if (atomic_dec_and_test(&bg->nocow_writers))
4001                 wake_up_var(&bg->nocow_writers);
4002         /*
4003          * Once for our lookup and once for the lookup done by a previous call
4004          * to btrfs_inc_nocow_writers()
4005          */
4006         btrfs_put_block_group(bg);
4007         btrfs_put_block_group(bg);
4008 }
4009
4010 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4011 {
4012         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4013 }
4014
4015 static const char *alloc_name(u64 flags)
4016 {
4017         switch (flags) {
4018         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4019                 return "mixed";
4020         case BTRFS_BLOCK_GROUP_METADATA:
4021                 return "metadata";
4022         case BTRFS_BLOCK_GROUP_DATA:
4023                 return "data";
4024         case BTRFS_BLOCK_GROUP_SYSTEM:
4025                 return "system";
4026         default:
4027                 WARN_ON(1);
4028                 return "invalid-combination";
4029         };
4030 }
4031
4032 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4033                              struct btrfs_space_info **new)
4034 {
4035
4036         struct btrfs_space_info *space_info;
4037         int i;
4038         int ret;
4039
4040         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4041         if (!space_info)
4042                 return -ENOMEM;
4043
4044         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4045                                  GFP_KERNEL);
4046         if (ret) {
4047                 kfree(space_info);
4048                 return ret;
4049         }
4050
4051         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4052                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4053         init_rwsem(&space_info->groups_sem);
4054         spin_lock_init(&space_info->lock);
4055         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4056         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4057         init_waitqueue_head(&space_info->wait);
4058         INIT_LIST_HEAD(&space_info->ro_bgs);
4059         INIT_LIST_HEAD(&space_info->tickets);
4060         INIT_LIST_HEAD(&space_info->priority_tickets);
4061
4062         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4063                                     info->space_info_kobj, "%s",
4064                                     alloc_name(space_info->flags));
4065         if (ret) {
4066                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4067                 kfree(space_info);
4068                 return ret;
4069         }
4070
4071         *new = space_info;
4072         list_add_rcu(&space_info->list, &info->space_info);
4073         if (flags & BTRFS_BLOCK_GROUP_DATA)
4074                 info->data_sinfo = space_info;
4075
4076         return ret;
4077 }
4078
4079 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4080                              u64 total_bytes, u64 bytes_used,
4081                              u64 bytes_readonly,
4082                              struct btrfs_space_info **space_info)
4083 {
4084         struct btrfs_space_info *found;
4085         int factor;
4086
4087         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4088                      BTRFS_BLOCK_GROUP_RAID10))
4089                 factor = 2;
4090         else
4091                 factor = 1;
4092
4093         found = __find_space_info(info, flags);
4094         ASSERT(found);
4095         spin_lock(&found->lock);
4096         found->total_bytes += total_bytes;
4097         found->disk_total += total_bytes * factor;
4098         found->bytes_used += bytes_used;
4099         found->disk_used += bytes_used * factor;
4100         found->bytes_readonly += bytes_readonly;
4101         if (total_bytes > 0)
4102                 found->full = 0;
4103         space_info_add_new_bytes(info, found, total_bytes -
4104                                  bytes_used - bytes_readonly);
4105         spin_unlock(&found->lock);
4106         *space_info = found;
4107 }
4108
4109 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4110 {
4111         u64 extra_flags = chunk_to_extended(flags) &
4112                                 BTRFS_EXTENDED_PROFILE_MASK;
4113
4114         write_seqlock(&fs_info->profiles_lock);
4115         if (flags & BTRFS_BLOCK_GROUP_DATA)
4116                 fs_info->avail_data_alloc_bits |= extra_flags;
4117         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4118                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4119         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4120                 fs_info->avail_system_alloc_bits |= extra_flags;
4121         write_sequnlock(&fs_info->profiles_lock);
4122 }
4123
4124 /*
4125  * returns target flags in extended format or 0 if restripe for this
4126  * chunk_type is not in progress
4127  *
4128  * should be called with either volume_mutex or balance_lock held
4129  */
4130 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4131 {
4132         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4133         u64 target = 0;
4134
4135         if (!bctl)
4136                 return 0;
4137
4138         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4139             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4141         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4142                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4143                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4144         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4145                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4146                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4147         }
4148
4149         return target;
4150 }
4151
4152 /*
4153  * @flags: available profiles in extended format (see ctree.h)
4154  *
4155  * Returns reduced profile in chunk format.  If profile changing is in
4156  * progress (either running or paused) picks the target profile (if it's
4157  * already available), otherwise falls back to plain reducing.
4158  */
4159 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4160 {
4161         u64 num_devices = fs_info->fs_devices->rw_devices;
4162         u64 target;
4163         u64 raid_type;
4164         u64 allowed = 0;
4165
4166         /*
4167          * see if restripe for this chunk_type is in progress, if so
4168          * try to reduce to the target profile
4169          */
4170         spin_lock(&fs_info->balance_lock);
4171         target = get_restripe_target(fs_info, flags);
4172         if (target) {
4173                 /* pick target profile only if it's already available */
4174                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4175                         spin_unlock(&fs_info->balance_lock);
4176                         return extended_to_chunk(target);
4177                 }
4178         }
4179         spin_unlock(&fs_info->balance_lock);
4180
4181         /* First, mask out the RAID levels which aren't possible */
4182         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4183                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4184                         allowed |= btrfs_raid_group[raid_type];
4185         }
4186         allowed &= flags;
4187
4188         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4189                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4190         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4191                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4192         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4193                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4194         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4195                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4196         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4197                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4198
4199         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4200
4201         return extended_to_chunk(flags | allowed);
4202 }
4203
4204 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4205 {
4206         unsigned seq;
4207         u64 flags;
4208
4209         do {
4210                 flags = orig_flags;
4211                 seq = read_seqbegin(&fs_info->profiles_lock);
4212
4213                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4214                         flags |= fs_info->avail_data_alloc_bits;
4215                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4216                         flags |= fs_info->avail_system_alloc_bits;
4217                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4218                         flags |= fs_info->avail_metadata_alloc_bits;
4219         } while (read_seqretry(&fs_info->profiles_lock, seq));
4220
4221         return btrfs_reduce_alloc_profile(fs_info, flags);
4222 }
4223
4224 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4225 {
4226         struct btrfs_fs_info *fs_info = root->fs_info;
4227         u64 flags;
4228         u64 ret;
4229
4230         if (data)
4231                 flags = BTRFS_BLOCK_GROUP_DATA;
4232         else if (root == fs_info->chunk_root)
4233                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4234         else
4235                 flags = BTRFS_BLOCK_GROUP_METADATA;
4236
4237         ret = get_alloc_profile(fs_info, flags);
4238         return ret;
4239 }
4240
4241 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4242 {
4243         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4244 }
4245
4246 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4247 {
4248         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4249 }
4250
4251 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4252 {
4253         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4254 }
4255
4256 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4257                                  bool may_use_included)
4258 {
4259         ASSERT(s_info);
4260         return s_info->bytes_used + s_info->bytes_reserved +
4261                 s_info->bytes_pinned + s_info->bytes_readonly +
4262                 (may_use_included ? s_info->bytes_may_use : 0);
4263 }
4264
4265 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4266 {
4267         struct btrfs_root *root = inode->root;
4268         struct btrfs_fs_info *fs_info = root->fs_info;
4269         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4270         u64 used;
4271         int ret = 0;
4272         int need_commit = 2;
4273         int have_pinned_space;
4274
4275         /* make sure bytes are sectorsize aligned */
4276         bytes = ALIGN(bytes, fs_info->sectorsize);
4277
4278         if (btrfs_is_free_space_inode(inode)) {
4279                 need_commit = 0;
4280                 ASSERT(current->journal_info);
4281         }
4282
4283 again:
4284         /* make sure we have enough space to handle the data first */
4285         spin_lock(&data_sinfo->lock);
4286         used = btrfs_space_info_used(data_sinfo, true);
4287
4288         if (used + bytes > data_sinfo->total_bytes) {
4289                 struct btrfs_trans_handle *trans;
4290
4291                 /*
4292                  * if we don't have enough free bytes in this space then we need
4293                  * to alloc a new chunk.
4294                  */
4295                 if (!data_sinfo->full) {
4296                         u64 alloc_target;
4297
4298                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4299                         spin_unlock(&data_sinfo->lock);
4300
4301                         alloc_target = btrfs_data_alloc_profile(fs_info);
4302                         /*
4303                          * It is ugly that we don't call nolock join
4304                          * transaction for the free space inode case here.
4305                          * But it is safe because we only do the data space
4306                          * reservation for the free space cache in the
4307                          * transaction context, the common join transaction
4308                          * just increase the counter of the current transaction
4309                          * handler, doesn't try to acquire the trans_lock of
4310                          * the fs.
4311                          */
4312                         trans = btrfs_join_transaction(root);
4313                         if (IS_ERR(trans))
4314                                 return PTR_ERR(trans);
4315
4316                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4317                                              CHUNK_ALLOC_NO_FORCE);
4318                         btrfs_end_transaction(trans);
4319                         if (ret < 0) {
4320                                 if (ret != -ENOSPC)
4321                                         return ret;
4322                                 else {
4323                                         have_pinned_space = 1;
4324                                         goto commit_trans;
4325                                 }
4326                         }
4327
4328                         goto again;
4329                 }
4330
4331                 /*
4332                  * If we don't have enough pinned space to deal with this
4333                  * allocation, and no removed chunk in current transaction,
4334                  * don't bother committing the transaction.
4335                  */
4336                 have_pinned_space = percpu_counter_compare(
4337                         &data_sinfo->total_bytes_pinned,
4338                         used + bytes - data_sinfo->total_bytes);
4339                 spin_unlock(&data_sinfo->lock);
4340
4341                 /* commit the current transaction and try again */
4342 commit_trans:
4343                 if (need_commit) {
4344                         need_commit--;
4345
4346                         if (need_commit > 0) {
4347                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4348                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4349                                                          (u64)-1);
4350                         }
4351
4352                         trans = btrfs_join_transaction(root);
4353                         if (IS_ERR(trans))
4354                                 return PTR_ERR(trans);
4355                         if (have_pinned_space >= 0 ||
4356                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4357                                      &trans->transaction->flags) ||
4358                             need_commit > 0) {
4359                                 ret = btrfs_commit_transaction(trans);
4360                                 if (ret)
4361                                         return ret;
4362                                 /*
4363                                  * The cleaner kthread might still be doing iput
4364                                  * operations. Wait for it to finish so that
4365                                  * more space is released.
4366                                  */
4367                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4368                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4369                                 goto again;
4370                         } else {
4371                                 btrfs_end_transaction(trans);
4372                         }
4373                 }
4374
4375                 trace_btrfs_space_reservation(fs_info,
4376                                               "space_info:enospc",
4377                                               data_sinfo->flags, bytes, 1);
4378                 return -ENOSPC;
4379         }
4380         data_sinfo->bytes_may_use += bytes;
4381         trace_btrfs_space_reservation(fs_info, "space_info",
4382                                       data_sinfo->flags, bytes, 1);
4383         spin_unlock(&data_sinfo->lock);
4384
4385         return ret;
4386 }
4387
4388 int btrfs_check_data_free_space(struct inode *inode,
4389                         struct extent_changeset **reserved, u64 start, u64 len)
4390 {
4391         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4392         int ret;
4393
4394         /* align the range */
4395         len = round_up(start + len, fs_info->sectorsize) -
4396               round_down(start, fs_info->sectorsize);
4397         start = round_down(start, fs_info->sectorsize);
4398
4399         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4400         if (ret < 0)
4401                 return ret;
4402
4403         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4404         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4405         if (ret < 0)
4406                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4407         else
4408                 ret = 0;
4409         return ret;
4410 }
4411
4412 /*
4413  * Called if we need to clear a data reservation for this inode
4414  * Normally in a error case.
4415  *
4416  * This one will *NOT* use accurate qgroup reserved space API, just for case
4417  * which we can't sleep and is sure it won't affect qgroup reserved space.
4418  * Like clear_bit_hook().
4419  */
4420 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4421                                             u64 len)
4422 {
4423         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4424         struct btrfs_space_info *data_sinfo;
4425
4426         /* Make sure the range is aligned to sectorsize */
4427         len = round_up(start + len, fs_info->sectorsize) -
4428               round_down(start, fs_info->sectorsize);
4429         start = round_down(start, fs_info->sectorsize);
4430
4431         data_sinfo = fs_info->data_sinfo;
4432         spin_lock(&data_sinfo->lock);
4433         if (WARN_ON(data_sinfo->bytes_may_use < len))
4434                 data_sinfo->bytes_may_use = 0;
4435         else
4436                 data_sinfo->bytes_may_use -= len;
4437         trace_btrfs_space_reservation(fs_info, "space_info",
4438                                       data_sinfo->flags, len, 0);
4439         spin_unlock(&data_sinfo->lock);
4440 }
4441
4442 /*
4443  * Called if we need to clear a data reservation for this inode
4444  * Normally in a error case.
4445  *
4446  * This one will handle the per-inode data rsv map for accurate reserved
4447  * space framework.
4448  */
4449 void btrfs_free_reserved_data_space(struct inode *inode,
4450                         struct extent_changeset *reserved, u64 start, u64 len)
4451 {
4452         struct btrfs_root *root = BTRFS_I(inode)->root;
4453
4454         /* Make sure the range is aligned to sectorsize */
4455         len = round_up(start + len, root->fs_info->sectorsize) -
4456               round_down(start, root->fs_info->sectorsize);
4457         start = round_down(start, root->fs_info->sectorsize);
4458
4459         btrfs_free_reserved_data_space_noquota(inode, start, len);
4460         btrfs_qgroup_free_data(inode, reserved, start, len);
4461 }
4462
4463 static void force_metadata_allocation(struct btrfs_fs_info *info)
4464 {
4465         struct list_head *head = &info->space_info;
4466         struct btrfs_space_info *found;
4467
4468         rcu_read_lock();
4469         list_for_each_entry_rcu(found, head, list) {
4470                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4471                         found->force_alloc = CHUNK_ALLOC_FORCE;
4472         }
4473         rcu_read_unlock();
4474 }
4475
4476 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4477 {
4478         return (global->size << 1);
4479 }
4480
4481 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4482                               struct btrfs_space_info *sinfo, int force)
4483 {
4484         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4485         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4486         u64 thresh;
4487
4488         if (force == CHUNK_ALLOC_FORCE)
4489                 return 1;
4490
4491         /*
4492          * We need to take into account the global rsv because for all intents
4493          * and purposes it's used space.  Don't worry about locking the
4494          * global_rsv, it doesn't change except when the transaction commits.
4495          */
4496         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4497                 bytes_used += calc_global_rsv_need_space(global_rsv);
4498
4499         /*
4500          * in limited mode, we want to have some free space up to
4501          * about 1% of the FS size.
4502          */
4503         if (force == CHUNK_ALLOC_LIMITED) {
4504                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4505                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4506
4507                 if (sinfo->total_bytes - bytes_used < thresh)
4508                         return 1;
4509         }
4510
4511         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4512                 return 0;
4513         return 1;
4514 }
4515
4516 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4517 {
4518         u64 num_dev;
4519
4520         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4521                     BTRFS_BLOCK_GROUP_RAID0 |
4522                     BTRFS_BLOCK_GROUP_RAID5 |
4523                     BTRFS_BLOCK_GROUP_RAID6))
4524                 num_dev = fs_info->fs_devices->rw_devices;
4525         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4526                 num_dev = 2;
4527         else
4528                 num_dev = 1;    /* DUP or single */
4529
4530         return num_dev;
4531 }
4532
4533 /*
4534  * If @is_allocation is true, reserve space in the system space info necessary
4535  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4536  * removing a chunk.
4537  */
4538 void check_system_chunk(struct btrfs_trans_handle *trans,
4539                         struct btrfs_fs_info *fs_info, u64 type)
4540 {
4541         struct btrfs_space_info *info;
4542         u64 left;
4543         u64 thresh;
4544         int ret = 0;
4545         u64 num_devs;
4546
4547         /*
4548          * Needed because we can end up allocating a system chunk and for an
4549          * atomic and race free space reservation in the chunk block reserve.
4550          */
4551         lockdep_assert_held(&fs_info->chunk_mutex);
4552
4553         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4554         spin_lock(&info->lock);
4555         left = info->total_bytes - btrfs_space_info_used(info, true);
4556         spin_unlock(&info->lock);
4557
4558         num_devs = get_profile_num_devs(fs_info, type);
4559
4560         /* num_devs device items to update and 1 chunk item to add or remove */
4561         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4562                 btrfs_calc_trans_metadata_size(fs_info, 1);
4563
4564         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4565                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4566                            left, thresh, type);
4567                 dump_space_info(fs_info, info, 0, 0);
4568         }
4569
4570         if (left < thresh) {
4571                 u64 flags = btrfs_system_alloc_profile(fs_info);
4572
4573                 /*
4574                  * Ignore failure to create system chunk. We might end up not
4575                  * needing it, as we might not need to COW all nodes/leafs from
4576                  * the paths we visit in the chunk tree (they were already COWed
4577                  * or created in the current transaction for example).
4578                  */
4579                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4580         }
4581
4582         if (!ret) {
4583                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4584                                           &fs_info->chunk_block_rsv,
4585                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4586                 if (!ret)
4587                         trans->chunk_bytes_reserved += thresh;
4588         }
4589 }
4590
4591 /*
4592  * If force is CHUNK_ALLOC_FORCE:
4593  *    - return 1 if it successfully allocates a chunk,
4594  *    - return errors including -ENOSPC otherwise.
4595  * If force is NOT CHUNK_ALLOC_FORCE:
4596  *    - return 0 if it doesn't need to allocate a new chunk,
4597  *    - return 1 if it successfully allocates a chunk,
4598  *    - return errors including -ENOSPC otherwise.
4599  */
4600 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4601                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4602 {
4603         struct btrfs_space_info *space_info;
4604         int wait_for_alloc = 0;
4605         int ret = 0;
4606
4607         /* Don't re-enter if we're already allocating a chunk */
4608         if (trans->allocating_chunk)
4609                 return -ENOSPC;
4610
4611         space_info = __find_space_info(fs_info, flags);
4612         ASSERT(space_info);
4613
4614 again:
4615         spin_lock(&space_info->lock);
4616         if (force < space_info->force_alloc)
4617                 force = space_info->force_alloc;
4618         if (space_info->full) {
4619                 if (should_alloc_chunk(fs_info, space_info, force))
4620                         ret = -ENOSPC;
4621                 else
4622                         ret = 0;
4623                 spin_unlock(&space_info->lock);
4624                 return ret;
4625         }
4626
4627         if (!should_alloc_chunk(fs_info, space_info, force)) {
4628                 spin_unlock(&space_info->lock);
4629                 return 0;
4630         } else if (space_info->chunk_alloc) {
4631                 wait_for_alloc = 1;
4632         } else {
4633                 space_info->chunk_alloc = 1;
4634         }
4635
4636         spin_unlock(&space_info->lock);
4637
4638         mutex_lock(&fs_info->chunk_mutex);
4639
4640         /*
4641          * The chunk_mutex is held throughout the entirety of a chunk
4642          * allocation, so once we've acquired the chunk_mutex we know that the
4643          * other guy is done and we need to recheck and see if we should
4644          * allocate.
4645          */
4646         if (wait_for_alloc) {
4647                 mutex_unlock(&fs_info->chunk_mutex);
4648                 wait_for_alloc = 0;
4649                 cond_resched();
4650                 goto again;
4651         }
4652
4653         trans->allocating_chunk = true;
4654
4655         /*
4656          * If we have mixed data/metadata chunks we want to make sure we keep
4657          * allocating mixed chunks instead of individual chunks.
4658          */
4659         if (btrfs_mixed_space_info(space_info))
4660                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4661
4662         /*
4663          * if we're doing a data chunk, go ahead and make sure that
4664          * we keep a reasonable number of metadata chunks allocated in the
4665          * FS as well.
4666          */
4667         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4668                 fs_info->data_chunk_allocations++;
4669                 if (!(fs_info->data_chunk_allocations %
4670                       fs_info->metadata_ratio))
4671                         force_metadata_allocation(fs_info);
4672         }
4673
4674         /*
4675          * Check if we have enough space in SYSTEM chunk because we may need
4676          * to update devices.
4677          */
4678         check_system_chunk(trans, fs_info, flags);
4679
4680         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4681         trans->allocating_chunk = false;
4682
4683         spin_lock(&space_info->lock);
4684         if (ret < 0 && ret != -ENOSPC)
4685                 goto out;
4686         if (ret)
4687                 space_info->full = 1;
4688         else
4689                 ret = 1;
4690
4691         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4692 out:
4693         space_info->chunk_alloc = 0;
4694         spin_unlock(&space_info->lock);
4695         mutex_unlock(&fs_info->chunk_mutex);
4696         /*
4697          * When we allocate a new chunk we reserve space in the chunk block
4698          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4699          * add new nodes/leafs to it if we end up needing to do it when
4700          * inserting the chunk item and updating device items as part of the
4701          * second phase of chunk allocation, performed by
4702          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4703          * large number of new block groups to create in our transaction
4704          * handle's new_bgs list to avoid exhausting the chunk block reserve
4705          * in extreme cases - like having a single transaction create many new
4706          * block groups when starting to write out the free space caches of all
4707          * the block groups that were made dirty during the lifetime of the
4708          * transaction.
4709          */
4710         if (trans->can_flush_pending_bgs &&
4711             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4712                 btrfs_create_pending_block_groups(trans);
4713                 btrfs_trans_release_chunk_metadata(trans);
4714         }
4715         return ret;
4716 }
4717
4718 static int can_overcommit(struct btrfs_fs_info *fs_info,
4719                           struct btrfs_space_info *space_info, u64 bytes,
4720                           enum btrfs_reserve_flush_enum flush,
4721                           bool system_chunk)
4722 {
4723         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4724         u64 profile;
4725         u64 space_size;
4726         u64 avail;
4727         u64 used;
4728
4729         /* Don't overcommit when in mixed mode. */
4730         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4731                 return 0;
4732
4733         if (system_chunk)
4734                 profile = btrfs_system_alloc_profile(fs_info);
4735         else
4736                 profile = btrfs_metadata_alloc_profile(fs_info);
4737
4738         used = btrfs_space_info_used(space_info, false);
4739
4740         /*
4741          * We only want to allow over committing if we have lots of actual space
4742          * free, but if we don't have enough space to handle the global reserve
4743          * space then we could end up having a real enospc problem when trying
4744          * to allocate a chunk or some other such important allocation.
4745          */
4746         spin_lock(&global_rsv->lock);
4747         space_size = calc_global_rsv_need_space(global_rsv);
4748         spin_unlock(&global_rsv->lock);
4749         if (used + space_size >= space_info->total_bytes)
4750                 return 0;
4751
4752         used += space_info->bytes_may_use;
4753
4754         avail = atomic64_read(&fs_info->free_chunk_space);
4755
4756         /*
4757          * If we have dup, raid1 or raid10 then only half of the free
4758          * space is actually useable.  For raid56, the space info used
4759          * doesn't include the parity drive, so we don't have to
4760          * change the math
4761          */
4762         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4763                        BTRFS_BLOCK_GROUP_RAID1 |
4764                        BTRFS_BLOCK_GROUP_RAID10))
4765                 avail >>= 1;
4766
4767         /*
4768          * If we aren't flushing all things, let us overcommit up to
4769          * 1/2th of the space. If we can flush, don't let us overcommit
4770          * too much, let it overcommit up to 1/8 of the space.
4771          */
4772         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4773                 avail >>= 3;
4774         else
4775                 avail >>= 1;
4776
4777         if (used + bytes < space_info->total_bytes + avail)
4778                 return 1;
4779         return 0;
4780 }
4781
4782 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4783                                          unsigned long nr_pages, int nr_items)
4784 {
4785         struct super_block *sb = fs_info->sb;
4786
4787         if (down_read_trylock(&sb->s_umount)) {
4788                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4789                 up_read(&sb->s_umount);
4790         } else {
4791                 /*
4792                  * We needn't worry the filesystem going from r/w to r/o though
4793                  * we don't acquire ->s_umount mutex, because the filesystem
4794                  * should guarantee the delalloc inodes list be empty after
4795                  * the filesystem is readonly(all dirty pages are written to
4796                  * the disk).
4797                  */
4798                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4799                 if (!current->journal_info)
4800                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4801         }
4802 }
4803
4804 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4805                                         u64 to_reclaim)
4806 {
4807         u64 bytes;
4808         u64 nr;
4809
4810         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4811         nr = div64_u64(to_reclaim, bytes);
4812         if (!nr)
4813                 nr = 1;
4814         return nr;
4815 }
4816
4817 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4818
4819 /*
4820  * shrink metadata reservation for delalloc
4821  */
4822 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4823                             u64 orig, bool wait_ordered)
4824 {
4825         struct btrfs_space_info *space_info;
4826         struct btrfs_trans_handle *trans;
4827         u64 delalloc_bytes;
4828         u64 max_reclaim;
4829         u64 items;
4830         long time_left;
4831         unsigned long nr_pages;
4832         int loops;
4833
4834         /* Calc the number of the pages we need flush for space reservation */
4835         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4836         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4837
4838         trans = (struct btrfs_trans_handle *)current->journal_info;
4839         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4840
4841         delalloc_bytes = percpu_counter_sum_positive(
4842                                                 &fs_info->delalloc_bytes);
4843         if (delalloc_bytes == 0) {
4844                 if (trans)
4845                         return;
4846                 if (wait_ordered)
4847                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4848                 return;
4849         }
4850
4851         loops = 0;
4852         while (delalloc_bytes && loops < 3) {
4853                 max_reclaim = min(delalloc_bytes, to_reclaim);
4854                 nr_pages = max_reclaim >> PAGE_SHIFT;
4855                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4856                 /*
4857                  * We need to wait for the async pages to actually start before
4858                  * we do anything.
4859                  */
4860                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4861                 if (!max_reclaim)
4862                         goto skip_async;
4863
4864                 if (max_reclaim <= nr_pages)
4865                         max_reclaim = 0;
4866                 else
4867                         max_reclaim -= nr_pages;
4868
4869                 wait_event(fs_info->async_submit_wait,
4870                            atomic_read(&fs_info->async_delalloc_pages) <=
4871                            (int)max_reclaim);
4872 skip_async:
4873                 spin_lock(&space_info->lock);
4874                 if (list_empty(&space_info->tickets) &&
4875                     list_empty(&space_info->priority_tickets)) {
4876                         spin_unlock(&space_info->lock);
4877                         break;
4878                 }
4879                 spin_unlock(&space_info->lock);
4880
4881                 loops++;
4882                 if (wait_ordered && !trans) {
4883                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4884                 } else {
4885                         time_left = schedule_timeout_killable(1);
4886                         if (time_left)
4887                                 break;
4888                 }
4889                 delalloc_bytes = percpu_counter_sum_positive(
4890                                                 &fs_info->delalloc_bytes);
4891         }
4892 }
4893
4894 struct reserve_ticket {
4895         u64 bytes;
4896         int error;
4897         struct list_head list;
4898         wait_queue_head_t wait;
4899 };
4900
4901 /**
4902  * maybe_commit_transaction - possibly commit the transaction if its ok to
4903  * @root - the root we're allocating for
4904  * @bytes - the number of bytes we want to reserve
4905  * @force - force the commit
4906  *
4907  * This will check to make sure that committing the transaction will actually
4908  * get us somewhere and then commit the transaction if it does.  Otherwise it
4909  * will return -ENOSPC.
4910  */
4911 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4912                                   struct btrfs_space_info *space_info)
4913 {
4914         struct reserve_ticket *ticket = NULL;
4915         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4916         struct btrfs_trans_handle *trans;
4917         u64 bytes;
4918
4919         trans = (struct btrfs_trans_handle *)current->journal_info;
4920         if (trans)
4921                 return -EAGAIN;
4922
4923         spin_lock(&space_info->lock);
4924         if (!list_empty(&space_info->priority_tickets))
4925                 ticket = list_first_entry(&space_info->priority_tickets,
4926                                           struct reserve_ticket, list);
4927         else if (!list_empty(&space_info->tickets))
4928                 ticket = list_first_entry(&space_info->tickets,
4929                                           struct reserve_ticket, list);
4930         bytes = (ticket) ? ticket->bytes : 0;
4931         spin_unlock(&space_info->lock);
4932
4933         if (!bytes)
4934                 return 0;
4935
4936         /* See if there is enough pinned space to make this reservation */
4937         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4938                                    bytes) >= 0)
4939                 goto commit;
4940
4941         /*
4942          * See if there is some space in the delayed insertion reservation for
4943          * this reservation.
