cbe6a72780081fcaad5c1ba77e66fea53c9db9dc
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49         CHUNK_ALLOC_NO_FORCE = 0,
50         CHUNK_ALLOC_LIMITED = 1,
51         CHUNK_ALLOC_FORCE = 2,
52 };
53
54 /*
55  * Declare a helper function to detect underflow of various space info members
56  */
57 #define DECLARE_SPACE_INFO_UPDATE(name)                                 \
58 static inline void update_##name(struct btrfs_space_info *sinfo,        \
59                                  s64 bytes)                             \
60 {                                                                       \
61         if (bytes < 0 && sinfo->name < -bytes) {                        \
62                 WARN_ON(1);                                             \
63                 sinfo->name = 0;                                        \
64                 return;                                                 \
65         }                                                               \
66         sinfo->name += bytes;                                           \
67 }
68
69 DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
70 DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
71
72 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
73                                struct btrfs_delayed_ref_node *node, u64 parent,
74                                u64 root_objectid, u64 owner_objectid,
75                                u64 owner_offset, int refs_to_drop,
76                                struct btrfs_delayed_extent_op *extra_op);
77 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78                                     struct extent_buffer *leaf,
79                                     struct btrfs_extent_item *ei);
80 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
81                                       u64 parent, u64 root_objectid,
82                                       u64 flags, u64 owner, u64 offset,
83                                       struct btrfs_key *ins, int ref_mod);
84 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
85                                      struct btrfs_delayed_ref_node *node,
86                                      struct btrfs_delayed_extent_op *extent_op);
87 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
88                           int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90                          struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92                             struct btrfs_space_info *info, u64 bytes,
93                             int dump_block_groups);
94 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95                                u64 num_bytes);
96 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97                                      struct btrfs_space_info *space_info,
98                                      u64 num_bytes);
99 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100                                      struct btrfs_space_info *space_info,
101                                      u64 num_bytes);
102
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106         smp_mb();
107         return cache->cached == BTRFS_CACHE_FINISHED ||
108                 cache->cached == BTRFS_CACHE_ERROR;
109 }
110
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113         return (cache->flags & bits) == bits;
114 }
115
116 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118         atomic_inc(&cache->count);
119 }
120
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123         if (atomic_dec_and_test(&cache->count)) {
124                 WARN_ON(cache->pinned > 0);
125                 WARN_ON(cache->reserved > 0);
126
127                 /*
128                  * If not empty, someone is still holding mutex of
129                  * full_stripe_lock, which can only be released by caller.
130                  * And it will definitely cause use-after-free when caller
131                  * tries to release full stripe lock.
132                  *
133                  * No better way to resolve, but only to warn.
134                  */
135                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
136                 kfree(cache->free_space_ctl);
137                 kfree(cache);
138         }
139 }
140
141 /*
142  * this adds the block group to the fs_info rb tree for the block group
143  * cache
144  */
145 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
146                                 struct btrfs_block_group_cache *block_group)
147 {
148         struct rb_node **p;
149         struct rb_node *parent = NULL;
150         struct btrfs_block_group_cache *cache;
151
152         spin_lock(&info->block_group_cache_lock);
153         p = &info->block_group_cache_tree.rb_node;
154
155         while (*p) {
156                 parent = *p;
157                 cache = rb_entry(parent, struct btrfs_block_group_cache,
158                                  cache_node);
159                 if (block_group->key.objectid < cache->key.objectid) {
160                         p = &(*p)->rb_left;
161                 } else if (block_group->key.objectid > cache->key.objectid) {
162                         p = &(*p)->rb_right;
163                 } else {
164                         spin_unlock(&info->block_group_cache_lock);
165                         return -EEXIST;
166                 }
167         }
168
169         rb_link_node(&block_group->cache_node, parent, p);
170         rb_insert_color(&block_group->cache_node,
171                         &info->block_group_cache_tree);
172
173         if (info->first_logical_byte > block_group->key.objectid)
174                 info->first_logical_byte = block_group->key.objectid;
175
176         spin_unlock(&info->block_group_cache_lock);
177
178         return 0;
179 }
180
181 /*
182  * This will return the block group at or after bytenr if contains is 0, else
183  * it will return the block group that contains the bytenr
184  */
185 static struct btrfs_block_group_cache *
186 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187                               int contains)
188 {
189         struct btrfs_block_group_cache *cache, *ret = NULL;
190         struct rb_node *n;
191         u64 end, start;
192
193         spin_lock(&info->block_group_cache_lock);
194         n = info->block_group_cache_tree.rb_node;
195
196         while (n) {
197                 cache = rb_entry(n, struct btrfs_block_group_cache,
198                                  cache_node);
199                 end = cache->key.objectid + cache->key.offset - 1;
200                 start = cache->key.objectid;
201
202                 if (bytenr < start) {
203                         if (!contains && (!ret || start < ret->key.objectid))
204                                 ret = cache;
205                         n = n->rb_left;
206                 } else if (bytenr > start) {
207                         if (contains && bytenr <= end) {
208                                 ret = cache;
209                                 break;
210                         }
211                         n = n->rb_right;
212                 } else {
213                         ret = cache;
214                         break;
215                 }
216         }
217         if (ret) {
218                 btrfs_get_block_group(ret);
219                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220                         info->first_logical_byte = ret->key.objectid;
221         }
222         spin_unlock(&info->block_group_cache_lock);
223
224         return ret;
225 }
226
227 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
228                                u64 start, u64 num_bytes)
229 {
230         u64 end = start + num_bytes - 1;
231         set_extent_bits(&fs_info->freed_extents[0],
232                         start, end, EXTENT_UPTODATE);
233         set_extent_bits(&fs_info->freed_extents[1],
234                         start, end, EXTENT_UPTODATE);
235         return 0;
236 }
237
238 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
239 {
240         struct btrfs_fs_info *fs_info = cache->fs_info;
241         u64 start, end;
242
243         start = cache->key.objectid;
244         end = start + cache->key.offset - 1;
245
246         clear_extent_bits(&fs_info->freed_extents[0],
247                           start, end, EXTENT_UPTODATE);
248         clear_extent_bits(&fs_info->freed_extents[1],
249                           start, end, EXTENT_UPTODATE);
250 }
251
252 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
253 {
254         struct btrfs_fs_info *fs_info = cache->fs_info;
255         u64 bytenr;
256         u64 *logical;
257         int stripe_len;
258         int i, nr, ret;
259
260         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262                 cache->bytes_super += stripe_len;
263                 ret = add_excluded_extent(fs_info, cache->key.objectid,
264                                           stripe_len);
265                 if (ret)
266                         return ret;
267         }
268
269         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270                 bytenr = btrfs_sb_offset(i);
271                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
272                                        bytenr, &logical, &nr, &stripe_len);
273                 if (ret)
274                         return ret;
275
276                 while (nr--) {
277                         u64 start, len;
278
279                         if (logical[nr] > cache->key.objectid +
280                             cache->key.offset)
281                                 continue;
282
283                         if (logical[nr] + stripe_len <= cache->key.objectid)
284                                 continue;
285
286                         start = logical[nr];
287                         if (start < cache->key.objectid) {
288                                 start = cache->key.objectid;
289                                 len = (logical[nr] + stripe_len) - start;
290                         } else {
291                                 len = min_t(u64, stripe_len,
292                                             cache->key.objectid +
293                                             cache->key.offset - start);
294                         }
295
296                         cache->bytes_super += len;
297                         ret = add_excluded_extent(fs_info, start, len);
298                         if (ret) {
299                                 kfree(logical);
300                                 return ret;
301                         }
302                 }
303
304                 kfree(logical);
305         }
306         return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312         struct btrfs_caching_control *ctl;
313
314         spin_lock(&cache->lock);
315         if (!cache->caching_ctl) {
316                 spin_unlock(&cache->lock);
317                 return NULL;
318         }
319
320         ctl = cache->caching_ctl;
321         refcount_inc(&ctl->count);
322         spin_unlock(&cache->lock);
323         return ctl;
324 }
325
326 static void put_caching_control(struct btrfs_caching_control *ctl)
327 {
328         if (refcount_dec_and_test(&ctl->count))
329                 kfree(ctl);
330 }
331
332 #ifdef CONFIG_BTRFS_DEBUG
333 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
334 {
335         struct btrfs_fs_info *fs_info = block_group->fs_info;
336         u64 start = block_group->key.objectid;
337         u64 len = block_group->key.offset;
338         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
339                 fs_info->nodesize : fs_info->sectorsize;
340         u64 step = chunk << 1;
341
342         while (len > chunk) {
343                 btrfs_remove_free_space(block_group, start, chunk);
344                 start += step;
345                 if (len < step)
346                         len = 0;
347                 else
348                         len -= step;
349         }
350 }
351 #endif
352
353 /*
354  * this is only called by cache_block_group, since we could have freed extents
355  * we need to check the pinned_extents for any extents that can't be used yet
356  * since their free space will be released as soon as the transaction commits.
357  */
358 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
359                        u64 start, u64 end)
360 {
361         struct btrfs_fs_info *info = block_group->fs_info;
362         u64 extent_start, extent_end, size, total_added = 0;
363         int ret;
364
365         while (start < end) {
366                 ret = find_first_extent_bit(info->pinned_extents, start,
367                                             &extent_start, &extent_end,
368                                             EXTENT_DIRTY | EXTENT_UPTODATE,
369                                             NULL);
370                 if (ret)
371                         break;
372
373                 if (extent_start <= start) {
374                         start = extent_end + 1;
375                 } else if (extent_start > start && extent_start < end) {
376                         size = extent_start - start;
377                         total_added += size;
378                         ret = btrfs_add_free_space(block_group, start,
379                                                    size);
380                         BUG_ON(ret); /* -ENOMEM or logic error */
381                         start = extent_end + 1;
382                 } else {
383                         break;
384                 }
385         }
386
387         if (start < end) {
388                 size = end - start;
389                 total_added += size;
390                 ret = btrfs_add_free_space(block_group, start, size);
391                 BUG_ON(ret); /* -ENOMEM or logic error */
392         }
393
394         return total_added;
395 }
396
397 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
398 {
399         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400         struct btrfs_fs_info *fs_info = block_group->fs_info;
401         struct btrfs_root *extent_root = fs_info->extent_root;
402         struct btrfs_path *path;
403         struct extent_buffer *leaf;
404         struct btrfs_key key;
405         u64 total_found = 0;
406         u64 last = 0;
407         u32 nritems;
408         int ret;
409         bool wakeup = true;
410
411         path = btrfs_alloc_path();
412         if (!path)
413                 return -ENOMEM;
414
415         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
416
417 #ifdef CONFIG_BTRFS_DEBUG
418         /*
419          * If we're fragmenting we don't want to make anybody think we can
420          * allocate from this block group until we've had a chance to fragment
421          * the free space.
422          */
423         if (btrfs_should_fragment_free_space(block_group))
424                 wakeup = false;
425 #endif
426         /*
427          * We don't want to deadlock with somebody trying to allocate a new
428          * extent for the extent root while also trying to search the extent
429          * root to add free space.  So we skip locking and search the commit
430          * root, since its read-only
431          */
432         path->skip_locking = 1;
433         path->search_commit_root = 1;
434         path->reada = READA_FORWARD;
435
436         key.objectid = last;
437         key.offset = 0;
438         key.type = BTRFS_EXTENT_ITEM_KEY;
439
440 next:
441         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
442         if (ret < 0)
443                 goto out;
444
445         leaf = path->nodes[0];
446         nritems = btrfs_header_nritems(leaf);
447
448         while (1) {
449                 if (btrfs_fs_closing(fs_info) > 1) {
450                         last = (u64)-1;
451                         break;
452                 }
453
454                 if (path->slots[0] < nritems) {
455                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456                 } else {
457                         ret = find_next_key(path, 0, &key);
458                         if (ret)
459                                 break;
460
461                         if (need_resched() ||
462                             rwsem_is_contended(&fs_info->commit_root_sem)) {
463                                 if (wakeup)
464                                         caching_ctl->progress = last;
465                                 btrfs_release_path(path);
466                                 up_read(&fs_info->commit_root_sem);
467                                 mutex_unlock(&caching_ctl->mutex);
468                                 cond_resched();
469                                 mutex_lock(&caching_ctl->mutex);
470                                 down_read(&fs_info->commit_root_sem);
471                                 goto next;
472                         }
473
474                         ret = btrfs_next_leaf(extent_root, path);
475                         if (ret < 0)
476                                 goto out;
477                         if (ret)
478                                 break;
479                         leaf = path->nodes[0];
480                         nritems = btrfs_header_nritems(leaf);
481                         continue;
482                 }
483
484                 if (key.objectid < last) {
485                         key.objectid = last;
486                         key.offset = 0;
487                         key.type = BTRFS_EXTENT_ITEM_KEY;
488
489                         if (wakeup)
490                                 caching_ctl->progress = last;
491                         btrfs_release_path(path);
492                         goto next;
493                 }
494
495                 if (key.objectid < block_group->key.objectid) {
496                         path->slots[0]++;
497                         continue;
498                 }
499
500                 if (key.objectid >= block_group->key.objectid +
501                     block_group->key.offset)
502                         break;
503
504                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505                     key.type == BTRFS_METADATA_ITEM_KEY) {
506                         total_found += add_new_free_space(block_group, last,
507                                                           key.objectid);
508                         if (key.type == BTRFS_METADATA_ITEM_KEY)
509                                 last = key.objectid +
510                                         fs_info->nodesize;
511                         else
512                                 last = key.objectid + key.offset;
513
514                         if (total_found > CACHING_CTL_WAKE_UP) {
515                                 total_found = 0;
516                                 if (wakeup)
517                                         wake_up(&caching_ctl->wait);
518                         }
519                 }
520                 path->slots[0]++;
521         }
522         ret = 0;
523
524         total_found += add_new_free_space(block_group, last,
525                                           block_group->key.objectid +
526                                           block_group->key.offset);
527         caching_ctl->progress = (u64)-1;
528
529 out:
530         btrfs_free_path(path);
531         return ret;
532 }
533
534 static noinline void caching_thread(struct btrfs_work *work)
535 {
536         struct btrfs_block_group_cache *block_group;
537         struct btrfs_fs_info *fs_info;
538         struct btrfs_caching_control *caching_ctl;
539         int ret;
540
541         caching_ctl = container_of(work, struct btrfs_caching_control, work);
542         block_group = caching_ctl->block_group;
543         fs_info = block_group->fs_info;
544
545         mutex_lock(&caching_ctl->mutex);
546         down_read(&fs_info->commit_root_sem);
547
548         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549                 ret = load_free_space_tree(caching_ctl);
550         else
551                 ret = load_extent_tree_free(caching_ctl);
552
553         spin_lock(&block_group->lock);
554         block_group->caching_ctl = NULL;
555         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556         spin_unlock(&block_group->lock);
557
558 #ifdef CONFIG_BTRFS_DEBUG
559         if (btrfs_should_fragment_free_space(block_group)) {
560                 u64 bytes_used;
561
562                 spin_lock(&block_group->space_info->lock);
563                 spin_lock(&block_group->lock);
564                 bytes_used = block_group->key.offset -
565                         btrfs_block_group_used(&block_group->item);
566                 block_group->space_info->bytes_used += bytes_used >> 1;
567                 spin_unlock(&block_group->lock);
568                 spin_unlock(&block_group->space_info->lock);
569                 fragment_free_space(block_group);
570         }
571 #endif
572
573         caching_ctl->progress = (u64)-1;
574
575         up_read(&fs_info->commit_root_sem);
576         free_excluded_extents(block_group);
577         mutex_unlock(&caching_ctl->mutex);
578
579         wake_up(&caching_ctl->wait);
580
581         put_caching_control(caching_ctl);
582         btrfs_put_block_group(block_group);
583 }
584
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586                              int load_cache_only)
587 {
588         DEFINE_WAIT(wait);
589         struct btrfs_fs_info *fs_info = cache->fs_info;
590         struct btrfs_caching_control *caching_ctl;
591         int ret = 0;
592
593         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594         if (!caching_ctl)
595                 return -ENOMEM;
596
597         INIT_LIST_HEAD(&caching_ctl->list);
598         mutex_init(&caching_ctl->mutex);
599         init_waitqueue_head(&caching_ctl->wait);
600         caching_ctl->block_group = cache;
601         caching_ctl->progress = cache->key.objectid;
602         refcount_set(&caching_ctl->count, 1);
603         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604                         caching_thread, NULL, NULL);
605
606         spin_lock(&cache->lock);
607         /*
608          * This should be a rare occasion, but this could happen I think in the
609          * case where one thread starts to load the space cache info, and then
610          * some other thread starts a transaction commit which tries to do an
611          * allocation while the other thread is still loading the space cache
612          * info.  The previous loop should have kept us from choosing this block
613          * group, but if we've moved to the state where we will wait on caching
614          * block groups we need to first check if we're doing a fast load here,
615          * so we can wait for it to finish, otherwise we could end up allocating
616          * from a block group who's cache gets evicted for one reason or
617          * another.
618          */
619         while (cache->cached == BTRFS_CACHE_FAST) {
620                 struct btrfs_caching_control *ctl;
621
622                 ctl = cache->caching_ctl;
623                 refcount_inc(&ctl->count);
624                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625                 spin_unlock(&cache->lock);
626
627                 schedule();
628
629                 finish_wait(&ctl->wait, &wait);
630                 put_caching_control(ctl);
631                 spin_lock(&cache->lock);
632         }
633
634         if (cache->cached != BTRFS_CACHE_NO) {
635                 spin_unlock(&cache->lock);
636                 kfree(caching_ctl);
637                 return 0;
638         }
639         WARN_ON(cache->caching_ctl);
640         cache->caching_ctl = caching_ctl;
641         cache->cached = BTRFS_CACHE_FAST;
642         spin_unlock(&cache->lock);
643
644         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
645                 mutex_lock(&caching_ctl->mutex);
646                 ret = load_free_space_cache(cache);
647
648                 spin_lock(&cache->lock);
649                 if (ret == 1) {
650                         cache->caching_ctl = NULL;
651                         cache->cached = BTRFS_CACHE_FINISHED;
652                         cache->last_byte_to_unpin = (u64)-1;
653                         caching_ctl->progress = (u64)-1;
654                 } else {
655                         if (load_cache_only) {
656                                 cache->caching_ctl = NULL;
657                                 cache->cached = BTRFS_CACHE_NO;
658                         } else {
659                                 cache->cached = BTRFS_CACHE_STARTED;
660                                 cache->has_caching_ctl = 1;
661                         }
662                 }
663                 spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665                 if (ret == 1 &&
666                     btrfs_should_fragment_free_space(cache)) {
667                         u64 bytes_used;
668
669                         spin_lock(&cache->space_info->lock);
670                         spin_lock(&cache->lock);
671                         bytes_used = cache->key.offset -
672                                 btrfs_block_group_used(&cache->item);
673                         cache->space_info->bytes_used += bytes_used >> 1;
674                         spin_unlock(&cache->lock);
675                         spin_unlock(&cache->space_info->lock);
676                         fragment_free_space(cache);
677                 }
678 #endif
679                 mutex_unlock(&caching_ctl->mutex);
680
681                 wake_up(&caching_ctl->wait);
682                 if (ret == 1) {
683                         put_caching_control(caching_ctl);
684                         free_excluded_extents(cache);
685                         return 0;
686                 }
687         } else {
688                 /*
689                  * We're either using the free space tree or no caching at all.
690                  * Set cached to the appropriate value and wakeup any waiters.
691                  */
692                 spin_lock(&cache->lock);
693                 if (load_cache_only) {
694                         cache->caching_ctl = NULL;
695                         cache->cached = BTRFS_CACHE_NO;
696                 } else {
697                         cache->cached = BTRFS_CACHE_STARTED;
698                         cache->has_caching_ctl = 1;
699                 }
700                 spin_unlock(&cache->lock);
701                 wake_up(&caching_ctl->wait);
702         }
703
704         if (load_cache_only) {
705                 put_caching_control(caching_ctl);
706                 return 0;
707         }
708
709         down_write(&fs_info->commit_root_sem);
710         refcount_inc(&caching_ctl->count);
711         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712         up_write(&fs_info->commit_root_sem);
713
714         btrfs_get_block_group(cache);
715
716         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717
718         return ret;
719 }
720
721 /*
722  * return the block group that starts at or after bytenr
723  */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727         return block_group_cache_tree_search(info, bytenr, 0);
728 }
729
730 /*
731  * return the block group that contains the given bytenr
732  */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734                                                  struct btrfs_fs_info *info,
735                                                  u64 bytenr)
736 {
737         return block_group_cache_tree_search(info, bytenr, 1);
738 }
739
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741                                                   u64 flags)
742 {
743         struct list_head *head = &info->space_info;
744         struct btrfs_space_info *found;
745
746         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747
748         rcu_read_lock();
749         list_for_each_entry_rcu(found, head, list) {
750                 if (found->flags & flags) {
751                         rcu_read_unlock();
752                         return found;
753                 }
754         }
755         rcu_read_unlock();
756         return NULL;
757 }
758
759 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
760 {
761         if (ref->type == BTRFS_REF_METADATA) {
762                 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
763                         return BTRFS_BLOCK_GROUP_SYSTEM;
764                 else
765                         return BTRFS_BLOCK_GROUP_METADATA;
766         }
767         return BTRFS_BLOCK_GROUP_DATA;
768 }
769
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
771                              struct btrfs_ref *ref)
772 {
773         struct btrfs_space_info *space_info;
774         u64 flags = generic_ref_to_space_flags(ref);
775
776         space_info = __find_space_info(fs_info, flags);
777         ASSERT(space_info);
778         percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
779                     BTRFS_TOTAL_BYTES_PINNED_BATCH);
780 }
781
782 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
783                              struct btrfs_ref *ref)
784 {
785         struct btrfs_space_info *space_info;
786         u64 flags = generic_ref_to_space_flags(ref);
787
788         space_info = __find_space_info(fs_info, flags);
789         ASSERT(space_info);
790         percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
791                     BTRFS_TOTAL_BYTES_PINNED_BATCH);
792 }
793
794 /*
795  * after adding space to the filesystem, we need to clear the full flags
796  * on all the space infos.
797  */
798 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
799 {
800         struct list_head *head = &info->space_info;
801         struct btrfs_space_info *found;
802
803         rcu_read_lock();
804         list_for_each_entry_rcu(found, head, list)
805                 found->full = 0;
806         rcu_read_unlock();
807 }
808
809 /* simple helper to search for an existing data extent at a given offset */
810 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
811 {
812         int ret;
813         struct btrfs_key key;
814         struct btrfs_path *path;
815
816         path = btrfs_alloc_path();
817         if (!path)
818                 return -ENOMEM;
819
820         key.objectid = start;
821         key.offset = len;
822         key.type = BTRFS_EXTENT_ITEM_KEY;
823         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
824         btrfs_free_path(path);
825         return ret;
826 }
827
828 /*
829  * helper function to lookup reference count and flags of a tree block.
830  *
831  * the head node for delayed ref is used to store the sum of all the
832  * reference count modifications queued up in the rbtree. the head
833  * node may also store the extent flags to set. This way you can check
834  * to see what the reference count and extent flags would be if all of
835  * the delayed refs are not processed.
836  */
837 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
838                              struct btrfs_fs_info *fs_info, u64 bytenr,
839                              u64 offset, int metadata, u64 *refs, u64 *flags)
840 {
841         struct btrfs_delayed_ref_head *head;
842         struct btrfs_delayed_ref_root *delayed_refs;
843         struct btrfs_path *path;
844         struct btrfs_extent_item *ei;
845         struct extent_buffer *leaf;
846         struct btrfs_key key;
847         u32 item_size;
848         u64 num_refs;
849         u64 extent_flags;
850         int ret;
851
852         /*
853          * If we don't have skinny metadata, don't bother doing anything
854          * different
855          */
856         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
857                 offset = fs_info->nodesize;
858                 metadata = 0;
859         }
860
861         path = btrfs_alloc_path();
862         if (!path)
863                 return -ENOMEM;
864
865         if (!trans) {
866                 path->skip_locking = 1;
867                 path->search_commit_root = 1;
868         }
869
870 search_again:
871         key.objectid = bytenr;
872         key.offset = offset;
873         if (metadata)
874                 key.type = BTRFS_METADATA_ITEM_KEY;
875         else
876                 key.type = BTRFS_EXTENT_ITEM_KEY;
877
878         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
879         if (ret < 0)
880                 goto out_free;
881
882         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
883                 if (path->slots[0]) {
884                         path->slots[0]--;
885                         btrfs_item_key_to_cpu(path->nodes[0], &key,
886                                               path->slots[0]);
887                         if (key.objectid == bytenr &&
888                             key.type == BTRFS_EXTENT_ITEM_KEY &&
889                             key.offset == fs_info->nodesize)
890                                 ret = 0;
891                 }
892         }
893
894         if (ret == 0) {
895                 leaf = path->nodes[0];
896                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
897                 if (item_size >= sizeof(*ei)) {
898                         ei = btrfs_item_ptr(leaf, path->slots[0],
899                                             struct btrfs_extent_item);
900                         num_refs = btrfs_extent_refs(leaf, ei);
901                         extent_flags = btrfs_extent_flags(leaf, ei);
902                 } else {
903                         ret = -EINVAL;
904                         btrfs_print_v0_err(fs_info);
905                         if (trans)
906                                 btrfs_abort_transaction(trans, ret);
907                         else
908                                 btrfs_handle_fs_error(fs_info, ret, NULL);
909
910                         goto out_free;
911                 }
912
913                 BUG_ON(num_refs == 0);
914         } else {
915                 num_refs = 0;
916                 extent_flags = 0;
917                 ret = 0;
918         }
919
920         if (!trans)
921                 goto out;
922
923         delayed_refs = &trans->transaction->delayed_refs;
924         spin_lock(&delayed_refs->lock);
925         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
926         if (head) {
927                 if (!mutex_trylock(&head->mutex)) {
928                         refcount_inc(&head->refs);
929                         spin_unlock(&delayed_refs->lock);
930
931                         btrfs_release_path(path);
932
933                         /*
934                          * Mutex was contended, block until it's released and try
935                          * again
936                          */
937                         mutex_lock(&head->mutex);
938                         mutex_unlock(&head->mutex);
939                         btrfs_put_delayed_ref_head(head);
940                         goto search_again;
941                 }
942                 spin_lock(&head->lock);
943                 if (head->extent_op && head->extent_op->update_flags)
944                         extent_flags |= head->extent_op->flags_to_set;
945                 else
946                         BUG_ON(num_refs == 0);
947
948                 num_refs += head->ref_mod;
949                 spin_unlock(&head->lock);
950                 mutex_unlock(&head->mutex);
951         }
952         spin_unlock(&delayed_refs->lock);
953 out:
954         WARN_ON(num_refs == 0);
955         if (refs)
956                 *refs = num_refs;
957         if (flags)
958                 *flags = extent_flags;
959 out_free:
960         btrfs_free_path(path);
961         return ret;
962 }
963
964 /*
965  * Back reference rules.  Back refs have three main goals:
966  *
967  * 1) differentiate between all holders of references to an extent so that
968  *    when a reference is dropped we can make sure it was a valid reference
969  *    before freeing the extent.
970  *
971  * 2) Provide enough information to quickly find the holders of an extent
972  *    if we notice a given block is corrupted or bad.
973  *
974  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
975  *    maintenance.  This is actually the same as #2, but with a slightly
976  *    different use case.
977  *
978  * There are two kinds of back refs. The implicit back refs is optimized
979  * for pointers in non-shared tree blocks. For a given pointer in a block,
980  * back refs of this kind provide information about the block's owner tree
981  * and the pointer's key. These information allow us to find the block by
982  * b-tree searching. The full back refs is for pointers in tree blocks not
983  * referenced by their owner trees. The location of tree block is recorded
984  * in the back refs. Actually the full back refs is generic, and can be
985  * used in all cases the implicit back refs is used. The major shortcoming
986  * of the full back refs is its overhead. Every time a tree block gets
987  * COWed, we have to update back refs entry for all pointers in it.
988  *
989  * For a newly allocated tree block, we use implicit back refs for
990  * pointers in it. This means most tree related operations only involve
991  * implicit back refs. For a tree block created in old transaction, the
992  * only way to drop a reference to it is COW it. So we can detect the
993  * event that tree block loses its owner tree's reference and do the
994  * back refs conversion.
995  *
996  * When a tree block is COWed through a tree, there are four cases:
997  *
998  * The reference count of the block is one and the tree is the block's
999  * owner tree. Nothing to do in this case.
1000  *
1001  * The reference count of the block is one and the tree is not the
1002  * block's owner tree. In this case, full back refs is used for pointers
1003  * in the block. Remove these full back refs, add implicit back refs for
1004  * every pointers in the new block.
1005  *
1006  * The reference count of the block is greater than one and the tree is
1007  * the block's owner tree. In this case, implicit back refs is used for
1008  * pointers in the block. Add full back refs for every pointers in the
1009  * block, increase lower level extents' reference counts. The original
1010  * implicit back refs are entailed to the new block.
1011  *
1012  * The reference count of the block is greater than one and the tree is
1013  * not the block's owner tree. Add implicit back refs for every pointer in
1014  * the new block, increase lower level extents' reference count.
1015  *
1016  * Back Reference Key composing:
1017  *
1018  * The key objectid corresponds to the first byte in the extent,
1019  * The key type is used to differentiate between types of back refs.
1020  * There are different meanings of the key offset for different types
1021  * of back refs.
1022  *
1023  * File extents can be referenced by:
1024  *
1025  * - multiple snapshots, subvolumes, or different generations in one subvol
1026  * - different files inside a single subvolume
1027  * - different offsets inside a file (bookend extents in file.c)
1028  *
1029  * The extent ref structure for the implicit back refs has fields for:
1030  *
1031  * - Objectid of the subvolume root
1032  * - objectid of the file holding the reference
1033  * - original offset in the file
1034  * - how many bookend extents
1035  *
1036  * The key offset for the implicit back refs is hash of the first
1037  * three fields.
1038  *
1039  * The extent ref structure for the full back refs has field for:
1040  *
1041  * - number of pointers in the tree leaf
1042  *
1043  * The key offset for the implicit back refs is the first byte of
1044  * the tree leaf
1045  *
1046  * When a file extent is allocated, The implicit back refs is used.
1047  * the fields are filled in:
1048  *
1049  *     (root_key.objectid, inode objectid, offset in file, 1)
1050  *
1051  * When a file extent is removed file truncation, we find the
1052  * corresponding implicit back refs and check the following fields:
1053  *
1054  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1055  *
1056  * Btree extents can be referenced by:
1057  *
1058  * - Different subvolumes
1059  *
1060  * Both the implicit back refs and the full back refs for tree blocks
1061  * only consist of key. The key offset for the implicit back refs is
1062  * objectid of block's owner tree. The key offset for the full back refs
1063  * is the first byte of parent block.
1064  *
1065  * When implicit back refs is used, information about the lowest key and
1066  * level of the tree block are required. These information are stored in
1067  * tree block info structure.
1068  */
1069
1070 /*
1071  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1072  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1073  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1074  */
1075 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1076                                      struct btrfs_extent_inline_ref *iref,
1077                                      enum btrfs_inline_ref_type is_data)
1078 {
1079         int type = btrfs_extent_inline_ref_type(eb, iref);
1080         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1081
1082         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1083             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1084             type == BTRFS_SHARED_DATA_REF_KEY ||
1085             type == BTRFS_EXTENT_DATA_REF_KEY) {
1086                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1087                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1088                                 return type;
1089                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1090                                 ASSERT(eb->fs_info);
1091                                 /*
1092                                  * Every shared one has parent tree
1093                                  * block, which must be aligned to
1094                                  * nodesize.
1095                                  */
1096                                 if (offset &&
1097                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1098                                         return type;
1099                         }
1100                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1101                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1102                                 return type;
1103                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1104                                 ASSERT(eb->fs_info);
1105                                 /*
1106                                  * Every shared one has parent tree
1107                                  * block, which must be aligned to
1108                                  * nodesize.
1109                                  */
1110                                 if (offset &&
1111                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1112                                         return type;
1113                         }
1114                 } else {
1115                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1116                         return type;
1117                 }
1118         }
1119
1120         btrfs_print_leaf((struct extent_buffer *)eb);
1121         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1122                   eb->start, type);
1123         WARN_ON(1);
1124
1125         return BTRFS_REF_TYPE_INVALID;
1126 }
1127
1128 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1129 {
1130         u32 high_crc = ~(u32)0;
1131         u32 low_crc = ~(u32)0;
1132         __le64 lenum;
1133
1134         lenum = cpu_to_le64(root_objectid);
1135         high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1136         lenum = cpu_to_le64(owner);
1137         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1138         lenum = cpu_to_le64(offset);
1139         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1140
1141         return ((u64)high_crc << 31) ^ (u64)low_crc;
1142 }
1143
1144 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1145                                      struct btrfs_extent_data_ref *ref)
1146 {
1147         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1148                                     btrfs_extent_data_ref_objectid(leaf, ref),
1149                                     btrfs_extent_data_ref_offset(leaf, ref));
1150 }
1151
1152 static int match_extent_data_ref(struct extent_buffer *leaf,
1153                                  struct btrfs_extent_data_ref *ref,
1154                                  u64 root_objectid, u64 owner, u64 offset)
1155 {
1156         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1157             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1158             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1159                 return 0;
1160         return 1;
1161 }
1162
1163 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1164                                            struct btrfs_path *path,
1165                                            u64 bytenr, u64 parent,
1166                                            u64 root_objectid,
1167                                            u64 owner, u64 offset)
1168 {
1169         struct btrfs_root *root = trans->fs_info->extent_root;
1170         struct btrfs_key key;
1171         struct btrfs_extent_data_ref *ref;
1172         struct extent_buffer *leaf;
1173         u32 nritems;
1174         int ret;
1175         int recow;
1176         int err = -ENOENT;
1177
1178         key.objectid = bytenr;
1179         if (parent) {
1180                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1181                 key.offset = parent;
1182         } else {
1183                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1184                 key.offset = hash_extent_data_ref(root_objectid,
1185                                                   owner, offset);
1186         }
1187 again:
1188         recow = 0;
1189         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1190         if (ret < 0) {
1191                 err = ret;
1192                 goto fail;
1193         }
1194
1195         if (parent) {
1196                 if (!ret)
1197                         return 0;
1198                 goto fail;
1199         }
1200
1201         leaf = path->nodes[0];
1202         nritems = btrfs_header_nritems(leaf);
1203         while (1) {
1204                 if (path->slots[0] >= nritems) {
1205                         ret = btrfs_next_leaf(root, path);
1206                         if (ret < 0)
1207                                 err = ret;
1208                         if (ret)
1209                                 goto fail;
1210
1211                         leaf = path->nodes[0];
1212                         nritems = btrfs_header_nritems(leaf);
1213                         recow = 1;
1214                 }
1215
1216                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1217                 if (key.objectid != bytenr ||
1218                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1219                         goto fail;
1220
1221                 ref = btrfs_item_ptr(leaf, path->slots[0],
1222                                      struct btrfs_extent_data_ref);
1223
1224                 if (match_extent_data_ref(leaf, ref, root_objectid,
1225                                           owner, offset)) {
1226                         if (recow) {
1227                                 btrfs_release_path(path);
1228                                 goto again;
1229                         }
1230                         err = 0;
1231                         break;
1232                 }
1233                 path->slots[0]++;
1234         }
1235 fail:
1236         return err;
1237 }
1238
1239 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1240                                            struct btrfs_path *path,
1241                                            u64 bytenr, u64 parent,
1242                                            u64 root_objectid, u64 owner,
1243                                            u64 offset, int refs_to_add)
1244 {
1245         struct btrfs_root *root = trans->fs_info->extent_root;
1246         struct btrfs_key key;
1247         struct extent_buffer *leaf;
1248         u32 size;
1249         u32 num_refs;
1250         int ret;
1251
1252         key.objectid = bytenr;
1253         if (parent) {
1254                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1255                 key.offset = parent;
1256                 size = sizeof(struct btrfs_shared_data_ref);
1257         } else {
1258                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1259                 key.offset = hash_extent_data_ref(root_objectid,
1260                                                   owner, offset);
1261                 size = sizeof(struct btrfs_extent_data_ref);
1262         }
1263
1264         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1265         if (ret && ret != -EEXIST)
1266                 goto fail;
1267
1268         leaf = path->nodes[0];
1269         if (parent) {
1270                 struct btrfs_shared_data_ref *ref;
1271                 ref = btrfs_item_ptr(leaf, path->slots[0],
1272                                      struct btrfs_shared_data_ref);
1273                 if (ret == 0) {
1274                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1275                 } else {
1276                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1277                         num_refs += refs_to_add;
1278                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1279                 }
1280         } else {
1281                 struct btrfs_extent_data_ref *ref;
1282                 while (ret == -EEXIST) {
1283                         ref = btrfs_item_ptr(leaf, path->slots[0],
1284                                              struct btrfs_extent_data_ref);
1285                         if (match_extent_data_ref(leaf, ref, root_objectid,
1286                                                   owner, offset))
1287                                 break;
1288                         btrfs_release_path(path);
1289                         key.offset++;
1290                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1291                                                       size);
1292                         if (ret && ret != -EEXIST)
1293                                 goto fail;
1294
1295                         leaf = path->nodes[0];
1296                 }
1297                 ref = btrfs_item_ptr(leaf, path->slots[0],
1298                                      struct btrfs_extent_data_ref);
1299                 if (ret == 0) {
1300                         btrfs_set_extent_data_ref_root(leaf, ref,
1301                                                        root_objectid);
1302                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1303                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1304                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1305                 } else {
1306                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1307                         num_refs += refs_to_add;
1308                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1309                 }
1310         }
1311         btrfs_mark_buffer_dirty(leaf);
1312         ret = 0;
1313 fail:
1314         btrfs_release_path(path);
1315         return ret;
1316 }
1317
1318 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1319                                            struct btrfs_path *path,
1320                                            int refs_to_drop, int *last_ref)
1321 {
1322         struct btrfs_key key;
1323         struct btrfs_extent_data_ref *ref1 = NULL;
1324         struct btrfs_shared_data_ref *ref2 = NULL;
1325         struct extent_buffer *leaf;
1326         u32 num_refs = 0;
1327         int ret = 0;
1328
1329         leaf = path->nodes[0];
1330         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331
1332         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1333                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1334                                       struct btrfs_extent_data_ref);
1335                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1337                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1338                                       struct btrfs_shared_data_ref);
1339                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340         } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1341                 btrfs_print_v0_err(trans->fs_info);
1342                 btrfs_abort_transaction(trans, -EINVAL);
1343                 return -EINVAL;
1344         } else {
1345                 BUG();
1346         }
1347
1348         BUG_ON(num_refs < refs_to_drop);
1349         num_refs -= refs_to_drop;
1350
1351         if (num_refs == 0) {
1352                 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1353                 *last_ref = 1;
1354         } else {
1355                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1356                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1357                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1358                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1359                 btrfs_mark_buffer_dirty(leaf);
1360         }
1361         return ret;
1362 }
1363
1364 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1365                                           struct btrfs_extent_inline_ref *iref)
1366 {
1367         struct btrfs_key key;
1368         struct extent_buffer *leaf;
1369         struct btrfs_extent_data_ref *ref1;
1370         struct btrfs_shared_data_ref *ref2;
1371         u32 num_refs = 0;
1372         int type;
1373
1374         leaf = path->nodes[0];
1375         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1376
1377         BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1378         if (iref) {
1379                 /*
1380                  * If type is invalid, we should have bailed out earlier than
1381                  * this call.
1382                  */
1383                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1384                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1385                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1386                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1387                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1388                 } else {
1389                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1390                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1391                 }
1392         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1393                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1394                                       struct btrfs_extent_data_ref);
1395                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1396         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1397                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1398                                       struct btrfs_shared_data_ref);
1399                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1400         } else {
1401                 WARN_ON(1);
1402         }
1403         return num_refs;
1404 }
1405
1406 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1407                                           struct btrfs_path *path,
1408                                           u64 bytenr, u64 parent,
1409                                           u64 root_objectid)
1410 {
1411         struct btrfs_root *root = trans->fs_info->extent_root;
1412         struct btrfs_key key;
1413         int ret;
1414
1415         key.objectid = bytenr;
1416         if (parent) {
1417                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1418                 key.offset = parent;
1419         } else {
1420                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1421                 key.offset = root_objectid;
1422         }
1423
1424         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1425         if (ret > 0)
1426                 ret = -ENOENT;
1427         return ret;
1428 }
1429
1430 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1431                                           struct btrfs_path *path,
1432                                           u64 bytenr, u64 parent,
1433                                           u64 root_objectid)
1434 {
1435         struct btrfs_key key;
1436         int ret;
1437
1438         key.objectid = bytenr;
1439         if (parent) {
1440                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1441                 key.offset = parent;
1442         } else {
1443                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1444                 key.offset = root_objectid;
1445         }
1446
1447         ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1448                                       path, &key, 0);
1449         btrfs_release_path(path);
1450         return ret;
1451 }
1452
1453 static inline int extent_ref_type(u64 parent, u64 owner)
1454 {
1455         int type;
1456         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1457                 if (parent > 0)
1458                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1459                 else
1460                         type = BTRFS_TREE_BLOCK_REF_KEY;
1461         } else {
1462                 if (parent > 0)
1463                         type = BTRFS_SHARED_DATA_REF_KEY;
1464                 else
1465                         type = BTRFS_EXTENT_DATA_REF_KEY;
1466         }
1467         return type;
1468 }
1469
1470 static int find_next_key(struct btrfs_path *path, int level,
1471                          struct btrfs_key *key)
1472
1473 {
1474         for (; level < BTRFS_MAX_LEVEL; level++) {
1475                 if (!path->nodes[level])
1476                         break;
1477                 if (path->slots[level] + 1 >=
1478                     btrfs_header_nritems(path->nodes[level]))
1479                         continue;
1480                 if (level == 0)
1481                         btrfs_item_key_to_cpu(path->nodes[level], key,
1482                                               path->slots[level] + 1);
1483                 else
1484                         btrfs_node_key_to_cpu(path->nodes[level], key,
1485                                               path->slots[level] + 1);
1486                 return 0;
1487         }
1488         return 1;
1489 }
1490
1491 /*
1492  * look for inline back ref. if back ref is found, *ref_ret is set
1493  * to the address of inline back ref, and 0 is returned.
1494  *
1495  * if back ref isn't found, *ref_ret is set to the address where it
1496  * should be inserted, and -ENOENT is returned.
1497  *
1498  * if insert is true and there are too many inline back refs, the path
1499  * points to the extent item, and -EAGAIN is returned.
1500  *
1501  * NOTE: inline back refs are ordered in the same way that back ref
1502  *       items in the tree are ordered.
1503  */
1504 static noinline_for_stack
1505 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1506                                  struct btrfs_path *path,
1507                                  struct btrfs_extent_inline_ref **ref_ret,
1508                                  u64 bytenr, u64 num_bytes,
1509                                  u64 parent, u64 root_objectid,
1510                                  u64 owner, u64 offset, int insert)
1511 {
1512         struct btrfs_fs_info *fs_info = trans->fs_info;
1513         struct btrfs_root *root = fs_info->extent_root;
1514         struct btrfs_key key;
1515         struct extent_buffer *leaf;
1516         struct btrfs_extent_item *ei;
1517         struct btrfs_extent_inline_ref *iref;
1518         u64 flags;
1519         u64 item_size;
1520         unsigned long ptr;
1521         unsigned long end;
1522         int extra_size;
1523         int type;
1524         int want;
1525         int ret;
1526         int err = 0;
1527         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1528         int needed;
1529
1530         key.objectid = bytenr;
1531         key.type = BTRFS_EXTENT_ITEM_KEY;
1532         key.offset = num_bytes;
1533
1534         want = extent_ref_type(parent, owner);
1535         if (insert) {
1536                 extra_size = btrfs_extent_inline_ref_size(want);
1537                 path->keep_locks = 1;
1538         } else
1539                 extra_size = -1;
1540
1541         /*
1542          * Owner is our level, so we can just add one to get the level for the
1543          * block we are interested in.
1544          */
1545         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1546                 key.type = BTRFS_METADATA_ITEM_KEY;
1547                 key.offset = owner;
1548         }
1549
1550 again:
1551         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1552         if (ret < 0) {
1553                 err = ret;
1554                 goto out;
1555         }
1556
1557         /*
1558          * We may be a newly converted file system which still has the old fat
1559          * extent entries for metadata, so try and see if we have one of those.
1560          */
1561         if (ret > 0 && skinny_metadata) {
1562                 skinny_metadata = false;
1563                 if (path->slots[0]) {
1564                         path->slots[0]--;
1565                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1566                                               path->slots[0]);
1567                         if (key.objectid == bytenr &&
1568                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1569                             key.offset == num_bytes)
1570                                 ret = 0;
1571                 }
1572                 if (ret) {
1573                         key.objectid = bytenr;
1574                         key.type = BTRFS_EXTENT_ITEM_KEY;
1575                         key.offset = num_bytes;
1576                         btrfs_release_path(path);
1577                         goto again;
1578                 }
1579         }
1580
1581         if (ret && !insert) {
1582                 err = -ENOENT;
1583                 goto out;
1584         } else if (WARN_ON(ret)) {
1585                 err = -EIO;
1586                 goto out;
1587         }
1588
1589         leaf = path->nodes[0];
1590         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1591         if (unlikely(item_size < sizeof(*ei))) {
1592                 err = -EINVAL;
1593                 btrfs_print_v0_err(fs_info);
1594                 btrfs_abort_transaction(trans, err);
1595                 goto out;
1596         }
1597
1598         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1599         flags = btrfs_extent_flags(leaf, ei);
1600
1601         ptr = (unsigned long)(ei + 1);
1602         end = (unsigned long)ei + item_size;
1603
1604         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1605                 ptr += sizeof(struct btrfs_tree_block_info);
1606                 BUG_ON(ptr > end);
1607         }
1608
1609         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1610                 needed = BTRFS_REF_TYPE_DATA;
1611         else
1612                 needed = BTRFS_REF_TYPE_BLOCK;
1613
1614         err = -ENOENT;
1615         while (1) {
1616                 if (ptr >= end) {
1617                         WARN_ON(ptr > end);
1618                         break;
1619                 }
1620                 iref = (struct btrfs_extent_inline_ref *)ptr;
1621                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1622                 if (type == BTRFS_REF_TYPE_INVALID) {
1623                         err = -EUCLEAN;
1624                         goto out;
1625                 }
1626
1627                 if (want < type)
1628                         break;
1629                 if (want > type) {
1630                         ptr += btrfs_extent_inline_ref_size(type);
1631                         continue;
1632                 }
1633
1634                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1635                         struct btrfs_extent_data_ref *dref;
1636                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1637                         if (match_extent_data_ref(leaf, dref, root_objectid,
1638                                                   owner, offset)) {
1639                                 err = 0;
1640                                 break;
1641                         }
1642                         if (hash_extent_data_ref_item(leaf, dref) <
1643                             hash_extent_data_ref(root_objectid, owner, offset))
1644                                 break;
1645                 } else {
1646                         u64 ref_offset;
1647                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1648                         if (parent > 0) {
1649                                 if (parent == ref_offset) {
1650                                         err = 0;
1651                                         break;
1652                                 }
1653                                 if (ref_offset < parent)
1654                                         break;
1655                         } else {
1656                                 if (root_objectid == ref_offset) {
1657                                         err = 0;
1658                                         break;
1659                                 }
1660                                 if (ref_offset < root_objectid)
1661                                         break;
1662                         }
1663                 }
1664                 ptr += btrfs_extent_inline_ref_size(type);
1665         }
1666         if (err == -ENOENT && insert) {
1667                 if (item_size + extra_size >=
1668                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1669                         err = -EAGAIN;
1670                         goto out;
1671                 }
1672                 /*
1673                  * To add new inline back ref, we have to make sure
1674                  * there is no corresponding back ref item.
1675                  * For simplicity, we just do not add new inline back
1676                  * ref if there is any kind of item for this block
1677                  */
1678                 if (find_next_key(path, 0, &key) == 0 &&
1679                     key.objectid == bytenr &&
1680                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1681                         err = -EAGAIN;
1682                         goto out;
1683                 }
1684         }
1685         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1686 out:
1687         if (insert) {
1688                 path->keep_locks = 0;
1689                 btrfs_unlock_up_safe(path, 1);
1690         }
1691         return err;
1692 }
1693
1694 /*
1695  * helper to add new inline back ref
1696  */
1697 static noinline_for_stack
1698 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1699                                  struct btrfs_path *path,
1700                                  struct btrfs_extent_inline_ref *iref,
1701                                  u64 parent, u64 root_objectid,
1702                                  u64 owner, u64 offset, int refs_to_add,
1703                                  struct btrfs_delayed_extent_op *extent_op)
1704 {
1705         struct extent_buffer *leaf;
1706         struct btrfs_extent_item *ei;
1707         unsigned long ptr;
1708         unsigned long end;
1709         unsigned long item_offset;
1710         u64 refs;
1711         int size;
1712         int type;
1713
1714         leaf = path->nodes[0];
1715         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1716         item_offset = (unsigned long)iref - (unsigned long)ei;
1717
1718         type = extent_ref_type(parent, owner);
1719         size = btrfs_extent_inline_ref_size(type);
1720
1721         btrfs_extend_item(path, size);
1722
1723         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1724         refs = btrfs_extent_refs(leaf, ei);
1725         refs += refs_to_add;
1726         btrfs_set_extent_refs(leaf, ei, refs);
1727         if (extent_op)
1728                 __run_delayed_extent_op(extent_op, leaf, ei);
1729
1730         ptr = (unsigned long)ei + item_offset;
1731         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1732         if (ptr < end - size)
1733                 memmove_extent_buffer(leaf, ptr + size, ptr,
1734                                       end - size - ptr);
1735
1736         iref = (struct btrfs_extent_inline_ref *)ptr;
1737         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1738         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1739                 struct btrfs_extent_data_ref *dref;
1740                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1741                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1742                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1743                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1744                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1745         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1746                 struct btrfs_shared_data_ref *sref;
1747                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1748                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1749                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1750         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1751                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1752         } else {
1753                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1754         }
1755         btrfs_mark_buffer_dirty(leaf);
1756 }
1757
1758 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1759                                  struct btrfs_path *path,
1760                                  struct btrfs_extent_inline_ref **ref_ret,
1761                                  u64 bytenr, u64 num_bytes, u64 parent,
1762                                  u64 root_objectid, u64 owner, u64 offset)
1763 {
1764         int ret;
1765
1766         ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1767                                            num_bytes, parent, root_objectid,
1768                                            owner, offset, 0);
1769         if (ret != -ENOENT)
1770                 return ret;
1771
1772         btrfs_release_path(path);
1773         *ref_ret = NULL;
1774
1775         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1776                 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1777                                             root_objectid);
1778         } else {
1779                 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1780                                              root_objectid, owner, offset);
1781         }
1782         return ret;
1783 }
1784
1785 /*
1786  * helper to update/remove inline back ref
1787  */
1788 static noinline_for_stack
1789 void update_inline_extent_backref(struct btrfs_path *path,
1790                                   struct btrfs_extent_inline_ref *iref,
1791                                   int refs_to_mod,
1792                                   struct btrfs_delayed_extent_op *extent_op,
1793                                   int *last_ref)
1794 {
1795         struct extent_buffer *leaf = path->nodes[0];
1796         struct btrfs_extent_item *ei;
1797         struct btrfs_extent_data_ref *dref = NULL;
1798         struct btrfs_shared_data_ref *sref = NULL;
1799         unsigned long ptr;
1800         unsigned long end;
1801         u32 item_size;
1802         int size;
1803         int type;
1804         u64 refs;
1805
1806         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1807         refs = btrfs_extent_refs(leaf, ei);
1808         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1809         refs += refs_to_mod;
1810         btrfs_set_extent_refs(leaf, ei, refs);
1811         if (extent_op)
1812                 __run_delayed_extent_op(extent_op, leaf, ei);
1813
1814         /*
1815          * If type is invalid, we should have bailed out after
1816          * lookup_inline_extent_backref().
1817          */
1818         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1819         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1820
1821         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1822                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1823                 refs = btrfs_extent_data_ref_count(leaf, dref);
1824         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1825                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1826                 refs = btrfs_shared_data_ref_count(leaf, sref);
1827         } else {
1828                 refs = 1;
1829                 BUG_ON(refs_to_mod != -1);
1830         }
1831
1832         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1833         refs += refs_to_mod;
1834
1835         if (refs > 0) {
1836                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1837                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1838                 else
1839                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1840         } else {
1841                 *last_ref = 1;
1842                 size =  btrfs_extent_inline_ref_size(type);
1843                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1844                 ptr = (unsigned long)iref;
1845                 end = (unsigned long)ei + item_size;
1846                 if (ptr + size < end)
1847                         memmove_extent_buffer(leaf, ptr, ptr + size,
1848                                               end - ptr - size);
1849                 item_size -= size;
1850                 btrfs_truncate_item(path, item_size, 1);
1851         }
1852         btrfs_mark_buffer_dirty(leaf);
1853 }
1854
1855 static noinline_for_stack
1856 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1857                                  struct btrfs_path *path,
1858                                  u64 bytenr, u64 num_bytes, u64 parent,
1859                                  u64 root_objectid, u64 owner,
1860                                  u64 offset, int refs_to_add,
1861                                  struct btrfs_delayed_extent_op *extent_op)
1862 {
1863         struct btrfs_extent_inline_ref *iref;
1864         int ret;
1865
1866         ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1867                                            num_bytes, parent, root_objectid,
1868                                            owner, offset, 1);
1869         if (ret == 0) {
1870                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1871                 update_inline_extent_backref(path, iref, refs_to_add,
1872                                              extent_op, NULL);
1873         } else if (ret == -ENOENT) {
1874                 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1875                                             root_objectid, owner, offset,
1876                                             refs_to_add, extent_op);
1877                 ret = 0;
1878         }
1879         return ret;
1880 }
1881
1882 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1883                                  struct btrfs_path *path,
1884                                  u64 bytenr, u64 parent, u64 root_objectid,
1885                                  u64 owner, u64 offset, int refs_to_add)
1886 {
1887         int ret;
1888         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1889                 BUG_ON(refs_to_add != 1);
1890                 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1891                                             root_objectid);
1892         } else {
1893                 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1894                                              root_objectid, owner, offset,
1895                                              refs_to_add);
1896         }
1897         return ret;
1898 }
1899
1900 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1901                                  struct btrfs_path *path,
1902                                  struct btrfs_extent_inline_ref *iref,
1903                                  int refs_to_drop, int is_data, int *last_ref)
1904 {
1905         int ret = 0;
1906
1907         BUG_ON(!is_data && refs_to_drop != 1);
1908         if (iref) {
1909                 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1910                                              last_ref);
1911         } else if (is_data) {
1912                 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1913                                              last_ref);
1914         } else {
1915                 *last_ref = 1;
1916                 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1917         }
1918         return ret;
1919 }
1920
1921 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1922                                u64 *discarded_bytes)
1923 {
1924         int j, ret = 0;
1925         u64 bytes_left, end;
1926         u64 aligned_start = ALIGN(start, 1 << 9);
1927
1928         if (WARN_ON(start != aligned_start)) {
1929                 len -= aligned_start - start;
1930                 len = round_down(len, 1 << 9);
1931                 start = aligned_start;
1932         }
1933
1934         *discarded_bytes = 0;
1935
1936         if (!len)
1937                 return 0;
1938
1939         end = start + len;
1940         bytes_left = len;
1941
1942         /* Skip any superblocks on this device. */
1943         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1944                 u64 sb_start = btrfs_sb_offset(j);
1945                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1946                 u64 size = sb_start - start;
1947
1948                 if (!in_range(sb_start, start, bytes_left) &&
1949                     !in_range(sb_end, start, bytes_left) &&
1950                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1951                         continue;
1952
1953                 /*
1954                  * Superblock spans beginning of range.  Adjust start and
1955                  * try again.
1956                  */
1957                 if (sb_start <= start) {
1958                         start += sb_end - start;
1959                         if (start > end) {
1960                                 bytes_left = 0;
1961                                 break;
1962                         }
1963                         bytes_left = end - start;
1964                         continue;
1965                 }
1966
1967                 if (size) {
1968                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1969                                                    GFP_NOFS, 0);
1970                         if (!ret)
1971                                 *discarded_bytes += size;
1972                         else if (ret != -EOPNOTSUPP)
1973                                 return ret;
1974                 }
1975
1976                 start = sb_end;
1977                 if (start > end) {
1978                         bytes_left = 0;
1979                         break;
1980                 }
1981                 bytes_left = end - start;
1982         }
1983
1984         if (bytes_left) {
1985                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1986                                            GFP_NOFS, 0);
1987                 if (!ret)
1988                         *discarded_bytes += bytes_left;
1989         }
1990         return ret;
1991 }
1992
1993 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1994                          u64 num_bytes, u64 *actual_bytes)
1995 {
1996         int ret;
1997         u64 discarded_bytes = 0;
1998         struct btrfs_bio *bbio = NULL;
1999
2000
2001         /*
2002          * Avoid races with device replace and make sure our bbio has devices
2003          * associated to its stripes that don't go away while we are discarding.
2004          */
2005         btrfs_bio_counter_inc_blocked(fs_info);
2006         /* Tell the block device(s) that the sectors can be discarded */
2007         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2008                               &bbio, 0);
2009         /* Error condition is -ENOMEM */
2010         if (!ret) {
2011                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2012                 int i;
2013
2014
2015                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2016                         u64 bytes;
2017                         struct request_queue *req_q;
2018
2019                         if (!stripe->dev->bdev) {
2020                                 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2021                                 continue;
2022                         }
2023                         req_q = bdev_get_queue(stripe->dev->bdev);
2024                         if (!blk_queue_discard(req_q))
2025                                 continue;
2026
2027                         ret = btrfs_issue_discard(stripe->dev->bdev,
2028                                                   stripe->physical,
2029                                                   stripe->length,
2030                                                   &bytes);
2031                         if (!ret)
2032                                 discarded_bytes += bytes;
2033                         else if (ret != -EOPNOTSUPP)
2034                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2035
2036                         /*
2037                          * Just in case we get back EOPNOTSUPP for some reason,
2038                          * just ignore the return value so we don't screw up
2039                          * people calling discard_extent.
2040                          */
2041                         ret = 0;
2042                 }
2043                 btrfs_put_bbio(bbio);
2044         }
2045         btrfs_bio_counter_dec(fs_info);
2046
2047         if (actual_bytes)
2048                 *actual_bytes = discarded_bytes;
2049
2050
2051         if (ret == -EOPNOTSUPP)
2052                 ret = 0;
2053         return ret;
2054 }
2055
2056 /* Can return -ENOMEM */
2057 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2058                          struct btrfs_ref *generic_ref)
2059 {
2060         struct btrfs_fs_info *fs_info = trans->fs_info;
2061         int old_ref_mod, new_ref_mod;
2062         int ret;
2063
2064         ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
2065                generic_ref->action);
2066         BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
2067                generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
2068
2069         if (generic_ref->type == BTRFS_REF_METADATA)
2070                 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
2071                                 NULL, &old_ref_mod, &new_ref_mod);
2072         else
2073                 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
2074                                                  &old_ref_mod, &new_ref_mod);
2075
2076         btrfs_ref_tree_mod(fs_info, generic_ref);
2077
2078         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2079                 sub_pinned_bytes(fs_info, generic_ref);
2080
2081         return ret;
2082 }
2083
2084 /*
2085  * __btrfs_inc_extent_ref - insert backreference for a given extent
2086  *
2087  * @trans:          Handle of transaction
2088  *
2089  * @node:           The delayed ref node used to get the bytenr/length for
2090  *                  extent whose references are incremented.
2091  *
2092  * @parent:         If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2093  *                  BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2094  *                  bytenr of the parent block. Since new extents are always
2095  *                  created with indirect references, this will only be the case
2096  *                  when relocating a shared extent. In that case, root_objectid
2097  *                  will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2098  *                  be 0
2099  *
2100  * @root_objectid:  The id of the root where this modification has originated,
2101  *                  this can be either one of the well-known metadata trees or
2102  *                  the subvolume id which references this extent.
2103  *
2104  * @owner:          For data extents it is the inode number of the owning file.
2105  *                  For metadata extents this parameter holds the level in the
2106  *                  tree of the extent.
2107  *
2108  * @offset:         For metadata extents the offset is ignored and is currently
2109  *                  always passed as 0. For data extents it is the fileoffset
2110  *                  this extent belongs to.
2111  *
2112  * @refs_to_add     Number of references to add
2113  *
2114  * @extent_op       Pointer to a structure, holding information necessary when
2115  *                  updating a tree block's flags
2116  *
2117  */
2118 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2119                                   struct btrfs_delayed_ref_node *node,
2120                                   u64 parent, u64 root_objectid,
2121                                   u64 owner, u64 offset, int refs_to_add,
2122                                   struct btrfs_delayed_extent_op *extent_op)
2123 {
2124         struct btrfs_path *path;
2125         struct extent_buffer *leaf;
2126         struct btrfs_extent_item *item;
2127         struct btrfs_key key;
2128         u64 bytenr = node->bytenr;
2129         u64 num_bytes = node->num_bytes;
2130         u64 refs;
2131         int ret;
2132
2133         path = btrfs_alloc_path();
2134         if (!path)
2135                 return -ENOMEM;
2136
2137         path->reada = READA_FORWARD;
2138         path->leave_spinning = 1;
2139         /* this will setup the path even if it fails to insert the back ref */
2140         ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2141                                            parent, root_objectid, owner,
2142                                            offset, refs_to_add, extent_op);
2143         if ((ret < 0 && ret != -EAGAIN) || !ret)
2144                 goto out;
2145
2146         /*
2147          * Ok we had -EAGAIN which means we didn't have space to insert and
2148          * inline extent ref, so just update the reference count and add a
2149          * normal backref.
2150          */
2151         leaf = path->nodes[0];
2152         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2153         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154         refs = btrfs_extent_refs(leaf, item);
2155         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156         if (extent_op)
2157                 __run_delayed_extent_op(extent_op, leaf, item);
2158
2159         btrfs_mark_buffer_dirty(leaf);
2160         btrfs_release_path(path);
2161
2162         path->reada = READA_FORWARD;
2163         path->leave_spinning = 1;
2164         /* now insert the actual backref */
2165         ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2166                                     owner, offset, refs_to_add);
2167         if (ret)
2168                 btrfs_abort_transaction(trans, ret);
2169 out:
2170         btrfs_free_path(path);
2171         return ret;
2172 }
2173
2174 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2175                                 struct btrfs_delayed_ref_node *node,
2176                                 struct btrfs_delayed_extent_op *extent_op,
2177                                 int insert_reserved)
2178 {
2179         int ret = 0;
2180         struct btrfs_delayed_data_ref *ref;
2181         struct btrfs_key ins;
2182         u64 parent = 0;
2183         u64 ref_root = 0;
2184         u64 flags = 0;
2185
2186         ins.objectid = node->bytenr;
2187         ins.offset = node->num_bytes;
2188         ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190         ref = btrfs_delayed_node_to_data_ref(node);
2191         trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2192
2193         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194                 parent = ref->parent;
2195         ref_root = ref->root;
2196
2197         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198                 if (extent_op)
2199                         flags |= extent_op->flags_to_set;
2200                 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2201                                                  flags, ref->objectid,
2202                                                  ref->offset, &ins,
2203                                                  node->ref_mod);
2204         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205                 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2206                                              ref->objectid, ref->offset,
2207                                              node->ref_mod, extent_op);
2208         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2209                 ret = __btrfs_free_extent(trans, node, parent,
2210                                           ref_root, ref->objectid,
2211                                           ref->offset, node->ref_mod,
2212                                           extent_op);
2213         } else {
2214                 BUG();
2215         }
2216         return ret;
2217 }
2218
2219 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220                                     struct extent_buffer *leaf,
2221                                     struct btrfs_extent_item *ei)
2222 {
2223         u64 flags = btrfs_extent_flags(leaf, ei);
2224         if (extent_op->update_flags) {
2225                 flags |= extent_op->flags_to_set;
2226                 btrfs_set_extent_flags(leaf, ei, flags);
2227         }
2228
2229         if (extent_op->update_key) {
2230                 struct btrfs_tree_block_info *bi;
2231                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2233                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234         }
2235 }
2236
2237 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2238                                  struct btrfs_delayed_ref_head *head,
2239                                  struct btrfs_delayed_extent_op *extent_op)
2240 {
2241         struct btrfs_fs_info *fs_info = trans->fs_info;
2242         struct btrfs_key key;
2243         struct btrfs_path *path;
2244         struct btrfs_extent_item *ei;
2245         struct extent_buffer *leaf;
2246         u32 item_size;
2247         int ret;
2248         int err = 0;
2249         int metadata = !extent_op->is_data;
2250
2251         if (trans->aborted)
2252                 return 0;
2253
2254         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255                 metadata = 0;
2256
2257         path = btrfs_alloc_path();
2258         if (!path)
2259                 return -ENOMEM;
2260
2261         key.objectid = head->bytenr;
2262
2263         if (metadata) {
2264                 key.type = BTRFS_METADATA_ITEM_KEY;
2265                 key.offset = extent_op->level;
2266         } else {
2267                 key.type = BTRFS_EXTENT_ITEM_KEY;
2268                 key.offset = head->num_bytes;
2269         }
2270
2271 again:
2272         path->reada = READA_FORWARD;
2273         path->leave_spinning = 1;
2274         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2275         if (ret < 0) {
2276                 err = ret;
2277                 goto out;
2278         }
2279         if (ret > 0) {
2280                 if (metadata) {
2281                         if (path->slots[0] > 0) {
2282                                 path->slots[0]--;
2283                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284                                                       path->slots[0]);
2285                                 if (key.objectid == head->bytenr &&
2286                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2287                                     key.offset == head->num_bytes)
2288                                         ret = 0;
2289                         }
2290                         if (ret > 0) {
2291                                 btrfs_release_path(path);
2292                                 metadata = 0;
2293
2294                                 key.objectid = head->bytenr;
2295                                 key.offset = head->num_bytes;
2296                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2297                                 goto again;
2298                         }
2299                 } else {
2300                         err = -EIO;
2301                         goto out;
2302                 }
2303         }
2304
2305         leaf = path->nodes[0];
2306         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307
2308         if (unlikely(item_size < sizeof(*ei))) {
2309                 err = -EINVAL;
2310                 btrfs_print_v0_err(fs_info);
2311                 btrfs_abort_transaction(trans, err);
2312                 goto out;
2313         }
2314
2315         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2316         __run_delayed_extent_op(extent_op, leaf, ei);
2317
2318         btrfs_mark_buffer_dirty(leaf);
2319 out:
2320         btrfs_free_path(path);
2321         return err;
2322 }
2323
2324 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2325                                 struct btrfs_delayed_ref_node *node,
2326                                 struct btrfs_delayed_extent_op *extent_op,
2327                                 int insert_reserved)
2328 {
2329         int ret = 0;
2330         struct btrfs_delayed_tree_ref *ref;
2331         u64 parent = 0;
2332         u64 ref_root = 0;
2333
2334         ref = btrfs_delayed_node_to_tree_ref(node);
2335         trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2336
2337         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2338                 parent = ref->parent;
2339         ref_root = ref->root;
2340
2341         if (node->ref_mod != 1) {
2342                 btrfs_err(trans->fs_info,
2343         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2344                           node->bytenr, node->ref_mod, node->action, ref_root,
2345                           parent);
2346                 return -EIO;
2347         }
2348         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2349                 BUG_ON(!extent_op || !extent_op->update_flags);
2350                 ret = alloc_reserved_tree_block(trans, node, extent_op);
2351         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2352                 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2353                                              ref->level, 0, 1, extent_op);
2354         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2355                 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2356                                           ref->level, 0, 1, extent_op);
2357         } else {
2358                 BUG();
2359         }
2360         return ret;
2361 }
2362
2363 /* helper function to actually process a single delayed ref entry */
2364 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2365                                struct btrfs_delayed_ref_node *node,
2366                                struct btrfs_delayed_extent_op *extent_op,
2367                                int insert_reserved)
2368 {
2369         int ret = 0;
2370
2371         if (trans->aborted) {
2372                 if (insert_reserved)
2373                         btrfs_pin_extent(trans->fs_info, node->bytenr,
2374                                          node->num_bytes, 1);
2375                 return 0;
2376         }
2377
2378         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2379             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2380                 ret = run_delayed_tree_ref(trans, node, extent_op,
2381                                            insert_reserved);
2382         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2383                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2384                 ret = run_delayed_data_ref(trans, node, extent_op,
2385                                            insert_reserved);
2386         else
2387                 BUG();
2388         if (ret && insert_reserved)
2389                 btrfs_pin_extent(trans->fs_info, node->bytenr,
2390                                  node->num_bytes, 1);
2391         return ret;
2392 }
2393
2394 static inline struct btrfs_delayed_ref_node *
2395 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2396 {
2397         struct btrfs_delayed_ref_node *ref;
2398
2399         if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2400                 return NULL;
2401
2402         /*
2403          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2404          * This is to prevent a ref count from going down to zero, which deletes
2405          * the extent item from the extent tree, when there still are references
2406          * to add, which would fail because they would not find the extent item.