4944          */
4945         if (space_info != delayed_rsv->space_info)
4946                 return -ENOSPC;
4947
4948         spin_lock(&delayed_rsv->lock);
4949         if (delayed_rsv->size > bytes)
4950                 bytes = 0;
4951         else
4952                 bytes -= delayed_rsv->size;
4953         spin_unlock(&delayed_rsv->lock);
4954
4955         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4956                                    bytes) < 0) {
4957                 return -ENOSPC;
4958         }
4959
4960 commit:
4961         trans = btrfs_join_transaction(fs_info->extent_root);
4962         if (IS_ERR(trans))
4963                 return -ENOSPC;
4964
4965         return btrfs_commit_transaction(trans);
4966 }
4967
4968 /*
4969  * Try to flush some data based on policy set by @state. This is only advisory
4970  * and may fail for various reasons. The caller is supposed to examine the
4971  * state of @space_info to detect the outcome.
4972  */
4973 static void flush_space(struct btrfs_fs_info *fs_info,
4974                        struct btrfs_space_info *space_info, u64 num_bytes,
4975                        int state)
4976 {
4977         struct btrfs_root *root = fs_info->extent_root;
4978         struct btrfs_trans_handle *trans;
4979         int nr;
4980         int ret = 0;
4981
4982         switch (state) {
4983         case FLUSH_DELAYED_ITEMS_NR:
4984         case FLUSH_DELAYED_ITEMS:
4985                 if (state == FLUSH_DELAYED_ITEMS_NR)
4986                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4987                 else
4988                         nr = -1;
4989
4990                 trans = btrfs_join_transaction(root);
4991                 if (IS_ERR(trans)) {
4992                         ret = PTR_ERR(trans);
4993                         break;
4994                 }
4995                 ret = btrfs_run_delayed_items_nr(trans, nr);
4996                 btrfs_end_transaction(trans);
4997                 break;
4998         case FLUSH_DELALLOC:
4999         case FLUSH_DELALLOC_WAIT:
5000                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5001                                 state == FLUSH_DELALLOC_WAIT);
5002                 break;
5003         case ALLOC_CHUNK:
5004                 trans = btrfs_join_transaction(root);
5005                 if (IS_ERR(trans)) {
5006                         ret = PTR_ERR(trans);
5007                         break;
5008                 }
5009                 ret = do_chunk_alloc(trans, fs_info,
5010                                      btrfs_metadata_alloc_profile(fs_info),
5011                                      CHUNK_ALLOC_NO_FORCE);
5012                 btrfs_end_transaction(trans);
5013                 if (ret > 0 || ret == -ENOSPC)
5014                         ret = 0;
5015                 break;
5016         case COMMIT_TRANS:
5017                 ret = may_commit_transaction(fs_info, space_info);
5018                 break;
5019         default:
5020                 ret = -ENOSPC;
5021                 break;
5022         }
5023
5024         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5025                                 ret);
5026         return;
5027 }
5028
5029 static inline u64
5030 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5031                                  struct btrfs_space_info *space_info,
5032                                  bool system_chunk)
5033 {
5034         struct reserve_ticket *ticket;
5035         u64 used;
5036         u64 expected;
5037         u64 to_reclaim = 0;
5038
5039         list_for_each_entry(ticket, &space_info->tickets, list)
5040                 to_reclaim += ticket->bytes;
5041         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5042                 to_reclaim += ticket->bytes;
5043         if (to_reclaim)
5044                 return to_reclaim;
5045
5046         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5047         if (can_overcommit(fs_info, space_info, to_reclaim,
5048                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5049                 return 0;
5050
5051         used = btrfs_space_info_used(space_info, true);
5052
5053         if (can_overcommit(fs_info, space_info, SZ_1M,
5054                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5055                 expected = div_factor_fine(space_info->total_bytes, 95);
5056         else
5057                 expected = div_factor_fine(space_info->total_bytes, 90);
5058
5059         if (used > expected)
5060                 to_reclaim = used - expected;
5061         else
5062                 to_reclaim = 0;
5063         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5064                                      space_info->bytes_reserved);
5065         return to_reclaim;
5066 }
5067
5068 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5069                                         struct btrfs_space_info *space_info,
5070                                         u64 used, bool system_chunk)
5071 {
5072         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5073
5074         /* If we're just plain full then async reclaim just slows us down. */
5075         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5076                 return 0;
5077
5078         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5079                                               system_chunk))
5080                 return 0;
5081
5082         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5083                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5084 }
5085
5086 static void wake_all_tickets(struct list_head *head)
5087 {
5088         struct reserve_ticket *ticket;
5089
5090         while (!list_empty(head)) {
5091                 ticket = list_first_entry(head, struct reserve_ticket, list);
5092                 list_del_init(&ticket->list);
5093                 ticket->error = -ENOSPC;
5094                 wake_up(&ticket->wait);
5095         }
5096 }
5097
5098 /*
5099  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5100  * will loop and continuously try to flush as long as we are making progress.
5101  * We count progress as clearing off tickets each time we have to loop.
5102  */
5103 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5104 {
5105         struct btrfs_fs_info *fs_info;
5106         struct btrfs_space_info *space_info;
5107         u64 to_reclaim;
5108         int flush_state;
5109         int commit_cycles = 0;
5110         u64 last_tickets_id;
5111
5112         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5113         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5114
5115         spin_lock(&space_info->lock);
5116         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5117                                                       false);
5118         if (!to_reclaim) {
5119                 space_info->flush = 0;
5120                 spin_unlock(&space_info->lock);
5121                 return;
5122         }
5123         last_tickets_id = space_info->tickets_id;
5124         spin_unlock(&space_info->lock);
5125
5126         flush_state = FLUSH_DELAYED_ITEMS_NR;
5127         do {
5128                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5129                 spin_lock(&space_info->lock);
5130                 if (list_empty(&space_info->tickets)) {
5131                         space_info->flush = 0;
5132                         spin_unlock(&space_info->lock);
5133                         return;
5134                 }
5135                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5136                                                               space_info,
5137                                                               false);
5138                 if (last_tickets_id == space_info->tickets_id) {
5139                         flush_state++;
5140                 } else {
5141                         last_tickets_id = space_info->tickets_id;
5142                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5143                         if (commit_cycles)
5144                                 commit_cycles--;
5145                 }
5146
5147                 if (flush_state > COMMIT_TRANS) {
5148                         commit_cycles++;
5149                         if (commit_cycles > 2) {
5150                                 wake_all_tickets(&space_info->tickets);
5151                                 space_info->flush = 0;
5152                         } else {
5153                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5154                         }
5155                 }
5156                 spin_unlock(&space_info->lock);
5157         } while (flush_state <= COMMIT_TRANS);
5158 }
5159
5160 void btrfs_init_async_reclaim_work(struct work_struct *work)
5161 {
5162         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5163 }
5164
5165 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5166                                             struct btrfs_space_info *space_info,
5167                                             struct reserve_ticket *ticket)
5168 {
5169         u64 to_reclaim;
5170         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5171
5172         spin_lock(&space_info->lock);
5173         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5174                                                       false);
5175         if (!to_reclaim) {
5176                 spin_unlock(&space_info->lock);
5177                 return;
5178         }
5179         spin_unlock(&space_info->lock);
5180
5181         do {
5182                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5183                 flush_state++;
5184                 spin_lock(&space_info->lock);
5185                 if (ticket->bytes == 0) {
5186                         spin_unlock(&space_info->lock);
5187                         return;
5188                 }
5189                 spin_unlock(&space_info->lock);
5190
5191                 /*
5192                  * Priority flushers can't wait on delalloc without
5193                  * deadlocking.
5194                  */
5195                 if (flush_state == FLUSH_DELALLOC ||
5196                     flush_state == FLUSH_DELALLOC_WAIT)
5197                         flush_state = ALLOC_CHUNK;
5198         } while (flush_state < COMMIT_TRANS);
5199 }
5200
5201 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5202                                struct btrfs_space_info *space_info,
5203                                struct reserve_ticket *ticket, u64 orig_bytes)
5204
5205 {
5206         DEFINE_WAIT(wait);
5207         int ret = 0;
5208
5209         spin_lock(&space_info->lock);
5210         while (ticket->bytes > 0 && ticket->error == 0) {
5211                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5212                 if (ret) {
5213                         ret = -EINTR;
5214                         break;
5215                 }
5216                 spin_unlock(&space_info->lock);
5217
5218                 schedule();
5219
5220                 finish_wait(&ticket->wait, &wait);
5221                 spin_lock(&space_info->lock);
5222         }
5223         if (!ret)
5224                 ret = ticket->error;
5225         if (!list_empty(&ticket->list))
5226                 list_del_init(&ticket->list);
5227         if (ticket->bytes && ticket->bytes < orig_bytes) {
5228                 u64 num_bytes = orig_bytes - ticket->bytes;
5229                 space_info->bytes_may_use -= num_bytes;
5230                 trace_btrfs_space_reservation(fs_info, "space_info",
5231                                               space_info->flags, num_bytes, 0);
5232         }
5233         spin_unlock(&space_info->lock);
5234
5235         return ret;
5236 }
5237
5238 /**
5239  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5240  * @root - the root we're allocating for
5241  * @space_info - the space info we want to allocate from
5242  * @orig_bytes - the number of bytes we want
5243  * @flush - whether or not we can flush to make our reservation
5244  *
5245  * This will reserve orig_bytes number of bytes from the space info associated
5246  * with the block_rsv.  If there is not enough space it will make an attempt to
5247  * flush out space to make room.  It will do this by flushing delalloc if
5248  * possible or committing the transaction.  If flush is 0 then no attempts to
5249  * regain reservations will be made and this will fail if there is not enough
5250  * space already.
5251  */
5252 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5253                                     struct btrfs_space_info *space_info,
5254                                     u64 orig_bytes,
5255                                     enum btrfs_reserve_flush_enum flush,
5256                                     bool system_chunk)
5257 {
5258         struct reserve_ticket ticket;
5259         u64 used;
5260         int ret = 0;
5261
5262         ASSERT(orig_bytes);
5263         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5264
5265         spin_lock(&space_info->lock);
5266         ret = -ENOSPC;
5267         used = btrfs_space_info_used(space_info, true);
5268
5269         /*
5270          * If we have enough space then hooray, make our reservation and carry
5271          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5272          * If not things get more complicated.
5273          */
5274         if (used + orig_bytes <= space_info->total_bytes) {
5275                 space_info->bytes_may_use += orig_bytes;
5276                 trace_btrfs_space_reservation(fs_info, "space_info",
5277                                               space_info->flags, orig_bytes, 1);
5278                 ret = 0;
5279         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5280                                   system_chunk)) {
5281                 space_info->bytes_may_use += orig_bytes;
5282                 trace_btrfs_space_reservation(fs_info, "space_info",
5283                                               space_info->flags, orig_bytes, 1);
5284                 ret = 0;
5285         }
5286
5287         /*
5288          * If we couldn't make a reservation then setup our reservation ticket
5289          * and kick the async worker if it's not already running.
5290          *
5291          * If we are a priority flusher then we just need to add our ticket to
5292          * the list and we will do our own flushing further down.
5293          */
5294         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5295                 ticket.bytes = orig_bytes;
5296                 ticket.error = 0;
5297                 init_waitqueue_head(&ticket.wait);
5298                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5299                         list_add_tail(&ticket.list, &space_info->tickets);
5300                         if (!space_info->flush) {
5301                                 space_info->flush = 1;
5302                                 trace_btrfs_trigger_flush(fs_info,
5303                                                           space_info->flags,
5304                                                           orig_bytes, flush,
5305                                                           "enospc");
5306                                 queue_work(system_unbound_wq,
5307                                            &fs_info->async_reclaim_work);
5308                         }
5309                 } else {
5310                         list_add_tail(&ticket.list,
5311                                       &space_info->priority_tickets);
5312                 }
5313         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5314                 used += orig_bytes;
5315                 /*
5316                  * We will do the space reservation dance during log replay,
5317                  * which means we won't have fs_info->fs_root set, so don't do
5318                  * the async reclaim as we will panic.
5319                  */
5320                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5321                     need_do_async_reclaim(fs_info, space_info,
5322                                           used, system_chunk) &&
5323                     !work_busy(&fs_info->async_reclaim_work)) {
5324                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5325                                                   orig_bytes, flush, "preempt");
5326                         queue_work(system_unbound_wq,
5327                                    &fs_info->async_reclaim_work);
5328                 }
5329         }
5330         spin_unlock(&space_info->lock);
5331         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5332                 return ret;
5333
5334         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5335                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5336                                            orig_bytes);
5337
5338         ret = 0;
5339         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5340         spin_lock(&space_info->lock);
5341         if (ticket.bytes) {
5342                 if (ticket.bytes < orig_bytes) {
5343                         u64 num_bytes = orig_bytes - ticket.bytes;
5344                         space_info->bytes_may_use -= num_bytes;
5345                         trace_btrfs_space_reservation(fs_info, "space_info",
5346                                                       space_info->flags,
5347                                                       num_bytes, 0);
5348
5349                 }
5350                 list_del_init(&ticket.list);
5351                 ret = -ENOSPC;
5352         }
5353         spin_unlock(&space_info->lock);
5354         ASSERT(list_empty(&ticket.list));
5355         return ret;
5356 }
5357
5358 /**
5359  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5360  * @root - the root we're allocating for
5361  * @block_rsv - the block_rsv we're allocating for
5362  * @orig_bytes - the number of bytes we want
5363  * @flush - whether or not we can flush to make our reservation
5364  *
5365  * This will reserve orgi_bytes number of bytes from the space info associated
5366  * with the block_rsv.  If there is not enough space it will make an attempt to
5367  * flush out space to make room.  It will do this by flushing delalloc if
5368  * possible or committing the transaction.  If flush is 0 then no attempts to
5369  * regain reservations will be made and this will fail if there is not enough
5370  * space already.
5371  */
5372 static int reserve_metadata_bytes(struct btrfs_root *root,
5373                                   struct btrfs_block_rsv *block_rsv,
5374                                   u64 orig_bytes,
5375                                   enum btrfs_reserve_flush_enum flush)
5376 {
5377         struct btrfs_fs_info *fs_info = root->fs_info;
5378         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5379         int ret;
5380         bool system_chunk = (root == fs_info->chunk_root);
5381
5382         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5383                                        orig_bytes, flush, system_chunk);
5384         if (ret == -ENOSPC &&
5385             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5386                 if (block_rsv != global_rsv &&
5387                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5388                         ret = 0;
5389         }
5390         if (ret == -ENOSPC) {
5391                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5392                                               block_rsv->space_info->flags,
5393                                               orig_bytes, 1);
5394
5395                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5396                         dump_space_info(fs_info, block_rsv->space_info,
5397                                         orig_bytes, 0);
5398         }
5399         return ret;
5400 }
5401
5402 static struct btrfs_block_rsv *get_block_rsv(
5403                                         const struct btrfs_trans_handle *trans,
5404                                         const struct btrfs_root *root)
5405 {
5406         struct btrfs_fs_info *fs_info = root->fs_info;
5407         struct btrfs_block_rsv *block_rsv = NULL;
5408
5409         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5410             (root == fs_info->csum_root && trans->adding_csums) ||
5411             (root == fs_info->uuid_root))
5412                 block_rsv = trans->block_rsv;
5413
5414         if (!block_rsv)
5415                 block_rsv = root->block_rsv;
5416
5417         if (!block_rsv)
5418                 block_rsv = &fs_info->empty_block_rsv;
5419
5420         return block_rsv;
5421 }
5422
5423 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5424                                u64 num_bytes)
5425 {
5426         int ret = -ENOSPC;
5427         spin_lock(&block_rsv->lock);
5428         if (block_rsv->reserved >= num_bytes) {
5429                 block_rsv->reserved -= num_bytes;
5430                 if (block_rsv->reserved < block_rsv->size)
5431                         block_rsv->full = 0;
5432                 ret = 0;
5433         }
5434         spin_unlock(&block_rsv->lock);
5435         return ret;
5436 }
5437
5438 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5439                                 u64 num_bytes, int update_size)
5440 {
5441         spin_lock(&block_rsv->lock);
5442         block_rsv->reserved += num_bytes;
5443         if (update_size)
5444                 block_rsv->size += num_bytes;
5445         else if (block_rsv->reserved >= block_rsv->size)
5446                 block_rsv->full = 1;
5447         spin_unlock(&block_rsv->lock);
5448 }
5449
5450 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5451                              struct btrfs_block_rsv *dest, u64 num_bytes,
5452                              int min_factor)
5453 {
5454         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5455         u64 min_bytes;
5456
5457         if (global_rsv->space_info != dest->space_info)
5458                 return -ENOSPC;
5459
5460         spin_lock(&global_rsv->lock);
5461         min_bytes = div_factor(global_rsv->size, min_factor);
5462         if (global_rsv->reserved < min_bytes + num_bytes) {
5463                 spin_unlock(&global_rsv->lock);
5464                 return -ENOSPC;
5465         }
5466         global_rsv->reserved -= num_bytes;
5467         if (global_rsv->reserved < global_rsv->size)
5468                 global_rsv->full = 0;
5469         spin_unlock(&global_rsv->lock);
5470
5471         block_rsv_add_bytes(dest, num_bytes, 1);
5472         return 0;
5473 }
5474
5475 /*
5476  * This is for space we already have accounted in space_info->bytes_may_use, so
5477  * basically when we're returning space from block_rsv's.
5478  */
5479 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5480                                      struct btrfs_space_info *space_info,
5481                                      u64 num_bytes)
5482 {
5483         struct reserve_ticket *ticket;
5484         struct list_head *head;
5485         u64 used;
5486         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5487         bool check_overcommit = false;
5488
5489         spin_lock(&space_info->lock);
5490         head = &space_info->priority_tickets;
5491
5492         /*
5493          * If we are over our limit then we need to check and see if we can
5494          * overcommit, and if we can't then we just need to free up our space
5495          * and not satisfy any requests.
5496          */
5497         used = btrfs_space_info_used(space_info, true);
5498         if (used - num_bytes >= space_info->total_bytes)
5499                 check_overcommit = true;
5500 again:
5501         while (!list_empty(head) && num_bytes) {
5502                 ticket = list_first_entry(head, struct reserve_ticket,
5503                                           list);
5504                 /*
5505                  * We use 0 bytes because this space is already reserved, so
5506                  * adding the ticket space would be a double count.
5507                  */
5508                 if (check_overcommit &&
5509                     !can_overcommit(fs_info, space_info, 0, flush, false))
5510                         break;
5511                 if (num_bytes >= ticket->bytes) {
5512                         list_del_init(&ticket->list);
5513                         num_bytes -= ticket->bytes;
5514                         ticket->bytes = 0;
5515                         space_info->tickets_id++;
5516                         wake_up(&ticket->wait);
5517                 } else {
5518                         ticket->bytes -= num_bytes;
5519                         num_bytes = 0;
5520                 }
5521         }
5522
5523         if (num_bytes && head == &space_info->priority_tickets) {
5524                 head = &space_info->tickets;
5525                 flush = BTRFS_RESERVE_FLUSH_ALL;
5526                 goto again;
5527         }
5528         space_info->bytes_may_use -= num_bytes;
5529         trace_btrfs_space_reservation(fs_info, "space_info",
5530                                       space_info->flags, num_bytes, 0);
5531         spin_unlock(&space_info->lock);
5532 }
5533
5534 /*
5535  * This is for newly allocated space that isn't accounted in
5536  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5537  * we use this helper.
5538  */
5539 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5540                                      struct btrfs_space_info *space_info,
5541                                      u64 num_bytes)
5542 {
5543         struct reserve_ticket *ticket;
5544         struct list_head *head = &space_info->priority_tickets;
5545
5546 again:
5547         while (!list_empty(head) && num_bytes) {
5548                 ticket = list_first_entry(head, struct reserve_ticket,
5549                                           list);
5550                 if (num_bytes >= ticket->bytes) {
5551                         trace_btrfs_space_reservation(fs_info, "space_info",
5552                                                       space_info->flags,
5553                                                       ticket->bytes, 1);
5554                         list_del_init(&ticket->list);
5555                         num_bytes -= ticket->bytes;
5556                         space_info->bytes_may_use += ticket->bytes;
5557                         ticket->bytes = 0;
5558                         space_info->tickets_id++;
5559                         wake_up(&ticket->wait);
5560                 } else {
5561                         trace_btrfs_space_reservation(fs_info, "space_info",
5562                                                       space_info->flags,
5563                                                       num_bytes, 1);
5564                         space_info->bytes_may_use += num_bytes;
5565                         ticket->bytes -= num_bytes;
5566                         num_bytes = 0;
5567                 }
5568         }
5569
5570         if (num_bytes && head == &space_info->priority_tickets) {
5571                 head = &space_info->tickets;
5572                 goto again;
5573         }
5574 }
5575
5576 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5577                                     struct btrfs_block_rsv *block_rsv,
5578                                     struct btrfs_block_rsv *dest, u64 num_bytes,
5579                                     u64 *qgroup_to_release_ret)
5580 {
5581         struct btrfs_space_info *space_info = block_rsv->space_info;
5582         u64 qgroup_to_release = 0;
5583         u64 ret;
5584
5585         spin_lock(&block_rsv->lock);
5586         if (num_bytes == (u64)-1) {
5587                 num_bytes = block_rsv->size;
5588                 qgroup_to_release = block_rsv->qgroup_rsv_size;
5589         }
5590         block_rsv->size -= num_bytes;
5591         if (block_rsv->reserved >= block_rsv->size) {
5592                 num_bytes = block_rsv->reserved - block_rsv->size;
5593                 block_rsv->reserved = block_rsv->size;
5594                 block_rsv->full = 1;
5595         } else {
5596                 num_bytes = 0;
5597         }
5598         if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5599                 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5600                                     block_rsv->qgroup_rsv_size;
5601                 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5602         } else {
5603                 qgroup_to_release = 0;
5604         }
5605         spin_unlock(&block_rsv->lock);
5606
5607         ret = num_bytes;
5608         if (num_bytes > 0) {
5609                 if (dest) {
5610                         spin_lock(&dest->lock);
5611                         if (!dest->full) {
5612                                 u64 bytes_to_add;
5613
5614                                 bytes_to_add = dest->size - dest->reserved;
5615                                 bytes_to_add = min(num_bytes, bytes_to_add);
5616                                 dest->reserved += bytes_to_add;
5617                                 if (dest->reserved >= dest->size)
5618                                         dest->full = 1;
5619                                 num_bytes -= bytes_to_add;
5620                         }
5621                         spin_unlock(&dest->lock);
5622                 }
5623                 if (num_bytes)
5624                         space_info_add_old_bytes(fs_info, space_info,
5625                                                  num_bytes);
5626         }
5627         if (qgroup_to_release_ret)
5628                 *qgroup_to_release_ret = qgroup_to_release;
5629         return ret;
5630 }
5631
5632 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5633                             struct btrfs_block_rsv *dst, u64 num_bytes,
5634                             int update_size)
5635 {
5636         int ret;
5637
5638         ret = block_rsv_use_bytes(src, num_bytes);
5639         if (ret)
5640                 return ret;
5641
5642         block_rsv_add_bytes(dst, num_bytes, update_size);
5643         return 0;
5644 }
5645
5646 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5647 {
5648         memset(rsv, 0, sizeof(*rsv));
5649         spin_lock_init(&rsv->lock);
5650         rsv->type = type;
5651 }
5652
5653 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5654                                    struct btrfs_block_rsv *rsv,
5655                                    unsigned short type)
5656 {
5657         btrfs_init_block_rsv(rsv, type);
5658         rsv->space_info = __find_space_info(fs_info,
5659                                             BTRFS_BLOCK_GROUP_METADATA);
5660 }
5661
5662 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5663                                               unsigned short type)
5664 {
5665         struct btrfs_block_rsv *block_rsv;
5666
5667         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5668         if (!block_rsv)
5669                 return NULL;
5670
5671         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5672         return block_rsv;
5673 }
5674
5675 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5676                           struct btrfs_block_rsv *rsv)
5677 {
5678         if (!rsv)
5679                 return;
5680         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5681         kfree(rsv);
5682 }
5683
5684 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5685 {
5686         kfree(rsv);
5687 }
5688
5689 int btrfs_block_rsv_add(struct btrfs_root *root,
5690                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5691                         enum btrfs_reserve_flush_enum flush)
5692 {
5693         int ret;
5694
5695         if (num_bytes == 0)
5696                 return 0;
5697
5698         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5699         if (!ret) {
5700                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5701                 return 0;
5702         }
5703
5704         return ret;
5705 }
5706
5707 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5708 {
5709         u64 num_bytes = 0;
5710         int ret = -ENOSPC;
5711
5712         if (!block_rsv)
5713                 return 0;
5714
5715         spin_lock(&block_rsv->lock);
5716         num_bytes = div_factor(block_rsv->size, min_factor);
5717         if (block_rsv->reserved >= num_bytes)
5718                 ret = 0;
5719         spin_unlock(&block_rsv->lock);
5720
5721         return ret;
5722 }
5723
5724 int btrfs_block_rsv_refill(struct btrfs_root *root,
5725                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5726                            enum btrfs_reserve_flush_enum flush)
5727 {
5728         u64 num_bytes = 0;
5729         int ret = -ENOSPC;
5730
5731         if (!block_rsv)
5732                 return 0;
5733
5734         spin_lock(&block_rsv->lock);
5735         num_bytes = min_reserved;
5736         if (block_rsv->reserved >= num_bytes)
5737                 ret = 0;
5738         else
5739                 num_bytes -= block_rsv->reserved;
5740         spin_unlock(&block_rsv->lock);
5741
5742         if (!ret)
5743                 return 0;
5744
5745         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5746         if (!ret) {
5747                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5748                 return 0;
5749         }
5750
5751         return ret;
5752 }
5753
5754 /**
5755  * btrfs_inode_rsv_refill - refill the inode block rsv.
5756  * @inode - the inode we are refilling.
5757  * @flush - the flusing restriction.
5758  *
5759  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5760  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5761  * or return if we already have enough space.  This will also handle the resreve
5762  * tracepoint for the reserved amount.
5763  */
5764 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5765                                   enum btrfs_reserve_flush_enum flush)
5766 {
5767         struct btrfs_root *root = inode->root;
5768         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5769         u64 num_bytes = 0;
5770         u64 qgroup_num_bytes = 0;
5771         int ret = -ENOSPC;
5772
5773         spin_lock(&block_rsv->lock);
5774         if (block_rsv->reserved < block_rsv->size)
5775                 num_bytes = block_rsv->size - block_rsv->reserved;
5776         if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5777                 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5778                                    block_rsv->qgroup_rsv_reserved;
5779         spin_unlock(&block_rsv->lock);
5780
5781         if (num_bytes == 0)
5782                 return 0;
5783
5784         ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5785         if (ret)
5786                 return ret;
5787         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5788         if (!ret) {
5789                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5790                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5791                                               btrfs_ino(inode), num_bytes, 1);
5792
5793                 /* Don't forget to increase qgroup_rsv_reserved */
5794                 spin_lock(&block_rsv->lock);
5795                 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5796                 spin_unlock(&block_rsv->lock);
5797         } else
5798                 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5799         return ret;
5800 }
5801
5802 /**
5803  * btrfs_inode_rsv_release - release any excessive reservation.
5804  * @inode - the inode we need to release from.
5805  * @qgroup_free - free or convert qgroup meta.
5806  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5807  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5808  *   @qgroup_free is true for error handling, and false for normal release.
5809  *
5810  * This is the same as btrfs_block_rsv_release, except that it handles the
5811  * tracepoint for the reservation.
5812  */
5813 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5814 {
5815         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5816         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5817         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5818         u64 released = 0;
5819         u64 qgroup_to_release = 0;
5820
5821         /*
5822          * Since we statically set the block_rsv->size we just want to say we
5823          * are releasing 0 bytes, and then we'll just get the reservation over
5824          * the size free'd.