2407          */
2408         if (!list_empty(&head->ref_add_list))
2409                 return list_first_entry(&head->ref_add_list,
2410                                 struct btrfs_delayed_ref_node, add_list);
2411
2412         ref = rb_entry(rb_first_cached(&head->ref_tree),
2413                        struct btrfs_delayed_ref_node, ref_node);
2414         ASSERT(list_empty(&ref->add_list));
2415         return ref;
2416 }
2417
2418 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2419                                       struct btrfs_delayed_ref_head *head)
2420 {
2421         spin_lock(&delayed_refs->lock);
2422         head->processing = 0;
2423         delayed_refs->num_heads_ready++;
2424         spin_unlock(&delayed_refs->lock);
2425         btrfs_delayed_ref_unlock(head);
2426 }
2427
2428 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2429                                 struct btrfs_delayed_ref_head *head)
2430 {
2431         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2432
2433         if (!extent_op)
2434                 return NULL;
2435
2436         if (head->must_insert_reserved) {
2437                 head->extent_op = NULL;
2438                 btrfs_free_delayed_extent_op(extent_op);
2439                 return NULL;
2440         }
2441         return extent_op;
2442 }
2443
2444 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2445                                      struct btrfs_delayed_ref_head *head)
2446 {
2447         struct btrfs_delayed_extent_op *extent_op;
2448         int ret;
2449
2450         extent_op = cleanup_extent_op(head);
2451         if (!extent_op)
2452                 return 0;
2453         head->extent_op = NULL;
2454         spin_unlock(&head->lock);
2455         ret = run_delayed_extent_op(trans, head, extent_op);
2456         btrfs_free_delayed_extent_op(extent_op);
2457         return ret ? ret : 1;
2458 }
2459
2460 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2461                                   struct btrfs_delayed_ref_root *delayed_refs,
2462                                   struct btrfs_delayed_ref_head *head)
2463 {
2464         int nr_items = 1;       /* Dropping this ref head update. */
2465
2466         if (head->total_ref_mod < 0) {
2467                 struct btrfs_space_info *space_info;
2468                 u64 flags;
2469
2470                 if (head->is_data)
2471                         flags = BTRFS_BLOCK_GROUP_DATA;
2472                 else if (head->is_system)
2473                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
2474                 else
2475                         flags = BTRFS_BLOCK_GROUP_METADATA;
2476                 space_info = __find_space_info(fs_info, flags);
2477                 ASSERT(space_info);
2478                 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2479                                    -head->num_bytes,
2480                                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
2481
2482                 /*
2483                  * We had csum deletions accounted for in our delayed refs rsv,
2484                  * we need to drop the csum leaves for this update from our
2485                  * delayed_refs_rsv.
2486                  */
2487                 if (head->is_data) {
2488                         spin_lock(&delayed_refs->lock);
2489                         delayed_refs->pending_csums -= head->num_bytes;
2490                         spin_unlock(&delayed_refs->lock);
2491                         nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2492                                 head->num_bytes);
2493                 }
2494         }
2495
2496         btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2497 }
2498
2499 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2500                             struct btrfs_delayed_ref_head *head)
2501 {
2502
2503         struct btrfs_fs_info *fs_info = trans->fs_info;
2504         struct btrfs_delayed_ref_root *delayed_refs;
2505         int ret;
2506
2507         delayed_refs = &trans->transaction->delayed_refs;
2508
2509         ret = run_and_cleanup_extent_op(trans, head);
2510         if (ret < 0) {
2511                 unselect_delayed_ref_head(delayed_refs, head);
2512                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2513                 return ret;
2514         } else if (ret) {
2515                 return ret;
2516         }
2517
2518         /*
2519          * Need to drop our head ref lock and re-acquire the delayed ref lock
2520          * and then re-check to make sure nobody got added.
2521          */
2522         spin_unlock(&head->lock);
2523         spin_lock(&delayed_refs->lock);
2524         spin_lock(&head->lock);
2525         if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2526                 spin_unlock(&head->lock);
2527                 spin_unlock(&delayed_refs->lock);
2528                 return 1;
2529         }
2530         btrfs_delete_ref_head(delayed_refs, head);
2531         spin_unlock(&head->lock);
2532         spin_unlock(&delayed_refs->lock);
2533
2534         if (head->must_insert_reserved) {
2535                 btrfs_pin_extent(fs_info, head->bytenr,
2536                                  head->num_bytes, 1);
2537                 if (head->is_data) {
2538                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2539                                               head->num_bytes);
2540                 }
2541         }
2542
2543         btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2544
2545         trace_run_delayed_ref_head(fs_info, head, 0);
2546         btrfs_delayed_ref_unlock(head);
2547         btrfs_put_delayed_ref_head(head);
2548         return 0;
2549 }
2550
2551 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2552                                         struct btrfs_trans_handle *trans)
2553 {
2554         struct btrfs_delayed_ref_root *delayed_refs =
2555                 &trans->transaction->delayed_refs;
2556         struct btrfs_delayed_ref_head *head = NULL;
2557         int ret;
2558
2559         spin_lock(&delayed_refs->lock);
2560         head = btrfs_select_ref_head(delayed_refs);
2561         if (!head) {
2562                 spin_unlock(&delayed_refs->lock);
2563                 return head;
2564         }
2565
2566         /*
2567          * Grab the lock that says we are going to process all the refs for
2568          * this head
2569          */
2570         ret = btrfs_delayed_ref_lock(delayed_refs, head);
2571         spin_unlock(&delayed_refs->lock);
2572
2573         /*
2574          * We may have dropped the spin lock to get the head mutex lock, and
2575          * that might have given someone else time to free the head.  If that's
2576          * true, it has been removed from our list and we can move on.
2577          */
2578         if (ret == -EAGAIN)
2579                 head = ERR_PTR(-EAGAIN);
2580
2581         return head;
2582 }
2583
2584 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2585                                     struct btrfs_delayed_ref_head *locked_ref,
2586                                     unsigned long *run_refs)
2587 {
2588         struct btrfs_fs_info *fs_info = trans->fs_info;
2589         struct btrfs_delayed_ref_root *delayed_refs;
2590         struct btrfs_delayed_extent_op *extent_op;
2591         struct btrfs_delayed_ref_node *ref;
2592         int must_insert_reserved = 0;
2593         int ret;
2594
2595         delayed_refs = &trans->transaction->delayed_refs;
2596
2597         lockdep_assert_held(&locked_ref->mutex);
2598         lockdep_assert_held(&locked_ref->lock);
2599
2600         while ((ref = select_delayed_ref(locked_ref))) {
2601                 if (ref->seq &&
2602                     btrfs_check_delayed_seq(fs_info, ref->seq)) {
2603                         spin_unlock(&locked_ref->lock);
2604                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2605                         return -EAGAIN;
2606                 }
2607
2608                 (*run_refs)++;
2609                 ref->in_tree = 0;
2610                 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2611                 RB_CLEAR_NODE(&ref->ref_node);
2612                 if (!list_empty(&ref->add_list))
2613                         list_del(&ref->add_list);
2614                 /*
2615                  * When we play the delayed ref, also correct the ref_mod on
2616                  * head
2617                  */
2618                 switch (ref->action) {
2619                 case BTRFS_ADD_DELAYED_REF:
2620                 case BTRFS_ADD_DELAYED_EXTENT:
2621                         locked_ref->ref_mod -= ref->ref_mod;
2622                         break;
2623                 case BTRFS_DROP_DELAYED_REF:
2624                         locked_ref->ref_mod += ref->ref_mod;
2625                         break;
2626                 default:
2627                         WARN_ON(1);
2628                 }
2629                 atomic_dec(&delayed_refs->num_entries);
2630
2631                 /*
2632                  * Record the must_insert_reserved flag before we drop the
2633                  * spin lock.
2634                  */
2635                 must_insert_reserved = locked_ref->must_insert_reserved;
2636                 locked_ref->must_insert_reserved = 0;
2637
2638                 extent_op = locked_ref->extent_op;
2639                 locked_ref->extent_op = NULL;
2640                 spin_unlock(&locked_ref->lock);
2641
2642                 ret = run_one_delayed_ref(trans, ref, extent_op,
2643                                           must_insert_reserved);
2644
2645                 btrfs_free_delayed_extent_op(extent_op);
2646                 if (ret) {
2647                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2648                         btrfs_put_delayed_ref(ref);
2649                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2650                                     ret);
2651                         return ret;
2652                 }
2653
2654                 btrfs_put_delayed_ref(ref);
2655                 cond_resched();
2656
2657                 spin_lock(&locked_ref->lock);
2658                 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2659         }
2660
2661         return 0;
2662 }
2663
2664 /*
2665  * Returns 0 on success or if called with an already aborted transaction.
2666  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2667  */
2668 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2669                                              unsigned long nr)
2670 {
2671         struct btrfs_fs_info *fs_info = trans->fs_info;
2672         struct btrfs_delayed_ref_root *delayed_refs;
2673         struct btrfs_delayed_ref_head *locked_ref = NULL;
2674         ktime_t start = ktime_get();
2675         int ret;
2676         unsigned long count = 0;
2677         unsigned long actual_count = 0;
2678
2679         delayed_refs = &trans->transaction->delayed_refs;
2680         do {
2681                 if (!locked_ref) {
2682                         locked_ref = btrfs_obtain_ref_head(trans);
2683                         if (IS_ERR_OR_NULL(locked_ref)) {
2684                                 if (PTR_ERR(locked_ref) == -EAGAIN) {
2685                                         continue;
2686                                 } else {
2687                                         break;
2688                                 }
2689                         }
2690                         count++;
2691                 }
2692                 /*
2693                  * We need to try and merge add/drops of the same ref since we
2694                  * can run into issues with relocate dropping the implicit ref
2695                  * and then it being added back again before the drop can
2696                  * finish.  If we merged anything we need to re-loop so we can
2697                  * get a good ref.
2698                  * Or we can get node references of the same type that weren't
2699                  * merged when created due to bumps in the tree mod seq, and
2700                  * we need to merge them to prevent adding an inline extent
2701                  * backref before dropping it (triggering a BUG_ON at
2702                  * insert_inline_extent_backref()).
2703                  */
2704                 spin_lock(&locked_ref->lock);
2705                 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2706
2707                 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2708                                                       &actual_count);
2709                 if (ret < 0 && ret != -EAGAIN) {
2710                         /*
2711                          * Error, btrfs_run_delayed_refs_for_head already
2712                          * unlocked everything so just bail out
2713                          */
2714                         return ret;
2715                 } else if (!ret) {
2716                         /*
2717                          * Success, perform the usual cleanup of a processed
2718                          * head
2719                          */
2720                         ret = cleanup_ref_head(trans, locked_ref);
2721                         if (ret > 0 ) {
2722                                 /* We dropped our lock, we need to loop. */
2723                                 ret = 0;
2724                                 continue;
2725                         } else if (ret) {
2726                                 return ret;
2727                         }
2728                 }
2729
2730                 /*
2731                  * Either success case or btrfs_run_delayed_refs_for_head
2732                  * returned -EAGAIN, meaning we need to select another head
2733                  */
2734
2735                 locked_ref = NULL;
2736                 cond_resched();
2737         } while ((nr != -1 && count < nr) || locked_ref);
2738
2739         /*
2740          * We don't want to include ref heads since we can have empty ref heads
2741          * and those will drastically skew our runtime down since we just do
2742          * accounting, no actual extent tree updates.
2743          */
2744         if (actual_count > 0) {
2745                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2746                 u64 avg;
2747
2748                 /*
2749                  * We weigh the current average higher than our current runtime
2750                  * to avoid large swings in the average.
2751                  */
2752                 spin_lock(&delayed_refs->lock);
2753                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2754                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2755                 spin_unlock(&delayed_refs->lock);
2756         }
2757         return 0;
2758 }
2759
2760 #ifdef SCRAMBLE_DELAYED_REFS
2761 /*
2762  * Normally delayed refs get processed in ascending bytenr order. This
2763  * correlates in most cases to the order added. To expose dependencies on this
2764  * order, we start to process the tree in the middle instead of the beginning
2765  */
2766 static u64 find_middle(struct rb_root *root)
2767 {
2768         struct rb_node *n = root->rb_node;
2769         struct btrfs_delayed_ref_node *entry;
2770         int alt = 1;
2771         u64 middle;
2772         u64 first = 0, last = 0;
2773
2774         n = rb_first(root);
2775         if (n) {
2776                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2777                 first = entry->bytenr;
2778         }
2779         n = rb_last(root);
2780         if (n) {
2781                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2782                 last = entry->bytenr;
2783         }
2784         n = root->rb_node;
2785
2786         while (n) {
2787                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2788                 WARN_ON(!entry->in_tree);
2789
2790                 middle = entry->bytenr;
2791
2792                 if (alt)
2793                         n = n->rb_left;
2794                 else
2795                         n = n->rb_right;
2796
2797                 alt = 1 - alt;
2798         }
2799         return middle;
2800 }
2801 #endif
2802
2803 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2804 {
2805         u64 num_bytes;
2806
2807         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2808                              sizeof(struct btrfs_extent_inline_ref));
2809         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2810                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2811
2812         /*
2813          * We don't ever fill up leaves all the way so multiply by 2 just to be
2814          * closer to what we're really going to want to use.
2815          */
2816         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2817 }
2818
2819 /*
2820  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2821  * would require to store the csums for that many bytes.
2822  */
2823 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2824 {
2825         u64 csum_size;
2826         u64 num_csums_per_leaf;
2827         u64 num_csums;
2828
2829         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2830         num_csums_per_leaf = div64_u64(csum_size,
2831                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2832         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2833         num_csums += num_csums_per_leaf - 1;
2834         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2835         return num_csums;
2836 }
2837
2838 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2839 {
2840         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2841         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2842         bool ret = false;
2843         u64 reserved;
2844
2845         spin_lock(&global_rsv->lock);
2846         reserved = global_rsv->reserved;
2847         spin_unlock(&global_rsv->lock);
2848
2849         /*
2850          * Since the global reserve is just kind of magic we don't really want
2851          * to rely on it to save our bacon, so if our size is more than the
2852          * delayed_refs_rsv and the global rsv then it's time to think about
2853          * bailing.
2854          */
2855         spin_lock(&delayed_refs_rsv->lock);
2856         reserved += delayed_refs_rsv->reserved;
2857         if (delayed_refs_rsv->size >= reserved)
2858                 ret = true;
2859         spin_unlock(&delayed_refs_rsv->lock);
2860         return ret;
2861 }
2862
2863 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2864 {
2865         u64 num_entries =
2866                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2867         u64 avg_runtime;
2868         u64 val;
2869
2870         smp_mb();
2871         avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2872         val = num_entries * avg_runtime;
2873         if (val >= NSEC_PER_SEC)
2874                 return 1;
2875         if (val >= NSEC_PER_SEC / 2)
2876                 return 2;
2877
2878         return btrfs_check_space_for_delayed_refs(trans->fs_info);
2879 }
2880
2881 /*
2882  * this starts processing the delayed reference count updates and
2883  * extent insertions we have queued up so far.  count can be
2884  * 0, which means to process everything in the tree at the start
2885  * of the run (but not newly added entries), or it can be some target
2886  * number you'd like to process.
2887  *
2888  * Returns 0 on success or if called with an aborted transaction
2889  * Returns <0 on error and aborts the transaction
2890  */
2891 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2892                            unsigned long count)
2893 {
2894         struct btrfs_fs_info *fs_info = trans->fs_info;
2895         struct rb_node *node;
2896         struct btrfs_delayed_ref_root *delayed_refs;
2897         struct btrfs_delayed_ref_head *head;
2898         int ret;
2899         int run_all = count == (unsigned long)-1;
2900
2901         /* We'll clean this up in btrfs_cleanup_transaction */
2902         if (trans->aborted)
2903                 return 0;
2904
2905         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2906                 return 0;
2907
2908         delayed_refs = &trans->transaction->delayed_refs;
2909         if (count == 0)
2910                 count = atomic_read(&delayed_refs->num_entries) * 2;
2911
2912 again:
2913 #ifdef SCRAMBLE_DELAYED_REFS
2914         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2915 #endif
2916         ret = __btrfs_run_delayed_refs(trans, count);
2917         if (ret < 0) {
2918                 btrfs_abort_transaction(trans, ret);
2919                 return ret;
2920         }
2921
2922         if (run_all) {
2923                 btrfs_create_pending_block_groups(trans);
2924
2925                 spin_lock(&delayed_refs->lock);
2926                 node = rb_first_cached(&delayed_refs->href_root);
2927                 if (!node) {
2928                         spin_unlock(&delayed_refs->lock);
2929                         goto out;
2930                 }
2931                 head = rb_entry(node, struct btrfs_delayed_ref_head,
2932                                 href_node);
2933                 refcount_inc(&head->refs);
2934                 spin_unlock(&delayed_refs->lock);
2935
2936                 /* Mutex was contended, block until it's released and retry. */
2937                 mutex_lock(&head->mutex);
2938                 mutex_unlock(&head->mutex);
2939
2940                 btrfs_put_delayed_ref_head(head);
2941                 cond_resched();
2942                 goto again;
2943         }
2944 out:
2945         return 0;
2946 }
2947
2948 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2949                                 u64 bytenr, u64 num_bytes, u64 flags,
2950                                 int level, int is_data)
2951 {
2952         struct btrfs_delayed_extent_op *extent_op;
2953         int ret;
2954
2955         extent_op = btrfs_alloc_delayed_extent_op();
2956         if (!extent_op)
2957                 return -ENOMEM;
2958
2959         extent_op->flags_to_set = flags;
2960         extent_op->update_flags = true;
2961         extent_op->update_key = false;
2962         extent_op->is_data = is_data ? true : false;
2963         extent_op->level = level;
2964
2965         ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2966         if (ret)
2967                 btrfs_free_delayed_extent_op(extent_op);
2968         return ret;
2969 }
2970
2971 static noinline int check_delayed_ref(struct btrfs_root *root,
2972                                       struct btrfs_path *path,
2973                                       u64 objectid, u64 offset, u64 bytenr)
2974 {
2975         struct btrfs_delayed_ref_head *head;
2976         struct btrfs_delayed_ref_node *ref;
2977         struct btrfs_delayed_data_ref *data_ref;
2978         struct btrfs_delayed_ref_root *delayed_refs;
2979         struct btrfs_transaction *cur_trans;
2980         struct rb_node *node;
2981         int ret = 0;
2982
2983         spin_lock(&root->fs_info->trans_lock);
2984         cur_trans = root->fs_info->running_transaction;
2985         if (cur_trans)
2986                 refcount_inc(&cur_trans->use_count);
2987         spin_unlock(&root->fs_info->trans_lock);
2988         if (!cur_trans)
2989                 return 0;
2990
2991         delayed_refs = &cur_trans->delayed_refs;
2992         spin_lock(&delayed_refs->lock);
2993         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2994         if (!head) {
2995                 spin_unlock(&delayed_refs->lock);
2996                 btrfs_put_transaction(cur_trans);
2997                 return 0;
2998         }
2999
3000         if (!mutex_trylock(&head->mutex)) {
3001                 refcount_inc(&head->refs);
3002                 spin_unlock(&delayed_refs->lock);
3003
3004                 btrfs_release_path(path);
3005
3006                 /*
3007                  * Mutex was contended, block until it's released and let
3008                  * caller try again
3009                  */
3010                 mutex_lock(&head->mutex);
3011                 mutex_unlock(&head->mutex);
3012                 btrfs_put_delayed_ref_head(head);
3013                 btrfs_put_transaction(cur_trans);
3014                 return -EAGAIN;
3015         }
3016         spin_unlock(&delayed_refs->lock);
3017
3018         spin_lock(&head->lock);
3019         /*
3020          * XXX: We should replace this with a proper search function in the
3021          * future.
3022          */
3023         for (node = rb_first_cached(&head->ref_tree); node;
3024              node = rb_next(node)) {
3025                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3026                 /* If it's a shared ref we know a cross reference exists */
3027                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3028                         ret = 1;
3029                         break;
3030                 }
3031
3032                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3033
3034                 /*
3035                  * If our ref doesn't match the one we're currently looking at
3036                  * then we have a cross reference.
3037                  */
3038                 if (data_ref->root != root->root_key.objectid ||
3039                     data_ref->objectid != objectid ||
3040                     data_ref->offset != offset) {
3041                         ret = 1;
3042                         break;
3043                 }
3044         }
3045         spin_unlock(&head->lock);
3046         mutex_unlock(&head->mutex);
3047         btrfs_put_transaction(cur_trans);
3048         return ret;
3049 }
3050
3051 static noinline int check_committed_ref(struct btrfs_root *root,
3052                                         struct btrfs_path *path,
3053                                         u64 objectid, u64 offset, u64 bytenr)
3054 {
3055         struct btrfs_fs_info *fs_info = root->fs_info;
3056         struct btrfs_root *extent_root = fs_info->extent_root;
3057         struct extent_buffer *leaf;
3058         struct btrfs_extent_data_ref *ref;
3059         struct btrfs_extent_inline_ref *iref;
3060         struct btrfs_extent_item *ei;
3061         struct btrfs_key key;
3062         u32 item_size;
3063         int type;
3064         int ret;
3065
3066         key.objectid = bytenr;
3067         key.offset = (u64)-1;
3068         key.type = BTRFS_EXTENT_ITEM_KEY;
3069
3070         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3071         if (ret < 0)
3072                 goto out;
3073         BUG_ON(ret == 0); /* Corruption */
3074
3075         ret = -ENOENT;
3076         if (path->slots[0] == 0)
3077                 goto out;
3078
3079         path->slots[0]--;
3080         leaf = path->nodes[0];
3081         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3082
3083         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3084                 goto out;
3085
3086         ret = 1;
3087         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3088         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3089
3090         if (item_size != sizeof(*ei) +
3091             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3092                 goto out;
3093
3094         if (btrfs_extent_generation(leaf, ei) <=
3095             btrfs_root_last_snapshot(&root->root_item))
3096                 goto out;
3097
3098         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3099
3100         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3101         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3102                 goto out;
3103
3104         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3105         if (btrfs_extent_refs(leaf, ei) !=
3106             btrfs_extent_data_ref_count(leaf, ref) ||
3107             btrfs_extent_data_ref_root(leaf, ref) !=
3108             root->root_key.objectid ||
3109             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3110             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3111                 goto out;
3112
3113         ret = 0;
3114 out:
3115         return ret;
3116 }
3117
3118 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3119                           u64 bytenr)
3120 {
3121         struct btrfs_path *path;
3122         int ret;
3123
3124         path = btrfs_alloc_path();
3125         if (!path)
3126                 return -ENOMEM;
3127
3128         do {
3129                 ret = check_committed_ref(root, path, objectid,
3130                                           offset, bytenr);
3131                 if (ret && ret != -ENOENT)
3132                         goto out;
3133
3134                 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3135         } while (ret == -EAGAIN);
3136
3137 out:
3138         btrfs_free_path(path);
3139         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3140                 WARN_ON(ret > 0);
3141         return ret;
3142 }
3143
3144 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3145                            struct btrfs_root *root,
3146                            struct extent_buffer *buf,
3147                            int full_backref, int inc)
3148 {
3149         struct btrfs_fs_info *fs_info = root->fs_info;
3150         u64 bytenr;
3151         u64 num_bytes;
3152         u64 parent;
3153         u64 ref_root;
3154         u32 nritems;
3155         struct btrfs_key key;
3156         struct btrfs_file_extent_item *fi;
3157         struct btrfs_ref generic_ref = { 0 };
3158         bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
3159         int i;
3160         int action;
3161         int level;
3162         int ret = 0;
3163
3164         if (btrfs_is_testing(fs_info))
3165                 return 0;
3166
3167         ref_root = btrfs_header_owner(buf);
3168         nritems = btrfs_header_nritems(buf);
3169         level = btrfs_header_level(buf);
3170
3171         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3172                 return 0;
3173
3174         if (full_backref)
3175                 parent = buf->start;
3176         else
3177                 parent = 0;
3178         if (inc)
3179                 action = BTRFS_ADD_DELAYED_REF;
3180         else
3181                 action = BTRFS_DROP_DELAYED_REF;
3182
3183         for (i = 0; i < nritems; i++) {
3184                 if (level == 0) {
3185                         btrfs_item_key_to_cpu(buf, &key, i);
3186                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3187                                 continue;
3188                         fi = btrfs_item_ptr(buf, i,
3189                                             struct btrfs_file_extent_item);
3190                         if (btrfs_file_extent_type(buf, fi) ==
3191                             BTRFS_FILE_EXTENT_INLINE)
3192                                 continue;
3193                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3194                         if (bytenr == 0)
3195                                 continue;
3196
3197                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3198                         key.offset -= btrfs_file_extent_offset(buf, fi);
3199                         btrfs_init_generic_ref(&generic_ref, action, bytenr,
3200                                                num_bytes, parent);
3201                         generic_ref.real_root = root->root_key.objectid;
3202                         btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3203                                             key.offset);
3204                         generic_ref.skip_qgroup = for_reloc;
3205                         if (inc)
3206                                 ret = btrfs_inc_extent_ref(trans, &generic_ref);
3207                         else
3208                                 ret = btrfs_free_extent(trans, &generic_ref);
3209                         if (ret)
3210                                 goto fail;
3211                 } else {
3212                         bytenr = btrfs_node_blockptr(buf, i);
3213                         num_bytes = fs_info->nodesize;
3214                         btrfs_init_generic_ref(&generic_ref, action, bytenr,
3215                                                num_bytes, parent);
3216                         generic_ref.real_root = root->root_key.objectid;
3217                         btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3218                         generic_ref.skip_qgroup = for_reloc;
3219                         if (inc)
3220                                 ret = btrfs_inc_extent_ref(trans, &generic_ref);
3221                         else
3222                                 ret = btrfs_free_extent(trans, &generic_ref);
3223                         if (ret)
3224                                 goto fail;
3225                 }
3226         }
3227         return 0;
3228 fail:
3229         return ret;
3230 }
3231
3232 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3233                   struct extent_buffer *buf, int full_backref)
3234 {
3235         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3236 }
3237
3238 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3239                   struct extent_buffer *buf, int full_backref)
3240 {
3241         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3242 }
3243
3244 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3245                                  struct btrfs_path *path,
3246                                  struct btrfs_block_group_cache *cache)
3247 {
3248         struct btrfs_fs_info *fs_info = trans->fs_info;
3249         int ret;
3250         struct btrfs_root *extent_root = fs_info->extent_root;
3251         unsigned long bi;
3252         struct extent_buffer *leaf;
3253
3254         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3255         if (ret) {
3256                 if (ret > 0)
3257                         ret = -ENOENT;
3258                 goto fail;
3259         }
3260
3261         leaf = path->nodes[0];
3262         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3263         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3264         btrfs_mark_buffer_dirty(leaf);
3265 fail:
3266         btrfs_release_path(path);
3267         return ret;
3268
3269 }
3270
3271 static struct btrfs_block_group_cache *next_block_group(
3272                 struct btrfs_block_group_cache *cache)
3273 {
3274         struct btrfs_fs_info *fs_info = cache->fs_info;
3275         struct rb_node *node;
3276
3277         spin_lock(&fs_info->block_group_cache_lock);
3278
3279         /* If our block group was removed, we need a full search. */
3280         if (RB_EMPTY_NODE(&cache->cache_node)) {
3281                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3282
3283                 spin_unlock(&fs_info->block_group_cache_lock);
3284                 btrfs_put_block_group(cache);
3285                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3286         }
3287         node = rb_next(&cache->cache_node);
3288         btrfs_put_block_group(cache);
3289         if (node) {
3290                 cache = rb_entry(node, struct btrfs_block_group_cache,
3291                                  cache_node);
3292                 btrfs_get_block_group(cache);
3293         } else
3294                 cache = NULL;
3295         spin_unlock(&fs_info->block_group_cache_lock);
3296         return cache;
3297 }
3298
3299 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3300                             struct btrfs_trans_handle *trans,
3301                             struct btrfs_path *path)
3302 {
3303         struct btrfs_fs_info *fs_info = block_group->fs_info;
3304         struct btrfs_root *root = fs_info->tree_root;
3305         struct inode *inode = NULL;
3306         struct extent_changeset *data_reserved = NULL;
3307         u64 alloc_hint = 0;
3308         int dcs = BTRFS_DC_ERROR;
3309         u64 num_pages = 0;
3310         int retries = 0;
3311         int ret = 0;
3312
3313         /*
3314          * If this block group is smaller than 100 megs don't bother caching the
3315          * block group.
3316          */
3317         if (block_group->key.offset < (100 * SZ_1M)) {
3318                 spin_lock(&block_group->lock);
3319                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3320                 spin_unlock(&block_group->lock);
3321                 return 0;
3322         }
3323
3324         if (trans->aborted)
3325                 return 0;
3326 again:
3327         inode = lookup_free_space_inode(block_group, path);
3328         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3329                 ret = PTR_ERR(inode);
3330                 btrfs_release_path(path);
3331                 goto out;
3332         }
3333
3334         if (IS_ERR(inode)) {
3335                 BUG_ON(retries);
3336                 retries++;
3337
3338                 if (block_group->ro)
3339                         goto out_free;
3340
3341                 ret = create_free_space_inode(trans, block_group, path);
3342                 if (ret)
3343                         goto out_free;
3344                 goto again;
3345         }
3346
3347         /*
3348          * We want to set the generation to 0, that way if anything goes wrong
3349          * from here on out we know not to trust this cache when we load up next
3350          * time.
3351          */
3352         BTRFS_I(inode)->generation = 0;
3353         ret = btrfs_update_inode(trans, root, inode);
3354         if (ret) {
3355                 /*
3356                  * So theoretically we could recover from this, simply set the
3357                  * super cache generation to 0 so we know to invalidate the
3358                  * cache, but then we'd have to keep track of the block groups
3359                  * that fail this way so we know we _have_ to reset this cache
3360                  * before the next commit or risk reading stale cache.  So to
3361                  * limit our exposure to horrible edge cases lets just abort the
3362                  * transaction, this only happens in really bad situations
3363                  * anyway.
3364                  */
3365                 btrfs_abort_transaction(trans, ret);
3366                 goto out_put;
3367         }
3368         WARN_ON(ret);
3369
3370         /* We've already setup this transaction, go ahead and exit */
3371         if (block_group->cache_generation == trans->transid &&
3372             i_size_read(inode)) {
3373                 dcs = BTRFS_DC_SETUP;
3374                 goto out_put;
3375         }
3376
3377         if (i_size_read(inode) > 0) {
3378                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3379                                         &fs_info->global_block_rsv);
3380                 if (ret)
3381                         goto out_put;
3382
3383                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3384                 if (ret)
3385                         goto out_put;
3386         }
3387
3388         spin_lock(&block_group->lock);
3389         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3390             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3391                 /*
3392                  * don't bother trying to write stuff out _if_
3393                  * a) we're not cached,
3394                  * b) we're with nospace_cache mount option,
3395                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3396                  */
3397                 dcs = BTRFS_DC_WRITTEN;
3398                 spin_unlock(&block_group->lock);
3399                 goto out_put;
3400         }
3401         spin_unlock(&block_group->lock);
3402
3403         /*
3404          * We hit an ENOSPC when setting up the cache in this transaction, just
3405          * skip doing the setup, we've already cleared the cache so we're safe.
3406          */
3407         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3408                 ret = -ENOSPC;
3409                 goto out_put;
3410         }
3411
3412         /*
3413          * Try to preallocate enough space based on how big the block group is.
3414          * Keep in mind this has to include any pinned space which could end up
3415          * taking up quite a bit since it's not folded into the other space
3416          * cache.
3417          */
3418         num_pages = div_u64(block_group->key.offset, SZ_256M);
3419         if (!num_pages)
3420                 num_pages = 1;
3421
3422         num_pages *= 16;
3423         num_pages *= PAGE_SIZE;
3424
3425         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3426         if (ret)
3427                 goto out_put;
3428
3429         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3430                                               num_pages, num_pages,
3431                                               &alloc_hint);
3432         /*
3433          * Our cache requires contiguous chunks so that we don't modify a bunch
3434          * of metadata or split extents when writing the cache out, which means
3435          * we can enospc if we are heavily fragmented in addition to just normal
3436          * out of space conditions.  So if we hit this just skip setting up any
3437          * other block groups for this transaction, maybe we'll unpin enough
3438          * space the next time around.
3439          */
3440         if (!ret)
3441                 dcs = BTRFS_DC_SETUP;
3442         else if (ret == -ENOSPC)
3443                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3444
3445 out_put:
3446         iput(inode);
3447 out_free:
3448         btrfs_release_path(path);
3449 out:
3450         spin_lock(&block_group->lock);
3451         if (!ret && dcs == BTRFS_DC_SETUP)
3452                 block_group->cache_generation = trans->transid;
3453         block_group->disk_cache_state = dcs;
3454         spin_unlock(&block_group->lock);
3455
3456         extent_changeset_free(data_reserved);
3457         return ret;
3458 }
3459
3460 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3461 {
3462         struct btrfs_fs_info *fs_info = trans->fs_info;
3463         struct btrfs_block_group_cache *cache, *tmp;
3464         struct btrfs_transaction *cur_trans = trans->transaction;
3465         struct btrfs_path *path;
3466
3467         if (list_empty(&cur_trans->dirty_bgs) ||
3468             !btrfs_test_opt(fs_info, SPACE_CACHE))
3469                 return 0;
3470
3471         path = btrfs_alloc_path();
3472         if (!path)
3473                 return -ENOMEM;
3474
3475         /* Could add new block groups, use _safe just in case */
3476         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3477                                  dirty_list) {
3478                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3479                         cache_save_setup(cache, trans, path);
3480         }
3481
3482         btrfs_free_path(path);
3483         return 0;
3484 }
3485
3486 /*
3487  * transaction commit does final block group cache writeback during a
3488  * critical section where nothing is allowed to change the FS.  This is
3489  * required in order for the cache to actually match the block group,
3490  * but can introduce a lot of latency into the commit.
3491  *
3492  * So, btrfs_start_dirty_block_groups is here to kick off block group
3493  * cache IO.  There's a chance we'll have to redo some of it if the
3494  * block group changes again during the commit, but it greatly reduces
3495  * the commit latency by getting rid of the easy block groups while
3496  * we're still allowing others to join the commit.
3497  */
3498 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3499 {
3500         struct btrfs_fs_info *fs_info = trans->fs_info;
3501         struct btrfs_block_group_cache *cache;
3502         struct btrfs_transaction *cur_trans = trans->transaction;
3503         int ret = 0;
3504         int should_put;
3505         struct btrfs_path *path = NULL;
3506         LIST_HEAD(dirty);
3507         struct list_head *io = &cur_trans->io_bgs;
3508         int num_started = 0;
3509         int loops = 0;
3510
3511         spin_lock(&cur_trans->dirty_bgs_lock);
3512         if (list_empty(&cur_trans->dirty_bgs)) {
3513                 spin_unlock(&cur_trans->dirty_bgs_lock);
3514                 return 0;
3515         }
3516         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3517         spin_unlock(&cur_trans->dirty_bgs_lock);
3518
3519 again:
3520         /*
3521          * make sure all the block groups on our dirty list actually
3522          * exist
3523          */
3524         btrfs_create_pending_block_groups(trans);
3525
3526         if (!path) {
3527                 path = btrfs_alloc_path();
3528                 if (!path)
3529                         return -ENOMEM;
3530         }
3531
3532         /*
3533          * cache_write_mutex is here only to save us from balance or automatic
3534          * removal of empty block groups deleting this block group while we are
3535          * writing out the cache
3536          */
3537         mutex_lock(&trans->transaction->cache_write_mutex);
3538         while (!list_empty(&dirty)) {
3539                 bool drop_reserve = true;
3540
3541                 cache = list_first_entry(&dirty,
3542                                          struct btrfs_block_group_cache,
3543                                          dirty_list);
3544                 /*
3545                  * this can happen if something re-dirties a block
3546                  * group that is already under IO.  Just wait for it to
3547                  * finish and then do it all again
3548                  */
3549                 if (!list_empty(&cache->io_list)) {
3550                         list_del_init(&cache->io_list);
3551                         btrfs_wait_cache_io(trans, cache, path);
3552                         btrfs_put_block_group(cache);
3553                 }
3554
3555
3556                 /*
3557                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3558                  * if it should update the cache_state.  Don't delete
3559                  * until after we wait.
3560                  *
3561                  * Since we're not running in the commit critical section
3562                  * we need the dirty_bgs_lock to protect from update_block_group
3563                  */
3564                 spin_lock(&cur_trans->dirty_bgs_lock);
3565                 list_del_init(&cache->dirty_list);
3566                 spin_unlock(&cur_trans->dirty_bgs_lock);
3567
3568                 should_put = 1;
3569
3570                 cache_save_setup(cache, trans, path);
3571
3572                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3573                         cache->io_ctl.inode = NULL;
3574                         ret = btrfs_write_out_cache(trans, cache, path);
3575                         if (ret == 0 && cache->io_ctl.inode) {
3576                                 num_started++;
3577                                 should_put = 0;
3578
3579                                 /*
3580                                  * The cache_write_mutex is protecting the
3581                                  * io_list, also refer to the definition of
3582                                  * btrfs_transaction::io_bgs for more details
3583                                  */
3584                                 list_add_tail(&cache->io_list, io);
3585                         } else {
3586                                 /*
3587                                  * if we failed to write the cache, the
3588                                  * generation will be bad and life goes on
3589                                  */
3590                                 ret = 0;
3591                         }
3592                 }
3593                 if (!ret) {
3594                         ret = write_one_cache_group(trans, path, cache);
3595                         /*
3596                          * Our block group might still be attached to the list
3597                          * of new block groups in the transaction handle of some
3598                          * other task (struct btrfs_trans_handle->new_bgs). This
3599                          * means its block group item isn't yet in the extent
3600                          * tree. If this happens ignore the error, as we will
3601                          * try again later in the critical section of the
3602                          * transaction commit.
3603                          */
3604                         if (ret == -ENOENT) {
3605                                 ret = 0;
3606                                 spin_lock(&cur_trans->dirty_bgs_lock);
3607                                 if (list_empty(&cache->dirty_list)) {
3608                                         list_add_tail(&cache->dirty_list,
3609                                                       &cur_trans->dirty_bgs);
3610                                         btrfs_get_block_group(cache);
3611                                         drop_reserve = false;
3612                                 }
3613                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3614                         } else if (ret) {
3615                                 btrfs_abort_transaction(trans, ret);
3616                         }
3617                 }
3618
3619                 /* if it's not on the io list, we need to put the block group */
3620                 if (should_put)
3621                         btrfs_put_block_group(cache);
3622                 if (drop_reserve)
3623                         btrfs_delayed_refs_rsv_release(fs_info, 1);
3624
3625                 if (ret)
3626                         break;
3627
3628                 /*
3629                  * Avoid blocking other tasks for too long. It might even save
3630                  * us from writing caches for block groups that are going to be
3631                  * removed.
3632                  */
3633                 mutex_unlock(&trans->transaction->cache_write_mutex);
3634                 mutex_lock(&trans->transaction->cache_write_mutex);
3635         }
3636         mutex_unlock(&trans->transaction->cache_write_mutex);
3637
3638         /*
3639          * go through delayed refs for all the stuff we've just kicked off
3640          * and then loop back (just once)
3641          */
3642         ret = btrfs_run_delayed_refs(trans, 0);
3643         if (!ret && loops == 0) {
3644                 loops++;
3645                 spin_lock(&cur_trans->dirty_bgs_lock);
3646                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3647                 /*
3648                  * dirty_bgs_lock protects us from concurrent block group
3649                  * deletes too (not just cache_write_mutex).
3650                  */
3651                 if (!list_empty(&dirty)) {
3652                         spin_unlock(&cur_trans->dirty_bgs_lock);
3653                         goto again;
3654                 }
3655                 spin_unlock(&cur_trans->dirty_bgs_lock);
3656         } else if (ret < 0) {
3657                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3658         }
3659
3660         btrfs_free_path(path);
3661         return ret;
3662 }
3663
3664 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3665 {
3666         struct btrfs_fs_info *fs_info = trans->fs_info;
3667         struct btrfs_block_group_cache *cache;
3668         struct btrfs_transaction *cur_trans = trans->transaction;
3669         int ret = 0;
3670         int should_put;
3671         struct btrfs_path *path;
3672         struct list_head *io = &cur_trans->io_bgs;
3673         int num_started = 0;
3674
3675         path = btrfs_alloc_path();
3676         if (!path)
3677                 return -ENOMEM;
3678
3679         /*
3680          * Even though we are in the critical section of the transaction commit,
3681          * we can still have concurrent tasks adding elements to this
3682          * transaction's list of dirty block groups. These tasks correspond to
3683          * endio free space workers started when writeback finishes for a
3684          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3685          * allocate new block groups as a result of COWing nodes of the root
3686          * tree when updating the free space inode. The writeback for the space
3687          * caches is triggered by an earlier call to
3688          * btrfs_start_dirty_block_groups() and iterations of the following
3689          * loop.
3690          * Also we want to do the cache_save_setup first and then run the
3691          * delayed refs to make sure we have the best chance at doing this all
3692          * in one shot.
3693          */
3694         spin_lock(&cur_trans->dirty_bgs_lock);
3695         while (!list_empty(&cur_trans->dirty_bgs)) {
3696                 cache = list_first_entry(&cur_trans->dirty_bgs,
3697                                          struct btrfs_block_group_cache,
3698                                          dirty_list);
3699
3700                 /*
3701                  * this can happen if cache_save_setup re-dirties a block
3702                  * group that is already under IO.  Just wait for it to
3703                  * finish and then do it all again
3704                  */
3705                 if (!list_empty(&cache->io_list)) {
3706                         spin_unlock(&cur_trans->dirty_bgs_lock);
3707                         list_del_init(&cache->io_list);
3708                         btrfs_wait_cache_io(trans, cache, path);
3709                         btrfs_put_block_group(cache);
3710                         spin_lock(&cur_trans->dirty_bgs_lock);
3711                 }
3712
3713                 /*
3714                  * don't remove from the dirty list until after we've waited
3715                  * on any pending IO
3716                  */
3717                 list_del_init(&cache->dirty_list);
3718                 spin_unlock(&cur_trans->dirty_bgs_lock);
3719                 should_put = 1;
3720
3721                 cache_save_setup(cache, trans, path);
3722
3723                 if (!ret)
3724                         ret = btrfs_run_delayed_refs(trans,
3725                                                      (unsigned long) -1);
3726
3727                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3728                         cache->io_ctl.inode = NULL;
3729                         ret = btrfs_write_out_cache(trans, cache, path);
3730                         if (ret == 0 && cache->io_ctl.inode) {
3731                                 num_started++;
3732                                 should_put = 0;
3733                                 list_add_tail(&cache->io_list, io);
3734                         } else {
3735                                 /*
3736                                  * if we failed to write the cache, the
3737                                  * generation will be bad and life goes on
3738                                  */
3739                                 ret = 0;
3740                         }
3741                 }
3742                 if (!ret) {
3743                         ret = write_one_cache_group(trans, path, cache);
3744                         /*
3745                          * One of the free space endio workers might have
3746                          * created a new block group while updating a free space
3747                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3748                          * and hasn't released its transaction handle yet, in
3749                          * which case the new block group is still attached to
3750                          * its transaction handle and its creation has not
3751                          * finished yet (no block group item in the extent tree
3752                          * yet, etc). If this is the case, wait for all free
3753                          * space endio workers to finish and retry. This is a
3754                          * a very rare case so no need for a more efficient and
3755                          * complex approach.
3756                          */
3757                         if (ret == -ENOENT) {
3758                                 wait_event(cur_trans->writer_wait,
3759                                    atomic_read(&cur_trans->num_writers) == 1);
3760                                 ret = write_one_cache_group(trans, path, cache);
3761                         }
3762                         if (ret)
3763                                 btrfs_abort_transaction(trans, ret);
3764                 }
3765
3766                 /* if its not on the io list, we need to put the block group */
3767                 if (should_put)
3768                         btrfs_put_block_group(cache);
3769                 btrfs_delayed_refs_rsv_release(fs_info, 1);
3770                 spin_lock(&cur_trans->dirty_bgs_lock);
3771         }
3772         spin_unlock(&cur_trans->dirty_bgs_lock);
3773
3774         /*
3775          * Refer to the definition of io_bgs member for details why it's safe
3776          * to use it without any locking
3777          */
3778         while (!list_empty(io)) {
3779                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3780                                          io_list);
3781                 list_del_init(&cache->io_list);
3782                 btrfs_wait_cache_io(trans, cache, path);
3783                 btrfs_put_block_group(cache);
3784         }
3785
3786         btrfs_free_path(path);
3787         return ret;
3788 }
3789
3790 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3791 {
3792         struct btrfs_block_group_cache *block_group;
3793         int readonly = 0;
3794
3795         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3796         if (!block_group || block_group->ro)
3797                 readonly = 1;
3798         if (block_group)
3799                 btrfs_put_block_group(block_group);
3800         return readonly;
3801 }
3802
3803 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3804 {
3805         struct btrfs_block_group_cache *bg;
3806         bool ret = true;
3807
3808         bg = btrfs_lookup_block_group(fs_info, bytenr);
3809         if (!bg)
3810                 return false;
3811
3812         spin_lock(&bg->lock);
3813         if (bg->ro)
3814                 ret = false;
3815         else
3816                 atomic_inc(&bg->nocow_writers);
3817         spin_unlock(&bg->lock);
3818
3819         /* no put on block group, done by btrfs_dec_nocow_writers */
3820         if (!ret)
3821                 btrfs_put_block_group(bg);
3822
3823         return ret;
3824
3825 }
3826
3827 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3828 {
3829         struct btrfs_block_group_cache *bg;
3830
3831         bg = btrfs_lookup_block_group(fs_info, bytenr);
3832         ASSERT(bg);
3833         if (atomic_dec_and_test(&bg->nocow_writers))
3834                 wake_up_var(&bg->nocow_writers);
3835         /*
3836          * Once for our lookup and once for the lookup done by a previous call
3837          * to btrfs_inc_nocow_writers()
3838          */
3839         btrfs_put_block_group(bg);
3840         btrfs_put_block_group(bg);
3841 }
3842
3843 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3844 {
3845         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3846 }
3847
3848 static const char *alloc_name(u64 flags)
3849 {
3850         switch (flags) {
3851         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3852                 return "mixed";
3853         case BTRFS_BLOCK_GROUP_METADATA:
3854                 return "metadata";
3855         case BTRFS_BLOCK_GROUP_DATA:
3856                 return "data";
3857         case BTRFS_BLOCK_GROUP_SYSTEM:
3858                 return "system";
3859         default:
3860                 WARN_ON(1);
3861                 return "invalid-combination";
3862         };
3863 }
3864
3865 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3866 {
3867
3868         struct btrfs_space_info *space_info;
3869         int i;
3870         int ret;
3871
3872         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3873         if (!space_info)
3874                 return -ENOMEM;
3875
3876         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3877                                  GFP_KERNEL);
3878         if (ret) {
3879                 kfree(space_info);
3880                 return ret;
3881         }
3882
3883         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3884                 INIT_LIST_HEAD(&space_info->block_groups[i]);
3885         init_rwsem(&space_info->groups_sem);
3886         spin_lock_init(&space_info->lock);
3887         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3888         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3889         init_waitqueue_head(&space_info->wait);
3890         INIT_LIST_HEAD(&space_info->ro_bgs);
3891         INIT_LIST_HEAD(&space_info->tickets);
3892         INIT_LIST_HEAD(&space_info->priority_tickets);
3893
3894         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3895                                     info->space_info_kobj, "%s",
3896                                     alloc_name(space_info->flags));
3897         if (ret) {
3898                 kobject_put(&space_info->kobj);
3899                 return ret;
3900         }
3901
3902         list_add_rcu(&space_info->list, &info->space_info);
3903         if (flags & BTRFS_BLOCK_GROUP_DATA)
3904                 info->data_sinfo = space_info;
3905
3906         return ret;
3907 }
3908
3909 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3910                              u64 total_bytes, u64 bytes_used,
3911                              u64 bytes_readonly,
3912                              struct btrfs_space_info **space_info)
3913 {
3914         struct btrfs_space_info *found;
3915         int factor;
3916
3917         factor = btrfs_bg_type_to_factor(flags);
3918
3919         found = __find_space_info(info, flags);
3920         ASSERT(found);
3921         spin_lock(&found->lock);
3922         found->total_bytes += total_bytes;
3923         found->disk_total += total_bytes * factor;
3924         found->bytes_used += bytes_used;
3925         found->disk_used += bytes_used * factor;
3926         found->bytes_readonly += bytes_readonly;
3927         if (total_bytes > 0)
3928                 found->full = 0;
3929         space_info_add_new_bytes(info, found, total_bytes -
3930                                  bytes_used - bytes_readonly);
3931         spin_unlock(&found->lock);
3932         *space_info = found;
3933 }
3934
3935 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3936 {
3937         u64 extra_flags = chunk_to_extended(flags) &
3938                                 BTRFS_EXTENDED_PROFILE_MASK;
3939
3940         write_seqlock(&fs_info->profiles_lock);
3941         if (flags & BTRFS_BLOCK_GROUP_DATA)
3942                 fs_info->avail_data_alloc_bits |= extra_flags;
3943         if (flags & BTRFS_BLOCK_GROUP_METADATA)
3944                 fs_info->avail_metadata_alloc_bits |= extra_flags;
3945         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3946                 fs_info->avail_system_alloc_bits |= extra_flags;
3947         write_sequnlock(&fs_info->profiles_lock);
3948 }
3949
3950 /*
3951  * returns target flags in extended format or 0 if restripe for this
3952  * chunk_type is not in progress
3953  *
3954  * should be called with balance_lock held
3955  */
3956 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3957 {
3958         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3959         u64 target = 0;
3960
3961         if (!bctl)
3962                 return 0;
3963
3964         if (flags & BTRFS_BLOCK_GROUP_DATA &&
3965             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3966                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3967         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3968                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3969                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3970         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3971                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3972                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3973         }
3974
3975         return target;
3976 }
3977
3978 /*
3979  * @flags: available profiles in extended format (see ctree.h)
3980  *
3981  * Returns reduced profile in chunk format.  If profile changing is in
3982  * progress (either running or paused) picks the target profile (if it's
3983  * already available), otherwise falls back to plain reducing.
3984  */
3985 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
3986 {
3987         u64 num_devices = fs_info->fs_devices->rw_devices;
3988         u64 target;
3989         u64 raid_type;
3990         u64 allowed = 0;
3991
3992         /*
3993          * see if restripe for this chunk_type is in progress, if so
3994          * try to reduce to the target profile
3995          */
3996         spin_lock(&fs_info->balance_lock);
3997         target = get_restripe_target(fs_info, flags);
3998         if (target) {
3999                 /* pick target profile only if it's already available */
4000                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4001                         spin_unlock(&fs_info->balance_lock);
4002                         return extended_to_chunk(target);
4003                 }
4004         }
4005         spin_unlock(&fs_info->balance_lock);
4006
4007         /* First, mask out the RAID levels which aren't possible */
4008         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4009                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4010                         allowed |= btrfs_raid_array[raid_type].bg_flag;
4011         }
4012         allowed &= flags;
4013
4014         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4015                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4016         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4017                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4018         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4019                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4020         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4021                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4022         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4023                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4024
4025         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4026
4027         return extended_to_chunk(flags | allowed);
4028 }
4029
4030 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4031 {
4032         unsigned seq;
4033         u64 flags;
4034
4035         do {
4036                 flags = orig_flags;
4037                 seq = read_seqbegin(&fs_info->profiles_lock);
4038
4039                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4040                         flags |= fs_info->avail_data_alloc_bits;
4041                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4042                         flags |= fs_info->avail_system_alloc_bits;
4043                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4044                         flags |= fs_info->avail_metadata_alloc_bits;
4045         } while (read_seqretry(&fs_info->profiles_lock, seq));
4046
4047         return btrfs_reduce_alloc_profile(fs_info, flags);
4048 }
4049
4050 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4051 {
4052         struct btrfs_fs_info *fs_info = root->fs_info;
4053         u64 flags;
4054         u64 ret;
4055
4056         if (data)
4057                 flags = BTRFS_BLOCK_GROUP_DATA;
4058         else if (root == fs_info->chunk_root)
4059                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4060         else
4061                 flags = BTRFS_BLOCK_GROUP_METADATA;
4062
4063         ret = get_alloc_profile(fs_info, flags);
4064         return ret;
4065 }
4066
4067 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4068 {
4069         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4070 }
4071
4072 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4073 {
4074         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4075 }
4076
4077 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4078 {
4079         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4080 }
4081
4082 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4083                                  bool may_use_included)
4084 {
4085         ASSERT(s_info);
4086         return s_info->bytes_used + s_info->bytes_reserved +
4087                 s_info->bytes_pinned + s_info->bytes_readonly +
4088                 (may_use_included ? s_info->bytes_may_use : 0);
4089 }
4090
4091 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4092 {
4093         struct btrfs_root *root = inode->root;
4094         struct btrfs_fs_info *fs_info = root->fs_info;
4095         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4096         u64 used;
4097         int ret = 0;
4098         int need_commit = 2;
4099         int have_pinned_space;
4100
4101         /* make sure bytes are sectorsize aligned */
4102         bytes = ALIGN(bytes, fs_info->sectorsize);
4103
4104         if (btrfs_is_free_space_inode(inode)) {
4105                 need_commit = 0;
4106                 ASSERT(current->journal_info);
4107         }
4108
4109 again:
4110         /* make sure we have enough space to handle the data first */
4111         spin_lock(&data_sinfo->lock);
4112         used = btrfs_space_info_used(data_sinfo, true);
4113
4114         if (used + bytes > data_sinfo->total_bytes) {
4115                 struct btrfs_trans_handle *trans;
4116
4117                 /*
4118                  * if we don't have enough free bytes in this space then we need
4119                  * to alloc a new chunk.
4120                  */
4121                 if (!data_sinfo->full) {
4122                         u64 alloc_target;
4123
4124                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4125                         spin_unlock(&data_sinfo->lock);
4126
4127                         alloc_target = btrfs_data_alloc_profile(fs_info);
4128                         /*
4129                          * It is ugly that we don't call nolock join
4130                          * transaction for the free space inode case here.
4131                          * But it is safe because we only do the data space
4132                          * reservation for the free space cache in the
4133                          * transaction context, the common join transaction
4134                          * just increase the counter of the current transaction
4135                          * handler, doesn't try to acquire the trans_lock of
4136                          * the fs.
4137                          */
4138                         trans = btrfs_join_transaction(root);
4139                         if (IS_ERR(trans))
4140                                 return PTR_ERR(trans);
4141
4142                         ret = do_chunk_alloc(trans, alloc_target,
4143                                              CHUNK_ALLOC_NO_FORCE);
4144                         btrfs_end_transaction(trans);
4145                         if (ret < 0) {
4146                                 if (ret != -ENOSPC)
4147                                         return ret;
4148                                 else {
4149                                         have_pinned_space = 1;
4150                                         goto commit_trans;
4151                                 }
4152                         }
4153
4154                         goto again;
4155                 }
4156
4157                 /*
4158                  * If we don't have enough pinned space to deal with this
4159                  * allocation, and no removed chunk in current transaction,
4160                  * don't bother committing the transaction.
4161                  */
4162                 have_pinned_space = __percpu_counter_compare(
4163                         &data_sinfo->total_bytes_pinned,
4164                         used + bytes - data_sinfo->total_bytes,
4165                         BTRFS_TOTAL_BYTES_PINNED_BATCH);
4166                 spin_unlock(&data_sinfo->lock);
4167
4168                 /* commit the current transaction and try again */
4169 commit_trans:
4170                 if (need_commit) {
4171                         need_commit--;
4172
4173                         if (need_commit > 0) {
4174                                 btrfs_start_delalloc_roots(fs_info, -1);
4175                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4176                                                          (u64)-1);
4177                         }
4178
4179                         trans = btrfs_join_transaction(root);
4180                         if (IS_ERR(trans))
4181                                 return PTR_ERR(trans);
4182                         if (have_pinned_space >= 0 ||
4183                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4184                                      &trans->transaction->flags) ||
4185                             need_commit > 0) {
4186                                 ret = btrfs_commit_transaction(trans);
4187                                 if (ret)
4188                                         return ret;
4189                                 /*
4190                                  * The cleaner kthread might still be doing iput
4191                                  * operations. Wait for it to finish so that
4192                                  * more space is released.  We don't need to
4193                                  * explicitly run the delayed iputs here because
4194                                  * the commit_transaction would have woken up
4195                                  * the cleaner.
4196                                  */
4197                                 ret = btrfs_wait_on_delayed_iputs(fs_info);
4198                                 if (ret)
4199                                         return ret;
4200                                 goto again;
4201                         } else {
4202                                 btrfs_end_transaction(trans);
4203                         }
4204                 }
4205
4206                 trace_btrfs_space_reservation(fs_info,
4207                                               "space_info:enospc",
4208                                               data_sinfo->flags, bytes, 1);
4209                 return -ENOSPC;
4210         }
4211         update_bytes_may_use(data_sinfo, bytes);
4212         trace_btrfs_space_reservation(fs_info, "space_info",
4213                                       data_sinfo->flags, bytes, 1);
4214         spin_unlock(&data_sinfo->lock);
4215
4216         return 0;
4217 }
4218
4219 int btrfs_check_data_free_space(struct inode *inode,
4220                         struct extent_changeset **reserved, u64 start, u64 len)
4221 {
4222         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4223         int ret;
4224
4225         /* align the range */
4226         len = round_up(start + len, fs_info->sectorsize) -
4227               round_down(start, fs_info->sectorsize);
4228         start = round_down(start, fs_info->sectorsize);
4229
4230         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4231         if (ret < 0)
4232                 return ret;
4233
4234         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4235         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4236         if (ret < 0)
4237                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4238         else
4239                 ret = 0;
4240         return ret;
4241 }
4242
4243 /*
4244  * Called if we need to clear a data reservation for this inode
4245  * Normally in a error case.
4246  *
4247  * This one will *NOT* use accurate qgroup reserved space API, just for case
4248  * which we can't sleep and is sure it won't affect qgroup reserved space.
4249  * Like clear_bit_hook().
4250  */
4251 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4252                                             u64 len)
4253 {
4254         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4255         struct btrfs_space_info *data_sinfo;
4256
4257         /* Make sure the range is aligned to sectorsize */
4258         len = round_up(start + len, fs_info->sectorsize) -
4259               round_down(start, fs_info->sectorsize);
4260         start = round_down(start, fs_info->sectorsize);
4261
4262         data_sinfo = fs_info->data_sinfo;
4263         spin_lock(&data_sinfo->lock);
4264         update_bytes_may_use(data_sinfo, -len);
4265         trace_btrfs_space_reservation(fs_info, "space_info",
4266                                       data_sinfo->flags, len, 0);
4267         spin_unlock(&data_sinfo->lock);
4268 }
4269
4270 /*
4271  * Called if we need to clear a data reservation for this inode
4272  * Normally in a error case.
4273  *
4274  * This one will handle the per-inode data rsv map for accurate reserved
4275  * space framework.
4276  */
4277 void btrfs_free_reserved_data_space(struct inode *inode,
4278                         struct extent_changeset *reserved, u64 start, u64 len)
4279 {
4280         struct btrfs_root *root = BTRFS_I(inode)->root;
4281
4282         /* Make sure the range is aligned to sectorsize */
4283         len = round_up(start + len, root->fs_info->sectorsize) -
4284               round_down(start, root->fs_info->sectorsize);
4285         start = round_down(start, root->fs_info->sectorsize);
4286
4287         btrfs_free_reserved_data_space_noquota(inode, start, len);
4288         btrfs_qgroup_free_data(inode, reserved, start, len);
4289 }
4290
4291 static void force_metadata_allocation(struct btrfs_fs_info *info)
4292 {
4293         struct list_head *head = &info->space_info;
4294         struct btrfs_space_info *found;
4295
4296         rcu_read_lock();
4297         list_for_each_entry_rcu(found, head, list) {
4298                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4299                         found->force_alloc = CHUNK_ALLOC_FORCE;
4300         }
4301         rcu_read_unlock();
4302 }
4303
4304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4305 {
4306         return (global->size << 1);
4307 }
4308
4309 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4310                               struct btrfs_space_info *sinfo, int force)
4311 {
4312         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4313         u64 thresh;
4314
4315         if (force == CHUNK_ALLOC_FORCE)
4316                 return 1;
4317
4318         /*
4319          * in limited mode, we want to have some free space up to
4320          * about 1% of the FS size.
4321          */
4322         if (force == CHUNK_ALLOC_LIMITED) {
4323                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4324                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4325
4326                 if (sinfo->total_bytes - bytes_used < thresh)
4327                         return 1;
4328         }
4329
4330         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4331                 return 0;
4332         return 1;
4333 }
4334
4335 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4336 {
4337         u64 num_dev;
4338
4339         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4340                     BTRFS_BLOCK_GROUP_RAID0 |
4341                     BTRFS_BLOCK_GROUP_RAID5 |
4342                     BTRFS_BLOCK_GROUP_RAID6))
4343                 num_dev = fs_info->fs_devices->rw_devices;
4344         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4345                 num_dev = 2;
4346         else
4347                 num_dev = 1;    /* DUP or single */
4348
4349         return num_dev;
4350 }
4351
4352 /*
4353  * If @is_allocation is true, reserve space in the system space info necessary
4354  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4355  * removing a chunk.
4356  */
4357 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4358 {
4359         struct btrfs_fs_info *fs_info = trans->fs_info;
4360         struct btrfs_space_info *info;
4361         u64 left;
4362         u64 thresh;
4363         int ret = 0;
4364         u64 num_devs;
4365
4366         /*
4367          * Needed because we can end up allocating a system chunk and for an
4368          * atomic and race free space reservation in the chunk block reserve.
4369          */
4370         lockdep_assert_held(&fs_info->chunk_mutex);
4371
4372         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4373         spin_lock(&info->lock);
4374         left = info->total_bytes - btrfs_space_info_used(info, true);
4375         spin_unlock(&info->lock);
4376
4377         num_devs = get_profile_num_devs(fs_info, type);
4378
4379         /* num_devs device items to update and 1 chunk item to add or remove */
4380         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4381                 btrfs_calc_trans_metadata_size(fs_info, 1);
4382
4383         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4384                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4385                            left, thresh, type);
4386                 dump_space_info(fs_info, info, 0, 0);
4387         }
4388
4389         if (left < thresh) {
4390                 u64 flags = btrfs_system_alloc_profile(fs_info);
4391
4392                 /*
4393                  * Ignore failure to create system chunk. We might end up not
4394                  * needing it, as we might not need to COW all nodes/leafs from
4395                  * the paths we visit in the chunk tree (they were already COWed
4396                  * or created in the current transaction for example).
4397                  */
4398                 ret = btrfs_alloc_chunk(trans, flags);
4399         }
4400
4401         if (!ret) {
4402                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4403                                           &fs_info->chunk_block_rsv,
4404                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4405                 if (!ret)
4406                         trans->chunk_bytes_reserved += thresh;
4407         }
4408 }
4409
4410 /*
4411  * If force is CHUNK_ALLOC_FORCE:
4412  *    - return 1 if it successfully allocates a chunk,
4413  *    - return errors including -ENOSPC otherwise.
4414  * If force is NOT CHUNK_ALLOC_FORCE:
4415  *    - return 0 if it doesn't need to allocate a new chunk,
4416  *    - return 1 if it successfully allocates a chunk,
4417  *    - return errors including -ENOSPC otherwise.
4418  */
4419 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4420                           int force)
4421 {
4422         struct btrfs_fs_info *fs_info = trans->fs_info;
4423         struct btrfs_space_info *space_info;
4424         bool wait_for_alloc = false;
4425         bool should_alloc = false;
4426         int ret = 0;
4427
4428         /* Don't re-enter if we're already allocating a chunk */
4429         if (trans->allocating_chunk)
4430                 return -ENOSPC;
4431
4432         space_info = __find_space_info(fs_info, flags);
4433         ASSERT(space_info);
4434
4435         do {
4436                 spin_lock(&space_info->lock);
4437                 if (force < space_info->force_alloc)
4438                         force = space_info->force_alloc;
4439                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4440                 if (space_info->full) {
4441                         /* No more free physical space */
4442                         if (should_alloc)
4443                                 ret = -ENOSPC;
4444                         else
4445                                 ret = 0;
4446                         spin_unlock(&space_info->lock);
4447                         return ret;
4448                 } else if (!should_alloc) {
4449                         spin_unlock(&space_info->lock);
4450                         return 0;
4451                 } else if (space_info->chunk_alloc) {
4452                         /*
4453                          * Someone is already allocating, so we need to block
4454                          * until this someone is finished and then loop to
4455                          * recheck if we should continue with our allocation
4456                          * attempt.
4457                          */
4458                         wait_for_alloc = true;
4459                         spin_unlock(&space_info->lock);
4460                         mutex_lock(&fs_info->chunk_mutex);
4461                         mutex_unlock(&fs_info->chunk_mutex);
4462                 } else {
4463                         /* Proceed with allocation */
4464                         space_info->chunk_alloc = 1;
4465                         wait_for_alloc = false;
4466                         spin_unlock(&space_info->lock);
4467                 }
4468
4469                 cond_resched();
4470         } while (wait_for_alloc);
4471
4472         mutex_lock(&fs_info->chunk_mutex);
4473         trans->allocating_chunk = true;
4474
4475         /*
4476          * If we have mixed data/metadata chunks we want to make sure we keep
4477          * allocating mixed chunks instead of individual chunks.
4478          */
4479         if (btrfs_mixed_space_info(space_info))
4480                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4481
4482         /*
4483          * if we're doing a data chunk, go ahead and make sure that
4484          * we keep a reasonable number of metadata chunks allocated in the
4485          * FS as well.
4486          */
4487         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4488                 fs_info->data_chunk_allocations++;
4489                 if (!(fs_info->data_chunk_allocations %
4490                       fs_info->metadata_ratio))
4491                         force_metadata_allocation(fs_info);
4492         }
4493
4494         /*
4495          * Check if we have enough space in SYSTEM chunk because we may need
4496          * to update devices.
4497          */
4498         check_system_chunk(trans, flags);
4499
4500         ret = btrfs_alloc_chunk(trans, flags);
4501         trans->allocating_chunk = false;
4502
4503         spin_lock(&space_info->lock);
4504         if (ret < 0) {
4505                 if (ret == -ENOSPC)
4506                         space_info->full = 1;
4507                 else
4508                         goto out;
4509         } else {
4510                 ret = 1;
4511                 space_info->max_extent_size = 0;
4512         }
4513
4514         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4515 out:
4516         space_info->chunk_alloc = 0;
4517         spin_unlock(&space_info->lock);
4518         mutex_unlock(&fs_info->chunk_mutex);
4519         /*
4520          * When we allocate a new chunk we reserve space in the chunk block
4521          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4522          * add new nodes/leafs to it if we end up needing to do it when
4523          * inserting the chunk item and updating device items as part of the
4524          * second phase of chunk allocation, performed by
4525          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4526          * large number of new block groups to create in our transaction
4527          * handle's new_bgs list to avoid exhausting the chunk block reserve
4528          * in extreme cases - like having a single transaction create many new
4529          * block groups when starting to write out the free space caches of all
4530          * the block groups that were made dirty during the lifetime of the
4531          * transaction.
4532          */
4533         if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4534                 btrfs_create_pending_block_groups(trans);
4535
4536         return ret;
4537 }
4538
4539 static int can_overcommit(struct btrfs_fs_info *fs_info,
4540                           struct btrfs_space_info *space_info, u64 bytes,
4541                           enum btrfs_reserve_flush_enum flush,
4542                           bool system_chunk)
4543 {
4544         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4545         u64 profile;
4546         u64 space_size;
4547         u64 avail;
4548         u64 used;
4549         int factor;
4550
4551         /* Don't overcommit when in mixed mode. */
4552         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4553                 return 0;
4554
4555         if (system_chunk)
4556                 profile = btrfs_system_alloc_profile(fs_info);
4557         else
4558                 profile = btrfs_metadata_alloc_profile(fs_info);
4559
4560         used = btrfs_space_info_used(space_info, false);
4561
4562         /*
4563          * We only want to allow over committing if we have lots of actual space
4564          * free, but if we don't have enough space to handle the global reserve
4565          * space then we could end up having a real enospc problem when trying
4566          * to allocate a chunk or some other such important allocation.
4567          */
4568         spin_lock(&global_rsv->lock);
4569         space_size = calc_global_rsv_need_space(global_rsv);
4570         spin_unlock(&global_rsv->lock);
4571         if (used + space_size >= space_info->total_bytes)
4572                 return 0;
4573
4574         used += space_info->bytes_may_use;
4575
4576         avail = atomic64_read(&fs_info->free_chunk_space);
4577
4578         /*
4579          * If we have dup, raid1 or raid10 then only half of the free
4580          * space is actually usable.  For raid56, the space info used
4581          * doesn't include the parity drive, so we don't have to
4582          * change the math
4583          */
4584         factor = btrfs_bg_type_to_factor(profile);
4585         avail = div_u64(avail, factor);
4586
4587         /*
4588          * If we aren't flushing all things, let us overcommit up to
4589          * 1/2th of the space. If we can flush, don't let us overcommit
4590          * too much, let it overcommit up to 1/8 of the space.
4591          */
4592         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4593                 avail >>= 3;
4594         else
4595                 avail >>= 1;
4596
4597         if (used + bytes < space_info->total_bytes + avail)
4598                 return 1;
4599         return 0;
4600 }
4601
4602 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4603                                          unsigned long nr_pages, int nr_items)
4604 {
4605         struct super_block *sb = fs_info->sb;
4606
4607         if (down_read_trylock(&sb->s_umount)) {
4608                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4609                 up_read(&sb->s_umount);
4610         } else {
4611                 /*
4612                  * We needn't worry the filesystem going from r/w to r/o though
4613                  * we don't acquire ->s_umount mutex, because the filesystem
4614                  * should guarantee the delalloc inodes list be empty after
4615                  * the filesystem is readonly(all dirty pages are written to
4616                  * the disk).