5825          */
5826         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5827                                            &qgroup_to_release);
5828         if (released > 0)
5829                 trace_btrfs_space_reservation(fs_info, "delalloc",
5830                                               btrfs_ino(inode), released, 0);
5831         if (qgroup_free)
5832                 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5833         else
5834                 btrfs_qgroup_convert_reserved_meta(inode->root,
5835                                                    qgroup_to_release);
5836 }
5837
5838 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5839                              struct btrfs_block_rsv *block_rsv,
5840                              u64 num_bytes)
5841 {
5842         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5843
5844         if (global_rsv == block_rsv ||
5845             block_rsv->space_info != global_rsv->space_info)
5846                 global_rsv = NULL;
5847         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5848 }
5849
5850 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5851 {
5852         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5853         struct btrfs_space_info *sinfo = block_rsv->space_info;
5854         u64 num_bytes;
5855
5856         /*
5857          * The global block rsv is based on the size of the extent tree, the
5858          * checksum tree and the root tree.  If the fs is empty we want to set
5859          * it to a minimal amount for safety.
5860          */
5861         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5862                 btrfs_root_used(&fs_info->csum_root->root_item) +
5863                 btrfs_root_used(&fs_info->tree_root->root_item);
5864         num_bytes = max_t(u64, num_bytes, SZ_16M);
5865
5866         spin_lock(&sinfo->lock);
5867         spin_lock(&block_rsv->lock);
5868
5869         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5870
5871         if (block_rsv->reserved < block_rsv->size) {
5872                 num_bytes = btrfs_space_info_used(sinfo, true);
5873                 if (sinfo->total_bytes > num_bytes) {
5874                         num_bytes = sinfo->total_bytes - num_bytes;
5875                         num_bytes = min(num_bytes,
5876                                         block_rsv->size - block_rsv->reserved);
5877                         block_rsv->reserved += num_bytes;
5878                         sinfo->bytes_may_use += num_bytes;
5879                         trace_btrfs_space_reservation(fs_info, "space_info",
5880                                                       sinfo->flags, num_bytes,
5881                                                       1);
5882                 }
5883         } else if (block_rsv->reserved > block_rsv->size) {
5884                 num_bytes = block_rsv->reserved - block_rsv->size;
5885                 sinfo->bytes_may_use -= num_bytes;
5886                 trace_btrfs_space_reservation(fs_info, "space_info",
5887                                       sinfo->flags, num_bytes, 0);
5888                 block_rsv->reserved = block_rsv->size;
5889         }
5890
5891         if (block_rsv->reserved == block_rsv->size)
5892                 block_rsv->full = 1;
5893         else
5894                 block_rsv->full = 0;
5895
5896         spin_unlock(&block_rsv->lock);
5897         spin_unlock(&sinfo->lock);
5898 }
5899
5900 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5901 {
5902         struct btrfs_space_info *space_info;
5903
5904         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5905         fs_info->chunk_block_rsv.space_info = space_info;
5906
5907         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5908         fs_info->global_block_rsv.space_info = space_info;
5909         fs_info->trans_block_rsv.space_info = space_info;
5910         fs_info->empty_block_rsv.space_info = space_info;
5911         fs_info->delayed_block_rsv.space_info = space_info;
5912
5913         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5914         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5915         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5916         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5917         if (fs_info->quota_root)
5918                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5919         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5920
5921         update_global_block_rsv(fs_info);
5922 }
5923
5924 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5925 {
5926         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5927                                 (u64)-1, NULL);
5928         WARN_ON(fs_info->trans_block_rsv.size > 0);
5929         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5930         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5931         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5932         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5933         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5934 }
5935
5936
5937 /*
5938  * To be called after all the new block groups attached to the transaction
5939  * handle have been created (btrfs_create_pending_block_groups()).
5940  */
5941 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5942 {
5943         struct btrfs_fs_info *fs_info = trans->fs_info;
5944
5945         if (!trans->chunk_bytes_reserved)
5946                 return;
5947
5948         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5949
5950         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5951                                 trans->chunk_bytes_reserved, NULL);
5952         trans->chunk_bytes_reserved = 0;
5953 }
5954
5955 /* Can only return 0 or -ENOSPC */
5956 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5957                                   struct btrfs_inode *inode)
5958 {
5959         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5960         struct btrfs_root *root = inode->root;
5961         /*
5962          * We always use trans->block_rsv here as we will have reserved space
5963          * for our orphan when starting the transaction, using get_block_rsv()
5964          * here will sometimes make us choose the wrong block rsv as we could be
5965          * doing a reloc inode for a non refcounted root.
5966          */
5967         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5968         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5969
5970         /*
5971          * We need to hold space in order to delete our orphan item once we've
5972          * added it, so this takes the reservation so we can release it later
5973          * when we are truly done with the orphan item.
5974          */
5975         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5976
5977         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5978                         num_bytes, 1);
5979         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5980 }
5981
5982 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5983 {
5984         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5985         struct btrfs_root *root = inode->root;
5986         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5987
5988         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5989                         num_bytes, 0);
5990         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5991 }
5992
5993 /*
5994  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5995  * root: the root of the parent directory
5996  * rsv: block reservation
5997  * items: the number of items that we need do reservation
5998  * qgroup_reserved: used to return the reserved size in qgroup
5999  *
6000  * This function is used to reserve the space for snapshot/subvolume
6001  * creation and deletion. Those operations are different with the
6002  * common file/directory operations, they change two fs/file trees
6003  * and root tree, the number of items that the qgroup reserves is
6004  * different with the free space reservation. So we can not use
6005  * the space reservation mechanism in start_transaction().
6006  */
6007 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6008                                      struct btrfs_block_rsv *rsv,
6009                                      int items,
6010                                      u64 *qgroup_reserved,
6011                                      bool use_global_rsv)
6012 {
6013         u64 num_bytes;
6014         int ret;
6015         struct btrfs_fs_info *fs_info = root->fs_info;
6016         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6017
6018         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6019                 /* One for parent inode, two for dir entries */
6020                 num_bytes = 3 * fs_info->nodesize;
6021                 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
6022                 if (ret)
6023                         return ret;
6024         } else {
6025                 num_bytes = 0;
6026         }
6027
6028         *qgroup_reserved = num_bytes;
6029
6030         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6031         rsv->space_info = __find_space_info(fs_info,
6032                                             BTRFS_BLOCK_GROUP_METADATA);
6033         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6034                                   BTRFS_RESERVE_FLUSH_ALL);
6035
6036         if (ret == -ENOSPC && use_global_rsv)
6037                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6038
6039         if (ret && *qgroup_reserved)
6040                 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6041
6042         return ret;
6043 }
6044
6045 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6046                                       struct btrfs_block_rsv *rsv)
6047 {
6048         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6049 }
6050
6051 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6052                                                  struct btrfs_inode *inode)
6053 {
6054         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6055         u64 reserve_size = 0;
6056         u64 qgroup_rsv_size = 0;
6057         u64 csum_leaves;
6058         unsigned outstanding_extents;
6059
6060         lockdep_assert_held(&inode->lock);
6061         outstanding_extents = inode->outstanding_extents;
6062         if (outstanding_extents)
6063                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6064                                                 outstanding_extents + 1);
6065         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6066                                                  inode->csum_bytes);
6067         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6068                                                        csum_leaves);
6069         /*
6070          * For qgroup rsv, the calculation is very simple:
6071          * account one nodesize for each outstanding extent
6072          *
6073          * This is overestimating in most cases.
6074          */
6075         qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6076
6077         spin_lock(&block_rsv->lock);
6078         block_rsv->size = reserve_size;
6079         block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6080         spin_unlock(&block_rsv->lock);
6081 }
6082
6083 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6084 {
6085         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6086         unsigned nr_extents;
6087         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6088         int ret = 0;
6089         bool delalloc_lock = true;
6090
6091         /* If we are a free space inode we need to not flush since we will be in
6092          * the middle of a transaction commit.  We also don't need the delalloc
6093          * mutex since we won't race with anybody.  We need this mostly to make
6094          * lockdep shut its filthy mouth.
6095          *
6096          * If we have a transaction open (can happen if we call truncate_block
6097          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6098          */
6099         if (btrfs_is_free_space_inode(inode)) {
6100                 flush = BTRFS_RESERVE_NO_FLUSH;
6101                 delalloc_lock = false;
6102         } else {
6103                 if (current->journal_info)
6104                         flush = BTRFS_RESERVE_FLUSH_LIMIT;
6105
6106                 if (btrfs_transaction_in_commit(fs_info))
6107                         schedule_timeout(1);
6108         }
6109
6110         if (delalloc_lock)
6111                 mutex_lock(&inode->delalloc_mutex);
6112
6113         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6114
6115         /* Add our new extents and calculate the new rsv size. */
6116         spin_lock(&inode->lock);
6117         nr_extents = count_max_extents(num_bytes);
6118         btrfs_mod_outstanding_extents(inode, nr_extents);
6119         inode->csum_bytes += num_bytes;
6120         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6121         spin_unlock(&inode->lock);
6122
6123         ret = btrfs_inode_rsv_refill(inode, flush);
6124         if (unlikely(ret))
6125                 goto out_fail;
6126
6127         if (delalloc_lock)
6128                 mutex_unlock(&inode->delalloc_mutex);
6129         return 0;
6130
6131 out_fail:
6132         spin_lock(&inode->lock);
6133         nr_extents = count_max_extents(num_bytes);
6134         btrfs_mod_outstanding_extents(inode, -nr_extents);
6135         inode->csum_bytes -= num_bytes;
6136         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6137         spin_unlock(&inode->lock);
6138
6139         btrfs_inode_rsv_release(inode, true);
6140         if (delalloc_lock)
6141                 mutex_unlock(&inode->delalloc_mutex);
6142         return ret;
6143 }
6144
6145 /**
6146  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6147  * @inode: the inode to release the reservation for.
6148  * @num_bytes: the number of bytes we are releasing.
6149  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6150  *
6151  * This will release the metadata reservation for an inode.  This can be called
6152  * once we complete IO for a given set of bytes to release their metadata
6153  * reservations, or on error for the same reason.
6154  */
6155 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6156                                      bool qgroup_free)
6157 {
6158         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6159
6160         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6161         spin_lock(&inode->lock);
6162         inode->csum_bytes -= num_bytes;
6163         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6164         spin_unlock(&inode->lock);
6165
6166         if (btrfs_is_testing(fs_info))
6167                 return;
6168
6169         btrfs_inode_rsv_release(inode, qgroup_free);
6170 }
6171
6172 /**
6173  * btrfs_delalloc_release_extents - release our outstanding_extents
6174  * @inode: the inode to balance the reservation for.
6175  * @num_bytes: the number of bytes we originally reserved with
6176  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6177  *
6178  * When we reserve space we increase outstanding_extents for the extents we may
6179  * add.  Once we've set the range as delalloc or created our ordered extents we
6180  * have outstanding_extents to track the real usage, so we use this to free our
6181  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6182  * with btrfs_delalloc_reserve_metadata.
6183  */
6184 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6185                                     bool qgroup_free)
6186 {
6187         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6188         unsigned num_extents;
6189
6190         spin_lock(&inode->lock);
6191         num_extents = count_max_extents(num_bytes);
6192         btrfs_mod_outstanding_extents(inode, -num_extents);
6193         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6194         spin_unlock(&inode->lock);
6195
6196         if (btrfs_is_testing(fs_info))
6197                 return;
6198
6199         btrfs_inode_rsv_release(inode, qgroup_free);
6200 }
6201
6202 /**
6203  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6204  * delalloc
6205  * @inode: inode we're writing to
6206  * @start: start range we are writing to
6207  * @len: how long the range we are writing to
6208  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6209  *            current reservation.
6210  *
6211  * This will do the following things
6212  *
6213  * o reserve space in data space info for num bytes
6214  *   and reserve precious corresponding qgroup space
6215  *   (Done in check_data_free_space)
6216  *
6217  * o reserve space for metadata space, based on the number of outstanding
6218  *   extents and how much csums will be needed
6219  *   also reserve metadata space in a per root over-reserve method.
6220  * o add to the inodes->delalloc_bytes
6221  * o add it to the fs_info's delalloc inodes list.
6222  *   (Above 3 all done in delalloc_reserve_metadata)
6223  *
6224  * Return 0 for success
6225  * Return <0 for error(-ENOSPC or -EQUOT)
6226  */
6227 int btrfs_delalloc_reserve_space(struct inode *inode,
6228                         struct extent_changeset **reserved, u64 start, u64 len)
6229 {
6230         int ret;
6231
6232         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6233         if (ret < 0)
6234                 return ret;
6235         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6236         if (ret < 0)
6237                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6238         return ret;
6239 }
6240
6241 /**
6242  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6243  * @inode: inode we're releasing space for
6244  * @start: start position of the space already reserved
6245  * @len: the len of the space already reserved
6246  * @release_bytes: the len of the space we consumed or didn't use
6247  *
6248  * This function will release the metadata space that was not used and will
6249  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6250  * list if there are no delalloc bytes left.
6251  * Also it will handle the qgroup reserved space.
6252  */
6253 void btrfs_delalloc_release_space(struct inode *inode,
6254                                   struct extent_changeset *reserved,
6255                                   u64 start, u64 len, bool qgroup_free)
6256 {
6257         btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6258         btrfs_free_reserved_data_space(inode, reserved, start, len);
6259 }
6260
6261 static int update_block_group(struct btrfs_trans_handle *trans,
6262                               struct btrfs_fs_info *info, u64 bytenr,
6263                               u64 num_bytes, int alloc)
6264 {
6265         struct btrfs_block_group_cache *cache = NULL;
6266         u64 total = num_bytes;
6267         u64 old_val;
6268         u64 byte_in_group;
6269         int factor;
6270
6271         /* block accounting for super block */
6272         spin_lock(&info->delalloc_root_lock);
6273         old_val = btrfs_super_bytes_used(info->super_copy);
6274         if (alloc)
6275                 old_val += num_bytes;
6276         else
6277                 old_val -= num_bytes;
6278         btrfs_set_super_bytes_used(info->super_copy, old_val);
6279         spin_unlock(&info->delalloc_root_lock);
6280
6281         while (total) {
6282                 cache = btrfs_lookup_block_group(info, bytenr);
6283                 if (!cache)
6284                         return -ENOENT;
6285                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6286                                     BTRFS_BLOCK_GROUP_RAID1 |
6287                                     BTRFS_BLOCK_GROUP_RAID10))
6288                         factor = 2;
6289                 else
6290                         factor = 1;
6291                 /*
6292                  * If this block group has free space cache written out, we
6293                  * need to make sure to load it if we are removing space.  This
6294                  * is because we need the unpinning stage to actually add the
6295                  * space back to the block group, otherwise we will leak space.
6296                  */
6297                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6298                         cache_block_group(cache, 1);
6299
6300                 byte_in_group = bytenr - cache->key.objectid;
6301                 WARN_ON(byte_in_group > cache->key.offset);
6302
6303                 spin_lock(&cache->space_info->lock);
6304                 spin_lock(&cache->lock);
6305
6306                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6307                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6308                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6309
6310                 old_val = btrfs_block_group_used(&cache->item);
6311                 num_bytes = min(total, cache->key.offset - byte_in_group);
6312                 if (alloc) {
6313                         old_val += num_bytes;
6314                         btrfs_set_block_group_used(&cache->item, old_val);
6315                         cache->reserved -= num_bytes;
6316                         cache->space_info->bytes_reserved -= num_bytes;
6317                         cache->space_info->bytes_used += num_bytes;
6318                         cache->space_info->disk_used += num_bytes * factor;
6319                         spin_unlock(&cache->lock);
6320                         spin_unlock(&cache->space_info->lock);
6321                 } else {
6322                         old_val -= num_bytes;
6323                         btrfs_set_block_group_used(&cache->item, old_val);
6324                         cache->pinned += num_bytes;
6325                         cache->space_info->bytes_pinned += num_bytes;
6326                         cache->space_info->bytes_used -= num_bytes;
6327                         cache->space_info->disk_used -= num_bytes * factor;
6328                         spin_unlock(&cache->lock);
6329                         spin_unlock(&cache->space_info->lock);
6330
6331                         trace_btrfs_space_reservation(info, "pinned",
6332                                                       cache->space_info->flags,
6333                                                       num_bytes, 1);
6334                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6335                                            num_bytes);
6336                         set_extent_dirty(info->pinned_extents,
6337                                          bytenr, bytenr + num_bytes - 1,
6338                                          GFP_NOFS | __GFP_NOFAIL);
6339                 }
6340
6341                 spin_lock(&trans->transaction->dirty_bgs_lock);
6342                 if (list_empty(&cache->dirty_list)) {
6343                         list_add_tail(&cache->dirty_list,
6344                                       &trans->transaction->dirty_bgs);
6345                                 trans->transaction->num_dirty_bgs++;
6346                         btrfs_get_block_group(cache);
6347                 }
6348                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6349
6350                 /*
6351                  * No longer have used bytes in this block group, queue it for
6352                  * deletion. We do this after adding the block group to the
6353                  * dirty list to avoid races between cleaner kthread and space
6354                  * cache writeout.
6355                  */
6356                 if (!alloc && old_val == 0) {
6357                         spin_lock(&info->unused_bgs_lock);
6358                         if (list_empty(&cache->bg_list)) {
6359                                 btrfs_get_block_group(cache);
6360                                 list_add_tail(&cache->bg_list,
6361                                               &info->unused_bgs);
6362                         }
6363                         spin_unlock(&info->unused_bgs_lock);
6364                 }
6365
6366                 btrfs_put_block_group(cache);
6367                 total -= num_bytes;
6368                 bytenr += num_bytes;
6369         }
6370         return 0;
6371 }
6372
6373 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6374 {
6375         struct btrfs_block_group_cache *cache;
6376         u64 bytenr;
6377
6378         spin_lock(&fs_info->block_group_cache_lock);
6379         bytenr = fs_info->first_logical_byte;
6380         spin_unlock(&fs_info->block_group_cache_lock);
6381
6382         if (bytenr < (u64)-1)
6383                 return bytenr;
6384
6385         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6386         if (!cache)
6387                 return 0;
6388
6389         bytenr = cache->key.objectid;
6390         btrfs_put_block_group(cache);
6391
6392         return bytenr;
6393 }
6394
6395 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6396                            struct btrfs_block_group_cache *cache,
6397                            u64 bytenr, u64 num_bytes, int reserved)
6398 {
6399         spin_lock(&cache->space_info->lock);
6400         spin_lock(&cache->lock);
6401         cache->pinned += num_bytes;
6402         cache->space_info->bytes_pinned += num_bytes;
6403         if (reserved) {
6404                 cache->reserved -= num_bytes;
6405                 cache->space_info->bytes_reserved -= num_bytes;
6406         }
6407         spin_unlock(&cache->lock);
6408         spin_unlock(&cache->space_info->lock);
6409
6410         trace_btrfs_space_reservation(fs_info, "pinned",
6411                                       cache->space_info->flags, num_bytes, 1);
6412         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6413         set_extent_dirty(fs_info->pinned_extents, bytenr,
6414                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6415         return 0;
6416 }
6417
6418 /*
6419  * this function must be called within transaction
6420  */
6421 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6422                      u64 bytenr, u64 num_bytes, int reserved)
6423 {
6424         struct btrfs_block_group_cache *cache;
6425
6426         cache = btrfs_lookup_block_group(fs_info, bytenr);
6427         BUG_ON(!cache); /* Logic error */
6428
6429         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6430
6431         btrfs_put_block_group(cache);
6432         return 0;
6433 }
6434
6435 /*
6436  * this function must be called within transaction
6437  */
6438 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6439                                     u64 bytenr, u64 num_bytes)
6440 {
6441         struct btrfs_block_group_cache *cache;
6442         int ret;
6443
6444         cache = btrfs_lookup_block_group(fs_info, bytenr);
6445         if (!cache)
6446                 return -EINVAL;
6447
6448         /*
6449          * pull in the free space cache (if any) so that our pin
6450          * removes the free space from the cache.  We have load_only set
6451          * to one because the slow code to read in the free extents does check
6452          * the pinned extents.
6453          */
6454         cache_block_group(cache, 1);
6455
6456         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6457
6458         /* remove us from the free space cache (if we're there at all) */
6459         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6460         btrfs_put_block_group(cache);
6461         return ret;
6462 }
6463
6464 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6465                                    u64 start, u64 num_bytes)
6466 {
6467         int ret;
6468         struct btrfs_block_group_cache *block_group;
6469         struct btrfs_caching_control *caching_ctl;
6470
6471         block_group = btrfs_lookup_block_group(fs_info, start);
6472         if (!block_group)
6473                 return -EINVAL;
6474
6475         cache_block_group(block_group, 0);
6476         caching_ctl = get_caching_control(block_group);
6477
6478         if (!caching_ctl) {
6479                 /* Logic error */
6480                 BUG_ON(!block_group_cache_done(block_group));
6481                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6482         } else {
6483                 mutex_lock(&caching_ctl->mutex);
6484
6485                 if (start >= caching_ctl->progress) {
6486                         ret = add_excluded_extent(fs_info, start, num_bytes);
6487                 } else if (start + num_bytes <= caching_ctl->progress) {
6488                         ret = btrfs_remove_free_space(block_group,
6489                                                       start, num_bytes);
6490                 } else {
6491                         num_bytes = caching_ctl->progress - start;
6492                         ret = btrfs_remove_free_space(block_group,
6493                                                       start, num_bytes);
6494                         if (ret)
6495                                 goto out_lock;
6496
6497                         num_bytes = (start + num_bytes) -
6498                                 caching_ctl->progress;
6499                         start = caching_ctl->progress;
6500                         ret = add_excluded_extent(fs_info, start, num_bytes);
6501                 }
6502 out_lock:
6503                 mutex_unlock(&caching_ctl->mutex);
6504                 put_caching_control(caching_ctl);
6505         }
6506         btrfs_put_block_group(block_group);
6507         return ret;
6508 }
6509
6510 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6511                                  struct extent_buffer *eb)
6512 {
6513         struct btrfs_file_extent_item *item;
6514         struct btrfs_key key;
6515         int found_type;
6516         int i;
6517
6518         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6519                 return 0;
6520
6521         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6522                 btrfs_item_key_to_cpu(eb, &key, i);
6523                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6524                         continue;
6525                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6526                 found_type = btrfs_file_extent_type(eb, item);
6527                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6528                         continue;
6529                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6530                         continue;
6531                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6532                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6533                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6534         }
6535
6536         return 0;
6537 }
6538
6539 static void
6540 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6541 {
6542         atomic_inc(&bg->reservations);
6543 }
6544
6545 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6546                                         const u64 start)
6547 {
6548         struct btrfs_block_group_cache *bg;
6549
6550         bg = btrfs_lookup_block_group(fs_info, start);
6551         ASSERT(bg);
6552         if (atomic_dec_and_test(&bg->reservations))
6553                 wake_up_var(&bg->reservations);
6554         btrfs_put_block_group(bg);
6555 }
6556
6557 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6558 {
6559         struct btrfs_space_info *space_info = bg->space_info;
6560
6561         ASSERT(bg->ro);
6562
6563         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6564                 return;
6565
6566         /*
6567          * Our block group is read only but before we set it to read only,
6568          * some task might have had allocated an extent from it already, but it
6569          * has not yet created a respective ordered extent (and added it to a
6570          * root's list of ordered extents).
6571          * Therefore wait for any task currently allocating extents, since the
6572          * block group's reservations counter is incremented while a read lock
6573          * on the groups' semaphore is held and decremented after releasing
6574          * the read access on that semaphore and creating the ordered extent.
6575          */
6576         down_write(&space_info->groups_sem);
6577         up_write(&space_info->groups_sem);
6578
6579         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6580 }
6581
6582 /**
6583  * btrfs_add_reserved_bytes - update the block_group and space info counters
6584  * @cache:      The cache we are manipulating
6585  * @ram_bytes:  The number of bytes of file content, and will be same to
6586  *              @num_bytes except for the compress path.
6587  * @num_bytes:  The number of bytes in question
6588  * @delalloc:   The blocks are allocated for the delalloc write
6589  *
6590  * This is called by the allocator when it reserves space. If this is a
6591  * reservation and the block group has become read only we cannot make the
6592  * reservation and return -EAGAIN, otherwise this function always succeeds.
6593  */
6594 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6595                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6596 {
6597         struct btrfs_space_info *space_info = cache->space_info;
6598         int ret = 0;
6599
6600         spin_lock(&space_info->lock);
6601         spin_lock(&cache->lock);
6602         if (cache->ro) {
6603                 ret = -EAGAIN;
6604         } else {
6605                 cache->reserved += num_bytes;
6606                 space_info->bytes_reserved += num_bytes;
6607
6608                 trace_btrfs_space_reservation(cache->fs_info,
6609                                 "space_info", space_info->flags,
6610                                 ram_bytes, 0);
6611                 space_info->bytes_may_use -= ram_bytes;
6612                 if (delalloc)
6613                         cache->delalloc_bytes += num_bytes;
6614         }
6615         spin_unlock(&cache->lock);
6616         spin_unlock(&space_info->lock);
6617         return ret;
6618 }
6619
6620 /**
6621  * btrfs_free_reserved_bytes - update the block_group and space info counters
6622  * @cache:      The cache we are manipulating
6623  * @num_bytes:  The number of bytes in question
6624  * @delalloc:   The blocks are allocated for the delalloc write
6625  *
6626  * This is called by somebody who is freeing space that was never actually used
6627  * on disk.  For example if you reserve some space for a new leaf in transaction
6628  * A and before transaction A commits you free that leaf, you call this with
6629  * reserve set to 0 in order to clear the reservation.
6630  */
6631
6632 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6633                                      u64 num_bytes, int delalloc)
6634 {
6635         struct btrfs_space_info *space_info = cache->space_info;
6636         int ret = 0;
6637
6638         spin_lock(&space_info->lock);
6639         spin_lock(&cache->lock);
6640         if (cache->ro)
6641                 space_info->bytes_readonly += num_bytes;
6642         cache->reserved -= num_bytes;
6643         space_info->bytes_reserved -= num_bytes;
6644
6645         if (delalloc)
6646                 cache->delalloc_bytes -= num_bytes;
6647         spin_unlock(&cache->lock);
6648         spin_unlock(&space_info->lock);
6649         return ret;
6650 }
6651 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6652 {
6653         struct btrfs_caching_control *next;
6654         struct btrfs_caching_control *caching_ctl;
6655         struct btrfs_block_group_cache *cache;
6656
6657         down_write(&fs_info->commit_root_sem);
6658
6659         list_for_each_entry_safe(caching_ctl, next,
6660                                  &fs_info->caching_block_groups, list) {
6661                 cache = caching_ctl->block_group;
6662                 if (block_group_cache_done(cache)) {
6663                         cache->last_byte_to_unpin = (u64)-1;
6664                         list_del_init(&caching_ctl->list);
6665                         put_caching_control(caching_ctl);
6666                 } else {
6667                         cache->last_byte_to_unpin = caching_ctl->progress;
6668                 }
6669         }
6670
6671         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6672                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6673         else
6674                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6675
6676         up_write(&fs_info->commit_root_sem);
6677
6678         update_global_block_rsv(fs_info);
6679 }
6680
6681 /*
6682  * Returns the free cluster for the given space info and sets empty_cluster to
6683  * what it should be based on the mount options.