4617                  */
4618                 btrfs_start_delalloc_roots(fs_info, nr_items);
4619                 if (!current->journal_info)
4620                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4621         }
4622 }
4623
4624 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4625                                         u64 to_reclaim)
4626 {
4627         u64 bytes;
4628         u64 nr;
4629
4630         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4631         nr = div64_u64(to_reclaim, bytes);
4632         if (!nr)
4633                 nr = 1;
4634         return nr;
4635 }
4636
4637 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4638
4639 /*
4640  * shrink metadata reservation for delalloc
4641  */
4642 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4643                             u64 orig, bool wait_ordered)
4644 {
4645         struct btrfs_space_info *space_info;
4646         struct btrfs_trans_handle *trans;
4647         u64 delalloc_bytes;
4648         u64 dio_bytes;
4649         u64 async_pages;
4650         u64 items;
4651         long time_left;
4652         unsigned long nr_pages;
4653         int loops;
4654
4655         /* Calc the number of the pages we need flush for space reservation */
4656         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4657         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4658
4659         trans = (struct btrfs_trans_handle *)current->journal_info;
4660         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4661
4662         delalloc_bytes = percpu_counter_sum_positive(
4663                                                 &fs_info->delalloc_bytes);
4664         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4665         if (delalloc_bytes == 0 && dio_bytes == 0) {
4666                 if (trans)
4667                         return;
4668                 if (wait_ordered)
4669                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4670                 return;
4671         }
4672
4673         /*
4674          * If we are doing more ordered than delalloc we need to just wait on
4675          * ordered extents, otherwise we'll waste time trying to flush delalloc
4676          * that likely won't give us the space back we need.
4677          */
4678         if (dio_bytes > delalloc_bytes)
4679                 wait_ordered = true;
4680
4681         loops = 0;
4682         while ((delalloc_bytes || dio_bytes) && loops < 3) {
4683                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4684
4685                 /*
4686                  * Triggers inode writeback for up to nr_pages. This will invoke
4687                  * ->writepages callback and trigger delalloc filling
4688                  *  (btrfs_run_delalloc_range()).
4689                  */
4690                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4691
4692                 /*
4693                  * We need to wait for the compressed pages to start before
4694                  * we continue.
4695                  */
4696                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4697                 if (!async_pages)
4698                         goto skip_async;
4699
4700                 /*
4701                  * Calculate how many compressed pages we want to be written
4702                  * before we continue. I.e if there are more async pages than we
4703                  * require wait_event will wait until nr_pages are written.
4704                  */
4705                 if (async_pages <= nr_pages)
4706                         async_pages = 0;
4707                 else
4708                         async_pages -= nr_pages;
4709
4710                 wait_event(fs_info->async_submit_wait,
4711                            atomic_read(&fs_info->async_delalloc_pages) <=
4712                            (int)async_pages);
4713 skip_async:
4714                 spin_lock(&space_info->lock);
4715                 if (list_empty(&space_info->tickets) &&
4716                     list_empty(&space_info->priority_tickets)) {
4717                         spin_unlock(&space_info->lock);
4718                         break;
4719                 }
4720                 spin_unlock(&space_info->lock);
4721
4722                 loops++;
4723                 if (wait_ordered && !trans) {
4724                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4725                 } else {
4726                         time_left = schedule_timeout_killable(1);
4727                         if (time_left)
4728                                 break;
4729                 }
4730                 delalloc_bytes = percpu_counter_sum_positive(
4731                                                 &fs_info->delalloc_bytes);
4732                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4733         }
4734 }
4735
4736 struct reserve_ticket {
4737         u64 orig_bytes;
4738         u64 bytes;
4739         int error;
4740         struct list_head list;
4741         wait_queue_head_t wait;
4742 };
4743
4744 /**
4745  * maybe_commit_transaction - possibly commit the transaction if its ok to
4746  * @root - the root we're allocating for
4747  * @bytes - the number of bytes we want to reserve
4748  * @force - force the commit
4749  *
4750  * This will check to make sure that committing the transaction will actually
4751  * get us somewhere and then commit the transaction if it does.  Otherwise it
4752  * will return -ENOSPC.
4753  */
4754 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4755                                   struct btrfs_space_info *space_info)
4756 {
4757         struct reserve_ticket *ticket = NULL;
4758         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4759         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
4760         struct btrfs_trans_handle *trans;
4761         u64 bytes_needed;
4762         u64 reclaim_bytes = 0;
4763
4764         trans = (struct btrfs_trans_handle *)current->journal_info;
4765         if (trans)
4766                 return -EAGAIN;
4767
4768         spin_lock(&space_info->lock);
4769         if (!list_empty(&space_info->priority_tickets))
4770                 ticket = list_first_entry(&space_info->priority_tickets,
4771                                           struct reserve_ticket, list);
4772         else if (!list_empty(&space_info->tickets))
4773                 ticket = list_first_entry(&space_info->tickets,
4774                                           struct reserve_ticket, list);
4775         bytes_needed = (ticket) ? ticket->bytes : 0;
4776         spin_unlock(&space_info->lock);
4777
4778         if (!bytes_needed)
4779                 return 0;
4780
4781         trans = btrfs_join_transaction(fs_info->extent_root);
4782         if (IS_ERR(trans))
4783                 return PTR_ERR(trans);
4784
4785         /*
4786          * See if there is enough pinned space to make this reservation, or if
4787          * we have block groups that are going to be freed, allowing us to
4788          * possibly do a chunk allocation the next loop through.
4789          */
4790         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4791             __percpu_counter_compare(&space_info->total_bytes_pinned,
4792                                      bytes_needed,
4793                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4794                 goto commit;
4795
4796         /*
4797          * See if there is some space in the delayed insertion reservation for
4798          * this reservation.
4799          */
4800         if (space_info != delayed_rsv->space_info)
4801                 goto enospc;
4802
4803         spin_lock(&delayed_rsv->lock);
4804         reclaim_bytes += delayed_rsv->reserved;
4805         spin_unlock(&delayed_rsv->lock);
4806
4807         spin_lock(&delayed_refs_rsv->lock);
4808         reclaim_bytes += delayed_refs_rsv->reserved;
4809         spin_unlock(&delayed_refs_rsv->lock);
4810         if (reclaim_bytes >= bytes_needed)
4811                 goto commit;
4812         bytes_needed -= reclaim_bytes;
4813
4814         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4815                                    bytes_needed,
4816                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4817                 goto enospc;
4818
4819 commit:
4820         return btrfs_commit_transaction(trans);
4821 enospc:
4822         btrfs_end_transaction(trans);
4823         return -ENOSPC;
4824 }
4825
4826 /*
4827  * Try to flush some data based on policy set by @state. This is only advisory
4828  * and may fail for various reasons. The caller is supposed to examine the
4829  * state of @space_info to detect the outcome.
4830  */
4831 static void flush_space(struct btrfs_fs_info *fs_info,
4832                        struct btrfs_space_info *space_info, u64 num_bytes,
4833                        int state)
4834 {
4835         struct btrfs_root *root = fs_info->extent_root;
4836         struct btrfs_trans_handle *trans;
4837         int nr;
4838         int ret = 0;
4839
4840         switch (state) {
4841         case FLUSH_DELAYED_ITEMS_NR:
4842         case FLUSH_DELAYED_ITEMS:
4843                 if (state == FLUSH_DELAYED_ITEMS_NR)
4844                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4845                 else
4846                         nr = -1;
4847
4848                 trans = btrfs_join_transaction(root);
4849                 if (IS_ERR(trans)) {
4850                         ret = PTR_ERR(trans);
4851                         break;
4852                 }
4853                 ret = btrfs_run_delayed_items_nr(trans, nr);
4854                 btrfs_end_transaction(trans);
4855                 break;
4856         case FLUSH_DELALLOC:
4857         case FLUSH_DELALLOC_WAIT:
4858                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4859                                 state == FLUSH_DELALLOC_WAIT);
4860                 break;
4861         case FLUSH_DELAYED_REFS_NR:
4862         case FLUSH_DELAYED_REFS:
4863                 trans = btrfs_join_transaction(root);
4864                 if (IS_ERR(trans)) {
4865                         ret = PTR_ERR(trans);
4866                         break;
4867                 }
4868                 if (state == FLUSH_DELAYED_REFS_NR)
4869                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
4870                 else
4871                         nr = 0;
4872                 btrfs_run_delayed_refs(trans, nr);
4873                 btrfs_end_transaction(trans);
4874                 break;
4875         case ALLOC_CHUNK:
4876         case ALLOC_CHUNK_FORCE:
4877                 trans = btrfs_join_transaction(root);
4878                 if (IS_ERR(trans)) {
4879                         ret = PTR_ERR(trans);
4880                         break;
4881                 }
4882                 ret = do_chunk_alloc(trans,
4883                                      btrfs_metadata_alloc_profile(fs_info),
4884                                      (state == ALLOC_CHUNK) ?
4885                                       CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
4886                 btrfs_end_transaction(trans);
4887                 if (ret > 0 || ret == -ENOSPC)
4888                         ret = 0;
4889                 break;
4890         case COMMIT_TRANS:
4891                 /*
4892                  * If we have pending delayed iputs then we could free up a
4893                  * bunch of pinned space, so make sure we run the iputs before
4894                  * we do our pinned bytes check below.
4895                  */
4896                 btrfs_run_delayed_iputs(fs_info);
4897                 btrfs_wait_on_delayed_iputs(fs_info);
4898
4899                 ret = may_commit_transaction(fs_info, space_info);
4900                 break;
4901         default:
4902                 ret = -ENOSPC;
4903                 break;
4904         }
4905
4906         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4907                                 ret);
4908         return;
4909 }
4910
4911 static inline u64
4912 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4913                                  struct btrfs_space_info *space_info,
4914                                  bool system_chunk)
4915 {
4916         struct reserve_ticket *ticket;
4917         u64 used;
4918         u64 expected;
4919         u64 to_reclaim = 0;
4920
4921         list_for_each_entry(ticket, &space_info->tickets, list)
4922                 to_reclaim += ticket->bytes;
4923         list_for_each_entry(ticket, &space_info->priority_tickets, list)
4924                 to_reclaim += ticket->bytes;
4925         if (to_reclaim)
4926                 return to_reclaim;
4927
4928         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4929         if (can_overcommit(fs_info, space_info, to_reclaim,
4930                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4931                 return 0;
4932
4933         used = btrfs_space_info_used(space_info, true);
4934
4935         if (can_overcommit(fs_info, space_info, SZ_1M,
4936                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4937                 expected = div_factor_fine(space_info->total_bytes, 95);
4938         else
4939                 expected = div_factor_fine(space_info->total_bytes, 90);
4940
4941         if (used > expected)
4942                 to_reclaim = used - expected;
4943         else
4944                 to_reclaim = 0;
4945         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4946                                      space_info->bytes_reserved);
4947         return to_reclaim;
4948 }
4949
4950 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4951                                         struct btrfs_space_info *space_info,
4952                                         u64 used, bool system_chunk)
4953 {
4954         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4955
4956         /* If we're just plain full then async reclaim just slows us down. */
4957         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4958                 return 0;
4959
4960         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4961                                               system_chunk))
4962                 return 0;
4963
4964         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4965                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4966 }
4967
4968 static bool wake_all_tickets(struct list_head *head)
4969 {
4970         struct reserve_ticket *ticket;
4971
4972         while (!list_empty(head)) {
4973                 ticket = list_first_entry(head, struct reserve_ticket, list);
4974                 list_del_init(&ticket->list);
4975                 ticket->error = -ENOSPC;
4976                 wake_up(&ticket->wait);
4977                 if (ticket->bytes != ticket->orig_bytes)
4978                         return true;
4979         }
4980         return false;
4981 }
4982
4983 /*
4984  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4985  * will loop and continuously try to flush as long as we are making progress.
4986  * We count progress as clearing off tickets each time we have to loop.
4987  */
4988 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4989 {
4990         struct btrfs_fs_info *fs_info;
4991         struct btrfs_space_info *space_info;
4992         u64 to_reclaim;
4993         int flush_state;
4994         int commit_cycles = 0;
4995         u64 last_tickets_id;
4996
4997         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4998         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4999
5000         spin_lock(&space_info->lock);
5001         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5002                                                       false);
5003         if (!to_reclaim) {
5004                 space_info->flush = 0;
5005                 spin_unlock(&space_info->lock);
5006                 return;
5007         }
5008         last_tickets_id = space_info->tickets_id;
5009         spin_unlock(&space_info->lock);
5010
5011         flush_state = FLUSH_DELAYED_ITEMS_NR;
5012         do {
5013                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5014                 spin_lock(&space_info->lock);
5015                 if (list_empty(&space_info->tickets)) {
5016                         space_info->flush = 0;
5017                         spin_unlock(&space_info->lock);
5018                         return;
5019                 }
5020                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5021                                                               space_info,
5022                                                               false);
5023                 if (last_tickets_id == space_info->tickets_id) {
5024                         flush_state++;
5025                 } else {
5026                         last_tickets_id = space_info->tickets_id;
5027                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5028                         if (commit_cycles)
5029                                 commit_cycles--;
5030                 }
5031
5032                 /*
5033                  * We don't want to force a chunk allocation until we've tried
5034                  * pretty hard to reclaim space.  Think of the case where we
5035                  * freed up a bunch of space and so have a lot of pinned space
5036                  * to reclaim.  We would rather use that than possibly create a
5037                  * underutilized metadata chunk.  So if this is our first run
5038                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5039                  * commit the transaction.  If nothing has changed the next go
5040                  * around then we can force a chunk allocation.
5041                  */
5042                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5043                         flush_state++;
5044
5045                 if (flush_state > COMMIT_TRANS) {
5046                         commit_cycles++;
5047                         if (commit_cycles > 2) {
5048                                 if (wake_all_tickets(&space_info->tickets)) {
5049                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5050                                         commit_cycles--;
5051                                 } else {
5052                                         space_info->flush = 0;
5053                                 }
5054                         } else {
5055                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5056                         }
5057                 }
5058                 spin_unlock(&space_info->lock);
5059         } while (flush_state <= COMMIT_TRANS);
5060 }
5061
5062 void btrfs_init_async_reclaim_work(struct work_struct *work)
5063 {
5064         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5065 }
5066
5067 static const enum btrfs_flush_state priority_flush_states[] = {
5068         FLUSH_DELAYED_ITEMS_NR,
5069         FLUSH_DELAYED_ITEMS,
5070         ALLOC_CHUNK,
5071 };
5072
5073 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5074                                             struct btrfs_space_info *space_info,
5075                                             struct reserve_ticket *ticket)
5076 {
5077         u64 to_reclaim;
5078         int flush_state;
5079
5080         spin_lock(&space_info->lock);
5081         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5082                                                       false);
5083         if (!to_reclaim) {
5084                 spin_unlock(&space_info->lock);
5085                 return;
5086         }
5087         spin_unlock(&space_info->lock);
5088
5089         flush_state = 0;
5090         do {
5091                 flush_space(fs_info, space_info, to_reclaim,
5092                             priority_flush_states[flush_state]);
5093                 flush_state++;
5094                 spin_lock(&space_info->lock);
5095                 if (ticket->bytes == 0) {
5096                         spin_unlock(&space_info->lock);
5097                         return;
5098                 }
5099                 spin_unlock(&space_info->lock);
5100         } while (flush_state < ARRAY_SIZE(priority_flush_states));
5101 }
5102
5103 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5104                                struct btrfs_space_info *space_info,
5105                                struct reserve_ticket *ticket)
5106
5107 {
5108         DEFINE_WAIT(wait);
5109         u64 reclaim_bytes = 0;
5110         int ret = 0;
5111
5112         spin_lock(&space_info->lock);
5113         while (ticket->bytes > 0 && ticket->error == 0) {
5114                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5115                 if (ret) {
5116                         ret = -EINTR;
5117                         break;
5118                 }
5119                 spin_unlock(&space_info->lock);
5120
5121                 schedule();
5122
5123                 finish_wait(&ticket->wait, &wait);
5124                 spin_lock(&space_info->lock);
5125         }
5126         if (!ret)
5127                 ret = ticket->error;
5128         if (!list_empty(&ticket->list))
5129                 list_del_init(&ticket->list);
5130         if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5131                 reclaim_bytes = ticket->orig_bytes - ticket->bytes;
5132         spin_unlock(&space_info->lock);
5133
5134         if (reclaim_bytes)
5135                 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5136         return ret;
5137 }
5138
5139 /**
5140  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5141  * @root - the root we're allocating for
5142  * @space_info - the space info we want to allocate from
5143  * @orig_bytes - the number of bytes we want
5144  * @flush - whether or not we can flush to make our reservation
5145  *
5146  * This will reserve orig_bytes number of bytes from the space info associated
5147  * with the block_rsv.  If there is not enough space it will make an attempt to
5148  * flush out space to make room.  It will do this by flushing delalloc if
5149  * possible or committing the transaction.  If flush is 0 then no attempts to
5150  * regain reservations will be made and this will fail if there is not enough
5151  * space already.
5152  */
5153 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5154                                     struct btrfs_space_info *space_info,
5155                                     u64 orig_bytes,
5156                                     enum btrfs_reserve_flush_enum flush,
5157                                     bool system_chunk)
5158 {
5159         struct reserve_ticket ticket;
5160         u64 used;
5161         u64 reclaim_bytes = 0;
5162         int ret = 0;
5163
5164         ASSERT(orig_bytes);
5165         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5166
5167         spin_lock(&space_info->lock);
5168         ret = -ENOSPC;
5169         used = btrfs_space_info_used(space_info, true);
5170
5171         /*
5172          * If we have enough space then hooray, make our reservation and carry
5173          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5174          * If not things get more complicated.
5175          */
5176         if (used + orig_bytes <= space_info->total_bytes) {
5177                 update_bytes_may_use(space_info, orig_bytes);
5178                 trace_btrfs_space_reservation(fs_info, "space_info",
5179                                               space_info->flags, orig_bytes, 1);
5180                 ret = 0;
5181         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5182                                   system_chunk)) {
5183                 update_bytes_may_use(space_info, orig_bytes);
5184                 trace_btrfs_space_reservation(fs_info, "space_info",
5185                                               space_info->flags, orig_bytes, 1);
5186                 ret = 0;
5187         }
5188
5189         /*
5190          * If we couldn't make a reservation then setup our reservation ticket
5191          * and kick the async worker if it's not already running.
5192          *
5193          * If we are a priority flusher then we just need to add our ticket to
5194          * the list and we will do our own flushing further down.
5195          */
5196         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5197                 ticket.orig_bytes = orig_bytes;
5198                 ticket.bytes = orig_bytes;
5199                 ticket.error = 0;
5200                 init_waitqueue_head(&ticket.wait);
5201                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5202                         list_add_tail(&ticket.list, &space_info->tickets);
5203                         if (!space_info->flush) {
5204                                 space_info->flush = 1;
5205                                 trace_btrfs_trigger_flush(fs_info,
5206                                                           space_info->flags,
5207                                                           orig_bytes, flush,
5208                                                           "enospc");
5209                                 queue_work(system_unbound_wq,
5210                                            &fs_info->async_reclaim_work);
5211                         }
5212                 } else {
5213                         list_add_tail(&ticket.list,
5214                                       &space_info->priority_tickets);
5215                 }
5216         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5217                 used += orig_bytes;
5218                 /*
5219                  * We will do the space reservation dance during log replay,
5220                  * which means we won't have fs_info->fs_root set, so don't do
5221                  * the async reclaim as we will panic.
5222                  */
5223                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5224                     need_do_async_reclaim(fs_info, space_info,
5225                                           used, system_chunk) &&
5226                     !work_busy(&fs_info->async_reclaim_work)) {
5227                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5228                                                   orig_bytes, flush, "preempt");
5229                         queue_work(system_unbound_wq,
5230                                    &fs_info->async_reclaim_work);
5231                 }
5232         }
5233         spin_unlock(&space_info->lock);
5234         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5235                 return ret;
5236
5237         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5238                 return wait_reserve_ticket(fs_info, space_info, &ticket);
5239
5240         ret = 0;
5241         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5242         spin_lock(&space_info->lock);
5243         if (ticket.bytes) {
5244                 if (ticket.bytes < orig_bytes)
5245                         reclaim_bytes = orig_bytes - ticket.bytes;
5246                 list_del_init(&ticket.list);
5247                 ret = -ENOSPC;
5248         }
5249         spin_unlock(&space_info->lock);
5250
5251         if (reclaim_bytes)
5252                 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5253         ASSERT(list_empty(&ticket.list));
5254         return ret;
5255 }
5256
5257 /**
5258  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5259  * @root - the root we're allocating for
5260  * @block_rsv - the block_rsv we're allocating for
5261  * @orig_bytes - the number of bytes we want
5262  * @flush - whether or not we can flush to make our reservation
5263  *
5264  * This will reserve orig_bytes number of bytes from the space info associated
5265  * with the block_rsv.  If there is not enough space it will make an attempt to
5266  * flush out space to make room.  It will do this by flushing delalloc if
5267  * possible or committing the transaction.  If flush is 0 then no attempts to
5268  * regain reservations will be made and this will fail if there is not enough
5269  * space already.
5270  */
5271 static int reserve_metadata_bytes(struct btrfs_root *root,
5272                                   struct btrfs_block_rsv *block_rsv,
5273                                   u64 orig_bytes,
5274                                   enum btrfs_reserve_flush_enum flush)
5275 {
5276         struct btrfs_fs_info *fs_info = root->fs_info;
5277         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5278         int ret;
5279         bool system_chunk = (root == fs_info->chunk_root);
5280
5281         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5282                                        orig_bytes, flush, system_chunk);
5283         if (ret == -ENOSPC &&
5284             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5285                 if (block_rsv != global_rsv &&
5286                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5287                         ret = 0;
5288         }
5289         if (ret == -ENOSPC) {
5290                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5291                                               block_rsv->space_info->flags,
5292                                               orig_bytes, 1);
5293
5294                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5295                         dump_space_info(fs_info, block_rsv->space_info,
5296                                         orig_bytes, 0);
5297         }
5298         return ret;
5299 }
5300
5301 static struct btrfs_block_rsv *get_block_rsv(
5302                                         const struct btrfs_trans_handle *trans,
5303                                         const struct btrfs_root *root)
5304 {
5305         struct btrfs_fs_info *fs_info = root->fs_info;
5306         struct btrfs_block_rsv *block_rsv = NULL;
5307
5308         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5309             (root == fs_info->csum_root && trans->adding_csums) ||
5310             (root == fs_info->uuid_root))
5311                 block_rsv = trans->block_rsv;
5312
5313         if (!block_rsv)
5314                 block_rsv = root->block_rsv;
5315
5316         if (!block_rsv)
5317                 block_rsv = &fs_info->empty_block_rsv;
5318
5319         return block_rsv;
5320 }
5321
5322 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5323                                u64 num_bytes)
5324 {
5325         int ret = -ENOSPC;
5326         spin_lock(&block_rsv->lock);
5327         if (block_rsv->reserved >= num_bytes) {
5328                 block_rsv->reserved -= num_bytes;
5329                 if (block_rsv->reserved < block_rsv->size)
5330                         block_rsv->full = 0;
5331                 ret = 0;
5332         }
5333         spin_unlock(&block_rsv->lock);
5334         return ret;
5335 }
5336
5337 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5338                                 u64 num_bytes, bool update_size)
5339 {
5340         spin_lock(&block_rsv->lock);
5341         block_rsv->reserved += num_bytes;
5342         if (update_size)
5343                 block_rsv->size += num_bytes;
5344         else if (block_rsv->reserved >= block_rsv->size)
5345                 block_rsv->full = 1;
5346         spin_unlock(&block_rsv->lock);
5347 }
5348
5349 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5350                              struct btrfs_block_rsv *dest, u64 num_bytes,
5351                              int min_factor)
5352 {
5353         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5354         u64 min_bytes;
5355
5356         if (global_rsv->space_info != dest->space_info)
5357                 return -ENOSPC;
5358
5359         spin_lock(&global_rsv->lock);
5360         min_bytes = div_factor(global_rsv->size, min_factor);
5361         if (global_rsv->reserved < min_bytes + num_bytes) {
5362                 spin_unlock(&global_rsv->lock);
5363                 return -ENOSPC;
5364         }
5365         global_rsv->reserved -= num_bytes;
5366         if (global_rsv->reserved < global_rsv->size)
5367                 global_rsv->full = 0;
5368         spin_unlock(&global_rsv->lock);
5369
5370         block_rsv_add_bytes(dest, num_bytes, true);
5371         return 0;
5372 }
5373
5374 /**
5375  * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5376  * @fs_info - the fs info for our fs.
5377  * @src - the source block rsv to transfer from.
5378  * @num_bytes - the number of bytes to transfer.
5379  *
5380  * This transfers up to the num_bytes amount from the src rsv to the
5381  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
5382  */
5383 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5384                                        struct btrfs_block_rsv *src,
5385                                        u64 num_bytes)
5386 {
5387         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5388         u64 to_free = 0;
5389
5390         spin_lock(&src->lock);
5391         src->reserved -= num_bytes;
5392         src->size -= num_bytes;
5393         spin_unlock(&src->lock);
5394
5395         spin_lock(&delayed_refs_rsv->lock);
5396         if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5397                 u64 delta = delayed_refs_rsv->size -
5398                         delayed_refs_rsv->reserved;
5399                 if (num_bytes > delta) {
5400                         to_free = num_bytes - delta;
5401                         num_bytes = delta;
5402                 }
5403         } else {
5404                 to_free = num_bytes;
5405                 num_bytes = 0;
5406         }
5407
5408         if (num_bytes)
5409                 delayed_refs_rsv->reserved += num_bytes;
5410         if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5411                 delayed_refs_rsv->full = 1;
5412         spin_unlock(&delayed_refs_rsv->lock);
5413
5414         if (num_bytes)
5415                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5416                                               0, num_bytes, 1);
5417         if (to_free)
5418                 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5419                                          to_free);
5420 }
5421
5422 /**
5423  * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5424  * @fs_info - the fs_info for our fs.
5425  * @flush - control how we can flush for this reservation.
5426  *
5427  * This will refill the delayed block_rsv up to 1 items size worth of space and
5428  * will return -ENOSPC if we can't make the reservation.
5429  */
5430 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5431                                   enum btrfs_reserve_flush_enum flush)
5432 {
5433         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5434         u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5435         u64 num_bytes = 0;
5436         int ret = -ENOSPC;
5437
5438         spin_lock(&block_rsv->lock);
5439         if (block_rsv->reserved < block_rsv->size) {
5440                 num_bytes = block_rsv->size - block_rsv->reserved;
5441                 num_bytes = min(num_bytes, limit);
5442         }
5443         spin_unlock(&block_rsv->lock);
5444
5445         if (!num_bytes)
5446                 return 0;
5447
5448         ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5449                                      num_bytes, flush);
5450         if (ret)
5451                 return ret;
5452         block_rsv_add_bytes(block_rsv, num_bytes, 0);
5453         trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5454                                       0, num_bytes, 1);
5455         return 0;
5456 }
5457
5458 /*
5459  * This is for space we already have accounted in space_info->bytes_may_use, so
5460  * basically when we're returning space from block_rsv's.
5461  */
5462 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5463                                      struct btrfs_space_info *space_info,
5464                                      u64 num_bytes)
5465 {
5466         struct reserve_ticket *ticket;
5467         struct list_head *head;
5468         u64 used;
5469         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5470         bool check_overcommit = false;
5471
5472         spin_lock(&space_info->lock);
5473         head = &space_info->priority_tickets;
5474
5475         /*
5476          * If we are over our limit then we need to check and see if we can
5477          * overcommit, and if we can't then we just need to free up our space
5478          * and not satisfy any requests.
5479          */
5480         used = btrfs_space_info_used(space_info, true);
5481         if (used - num_bytes >= space_info->total_bytes)
5482                 check_overcommit = true;
5483 again:
5484         while (!list_empty(head) && num_bytes) {
5485                 ticket = list_first_entry(head, struct reserve_ticket,
5486                                           list);
5487                 /*
5488                  * We use 0 bytes because this space is already reserved, so
5489                  * adding the ticket space would be a double count.
5490                  */
5491                 if (check_overcommit &&
5492                     !can_overcommit(fs_info, space_info, 0, flush, false))
5493                         break;
5494                 if (num_bytes >= ticket->bytes) {
5495                         list_del_init(&ticket->list);
5496                         num_bytes -= ticket->bytes;
5497                         ticket->bytes = 0;
5498                         space_info->tickets_id++;
5499                         wake_up(&ticket->wait);
5500                 } else {
5501                         ticket->bytes -= num_bytes;
5502                         num_bytes = 0;
5503                 }
5504         }
5505
5506         if (num_bytes && head == &space_info->priority_tickets) {
5507                 head = &space_info->tickets;
5508                 flush = BTRFS_RESERVE_FLUSH_ALL;
5509                 goto again;
5510         }
5511         update_bytes_may_use(space_info, -num_bytes);
5512         trace_btrfs_space_reservation(fs_info, "space_info",
5513                                       space_info->flags, num_bytes, 0);
5514         spin_unlock(&space_info->lock);
5515 }
5516
5517 /*
5518  * This is for newly allocated space that isn't accounted in
5519  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5520  * we use this helper.
5521  */
5522 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5523                                      struct btrfs_space_info *space_info,
5524                                      u64 num_bytes)
5525 {
5526         struct reserve_ticket *ticket;
5527         struct list_head *head = &space_info->priority_tickets;
5528
5529 again:
5530         while (!list_empty(head) && num_bytes) {
5531                 ticket = list_first_entry(head, struct reserve_ticket,
5532                                           list);
5533                 if (num_bytes >= ticket->bytes) {
5534                         trace_btrfs_space_reservation(fs_info, "space_info",
5535                                                       space_info->flags,
5536                                                       ticket->bytes, 1);
5537                         list_del_init(&ticket->list);
5538                         num_bytes -= ticket->bytes;
5539                         update_bytes_may_use(space_info, ticket->bytes);
5540                         ticket->bytes = 0;
5541                         space_info->tickets_id++;
5542                         wake_up(&ticket->wait);
5543                 } else {
5544                         trace_btrfs_space_reservation(fs_info, "space_info",
5545                                                       space_info->flags,
5546                                                       num_bytes, 1);
5547                         update_bytes_may_use(space_info, num_bytes);
5548                         ticket->bytes -= num_bytes;
5549                         num_bytes = 0;
5550                 }
5551         }
5552
5553         if (num_bytes && head == &space_info->priority_tickets) {
5554                 head = &space_info->tickets;
5555                 goto again;
5556         }
5557 }
5558
5559 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5560                                     struct btrfs_block_rsv *block_rsv,
5561                                     struct btrfs_block_rsv *dest, u64 num_bytes,
5562                                     u64 *qgroup_to_release_ret)
5563 {
5564         struct btrfs_space_info *space_info = block_rsv->space_info;
5565         u64 qgroup_to_release = 0;
5566         u64 ret;
5567
5568         spin_lock(&block_rsv->lock);
5569         if (num_bytes == (u64)-1) {
5570                 num_bytes = block_rsv->size;
5571                 qgroup_to_release = block_rsv->qgroup_rsv_size;
5572         }
5573         block_rsv->size -= num_bytes;
5574         if (block_rsv->reserved >= block_rsv->size) {
5575                 num_bytes = block_rsv->reserved - block_rsv->size;
5576                 block_rsv->reserved = block_rsv->size;
5577                 block_rsv->full = 1;
5578         } else {
5579                 num_bytes = 0;
5580         }
5581         if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5582                 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5583                                     block_rsv->qgroup_rsv_size;
5584                 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5585         } else {
5586                 qgroup_to_release = 0;
5587         }
5588         spin_unlock(&block_rsv->lock);
5589
5590         ret = num_bytes;
5591         if (num_bytes > 0) {
5592                 if (dest) {
5593                         spin_lock(&dest->lock);
5594                         if (!dest->full) {
5595                                 u64 bytes_to_add;
5596
5597                                 bytes_to_add = dest->size - dest->reserved;
5598                                 bytes_to_add = min(num_bytes, bytes_to_add);
5599                                 dest->reserved += bytes_to_add;
5600                                 if (dest->reserved >= dest->size)
5601                                         dest->full = 1;
5602                                 num_bytes -= bytes_to_add;
5603                         }
5604                         spin_unlock(&dest->lock);
5605                 }
5606                 if (num_bytes)
5607                         space_info_add_old_bytes(fs_info, space_info,
5608                                                  num_bytes);
5609         }
5610         if (qgroup_to_release_ret)
5611                 *qgroup_to_release_ret = qgroup_to_release;
5612         return ret;
5613 }
5614
5615 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5616                             struct btrfs_block_rsv *dst, u64 num_bytes,
5617                             bool update_size)
5618 {
5619         int ret;
5620
5621         ret = block_rsv_use_bytes(src, num_bytes);
5622         if (ret)
5623                 return ret;
5624
5625         block_rsv_add_bytes(dst, num_bytes, update_size);
5626         return 0;
5627 }
5628
5629 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5630 {
5631         memset(rsv, 0, sizeof(*rsv));
5632         spin_lock_init(&rsv->lock);
5633         rsv->type = type;
5634 }
5635
5636 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5637                                    struct btrfs_block_rsv *rsv,
5638                                    unsigned short type)
5639 {
5640         btrfs_init_block_rsv(rsv, type);
5641         rsv->space_info = __find_space_info(fs_info,
5642                                             BTRFS_BLOCK_GROUP_METADATA);
5643 }
5644
5645 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5646                                               unsigned short type)
5647 {
5648         struct btrfs_block_rsv *block_rsv;
5649
5650         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5651         if (!block_rsv)
5652                 return NULL;
5653
5654         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5655         return block_rsv;
5656 }
5657
5658 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5659                           struct btrfs_block_rsv *rsv)
5660 {
5661         if (!rsv)
5662                 return;
5663         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5664         kfree(rsv);
5665 }
5666
5667 int btrfs_block_rsv_add(struct btrfs_root *root,
5668                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5669                         enum btrfs_reserve_flush_enum flush)
5670 {
5671         int ret;
5672
5673         if (num_bytes == 0)
5674                 return 0;
5675
5676         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5677         if (!ret)
5678                 block_rsv_add_bytes(block_rsv, num_bytes, true);
5679
5680         return ret;
5681 }
5682
5683 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5684 {
5685         u64 num_bytes = 0;
5686         int ret = -ENOSPC;
5687
5688         if (!block_rsv)
5689                 return 0;
5690
5691         spin_lock(&block_rsv->lock);
5692         num_bytes = div_factor(block_rsv->size, min_factor);
5693         if (block_rsv->reserved >= num_bytes)
5694                 ret = 0;
5695         spin_unlock(&block_rsv->lock);
5696
5697         return ret;
5698 }
5699
5700 int btrfs_block_rsv_refill(struct btrfs_root *root,
5701                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5702                            enum btrfs_reserve_flush_enum flush)
5703 {
5704         u64 num_bytes = 0;
5705         int ret = -ENOSPC;
5706
5707         if (!block_rsv)
5708                 return 0;
5709
5710         spin_lock(&block_rsv->lock);
5711         num_bytes = min_reserved;
5712         if (block_rsv->reserved >= num_bytes)
5713                 ret = 0;
5714         else
5715                 num_bytes -= block_rsv->reserved;
5716         spin_unlock(&block_rsv->lock);
5717
5718         if (!ret)
5719                 return 0;
5720
5721         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5722         if (!ret) {
5723                 block_rsv_add_bytes(block_rsv, num_bytes, false);
5724                 return 0;
5725         }
5726
5727         return ret;
5728 }
5729
5730 static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5731                                      struct btrfs_block_rsv *block_rsv,
5732                                      u64 num_bytes, u64 *qgroup_to_release)
5733 {
5734         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5735         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5736         struct btrfs_block_rsv *target = delayed_rsv;
5737
5738         if (target->full || target == block_rsv)
5739                 target = global_rsv;
5740
5741         if (block_rsv->space_info != target->space_info)
5742                 target = NULL;
5743
5744         return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5745                                        qgroup_to_release);
5746 }
5747
5748 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5749                              struct btrfs_block_rsv *block_rsv,
5750                              u64 num_bytes)
5751 {
5752         __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5753 }
5754
5755 /**
5756  * btrfs_inode_rsv_release - release any excessive reservation.
5757  * @inode - the inode we need to release from.
5758  * @qgroup_free - free or convert qgroup meta.
5759  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5760  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5761  *   @qgroup_free is true for error handling, and false for normal release.
5762  *
5763  * This is the same as btrfs_block_rsv_release, except that it handles the
5764  * tracepoint for the reservation.
5765  */
5766 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5767 {
5768         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5769         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5770         u64 released = 0;
5771         u64 qgroup_to_release = 0;
5772
5773         /*
5774          * Since we statically set the block_rsv->size we just want to say we
5775          * are releasing 0 bytes, and then we'll just get the reservation over
5776          * the size free'd.
5777          */
5778         released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5779                                              &qgroup_to_release);
5780         if (released > 0)
5781                 trace_btrfs_space_reservation(fs_info, "delalloc",
5782                                               btrfs_ino(inode), released, 0);
5783         if (qgroup_free)
5784                 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5785         else
5786                 btrfs_qgroup_convert_reserved_meta(inode->root,
5787                                                    qgroup_to_release);
5788 }
5789
5790 /**
5791  * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5792  * @fs_info - the fs_info for our fs.
5793  * @nr - the number of items to drop.
5794  *
5795  * This drops the delayed ref head's count from the delayed refs rsv and frees
5796  * any excess reservation we had.
5797  */
5798 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
5799 {
5800         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5801         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5802         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5803         u64 released = 0;
5804
5805         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5806                                            num_bytes, NULL);
5807         if (released)
5808                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5809                                               0, released, 0);
5810 }
5811
5812 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5813 {
5814         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5815         struct btrfs_space_info *sinfo = block_rsv->space_info;
5816         u64 num_bytes;
5817
5818         /*
5819          * The global block rsv is based on the size of the extent tree, the
5820          * checksum tree and the root tree.  If the fs is empty we want to set
5821          * it to a minimal amount for safety.
5822          */
5823         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5824                 btrfs_root_used(&fs_info->csum_root->root_item) +
5825                 btrfs_root_used(&fs_info->tree_root->root_item);
5826         num_bytes = max_t(u64, num_bytes, SZ_16M);
5827
5828         spin_lock(&sinfo->lock);
5829         spin_lock(&block_rsv->lock);
5830
5831         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5832
5833         if (block_rsv->reserved < block_rsv->size) {
5834                 num_bytes = btrfs_space_info_used(sinfo, true);
5835                 if (sinfo->total_bytes > num_bytes) {
5836                         num_bytes = sinfo->total_bytes - num_bytes;
5837                         num_bytes = min(num_bytes,
5838                                         block_rsv->size - block_rsv->reserved);
5839                         block_rsv->reserved += num_bytes;
5840                         update_bytes_may_use(sinfo, num_bytes);
5841                         trace_btrfs_space_reservation(fs_info, "space_info",
5842                                                       sinfo->flags, num_bytes,
5843                                                       1);
5844                 }
5845         } else if (block_rsv->reserved > block_rsv->size) {
5846                 num_bytes = block_rsv->reserved - block_rsv->size;
5847                 update_bytes_may_use(sinfo, -num_bytes);
5848                 trace_btrfs_space_reservation(fs_info, "space_info",
5849                                       sinfo->flags, num_bytes, 0);
5850                 block_rsv->reserved = block_rsv->size;
5851         }
5852
5853         if (block_rsv->reserved == block_rsv->size)
5854                 block_rsv->full = 1;
5855         else
5856                 block_rsv->full = 0;
5857
5858         spin_unlock(&block_rsv->lock);
5859         spin_unlock(&sinfo->lock);
5860 }
5861
5862 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5863 {
5864         struct btrfs_space_info *space_info;
5865
5866         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5867         fs_info->chunk_block_rsv.space_info = space_info;
5868
5869         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5870         fs_info->global_block_rsv.space_info = space_info;
5871         fs_info->trans_block_rsv.space_info = space_info;
5872         fs_info->empty_block_rsv.space_info = space_info;
5873         fs_info->delayed_block_rsv.space_info = space_info;
5874         fs_info->delayed_refs_rsv.space_info = space_info;
5875
5876         fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5877         fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
5878         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5879         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5880         if (fs_info->quota_root)
5881                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5882         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5883
5884         update_global_block_rsv(fs_info);
5885 }
5886
5887 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5888 {
5889         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5890                                 (u64)-1, NULL);
5891         WARN_ON(fs_info->trans_block_rsv.size > 0);
5892         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5893         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5894         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5895         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5896         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5897         WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5898         WARN_ON(fs_info->delayed_refs_rsv.size > 0);
5899 }
5900
5901 /*
5902  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5903  * @trans - the trans that may have generated delayed refs
5904  *
5905  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5906  * it'll calculate the additional size and add it to the delayed_refs_rsv.
5907  */
5908 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5909 {
5910         struct btrfs_fs_info *fs_info = trans->fs_info;
5911         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5912         u64 num_bytes;
5913
5914         if (!trans->delayed_ref_updates)
5915                 return;
5916
5917         num_bytes = btrfs_calc_trans_metadata_size(fs_info,
5918                                                    trans->delayed_ref_updates);
5919         spin_lock(&delayed_rsv->lock);
5920         delayed_rsv->size += num_bytes;
5921         delayed_rsv->full = 0;
5922         spin_unlock(&delayed_rsv->lock);
5923         trans->delayed_ref_updates = 0;
5924 }
5925
5926 /*
5927  * To be called after all the new block groups attached to the transaction
5928  * handle have been created (btrfs_create_pending_block_groups()).
5929  */
5930 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5931 {
5932         struct btrfs_fs_info *fs_info = trans->fs_info;
5933
5934         if (!trans->chunk_bytes_reserved)
5935                 return;
5936
5937         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5938
5939         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5940                                 trans->chunk_bytes_reserved, NULL);
5941         trans->chunk_bytes_reserved = 0;
5942 }
5943
5944 /*
5945  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5946  * root: the root of the parent directory
5947  * rsv: block reservation
5948  * items: the number of items that we need do reservation
5949  * use_global_rsv: allow fallback to the global block reservation
5950  *
5951  * This function is used to reserve the space for snapshot/subvolume
5952  * creation and deletion. Those operations are different with the
5953  * common file/directory operations, they change two fs/file trees
5954  * and root tree, the number of items that the qgroup reserves is
5955  * different with the free space reservation. So we can not use
5956  * the space reservation mechanism in start_transaction().
5957  */
5958 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5959                                      struct btrfs_block_rsv *rsv, int items,
5960                                      bool use_global_rsv)
5961 {
5962         u64 qgroup_num_bytes = 0;
5963         u64 num_bytes;
5964         int ret;
5965         struct btrfs_fs_info *fs_info = root->fs_info;
5966         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5967
5968         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5969                 /* One for parent inode, two for dir entries */
5970                 qgroup_num_bytes = 3 * fs_info->nodesize;
5971                 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5972                                 qgroup_num_bytes, true);
5973                 if (ret)
5974                         return ret;
5975         }
5976
5977         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5978         rsv->space_info = __find_space_info(fs_info,
5979                                             BTRFS_BLOCK_GROUP_METADATA);
5980         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5981                                   BTRFS_RESERVE_FLUSH_ALL);
5982
5983         if (ret == -ENOSPC && use_global_rsv)
5984                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
5985
5986         if (ret && qgroup_num_bytes)
5987                 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5988
5989         return ret;
5990 }
5991
5992 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5993                                       struct btrfs_block_rsv *rsv)
5994 {
5995         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5996 }
5997
5998 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5999                                                  struct btrfs_inode *inode)
6000 {
6001         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6002         u64 reserve_size = 0;
6003         u64 qgroup_rsv_size = 0;
6004         u64 csum_leaves;
6005         unsigned outstanding_extents;
6006
6007         lockdep_assert_held(&inode->lock);
6008         outstanding_extents = inode->outstanding_extents;
6009         if (outstanding_extents)
6010                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6011                                                 outstanding_extents + 1);
6012         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6013                                                  inode->csum_bytes);
6014         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6015                                                        csum_leaves);
6016         /*
6017          * For qgroup rsv, the calculation is very simple:
6018          * account one nodesize for each outstanding extent
6019          *
6020          * This is overestimating in most cases.
6021          */
6022         qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
6023
6024         spin_lock(&block_rsv->lock);
6025         block_rsv->size = reserve_size;
6026         block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6027         spin_unlock(&block_rsv->lock);
6028 }
6029
6030 static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
6031                                     u64 num_bytes, u64 *meta_reserve,
6032                                     u64 *qgroup_reserve)
6033 {
6034         u64 nr_extents = count_max_extents(num_bytes);
6035         u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
6036
6037         /* We add one for the inode update at finish ordered time */
6038         *meta_reserve = btrfs_calc_trans_metadata_size(fs_info,
6039                                                 nr_extents + csum_leaves + 1);
6040         *qgroup_reserve = nr_extents * fs_info->nodesize;
6041 }
6042
6043 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6044 {
6045         struct btrfs_root *root = inode->root;
6046         struct btrfs_fs_info *fs_info = root->fs_info;
6047         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6048         u64 meta_reserve, qgroup_reserve;
6049         unsigned nr_extents;
6050         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6051         int ret = 0;
6052         bool delalloc_lock = true;
6053
6054         /* If we are a free space inode we need to not flush since we will be in
6055          * the middle of a transaction commit.  We also don't need the delalloc
6056          * mutex since we won't race with anybody.  We need this mostly to make
6057          * lockdep shut its filthy mouth.
6058          *
6059          * If we have a transaction open (can happen if we call truncate_block
6060          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6061          */
6062         if (btrfs_is_free_space_inode(inode)) {
6063                 flush = BTRFS_RESERVE_NO_FLUSH;
6064                 delalloc_lock = false;
6065         } else {
6066                 if (current->journal_info)
6067                         flush = BTRFS_RESERVE_FLUSH_LIMIT;
6068
6069                 if (btrfs_transaction_in_commit(fs_info))
6070                         schedule_timeout(1);
6071         }
6072
6073         if (delalloc_lock)
6074                 mutex_lock(&inode->delalloc_mutex);
6075
6076         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6077
6078         /*
6079          * We always want to do it this way, every other way is wrong and ends
6080          * in tears.  Pre-reserving the amount we are going to add will always
6081          * be the right way, because otherwise if we have enough parallelism we
6082          * could end up with thousands of inodes all holding little bits of
6083          * reservations they were able to make previously and the only way to
6084          * reclaim that space is to ENOSPC out the operations and clear
6085          * everything out and try again, which is bad.  This way we just
6086          * over-reserve slightly, and clean up the mess when we are done.
6087          */
6088         calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
6089                                 &qgroup_reserve);
6090         ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
6091         if (ret)
6092                 goto out_fail;
6093         ret = reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
6094         if (ret)
6095                 goto out_qgroup;
6096
6097         /*
6098          * Now we need to update our outstanding extents and csum bytes _first_
6099          * and then add the reservation to the block_rsv.  This keeps us from
6100          * racing with an ordered completion or some such that would think it
6101          * needs to free the reservation we just made.
6102          */
6103         spin_lock(&inode->lock);
6104         nr_extents = count_max_extents(num_bytes);
6105         btrfs_mod_outstanding_extents(inode, nr_extents);
6106         inode->csum_bytes += num_bytes;
6107         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6108         spin_unlock(&inode->lock);
6109
6110         /* Now we can safely add our space to our block rsv */
6111         block_rsv_add_bytes(block_rsv, meta_reserve, false);
6112         trace_btrfs_space_reservation(root->fs_info, "delalloc",
6113                                       btrfs_ino(inode), meta_reserve, 1);
6114
6115         spin_lock(&block_rsv->lock);
6116         block_rsv->qgroup_rsv_reserved += qgroup_reserve;
6117         spin_unlock(&block_rsv->lock);
6118
6119         if (delalloc_lock)
6120                 mutex_unlock(&inode->delalloc_mutex);
6121         return 0;
6122 out_qgroup:
6123         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
6124 out_fail:
6125         btrfs_inode_rsv_release(inode, true);
6126         if (delalloc_lock)
6127                 mutex_unlock(&inode->delalloc_mutex);
6128         return ret;
6129 }
6130
6131 /**
6132  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6133  * @inode: the inode to release the reservation for.
6134  * @num_bytes: the number of bytes we are releasing.
6135  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6136  *
6137  * This will release the metadata reservation for an inode.  This can be called
6138  * once we complete IO for a given set of bytes to release their metadata
6139  * reservations, or on error for the same reason.
6140  */
6141 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6142                                      bool qgroup_free)
6143 {
6144         struct btrfs_fs_info *fs_info = inode->root->fs_info;
6145
6146         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6147         spin_lock(&inode->lock);
6148         inode->csum_bytes -= num_bytes;
6149         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6150         spin_unlock(&inode->lock);
6151
6152         if (btrfs_is_testing(fs_info))
6153                 return;
6154
6155         btrfs_inode_rsv_release(inode, qgroup_free);
6156 }
6157
6158 /**
6159  * btrfs_delalloc_release_extents - release our outstanding_extents
6160  * @inode: the inode to balance the reservation for.
6161  * @num_bytes: the number of bytes we originally reserved with
6162  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6163  *
6164  * When we reserve space we increase outstanding_extents for the extents we may
6165  * add.  Once we've set the range as delalloc or created our ordered extents we
6166  * have outstanding_extents to track the real usage, so we use this to free our
6167  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6168  * with btrfs_delalloc_reserve_metadata.
6169  */
6170 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6171                                     bool qgroup_free)
6172 {
6173         struct btrfs_fs_info *fs_info = inode->root->fs_info;
6174         unsigned num_extents;
6175
6176         spin_lock(&inode->lock);
6177         num_extents = count_max_extents(num_bytes);
6178         btrfs_mod_outstanding_extents(inode, -num_extents);
6179         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6180         spin_unlock(&inode->lock);
6181
6182         if (btrfs_is_testing(fs_info))
6183                 return;
6184
6185         btrfs_inode_rsv_release(inode, qgroup_free);
6186 }
6187
6188 /**
6189  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6190  * delalloc
6191  * @inode: inode we're writing to
6192  * @start: start range we are writing to
6193  * @len: how long the range we are writing to
6194  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6195  *            current reservation.
6196  *
6197  * This will do the following things
6198  *
6199  * o reserve space in data space info for num bytes
6200  *   and reserve precious corresponding qgroup space
6201  *   (Done in check_data_free_space)
6202  *
6203  * o reserve space for metadata space, based on the number of outstanding
6204  *   extents and how much csums will be needed
6205  *   also reserve metadata space in a per root over-reserve method.
6206  * o add to the inodes->delalloc_bytes
6207  * o add it to the fs_info's delalloc inodes list.
6208  *   (Above 3 all done in delalloc_reserve_metadata)
6209  *
6210  * Return 0 for success
6211  * Return <0 for error(-ENOSPC or -EQUOT)
6212  */
6213 int btrfs_delalloc_reserve_space(struct inode *inode,
6214                         struct extent_changeset **reserved, u64 start, u64 len)
6215 {
6216         int ret;
6217
6218         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6219         if (ret < 0)
6220                 return ret;
6221         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6222         if (ret < 0)
6223                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6224         return ret;
6225 }
6226
6227 /**
6228  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6229  * @inode: inode we're releasing space for
6230  * @start: start position of the space already reserved
6231  * @len: the len of the space already reserved
6232  * @release_bytes: the len of the space we consumed or didn't use
6233  *
6234  * This function will release the metadata space that was not used and will
6235  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6236  * list if there are no delalloc bytes left.
6237  * Also it will handle the qgroup reserved space.
6238  */
6239 void btrfs_delalloc_release_space(struct inode *inode,
6240                                   struct extent_changeset *reserved,
6241                                   u64 start, u64 len, bool qgroup_free)
6242 {
6243         btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6244         btrfs_free_reserved_data_space(inode, reserved, start, len);
6245 }
6246
6247 static int update_block_group(struct btrfs_trans_handle *trans,
6248                               u64 bytenr, u64 num_bytes, int alloc)
6249 {
6250         struct btrfs_fs_info *info = trans->fs_info;
6251         struct btrfs_block_group_cache *cache = NULL;
6252         u64 total = num_bytes;
6253         u64 old_val;
6254         u64 byte_in_group;
6255         int factor;
6256         int ret = 0;
6257
6258         /* block accounting for super block */
6259         spin_lock(&info->delalloc_root_lock);
6260         old_val = btrfs_super_bytes_used(info->super_copy);
6261         if (alloc)
6262                 old_val += num_bytes;
6263         else
6264                 old_val -= num_bytes;
6265         btrfs_set_super_bytes_used(info->super_copy, old_val);
6266         spin_unlock(&info->delalloc_root_lock);
6267
6268         while (total) {
6269                 cache = btrfs_lookup_block_group(info, bytenr);
6270                 if (!cache) {
6271                         ret = -ENOENT;
6272                         break;
6273                 }
6274                 factor = btrfs_bg_type_to_factor(cache->flags);
6275
6276                 /*
6277                  * If this block group has free space cache written out, we
6278                  * need to make sure to load it if we are removing space.  This
6279                  * is because we need the unpinning stage to actually add the
6280                  * space back to the block group, otherwise we will leak space.
6281                  */
6282                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6283                         cache_block_group(cache, 1);
6284
6285                 byte_in_group = bytenr - cache->key.objectid;
6286                 WARN_ON(byte_in_group > cache->key.offset);
6287
6288                 spin_lock(&cache->space_info->lock);
6289                 spin_lock(&cache->lock);
6290
6291                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6292                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6293                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6294
6295                 old_val = btrfs_block_group_used(&cache->item);
6296                 num_bytes = min(total, cache->key.offset - byte_in_group);
6297                 if (alloc) {
6298                         old_val += num_bytes;
6299                         btrfs_set_block_group_used(&cache->item, old_val);
6300                         cache->reserved -= num_bytes;
6301                         cache->space_info->bytes_reserved -= num_bytes;
6302                         cache->space_info->bytes_used += num_bytes;
6303                         cache->space_info->disk_used += num_bytes * factor;
6304                         spin_unlock(&cache->lock);
6305                         spin_unlock(&cache->space_info->lock);
6306                 } else {
6307                         old_val -= num_bytes;
6308                         btrfs_set_block_group_used(&cache->item, old_val);
6309                         cache->pinned += num_bytes;
6310                         update_bytes_pinned(cache->space_info, num_bytes);
6311                         cache->space_info->bytes_used -= num_bytes;
6312                         cache->space_info->disk_used -= num_bytes * factor;
6313                         spin_unlock(&cache->lock);
6314                         spin_unlock(&cache->space_info->lock);
6315
6316                         trace_btrfs_space_reservation(info, "pinned",
6317                                                       cache->space_info->flags,
6318                                                       num_bytes, 1);
6319                         percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6320                                            num_bytes,
6321                                            BTRFS_TOTAL_BYTES_PINNED_BATCH);
6322                         set_extent_dirty(info->pinned_extents,
6323                                          bytenr, bytenr + num_bytes - 1,
6324                                          GFP_NOFS | __GFP_NOFAIL);
6325                 }
6326
6327                 spin_lock(&trans->transaction->dirty_bgs_lock);
6328                 if (list_empty(&cache->dirty_list)) {
6329                         list_add_tail(&cache->dirty_list,
6330                                       &trans->transaction->dirty_bgs);
6331                         trans->delayed_ref_updates++;
6332                         btrfs_get_block_group(cache);
6333                 }
6334                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6335
6336                 /*
6337                  * No longer have used bytes in this block group, queue it for
6338                  * deletion. We do this after adding the block group to the
6339                  * dirty list to avoid races between cleaner kthread and space
6340                  * cache writeout.
6341                  */
6342                 if (!alloc && old_val == 0)
6343                         btrfs_mark_bg_unused(cache);
6344
6345                 btrfs_put_block_group(cache);
6346                 total -= num_bytes;
6347                 bytenr += num_bytes;
6348         }
6349
6350         /* Modified block groups are accounted for in the delayed_refs_rsv. */
6351         btrfs_update_delayed_refs_rsv(trans);
6352         return ret;
6353 }
6354
6355 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6356 {
6357         struct btrfs_block_group_cache *cache;
6358         u64 bytenr;
6359
6360         spin_lock(&fs_info->block_group_cache_lock);
6361         bytenr = fs_info->first_logical_byte;
6362         spin_unlock(&fs_info->block_group_cache_lock);
6363
6364         if (bytenr < (u64)-1)
6365                 return bytenr;
6366
6367         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6368         if (!cache)
6369                 return 0;
6370
6371         bytenr = cache->key.objectid;
6372         btrfs_put_block_group(cache);
6373
6374         return bytenr;
6375 }
6376
6377 static int pin_down_extent(struct btrfs_block_group_cache *cache,
6378                            u64 bytenr, u64 num_bytes, int reserved)
6379 {
6380         struct btrfs_fs_info *fs_info = cache->fs_info;
6381
6382         spin_lock(&cache->space_info->lock);
6383         spin_lock(&cache->lock);
6384         cache->pinned += num_bytes;
6385         update_bytes_pinned(cache->space_info, num_bytes);
6386         if (reserved) {
6387                 cache->reserved -= num_bytes;
6388                 cache->space_info->bytes_reserved -= num_bytes;
6389         }
6390         spin_unlock(&cache->lock);
6391         spin_unlock(&cache->space_info->lock);
6392
6393         trace_btrfs_space_reservation(fs_info, "pinned",
6394                                       cache->space_info->flags, num_bytes, 1);
6395         percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6396                     num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6397         set_extent_dirty(fs_info->pinned_extents, bytenr,
6398                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6399         return 0;
6400 }
6401
6402 /*
6403  * this function must be called within transaction
6404  */
6405 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6406                      u64 bytenr, u64 num_bytes, int reserved)
6407 {
6408         struct btrfs_block_group_cache *cache;
6409
6410         cache = btrfs_lookup_block_group(fs_info, bytenr);
6411         BUG_ON(!cache); /* Logic error */
6412
6413         pin_down_extent(cache, bytenr, num_bytes, reserved);
6414
6415         btrfs_put_block_group(cache);
6416         return 0;
6417 }
6418
6419 /*
6420  * this function must be called within transaction
6421  */
6422 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6423                                     u64 bytenr, u64 num_bytes)
6424 {
6425         struct btrfs_block_group_cache *cache;
6426         int ret;
6427
6428         cache = btrfs_lookup_block_group(fs_info, bytenr);
6429         if (!cache)
6430                 return -EINVAL;
6431
6432         /*
6433          * pull in the free space cache (if any) so that our pin
6434          * removes the free space from the cache.  We have load_only set
6435          * to one because the slow code to read in the free extents does check
6436          * the pinned extents.
6437          */
6438         cache_block_group(cache, 1);
6439
6440         pin_down_extent(cache, bytenr, num_bytes, 0);
6441
6442         /* remove us from the free space cache (if we're there at all) */
6443         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6444         btrfs_put_block_group(cache);
6445         return ret;
6446 }
6447
6448 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6449                                    u64 start, u64 num_bytes)
6450 {
6451         int ret;
6452         struct btrfs_block_group_cache *block_group;
6453         struct btrfs_caching_control *caching_ctl;
6454
6455         block_group = btrfs_lookup_block_group(fs_info, start);
6456         if (!block_group)
6457                 return -EINVAL;
6458
6459         cache_block_group(block_group, 0);
6460         caching_ctl = get_caching_control(block_group);
6461
6462         if (!caching_ctl) {
6463                 /* Logic error */
6464                 BUG_ON(!block_group_cache_done(block_group));
6465                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6466         } else {
6467                 mutex_lock(&caching_ctl->mutex);
6468
6469                 if (start >= caching_ctl->progress) {
6470                         ret = add_excluded_extent(fs_info, start, num_bytes);
6471                 } else if (start + num_bytes <= caching_ctl->progress) {
6472                         ret = btrfs_remove_free_space(block_group,
6473                                                       start, num_bytes);
6474                 } else {
6475                         num_bytes = caching_ctl->progress - start;
6476                         ret = btrfs_remove_free_space(block_group,
6477                                                       start, num_bytes);
6478                         if (ret)
6479                                 goto out_lock;
6480
6481                         num_bytes = (start + num_bytes) -
6482                                 caching_ctl->progress;
6483                         start = caching_ctl->progress;
6484                         ret = add_excluded_extent(fs_info, start, num_bytes);
6485                 }
6486 out_lock:
6487                 mutex_unlock(&caching_ctl->mutex);
6488                 put_caching_control(caching_ctl);
6489         }
6490         btrfs_put_block_group(block_group);
6491         return ret;
6492 }
6493
6494 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
6495 {
6496         struct btrfs_fs_info *fs_info = eb->fs_info;
6497         struct btrfs_file_extent_item *item;
6498         struct btrfs_key key;
6499         int found_type;
6500         int i;
6501         int ret = 0;
6502
6503         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6504                 return 0;
6505
6506         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6507                 btrfs_item_key_to_cpu(eb, &key, i);
6508                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6509                         continue;
6510                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6511                 found_type = btrfs_file_extent_type(eb, item);
6512                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6513                         continue;
6514                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6515                         continue;
6516                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6517                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6518                 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6519                 if (ret)
6520                         break;
6521         }
6522
6523         return ret;
6524 }
6525
6526 static void
6527 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6528 {
6529         atomic_inc(&bg->reservations);
6530 }
6531
6532 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6533                                         const u64 start)
6534 {
6535         struct btrfs_block_group_cache *bg;
6536
6537         bg = btrfs_lookup_block_group(fs_info, start);
6538         ASSERT(bg);
6539         if (atomic_dec_and_test(&bg->reservations))
6540                 wake_up_var(&bg->reservations);
6541         btrfs_put_block_group(bg);
6542 }
6543
6544 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6545 {
6546         struct btrfs_space_info *space_info = bg->space_info;
6547
6548         ASSERT(bg->ro);
6549
6550         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6551                 return;
6552
6553         /*
6554          * Our block group is read only but before we set it to read only,
6555          * some task might have had allocated an extent from it already, but it
6556          * has not yet created a respective ordered extent (and added it to a
6557          * root's list of ordered extents).
6558          * Therefore wait for any task currently allocating extents, since the
6559          * block group's reservations counter is incremented while a read lock
6560          * on the groups' semaphore is held and decremented after releasing
6561          * the read access on that semaphore and creating the ordered extent.
6562          */
6563         down_write(&space_info->groups_sem);
6564         up_write(&space_info->groups_sem);
6565
6566         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6567 }
6568
6569 /**
6570  * btrfs_add_reserved_bytes - update the block_group and space info counters
6571  * @cache:      The cache we are manipulating
6572  * @ram_bytes:  The number of bytes of file content, and will be same to
6573  *              @num_bytes except for the compress path.
6574  * @num_bytes:  The number of bytes in question
6575  * @delalloc:   The blocks are allocated for the delalloc write
6576  *
6577  * This is called by the allocator when it reserves space. If this is a
6578  * reservation and the block group has become read only we cannot make the
6579  * reservation and return -EAGAIN, otherwise this function always succeeds.
6580  */
6581 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6582                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6583 {
6584         struct btrfs_space_info *space_info = cache->space_info;
6585         int ret = 0;
6586
6587         spin_lock(&space_info->lock);
6588         spin_lock(&cache->lock);
6589         if (cache->ro) {
6590                 ret = -EAGAIN;
6591         } else {
6592                 cache->reserved += num_bytes;
6593                 space_info->bytes_reserved += num_bytes;
6594                 update_bytes_may_use(space_info, -ram_bytes);
6595                 if (delalloc)
6596                         cache->delalloc_bytes += num_bytes;
6597         }
6598         spin_unlock(&cache->lock);
6599         spin_unlock(&space_info->lock);
6600         return ret;
6601 }
6602
6603 /**
6604  * btrfs_free_reserved_bytes - update the block_group and space info counters
6605  * @cache:      The cache we are manipulating
6606  * @num_bytes:  The number of bytes in question
6607  * @delalloc:   The blocks are allocated for the delalloc write
6608  *
6609  * This is called by somebody who is freeing space that was never actually used
6610  * on disk.  For example if you reserve some space for a new leaf in transaction
6611  * A and before transaction A commits you free that leaf, you call this with
6612  * reserve set to 0 in order to clear the reservation.
6613  */
6614
6615 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6616                                       u64 num_bytes, int delalloc)
6617 {
6618         struct btrfs_space_info *space_info = cache->space_info;
6619
6620         spin_lock(&space_info->lock);
6621         spin_lock(&cache->lock);
6622         if (cache->ro)
6623                 space_info->bytes_readonly += num_bytes;
6624         cache->reserved -= num_bytes;
6625         space_info->bytes_reserved -= num_bytes;
6626         space_info->max_extent_size = 0;
6627
6628         if (delalloc)
6629                 cache->delalloc_bytes -= num_bytes;
6630         spin_unlock(&cache->lock);
6631         spin_unlock(&space_info->lock);
6632 }
6633 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6634 {
6635         struct btrfs_caching_control *next;
6636         struct btrfs_caching_control *caching_ctl;
6637         struct btrfs_block_group_cache *cache;
6638
6639         down_write(&fs_info->commit_root_sem);
6640
6641         list_for_each_entry_safe(caching_ctl, next,
6642                                  &fs_info->caching_block_groups, list) {
6643                 cache = caching_ctl->block_group;
6644                 if (block_group_cache_done(cache)) {
6645                         cache->last_byte_to_unpin = (u64)-1;
6646                         list_del_init(&caching_ctl->list);
6647                         put_caching_control(caching_ctl);
6648                 } else {
6649                         cache->last_byte_to_unpin = caching_ctl->progress;
6650                 }
6651         }
6652
6653         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6654                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6655         else
6656                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6657
6658         up_write(&fs_info->commit_root_sem);
6659
6660         update_global_block_rsv(fs_info);
6661 }
6662
6663 /*
6664  * Returns the free cluster for the given space info and sets empty_cluster to
6665  * what it should be based on the mount options.
6666  */
6667 static struct btrfs_free_cluster *
6668 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6669                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6670 {
6671         struct btrfs_free_cluster *ret = NULL;
6672
6673         *empty_cluster = 0;
6674         if (btrfs_mixed_space_info(space_info))
6675                 return ret;
6676
6677         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6678                 ret = &fs_info->meta_alloc_cluster;
6679                 if (btrfs_test_opt(fs_info, SSD))
6680                         *empty_cluster = SZ_2M;
6681                 else
6682                         *empty_cluster = SZ_64K;
6683         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6684                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6685                 *empty_cluster = SZ_2M;
6686                 ret = &fs_info->data_alloc_cluster;
6687         }
6688
6689         return ret;
6690 }
6691
6692 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6693                               u64 start, u64 end,
6694                               const bool return_free_space)
6695 {
6696         struct btrfs_block_group_cache *cache = NULL;
6697         struct btrfs_space_info *space_info;
6698         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6699         struct btrfs_free_cluster *cluster = NULL;
6700         u64 len;
6701         u64 total_unpinned = 0;
6702         u64 empty_cluster = 0;
6703         bool readonly;
6704
6705         while (start <= end) {
6706                 readonly = false;
6707                 if (!cache ||
6708                     start >= cache->key.objectid + cache->key.offset) {
6709                         if (cache)
6710                                 btrfs_put_block_group(cache);
6711                         total_unpinned = 0;
6712                         cache = btrfs_lookup_block_group(fs_info, start);
6713                         BUG_ON(!cache); /* Logic error */
6714
6715                         cluster = fetch_cluster_info(fs_info,
6716                                                      cache->space_info,
6717                                                      &empty_cluster);
6718                         empty_cluster <<= 1;
6719                 }
6720
6721                 len = cache->key.objectid + cache->key.offset - start;
6722                 len = min(len, end + 1 - start);
6723
6724                 if (start < cache->last_byte_to_unpin) {
6725                         len = min(len, cache->last_byte_to_unpin - start);
6726                         if (return_free_space)
6727                                 btrfs_add_free_space(cache, start, len);
6728                 }
6729
6730                 start += len;
6731                 total_unpinned += len;
6732                 space_info = cache->space_info;
6733
6734                 /*
6735                  * If this space cluster has been marked as fragmented and we've
6736                  * unpinned enough in this block group to potentially allow a
6737                  * cluster to be created inside of it go ahead and clear the
6738                  * fragmented check.
6739                  */
6740                 if (cluster && cluster->fragmented &&
6741                     total_unpinned > empty_cluster) {
6742                         spin_lock(&cluster->lock);
6743                         cluster->fragmented = 0;
6744                         spin_unlock(&cluster->lock);
6745                 }
6746
6747                 spin_lock(&space_info->lock);
6748                 spin_lock(&cache->lock);
6749                 cache->pinned -= len;
6750                 update_bytes_pinned(space_info, -len);
6751
6752                 trace_btrfs_space_reservation(fs_info, "pinned",
6753                                               space_info->flags, len, 0);
6754                 space_info->max_extent_size = 0;
6755                 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6756                             -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6757                 if (cache->ro) {
6758                         space_info->bytes_readonly += len;
6759                         readonly = true;
6760                 }
6761                 spin_unlock(&cache->lock);
6762                 if (!readonly && return_free_space &&
6763                     global_rsv->space_info == space_info) {
6764                         u64 to_add = len;
6765
6766                         spin_lock(&global_rsv->lock);
6767                         if (!global_rsv->full) {
6768                                 to_add = min(len, global_rsv->size -
6769                                              global_rsv->reserved);
6770                                 global_rsv->reserved += to_add;
6771                                 update_bytes_may_use(space_info, to_add);
6772                                 if (global_rsv->reserved >= global_rsv->size)
6773                                         global_rsv->full = 1;
6774                                 trace_btrfs_space_reservation(fs_info,
6775                                                               "space_info",
6776                                                               space_info->flags,
6777                                                               to_add, 1);
6778                                 len -= to_add;
6779                         }
6780                         spin_unlock(&global_rsv->lock);
6781                         /* Add to any tickets we may have */
6782                         if (len)
6783                                 space_info_add_new_bytes(fs_info, space_info,
6784                                                          len);
6785                 }
6786                 spin_unlock(&space_info->lock);
6787         }
6788
6789         if (cache)
6790                 btrfs_put_block_group(cache);
6791         return 0;
6792 }
6793
6794 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6795 {
6796         struct btrfs_fs_info *fs_info = trans->fs_info;
6797         struct btrfs_block_group_cache *block_group, *tmp;
6798         struct list_head *deleted_bgs;
6799         struct extent_io_tree *unpin;
6800         u64 start;
6801         u64 end;
6802         int ret;
6803
6804         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6805                 unpin = &fs_info->freed_extents[1];
6806         else
6807                 unpin = &fs_info->freed_extents[0];
6808
6809         while (!trans->aborted) {
6810                 struct extent_state *cached_state = NULL;
6811
6812                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6813                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6814                                             EXTENT_DIRTY, &cached_state);
6815                 if (ret) {
6816                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6817                         break;
6818                 }
6819
6820                 if (btrfs_test_opt(fs_info, DISCARD))
6821                         ret = btrfs_discard_extent(fs_info, start,
6822                                                    end + 1 - start, NULL);
6823
6824                 clear_extent_dirty(unpin, start, end, &cached_state);
6825                 unpin_extent_range(fs_info, start, end, true);
6826                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6827                 free_extent_state(cached_state);
6828                 cond_resched();
6829         }
6830
6831         /*
6832          * Transaction is finished.  We don't need the lock anymore.  We
6833          * do need to clean up the block groups in case of a transaction
6834          * abort.