6684  */
6685 static struct btrfs_free_cluster *
6686 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6687                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6688 {
6689         struct btrfs_free_cluster *ret = NULL;
6690
6691         *empty_cluster = 0;
6692         if (btrfs_mixed_space_info(space_info))
6693                 return ret;
6694
6695         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6696                 ret = &fs_info->meta_alloc_cluster;
6697                 if (btrfs_test_opt(fs_info, SSD))
6698                         *empty_cluster = SZ_2M;
6699                 else
6700                         *empty_cluster = SZ_64K;
6701         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6702                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6703                 *empty_cluster = SZ_2M;
6704                 ret = &fs_info->data_alloc_cluster;
6705         }
6706
6707         return ret;
6708 }
6709
6710 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6711                               u64 start, u64 end,
6712                               const bool return_free_space)
6713 {
6714         struct btrfs_block_group_cache *cache = NULL;
6715         struct btrfs_space_info *space_info;
6716         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6717         struct btrfs_free_cluster *cluster = NULL;
6718         u64 len;
6719         u64 total_unpinned = 0;
6720         u64 empty_cluster = 0;
6721         bool readonly;
6722
6723         while (start <= end) {
6724                 readonly = false;
6725                 if (!cache ||
6726                     start >= cache->key.objectid + cache->key.offset) {
6727                         if (cache)
6728                                 btrfs_put_block_group(cache);
6729                         total_unpinned = 0;
6730                         cache = btrfs_lookup_block_group(fs_info, start);
6731                         BUG_ON(!cache); /* Logic error */
6732
6733                         cluster = fetch_cluster_info(fs_info,
6734                                                      cache->space_info,
6735                                                      &empty_cluster);
6736                         empty_cluster <<= 1;
6737                 }
6738
6739                 len = cache->key.objectid + cache->key.offset - start;
6740                 len = min(len, end + 1 - start);
6741
6742                 if (start < cache->last_byte_to_unpin) {
6743                         len = min(len, cache->last_byte_to_unpin - start);
6744                         if (return_free_space)
6745                                 btrfs_add_free_space(cache, start, len);
6746                 }
6747
6748                 start += len;
6749                 total_unpinned += len;
6750                 space_info = cache->space_info;
6751
6752                 /*
6753                  * If this space cluster has been marked as fragmented and we've
6754                  * unpinned enough in this block group to potentially allow a
6755                  * cluster to be created inside of it go ahead and clear the
6756                  * fragmented check.
6757                  */
6758                 if (cluster && cluster->fragmented &&
6759                     total_unpinned > empty_cluster) {
6760                         spin_lock(&cluster->lock);
6761                         cluster->fragmented = 0;
6762                         spin_unlock(&cluster->lock);
6763                 }
6764
6765                 spin_lock(&space_info->lock);
6766                 spin_lock(&cache->lock);
6767                 cache->pinned -= len;
6768                 space_info->bytes_pinned -= len;
6769
6770                 trace_btrfs_space_reservation(fs_info, "pinned",
6771                                               space_info->flags, len, 0);
6772                 space_info->max_extent_size = 0;
6773                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6774                 if (cache->ro) {
6775                         space_info->bytes_readonly += len;
6776                         readonly = true;
6777                 }
6778                 spin_unlock(&cache->lock);
6779                 if (!readonly && return_free_space &&
6780                     global_rsv->space_info == space_info) {
6781                         u64 to_add = len;
6782
6783                         spin_lock(&global_rsv->lock);
6784                         if (!global_rsv->full) {
6785                                 to_add = min(len, global_rsv->size -
6786                                              global_rsv->reserved);
6787                                 global_rsv->reserved += to_add;
6788                                 space_info->bytes_may_use += to_add;
6789                                 if (global_rsv->reserved >= global_rsv->size)
6790                                         global_rsv->full = 1;
6791                                 trace_btrfs_space_reservation(fs_info,
6792                                                               "space_info",
6793                                                               space_info->flags,
6794                                                               to_add, 1);
6795                                 len -= to_add;
6796                         }
6797                         spin_unlock(&global_rsv->lock);
6798                         /* Add to any tickets we may have */
6799                         if (len)
6800                                 space_info_add_new_bytes(fs_info, space_info,
6801                                                          len);
6802                 }
6803                 spin_unlock(&space_info->lock);
6804         }
6805
6806         if (cache)
6807                 btrfs_put_block_group(cache);
6808         return 0;
6809 }
6810
6811 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6812 {
6813         struct btrfs_fs_info *fs_info = trans->fs_info;
6814         struct btrfs_block_group_cache *block_group, *tmp;
6815         struct list_head *deleted_bgs;
6816         struct extent_io_tree *unpin;
6817         u64 start;
6818         u64 end;
6819         int ret;
6820
6821         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6822                 unpin = &fs_info->freed_extents[1];
6823         else
6824                 unpin = &fs_info->freed_extents[0];
6825
6826         while (!trans->aborted) {
6827                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6828                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6829                                             EXTENT_DIRTY, NULL);
6830                 if (ret) {
6831                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6832                         break;
6833                 }
6834
6835                 if (btrfs_test_opt(fs_info, DISCARD))
6836                         ret = btrfs_discard_extent(fs_info, start,
6837                                                    end + 1 - start, NULL);
6838
6839                 clear_extent_dirty(unpin, start, end);
6840                 unpin_extent_range(fs_info, start, end, true);
6841                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6842                 cond_resched();
6843         }
6844
6845         /*
6846          * Transaction is finished.  We don't need the lock anymore.  We
6847          * do need to clean up the block groups in case of a transaction
6848          * abort.
6849          */
6850         deleted_bgs = &trans->transaction->deleted_bgs;
6851         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6852                 u64 trimmed = 0;
6853
6854                 ret = -EROFS;
6855                 if (!trans->aborted)
6856                         ret = btrfs_discard_extent(fs_info,
6857                                                    block_group->key.objectid,
6858                                                    block_group->key.offset,
6859                                                    &trimmed);
6860
6861                 list_del_init(&block_group->bg_list);
6862                 btrfs_put_block_group_trimming(block_group);
6863                 btrfs_put_block_group(block_group);
6864
6865                 if (ret) {
6866                         const char *errstr = btrfs_decode_error(ret);
6867                         btrfs_warn(fs_info,
6868                            "discard failed while removing blockgroup: errno=%d %s",
6869                                    ret, errstr);
6870                 }
6871         }
6872
6873         return 0;
6874 }
6875
6876 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6877                                 struct btrfs_fs_info *info,
6878                                 struct btrfs_delayed_ref_node *node, u64 parent,
6879                                 u64 root_objectid, u64 owner_objectid,
6880                                 u64 owner_offset, int refs_to_drop,
6881                                 struct btrfs_delayed_extent_op *extent_op)
6882 {
6883         struct btrfs_key key;
6884         struct btrfs_path *path;
6885         struct btrfs_root *extent_root = info->extent_root;
6886         struct extent_buffer *leaf;
6887         struct btrfs_extent_item *ei;
6888         struct btrfs_extent_inline_ref *iref;
6889         int ret;
6890         int is_data;
6891         int extent_slot = 0;
6892         int found_extent = 0;
6893         int num_to_del = 1;
6894         u32 item_size;
6895         u64 refs;
6896         u64 bytenr = node->bytenr;
6897         u64 num_bytes = node->num_bytes;
6898         int last_ref = 0;
6899         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6900
6901         path = btrfs_alloc_path();
6902         if (!path)
6903                 return -ENOMEM;
6904
6905         path->reada = READA_FORWARD;
6906         path->leave_spinning = 1;
6907
6908         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6909         BUG_ON(!is_data && refs_to_drop != 1);
6910
6911         if (is_data)
6912                 skinny_metadata = false;
6913
6914         ret = lookup_extent_backref(trans, info, path, &iref,
6915                                     bytenr, num_bytes, parent,
6916                                     root_objectid, owner_objectid,
6917                                     owner_offset);
6918         if (ret == 0) {
6919                 extent_slot = path->slots[0];
6920                 while (extent_slot >= 0) {
6921                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6922                                               extent_slot);
6923                         if (key.objectid != bytenr)
6924                                 break;
6925                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6926                             key.offset == num_bytes) {
6927                                 found_extent = 1;
6928                                 break;
6929                         }
6930                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6931                             key.offset == owner_objectid) {
6932                                 found_extent = 1;
6933                                 break;
6934                         }
6935                         if (path->slots[0] - extent_slot > 5)
6936                                 break;
6937                         extent_slot--;
6938                 }
6939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6940                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6941                 if (found_extent && item_size < sizeof(*ei))
6942                         found_extent = 0;
6943 #endif
6944                 if (!found_extent) {
6945                         BUG_ON(iref);
6946                         ret = remove_extent_backref(trans, info, path, NULL,
6947                                                     refs_to_drop,
6948                                                     is_data, &last_ref);
6949                         if (ret) {
6950                                 btrfs_abort_transaction(trans, ret);
6951                                 goto out;
6952                         }
6953                         btrfs_release_path(path);
6954                         path->leave_spinning = 1;
6955
6956                         key.objectid = bytenr;
6957                         key.type = BTRFS_EXTENT_ITEM_KEY;
6958                         key.offset = num_bytes;
6959
6960                         if (!is_data && skinny_metadata) {
6961                                 key.type = BTRFS_METADATA_ITEM_KEY;
6962                                 key.offset = owner_objectid;
6963                         }
6964
6965                         ret = btrfs_search_slot(trans, extent_root,
6966                                                 &key, path, -1, 1);
6967                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6968                                 /*
6969                                  * Couldn't find our skinny metadata item,
6970                                  * see if we have ye olde extent item.
6971                                  */
6972                                 path->slots[0]--;
6973                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6974                                                       path->slots[0]);
6975                                 if (key.objectid == bytenr &&
6976                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6977                                     key.offset == num_bytes)
6978                                         ret = 0;
6979                         }
6980
6981                         if (ret > 0 && skinny_metadata) {
6982                                 skinny_metadata = false;
6983                                 key.objectid = bytenr;
6984                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6985                                 key.offset = num_bytes;
6986                                 btrfs_release_path(path);
6987                                 ret = btrfs_search_slot(trans, extent_root,
6988                                                         &key, path, -1, 1);
6989                         }
6990
6991                         if (ret) {
6992                                 btrfs_err(info,
6993                                           "umm, got %d back from search, was looking for %llu",
6994                                           ret, bytenr);
6995                                 if (ret > 0)
6996                                         btrfs_print_leaf(path->nodes[0]);
6997                         }
6998                         if (ret < 0) {
6999                                 btrfs_abort_transaction(trans, ret);
7000                                 goto out;
7001                         }
7002                         extent_slot = path->slots[0];
7003                 }
7004         } else if (WARN_ON(ret == -ENOENT)) {
7005                 btrfs_print_leaf(path->nodes[0]);
7006                 btrfs_err(info,
7007                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7008                         bytenr, parent, root_objectid, owner_objectid,
7009                         owner_offset);
7010                 btrfs_abort_transaction(trans, ret);
7011                 goto out;
7012         } else {
7013                 btrfs_abort_transaction(trans, ret);
7014                 goto out;
7015         }
7016
7017         leaf = path->nodes[0];
7018         item_size = btrfs_item_size_nr(leaf, extent_slot);
7019 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7020         if (item_size < sizeof(*ei)) {
7021                 BUG_ON(found_extent || extent_slot != path->slots[0]);
7022                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7023                                              0);
7024                 if (ret < 0) {
7025                         btrfs_abort_transaction(trans, ret);
7026                         goto out;
7027                 }
7028
7029                 btrfs_release_path(path);
7030                 path->leave_spinning = 1;
7031
7032                 key.objectid = bytenr;
7033                 key.type = BTRFS_EXTENT_ITEM_KEY;
7034                 key.offset = num_bytes;
7035
7036                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7037                                         -1, 1);
7038                 if (ret) {
7039                         btrfs_err(info,
7040                                   "umm, got %d back from search, was looking for %llu",
7041                                 ret, bytenr);
7042                         btrfs_print_leaf(path->nodes[0]);
7043                 }
7044                 if (ret < 0) {
7045                         btrfs_abort_transaction(trans, ret);
7046                         goto out;
7047                 }
7048
7049                 extent_slot = path->slots[0];
7050                 leaf = path->nodes[0];
7051                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7052         }
7053 #endif
7054         BUG_ON(item_size < sizeof(*ei));
7055         ei = btrfs_item_ptr(leaf, extent_slot,
7056                             struct btrfs_extent_item);
7057         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7058             key.type == BTRFS_EXTENT_ITEM_KEY) {
7059                 struct btrfs_tree_block_info *bi;
7060                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7061                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7062                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7063         }
7064
7065         refs = btrfs_extent_refs(leaf, ei);
7066         if (refs < refs_to_drop) {
7067                 btrfs_err(info,
7068                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7069                           refs_to_drop, refs, bytenr);
7070                 ret = -EINVAL;
7071                 btrfs_abort_transaction(trans, ret);
7072                 goto out;
7073         }
7074         refs -= refs_to_drop;
7075
7076         if (refs > 0) {
7077                 if (extent_op)
7078                         __run_delayed_extent_op(extent_op, leaf, ei);
7079                 /*
7080                  * In the case of inline back ref, reference count will
7081                  * be updated by remove_extent_backref
7082                  */
7083                 if (iref) {
7084                         BUG_ON(!found_extent);
7085                 } else {
7086                         btrfs_set_extent_refs(leaf, ei, refs);
7087                         btrfs_mark_buffer_dirty(leaf);
7088                 }
7089                 if (found_extent) {
7090                         ret = remove_extent_backref(trans, info, path,
7091                                                     iref, refs_to_drop,
7092                                                     is_data, &last_ref);
7093                         if (ret) {
7094                                 btrfs_abort_transaction(trans, ret);
7095                                 goto out;
7096                         }
7097                 }
7098         } else {
7099                 if (found_extent) {
7100                         BUG_ON(is_data && refs_to_drop !=
7101                                extent_data_ref_count(path, iref));
7102                         if (iref) {
7103                                 BUG_ON(path->slots[0] != extent_slot);
7104                         } else {
7105                                 BUG_ON(path->slots[0] != extent_slot + 1);
7106                                 path->slots[0] = extent_slot;
7107                                 num_to_del = 2;
7108                         }
7109                 }
7110
7111                 last_ref = 1;
7112                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7113                                       num_to_del);
7114                 if (ret) {
7115                         btrfs_abort_transaction(trans, ret);
7116                         goto out;
7117                 }
7118                 btrfs_release_path(path);
7119
7120                 if (is_data) {
7121                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7122                         if (ret) {
7123                                 btrfs_abort_transaction(trans, ret);
7124                                 goto out;
7125                         }
7126                 }
7127
7128                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7129                 if (ret) {
7130                         btrfs_abort_transaction(trans, ret);
7131                         goto out;
7132                 }
7133
7134                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7135                 if (ret) {
7136                         btrfs_abort_transaction(trans, ret);
7137                         goto out;
7138                 }
7139         }
7140         btrfs_release_path(path);
7141
7142 out:
7143         btrfs_free_path(path);
7144         return ret;
7145 }
7146
7147 /*
7148  * when we free an block, it is possible (and likely) that we free the last
7149  * delayed ref for that extent as well.  This searches the delayed ref tree for
7150  * a given extent, and if there are no other delayed refs to be processed, it
7151  * removes it from the tree.
7152  */
7153 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7154                                       u64 bytenr)
7155 {
7156         struct btrfs_delayed_ref_head *head;
7157         struct btrfs_delayed_ref_root *delayed_refs;
7158         int ret = 0;
7159
7160         delayed_refs = &trans->transaction->delayed_refs;
7161         spin_lock(&delayed_refs->lock);
7162         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7163         if (!head)
7164                 goto out_delayed_unlock;
7165
7166         spin_lock(&head->lock);
7167         if (!RB_EMPTY_ROOT(&head->ref_tree))
7168                 goto out;
7169
7170         if (head->extent_op) {
7171                 if (!head->must_insert_reserved)
7172                         goto out;
7173                 btrfs_free_delayed_extent_op(head->extent_op);
7174                 head->extent_op = NULL;
7175         }
7176
7177         /*
7178          * waiting for the lock here would deadlock.  If someone else has it
7179          * locked they are already in the process of dropping it anyway
7180          */
7181         if (!mutex_trylock(&head->mutex))
7182                 goto out;
7183
7184         /*
7185          * at this point we have a head with no other entries.  Go
7186          * ahead and process it.
7187          */
7188         rb_erase(&head->href_node, &delayed_refs->href_root);
7189         RB_CLEAR_NODE(&head->href_node);
7190         atomic_dec(&delayed_refs->num_entries);
7191
7192         /*
7193          * we don't take a ref on the node because we're removing it from the
7194          * tree, so we just steal the ref the tree was holding.
7195          */
7196         delayed_refs->num_heads--;
7197         if (head->processing == 0)
7198                 delayed_refs->num_heads_ready--;
7199         head->processing = 0;
7200         spin_unlock(&head->lock);
7201         spin_unlock(&delayed_refs->lock);
7202
7203         BUG_ON(head->extent_op);
7204         if (head->must_insert_reserved)
7205                 ret = 1;
7206
7207         mutex_unlock(&head->mutex);
7208         btrfs_put_delayed_ref_head(head);
7209         return ret;
7210 out:
7211         spin_unlock(&head->lock);
7212
7213 out_delayed_unlock:
7214         spin_unlock(&delayed_refs->lock);
7215         return 0;
7216 }
7217
7218 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7219                            struct btrfs_root *root,
7220                            struct extent_buffer *buf,
7221                            u64 parent, int last_ref)
7222 {
7223         struct btrfs_fs_info *fs_info = root->fs_info;
7224         int pin = 1;
7225         int ret;
7226
7227         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7228                 int old_ref_mod, new_ref_mod;
7229
7230                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7231                                    root->root_key.objectid,
7232                                    btrfs_header_level(buf), 0,
7233                                    BTRFS_DROP_DELAYED_REF);
7234                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7235                                                  buf->len, parent,
7236                                                  root->root_key.objectid,
7237                                                  btrfs_header_level(buf),
7238                                                  BTRFS_DROP_DELAYED_REF, NULL,
7239                                                  &old_ref_mod, &new_ref_mod);
7240                 BUG_ON(ret); /* -ENOMEM */
7241                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7242         }
7243
7244         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7245                 struct btrfs_block_group_cache *cache;
7246
7247                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7248                         ret = check_ref_cleanup(trans, buf->start);
7249                         if (!ret)
7250                                 goto out;
7251                 }
7252
7253                 pin = 0;
7254                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7255
7256                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7257                         pin_down_extent(fs_info, cache, buf->start,
7258                                         buf->len, 1);
7259                         btrfs_put_block_group(cache);
7260                         goto out;
7261                 }
7262
7263                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7264
7265                 btrfs_add_free_space(cache, buf->start, buf->len);
7266                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7267                 btrfs_put_block_group(cache);
7268                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7269         }
7270 out:
7271         if (pin)
7272                 add_pinned_bytes(fs_info, buf->len, true,
7273                                  root->root_key.objectid);
7274
7275         if (last_ref) {
7276                 /*
7277                  * Deleting the buffer, clear the corrupt flag since it doesn't
7278                  * matter anymore.
7279                  */
7280                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7281         }
7282 }
7283
7284 /* Can return -ENOMEM */
7285 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7286                       struct btrfs_root *root,
7287                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7288                       u64 owner, u64 offset)
7289 {
7290         struct btrfs_fs_info *fs_info = root->fs_info;
7291         int old_ref_mod, new_ref_mod;
7292         int ret;
7293
7294         if (btrfs_is_testing(fs_info))
7295                 return 0;
7296
7297         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7298                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7299                                    root_objectid, owner, offset,
7300                                    BTRFS_DROP_DELAYED_REF);
7301
7302         /*
7303          * tree log blocks never actually go into the extent allocation
7304          * tree, just update pinning info and exit early.
7305          */
7306         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7307                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7308                 /* unlocks the pinned mutex */
7309                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7310                 old_ref_mod = new_ref_mod = 0;
7311                 ret = 0;
7312         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7313                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7314                                                  num_bytes, parent,
7315                                                  root_objectid, (int)owner,
7316                                                  BTRFS_DROP_DELAYED_REF, NULL,
7317                                                  &old_ref_mod, &new_ref_mod);
7318         } else {
7319                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7320                                                  num_bytes, parent,
7321                                                  root_objectid, owner, offset,
7322                                                  0, BTRFS_DROP_DELAYED_REF,
7323                                                  &old_ref_mod, &new_ref_mod);
7324         }
7325
7326         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7327                 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7328
7329                 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7330         }
7331
7332         return ret;
7333 }
7334
7335 /*
7336  * when we wait for progress in the block group caching, its because
7337  * our allocation attempt failed at least once.  So, we must sleep
7338  * and let some progress happen before we try again.
7339  *
7340  * This function will sleep at least once waiting for new free space to
7341  * show up, and then it will check the block group free space numbers
7342  * for our min num_bytes.  Another option is to have it go ahead
7343  * and look in the rbtree for a free extent of a given size, but this
7344  * is a good start.
7345  *
7346  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7347  * any of the information in this block group.
7348  */
7349 static noinline void
7350 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7351                                 u64 num_bytes)
7352 {
7353         struct btrfs_caching_control *caching_ctl;
7354
7355         caching_ctl = get_caching_control(cache);
7356         if (!caching_ctl)
7357                 return;
7358
7359         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7360                    (cache->free_space_ctl->free_space >= num_bytes));
7361
7362         put_caching_control(caching_ctl);
7363 }
7364
7365 static noinline int
7366 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7367 {
7368         struct btrfs_caching_control *caching_ctl;
7369         int ret = 0;
7370
7371         caching_ctl = get_caching_control(cache);
7372         if (!caching_ctl)
7373                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7374
7375         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7376         if (cache->cached == BTRFS_CACHE_ERROR)
7377                 ret = -EIO;
7378         put_caching_control(caching_ctl);
7379         return ret;
7380 }
7381
7382 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7383         [BTRFS_RAID_RAID10]     = "raid10",
7384         [BTRFS_RAID_RAID1]      = "raid1",
7385         [BTRFS_RAID_DUP]        = "dup",
7386         [BTRFS_RAID_RAID0]      = "raid0",
7387         [BTRFS_RAID_SINGLE]     = "single",
7388         [BTRFS_RAID_RAID5]      = "raid5",
7389         [BTRFS_RAID_RAID6]      = "raid6",
7390 };
7391
7392 static const char *get_raid_name(enum btrfs_raid_types type)
7393 {
7394         if (type >= BTRFS_NR_RAID_TYPES)
7395                 return NULL;
7396
7397         return btrfs_raid_type_names[type];
7398 }
7399
7400 enum btrfs_loop_type {
7401         LOOP_CACHING_NOWAIT = 0,
7402         LOOP_CACHING_WAIT = 1,
7403         LOOP_ALLOC_CHUNK = 2,
7404         LOOP_NO_EMPTY_SIZE = 3,
7405 };
7406
7407 static inline void
7408 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7409                        int delalloc)
7410 {
7411         if (delalloc)
7412                 down_read(&cache->data_rwsem);
7413 }
7414
7415 static inline void
7416 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7417                        int delalloc)
7418 {
7419         btrfs_get_block_group(cache);
7420         if (delalloc)
7421                 down_read(&cache->data_rwsem);
7422 }
7423
7424 static struct btrfs_block_group_cache *
7425 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7426                    struct btrfs_free_cluster *cluster,
7427                    int delalloc)
7428 {
7429         struct btrfs_block_group_cache *used_bg = NULL;
7430
7431         spin_lock(&cluster->refill_lock);
7432         while (1) {
7433                 used_bg = cluster->block_group;
7434                 if (!used_bg)
7435                         return NULL;
7436
7437                 if (used_bg == block_group)
7438                         return used_bg;
7439
7440                 btrfs_get_block_group(used_bg);
7441
7442                 if (!delalloc)
7443                         return used_bg;
7444
7445                 if (down_read_trylock(&used_bg->data_rwsem))
7446                         return used_bg;
7447
7448                 spin_unlock(&cluster->refill_lock);
7449
7450                 /* We should only have one-level nested. */
7451                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7452
7453                 spin_lock(&cluster->refill_lock);
7454                 if (used_bg == cluster->block_group)
7455                         return used_bg;
7456
7457                 up_read(&used_bg->data_rwsem);
7458                 btrfs_put_block_group(used_bg);
7459         }
7460 }
7461
7462 static inline void
7463 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7464                          int delalloc)
7465 {
7466         if (delalloc)
7467                 up_read(&cache->data_rwsem);
7468         btrfs_put_block_group(cache);
7469 }
7470
7471 /*
7472  * walks the btree of allocated extents and find a hole of a given size.
7473  * The key ins is changed to record the hole:
7474  * ins->objectid == start position
7475  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7476  * ins->offset == the size of the hole.
7477  * Any available blocks before search_start are skipped.
7478  *
7479  * If there is no suitable free space, we will record the max size of
7480  * the free space extent currently.
7481  */
7482 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7483                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7484                                 u64 hint_byte, struct btrfs_key *ins,
7485                                 u64 flags, int delalloc)
7486 {
7487         int ret = 0;
7488         struct btrfs_root *root = fs_info->extent_root;
7489         struct btrfs_free_cluster *last_ptr = NULL;
7490         struct btrfs_block_group_cache *block_group = NULL;
7491         u64 search_start = 0;
7492         u64 max_extent_size = 0;
7493         u64 empty_cluster = 0;
7494         struct btrfs_space_info *space_info;
7495         int loop = 0;
7496         int index = btrfs_bg_flags_to_raid_index(flags);
7497         bool failed_cluster_refill = false;
7498         bool failed_alloc = false;
7499         bool use_cluster = true;
7500         bool have_caching_bg = false;
7501         bool orig_have_caching_bg = false;
7502         bool full_search = false;
7503
7504         WARN_ON(num_bytes < fs_info->sectorsize);
7505         ins->type = BTRFS_EXTENT_ITEM_KEY;
7506         ins->objectid = 0;
7507         ins->offset = 0;
7508
7509         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7510
7511         space_info = __find_space_info(fs_info, flags);
7512         if (!space_info) {
7513                 btrfs_err(fs_info, "No space info for %llu", flags);
7514                 return -ENOSPC;
7515         }
7516
7517         /*
7518          * If our free space is heavily fragmented we may not be able to make
7519          * big contiguous allocations, so instead of doing the expensive search
7520          * for free space, simply return ENOSPC with our max_extent_size so we
7521          * can go ahead and search for a more manageable chunk.
7522          *
7523          * If our max_extent_size is large enough for our allocation simply
7524          * disable clustering since we will likely not be able to find enough
7525          * space to create a cluster and induce latency trying.
7526          */
7527         if (unlikely(space_info->max_extent_size)) {
7528                 spin_lock(&space_info->lock);
7529                 if (space_info->max_extent_size &&
7530                     num_bytes > space_info->max_extent_size) {
7531                         ins->offset = space_info->max_extent_size;
7532                         spin_unlock(&space_info->lock);
7533                         return -ENOSPC;
7534                 } else if (space_info->max_extent_size) {
7535                         use_cluster = false;
7536                 }
7537                 spin_unlock(&space_info->lock);
7538         }
7539
7540         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7541         if (last_ptr) {
7542                 spin_lock(&last_ptr->lock);
7543                 if (last_ptr->block_group)
7544                         hint_byte = last_ptr->window_start;
7545                 if (last_ptr->fragmented) {
7546                         /*
7547                          * We still set window_start so we can keep track of the
7548                          * last place we found an allocation to try and save
7549                          * some time.
7550                          */
7551                         hint_byte = last_ptr->window_start;
7552                         use_cluster = false;
7553                 }
7554                 spin_unlock(&last_ptr->lock);
7555         }
7556
7557         search_start = max(search_start, first_logical_byte(fs_info, 0));
7558         search_start = max(search_start, hint_byte);
7559         if (search_start == hint_byte) {
7560                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7561                 /*
7562                  * we don't want to use the block group if it doesn't match our
7563                  * allocation bits, or if its not cached.
7564                  *
7565                  * However if we are re-searching with an ideal block group
7566                  * picked out then we don't care that the block group is cached.
7567                  */
7568                 if (block_group && block_group_bits(block_group, flags) &&
7569                     block_group->cached != BTRFS_CACHE_NO) {
7570                         down_read(&space_info->groups_sem);
7571                         if (list_empty(&block_group->list) ||
7572                             block_group->ro) {
7573                                 /*
7574                                  * someone is removing this block group,
7575                                  * we can't jump into the have_block_group
7576                                  * target because our list pointers are not
7577                                  * valid
7578                                  */
7579                                 btrfs_put_block_group(block_group);
7580                                 up_read(&space_info->groups_sem);
7581                         } else {
7582                                 index = btrfs_bg_flags_to_raid_index(
7583                                                 block_group->flags);
7584                                 btrfs_lock_block_group(block_group, delalloc);
7585                                 goto have_block_group;
7586                         }
7587                 } else if (block_group) {
7588                         btrfs_put_block_group(block_group);
7589                 }
7590         }
7591 search:
7592         have_caching_bg = false;
7593         if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7594                 full_search = true;
7595         down_read(&space_info->groups_sem);
7596         list_for_each_entry(block_group, &space_info->block_groups[index],
7597                             list) {
7598                 u64 offset;
7599                 int cached;
7600
7601                 /* If the block group is read-only, we can skip it entirely. */
7602                 if (unlikely(block_group->ro))
7603                         continue;
7604
7605                 btrfs_grab_block_group(block_group, delalloc);
7606                 search_start = block_group->key.objectid;
7607
7608                 /*
7609                  * this can happen if we end up cycling through all the
7610                  * raid types, but we want to make sure we only allocate
7611                  * for the proper type.