6835          */
6836         deleted_bgs = &trans->transaction->deleted_bgs;
6837         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6838                 u64 trimmed = 0;
6839
6840                 ret = -EROFS;
6841                 if (!trans->aborted)
6842                         ret = btrfs_discard_extent(fs_info,
6843                                                    block_group->key.objectid,
6844                                                    block_group->key.offset,
6845                                                    &trimmed);
6846
6847                 list_del_init(&block_group->bg_list);
6848                 btrfs_put_block_group_trimming(block_group);
6849                 btrfs_put_block_group(block_group);
6850
6851                 if (ret) {
6852                         const char *errstr = btrfs_decode_error(ret);
6853                         btrfs_warn(fs_info,
6854                            "discard failed while removing blockgroup: errno=%d %s",
6855                                    ret, errstr);
6856                 }
6857         }
6858
6859         return 0;
6860 }
6861
6862 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6863                                struct btrfs_delayed_ref_node *node, u64 parent,
6864                                u64 root_objectid, u64 owner_objectid,
6865                                u64 owner_offset, int refs_to_drop,
6866                                struct btrfs_delayed_extent_op *extent_op)
6867 {
6868         struct btrfs_fs_info *info = trans->fs_info;
6869         struct btrfs_key key;
6870         struct btrfs_path *path;
6871         struct btrfs_root *extent_root = info->extent_root;
6872         struct extent_buffer *leaf;
6873         struct btrfs_extent_item *ei;
6874         struct btrfs_extent_inline_ref *iref;
6875         int ret;
6876         int is_data;
6877         int extent_slot = 0;
6878         int found_extent = 0;
6879         int num_to_del = 1;
6880         u32 item_size;
6881         u64 refs;
6882         u64 bytenr = node->bytenr;
6883         u64 num_bytes = node->num_bytes;
6884         int last_ref = 0;
6885         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6886
6887         path = btrfs_alloc_path();
6888         if (!path)
6889                 return -ENOMEM;
6890
6891         path->reada = READA_FORWARD;
6892         path->leave_spinning = 1;
6893
6894         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6895         BUG_ON(!is_data && refs_to_drop != 1);
6896
6897         if (is_data)
6898                 skinny_metadata = false;
6899
6900         ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6901                                     parent, root_objectid, owner_objectid,
6902                                     owner_offset);
6903         if (ret == 0) {
6904                 extent_slot = path->slots[0];
6905                 while (extent_slot >= 0) {
6906                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6907                                               extent_slot);
6908                         if (key.objectid != bytenr)
6909                                 break;
6910                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6911                             key.offset == num_bytes) {
6912                                 found_extent = 1;
6913                                 break;
6914                         }
6915                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6916                             key.offset == owner_objectid) {
6917                                 found_extent = 1;
6918                                 break;
6919                         }
6920                         if (path->slots[0] - extent_slot > 5)
6921                                 break;
6922                         extent_slot--;
6923                 }
6924
6925                 if (!found_extent) {
6926                         BUG_ON(iref);
6927                         ret = remove_extent_backref(trans, path, NULL,
6928                                                     refs_to_drop,
6929                                                     is_data, &last_ref);
6930                         if (ret) {
6931                                 btrfs_abort_transaction(trans, ret);
6932                                 goto out;
6933                         }
6934                         btrfs_release_path(path);
6935                         path->leave_spinning = 1;
6936
6937                         key.objectid = bytenr;
6938                         key.type = BTRFS_EXTENT_ITEM_KEY;
6939                         key.offset = num_bytes;
6940
6941                         if (!is_data && skinny_metadata) {
6942                                 key.type = BTRFS_METADATA_ITEM_KEY;
6943                                 key.offset = owner_objectid;
6944                         }
6945
6946                         ret = btrfs_search_slot(trans, extent_root,
6947                                                 &key, path, -1, 1);
6948                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6949                                 /*
6950                                  * Couldn't find our skinny metadata item,
6951                                  * see if we have ye olde extent item.
6952                                  */
6953                                 path->slots[0]--;
6954                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6955                                                       path->slots[0]);
6956                                 if (key.objectid == bytenr &&
6957                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6958                                     key.offset == num_bytes)
6959                                         ret = 0;
6960                         }
6961
6962                         if (ret > 0 && skinny_metadata) {
6963                                 skinny_metadata = false;
6964                                 key.objectid = bytenr;
6965                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6966                                 key.offset = num_bytes;
6967                                 btrfs_release_path(path);
6968                                 ret = btrfs_search_slot(trans, extent_root,
6969                                                         &key, path, -1, 1);
6970                         }
6971
6972                         if (ret) {
6973                                 btrfs_err(info,
6974                                           "umm, got %d back from search, was looking for %llu",
6975                                           ret, bytenr);
6976                                 if (ret > 0)
6977                                         btrfs_print_leaf(path->nodes[0]);
6978                         }
6979                         if (ret < 0) {
6980                                 btrfs_abort_transaction(trans, ret);
6981                                 goto out;
6982                         }
6983                         extent_slot = path->slots[0];
6984                 }
6985         } else if (WARN_ON(ret == -ENOENT)) {
6986                 btrfs_print_leaf(path->nodes[0]);
6987                 btrfs_err(info,
6988                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6989                         bytenr, parent, root_objectid, owner_objectid,
6990                         owner_offset);
6991                 btrfs_abort_transaction(trans, ret);
6992                 goto out;
6993         } else {
6994                 btrfs_abort_transaction(trans, ret);
6995                 goto out;
6996         }
6997
6998         leaf = path->nodes[0];
6999         item_size = btrfs_item_size_nr(leaf, extent_slot);
7000         if (unlikely(item_size < sizeof(*ei))) {
7001                 ret = -EINVAL;
7002                 btrfs_print_v0_err(info);
7003                 btrfs_abort_transaction(trans, ret);
7004                 goto out;
7005         }
7006         ei = btrfs_item_ptr(leaf, extent_slot,
7007                             struct btrfs_extent_item);
7008         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7009             key.type == BTRFS_EXTENT_ITEM_KEY) {
7010                 struct btrfs_tree_block_info *bi;
7011                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7012                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7013                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7014         }
7015
7016         refs = btrfs_extent_refs(leaf, ei);
7017         if (refs < refs_to_drop) {
7018                 btrfs_err(info,
7019                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7020                           refs_to_drop, refs, bytenr);
7021                 ret = -EINVAL;
7022                 btrfs_abort_transaction(trans, ret);
7023                 goto out;
7024         }
7025         refs -= refs_to_drop;
7026
7027         if (refs > 0) {
7028                 if (extent_op)
7029                         __run_delayed_extent_op(extent_op, leaf, ei);
7030                 /*
7031                  * In the case of inline back ref, reference count will
7032                  * be updated by remove_extent_backref
7033                  */
7034                 if (iref) {
7035                         BUG_ON(!found_extent);
7036                 } else {
7037                         btrfs_set_extent_refs(leaf, ei, refs);
7038                         btrfs_mark_buffer_dirty(leaf);
7039                 }
7040                 if (found_extent) {
7041                         ret = remove_extent_backref(trans, path, iref,
7042                                                     refs_to_drop, is_data,
7043                                                     &last_ref);
7044                         if (ret) {
7045                                 btrfs_abort_transaction(trans, ret);
7046                                 goto out;
7047                         }
7048                 }
7049         } else {
7050                 if (found_extent) {
7051                         BUG_ON(is_data && refs_to_drop !=
7052                                extent_data_ref_count(path, iref));
7053                         if (iref) {
7054                                 BUG_ON(path->slots[0] != extent_slot);
7055                         } else {
7056                                 BUG_ON(path->slots[0] != extent_slot + 1);
7057                                 path->slots[0] = extent_slot;
7058                                 num_to_del = 2;
7059                         }
7060                 }
7061
7062                 last_ref = 1;
7063                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7064                                       num_to_del);
7065                 if (ret) {
7066                         btrfs_abort_transaction(trans, ret);
7067                         goto out;
7068                 }
7069                 btrfs_release_path(path);
7070
7071                 if (is_data) {
7072                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7073                         if (ret) {
7074                                 btrfs_abort_transaction(trans, ret);
7075                                 goto out;
7076                         }
7077                 }
7078
7079                 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7080                 if (ret) {
7081                         btrfs_abort_transaction(trans, ret);
7082                         goto out;
7083                 }
7084
7085                 ret = update_block_group(trans, bytenr, num_bytes, 0);
7086                 if (ret) {
7087                         btrfs_abort_transaction(trans, ret);
7088                         goto out;
7089                 }
7090         }
7091         btrfs_release_path(path);
7092
7093 out:
7094         btrfs_free_path(path);
7095         return ret;
7096 }
7097
7098 /*
7099  * when we free an block, it is possible (and likely) that we free the last
7100  * delayed ref for that extent as well.  This searches the delayed ref tree for
7101  * a given extent, and if there are no other delayed refs to be processed, it
7102  * removes it from the tree.
7103  */
7104 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7105                                       u64 bytenr)
7106 {
7107         struct btrfs_delayed_ref_head *head;
7108         struct btrfs_delayed_ref_root *delayed_refs;
7109         int ret = 0;
7110
7111         delayed_refs = &trans->transaction->delayed_refs;
7112         spin_lock(&delayed_refs->lock);
7113         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7114         if (!head)
7115                 goto out_delayed_unlock;
7116
7117         spin_lock(&head->lock);
7118         if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
7119                 goto out;
7120
7121         if (cleanup_extent_op(head) != NULL)
7122                 goto out;
7123
7124         /*
7125          * waiting for the lock here would deadlock.  If someone else has it
7126          * locked they are already in the process of dropping it anyway
7127          */
7128         if (!mutex_trylock(&head->mutex))
7129                 goto out;
7130
7131         btrfs_delete_ref_head(delayed_refs, head);
7132         head->processing = 0;
7133
7134         spin_unlock(&head->lock);
7135         spin_unlock(&delayed_refs->lock);
7136
7137         BUG_ON(head->extent_op);
7138         if (head->must_insert_reserved)
7139                 ret = 1;
7140
7141         btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
7142         mutex_unlock(&head->mutex);
7143         btrfs_put_delayed_ref_head(head);
7144         return ret;
7145 out:
7146         spin_unlock(&head->lock);
7147
7148 out_delayed_unlock:
7149         spin_unlock(&delayed_refs->lock);
7150         return 0;
7151 }
7152
7153 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7154                            struct btrfs_root *root,
7155                            struct extent_buffer *buf,
7156                            u64 parent, int last_ref)
7157 {
7158         struct btrfs_fs_info *fs_info = root->fs_info;
7159         struct btrfs_ref generic_ref = { 0 };
7160         int pin = 1;
7161         int ret;
7162
7163         btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
7164                                buf->start, buf->len, parent);
7165         btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
7166                             root->root_key.objectid);
7167
7168         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7169                 int old_ref_mod, new_ref_mod;
7170
7171                 btrfs_ref_tree_mod(fs_info, &generic_ref);
7172                 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
7173                                                  &old_ref_mod, &new_ref_mod);
7174                 BUG_ON(ret); /* -ENOMEM */
7175                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7176         }
7177
7178         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7179                 struct btrfs_block_group_cache *cache;
7180
7181                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7182                         ret = check_ref_cleanup(trans, buf->start);
7183                         if (!ret)
7184                                 goto out;
7185                 }
7186
7187                 pin = 0;
7188                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7189
7190                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7191                         pin_down_extent(cache, buf->start, buf->len, 1);
7192                         btrfs_put_block_group(cache);
7193                         goto out;
7194                 }
7195
7196                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7197
7198                 btrfs_add_free_space(cache, buf->start, buf->len);
7199                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7200                 btrfs_put_block_group(cache);
7201                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7202         }
7203 out:
7204         if (pin)
7205                 add_pinned_bytes(fs_info, &generic_ref);
7206
7207         if (last_ref) {
7208                 /*
7209                  * Deleting the buffer, clear the corrupt flag since it doesn't
7210                  * matter anymore.
7211                  */
7212                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7213         }
7214 }
7215
7216 /* Can return -ENOMEM */
7217 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
7218 {
7219         struct btrfs_fs_info *fs_info = trans->fs_info;
7220         int old_ref_mod, new_ref_mod;
7221         int ret;
7222
7223         if (btrfs_is_testing(fs_info))
7224                 return 0;
7225
7226         /*
7227          * tree log blocks never actually go into the extent allocation
7228          * tree, just update pinning info and exit early.
7229          */
7230         if ((ref->type == BTRFS_REF_METADATA &&
7231              ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7232             (ref->type == BTRFS_REF_DATA &&
7233              ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
7234                 /* unlocks the pinned mutex */
7235                 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
7236                 old_ref_mod = new_ref_mod = 0;
7237                 ret = 0;
7238         } else if (ref->type == BTRFS_REF_METADATA) {
7239                 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
7240                                                  &old_ref_mod, &new_ref_mod);
7241         } else {
7242                 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
7243                                                  &old_ref_mod, &new_ref_mod);
7244         }
7245
7246         if (!((ref->type == BTRFS_REF_METADATA &&
7247                ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7248               (ref->type == BTRFS_REF_DATA &&
7249                ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
7250                 btrfs_ref_tree_mod(fs_info, ref);
7251
7252         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7253                 add_pinned_bytes(fs_info, ref);
7254
7255         return ret;
7256 }
7257
7258 /*
7259  * when we wait for progress in the block group caching, its because
7260  * our allocation attempt failed at least once.  So, we must sleep
7261  * and let some progress happen before we try again.
7262  *
7263  * This function will sleep at least once waiting for new free space to
7264  * show up, and then it will check the block group free space numbers
7265  * for our min num_bytes.  Another option is to have it go ahead
7266  * and look in the rbtree for a free extent of a given size, but this
7267  * is a good start.
7268  *
7269  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7270  * any of the information in this block group.
7271  */
7272 static noinline void
7273 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7274                                 u64 num_bytes)
7275 {
7276         struct btrfs_caching_control *caching_ctl;
7277
7278         caching_ctl = get_caching_control(cache);
7279         if (!caching_ctl)
7280                 return;
7281
7282         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7283                    (cache->free_space_ctl->free_space >= num_bytes));
7284
7285         put_caching_control(caching_ctl);
7286 }
7287
7288 static noinline int
7289 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7290 {
7291         struct btrfs_caching_control *caching_ctl;
7292         int ret = 0;
7293
7294         caching_ctl = get_caching_control(cache);
7295         if (!caching_ctl)
7296                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7297
7298         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7299         if (cache->cached == BTRFS_CACHE_ERROR)
7300                 ret = -EIO;
7301         put_caching_control(caching_ctl);
7302         return ret;
7303 }
7304
7305 enum btrfs_loop_type {
7306         LOOP_CACHING_NOWAIT = 0,
7307         LOOP_CACHING_WAIT = 1,
7308         LOOP_ALLOC_CHUNK = 2,
7309         LOOP_NO_EMPTY_SIZE = 3,
7310 };
7311
7312 static inline void
7313 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7314                        int delalloc)
7315 {
7316         if (delalloc)
7317                 down_read(&cache->data_rwsem);
7318 }
7319
7320 static inline void
7321 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7322                        int delalloc)
7323 {
7324         btrfs_get_block_group(cache);
7325         if (delalloc)
7326                 down_read(&cache->data_rwsem);
7327 }
7328
7329 static struct btrfs_block_group_cache *
7330 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7331                    struct btrfs_free_cluster *cluster,
7332                    int delalloc)
7333 {
7334         struct btrfs_block_group_cache *used_bg = NULL;
7335
7336         spin_lock(&cluster->refill_lock);
7337         while (1) {
7338                 used_bg = cluster->block_group;
7339                 if (!used_bg)
7340                         return NULL;
7341
7342                 if (used_bg == block_group)
7343                         return used_bg;
7344
7345                 btrfs_get_block_group(used_bg);
7346
7347                 if (!delalloc)
7348                         return used_bg;
7349
7350                 if (down_read_trylock(&used_bg->data_rwsem))
7351                         return used_bg;
7352
7353                 spin_unlock(&cluster->refill_lock);
7354
7355                 /* We should only have one-level nested. */
7356                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7357
7358                 spin_lock(&cluster->refill_lock);
7359                 if (used_bg == cluster->block_group)
7360                         return used_bg;
7361
7362                 up_read(&used_bg->data_rwsem);
7363                 btrfs_put_block_group(used_bg);
7364         }
7365 }
7366
7367 static inline void
7368 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7369                          int delalloc)
7370 {
7371         if (delalloc)
7372                 up_read(&cache->data_rwsem);
7373         btrfs_put_block_group(cache);
7374 }
7375
7376 /*
7377  * Structure used internally for find_free_extent() function.  Wraps needed
7378  * parameters.
7379  */
7380 struct find_free_extent_ctl {
7381         /* Basic allocation info */
7382         u64 ram_bytes;
7383         u64 num_bytes;
7384         u64 empty_size;
7385         u64 flags;
7386         int delalloc;
7387
7388         /* Where to start the search inside the bg */
7389         u64 search_start;
7390
7391         /* For clustered allocation */
7392         u64 empty_cluster;
7393
7394         bool have_caching_bg;
7395         bool orig_have_caching_bg;
7396
7397         /* RAID index, converted from flags */
7398         int index;
7399
7400         /*
7401          * Current loop number, check find_free_extent_update_loop() for details
7402          */
7403         int loop;
7404
7405         /*
7406          * Whether we're refilling a cluster, if true we need to re-search
7407          * current block group but don't try to refill the cluster again.
7408          */
7409         bool retry_clustered;
7410
7411         /*
7412          * Whether we're updating free space cache, if true we need to re-search
7413          * current block group but don't try updating free space cache again.
7414          */
7415         bool retry_unclustered;
7416
7417         /* If current block group is cached */
7418         int cached;
7419
7420         /* Max contiguous hole found */
7421         u64 max_extent_size;
7422
7423         /* Total free space from free space cache, not always contiguous */
7424         u64 total_free_space;
7425
7426         /* Found result */
7427         u64 found_offset;
7428 };
7429
7430
7431 /*
7432  * Helper function for find_free_extent().
7433  *
7434  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7435  * Return -EAGAIN to inform caller that we need to re-search this block group
7436  * Return >0 to inform caller that we find nothing
7437  * Return 0 means we have found a location and set ffe_ctl->found_offset.
7438  */
7439 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7440                 struct btrfs_free_cluster *last_ptr,
7441                 struct find_free_extent_ctl *ffe_ctl,
7442                 struct btrfs_block_group_cache **cluster_bg_ret)
7443 {
7444         struct btrfs_block_group_cache *cluster_bg;
7445         u64 aligned_cluster;
7446         u64 offset;
7447         int ret;
7448
7449         cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7450         if (!cluster_bg)
7451                 goto refill_cluster;
7452         if (cluster_bg != bg && (cluster_bg->ro ||
7453             !block_group_bits(cluster_bg, ffe_ctl->flags)))
7454                 goto release_cluster;
7455
7456         offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7457                         ffe_ctl->num_bytes, cluster_bg->key.objectid,
7458                         &ffe_ctl->max_extent_size);
7459         if (offset) {
7460                 /* We have a block, we're done */
7461                 spin_unlock(&last_ptr->refill_lock);
7462                 trace_btrfs_reserve_extent_cluster(cluster_bg,
7463                                 ffe_ctl->search_start, ffe_ctl->num_bytes);
7464                 *cluster_bg_ret = cluster_bg;
7465                 ffe_ctl->found_offset = offset;
7466                 return 0;
7467         }
7468         WARN_ON(last_ptr->block_group != cluster_bg);
7469
7470 release_cluster:
7471         /*
7472          * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7473          * lets just skip it and let the allocator find whatever block it can
7474          * find. If we reach this point, we will have tried the cluster
7475          * allocator plenty of times and not have found anything, so we are
7476          * likely way too fragmented for the clustering stuff to find anything.
7477          *
7478          * However, if the cluster is taken from the current block group,
7479          * release the cluster first, so that we stand a better chance of
7480          * succeeding in the unclustered allocation.
7481          */
7482         if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7483                 spin_unlock(&last_ptr->refill_lock);
7484                 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7485                 return -ENOENT;
7486         }
7487
7488         /* This cluster didn't work out, free it and start over */
7489         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7490
7491         if (cluster_bg != bg)
7492                 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7493
7494 refill_cluster:
7495         if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7496                 spin_unlock(&last_ptr->refill_lock);
7497                 return -ENOENT;
7498         }
7499
7500         aligned_cluster = max_t(u64,
7501                         ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7502                         bg->full_stripe_len);
7503         ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
7504                         ffe_ctl->num_bytes, aligned_cluster);
7505         if (ret == 0) {
7506                 /* Now pull our allocation out of this cluster */
7507                 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7508                                 ffe_ctl->num_bytes, ffe_ctl->search_start,
7509                                 &ffe_ctl->max_extent_size);
7510                 if (offset) {
7511                         /* We found one, proceed */
7512                         spin_unlock(&last_ptr->refill_lock);
7513                         trace_btrfs_reserve_extent_cluster(bg,
7514                                         ffe_ctl->search_start,
7515                                         ffe_ctl->num_bytes);
7516                         ffe_ctl->found_offset = offset;
7517                         return 0;
7518                 }
7519         } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7520                    !ffe_ctl->retry_clustered) {
7521                 spin_unlock(&last_ptr->refill_lock);
7522
7523                 ffe_ctl->retry_clustered = true;
7524                 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7525                                 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7526                 return -EAGAIN;
7527         }
7528         /*
7529          * At this point we either didn't find a cluster or we weren't able to
7530          * allocate a block from our cluster.  Free the cluster we've been
7531          * trying to use, and go to the next block group.
7532          */
7533         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7534         spin_unlock(&last_ptr->refill_lock);
7535         return 1;
7536 }
7537
7538 /*
7539  * Return >0 to inform caller that we find nothing
7540  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7541  * Return -EAGAIN to inform caller that we need to re-search this block group
7542  */
7543 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7544                 struct btrfs_free_cluster *last_ptr,
7545                 struct find_free_extent_ctl *ffe_ctl)
7546 {
7547         u64 offset;
7548
7549         /*
7550          * We are doing an unclustered allocation, set the fragmented flag so
7551          * we don't bother trying to setup a cluster again until we get more
7552          * space.
7553          */
7554         if (unlikely(last_ptr)) {
7555                 spin_lock(&last_ptr->lock);
7556                 last_ptr->fragmented = 1;
7557                 spin_unlock(&last_ptr->lock);
7558         }
7559         if (ffe_ctl->cached) {
7560                 struct btrfs_free_space_ctl *free_space_ctl;
7561
7562                 free_space_ctl = bg->free_space_ctl;
7563                 spin_lock(&free_space_ctl->tree_lock);
7564                 if (free_space_ctl->free_space <
7565                     ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7566                     ffe_ctl->empty_size) {
7567                         ffe_ctl->total_free_space = max_t(u64,
7568                                         ffe_ctl->total_free_space,
7569                                         free_space_ctl->free_space);
7570                         spin_unlock(&free_space_ctl->tree_lock);
7571                         return 1;
7572                 }
7573                 spin_unlock(&free_space_ctl->tree_lock);
7574         }
7575
7576         offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7577                         ffe_ctl->num_bytes, ffe_ctl->empty_size,
7578                         &ffe_ctl->max_extent_size);
7579
7580         /*
7581          * If we didn't find a chunk, and we haven't failed on this block group
7582          * before, and this block group is in the middle of caching and we are
7583          * ok with waiting, then go ahead and wait for progress to be made, and
7584          * set @retry_unclustered to true.
7585          *
7586          * If @retry_unclustered is true then we've already waited on this
7587          * block group once and should move on to the next block group.
7588          */
7589         if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7590             ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7591                 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7592                                                 ffe_ctl->empty_size);
7593                 ffe_ctl->retry_unclustered = true;
7594                 return -EAGAIN;
7595         } else if (!offset) {
7596                 return 1;
7597         }
7598         ffe_ctl->found_offset = offset;
7599         return 0;
7600 }
7601
7602 /*
7603  * Return >0 means caller needs to re-search for free extent
7604  * Return 0 means we have the needed free extent.
7605  * Return <0 means we failed to locate any free extent.
7606  */
7607 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7608                                         struct btrfs_free_cluster *last_ptr,
7609                                         struct btrfs_key *ins,
7610                                         struct find_free_extent_ctl *ffe_ctl,
7611                                         int full_search, bool use_cluster)
7612 {
7613         struct btrfs_root *root = fs_info->extent_root;
7614         int ret;
7615
7616         if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7617             ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7618                 ffe_ctl->orig_have_caching_bg = true;
7619
7620         if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7621             ffe_ctl->have_caching_bg)
7622                 return 1;
7623
7624         if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7625                 return 1;
7626
7627         if (ins->objectid) {
7628                 if (!use_cluster && last_ptr) {
7629                         spin_lock(&last_ptr->lock);
7630                         last_ptr->window_start = ins->objectid;
7631                         spin_unlock(&last_ptr->lock);
7632                 }
7633                 return 0;
7634         }
7635
7636         /*
7637          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7638          *                      caching kthreads as we move along
7639          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7640          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7641          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7642          *                     again
7643          */
7644         if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7645                 ffe_ctl->index = 0;
7646                 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7647                         /*
7648                          * We want to skip the LOOP_CACHING_WAIT step if we
7649                          * don't have any uncached bgs and we've already done a
7650                          * full search through.
7651                          */
7652                         if (ffe_ctl->orig_have_caching_bg || !full_search)
7653                                 ffe_ctl->loop = LOOP_CACHING_WAIT;
7654                         else
7655                                 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7656                 } else {
7657                         ffe_ctl->loop++;
7658                 }
7659
7660                 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7661                         struct btrfs_trans_handle *trans;
7662                         int exist = 0;
7663
7664                         trans = current->journal_info;
7665                         if (trans)
7666                                 exist = 1;
7667                         else
7668                                 trans = btrfs_join_transaction(root);
7669
7670                         if (IS_ERR(trans)) {
7671                                 ret = PTR_ERR(trans);
7672                                 return ret;
7673                         }
7674
7675                         ret = do_chunk_alloc(trans, ffe_ctl->flags,
7676                                              CHUNK_ALLOC_FORCE);
7677
7678                         /*
7679                          * If we can't allocate a new chunk we've already looped
7680                          * through at least once, move on to the NO_EMPTY_SIZE
7681                          * case.
7682                          */
7683                         if (ret == -ENOSPC)
7684                                 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7685
7686                         /* Do not bail out on ENOSPC since we can do more. */
7687                         if (ret < 0 && ret != -ENOSPC)
7688                                 btrfs_abort_transaction(trans, ret);
7689                         else
7690                                 ret = 0;
7691                         if (!exist)
7692                                 btrfs_end_transaction(trans);
7693                         if (ret)
7694                                 return ret;
7695                 }
7696
7697                 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7698                         /*
7699                          * Don't loop again if we already have no empty_size and
7700                          * no empty_cluster.
7701                          */
7702                         if (ffe_ctl->empty_size == 0 &&
7703                             ffe_ctl->empty_cluster == 0)
7704                                 return -ENOSPC;
7705                         ffe_ctl->empty_size = 0;
7706                         ffe_ctl->empty_cluster = 0;
7707                 }
7708                 return 1;
7709         }
7710         return -ENOSPC;
7711 }
7712
7713 /*
7714  * walks the btree of allocated extents and find a hole of a given size.
7715  * The key ins is changed to record the hole:
7716  * ins->objectid == start position
7717  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7718  * ins->offset == the size of the hole.
7719  * Any available blocks before search_start are skipped.
7720  *
7721  * If there is no suitable free space, we will record the max size of
7722  * the free space extent currently.
7723  *
7724  * The overall logic and call chain:
7725  *
7726  * find_free_extent()
7727  * |- Iterate through all block groups
7728  * |  |- Get a valid block group
7729  * |  |- Try to do clustered allocation in that block group
7730  * |  |- Try to do unclustered allocation in that block group
7731  * |  |- Check if the result is valid
7732  * |  |  |- If valid, then exit
7733  * |  |- Jump to next block group
7734  * |
7735  * |- Push harder to find free extents
7736  *    |- If not found, re-iterate all block groups
7737  */
7738 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7739                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7740                                 u64 hint_byte, struct btrfs_key *ins,
7741                                 u64 flags, int delalloc)
7742 {
7743         int ret = 0;
7744         struct btrfs_free_cluster *last_ptr = NULL;
7745         struct btrfs_block_group_cache *block_group = NULL;
7746         struct find_free_extent_ctl ffe_ctl = {0};
7747         struct btrfs_space_info *space_info;
7748         bool use_cluster = true;
7749         bool full_search = false;
7750
7751         WARN_ON(num_bytes < fs_info->sectorsize);
7752
7753         ffe_ctl.ram_bytes = ram_bytes;
7754         ffe_ctl.num_bytes = num_bytes;
7755         ffe_ctl.empty_size = empty_size;
7756         ffe_ctl.flags = flags;
7757         ffe_ctl.search_start = 0;
7758         ffe_ctl.retry_clustered = false;
7759         ffe_ctl.retry_unclustered = false;
7760         ffe_ctl.delalloc = delalloc;
7761         ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7762         ffe_ctl.have_caching_bg = false;
7763         ffe_ctl.orig_have_caching_bg = false;
7764         ffe_ctl.found_offset = 0;
7765
7766         ins->type = BTRFS_EXTENT_ITEM_KEY;
7767         ins->objectid = 0;
7768         ins->offset = 0;
7769
7770         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7771
7772         space_info = __find_space_info(fs_info, flags);
7773         if (!space_info) {
7774                 btrfs_err(fs_info, "No space info for %llu", flags);
7775                 return -ENOSPC;
7776         }
7777
7778         /*
7779          * If our free space is heavily fragmented we may not be able to make
7780          * big contiguous allocations, so instead of doing the expensive search
7781          * for free space, simply return ENOSPC with our max_extent_size so we
7782          * can go ahead and search for a more manageable chunk.
7783          *
7784          * If our max_extent_size is large enough for our allocation simply
7785          * disable clustering since we will likely not be able to find enough
7786          * space to create a cluster and induce latency trying.
7787          */
7788         if (unlikely(space_info->max_extent_size)) {
7789                 spin_lock(&space_info->lock);
7790                 if (space_info->max_extent_size &&
7791                     num_bytes > space_info->max_extent_size) {
7792                         ins->offset = space_info->max_extent_size;
7793                         spin_unlock(&space_info->lock);
7794                         return -ENOSPC;
7795                 } else if (space_info->max_extent_size) {
7796                         use_cluster = false;
7797                 }
7798                 spin_unlock(&space_info->lock);
7799         }
7800
7801         last_ptr = fetch_cluster_info(fs_info, space_info,
7802                                       &ffe_ctl.empty_cluster);
7803         if (last_ptr) {
7804                 spin_lock(&last_ptr->lock);
7805                 if (last_ptr->block_group)
7806                         hint_byte = last_ptr->window_start;
7807                 if (last_ptr->fragmented) {
7808                         /*
7809                          * We still set window_start so we can keep track of the
7810                          * last place we found an allocation to try and save
7811                          * some time.
7812                          */
7813                         hint_byte = last_ptr->window_start;
7814                         use_cluster = false;
7815                 }
7816                 spin_unlock(&last_ptr->lock);
7817         }
7818
7819         ffe_ctl.search_start = max(ffe_ctl.search_start,
7820                                    first_logical_byte(fs_info, 0));
7821         ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7822         if (ffe_ctl.search_start == hint_byte) {
7823                 block_group = btrfs_lookup_block_group(fs_info,
7824                                                        ffe_ctl.search_start);
7825                 /*
7826                  * we don't want to use the block group if it doesn't match our
7827                  * allocation bits, or if its not cached.
7828                  *
7829                  * However if we are re-searching with an ideal block group
7830                  * picked out then we don't care that the block group is cached.
7831                  */
7832                 if (block_group && block_group_bits(block_group, flags) &&
7833                     block_group->cached != BTRFS_CACHE_NO) {
7834                         down_read(&space_info->groups_sem);
7835                         if (list_empty(&block_group->list) ||
7836                             block_group->ro) {
7837                                 /*
7838                                  * someone is removing this block group,
7839                                  * we can't jump into the have_block_group
7840                                  * target because our list pointers are not
7841                                  * valid
7842                                  */
7843                                 btrfs_put_block_group(block_group);
7844                                 up_read(&space_info->groups_sem);
7845                         } else {
7846                                 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
7847                                                 block_group->flags);
7848                                 btrfs_lock_block_group(block_group, delalloc);
7849                                 goto have_block_group;
7850                         }
7851                 } else if (block_group) {
7852                         btrfs_put_block_group(block_group);
7853                 }
7854         }
7855 search:
7856         ffe_ctl.have_caching_bg = false;
7857         if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7858             ffe_ctl.index == 0)
7859                 full_search = true;
7860         down_read(&space_info->groups_sem);
7861         list_for_each_entry(block_group,
7862                             &space_info->block_groups[ffe_ctl.index], list) {
7863                 /* If the block group is read-only, we can skip it entirely. */
7864                 if (unlikely(block_group->ro))
7865                         continue;
7866
7867                 btrfs_grab_block_group(block_group, delalloc);
7868                 ffe_ctl.search_start = block_group->key.objectid;
7869
7870                 /*
7871                  * this can happen if we end up cycling through all the
7872                  * raid types, but we want to make sure we only allocate
7873                  * for the proper type.
7874                  */
7875                 if (!block_group_bits(block_group, flags)) {
7876                         u64 extra = BTRFS_BLOCK_GROUP_DUP |
7877                                 BTRFS_BLOCK_GROUP_RAID1 |
7878                                 BTRFS_BLOCK_GROUP_RAID5 |
7879                                 BTRFS_BLOCK_GROUP_RAID6 |
7880                                 BTRFS_BLOCK_GROUP_RAID10;
7881
7882                         /*
7883                          * if they asked for extra copies and this block group
7884                          * doesn't provide them, bail.  This does allow us to
7885                          * fill raid0 from raid1.