7612                  */
7613                 if (!block_group_bits(block_group, flags)) {
7614                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7615                                 BTRFS_BLOCK_GROUP_RAID1 |
7616                                 BTRFS_BLOCK_GROUP_RAID5 |
7617                                 BTRFS_BLOCK_GROUP_RAID6 |
7618                                 BTRFS_BLOCK_GROUP_RAID10;
7619
7620                         /*
7621                          * if they asked for extra copies and this block group
7622                          * doesn't provide them, bail.  This does allow us to
7623                          * fill raid0 from raid1.
7624                          */
7625                         if ((flags & extra) && !(block_group->flags & extra))
7626                                 goto loop;
7627                 }
7628
7629 have_block_group:
7630                 cached = block_group_cache_done(block_group);
7631                 if (unlikely(!cached)) {
7632                         have_caching_bg = true;
7633                         ret = cache_block_group(block_group, 0);
7634                         BUG_ON(ret < 0);
7635                         ret = 0;
7636                 }
7637
7638                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7639                         goto loop;
7640
7641                 /*
7642                  * Ok we want to try and use the cluster allocator, so
7643                  * lets look there
7644                  */
7645                 if (last_ptr && use_cluster) {
7646                         struct btrfs_block_group_cache *used_block_group;
7647                         unsigned long aligned_cluster;
7648                         /*
7649                          * the refill lock keeps out other
7650                          * people trying to start a new cluster
7651                          */
7652                         used_block_group = btrfs_lock_cluster(block_group,
7653                                                               last_ptr,
7654                                                               delalloc);
7655                         if (!used_block_group)
7656                                 goto refill_cluster;
7657
7658                         if (used_block_group != block_group &&
7659                             (used_block_group->ro ||
7660                              !block_group_bits(used_block_group, flags)))
7661                                 goto release_cluster;
7662
7663                         offset = btrfs_alloc_from_cluster(used_block_group,
7664                                                 last_ptr,
7665                                                 num_bytes,
7666                                                 used_block_group->key.objectid,
7667                                                 &max_extent_size);
7668                         if (offset) {
7669                                 /* we have a block, we're done */
7670                                 spin_unlock(&last_ptr->refill_lock);
7671                                 trace_btrfs_reserve_extent_cluster(fs_info,
7672                                                 used_block_group,
7673                                                 search_start, num_bytes);
7674                                 if (used_block_group != block_group) {
7675                                         btrfs_release_block_group(block_group,
7676                                                                   delalloc);
7677                                         block_group = used_block_group;
7678                                 }
7679                                 goto checks;
7680                         }
7681
7682                         WARN_ON(last_ptr->block_group != used_block_group);
7683 release_cluster:
7684                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7685                          * set up a new clusters, so lets just skip it
7686                          * and let the allocator find whatever block
7687                          * it can find.  If we reach this point, we
7688                          * will have tried the cluster allocator
7689                          * plenty of times and not have found
7690                          * anything, so we are likely way too
7691                          * fragmented for the clustering stuff to find
7692                          * anything.
7693                          *
7694                          * However, if the cluster is taken from the
7695                          * current block group, release the cluster
7696                          * first, so that we stand a better chance of
7697                          * succeeding in the unclustered
7698                          * allocation.  */
7699                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7700                             used_block_group != block_group) {
7701                                 spin_unlock(&last_ptr->refill_lock);
7702                                 btrfs_release_block_group(used_block_group,
7703                                                           delalloc);
7704                                 goto unclustered_alloc;
7705                         }
7706
7707                         /*
7708                          * this cluster didn't work out, free it and
7709                          * start over
7710                          */
7711                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7712
7713                         if (used_block_group != block_group)
7714                                 btrfs_release_block_group(used_block_group,
7715                                                           delalloc);
7716 refill_cluster:
7717                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7718                                 spin_unlock(&last_ptr->refill_lock);
7719                                 goto unclustered_alloc;
7720                         }
7721
7722                         aligned_cluster = max_t(unsigned long,
7723                                                 empty_cluster + empty_size,
7724                                               block_group->full_stripe_len);
7725
7726                         /* allocate a cluster in this block group */
7727                         ret = btrfs_find_space_cluster(fs_info, block_group,
7728                                                        last_ptr, search_start,
7729                                                        num_bytes,
7730                                                        aligned_cluster);
7731                         if (ret == 0) {
7732                                 /*
7733                                  * now pull our allocation out of this
7734                                  * cluster
7735                                  */
7736                                 offset = btrfs_alloc_from_cluster(block_group,
7737                                                         last_ptr,
7738                                                         num_bytes,
7739                                                         search_start,
7740                                                         &max_extent_size);
7741                                 if (offset) {
7742                                         /* we found one, proceed */
7743                                         spin_unlock(&last_ptr->refill_lock);
7744                                         trace_btrfs_reserve_extent_cluster(fs_info,
7745                                                 block_group, search_start,
7746                                                 num_bytes);
7747                                         goto checks;
7748                                 }
7749                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7750                                    && !failed_cluster_refill) {
7751                                 spin_unlock(&last_ptr->refill_lock);
7752
7753                                 failed_cluster_refill = true;
7754                                 wait_block_group_cache_progress(block_group,
7755                                        num_bytes + empty_cluster + empty_size);
7756                                 goto have_block_group;
7757                         }
7758
7759                         /*
7760                          * at this point we either didn't find a cluster
7761                          * or we weren't able to allocate a block from our
7762                          * cluster.  Free the cluster we've been trying
7763                          * to use, and go to the next block group
7764                          */
7765                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7766                         spin_unlock(&last_ptr->refill_lock);
7767                         goto loop;
7768                 }
7769
7770 unclustered_alloc:
7771                 /*
7772                  * We are doing an unclustered alloc, set the fragmented flag so
7773                  * we don't bother trying to setup a cluster again until we get
7774                  * more space.
7775                  */
7776                 if (unlikely(last_ptr)) {
7777                         spin_lock(&last_ptr->lock);
7778                         last_ptr->fragmented = 1;
7779                         spin_unlock(&last_ptr->lock);
7780                 }
7781                 if (cached) {
7782                         struct btrfs_free_space_ctl *ctl =
7783                                 block_group->free_space_ctl;
7784
7785                         spin_lock(&ctl->tree_lock);
7786                         if (ctl->free_space <
7787                             num_bytes + empty_cluster + empty_size) {
7788                                 if (ctl->free_space > max_extent_size)
7789                                         max_extent_size = ctl->free_space;
7790                                 spin_unlock(&ctl->tree_lock);
7791                                 goto loop;
7792                         }
7793                         spin_unlock(&ctl->tree_lock);
7794                 }
7795
7796                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7797                                                     num_bytes, empty_size,
7798                                                     &max_extent_size);
7799                 /*
7800                  * If we didn't find a chunk, and we haven't failed on this
7801                  * block group before, and this block group is in the middle of
7802                  * caching and we are ok with waiting, then go ahead and wait
7803                  * for progress to be made, and set failed_alloc to true.
7804                  *
7805                  * If failed_alloc is true then we've already waited on this
7806                  * block group once and should move on to the next block group.
7807                  */
7808                 if (!offset && !failed_alloc && !cached &&
7809                     loop > LOOP_CACHING_NOWAIT) {
7810                         wait_block_group_cache_progress(block_group,
7811                                                 num_bytes + empty_size);
7812                         failed_alloc = true;
7813                         goto have_block_group;
7814                 } else if (!offset) {
7815                         goto loop;
7816                 }
7817 checks:
7818                 search_start = ALIGN(offset, fs_info->stripesize);
7819
7820                 /* move on to the next group */
7821                 if (search_start + num_bytes >
7822                     block_group->key.objectid + block_group->key.offset) {
7823                         btrfs_add_free_space(block_group, offset, num_bytes);
7824                         goto loop;
7825                 }
7826
7827                 if (offset < search_start)
7828                         btrfs_add_free_space(block_group, offset,
7829                                              search_start - offset);
7830                 BUG_ON(offset > search_start);
7831
7832                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7833                                 num_bytes, delalloc);
7834                 if (ret == -EAGAIN) {
7835                         btrfs_add_free_space(block_group, offset, num_bytes);
7836                         goto loop;
7837                 }
7838                 btrfs_inc_block_group_reservations(block_group);
7839
7840                 /* we are all good, lets return */
7841                 ins->objectid = search_start;
7842                 ins->offset = num_bytes;
7843
7844                 trace_btrfs_reserve_extent(fs_info, block_group,
7845                                            search_start, num_bytes);
7846                 btrfs_release_block_group(block_group, delalloc);
7847                 break;
7848 loop:
7849                 failed_cluster_refill = false;
7850                 failed_alloc = false;
7851                 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7852                        index);
7853                 btrfs_release_block_group(block_group, delalloc);
7854                 cond_resched();
7855         }
7856         up_read(&space_info->groups_sem);
7857
7858         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7859                 && !orig_have_caching_bg)
7860                 orig_have_caching_bg = true;
7861
7862         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7863                 goto search;
7864
7865         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7866                 goto search;
7867
7868         /*
7869          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7870          *                      caching kthreads as we move along
7871          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7872          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7873          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7874          *                      again
7875          */
7876         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7877                 index = 0;
7878                 if (loop == LOOP_CACHING_NOWAIT) {
7879                         /*
7880                          * We want to skip the LOOP_CACHING_WAIT step if we
7881                          * don't have any uncached bgs and we've already done a
7882                          * full search through.
7883                          */
7884                         if (orig_have_caching_bg || !full_search)
7885                                 loop = LOOP_CACHING_WAIT;
7886                         else
7887                                 loop = LOOP_ALLOC_CHUNK;
7888                 } else {
7889                         loop++;
7890                 }
7891
7892                 if (loop == LOOP_ALLOC_CHUNK) {
7893                         struct btrfs_trans_handle *trans;
7894                         int exist = 0;
7895
7896                         trans = current->journal_info;
7897                         if (trans)
7898                                 exist = 1;
7899                         else
7900                                 trans = btrfs_join_transaction(root);
7901
7902                         if (IS_ERR(trans)) {
7903                                 ret = PTR_ERR(trans);
7904                                 goto out;
7905                         }
7906
7907                         ret = do_chunk_alloc(trans, fs_info, flags,
7908                                              CHUNK_ALLOC_FORCE);
7909
7910                         /*
7911                          * If we can't allocate a new chunk we've already looped
7912                          * through at least once, move on to the NO_EMPTY_SIZE
7913                          * case.
7914                          */
7915                         if (ret == -ENOSPC)
7916                                 loop = LOOP_NO_EMPTY_SIZE;
7917
7918                         /*
7919                          * Do not bail out on ENOSPC since we
7920                          * can do more things.
7921                          */
7922                         if (ret < 0 && ret != -ENOSPC)
7923                                 btrfs_abort_transaction(trans, ret);
7924                         else
7925                                 ret = 0;
7926                         if (!exist)
7927                                 btrfs_end_transaction(trans);
7928                         if (ret)
7929                                 goto out;
7930                 }
7931
7932                 if (loop == LOOP_NO_EMPTY_SIZE) {
7933                         /*
7934                          * Don't loop again if we already have no empty_size and
7935                          * no empty_cluster.
7936                          */
7937                         if (empty_size == 0 &&
7938                             empty_cluster == 0) {
7939                                 ret = -ENOSPC;
7940                                 goto out;
7941                         }
7942                         empty_size = 0;
7943                         empty_cluster = 0;
7944                 }
7945
7946                 goto search;
7947         } else if (!ins->objectid) {
7948                 ret = -ENOSPC;
7949         } else if (ins->objectid) {
7950                 if (!use_cluster && last_ptr) {
7951                         spin_lock(&last_ptr->lock);
7952                         last_ptr->window_start = ins->objectid;
7953                         spin_unlock(&last_ptr->lock);
7954                 }
7955                 ret = 0;
7956         }
7957 out:
7958         if (ret == -ENOSPC) {
7959                 spin_lock(&space_info->lock);
7960                 space_info->max_extent_size = max_extent_size;
7961                 spin_unlock(&space_info->lock);
7962                 ins->offset = max_extent_size;
7963         }
7964         return ret;
7965 }
7966
7967 static void dump_space_info(struct btrfs_fs_info *fs_info,
7968                             struct btrfs_space_info *info, u64 bytes,
7969                             int dump_block_groups)
7970 {
7971         struct btrfs_block_group_cache *cache;
7972         int index = 0;
7973
7974         spin_lock(&info->lock);
7975         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7976                    info->flags,
7977                    info->total_bytes - btrfs_space_info_used(info, true),
7978                    info->full ? "" : "not ");
7979         btrfs_info(fs_info,
7980                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7981                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7982                 info->bytes_reserved, info->bytes_may_use,
7983                 info->bytes_readonly);
7984         spin_unlock(&info->lock);
7985
7986         if (!dump_block_groups)
7987                 return;
7988
7989         down_read(&info->groups_sem);
7990 again:
7991         list_for_each_entry(cache, &info->block_groups[index], list) {
7992                 spin_lock(&cache->lock);
7993                 btrfs_info(fs_info,
7994                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7995                         cache->key.objectid, cache->key.offset,
7996                         btrfs_block_group_used(&cache->item), cache->pinned,
7997                         cache->reserved, cache->ro ? "[readonly]" : "");
7998                 btrfs_dump_free_space(cache, bytes);
7999                 spin_unlock(&cache->lock);
8000         }
8001         if (++index < BTRFS_NR_RAID_TYPES)
8002                 goto again;
8003         up_read(&info->groups_sem);
8004 }
8005
8006 /*
8007  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8008  *                        hole that is at least as big as @num_bytes.
8009  *
8010  * @root           -    The root that will contain this extent
8011  *
8012  * @ram_bytes      -    The amount of space in ram that @num_bytes take. This
8013  *                      is used for accounting purposes. This value differs
8014  *                      from @num_bytes only in the case of compressed extents.
8015  *
8016  * @num_bytes      -    Number of bytes to allocate on-disk.
8017  *
8018  * @min_alloc_size -    Indicates the minimum amount of space that the
8019  *                      allocator should try to satisfy. In some cases
8020  *                      @num_bytes may be larger than what is required and if
8021  *                      the filesystem is fragmented then allocation fails.
8022  *                      However, the presence of @min_alloc_size gives a
8023  *                      chance to try and satisfy the smaller allocation.
8024  *
8025  * @empty_size     -    A hint that you plan on doing more COW. This is the
8026  *                      size in bytes the allocator should try to find free
8027  *                      next to the block it returns.  This is just a hint and
8028  *                      may be ignored by the allocator.
8029  *
8030  * @hint_byte      -    Hint to the allocator to start searching above the byte
8031  *                      address passed. It might be ignored.
8032  *
8033  * @ins            -    This key is modified to record the found hole. It will
8034  *                      have the following values:
8035  *                      ins->objectid == start position
8036  *                      ins->flags = BTRFS_EXTENT_ITEM_KEY
8037  *                      ins->offset == the size of the hole.
8038  *
8039  * @is_data        -    Boolean flag indicating whether an extent is
8040  *                      allocated for data (true) or metadata (false)
8041  *
8042  * @delalloc       -    Boolean flag indicating whether this allocation is for
8043  *                      delalloc or not. If 'true' data_rwsem of block groups
8044  *                      is going to be acquired.
8045  *
8046  *
8047  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8048  * case -ENOSPC is returned then @ins->offset will contain the size of the
8049  * largest available hole the allocator managed to find.
8050  */
8051 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8052                          u64 num_bytes, u64 min_alloc_size,
8053                          u64 empty_size, u64 hint_byte,
8054                          struct btrfs_key *ins, int is_data, int delalloc)
8055 {
8056         struct btrfs_fs_info *fs_info = root->fs_info;
8057         bool final_tried = num_bytes == min_alloc_size;
8058         u64 flags;
8059         int ret;
8060
8061         flags = get_alloc_profile_by_root(root, is_data);
8062 again:
8063         WARN_ON(num_bytes < fs_info->sectorsize);
8064         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8065                                hint_byte, ins, flags, delalloc);
8066         if (!ret && !is_data) {
8067                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8068         } else if (ret == -ENOSPC) {
8069                 if (!final_tried && ins->offset) {
8070                         num_bytes = min(num_bytes >> 1, ins->offset);
8071                         num_bytes = round_down(num_bytes,
8072                                                fs_info->sectorsize);
8073                         num_bytes = max(num_bytes, min_alloc_size);
8074                         ram_bytes = num_bytes;
8075                         if (num_bytes == min_alloc_size)
8076                                 final_tried = true;
8077                         goto again;
8078                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8079                         struct btrfs_space_info *sinfo;
8080
8081                         sinfo = __find_space_info(fs_info, flags);
8082                         btrfs_err(fs_info,
8083                                   "allocation failed flags %llu, wanted %llu",
8084                                   flags, num_bytes);
8085                         if (sinfo)
8086                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8087                 }
8088         }
8089
8090         return ret;
8091 }
8092
8093 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8094                                         u64 start, u64 len,
8095                                         int pin, int delalloc)
8096 {
8097         struct btrfs_block_group_cache *cache;
8098         int ret = 0;
8099
8100         cache = btrfs_lookup_block_group(fs_info, start);
8101         if (!cache) {
8102                 btrfs_err(fs_info, "Unable to find block group for %llu",
8103                           start);
8104                 return -ENOSPC;
8105         }
8106
8107         if (pin)
8108                 pin_down_extent(fs_info, cache, start, len, 1);
8109         else {
8110                 if (btrfs_test_opt(fs_info, DISCARD))
8111                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8112                 btrfs_add_free_space(cache, start, len);
8113                 btrfs_free_reserved_bytes(cache, len, delalloc);
8114                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8115         }
8116
8117         btrfs_put_block_group(cache);
8118         return ret;
8119 }
8120
8121 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8122                                u64 start, u64 len, int delalloc)
8123 {
8124         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8125 }
8126
8127 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8128                                        u64 start, u64 len)
8129 {
8130         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8131 }
8132
8133 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8134                                       struct btrfs_fs_info *fs_info,
8135                                       u64 parent, u64 root_objectid,
8136                                       u64 flags, u64 owner, u64 offset,
8137                                       struct btrfs_key *ins, int ref_mod)
8138 {
8139         int ret;
8140         struct btrfs_extent_item *extent_item;
8141         struct btrfs_extent_inline_ref *iref;
8142         struct btrfs_path *path;
8143         struct extent_buffer *leaf;
8144         int type;
8145         u32 size;
8146
8147         if (parent > 0)
8148                 type = BTRFS_SHARED_DATA_REF_KEY;
8149         else
8150                 type = BTRFS_EXTENT_DATA_REF_KEY;
8151
8152         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8153
8154         path = btrfs_alloc_path();
8155         if (!path)
8156                 return -ENOMEM;
8157
8158         path->leave_spinning = 1;
8159         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8160                                       ins, size);
8161         if (ret) {
8162                 btrfs_free_path(path);
8163                 return ret;
8164         }
8165
8166         leaf = path->nodes[0];
8167         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8168                                      struct btrfs_extent_item);
8169         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8170         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8171         btrfs_set_extent_flags(leaf, extent_item,
8172                                flags | BTRFS_EXTENT_FLAG_DATA);
8173
8174         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8175         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8176         if (parent > 0) {
8177                 struct btrfs_shared_data_ref *ref;
8178                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8179                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8180                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8181         } else {
8182                 struct btrfs_extent_data_ref *ref;
8183                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8184                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8185                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8186                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8187                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8188         }
8189
8190         btrfs_mark_buffer_dirty(path->nodes[0]);
8191         btrfs_free_path(path);
8192
8193         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8194                                           ins->offset);
8195         if (ret)
8196                 return ret;
8197
8198         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8199         if (ret) { /* -ENOENT, logic error */
8200                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8201                         ins->objectid, ins->offset);
8202                 BUG();
8203         }
8204         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8205         return ret;
8206 }
8207
8208 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8209                                      struct btrfs_fs_info *fs_info,
8210                                      u64 parent, u64 root_objectid,
8211                                      u64 flags, struct btrfs_disk_key *key,
8212                                      int level, struct btrfs_key *ins)
8213 {
8214         int ret;
8215         struct btrfs_extent_item *extent_item;
8216         struct btrfs_tree_block_info *block_info;
8217         struct btrfs_extent_inline_ref *iref;
8218         struct btrfs_path *path;
8219         struct extent_buffer *leaf;
8220         u32 size = sizeof(*extent_item) + sizeof(*iref);
8221         u64 num_bytes = ins->offset;
8222         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8223
8224         if (!skinny_metadata)
8225                 size += sizeof(*block_info);
8226
8227         path = btrfs_alloc_path();
8228         if (!path) {
8229                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8230                                                    fs_info->nodesize);
8231                 return -ENOMEM;
8232         }
8233
8234         path->leave_spinning = 1;
8235         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8236                                       ins, size);
8237         if (ret) {
8238                 btrfs_free_path(path);
8239                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8240                                                    fs_info->nodesize);
8241                 return ret;
8242         }
8243
8244         leaf = path->nodes[0];
8245         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8246                                      struct btrfs_extent_item);
8247         btrfs_set_extent_refs(leaf, extent_item, 1);
8248         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8249         btrfs_set_extent_flags(leaf, extent_item,
8250                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8251
8252         if (skinny_metadata) {
8253                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8254                 num_bytes = fs_info->nodesize;
8255         } else {
8256                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8257                 btrfs_set_tree_block_key(leaf, block_info, key);
8258                 btrfs_set_tree_block_level(leaf, block_info, level);
8259                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8260         }
8261
8262         if (parent > 0) {
8263                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8264                 btrfs_set_extent_inline_ref_type(leaf, iref,
8265                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8266                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8267         } else {
8268                 btrfs_set_extent_inline_ref_type(leaf, iref,
8269                                                  BTRFS_TREE_BLOCK_REF_KEY);
8270                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8271         }
8272
8273         btrfs_mark_buffer_dirty(leaf);
8274         btrfs_free_path(path);
8275
8276         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8277                                           num_bytes);
8278         if (ret)
8279                 return ret;
8280
8281         ret = update_block_group(trans, fs_info, ins->objectid,
8282                                  fs_info->nodesize, 1);
8283         if (ret) { /* -ENOENT, logic error */
8284                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8285                         ins->objectid, ins->offset);
8286                 BUG();
8287         }
8288
8289         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8290                                           fs_info->nodesize);
8291         return ret;
8292 }
8293
8294 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8295                                      struct btrfs_root *root, u64 owner,
8296                                      u64 offset, u64 ram_bytes,
8297                                      struct btrfs_key *ins)
8298 {
8299         struct btrfs_fs_info *fs_info = root->fs_info;
8300         int ret;
8301
8302         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8303
8304         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8305                            root->root_key.objectid, owner, offset,
8306                            BTRFS_ADD_DELAYED_EXTENT);
8307
8308         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8309                                          ins->offset, 0,
8310                                          root->root_key.objectid, owner,
8311                                          offset, ram_bytes,
8312                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8313         return ret;
8314 }
8315
8316 /*
8317  * this is used by the tree logging recovery code.  It records that
8318  * an extent has been allocated and makes sure to clear the free
8319  * space cache bits as well
8320  */
8321 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8322                                    struct btrfs_fs_info *fs_info,
8323                                    u64 root_objectid, u64 owner, u64 offset,
8324                                    struct btrfs_key *ins)
8325 {
8326         int ret;
8327         struct btrfs_block_group_cache *block_group;
8328         struct btrfs_space_info *space_info;
8329
8330         /*
8331          * Mixed block groups will exclude before processing the log so we only
8332          * need to do the exclude dance if this fs isn't mixed.
8333          */
8334         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8335                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8336                                               ins->offset);
8337                 if (ret)
8338                         return ret;
8339         }
8340
8341         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8342         if (!block_group)
8343                 return -EINVAL;
8344
8345         space_info = block_group->space_info;
8346         spin_lock(&space_info->lock);
8347         spin_lock(&block_group->lock);
8348         space_info->bytes_reserved += ins->offset;
8349         block_group->reserved += ins->offset;
8350         spin_unlock(&block_group->lock);
8351         spin_unlock(&space_info->lock);
8352
8353         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8354                                          0, owner, offset, ins, 1);
8355         btrfs_put_block_group(block_group);
8356         return ret;
8357 }
8358
8359 static struct extent_buffer *
8360 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8361                       u64 bytenr, int level)
8362 {
8363         struct btrfs_fs_info *fs_info = root->fs_info;
8364         struct extent_buffer *buf;
8365
8366         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8367         if (IS_ERR(buf))
8368                 return buf;
8369
8370         btrfs_set_header_generation(buf, trans->transid);
8371         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8372         btrfs_tree_lock(buf);
8373         clean_tree_block(fs_info, buf);
8374         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8375
8376         btrfs_set_lock_blocking(buf);
8377         set_extent_buffer_uptodate(buf);
8378
8379         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8380                 buf->log_index = root->log_transid % 2;
8381                 /*
8382                  * we allow two log transactions at a time, use different
8383                  * EXENT bit to differentiate dirty pages.
8384                  */
8385                 if (buf->log_index == 0)
8386                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8387                                         buf->start + buf->len - 1, GFP_NOFS);
8388                 else
8389                         set_extent_new(&root->dirty_log_pages, buf->start,
8390                                         buf->start + buf->len - 1);
8391         } else {
8392                 buf->log_index = -1;
8393                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8394                          buf->start + buf->len - 1, GFP_NOFS);
8395         }
8396         trans->dirty = true;
8397         /* this returns a buffer locked for blocking */
8398         return buf;
8399 }
8400
8401 static struct btrfs_block_rsv *
8402 use_block_rsv(struct btrfs_trans_handle *trans,
8403               struct btrfs_root *root, u32 blocksize)
8404 {
8405         struct btrfs_fs_info *fs_info = root->fs_info;
8406         struct btrfs_block_rsv *block_rsv;
8407         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8408         int ret;
8409         bool global_updated = false;
8410
8411         block_rsv = get_block_rsv(trans, root);
8412
8413         if (unlikely(block_rsv->size == 0))
8414                 goto try_reserve;
8415 again:
8416         ret = block_rsv_use_bytes(block_rsv, blocksize);
8417         if (!ret)
8418                 return block_rsv;
8419
8420         if (block_rsv->failfast)
8421                 return ERR_PTR(ret);
8422
8423         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8424                 global_updated = true;
8425                 update_global_block_rsv(fs_info);
8426                 goto again;
8427         }
8428
8429         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8430                 static DEFINE_RATELIMIT_STATE(_rs,
8431                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8432                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8433                 if (__ratelimit(&_rs))
8434                         WARN(1, KERN_DEBUG
8435                                 "BTRFS: block rsv returned %d\n", ret);
8436         }
8437 try_reserve:
8438         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8439                                      BTRFS_RESERVE_NO_FLUSH);
8440         if (!ret)
8441                 return block_rsv;
8442         /*
8443          * If we couldn't reserve metadata bytes try and use some from
8444          * the global reserve if its space type is the same as the global
8445          * reservation.
8446          */
8447         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8448             block_rsv->space_info == global_rsv->space_info) {
8449                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8450                 if (!ret)
8451                         return global_rsv;
8452         }
8453         return ERR_PTR(ret);
8454 }
8455
8456 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8457                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8458 {
8459         block_rsv_add_bytes(block_rsv, blocksize, 0);
8460         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8461 }
8462
8463 /*
8464  * finds a free extent and does all the dirty work required for allocation
8465  * returns the tree buffer or an ERR_PTR on error.
8466  */
8467 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8468                                              struct btrfs_root *root,
8469                                              u64 parent, u64 root_objectid,
8470                                              const struct btrfs_disk_key *key,
8471                                              int level, u64 hint,
8472                                              u64 empty_size)
8473 {
8474         struct btrfs_fs_info *fs_info = root->fs_info;
8475         struct btrfs_key ins;
8476         struct btrfs_block_rsv *block_rsv;
8477         struct extent_buffer *buf;
8478         struct btrfs_delayed_extent_op *extent_op;
8479         u64 flags = 0;
8480         int ret;
8481         u32 blocksize = fs_info->nodesize;
8482         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8483
8484 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8485         if (btrfs_is_testing(fs_info)) {
8486                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8487                                             level);
8488                 if (!IS_ERR(buf))
8489                         root->alloc_bytenr += blocksize;
8490                 return buf;
8491         }
8492 #endif
8493
8494         block_rsv = use_block_rsv(trans, root, blocksize);
8495         if (IS_ERR(block_rsv))
8496                 return ERR_CAST(block_rsv);
8497
8498         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8499                                    empty_size, hint, &ins, 0, 0);
8500         if (ret)
8501                 goto out_unuse;
8502
8503         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8504         if (IS_ERR(buf)) {
8505                 ret = PTR_ERR(buf);
8506                 goto out_free_reserved;
8507         }
8508
8509         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8510                 if (parent == 0)
8511                         parent = ins.objectid;
8512                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8513         } else
8514                 BUG_ON(parent > 0);
8515
8516         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8517                 extent_op = btrfs_alloc_delayed_extent_op();
8518                 if (!extent_op) {
8519                         ret = -ENOMEM;
8520                         goto out_free_buf;
8521                 }
8522                 if (key)
8523                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8524                 else
8525                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8526                 extent_op->flags_to_set = flags;
8527                 extent_op->update_key = skinny_metadata ? false : true;
8528                 extent_op->update_flags = true;
8529                 extent_op->is_data = false;
8530                 extent_op->level = level;
8531
8532                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8533                                    root_objectid, level, 0,
8534                                    BTRFS_ADD_DELAYED_EXTENT);
8535                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8536                                                  ins.offset, parent,
8537                                                  root_objectid, level,
8538                                                  BTRFS_ADD_DELAYED_EXTENT,
8539                                                  extent_op, NULL, NULL);
8540                 if (ret)
8541                         goto out_free_delayed;
8542         }
8543         return buf;
8544
8545 out_free_delayed:
8546         btrfs_free_delayed_extent_op(extent_op);
8547 out_free_buf:
8548         free_extent_buffer(buf);
8549 out_free_reserved:
8550         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8551 out_unuse:
8552         unuse_block_rsv(fs_info, block_rsv, blocksize);
8553         return ERR_PTR(ret);
8554 }
8555
8556 struct walk_control {
8557         u64 refs[BTRFS_MAX_LEVEL];
8558         u64 flags[BTRFS_MAX_LEVEL];
8559         struct btrfs_key update_progress;
8560         int stage;
8561         int level;
8562         int shared_level;
8563         int update_ref;
8564         int keep_locks;
8565         int reada_slot;
8566         int reada_count;
8567         int for_reloc;
8568 };
8569
8570 #define DROP_REFERENCE  1
8571 #define UPDATE_BACKREF  2
8572
8573 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8574                                      struct btrfs_root *root,
8575                                      struct walk_control *wc,
8576                                      struct btrfs_path *path)
8577 {
8578         struct btrfs_fs_info *fs_info = root->fs_info;
8579         u64 bytenr;
8580         u64 generation;
8581         u64 refs;
8582         u64 flags;
8583         u32 nritems;
8584         struct btrfs_key key;
8585         struct extent_buffer *eb;
8586         int ret;
8587         int slot;
8588         int nread = 0;
8589
8590         if (path->slots[wc->level] < wc->reada_slot) {
8591                 wc->reada_count = wc->reada_count * 2 / 3;
8592                 wc->reada_count = max(wc->reada_count, 2);
8593         } else {
8594                 wc->reada_count = wc->reada_count * 3 / 2;
8595                 wc->reada_count = min_t(int, wc->reada_count,
8596                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8597         }
8598
8599         eb = path->nodes[wc->level];
8600         nritems = btrfs_header_nritems(eb);
8601
8602         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8603                 if (nread >= wc->reada_count)
8604                         break;
8605
8606                 cond_resched();
8607                 bytenr = btrfs_node_blockptr(eb, slot);
8608                 generation = btrfs_node_ptr_generation(eb, slot);
8609
8610                 if (slot == path->slots[wc->level])
8611                         goto reada;
8612
8613                 if (wc->stage == UPDATE_BACKREF &&
8614                     generation <= root->root_key.offset)
8615                         continue;
8616
8617                 /* We don't lock the tree block, it's OK to be racy here */
8618                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8619                                                wc->level - 1, 1, &refs,
8620                                                &flags);
8621                 /* We don't care about errors in readahead. */
8622                 if (ret < 0)
8623                         continue;
8624                 BUG_ON(refs == 0);
8625
8626                 if (wc->stage == DROP_REFERENCE) {
8627                         if (refs == 1)
8628                                 goto reada;
8629
8630                         if (wc->level == 1 &&
8631                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8632                                 continue;
8633                         if (!wc->update_ref ||
8634                             generation <= root->root_key.offset)
8635                                 continue;
8636                         btrfs_node_key_to_cpu(eb, &key, slot);
8637                         ret = btrfs_comp_cpu_keys(&key,
8638                                                   &wc->update_progress);
8639                         if (ret < 0)
8640                                 continue;
8641                 } else {
8642                         if (wc->level == 1 &&
8643                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8644                                 continue;
8645                 }
8646 reada:
8647                 readahead_tree_block(fs_info, bytenr);
8648                 nread++;
8649         }
8650         wc->reada_slot = slot;
8651 }
8652
8653 /*
8654  * helper to process tree block while walking down the tree.
8655  *
8656  * when wc->stage == UPDATE_BACKREF, this function updates
8657  * back refs for pointers in the block.
8658  *
8659  * NOTE: return value 1 means we should stop walking down.
8660  */
8661 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8662                                    struct btrfs_root *root,
8663                                    struct btrfs_path *path,
8664                                    struct walk_control *wc, int lookup_info)
8665 {
8666         struct btrfs_fs_info *fs_info = root->fs_info;
8667         int level = wc->level;
8668         struct extent_buffer *eb = path->nodes[level];
8669         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8670         int ret;
8671
8672         if (wc->stage == UPDATE_BACKREF &&
8673             btrfs_header_owner(eb) != root->root_key.objectid)
8674                 return 1;
8675
8676         /*
8677          * when reference count of tree block is 1, it won't increase
8678          * again. once full backref flag is set, we never clear it.
8679          */
8680         if (lookup_info &&
8681             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8682              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8683                 BUG_ON(!path->locks[level]);
8684                 ret = btrfs_lookup_extent_info(trans, fs_info,
8685                                                eb->start, level, 1,
8686                                                &wc->refs[level],
8687                                                &wc->flags[level]);
8688                 BUG_ON(ret == -ENOMEM);
8689                 if (ret)
8690                         return ret;
8691                 BUG_ON(wc->refs[level] == 0);
8692         }
8693
8694         if (wc->stage == DROP_REFERENCE) {
8695                 if (wc->refs[level] > 1)
8696                         return 1;
8697
8698                 if (path->locks[level] && !wc->keep_locks) {
8699                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8700                         path->locks[level] = 0;
8701                 }
8702                 return 0;
8703         }
8704
8705         /* wc->stage == UPDATE_BACKREF */
8706         if (!(wc->flags[level] & flag)) {
8707                 BUG_ON(!path->locks[level]);
8708                 ret = btrfs_inc_ref(trans, root, eb, 1);
8709                 BUG_ON(ret); /* -ENOMEM */
8710                 ret = btrfs_dec_ref(trans, root, eb, 0);
8711                 BUG_ON(ret); /* -ENOMEM */
8712                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8713                                                   eb->len, flag,
8714                                                   btrfs_header_level(eb), 0);
8715                 BUG_ON(ret); /* -ENOMEM */
8716                 wc->flags[level] |= flag;
8717         }
8718
8719         /*
8720          * the block is shared by multiple trees, so it's not good to
8721          * keep the tree lock
8722          */
8723         if (path->locks[level] && level > 0) {
8724                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8725                 path->locks[level] = 0;
8726         }
8727         return 0;
8728 }
8729
8730 /*
8731  * helper to process tree block pointer.
8732  *
8733  * when wc->stage == DROP_REFERENCE, this function checks
8734  * reference count of the block pointed to. if the block
8735  * is shared and we need update back refs for the subtree
8736  * rooted at the block, this function changes wc->stage to
8737  * UPDATE_BACKREF. if the block is shared and there is no
8738  * need to update back, this function drops the reference
8739  * to the block.
8740  *
8741  * NOTE: return value 1 means we should stop walking down.
8742  */
8743 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8744                                  struct btrfs_root *root,
8745                                  struct btrfs_path *path,
8746                                  struct walk_control *wc, int *lookup_info)
8747 {
8748         struct btrfs_fs_info *fs_info = root->fs_info;
8749         u64 bytenr;
8750         u64 generation;
8751         u64 parent;
8752         u32 blocksize;
8753         struct btrfs_key key;
8754         struct btrfs_key first_key;
8755         struct extent_buffer *next;
8756         int level = wc->level;
8757         int reada = 0;
8758         int ret = 0;
8759         bool need_account = false;
8760
8761         generation = btrfs_node_ptr_generation(path->nodes[level],
8762                                                path->slots[level]);
8763         /*
8764          * if the lower level block was created before the snapshot
8765          * was created, we know there is no need to update back refs
8766          * for the subtree
8767          */
8768         if (wc->stage == UPDATE_BACKREF &&
8769             generation <= root->root_key.offset) {
8770                 *lookup_info = 1;
8771                 return 1;
8772         }
8773
8774         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8775         btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8776                               path->slots[level]);
8777         blocksize = fs_info->nodesize;
8778
8779         next = find_extent_buffer(fs_info, bytenr);
8780         if (!next) {
8781                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8782                 if (IS_ERR(next))
8783                         return PTR_ERR(next);
8784
8785                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8786                                                level - 1);
8787                 reada = 1;
8788         }
8789         btrfs_tree_lock(next);
8790         btrfs_set_lock_blocking(next);
8791
8792         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8793                                        &wc->refs[level - 1],
8794                                        &wc->flags[level - 1]);
8795         if (ret < 0)
8796                 goto out_unlock;
8797
8798         if (unlikely(wc->refs[level - 1] == 0)) {
8799                 btrfs_err(fs_info, "Missing references.");
8800                 ret = -EIO;
8801                 goto out_unlock;
8802         }
8803         *lookup_info = 0;
8804
8805         if (wc->stage == DROP_REFERENCE) {
8806                 if (wc->refs[level - 1] > 1) {
8807                         need_account = true;
8808                         if (level == 1 &&
8809                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8810                                 goto skip;
8811
8812                         if (!wc->update_ref ||
8813                             generation <= root->root_key.offset)
8814                                 goto skip;
8815
8816                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8817                                               path->slots[level]);
8818                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8819                         if (ret < 0)
8820                                 goto skip;
8821
8822                         wc->stage = UPDATE_BACKREF;
8823                         wc->shared_level = level - 1;
8824                 }
8825         } else {
8826                 if (level == 1 &&
8827                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8828                         goto skip;
8829         }
8830
8831         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8832                 btrfs_tree_unlock(next);
8833                 free_extent_buffer(next);
8834                 next = NULL;
8835                 *lookup_info = 1;
8836         }
8837
8838         if (!next) {
8839                 if (reada && level == 1)
8840                         reada_walk_down(trans, root, wc, path);
8841                 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8842                                        &first_key);
8843                 if (IS_ERR(next)) {
8844                         return PTR_ERR(next);
8845                 } else if (!extent_buffer_uptodate(next)) {
8846                         free_extent_buffer(next);
8847                         return -EIO;
8848                 }
8849                 btrfs_tree_lock(next);
8850                 btrfs_set_lock_blocking(next);
8851         }
8852
8853         level--;
8854         ASSERT(level == btrfs_header_level(next));
8855         if (level != btrfs_header_level(next)) {
8856                 btrfs_err(root->fs_info, "mismatched level");
8857                 ret = -EIO;
8858                 goto out_unlock;
8859         }
8860         path->nodes[level] = next;
8861         path->slots[level] = 0;
8862         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8863         wc->level = level;
8864         if (wc->level == 1)
8865                 wc->reada_slot = 0;
8866         return 0;
8867 skip:
8868         wc->refs[level - 1] = 0;
8869         wc->flags[level - 1] = 0;
8870         if (wc->stage == DROP_REFERENCE) {
8871                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8872                         parent = path->nodes[level]->start;
8873                 } else {
8874                         ASSERT(root->root_key.objectid ==
8875                                btrfs_header_owner(path->nodes[level]));
8876                         if (root->root_key.objectid !=
8877                             btrfs_header_owner(path->nodes[level])) {
8878                                 btrfs_err(root->fs_info,
8879                                                 "mismatched block owner");
8880                                 ret = -EIO;
8881                                 goto out_unlock;
8882                         }
8883                         parent = 0;
8884                 }
8885
8886                 if (need_account) {
8887                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8888                                                          generation, level - 1);
8889                         if (ret) {
8890                                 btrfs_err_rl(fs_info,
8891                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8892                                              ret);
8893                         }
8894                 }
8895                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8896                                         parent, root->root_key.objectid,
8897                                         level - 1, 0);
8898                 if (ret)
8899                         goto out_unlock;
8900         }
8901
8902         *lookup_info = 1;
8903         ret = 1;
8904
8905 out_unlock:
8906         btrfs_tree_unlock(next);
8907         free_extent_buffer(next);
8908
8909         return ret;
8910 }
8911
8912 /*
8913  * helper to process tree block while walking up the tree.
8914  *
8915  * when wc->stage == DROP_REFERENCE, this function drops
8916  * reference count on the block.
8917  *
8918  * when wc->stage == UPDATE_BACKREF, this function changes
8919  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8920  * to UPDATE_BACKREF previously while processing the block.
8921  *
8922  * NOTE: return value 1 means we should stop walking up.
8923  */
8924 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8925                                  struct btrfs_root *root,
8926                                  struct btrfs_path *path,
8927                                  struct walk_control *wc)
8928 {
8929         struct btrfs_fs_info *fs_info = root->fs_info;
8930         int ret;
8931         int level = wc->level;
8932         struct extent_buffer *eb = path->nodes[level];
8933         u64 parent = 0;
8934
8935         if (wc->stage == UPDATE_BACKREF) {
8936                 BUG_ON(wc->shared_level < level);
8937                 if (level < wc->shared_level)
8938                         goto out;
8939
8940                 ret = find_next_key(path, level + 1, &wc->update_progress);
8941                 if (ret > 0)
8942                         wc->update_ref = 0;
8943
8944                 wc->stage = DROP_REFERENCE;
8945                 wc->shared_level = -1;
8946                 path->slots[level] = 0;
8947
8948                 /*
8949                  * check reference count again if the block isn't locked.
8950                  * we should start walking down the tree again if reference
8951                  * count is one.
8952                  */
8953                 if (!path->locks[level]) {
8954                         BUG_ON(level == 0);
8955                         btrfs_tree_lock(eb);
8956                         btrfs_set_lock_blocking(eb);
8957                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8958
8959                         ret = btrfs_lookup_extent_info(trans, fs_info,
8960                                                        eb->start, level, 1,
8961                                                        &wc->refs[level],
8962                                                        &wc->flags[level]);
8963                         if (ret < 0) {
8964                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8965                                 path->locks[level] = 0;
8966                                 return ret;
8967                         }
8968                         BUG_ON(wc->refs[level] == 0);
8969                         if (wc->refs[level] == 1) {
8970                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8971                                 path->locks[level] = 0;
8972                                 return 1;
8973                         }
8974                 }
8975         }
8976
8977         /* wc->stage == DROP_REFERENCE */
8978         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8979
8980         if (wc->refs[level] == 1) {
8981                 if (level == 0) {
8982                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8983                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8984                         else
8985                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8986                         BUG_ON(ret); /* -ENOMEM */
8987                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8988                         if (ret) {
8989                                 btrfs_err_rl(fs_info,
8990                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8991                                              ret);
8992                         }
8993                 }
8994                 /* make block locked assertion in clean_tree_block happy */
8995                 if (!path->locks[level] &&
8996                     btrfs_header_generation(eb) == trans->transid) {
8997                         btrfs_tree_lock(eb);
8998                         btrfs_set_lock_blocking(eb);
8999                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9000                 }
9001                 clean_tree_block(fs_info, eb);
9002         }
9003
9004         if (eb == root->node) {
9005                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9006                         parent = eb->start;
9007                 else
9008                         BUG_ON(root->root_key.objectid !=
9009                                btrfs_header_owner(eb));
9010         } else {
9011                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9012                         parent = path->nodes[level + 1]->start;
9013                 else
9014                         BUG_ON(root->root_key.objectid !=
9015                                btrfs_header_owner(path->nodes[level + 1]));
9016         }
9017
9018         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9019 out:
9020         wc->refs[level] = 0;
9021         wc->flags[level] = 0;
9022         return 0;
9023 }
9024
9025 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9026                                    struct btrfs_root *root,
9027                                    struct btrfs_path *path,
9028                                    struct walk_control *wc)
9029 {
9030         int level = wc->level;
9031         int lookup_info = 1;
9032         int ret;
9033
9034         while (level >= 0) {
9035                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9036                 if (ret > 0)
9037                         break;
9038
9039                 if (level == 0)
9040                         break;
9041
9042                 if (path->slots[level] >=
9043                     btrfs_header_nritems(path->nodes[level]))
9044                         break;
9045
9046                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9047                 if (ret > 0) {
9048                         path->slots[level]++;
9049                         continue;
9050                 } else if (ret < 0)
9051                         return ret;
9052                 level = wc->level;
9053         }
9054         return 0;
9055 }
9056
9057 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9058                                  struct btrfs_root *root,
9059                                  struct btrfs_path *path,
9060                                  struct walk_control *wc, int max_level)
9061 {
9062         int level = wc->level;
9063         int ret;
9064
9065         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9066         while (level < max_level && path->nodes[level]) {
9067                 wc->level = level;
9068                 if (path->slots[level] + 1 <
9069                     btrfs_header_nritems(path->nodes[level])) {
9070                         path->slots[level]++;
9071                         return 0;
9072                 } else {
9073                         ret = walk_up_proc(trans, root, path, wc);
9074                         if (ret > 0)
9075                                 return 0;
9076
9077                         if (path->locks[level]) {
9078                                 btrfs_tree_unlock_rw(path->nodes[level],
9079                                                      path->locks[level]);
9080                                 path->locks[level] = 0;
9081                         }
9082                         free_extent_buffer(path->nodes[level]);
9083                         path->nodes[level] = NULL;
9084                         level++;
9085                 }
9086         }
9087         return 1;
9088 }
9089
9090 /*
9091  * drop a subvolume tree.
9092  *
9093  * this function traverses the tree freeing any blocks that only
9094  * referenced by the tree.
9095  *
9096  * when a shared tree block is found. this function decreases its
9097  * reference count by one. if update_ref is true, this function
9098  * also make sure backrefs for the shared block and all lower level
9099  * blocks are properly updated.
9100  *
9101  * If called with for_reloc == 0, may exit early with -EAGAIN
9102  */
9103 int btrfs_drop_snapshot(struct btrfs_root *root,
9104                          struct btrfs_block_rsv *block_rsv, int update_ref,
9105                          int for_reloc)
9106 {
9107         struct btrfs_fs_info *fs_info = root->fs_info;
9108         struct btrfs_path *path;
9109         struct btrfs_trans_handle *trans;
9110         struct btrfs_root *tree_root = fs_info->tree_root;
9111         struct btrfs_root_item *root_item = &root->root_item;
9112         struct walk_control *wc;
9113         struct btrfs_key key;
9114         int err = 0;
9115         int ret;
9116         int level;
9117         bool root_dropped = false;
9118
9119         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9120
9121         path = btrfs_alloc_path();
9122         if (!path) {
9123                 err = -ENOMEM;
9124                 goto out;
9125         }
9126
9127         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9128         if (!wc) {
9129                 btrfs_free_path(path);
9130                 err = -ENOMEM;
9131                 goto out;
9132         }
9133
9134         trans = btrfs_start_transaction(tree_root, 0);
9135         if (IS_ERR(trans)) {
9136                 err = PTR_ERR(trans);
9137                 goto out_free;
9138         }
9139
9140         if (block_rsv)
9141                 trans->block_rsv = block_rsv;
9142
9143         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9144                 level = btrfs_header_level(root->node);
9145                 path->nodes[level] = btrfs_lock_root_node(root);
9146                 btrfs_set_lock_blocking(path->nodes[level]);
9147                 path->slots[level] = 0;
9148                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9149                 memset(&wc->update_progress, 0,
9150                        sizeof(wc->update_progress));
9151         } else {
9152                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9153                 memcpy(&wc->update_progress, &key,
9154                        sizeof(wc->update_progress));
9155
9156                 level = root_item->drop_level;
9157                 BUG_ON(level == 0);
9158                 path->lowest_level = level;
9159                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9160                 path->lowest_level = 0;
9161                 if (ret < 0) {
9162                         err = ret;
9163                         goto out_end_trans;
9164                 }
9165                 WARN_ON(ret > 0);
9166
9167                 /*
9168                  * unlock our path, this is safe because only this
9169                  * function is allowed to delete this snapshot
9170                  */
9171                 btrfs_unlock_up_safe(path, 0);
9172
9173                 level = btrfs_header_level(root->node);
9174                 while (1) {
9175                         btrfs_tree_lock(path->nodes[level]);
9176                         btrfs_set_lock_blocking(path->nodes[level]);
9177                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9178
9179                         ret = btrfs_lookup_extent_info(trans, fs_info,
9180                                                 path->nodes[level]->start,
9181                                                 level, 1, &wc->refs[level],
9182                                                 &wc->flags[level]);
9183                         if (ret < 0) {
9184                                 err = ret;
9185                                 goto out_end_trans;
9186                         }
9187                         BUG_ON(wc->refs[level] == 0);
9188
9189                         if (level == root_item->drop_level)
9190                                 break;
9191
9192                         btrfs_tree_unlock(path->nodes[level]);
9193                         path->locks[level] = 0;
9194                         WARN_ON(wc->refs[level] != 1);
9195                         level--;
9196                 }
9197         }
9198
9199         wc->level = level;
9200         wc->shared_level = -1;
9201         wc->stage = DROP_REFERENCE;
9202         wc->update_ref = update_ref;
9203         wc->keep_locks = 0;
9204         wc->for_reloc = for_reloc;
9205         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9206
9207         while (1) {
9208
9209                 ret = walk_down_tree(trans, root, path, wc);
9210                 if (ret < 0) {
9211                         err = ret;
9212                         break;
9213                 }
9214
9215                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9216                 if (ret < 0) {
9217                         err = ret;
9218                         break;
9219                 }
9220
9221                 if (ret > 0) {
9222                         BUG_ON(wc->stage != DROP_REFERENCE);
9223                         break;
9224                 }
9225
9226                 if (wc->stage == DROP_REFERENCE) {
9227                         level = wc->level;
9228                         btrfs_node_key(path->nodes[level],
9229                                        &root_item->drop_progress,
9230                                        path->slots[level]);
9231                         root_item->drop_level = level;
9232                 }
9233
9234                 BUG_ON(wc->level == 0);
9235                 if (btrfs_should_end_transaction(trans) ||
9236                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9237                         ret = btrfs_update_root(trans, tree_root,
9238                                                 &root->root_key,
9239                                                 root_item);
9240                         if (ret) {
9241                                 btrfs_abort_transaction(trans, ret);
9242                                 err = ret;
9243                                 goto out_end_trans;
9244                         }
9245
9246                         btrfs_end_transaction_throttle(trans);
9247                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9248                                 btrfs_debug(fs_info,
9249                                             "drop snapshot early exit");
9250                                 err = -EAGAIN;
9251                                 goto out_free;
9252                         }
9253
9254                         trans = btrfs_start_transaction(tree_root, 0);
9255                         if (IS_ERR(trans)) {
9256                                 err = PTR_ERR(trans);
9257                                 goto out_free;
9258                         }
9259                         if (block_rsv)
9260                                 trans->block_rsv = block_rsv;
9261                 }
9262         }
9263         btrfs_release_path(path);
9264         if (err)
9265                 goto out_end_trans;
9266
9267         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9268         if (ret) {
9269                 btrfs_abort_transaction(trans, ret);
9270                 err = ret;
9271                 goto out_end_trans;
9272         }
9273
9274         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9275                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9276                                       NULL, NULL);
9277                 if (ret < 0) {
9278                         btrfs_abort_transaction(trans, ret);
9279                         err = ret;
9280                         goto out_end_trans;
9281                 } else if (ret > 0) {
9282                         /* if we fail to delete the orphan item this time
9283                          * around, it'll get picked up the next time.
9284                          *
9285                          * The most common failure here is just -ENOENT.
9286                          */
9287                         btrfs_del_orphan_item(trans, tree_root,
9288                                               root->root_key.objectid);
9289                 }
9290         }
9291
9292         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9293                 btrfs_add_dropped_root(trans, root);
9294         } else {
9295                 free_extent_buffer(root->node);
9296                 free_extent_buffer(root->commit_root);
9297                 btrfs_put_fs_root(root);
9298         }
9299         root_dropped = true;
9300 out_end_trans:
9301         btrfs_end_transaction_throttle(trans);
9302 out_free:
9303         kfree(wc);
9304         btrfs_free_path(path);
9305 out:
9306         /*
9307          * So if we need to stop dropping the snapshot for whatever reason we
9308          * need to make sure to add it back to the dead root list so that we
9309          * keep trying to do the work later.  This also cleans up roots if we
9310          * don't have it in the radix (like when we recover after a power fail
9311          * or unmount) so we don't leak memory.
9312          */
9313         if (!for_reloc && !root_dropped)
9314                 btrfs_add_dead_root(root);
9315         if (err && err != -EAGAIN)
9316                 btrfs_handle_fs_error(fs_info, err, NULL);
9317         return err;
9318 }
9319
9320 /*
9321  * drop subtree rooted at tree block 'node'.
9322  *
9323  * NOTE: this function will unlock and release tree block 'node'
9324  * only used by relocation code
9325  */
9326 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9327                         struct btrfs_root *root,
9328                         struct extent_buffer *node,
9329                         struct extent_buffer *parent)
9330 {
9331         struct btrfs_fs_info *fs_info = root->fs_info;
9332         struct btrfs_path *path;
9333         struct walk_control *wc;
9334         int level;
9335         int parent_level;
9336         int ret = 0;
9337         int wret;
9338
9339         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9340
9341         path = btrfs_alloc_path();
9342         if (!path)
9343                 return -ENOMEM;
9344
9345         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9346         if (!wc) {
9347                 btrfs_free_path(path);
9348                 return -ENOMEM;
9349         }
9350
9351         btrfs_assert_tree_locked(parent);
9352         parent_level = btrfs_header_level(parent);
9353         extent_buffer_get(parent);
9354         path->nodes[parent_level] = parent;
9355         path->slots[parent_level] = btrfs_header_nritems(parent);
9356
9357         btrfs_assert_tree_locked(node);
9358         level = btrfs_header_level(node);
9359         path->nodes[level] = node;
9360         path->slots[level] = 0;
9361         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9362
9363         wc->refs[parent_level] = 1;
9364         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9365         wc->level = level;
9366         wc->shared_level = -1;
9367         wc->stage = DROP_REFERENCE;
9368         wc->update_ref = 0;
9369         wc->keep_locks = 1;
9370         wc->for_reloc = 1;
9371         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9372
9373         while (1) {
9374                 wret = walk_down_tree(trans, root, path, wc);
9375                 if (wret < 0) {
9376                         ret = wret;
9377                         break;
9378                 }
9379
9380                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9381                 if (wret < 0)
9382                         ret = wret;
9383                 if (wret != 0)
9384                         break;
9385         }
9386
9387         kfree(wc);
9388         btrfs_free_path(path);
9389         return ret;
9390 }
9391
9392 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9393 {
9394         u64 num_devices;
9395         u64 stripped;
9396
9397         /*
9398          * if restripe for this chunk_type is on pick target profile and
9399          * return, otherwise do the usual balance
9400          */
9401         stripped = get_restripe_target(fs_info, flags);
9402         if (stripped)
9403                 return extended_to_chunk(stripped);
9404
9405         num_devices = fs_info->fs_devices->rw_devices;
9406
9407         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9408                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9409                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9410
9411         if (num_devices == 1) {
9412                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9413                 stripped = flags & ~stripped;
9414
9415                 /* turn raid0 into single device chunks */
9416                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9417                         return stripped;
9418
9419                 /* turn mirroring into duplication */
9420                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9421                              BTRFS_BLOCK_GROUP_RAID10))
9422                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9423         } else {
9424                 /* they already had raid on here, just return */
9425                 if (flags & stripped)
9426                         return flags;
9427
9428                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9429                 stripped = flags & ~stripped;
9430
9431                 /* switch duplicated blocks with raid1 */
9432                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9433                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9434
9435                 /* this is drive concat, leave it alone */
9436         }
9437
9438         return flags;
9439 }
9440
9441 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9442 {
9443         struct btrfs_space_info *sinfo = cache->space_info;
9444         u64 num_bytes;
9445         u64 min_allocable_bytes;
9446         int ret = -ENOSPC;
9447
9448         /*
9449          * We need some metadata space and system metadata space for
9450          * allocating chunks in some corner cases until we force to set
9451          * it to be readonly.
9452          */
9453         if ((sinfo->flags &
9454              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9455             !force)
9456                 min_allocable_bytes = SZ_1M;
9457         else
9458                 min_allocable_bytes = 0;
9459
9460         spin_lock(&sinfo->lock);
9461         spin_lock(&cache->lock);
9462
9463         if (cache->ro) {
9464                 cache->ro++;
9465                 ret = 0;
9466                 goto out;
9467         }
9468
9469         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9470                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9471
9472         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9473             min_allocable_bytes <= sinfo->total_bytes) {
9474                 sinfo->bytes_readonly += num_bytes;
9475                 cache->ro++;
9476                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9477                 ret = 0;
9478         }
9479 out:
9480         spin_unlock(&cache->lock);
9481         spin_unlock(&sinfo->lock);
9482         return ret;
9483 }
9484
9485 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9486                              struct btrfs_block_group_cache *cache)
9487
9488 {
9489         struct btrfs_trans_handle *trans;
9490         u64 alloc_flags;
9491         int ret;
9492
9493 again:
9494         trans = btrfs_join_transaction(fs_info->extent_root);
9495         if (IS_ERR(trans))
9496                 return PTR_ERR(trans);
9497
9498         /*
9499          * we're not allowed to set block groups readonly after the dirty
9500          * block groups cache has started writing.  If it already started,
9501          * back off and let this transaction commit
9502          */
9503         mutex_lock(&fs_info->ro_block_group_mutex);
9504         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9505                 u64 transid = trans->transid;
9506
9507                 mutex_unlock(&fs_info->ro_block_group_mutex);
9508                 btrfs_end_transaction(trans);
9509
9510                 ret = btrfs_wait_for_commit(fs_info, transid);
9511                 if (ret)
9512                         return ret;
9513                 goto again;
9514         }
9515
9516         /*
9517          * if we are changing raid levels, try to allocate a corresponding
9518          * block group with the new raid level.
9519          */
9520         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9521         if (alloc_flags != cache->flags) {
9522                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9523                                      CHUNK_ALLOC_FORCE);
9524                 /*
9525                  * ENOSPC is allowed here, we may have enough space
9526                  * already allocated at the new raid level to
9527                  * carry on
9528                  */
9529                 if (ret == -ENOSPC)
9530                         ret = 0;
9531                 if (ret < 0)
9532                         goto out;
9533         }
9534
9535         ret = inc_block_group_ro(cache, 0);
9536         if (!ret)
9537                 goto out;
9538         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9539         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9540                              CHUNK_ALLOC_FORCE);
9541         if (ret < 0)
9542                 goto out;
9543         ret = inc_block_group_ro(cache, 0);
9544 out:
9545         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9546                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9547                 mutex_lock(&fs_info->chunk_mutex);
9548                 check_system_chunk(trans, fs_info, alloc_flags);
9549                 mutex_unlock(&fs_info->chunk_mutex);
9550         }
9551         mutex_unlock(&fs_info->ro_block_group_mutex);
9552
9553         btrfs_end_transaction(trans);
9554         return ret;
9555 }
9556
9557 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9558                             struct btrfs_fs_info *fs_info, u64 type)
9559 {
9560         u64 alloc_flags = get_alloc_profile(fs_info, type);
9561
9562         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9563 }
9564
9565 /*
9566  * helper to account the unused space of all the readonly block group in the
9567  * space_info. takes mirrors into account.
9568  */
9569 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9570 {
9571         struct btrfs_block_group_cache *block_group;
9572         u64 free_bytes = 0;
9573         int factor;
9574
9575         /* It's df, we don't care if it's racy */
9576         if (list_empty(&sinfo->ro_bgs))
9577                 return 0;
9578
9579         spin_lock(&sinfo->lock);
9580         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9581                 spin_lock(&block_group->lock);
9582
9583                 if (!block_group->ro) {
9584                         spin_unlock(&block_group->lock);
9585                         continue;
9586                 }
9587
9588                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9589                                           BTRFS_BLOCK_GROUP_RAID10 |
9590                                           BTRFS_BLOCK_GROUP_DUP))
9591                         factor = 2;
9592                 else
9593                         factor = 1;
9594
9595                 free_bytes += (block_group->key.offset -
9596                                btrfs_block_group_used(&block_group->item)) *
9597                                factor;
9598
9599                 spin_unlock(&block_group->lock);
9600         }
9601         spin_unlock(&sinfo->lock);
9602
9603         return free_bytes;
9604 }
9605
9606 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9607 {
9608         struct btrfs_space_info *sinfo = cache->space_info;
9609         u64 num_bytes;
9610
9611         BUG_ON(!cache->ro);
9612
9613         spin_lock(&sinfo->lock);
9614         spin_lock(&cache->lock);
9615         if (!--cache->ro) {
9616                 num_bytes = cache->key.offset - cache->reserved -
9617                             cache->pinned - cache->bytes_super -
9618                             btrfs_block_group_used(&cache->item);
9619                 sinfo->bytes_readonly -= num_bytes;
9620                 list_del_init(&cache->ro_list);
9621         }
9622         spin_unlock(&cache->lock);
9623         spin_unlock(&sinfo->lock);
9624 }
9625
9626 /*
9627  * checks to see if its even possible to relocate this block group.
9628  *
9629  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9630  * ok to go ahead and try.
9631  */
9632 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9633 {
9634         struct btrfs_root *root = fs_info->extent_root;
9635         struct btrfs_block_group_cache *block_group;
9636         struct btrfs_space_info *space_info;
9637         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9638         struct btrfs_device *device;
9639         struct btrfs_trans_handle *trans;
9640         u64 min_free;
9641         u64 dev_min = 1;
9642         u64 dev_nr = 0;
9643         u64 target;
9644         int debug;
9645         int index;
9646         int full = 0;
9647         int ret = 0;
9648
9649         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9650
9651         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9652
9653         /* odd, couldn't find the block group, leave it alone */
9654         if (!block_group) {
9655                 if (debug)
9656                         btrfs_warn(fs_info,
9657                                    "can't find block group for bytenr %llu",
9658                                    bytenr);
9659                 return -1;
9660         }
9661
9662         min_free = btrfs_block_group_used(&block_group->item);
9663
9664         /* no bytes used, we're good */
9665         if (!min_free)
9666                 goto out;
9667
9668         space_info = block_group->space_info;
9669         spin_lock(&space_info->lock);
9670
9671         full = space_info->full;
9672
9673         /*
9674          * if this is the last block group we have in this space, we can't
9675          * relocate it unless we're able to allocate a new chunk below.
9676          *
9677          * Otherwise, we need to make sure we have room in the space to handle
9678          * all of the extents from this block group.  If we can, we're good
9679          */
9680         if ((space_info->total_bytes != block_group->key.offset) &&
9681             (btrfs_space_info_used(space_info, false) + min_free <
9682              space_info->total_bytes)) {
9683                 spin_unlock(&space_info->lock);
9684                 goto out;
9685         }
9686         spin_unlock(&space_info->lock);
9687
9688         /*
9689          * ok we don't have enough space, but maybe we have free space on our
9690          * devices to allocate new chunks for relocation, so loop through our
9691          * alloc devices and guess if we have enough space.  if this block
9692          * group is going to be restriped, run checks against the target
9693          * profile instead of the current one.
9694          */
9695         ret = -1;
9696
9697         /*
9698          * index:
9699          *      0: raid10
9700          *      1: raid1
9701          *      2: dup
9702          *      3: raid0
9703          *      4: single
9704          */
9705         target = get_restripe_target(fs_info, block_group->flags);
9706         if (target) {
9707                 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9708         } else {
9709                 /*
9710                  * this is just a balance, so if we were marked as full
9711                  * we know there is no space for a new chunk
9712                  */
9713                 if (full) {
9714                         if (debug)
9715                                 btrfs_warn(fs_info,
9716                                            "no space to alloc new chunk for block group %llu",
9717                                            block_group->key.objectid);
9718                         goto out;
9719                 }
9720
9721                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9722         }
9723
9724         if (index == BTRFS_RAID_RAID10) {
9725                 dev_min = 4;
9726                 /* Divide by 2 */
9727                 min_free >>= 1;
9728         } else if (index == BTRFS_RAID_RAID1) {
9729                 dev_min = 2;
9730         } else if (index == BTRFS_RAID_DUP) {
9731                 /* Multiply by 2 */
9732                 min_free <<= 1;
9733         } else if (index == BTRFS_RAID_RAID0) {
9734                 dev_min = fs_devices->rw_devices;
9735                 min_free = div64_u64(min_free, dev_min);
9736         }
9737
9738         /* We need to do this so that we can look at pending chunks */
9739         trans = btrfs_join_transaction(root);
9740         if (IS_ERR(trans)) {
9741                 ret = PTR_ERR(trans);
9742                 goto out;
9743         }
9744
9745         mutex_lock(&fs_info->chunk_mutex);
9746         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9747                 u64 dev_offset;
9748
9749                 /*
9750                  * check to make sure we can actually find a chunk with enough
9751                  * space to fit our block group in.
9752                  */
9753                 if (device->total_bytes > device->bytes_used + min_free &&
9754                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9755                         ret = find_free_dev_extent(trans, device, min_free,
9756                                                    &dev_offset, NULL);
9757                         if (!ret)
9758                                 dev_nr++;
9759
9760                         if (dev_nr >= dev_min)
9761                                 break;
9762
9763                         ret = -1;
9764                 }
9765         }
9766         if (debug && ret == -1)
9767                 btrfs_warn(fs_info,
9768                            "no space to allocate a new chunk for block group %llu",
9769                            block_group->key.objectid);
9770         mutex_unlock(&fs_info->chunk_mutex);
9771         btrfs_end_transaction(trans);
9772 out:
9773         btrfs_put_block_group(block_group);
9774         return ret;
9775 }
9776
9777 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9778                                   struct btrfs_path *path,
9779                                   struct btrfs_key *key)
9780 {
9781         struct btrfs_root *root = fs_info->extent_root;
9782         int ret = 0;
9783         struct btrfs_key found_key;
9784         struct extent_buffer *leaf;
9785         int slot;
9786
9787         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9788         if (ret < 0)
9789                 goto out;
9790
9791         while (1) {
9792                 slot = path->slots[0];
9793                 leaf = path->nodes[0];
9794                 if (slot >= btrfs_header_nritems(leaf)) {
9795                         ret = btrfs_next_leaf(root, path);
9796                         if (ret == 0)
9797                                 continue;
9798                         if (ret < 0)
9799                                 goto out;
9800                         break;
9801                 }
9802                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9803
9804                 if (found_key.objectid >= key->objectid &&
9805                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9806                         struct extent_map_tree *em_tree;
9807                         struct extent_map *em;
9808
9809                         em_tree = &root->fs_info->mapping_tree.map_tree;
9810                         read_lock(&em_tree->lock);
9811                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9812                                                    found_key.offset);
9813                         read_unlock(&em_tree->lock);
9814                         if (!em) {
9815                                 btrfs_err(fs_info,
9816                         "logical %llu len %llu found bg but no related chunk",
9817                                           found_key.objectid, found_key.offset);
9818                                 ret = -ENOENT;
9819                         } else {
9820                                 ret = 0;
9821                         }
9822                         free_extent_map(em);
9823                         goto out;
9824                 }
9825                 path->slots[0]++;
9826         }
9827 out:
9828         return ret;
9829 }
9830
9831 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9832 {
9833         struct btrfs_block_group_cache *block_group;
9834         u64 last = 0;
9835
9836         while (1) {
9837                 struct inode *inode;
9838
9839                 block_group = btrfs_lookup_first_block_group(info, last);
9840                 while (block_group) {
9841                         spin_lock(&block_group->lock);
9842                         if (block_group->iref)
9843                                 break;
9844                         spin_unlock(&block_group->lock);
9845                         block_group = next_block_group(info, block_group);
9846                 }
9847                 if (!block_group) {
9848                         if (last == 0)
9849                                 break;
9850                         last = 0;
9851                         continue;
9852                 }
9853
9854                 inode = block_group->inode;
9855                 block_group->iref = 0;
9856                 block_group->inode = NULL;
9857                 spin_unlock(&block_group->lock);
9858                 ASSERT(block_group->io_ctl.inode == NULL);
9859                 iput(inode);
9860                 last = block_group->key.objectid + block_group->key.offset;
9861                 btrfs_put_block_group(block_group);
9862         }
9863 }
9864
9865 /*
9866  * Must be called only after stopping all workers, since we could have block
9867  * group caching kthreads running, and therefore they could race with us if we
9868  * freed the block groups before stopping them.
9869  */
9870 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9871 {
9872         struct btrfs_block_group_cache *block_group;
9873         struct btrfs_space_info *space_info;
9874         struct btrfs_caching_control *caching_ctl;
9875         struct rb_node *n;
9876
9877         down_write(&info->commit_root_sem);
9878         while (!list_empty(&info->caching_block_groups)) {
9879                 caching_ctl = list_entry(info->caching_block_groups.next,
9880                                          struct btrfs_caching_control, list);
9881                 list_del(&caching_ctl->list);
9882                 put_caching_control(caching_ctl);
9883         }
9884         up_write(&info->commit_root_sem);
9885
9886         spin_lock(&info->unused_bgs_lock);
9887         while (!list_empty(&info->unused_bgs)) {
9888                 block_group = list_first_entry(&info->unused_bgs,
9889                                                struct btrfs_block_group_cache,
9890                                                bg_list);
9891                 list_del_init(&block_group->bg_list);
9892                 btrfs_put_block_group(block_group);
9893         }
9894         spin_unlock(&info->unused_bgs_lock);
9895
9896         spin_lock(&info->block_group_cache_lock);
9897         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9898                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9899                                        cache_node);
9900                 rb_erase(&block_group->cache_node,
9901                          &info->block_group_cache_tree);
9902                 RB_CLEAR_NODE(&block_group->cache_node);
9903                 spin_unlock(&info->block_group_cache_lock);
9904
9905                 down_write(&block_group->space_info->groups_sem);
9906                 list_del(&block_group->list);
9907                 up_write(&block_group->space_info->groups_sem);
9908
9909                 /*
9910                  * We haven't cached this block group, which means we could
9911                  * possibly have excluded extents on this block group.
9912                  */
9913                 if (block_group->cached == BTRFS_CACHE_NO ||
9914                     block_group->cached == BTRFS_CACHE_ERROR)
9915                         free_excluded_extents(info, block_group);
9916
9917                 btrfs_remove_free_space_cache(block_group);
9918                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9919                 ASSERT(list_empty(&block_group->dirty_list));
9920                 ASSERT(list_empty(&block_group->io_list));
9921                 ASSERT(list_empty(&block_group->bg_list));
9922                 ASSERT(atomic_read(&block_group->count) == 1);
9923                 btrfs_put_block_group(block_group);
9924
9925                 spin_lock(&info->block_group_cache_lock);
9926         }
9927         spin_unlock(&info->block_group_cache_lock);
9928
9929         /* now that all the block groups are freed, go through and
9930          * free all the space_info structs.  This is only called during
9931          * the final stages of unmount, and so we know nobody is
9932          * using them.  We call synchronize_rcu() once before we start,
9933          * just to be on the safe side.
9934          */
9935         synchronize_rcu();
9936
9937         release_global_block_rsv(info);
9938
9939         while (!list_empty(&info->space_info)) {
9940                 int i;
9941
9942                 space_info = list_entry(info->space_info.next,
9943                                         struct btrfs_space_info,
9944                                         list);
9945
9946                 /*
9947                  * Do not hide this behind enospc_debug, this is actually
9948                  * important and indicates a real bug if this happens.
9949                  */
9950                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9951                             space_info->bytes_reserved > 0 ||
9952                             space_info->bytes_may_use > 0))
9953                         dump_space_info(info, space_info, 0, 0);
9954                 list_del(&space_info->list);
9955                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9956                         struct kobject *kobj;
9957                         kobj = space_info->block_group_kobjs[i];
9958                         space_info->block_group_kobjs[i] = NULL;
9959                         if (kobj) {
9960                                 kobject_del(kobj);
9961                                 kobject_put(kobj);
9962                         }
9963                 }
9964                 kobject_del(&space_info->kobj);
9965                 kobject_put(&space_info->kobj);
9966         }
9967         return 0;
9968 }
9969
9970 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9971 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9972 {
9973         struct btrfs_space_info *space_info;
9974         struct raid_kobject *rkobj;
9975         LIST_HEAD(list);
9976         int index;
9977         int ret = 0;
9978
9979         spin_lock(&fs_info->pending_raid_kobjs_lock);
9980         list_splice_init(&fs_info->pending_raid_kobjs, &list);
9981         spin_unlock(&fs_info->pending_raid_kobjs_lock);
9982
9983         list_for_each_entry(rkobj, &list, list) {
9984                 space_info = __find_space_info(fs_info, rkobj->flags);
9985                 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9986
9987                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9988                                   "%s", get_raid_name(index));
9989                 if (ret) {
9990                         kobject_put(&rkobj->kobj);
9991                         break;
9992                 }
9993         }
9994         if (ret)
9995                 btrfs_warn(fs_info,
9996                            "failed to add kobject for block cache, ignoring");
9997 }
9998
9999 static void link_block_group(struct btrfs_block_group_cache *cache)
10000 {
10001         struct btrfs_space_info *space_info = cache->space_info;
10002         struct btrfs_fs_info *fs_info = cache->fs_info;
10003         int index = btrfs_bg_flags_to_raid_index(cache->flags);
10004         bool first = false;
10005
10006         down_write(&space_info->groups_sem);
10007         if (list_empty(&space_info->block_groups[index]))
10008                 first = true;
10009         list_add_tail(&cache->list, &space_info->block_groups[index]);
10010         up_write(&space_info->groups_sem);
10011
10012         if (first) {
10013                 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10014                 if (!rkobj) {
10015                         btrfs_warn(cache->fs_info,
10016                                 "couldn't alloc memory for raid level kobject");
10017                         return;
10018                 }
10019                 rkobj->flags = cache->flags;
10020                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10021
10022                 spin_lock(&fs_info->pending_raid_kobjs_lock);
10023                 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10024                 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10025                 space_info->block_group_kobjs[index] = &rkobj->kobj;
10026         }
10027 }
10028
10029 static struct btrfs_block_group_cache *
10030 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10031                                u64 start, u64 size)
10032 {
10033         struct btrfs_block_group_cache *cache;
10034
10035         cache = kzalloc(sizeof(*cache), GFP_NOFS);
10036         if (!cache)
10037                 return NULL;
10038
10039         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10040                                         GFP_NOFS);
10041         if (!cache->free_space_ctl) {
10042                 kfree(cache);
10043                 return NULL;
10044         }
10045
10046         cache->key.objectid = start;
10047         cache->key.offset = size;
10048         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10049
10050         cache->fs_info = fs_info;
10051         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10052         set_free_space_tree_thresholds(cache);
10053
10054         atomic_set(&cache->count, 1);
10055         spin_lock_init(&cache->lock);
10056         init_rwsem(&cache->data_rwsem);
10057         INIT_LIST_HEAD(&cache->list);
10058         INIT_LIST_HEAD(&cache->cluster_list);
10059         INIT_LIST_HEAD(&cache->bg_list);
10060         INIT_LIST_HEAD(&cache->ro_list);
10061         INIT_LIST_HEAD(&cache->dirty_list);
10062         INIT_LIST_HEAD(&cache->io_list);
10063         btrfs_init_free_space_ctl(cache);
10064         atomic_set(&cache->trimming, 0);
10065         mutex_init(&cache->free_space_lock);
10066         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10067
10068         return cache;
10069 }
10070
10071 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10072 {
10073         struct btrfs_path *path;
10074         int ret;
10075         struct btrfs_block_group_cache *cache;
10076         struct btrfs_space_info *space_info;
10077         struct btrfs_key key;
10078         struct btrfs_key found_key;
10079         struct extent_buffer *leaf;
10080         int need_clear = 0;
10081         u64 cache_gen;
10082         u64 feature;
10083         int mixed;
10084
10085         feature = btrfs_super_incompat_flags(info->super_copy);
10086         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10087
10088         key.objectid = 0;
10089         key.offset = 0;
10090         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10091         path = btrfs_alloc_path();
10092         if (!path)
10093                 return -ENOMEM;
10094         path->reada = READA_FORWARD;
10095
10096         cache_gen = btrfs_super_cache_generation(info->super_copy);
10097         if (btrfs_test_opt(info, SPACE_CACHE) &&
10098             btrfs_super_generation(info->super_copy) != cache_gen)
10099                 need_clear = 1;
10100         if (btrfs_test_opt(info, CLEAR_CACHE))
10101                 need_clear = 1;
10102
10103         while (1) {
10104                 ret = find_first_block_group(info, path, &key);
10105                 if (ret > 0)
10106                         break;
10107                 if (ret != 0)
10108                         goto error;
10109
10110                 leaf = path->nodes[0];
10111                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10112
10113                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10114                                                        found_key.offset);
10115                 if (!cache) {
10116                         ret = -ENOMEM;
10117                         goto error;
10118                 }
10119
10120                 if (need_clear) {
10121                         /*
10122                          * When we mount with old space cache, we need to
10123                          * set BTRFS_DC_CLEAR and set dirty flag.
10124                          *
10125                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10126                          *    truncate the old free space cache inode and
10127                          *    setup a new one.
10128                          * b) Setting 'dirty flag' makes sure that we flush
10129                          *    the new space cache info onto disk.
10130                          */
10131                         if (btrfs_test_opt(info, SPACE_CACHE))
10132                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10133                 }
10134
10135                 read_extent_buffer(leaf, &cache->item,
10136                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10137                                    sizeof(cache->item));
10138                 cache->flags = btrfs_block_group_flags(&cache->item);
10139                 if (!mixed &&
10140                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10141                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10142                         btrfs_err(info,
10143 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10144                                   cache->key.objectid);
10145                         ret = -EINVAL;
10146                         goto error;
10147                 }
10148
10149                 key.objectid = found_key.objectid + found_key.offset;
10150                 btrfs_release_path(path);
10151
10152                 /*
10153                  * We need to exclude the super stripes now so that the space
10154                  * info has super bytes accounted for, otherwise we'll think
10155                  * we have more space than we actually do.
10156                  */
10157                 ret = exclude_super_stripes(info, cache);
10158                 if (ret) {
10159                         /*
10160                          * We may have excluded something, so call this just in
10161                          * case.
10162                          */
10163                         free_excluded_extents(info, cache);
10164                         btrfs_put_block_group(cache);
10165                         goto error;
10166                 }
10167
10168                 /*
10169                  * check for two cases, either we are full, and therefore
10170                  * don't need to bother with the caching work since we won't
10171                  * find any space, or we are empty, and we can just add all
10172                  * the space in and be done with it.  This saves us _alot_ of
10173                  * time, particularly in the full case.
10174                  */
10175                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10176                         cache->last_byte_to_unpin = (u64)-1;
10177                         cache->cached = BTRFS_CACHE_FINISHED;
10178                         free_excluded_extents(info, cache);
10179                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10180                         cache->last_byte_to_unpin = (u64)-1;
10181                         cache->cached = BTRFS_CACHE_FINISHED;
10182                         add_new_free_space(cache, info,
10183                                            found_key.objectid,
10184                                            found_key.objectid +
10185                                            found_key.offset);
10186                         free_excluded_extents(info, cache);
10187                 }
10188
10189                 ret = btrfs_add_block_group_cache(info, cache);
10190                 if (ret) {
10191                         btrfs_remove_free_space_cache(cache);
10192                         btrfs_put_block_group(cache);
10193                         goto error;
10194                 }
10195
10196                 trace_btrfs_add_block_group(info, cache, 0);
10197                 update_space_info(info, cache->flags, found_key.offset,
10198                                   btrfs_block_group_used(&cache->item),
10199                                   cache->bytes_super, &space_info);
10200
10201                 cache->space_info = space_info;
10202
10203                 link_block_group(cache);
10204
10205                 set_avail_alloc_bits(info, cache->flags);
10206                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10207                         inc_block_group_ro(cache, 1);
10208                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10209                         spin_lock(&info->unused_bgs_lock);
10210                         /* Should always be true but just in case. */
10211                         if (list_empty(&cache->bg_list)) {
10212                                 btrfs_get_block_group(cache);
10213                                 list_add_tail(&cache->bg_list,
10214                                               &info->unused_bgs);
10215                         }
10216                         spin_unlock(&info->unused_bgs_lock);
10217                 }
10218         }
10219
10220         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10221                 if (!(get_alloc_profile(info, space_info->flags) &
10222                       (BTRFS_BLOCK_GROUP_RAID10 |
10223                        BTRFS_BLOCK_GROUP_RAID1 |
10224                        BTRFS_BLOCK_GROUP_RAID5 |
10225                        BTRFS_BLOCK_GROUP_RAID6 |
10226                        BTRFS_BLOCK_GROUP_DUP)))
10227                         continue;
10228                 /*
10229                  * avoid allocating from un-mirrored block group if there are
10230                  * mirrored block groups.
10231                  */
10232                 list_for_each_entry(cache,
10233                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10234                                 list)
10235                         inc_block_group_ro(cache, 1);
10236                 list_for_each_entry(cache,
10237                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10238                                 list)
10239                         inc_block_group_ro(cache, 1);
10240         }
10241
10242         btrfs_add_raid_kobjects(info);
10243         init_global_block_rsv(info);
10244         ret = 0;
10245 error:
10246         btrfs_free_path(path);
10247         return ret;
10248 }
10249
10250 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10251 {
10252         struct btrfs_fs_info *fs_info = trans->fs_info;
10253         struct btrfs_block_group_cache *block_group, *tmp;
10254         struct btrfs_root *extent_root = fs_info->extent_root;
10255         struct btrfs_block_group_item item;
10256         struct btrfs_key key;
10257         int ret = 0;
10258         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10259
10260         trans->can_flush_pending_bgs = false;
10261         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10262                 if (ret)
10263                         goto next;
10264
10265                 spin_lock(&block_group->lock);
10266                 memcpy(&item, &block_group->item, sizeof(item));
10267                 memcpy(&key, &block_group->key, sizeof(key));
10268                 spin_unlock(&block_group->lock);
10269
10270                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10271                                         sizeof(item));
10272                 if (ret)
10273                         btrfs_abort_transaction(trans, ret);
10274                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10275                                                key.offset);
10276                 if (ret)
10277                         btrfs_abort_transaction(trans, ret);
10278                 add_block_group_free_space(trans, fs_info, block_group);
10279                 /* already aborted the transaction if it failed. */
10280 next:
10281                 list_del_init(&block_group->bg_list);
10282         }
10283         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10284 }
10285
10286 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10287                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10288                            u64 type, u64 chunk_offset, u64 size)
10289 {
10290         struct btrfs_block_group_cache *cache;
10291         int ret;
10292
10293         btrfs_set_log_full_commit(fs_info, trans);
10294
10295         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10296         if (!cache)
10297                 return -ENOMEM;
10298
10299         btrfs_set_block_group_used(&cache->item, bytes_used);
10300         btrfs_set_block_group_chunk_objectid(&cache->item,
10301                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10302         btrfs_set_block_group_flags(&cache->item, type);
10303
10304         cache->flags = type;
10305         cache->last_byte_to_unpin = (u64)-1;
10306         cache->cached = BTRFS_CACHE_FINISHED;
10307         cache->needs_free_space = 1;
10308         ret = exclude_super_stripes(fs_info, cache);
10309         if (ret) {
10310                 /*
10311                  * We may have excluded something, so call this just in
10312                  * case.
10313                  */
10314                 free_excluded_extents(fs_info, cache);
10315                 btrfs_put_block_group(cache);
10316                 return ret;
10317         }
10318
10319         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10320
10321         free_excluded_extents(fs_info, cache);
10322
10323 #ifdef CONFIG_BTRFS_DEBUG
10324         if (btrfs_should_fragment_free_space(cache)) {
10325                 u64 new_bytes_used = size - bytes_used;
10326
10327                 bytes_used += new_bytes_used >> 1;
10328                 fragment_free_space(cache);
10329         }
10330 #endif
10331         /*
10332          * Ensure the corresponding space_info object is created and
10333          * assigned to our block group. We want our bg to be added to the rbtree
10334          * with its ->space_info set.
10335          */
10336         cache->space_info = __find_space_info(fs_info, cache->flags);
10337         ASSERT(cache->space_info);
10338
10339         ret = btrfs_add_block_group_cache(fs_info, cache);
10340         if (ret) {
10341                 btrfs_remove_free_space_cache(cache);
10342                 btrfs_put_block_group(cache);
10343                 return ret;
10344         }
10345
10346         /*
10347          * Now that our block group has its ->space_info set and is inserted in
10348          * the rbtree, update the space info's counters.
10349          */
10350         trace_btrfs_add_block_group(fs_info, cache, 1);
10351         update_space_info(fs_info, cache->flags, size, bytes_used,
10352                                 cache->bytes_super, &cache->space_info);
10353         update_global_block_rsv(fs_info);
10354
10355         link_block_group(cache);
10356
10357         list_add_tail(&cache->bg_list, &trans->new_bgs);
10358
10359         set_avail_alloc_bits(fs_info, type);
10360         return 0;
10361 }
10362
10363 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10364 {
10365         u64 extra_flags = chunk_to_extended(flags) &
10366                                 BTRFS_EXTENDED_PROFILE_MASK;
10367
10368         write_seqlock(&fs_info->profiles_lock);
10369         if (flags & BTRFS_BLOCK_GROUP_DATA)
10370                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10371         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10372                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10373         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10374                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10375         write_sequnlock(&fs_info->profiles_lock);
10376 }
10377
10378 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10379                              struct btrfs_fs_info *fs_info, u64 group_start,
10380                              struct extent_map *em)
10381 {
10382         struct btrfs_root *root = fs_info->extent_root;
10383         struct btrfs_path *path;
10384         struct btrfs_block_group_cache *block_group;
10385         struct btrfs_free_cluster *cluster;
10386         struct btrfs_root *tree_root = fs_info->tree_root;
10387         struct btrfs_key key;
10388         struct inode *inode;
10389         struct kobject *kobj = NULL;
10390         int ret;
10391         int index;
10392         int factor;
10393         struct btrfs_caching_control *caching_ctl = NULL;
10394         bool remove_em;
10395
10396         block_group = btrfs_lookup_block_group(fs_info, group_start);
10397         BUG_ON(!block_group);
10398         BUG_ON(!block_group->ro);
10399
10400         /*
10401          * Free the reserved super bytes from this block group before
10402          * remove it.
10403          */
10404         free_excluded_extents(fs_info, block_group);
10405         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10406                                   block_group->key.offset);
10407
10408         memcpy(&key, &block_group->key, sizeof(key));
10409         index = btrfs_bg_flags_to_raid_index(block_group->flags);
10410         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10411                                   BTRFS_BLOCK_GROUP_RAID1 |
10412                                   BTRFS_BLOCK_GROUP_RAID10))
10413                 factor = 2;
10414         else
10415                 factor = 1;
10416
10417         /* make sure this block group isn't part of an allocation cluster */
10418         cluster = &fs_info->data_alloc_cluster;
10419         spin_lock(&cluster->refill_lock);
10420         btrfs_return_cluster_to_free_space(block_group, cluster);
10421         spin_unlock(&cluster->refill_lock);
10422
10423         /*
10424          * make sure this block group isn't part of a metadata
10425          * allocation cluster
10426          */
10427         cluster = &fs_info->meta_alloc_cluster;
10428         spin_lock(&cluster->refill_lock);
10429         btrfs_return_cluster_to_free_space(block_group, cluster);
10430         spin_unlock(&cluster->refill_lock);
10431
10432         path = btrfs_alloc_path();
10433         if (!path) {
10434                 ret = -ENOMEM;
10435                 goto out;
10436         }
10437
10438         /*
10439          * get the inode first so any iput calls done for the io_list
10440          * aren't the final iput (no unlinks allowed now)
10441          */
10442         inode = lookup_free_space_inode(fs_info, block_group, path);
10443
10444         mutex_lock(&trans->transaction->cache_write_mutex);
10445         /*
10446          * make sure our free spache cache IO is done before remove the
10447          * free space inode
10448          */
10449         spin_lock(&trans->transaction->dirty_bgs_lock);
10450         if (!list_empty(&block_group->io_list)) {
10451                 list_del_init(&block_group->io_list);
10452
10453                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10454
10455                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10456                 btrfs_wait_cache_io(trans, block_group, path);
10457                 btrfs_put_block_group(block_group);
10458                 spin_lock(&trans->transaction->dirty_bgs_lock);
10459         }
10460
10461         if (!list_empty(&block_group->dirty_list)) {
10462                 list_del_init(&block_group->dirty_list);
10463                 btrfs_put_block_group(block_group);
10464         }
10465         spin_unlock(&trans->transaction->dirty_bgs_lock);
10466         mutex_unlock(&trans->transaction->cache_write_mutex);
10467
10468         if (!IS_ERR(inode)) {
10469                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10470                 if (ret) {
10471                         btrfs_add_delayed_iput(inode);
10472                         goto out;
10473                 }
10474                 clear_nlink(inode);
10475                 /* One for the block groups ref */
10476                 spin_lock(&block_group->lock);
10477                 if (block_group->iref) {
10478                         block_group->iref = 0;
10479                         block_group->inode = NULL;
10480                         spin_unlock(&block_group->lock);
10481                         iput(inode);
10482                 } else {
10483                         spin_unlock(&block_group->lock);
10484                 }
10485                 /* One for our lookup ref */
10486                 btrfs_add_delayed_iput(inode);
10487         }
10488
10489         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10490         key.offset = block_group->key.objectid;
10491         key.type = 0;
10492
10493         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10494         if (ret < 0)
10495                 goto out;
10496         if (ret > 0)
10497                 btrfs_release_path(path);
10498         if (ret == 0) {
10499                 ret = btrfs_del_item(trans, tree_root, path);
10500                 if (ret)
10501                         goto out;
10502                 btrfs_release_path(path);
10503         }
10504
10505         spin_lock(&fs_info->block_group_cache_lock);
10506         rb_erase(&block_group->cache_node,
10507                  &fs_info->block_group_cache_tree);
10508         RB_CLEAR_NODE(&block_group->cache_node);
10509
10510         if (fs_info->first_logical_byte == block_group->key.objectid)
10511                 fs_info->first_logical_byte = (u64)-1;
10512         spin_unlock(&fs_info->block_group_cache_lock);
10513
10514         down_write(&block_group->space_info->groups_sem);
10515         /*
10516          * we must use list_del_init so people can check to see if they
10517          * are still on the list after taking the semaphore
10518          */
10519         list_del_init(&block_group->list);
10520         if (list_empty(&block_group->space_info->block_groups[index])) {
10521                 kobj = block_group->space_info->block_group_kobjs[index];
10522                 block_group->space_info->block_group_kobjs[index] = NULL;
10523                 clear_avail_alloc_bits(fs_info, block_group->flags);
10524         }
10525         up_write(&block_group->space_info->groups_sem);
10526         if (kobj) {
10527                 kobject_del(kobj);
10528                 kobject_put(kobj);
10529         }
10530
10531         if (block_group->has_caching_ctl)
10532                 caching_ctl = get_caching_control(block_group);
10533         if (block_group->cached == BTRFS_CACHE_STARTED)
10534                 wait_block_group_cache_done(block_group);
10535         if (block_group->has_caching_ctl) {
10536                 down_write(&fs_info->commit_root_sem);
10537                 if (!caching_ctl) {
10538                         struct btrfs_caching_control *ctl;
10539
10540                         list_for_each_entry(ctl,
10541                                     &fs_info->caching_block_groups, list)
10542                                 if (ctl->block_group == block_group) {
10543                                         caching_ctl = ctl;
10544                                         refcount_inc(&caching_ctl->count);
10545                                         break;
10546                                 }
10547                 }
10548                 if (caching_ctl)
10549                         list_del_init(&caching_ctl->list);
10550                 up_write(&fs_info->commit_root_sem);
10551                 if (caching_ctl) {
10552                         /* Once for the caching bgs list and once for us. */
10553                         put_caching_control(caching_ctl);
10554                         put_caching_control(caching_ctl);
10555                 }
10556         }
10557
10558         spin_lock(&trans->transaction->dirty_bgs_lock);
10559         if (!list_empty(&block_group->dirty_list)) {
10560                 WARN_ON(1);
10561         }
10562         if (!list_empty(&block_group->io_list)) {
10563                 WARN_ON(1);
10564         }
10565         spin_unlock(&trans->transaction->dirty_bgs_lock);
10566         btrfs_remove_free_space_cache(block_group);
10567
10568         spin_lock(&block_group->space_info->lock);
10569         list_del_init(&block_group->ro_list);
10570
10571         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10572                 WARN_ON(block_group->space_info->total_bytes
10573                         < block_group->key.offset);
10574                 WARN_ON(block_group->space_info->bytes_readonly
10575                         < block_group->key.offset);
10576                 WARN_ON(block_group->space_info->disk_total
10577                         < block_group->key.offset * factor);
10578         }
10579         block_group->space_info->total_bytes -= block_group->key.offset;
10580         block_group->space_info->bytes_readonly -= block_group->key.offset;
10581         block_group->space_info->disk_total -= block_group->key.offset * factor;
10582
10583         spin_unlock(&block_group->space_info->lock);
10584
10585         memcpy(&key, &block_group->key, sizeof(key));
10586
10587         mutex_lock(&fs_info->chunk_mutex);
10588         if (!list_empty(&em->list)) {
10589                 /* We're in the transaction->pending_chunks list. */
10590                 free_extent_map(em);
10591         }
10592         spin_lock(&block_group->lock);
10593         block_group->removed = 1;
10594         /*
10595          * At this point trimming can't start on this block group, because we
10596          * removed the block group from the tree fs_info->block_group_cache_tree
10597          * so no one can't find it anymore and even if someone already got this
10598          * block group before we removed it from the rbtree, they have already
10599          * incremented block_group->trimming - if they didn't, they won't find
10600          * any free space entries because we already removed them all when we
10601          * called btrfs_remove_free_space_cache().
10602          *
10603          * And we must not remove the extent map from the fs_info->mapping_tree
10604          * to prevent the same logical address range and physical device space
10605          * ranges from being reused for a new block group. This is because our
10606          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10607          * completely transactionless, so while it is trimming a range the
10608          * currently running transaction might finish and a new one start,
10609          * allowing for new block groups to be created that can reuse the same
10610          * physical device locations unless we take this special care.
10611          *
10612          * There may also be an implicit trim operation if the file system
10613          * is mounted with -odiscard. The same protections must remain
10614          * in place until the extents have been discarded completely when
10615          * the transaction commit has completed.
10616          */
10617         remove_em = (atomic_read(&block_group->trimming) == 0);
10618         /*
10619          * Make sure a trimmer task always sees the em in the pinned_chunks list
10620          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10621          * before checking block_group->removed).
10622          */
10623         if (!remove_em) {
10624                 /*
10625                  * Our em might be in trans->transaction->pending_chunks which
10626                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10627                  * and so is the fs_info->pinned_chunks list.
10628                  *
10629                  * So at this point we must be holding the chunk_mutex to avoid
10630                  * any races with chunk allocation (more specifically at
10631                  * volumes.c:contains_pending_extent()), to ensure it always
10632                  * sees the em, either in the pending_chunks list or in the
10633                  * pinned_chunks list.
10634                  */
10635                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10636         }
10637         spin_unlock(&block_group->lock);
10638
10639         if (remove_em) {
10640                 struct extent_map_tree *em_tree;
10641
10642                 em_tree = &fs_info->mapping_tree.map_tree;
10643                 write_lock(&em_tree->lock);
10644                 /*
10645                  * The em might be in the pending_chunks list, so make sure the
10646                  * chunk mutex is locked, since remove_extent_mapping() will
10647                  * delete us from that list.
10648                  */
10649                 remove_extent_mapping(em_tree, em);
10650                 write_unlock(&em_tree->lock);
10651                 /* once for the tree */
10652                 free_extent_map(em);
10653         }
10654
10655         mutex_unlock(&fs_info->chunk_mutex);
10656
10657         ret = remove_block_group_free_space(trans, fs_info, block_group);
10658         if (ret)
10659                 goto out;
10660
10661         btrfs_put_block_group(block_group);
10662         btrfs_put_block_group(block_group);
10663
10664         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10665         if (ret > 0)
10666                 ret = -EIO;
10667         if (ret < 0)
10668                 goto out;
10669
10670         ret = btrfs_del_item(trans, root, path);
10671 out:
10672         btrfs_free_path(path);
10673         return ret;
10674 }
10675
10676 struct btrfs_trans_handle *
10677 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10678                                      const u64 chunk_offset)
10679 {
10680         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10681         struct extent_map *em;
10682         struct map_lookup *map;
10683         unsigned int num_items;
10684
10685         read_lock(&em_tree->lock);
10686         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10687         read_unlock(&em_tree->lock);
10688         ASSERT(em && em->start == chunk_offset);
10689
10690         /*
10691          * We need to reserve 3 + N units from the metadata space info in order
10692          * to remove a block group (done at btrfs_remove_chunk() and at
10693          * btrfs_remove_block_group()), which are used for:
10694          *
10695          * 1 unit for adding the free space inode's orphan (located in the tree
10696          * of tree roots).
10697          * 1 unit for deleting the block group item (located in the extent
10698          * tree).
10699          * 1 unit for deleting the free space item (located in tree of tree
10700          * roots).
10701          * N units for deleting N device extent items corresponding to each
10702          * stripe (located in the device tree).
10703          *
10704          * In order to remove a block group we also need to reserve units in the
10705          * system space info in order to update the chunk tree (update one or
10706          * more device items and remove one chunk item), but this is done at
10707          * btrfs_remove_chunk() through a call to check_system_chunk().
10708          */
10709         map = em->map_lookup;
10710         num_items = 3 + map->num_stripes;
10711         free_extent_map(em);
10712
10713         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10714                                                            num_items, 1);
10715 }
10716
10717 /*
10718  * Process the unused_bgs list and remove any that don't have any allocated
10719  * space inside of them.
10720  */
10721 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10722 {
10723         struct btrfs_block_group_cache *block_group;
10724         struct btrfs_space_info *space_info;
10725         struct btrfs_trans_handle *trans;
10726         int ret = 0;
10727
10728         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10729                 return;
10730
10731         spin_lock(&fs_info->unused_bgs_lock);
10732         while (!list_empty(&fs_info->unused_bgs)) {
10733                 u64 start, end;
10734                 int trimming;
10735
10736                 block_group = list_first_entry(&fs_info->unused_bgs,
10737                                                struct btrfs_block_group_cache,
10738                                                bg_list);
10739                 list_del_init(&block_group->bg_list);
10740
10741                 space_info = block_group->space_info;
10742
10743                 if (ret || btrfs_mixed_space_info(space_info)) {
10744                         btrfs_put_block_group(block_group);
10745                         continue;
10746                 }
10747                 spin_unlock(&fs_info->unused_bgs_lock);
10748
10749                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10750
10751                 /* Don't want to race with allocators so take the groups_sem */
10752                 down_write(&space_info->groups_sem);
10753                 spin_lock(&block_group->lock);
10754                 if (block_group->reserved ||
10755                     btrfs_block_group_used(&block_group->item) ||
10756                     block_group->ro ||
10757                     list_is_singular(&block_group->list)) {
10758                         /*
10759                          * We want to bail if we made new allocations or have
10760                          * outstanding allocations in this block group.  We do
10761                          * the ro check in case balance is currently acting on
10762                          * this block group.
10763                          */
10764                         spin_unlock(&block_group->lock);
10765                         up_write(&space_info->groups_sem);
10766                         goto next;
10767                 }
10768                 spin_unlock(&block_group->lock);
10769
10770                 /* We don't want to force the issue, only flip if it's ok. */
10771                 ret = inc_block_group_ro(block_group, 0);
10772                 up_write(&space_info->groups_sem);
10773                 if (ret < 0) {
10774                         ret = 0;
10775                         goto next;
10776                 }
10777
10778                 /*
10779                  * Want to do this before we do anything else so we can recover
10780                  * properly if we fail to join the transaction.
10781                  */
10782                 trans = btrfs_start_trans_remove_block_group(fs_info,
10783                                                      block_group->key.objectid);
10784                 if (IS_ERR(trans)) {
10785                         btrfs_dec_block_group_ro(block_group);
10786                         ret = PTR_ERR(trans);
10787                         goto next;
10788                 }
10789
10790                 /*
10791                  * We could have pending pinned extents for this block group,
10792                  * just delete them, we don't care about them anymore.
10793                  */
10794                 start = block_group->key.objectid;
10795                 end = start + block_group->key.offset - 1;
10796                 /*
10797                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10798                  * btrfs_finish_extent_commit(). If we are at transaction N,
10799                  * another task might be running finish_extent_commit() for the
10800                  * previous transaction N - 1, and have seen a range belonging
10801                  * to the block group in freed_extents[] before we were able to
10802                  * clear the whole block group range from freed_extents[]. This
10803                  * means that task can lookup for the block group after we
10804                  * unpinned it from freed_extents[] and removed it, leading to
10805                  * a BUG_ON() at btrfs_unpin_extent_range().
10806                  */
10807                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10808                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10809                                   EXTENT_DIRTY);
10810                 if (ret) {
10811                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10812                         btrfs_dec_block_group_ro(block_group);
10813                         goto end_trans;
10814                 }
10815                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10816                                   EXTENT_DIRTY);
10817                 if (ret) {
10818                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10819                         btrfs_dec_block_group_ro(block_group);
10820                         goto end_trans;
10821                 }
10822                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10823
10824                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10825                 spin_lock(&space_info->lock);
10826                 spin_lock(&block_group->lock);
10827
10828                 space_info->bytes_pinned -= block_group->pinned;
10829                 space_info->bytes_readonly += block_group->pinned;
10830                 percpu_counter_add(&space_info->total_bytes_pinned,
10831                                    -block_group->pinned);
10832                 block_group->pinned = 0;
10833
10834                 spin_unlock(&block_group->lock);
10835                 spin_unlock(&space_info->lock);
10836
10837                 /* DISCARD can flip during remount */
10838                 trimming = btrfs_test_opt(fs_info, DISCARD);
10839
10840                 /* Implicit trim during transaction commit. */
10841                 if (trimming)
10842                         btrfs_get_block_group_trimming(block_group);
10843
10844                 /*
10845                  * Btrfs_remove_chunk will abort the transaction if things go
10846                  * horribly wrong.
10847                  */
10848                 ret = btrfs_remove_chunk(trans, fs_info,
10849                                          block_group->key.objectid);
10850
10851                 if (ret) {
10852                         if (trimming)
10853                                 btrfs_put_block_group_trimming(block_group);
10854                         goto end_trans;
10855                 }
10856
10857                 /*
10858                  * If we're not mounted with -odiscard, we can just forget
10859                  * about this block group. Otherwise we'll need to wait
10860                  * until transaction commit to do the actual discard.
10861                  */
10862                 if (trimming) {
10863                         spin_lock(&fs_info->unused_bgs_lock);
10864                         /*
10865                          * A concurrent scrub might have added us to the list
10866                          * fs_info->unused_bgs, so use a list_move operation
10867                          * to add the block group to the deleted_bgs list.
10868                          */
10869                         list_move(&block_group->bg_list,
10870                                   &trans->transaction->deleted_bgs);
10871                         spin_unlock(&fs_info->unused_bgs_lock);
10872                         btrfs_get_block_group(block_group);
10873                 }
10874 end_trans:
10875                 btrfs_end_transaction(trans);
10876 next:
10877                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10878                 btrfs_put_block_group(block_group);
10879                 spin_lock(&fs_info->unused_bgs_lock);
10880         }
10881         spin_unlock(&fs_info->unused_bgs_lock);
10882 }
10883
10884 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10885 {
10886         struct btrfs_space_info *space_info;
10887         struct btrfs_super_block *disk_super;
10888         u64 features;
10889         u64 flags;
10890         int mixed = 0;
10891         int ret;
10892
10893         disk_super = fs_info->super_copy;
10894         if (!btrfs_super_root(disk_super))
10895                 return -EINVAL;
10896
10897         features = btrfs_super_incompat_flags(disk_super);
10898         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10899                 mixed = 1;
10900
10901         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10902         ret = create_space_info(fs_info, flags, &space_info);
10903         if (ret)
10904                 goto out;
10905
10906         if (mixed) {
10907                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10908                 ret = create_space_info(fs_info, flags, &space_info);
10909         } else {
10910                 flags = BTRFS_BLOCK_GROUP_METADATA;
10911                 ret = create_space_info(fs_info, flags, &space_info);
10912                 if (ret)
10913                         goto out;
10914
10915                 flags = BTRFS_BLOCK_GROUP_DATA;
10916                 ret = create_space_info(fs_info, flags, &space_info);
10917         }
10918 out:
10919         return ret;
10920 }
10921
10922 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10923                                    u64 start, u64 end)
10924 {
10925         return unpin_extent_range(fs_info, start, end, false);
10926 }
10927
10928 /*
10929  * It used to be that old block groups would be left around forever.
10930  * Iterating over them would be enough to trim unused space.  Since we
10931  * now automatically remove them, we also need to iterate over unallocated
10932  * space.
10933  *
10934  * We don't want a transaction for this since the discard may take a
10935  * substantial amount of time.  We don't require that a transaction be
10936  * running, but we do need to take a running transaction into account
10937  * to ensure that we're not discarding chunks that were released in
10938  * the current transaction.
10939  *
10940  * Holding the chunks lock will prevent other threads from allocating
10941  * or releasing chunks, but it won't prevent a running transaction
10942  * from committing and releasing the memory that the pending chunks
10943  * list head uses.  For that, we need to take a reference to the
10944  * transaction.
10945  */
10946 static int btrfs_trim_free_extents(struct btrfs_device *device,
10947                                    u64 minlen, u64 *trimmed)
10948 {
10949         u64 start = 0, len = 0;
10950         int ret;
10951
10952         *trimmed = 0;
10953
10954         /* Not writeable = nothing to do. */
10955         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10956                 return 0;
10957
10958         /* No free space = nothing to do. */
10959         if (device->total_bytes <= device->bytes_used)
10960                 return 0;
10961
10962         ret = 0;
10963
10964         while (1) {
10965                 struct btrfs_fs_info *fs_info = device->fs_info;
10966                 struct btrfs_transaction *trans;
10967                 u64 bytes;
10968
10969                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10970                 if (ret)
10971                         return ret;
10972
10973                 down_read(&fs_info->commit_root_sem);
10974
10975                 spin_lock(&fs_info->trans_lock);
10976                 trans = fs_info->running_transaction;
10977                 if (trans)
10978                         refcount_inc(&trans->use_count);
10979                 spin_unlock(&fs_info->trans_lock);
10980
10981                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10982                                                  &start, &len);
10983                 if (trans)
10984                         btrfs_put_transaction(trans);
10985
10986                 if (ret) {
10987                         up_read(&fs_info->commit_root_sem);
10988                         mutex_unlock(&fs_info->chunk_mutex);
10989                         if (ret == -ENOSPC)
10990                                 ret = 0;
10991                         break;
10992                 }
10993
10994                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10995                 up_read(&fs_info->commit_root_sem);
10996                 mutex_unlock(&fs_info->chunk_mutex);
10997
10998                 if (ret)
10999                         break;
11000
11001                 start += len;
11002                 *trimmed += bytes;
11003
11004                 if (fatal_signal_pending(current)) {
11005                         ret = -ERESTARTSYS;
11006                         break;
11007                 }
11008
11009                 cond_resched();
11010         }
11011
11012         return ret;
11013 }
11014
11015 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11016 {
11017         struct btrfs_block_group_cache *cache = NULL;
11018         struct btrfs_device *device;
11019         struct list_head *devices;
11020         u64 group_trimmed;
11021         u64 start;
11022         u64 end;
11023         u64 trimmed = 0;
11024         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11025         int ret = 0;
11026
11027         /*
11028          * try to trim all FS space, our block group may start from non-zero.
11029          */
11030         if (range->len == total_bytes)
11031                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11032         else
11033                 cache = btrfs_lookup_block_group(fs_info, range->start);
11034
11035         while (cache) {
11036                 if (cache->key.objectid >= (range->start + range->len)) {
11037                         btrfs_put_block_group(cache);
11038                         break;
11039                 }
11040
11041                 start = max(range->start, cache->key.objectid);
11042                 end = min(range->start + range->len,
11043                                 cache->key.objectid + cache->key.offset);
11044
11045                 if (end - start >= range->minlen) {
11046                         if (!block_group_cache_done(cache)) {
11047                                 ret = cache_block_group(cache, 0);
11048                                 if (ret) {
11049                                         btrfs_put_block_group(cache);
11050                                         break;
11051                                 }
11052                                 ret = wait_block_group_cache_done(cache);
11053                                 if (ret) {
11054                                         btrfs_put_block_group(cache);
11055                                         break;
11056                                 }
11057                         }
11058                         ret = btrfs_trim_block_group(cache,
11059                                                      &group_trimmed,
11060                                                      start,
11061                                                      end,
11062                                                      range->minlen);
11063
11064                         trimmed += group_trimmed;
11065                         if (ret) {
11066                                 btrfs_put_block_group(cache);
11067                                 break;
11068                         }
11069                 }
11070
11071                 cache = next_block_group(fs_info, cache);
11072         }
11073
11074         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11075         devices = &fs_info->fs_devices->alloc_list;
11076         list_for_each_entry(device, devices, dev_alloc_list) {
11077                 ret = btrfs_trim_free_extents(device, range->minlen,
11078                                               &group_trimmed);
11079                 if (ret)
11080                         break;
11081
11082                 trimmed += group_trimmed;
11083         }
11084         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11085
11086         range->len = trimmed;
11087         return ret;
11088 }
11089
11090 /*
11091  * btrfs_{start,end}_write_no_snapshotting() are similar to
11092  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11093  * data into the page cache through nocow before the subvolume is snapshoted,
11094  * but flush the data into disk after the snapshot creation, or to prevent
11095  * operations while snapshotting is ongoing and that cause the snapshot to be
11096  * inconsistent (writes followed by expanding truncates for example).
11097  */
11098 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11099 {
11100         percpu_counter_dec(&root->subv_writers->counter);
11101         /*
11102          * Make sure counter is updated before we wake up waiters.
11103          */
11104         smp_mb();
11105         if (waitqueue_active(&root->subv_writers->wait))
11106                 wake_up(&root->subv_writers->wait);
11107 }
11108
11109 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11110 {
11111         if (atomic_read(&root->will_be_snapshotted))
11112                 return 0;
11113
11114         percpu_counter_inc(&root->subv_writers->counter);
11115         /*
11116          * Make sure counter is updated before we check for snapshot creation.
11117          */
11118         smp_mb();
11119         if (atomic_read(&root->will_be_snapshotted)) {
11120                 btrfs_end_write_no_snapshotting(root);
11121                 return 0;
11122         }
11123         return 1;
11124 }
11125
11126 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11127 {
11128         while (true) {
11129                 int ret;
11130
11131                 ret = btrfs_start_write_no_snapshotting(root);
11132                 if (ret)
11133                         break;
11134                 wait_var_event(&root->will_be_snapshotted,
11135                                !atomic_read(&root->will_be_snapshotted));
11136         }
11137 }