7886                          */
7887                         if ((flags & extra) && !(block_group->flags & extra))
7888                                 goto loop;
7889                 }
7890
7891 have_block_group:
7892                 ffe_ctl.cached = block_group_cache_done(block_group);
7893                 if (unlikely(!ffe_ctl.cached)) {
7894                         ffe_ctl.have_caching_bg = true;
7895                         ret = cache_block_group(block_group, 0);
7896                         BUG_ON(ret < 0);
7897                         ret = 0;
7898                 }
7899
7900                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7901                         goto loop;
7902
7903                 /*
7904                  * Ok we want to try and use the cluster allocator, so
7905                  * lets look there
7906                  */
7907                 if (last_ptr && use_cluster) {
7908                         struct btrfs_block_group_cache *cluster_bg = NULL;
7909
7910                         ret = find_free_extent_clustered(block_group, last_ptr,
7911                                                          &ffe_ctl, &cluster_bg);
7912
7913                         if (ret == 0) {
7914                                 if (cluster_bg && cluster_bg != block_group) {
7915                                         btrfs_release_block_group(block_group,
7916                                                                   delalloc);
7917                                         block_group = cluster_bg;
7918                                 }
7919                                 goto checks;
7920                         } else if (ret == -EAGAIN) {
7921                                 goto have_block_group;
7922                         } else if (ret > 0) {
7923                                 goto loop;
7924                         }
7925                         /* ret == -ENOENT case falls through */
7926                 }
7927
7928                 ret = find_free_extent_unclustered(block_group, last_ptr,
7929                                                    &ffe_ctl);
7930                 if (ret == -EAGAIN)
7931                         goto have_block_group;
7932                 else if (ret > 0)
7933                         goto loop;
7934                 /* ret == 0 case falls through */
7935 checks:
7936                 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7937                                              fs_info->stripesize);
7938
7939                 /* move on to the next group */
7940                 if (ffe_ctl.search_start + num_bytes >
7941                     block_group->key.objectid + block_group->key.offset) {
7942                         btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7943                                              num_bytes);
7944                         goto loop;
7945                 }
7946
7947                 if (ffe_ctl.found_offset < ffe_ctl.search_start)
7948                         btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7949                                 ffe_ctl.search_start - ffe_ctl.found_offset);
7950
7951                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7952                                 num_bytes, delalloc);
7953                 if (ret == -EAGAIN) {
7954                         btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7955                                              num_bytes);
7956                         goto loop;
7957                 }
7958                 btrfs_inc_block_group_reservations(block_group);
7959
7960                 /* we are all good, lets return */
7961                 ins->objectid = ffe_ctl.search_start;
7962                 ins->offset = num_bytes;
7963
7964                 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7965                                            num_bytes);
7966                 btrfs_release_block_group(block_group, delalloc);
7967                 break;
7968 loop:
7969                 ffe_ctl.retry_clustered = false;
7970                 ffe_ctl.retry_unclustered = false;
7971                 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7972                        ffe_ctl.index);
7973                 btrfs_release_block_group(block_group, delalloc);
7974                 cond_resched();
7975         }
7976         up_read(&space_info->groups_sem);
7977
7978         ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
7979                                            full_search, use_cluster);
7980         if (ret > 0)
7981                 goto search;
7982
7983         if (ret == -ENOSPC) {
7984                 /*
7985                  * Use ffe_ctl->total_free_space as fallback if we can't find
7986                  * any contiguous hole.
7987                  */
7988                 if (!ffe_ctl.max_extent_size)
7989                         ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
7990                 spin_lock(&space_info->lock);
7991                 space_info->max_extent_size = ffe_ctl.max_extent_size;
7992                 spin_unlock(&space_info->lock);
7993                 ins->offset = ffe_ctl.max_extent_size;
7994         }
7995         return ret;
7996 }
7997
7998 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
7999 do {                                                                    \
8000         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
8001         spin_lock(&__rsv->lock);                                        \
8002         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
8003                    __rsv->size, __rsv->reserved);                       \
8004         spin_unlock(&__rsv->lock);                                      \
8005 } while (0)
8006
8007 static void dump_space_info(struct btrfs_fs_info *fs_info,
8008                             struct btrfs_space_info *info, u64 bytes,
8009                             int dump_block_groups)
8010 {
8011         struct btrfs_block_group_cache *cache;
8012         int index = 0;
8013
8014         spin_lock(&info->lock);
8015         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8016                    info->flags,
8017                    info->total_bytes - btrfs_space_info_used(info, true),
8018                    info->full ? "" : "not ");
8019         btrfs_info(fs_info,
8020                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8021                 info->total_bytes, info->bytes_used, info->bytes_pinned,
8022                 info->bytes_reserved, info->bytes_may_use,
8023                 info->bytes_readonly);
8024         spin_unlock(&info->lock);
8025
8026         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8027         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8028         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8029         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8030         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8031
8032         if (!dump_block_groups)
8033                 return;
8034
8035         down_read(&info->groups_sem);
8036 again:
8037         list_for_each_entry(cache, &info->block_groups[index], list) {
8038                 spin_lock(&cache->lock);
8039                 btrfs_info(fs_info,
8040                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8041                         cache->key.objectid, cache->key.offset,
8042                         btrfs_block_group_used(&cache->item), cache->pinned,
8043                         cache->reserved, cache->ro ? "[readonly]" : "");
8044                 btrfs_dump_free_space(cache, bytes);
8045                 spin_unlock(&cache->lock);
8046         }
8047         if (++index < BTRFS_NR_RAID_TYPES)
8048                 goto again;
8049         up_read(&info->groups_sem);
8050 }
8051
8052 /*
8053  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8054  *                        hole that is at least as big as @num_bytes.
8055  *
8056  * @root           -    The root that will contain this extent
8057  *
8058  * @ram_bytes      -    The amount of space in ram that @num_bytes take. This
8059  *                      is used for accounting purposes. This value differs
8060  *                      from @num_bytes only in the case of compressed extents.
8061  *
8062  * @num_bytes      -    Number of bytes to allocate on-disk.
8063  *
8064  * @min_alloc_size -    Indicates the minimum amount of space that the
8065  *                      allocator should try to satisfy. In some cases
8066  *                      @num_bytes may be larger than what is required and if
8067  *                      the filesystem is fragmented then allocation fails.
8068  *                      However, the presence of @min_alloc_size gives a
8069  *                      chance to try and satisfy the smaller allocation.
8070  *
8071  * @empty_size     -    A hint that you plan on doing more COW. This is the
8072  *                      size in bytes the allocator should try to find free
8073  *                      next to the block it returns.  This is just a hint and
8074  *                      may be ignored by the allocator.
8075  *
8076  * @hint_byte      -    Hint to the allocator to start searching above the byte
8077  *                      address passed. It might be ignored.
8078  *
8079  * @ins            -    This key is modified to record the found hole. It will
8080  *                      have the following values:
8081  *                      ins->objectid == start position
8082  *                      ins->flags = BTRFS_EXTENT_ITEM_KEY
8083  *                      ins->offset == the size of the hole.
8084  *
8085  * @is_data        -    Boolean flag indicating whether an extent is
8086  *                      allocated for data (true) or metadata (false)
8087  *
8088  * @delalloc       -    Boolean flag indicating whether this allocation is for
8089  *                      delalloc or not. If 'true' data_rwsem of block groups
8090  *                      is going to be acquired.
8091  *
8092  *
8093  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8094  * case -ENOSPC is returned then @ins->offset will contain the size of the
8095  * largest available hole the allocator managed to find.
8096  */
8097 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8098                          u64 num_bytes, u64 min_alloc_size,
8099                          u64 empty_size, u64 hint_byte,
8100                          struct btrfs_key *ins, int is_data, int delalloc)
8101 {
8102         struct btrfs_fs_info *fs_info = root->fs_info;
8103         bool final_tried = num_bytes == min_alloc_size;
8104         u64 flags;
8105         int ret;
8106
8107         flags = get_alloc_profile_by_root(root, is_data);
8108 again:
8109         WARN_ON(num_bytes < fs_info->sectorsize);
8110         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8111                                hint_byte, ins, flags, delalloc);
8112         if (!ret && !is_data) {
8113                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8114         } else if (ret == -ENOSPC) {
8115                 if (!final_tried && ins->offset) {
8116                         num_bytes = min(num_bytes >> 1, ins->offset);
8117                         num_bytes = round_down(num_bytes,
8118                                                fs_info->sectorsize);
8119                         num_bytes = max(num_bytes, min_alloc_size);
8120                         ram_bytes = num_bytes;
8121                         if (num_bytes == min_alloc_size)
8122                                 final_tried = true;
8123                         goto again;
8124                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8125                         struct btrfs_space_info *sinfo;
8126
8127                         sinfo = __find_space_info(fs_info, flags);
8128                         btrfs_err(fs_info,
8129                                   "allocation failed flags %llu, wanted %llu",
8130                                   flags, num_bytes);
8131                         if (sinfo)
8132                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8133                 }
8134         }
8135
8136         return ret;
8137 }
8138
8139 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8140                                         u64 start, u64 len,
8141                                         int pin, int delalloc)
8142 {
8143         struct btrfs_block_group_cache *cache;
8144         int ret = 0;
8145
8146         cache = btrfs_lookup_block_group(fs_info, start);
8147         if (!cache) {
8148                 btrfs_err(fs_info, "Unable to find block group for %llu",
8149                           start);
8150                 return -ENOSPC;
8151         }
8152
8153         if (pin)
8154                 pin_down_extent(cache, start, len, 1);
8155         else {
8156                 if (btrfs_test_opt(fs_info, DISCARD))
8157                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8158                 btrfs_add_free_space(cache, start, len);
8159                 btrfs_free_reserved_bytes(cache, len, delalloc);
8160                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8161         }
8162
8163         btrfs_put_block_group(cache);
8164         return ret;
8165 }
8166
8167 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8168                                u64 start, u64 len, int delalloc)
8169 {
8170         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8171 }
8172
8173 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8174                                        u64 start, u64 len)
8175 {
8176         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8177 }
8178
8179 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8180                                       u64 parent, u64 root_objectid,
8181                                       u64 flags, u64 owner, u64 offset,
8182                                       struct btrfs_key *ins, int ref_mod)
8183 {
8184         struct btrfs_fs_info *fs_info = trans->fs_info;
8185         int ret;
8186         struct btrfs_extent_item *extent_item;
8187         struct btrfs_extent_inline_ref *iref;
8188         struct btrfs_path *path;
8189         struct extent_buffer *leaf;
8190         int type;
8191         u32 size;
8192
8193         if (parent > 0)
8194                 type = BTRFS_SHARED_DATA_REF_KEY;
8195         else
8196                 type = BTRFS_EXTENT_DATA_REF_KEY;
8197
8198         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8199
8200         path = btrfs_alloc_path();
8201         if (!path)
8202                 return -ENOMEM;
8203
8204         path->leave_spinning = 1;
8205         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8206                                       ins, size);
8207         if (ret) {
8208                 btrfs_free_path(path);
8209                 return ret;
8210         }
8211
8212         leaf = path->nodes[0];
8213         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8214                                      struct btrfs_extent_item);
8215         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8216         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8217         btrfs_set_extent_flags(leaf, extent_item,
8218                                flags | BTRFS_EXTENT_FLAG_DATA);
8219
8220         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8221         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8222         if (parent > 0) {
8223                 struct btrfs_shared_data_ref *ref;
8224                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8225                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8226                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8227         } else {
8228                 struct btrfs_extent_data_ref *ref;
8229                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8230                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8231                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8232                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8233                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8234         }
8235
8236         btrfs_mark_buffer_dirty(path->nodes[0]);
8237         btrfs_free_path(path);
8238
8239         ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8240         if (ret)
8241                 return ret;
8242
8243         ret = update_block_group(trans, ins->objectid, ins->offset, 1);
8244         if (ret) { /* -ENOENT, logic error */
8245                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8246                         ins->objectid, ins->offset);
8247                 BUG();
8248         }
8249         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8250         return ret;
8251 }
8252
8253 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8254                                      struct btrfs_delayed_ref_node *node,
8255                                      struct btrfs_delayed_extent_op *extent_op)
8256 {
8257         struct btrfs_fs_info *fs_info = trans->fs_info;
8258         int ret;
8259         struct btrfs_extent_item *extent_item;
8260         struct btrfs_key extent_key;
8261         struct btrfs_tree_block_info *block_info;
8262         struct btrfs_extent_inline_ref *iref;
8263         struct btrfs_path *path;
8264         struct extent_buffer *leaf;
8265         struct btrfs_delayed_tree_ref *ref;
8266         u32 size = sizeof(*extent_item) + sizeof(*iref);
8267         u64 num_bytes;
8268         u64 flags = extent_op->flags_to_set;
8269         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8270
8271         ref = btrfs_delayed_node_to_tree_ref(node);
8272
8273         extent_key.objectid = node->bytenr;
8274         if (skinny_metadata) {
8275                 extent_key.offset = ref->level;
8276                 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8277                 num_bytes = fs_info->nodesize;
8278         } else {
8279                 extent_key.offset = node->num_bytes;
8280                 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8281                 size += sizeof(*block_info);
8282                 num_bytes = node->num_bytes;
8283         }
8284
8285         path = btrfs_alloc_path();
8286         if (!path)
8287                 return -ENOMEM;
8288
8289         path->leave_spinning = 1;
8290         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8291                                       &extent_key, size);
8292         if (ret) {
8293                 btrfs_free_path(path);
8294                 return ret;
8295         }
8296
8297         leaf = path->nodes[0];
8298         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8299                                      struct btrfs_extent_item);
8300         btrfs_set_extent_refs(leaf, extent_item, 1);
8301         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8302         btrfs_set_extent_flags(leaf, extent_item,
8303                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8304
8305         if (skinny_metadata) {
8306                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8307         } else {
8308                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8309                 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8310                 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8311                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8312         }
8313
8314         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8315                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8316                 btrfs_set_extent_inline_ref_type(leaf, iref,
8317                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8318                 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8319         } else {
8320                 btrfs_set_extent_inline_ref_type(leaf, iref,
8321                                                  BTRFS_TREE_BLOCK_REF_KEY);
8322                 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8323         }
8324
8325         btrfs_mark_buffer_dirty(leaf);
8326         btrfs_free_path(path);
8327
8328         ret = remove_from_free_space_tree(trans, extent_key.objectid,
8329                                           num_bytes);
8330         if (ret)
8331                 return ret;
8332
8333         ret = update_block_group(trans, extent_key.objectid,
8334                                  fs_info->nodesize, 1);
8335         if (ret) { /* -ENOENT, logic error */
8336                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8337                         extent_key.objectid, extent_key.offset);
8338                 BUG();
8339         }
8340
8341         trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8342                                           fs_info->nodesize);
8343         return ret;
8344 }
8345
8346 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8347                                      struct btrfs_root *root, u64 owner,
8348                                      u64 offset, u64 ram_bytes,
8349                                      struct btrfs_key *ins)
8350 {
8351         struct btrfs_ref generic_ref = { 0 };
8352         int ret;
8353
8354         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8355
8356         btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8357                                ins->objectid, ins->offset, 0);
8358         btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
8359         btrfs_ref_tree_mod(root->fs_info, &generic_ref);
8360         ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
8361                                          ram_bytes, NULL, NULL);
8362         return ret;
8363 }
8364
8365 /*
8366  * this is used by the tree logging recovery code.  It records that
8367  * an extent has been allocated and makes sure to clear the free
8368  * space cache bits as well
8369  */
8370 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8371                                    u64 root_objectid, u64 owner, u64 offset,
8372                                    struct btrfs_key *ins)
8373 {
8374         struct btrfs_fs_info *fs_info = trans->fs_info;
8375         int ret;
8376         struct btrfs_block_group_cache *block_group;
8377         struct btrfs_space_info *space_info;
8378
8379         /*
8380          * Mixed block groups will exclude before processing the log so we only
8381          * need to do the exclude dance if this fs isn't mixed.
8382          */
8383         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8384                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8385                                               ins->offset);
8386                 if (ret)
8387                         return ret;
8388         }
8389
8390         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8391         if (!block_group)
8392                 return -EINVAL;
8393
8394         space_info = block_group->space_info;
8395         spin_lock(&space_info->lock);
8396         spin_lock(&block_group->lock);
8397         space_info->bytes_reserved += ins->offset;
8398         block_group->reserved += ins->offset;
8399         spin_unlock(&block_group->lock);
8400         spin_unlock(&space_info->lock);
8401
8402         ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8403                                          offset, ins, 1);
8404         btrfs_put_block_group(block_group);
8405         return ret;
8406 }
8407
8408 static struct extent_buffer *
8409 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8410                       u64 bytenr, int level, u64 owner)
8411 {
8412         struct btrfs_fs_info *fs_info = root->fs_info;
8413         struct extent_buffer *buf;
8414
8415         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8416         if (IS_ERR(buf))
8417                 return buf;
8418
8419         /*
8420          * Extra safety check in case the extent tree is corrupted and extent
8421          * allocator chooses to use a tree block which is already used and
8422          * locked.
8423          */
8424         if (buf->lock_owner == current->pid) {
8425                 btrfs_err_rl(fs_info,
8426 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8427                         buf->start, btrfs_header_owner(buf), current->pid);
8428                 free_extent_buffer(buf);
8429                 return ERR_PTR(-EUCLEAN);
8430         }
8431
8432         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8433         btrfs_tree_lock(buf);
8434         btrfs_clean_tree_block(buf);
8435         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8436
8437         btrfs_set_lock_blocking_write(buf);
8438         set_extent_buffer_uptodate(buf);
8439
8440         memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8441         btrfs_set_header_level(buf, level);
8442         btrfs_set_header_bytenr(buf, buf->start);
8443         btrfs_set_header_generation(buf, trans->transid);
8444         btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8445         btrfs_set_header_owner(buf, owner);
8446         write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
8447         write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8448         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8449                 buf->log_index = root->log_transid % 2;
8450                 /*
8451                  * we allow two log transactions at a time, use different
8452                  * EXTENT bit to differentiate dirty pages.
8453                  */
8454                 if (buf->log_index == 0)
8455                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8456                                         buf->start + buf->len - 1, GFP_NOFS);
8457                 else
8458                         set_extent_new(&root->dirty_log_pages, buf->start,
8459                                         buf->start + buf->len - 1);
8460         } else {
8461                 buf->log_index = -1;
8462                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8463                          buf->start + buf->len - 1, GFP_NOFS);
8464         }
8465         trans->dirty = true;
8466         /* this returns a buffer locked for blocking */
8467         return buf;
8468 }
8469
8470 static struct btrfs_block_rsv *
8471 use_block_rsv(struct btrfs_trans_handle *trans,
8472               struct btrfs_root *root, u32 blocksize)
8473 {
8474         struct btrfs_fs_info *fs_info = root->fs_info;
8475         struct btrfs_block_rsv *block_rsv;
8476         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8477         int ret;
8478         bool global_updated = false;
8479
8480         block_rsv = get_block_rsv(trans, root);
8481
8482         if (unlikely(block_rsv->size == 0))
8483                 goto try_reserve;
8484 again:
8485         ret = block_rsv_use_bytes(block_rsv, blocksize);
8486         if (!ret)
8487                 return block_rsv;
8488
8489         if (block_rsv->failfast)
8490                 return ERR_PTR(ret);
8491
8492         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8493                 global_updated = true;
8494                 update_global_block_rsv(fs_info);
8495                 goto again;
8496         }
8497
8498         /*
8499          * The global reserve still exists to save us from ourselves, so don't
8500          * warn_on if we are short on our delayed refs reserve.
8501          */
8502         if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8503             btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8504                 static DEFINE_RATELIMIT_STATE(_rs,
8505                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8506                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8507                 if (__ratelimit(&_rs))
8508                         WARN(1, KERN_DEBUG
8509                                 "BTRFS: block rsv returned %d\n", ret);
8510         }
8511 try_reserve:
8512         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8513                                      BTRFS_RESERVE_NO_FLUSH);
8514         if (!ret)
8515                 return block_rsv;
8516         /*
8517          * If we couldn't reserve metadata bytes try and use some from
8518          * the global reserve if its space type is the same as the global
8519          * reservation.
8520          */
8521         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8522             block_rsv->space_info == global_rsv->space_info) {
8523                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8524                 if (!ret)
8525                         return global_rsv;
8526         }
8527         return ERR_PTR(ret);
8528 }
8529
8530 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8531                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8532 {
8533         block_rsv_add_bytes(block_rsv, blocksize, false);
8534         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8535 }
8536
8537 /*
8538  * finds a free extent and does all the dirty work required for allocation
8539  * returns the tree buffer or an ERR_PTR on error.
8540  */
8541 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8542                                              struct btrfs_root *root,
8543                                              u64 parent, u64 root_objectid,
8544                                              const struct btrfs_disk_key *key,
8545                                              int level, u64 hint,
8546                                              u64 empty_size)
8547 {
8548         struct btrfs_fs_info *fs_info = root->fs_info;
8549         struct btrfs_key ins;
8550         struct btrfs_block_rsv *block_rsv;
8551         struct extent_buffer *buf;
8552         struct btrfs_delayed_extent_op *extent_op;
8553         struct btrfs_ref generic_ref = { 0 };
8554         u64 flags = 0;
8555         int ret;
8556         u32 blocksize = fs_info->nodesize;
8557         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8558
8559 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8560         if (btrfs_is_testing(fs_info)) {
8561                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8562                                             level, root_objectid);
8563                 if (!IS_ERR(buf))
8564                         root->alloc_bytenr += blocksize;
8565                 return buf;
8566         }
8567 #endif
8568
8569         block_rsv = use_block_rsv(trans, root, blocksize);
8570         if (IS_ERR(block_rsv))
8571                 return ERR_CAST(block_rsv);
8572
8573         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8574                                    empty_size, hint, &ins, 0, 0);
8575         if (ret)
8576                 goto out_unuse;
8577
8578         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8579                                     root_objectid);
8580         if (IS_ERR(buf)) {
8581                 ret = PTR_ERR(buf);
8582                 goto out_free_reserved;
8583         }
8584
8585         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8586                 if (parent == 0)
8587                         parent = ins.objectid;
8588                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8589         } else
8590                 BUG_ON(parent > 0);
8591
8592         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8593                 extent_op = btrfs_alloc_delayed_extent_op();
8594                 if (!extent_op) {
8595                         ret = -ENOMEM;
8596                         goto out_free_buf;
8597                 }
8598                 if (key)
8599                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8600                 else
8601                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8602                 extent_op->flags_to_set = flags;
8603                 extent_op->update_key = skinny_metadata ? false : true;
8604                 extent_op->update_flags = true;
8605                 extent_op->is_data = false;
8606                 extent_op->level = level;
8607
8608                 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8609                                        ins.objectid, ins.offset, parent);
8610                 generic_ref.real_root = root->root_key.objectid;
8611                 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
8612                 btrfs_ref_tree_mod(fs_info, &generic_ref);
8613                 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
8614                                                  extent_op, NULL, NULL);
8615                 if (ret)
8616                         goto out_free_delayed;
8617         }
8618         return buf;
8619
8620 out_free_delayed:
8621         btrfs_free_delayed_extent_op(extent_op);
8622 out_free_buf:
8623         free_extent_buffer(buf);
8624 out_free_reserved:
8625         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8626 out_unuse:
8627         unuse_block_rsv(fs_info, block_rsv, blocksize);
8628         return ERR_PTR(ret);
8629 }
8630
8631 struct walk_control {
8632         u64 refs[BTRFS_MAX_LEVEL];
8633         u64 flags[BTRFS_MAX_LEVEL];
8634         struct btrfs_key update_progress;
8635         struct btrfs_key drop_progress;
8636         int drop_level;
8637         int stage;
8638         int level;
8639         int shared_level;
8640         int update_ref;
8641         int keep_locks;
8642         int reada_slot;
8643         int reada_count;
8644         int restarted;
8645 };
8646
8647 #define DROP_REFERENCE  1
8648 #define UPDATE_BACKREF  2
8649
8650 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8651                                      struct btrfs_root *root,
8652                                      struct walk_control *wc,
8653                                      struct btrfs_path *path)
8654 {
8655         struct btrfs_fs_info *fs_info = root->fs_info;
8656         u64 bytenr;
8657         u64 generation;
8658         u64 refs;
8659         u64 flags;
8660         u32 nritems;
8661         struct btrfs_key key;
8662         struct extent_buffer *eb;
8663         int ret;
8664         int slot;
8665         int nread = 0;
8666
8667         if (path->slots[wc->level] < wc->reada_slot) {
8668                 wc->reada_count = wc->reada_count * 2 / 3;
8669                 wc->reada_count = max(wc->reada_count, 2);
8670         } else {
8671                 wc->reada_count = wc->reada_count * 3 / 2;
8672                 wc->reada_count = min_t(int, wc->reada_count,
8673                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8674         }
8675
8676         eb = path->nodes[wc->level];
8677         nritems = btrfs_header_nritems(eb);
8678
8679         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8680                 if (nread >= wc->reada_count)
8681                         break;
8682
8683                 cond_resched();
8684                 bytenr = btrfs_node_blockptr(eb, slot);
8685                 generation = btrfs_node_ptr_generation(eb, slot);
8686
8687                 if (slot == path->slots[wc->level])
8688                         goto reada;
8689
8690                 if (wc->stage == UPDATE_BACKREF &&
8691                     generation <= root->root_key.offset)
8692                         continue;
8693
8694                 /* We don't lock the tree block, it's OK to be racy here */
8695                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8696                                                wc->level - 1, 1, &refs,
8697                                                &flags);
8698                 /* We don't care about errors in readahead. */
8699                 if (ret < 0)
8700                         continue;
8701                 BUG_ON(refs == 0);
8702
8703                 if (wc->stage == DROP_REFERENCE) {
8704                         if (refs == 1)
8705                                 goto reada;
8706
8707                         if (wc->level == 1 &&
8708                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8709                                 continue;
8710                         if (!wc->update_ref ||
8711                             generation <= root->root_key.offset)
8712                                 continue;
8713                         btrfs_node_key_to_cpu(eb, &key, slot);
8714                         ret = btrfs_comp_cpu_keys(&key,
8715                                                   &wc->update_progress);
8716                         if (ret < 0)
8717                                 continue;
8718                 } else {
8719                         if (wc->level == 1 &&
8720                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8721                                 continue;
8722                 }
8723 reada:
8724                 readahead_tree_block(fs_info, bytenr);
8725                 nread++;
8726         }
8727         wc->reada_slot = slot;
8728 }
8729
8730 /*
8731  * helper to process tree block while walking down the tree.
8732  *
8733  * when wc->stage == UPDATE_BACKREF, this function updates
8734  * back refs for pointers in the block.
8735  *
8736  * NOTE: return value 1 means we should stop walking down.
8737  */
8738 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8739                                    struct btrfs_root *root,
8740                                    struct btrfs_path *path,
8741                                    struct walk_control *wc, int lookup_info)
8742 {
8743         struct btrfs_fs_info *fs_info = root->fs_info;
8744         int level = wc->level;
8745         struct extent_buffer *eb = path->nodes[level];
8746         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8747         int ret;
8748
8749         if (wc->stage == UPDATE_BACKREF &&
8750             btrfs_header_owner(eb) != root->root_key.objectid)
8751                 return 1;
8752
8753         /*
8754          * when reference count of tree block is 1, it won't increase
8755          * again. once full backref flag is set, we never clear it.
8756          */
8757         if (lookup_info &&
8758             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8759              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8760                 BUG_ON(!path->locks[level]);
8761                 ret = btrfs_lookup_extent_info(trans, fs_info,
8762                                                eb->start, level, 1,
8763                                                &wc->refs[level],
8764                                                &wc->flags[level]);
8765                 BUG_ON(ret == -ENOMEM);
8766                 if (ret)
8767                         return ret;
8768                 BUG_ON(wc->refs[level] == 0);
8769         }
8770
8771         if (wc->stage == DROP_REFERENCE) {
8772                 if (wc->refs[level] > 1)
8773                         return 1;
8774
8775                 if (path->locks[level] && !wc->keep_locks) {
8776                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8777                         path->locks[level] = 0;
8778                 }
8779                 return 0;
8780         }
8781
8782         /* wc->stage == UPDATE_BACKREF */
8783         if (!(wc->flags[level] & flag)) {
8784                 BUG_ON(!path->locks[level]);
8785                 ret = btrfs_inc_ref(trans, root, eb, 1);
8786                 BUG_ON(ret); /* -ENOMEM */
8787                 ret = btrfs_dec_ref(trans, root, eb, 0);
8788                 BUG_ON(ret); /* -ENOMEM */
8789                 ret = btrfs_set_disk_extent_flags(trans, eb->start,
8790                                                   eb->len, flag,
8791                                                   btrfs_header_level(eb), 0);
8792                 BUG_ON(ret); /* -ENOMEM */
8793                 wc->flags[level] |= flag;
8794         }
8795
8796         /*
8797          * the block is shared by multiple trees, so it's not good to
8798          * keep the tree lock
8799          */
8800         if (path->locks[level] && level > 0) {
8801                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8802                 path->locks[level] = 0;
8803         }
8804         return 0;
8805 }
8806
8807 /*
8808  * This is used to verify a ref exists for this root to deal with a bug where we
8809  * would have a drop_progress key that hadn't been updated properly.
8810  */
8811 static int check_ref_exists(struct btrfs_trans_handle *trans,
8812                             struct btrfs_root *root, u64 bytenr, u64 parent,
8813                             int level)
8814 {
8815         struct btrfs_path *path;
8816         struct btrfs_extent_inline_ref *iref;
8817         int ret;
8818
8819         path = btrfs_alloc_path();
8820         if (!path)
8821                 return -ENOMEM;
8822
8823         ret = lookup_extent_backref(trans, path, &iref, bytenr,
8824                                     root->fs_info->nodesize, parent,
8825                                     root->root_key.objectid, level, 0);
8826         btrfs_free_path(path);
8827         if (ret == -ENOENT)
8828                 return 0;
8829         if (ret < 0)
8830                 return ret;
8831         return 1;
8832 }
8833
8834 /*
8835  * helper to process tree block pointer.
8836  *
8837  * when wc->stage == DROP_REFERENCE, this function checks
8838  * reference count of the block pointed to. if the block
8839  * is shared and we need update back refs for the subtree
8840  * rooted at the block, this function changes wc->stage to
8841  * UPDATE_BACKREF. if the block is shared and there is no
8842  * need to update back, this function drops the reference
8843  * to the block.
8844  *
8845  * NOTE: return value 1 means we should stop walking down.
8846  */
8847 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8848                                  struct btrfs_root *root,
8849                                  struct btrfs_path *path,
8850                                  struct walk_control *wc, int *lookup_info)
8851 {
8852         struct btrfs_fs_info *fs_info = root->fs_info;
8853         u64 bytenr;
8854         u64 generation;
8855         u64 parent;
8856         struct btrfs_key key;
8857         struct btrfs_key first_key;
8858         struct btrfs_ref ref = { 0 };
8859         struct extent_buffer *next;
8860         int level = wc->level;
8861         int reada = 0;
8862         int ret = 0;
8863         bool need_account = false;
8864
8865         generation = btrfs_node_ptr_generation(path->nodes[level],
8866                                                path->slots[level]);
8867         /*
8868          * if the lower level block was created before the snapshot
8869          * was created, we know there is no need to update back refs
8870          * for the subtree
8871          */
8872         if (wc->stage == UPDATE_BACKREF &&
8873             generation <= root->root_key.offset) {
8874                 *lookup_info = 1;
8875                 return 1;
8876         }
8877
8878         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8879         btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8880                               path->slots[level]);
8881
8882         next = find_extent_buffer(fs_info, bytenr);
8883         if (!next) {
8884                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8885                 if (IS_ERR(next))
8886                         return PTR_ERR(next);
8887
8888                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8889                                                level - 1);
8890                 reada = 1;
8891         }
8892         btrfs_tree_lock(next);
8893         btrfs_set_lock_blocking_write(next);
8894
8895         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8896                                        &wc->refs[level - 1],
8897                                        &wc->flags[level - 1]);
8898         if (ret < 0)
8899                 goto out_unlock;
8900
8901         if (unlikely(wc->refs[level - 1] == 0)) {
8902                 btrfs_err(fs_info, "Missing references.");
8903                 ret = -EIO;
8904                 goto out_unlock;
8905         }
8906         *lookup_info = 0;
8907
8908         if (wc->stage == DROP_REFERENCE) {
8909                 if (wc->refs[level - 1] > 1) {
8910                         need_account = true;
8911                         if (level == 1 &&
8912                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8913                                 goto skip;
8914
8915                         if (!wc->update_ref ||
8916                             generation <= root->root_key.offset)
8917                                 goto skip;
8918
8919                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8920                                               path->slots[level]);
8921                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8922                         if (ret < 0)
8923                                 goto skip;
8924
8925                         wc->stage = UPDATE_BACKREF;
8926                         wc->shared_level = level - 1;
8927                 }
8928         } else {
8929                 if (level == 1 &&
8930                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8931                         goto skip;
8932         }
8933
8934         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8935                 btrfs_tree_unlock(next);
8936                 free_extent_buffer(next);
8937                 next = NULL;
8938                 *lookup_info = 1;
8939         }
8940
8941         if (!next) {
8942                 if (reada && level == 1)
8943                         reada_walk_down(trans, root, wc, path);
8944                 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8945                                        &first_key);
8946                 if (IS_ERR(next)) {
8947                         return PTR_ERR(next);
8948                 } else if (!extent_buffer_uptodate(next)) {
8949                         free_extent_buffer(next);
8950                         return -EIO;
8951                 }
8952                 btrfs_tree_lock(next);
8953                 btrfs_set_lock_blocking_write(next);
8954         }
8955
8956         level--;
8957         ASSERT(level == btrfs_header_level(next));
8958         if (level != btrfs_header_level(next)) {
8959                 btrfs_err(root->fs_info, "mismatched level");
8960                 ret = -EIO;
8961                 goto out_unlock;
8962         }
8963         path->nodes[level] = next;
8964         path->slots[level] = 0;
8965         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8966         wc->level = level;
8967         if (wc->level == 1)
8968                 wc->reada_slot = 0;
8969         return 0;
8970 skip:
8971         wc->refs[level - 1] = 0;
8972         wc->flags[level - 1] = 0;
8973         if (wc->stage == DROP_REFERENCE) {
8974                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8975                         parent = path->nodes[level]->start;
8976                 } else {
8977                         ASSERT(root->root_key.objectid ==
8978                                btrfs_header_owner(path->nodes[level]));
8979                         if (root->root_key.objectid !=
8980                             btrfs_header_owner(path->nodes[level])) {
8981                                 btrfs_err(root->fs_info,
8982                                                 "mismatched block owner");
8983                                 ret = -EIO;
8984                                 goto out_unlock;
8985                         }
8986                         parent = 0;
8987                 }
8988
8989                 /*
8990                  * If we had a drop_progress we need to verify the refs are set
8991                  * as expected.  If we find our ref then we know that from here
8992                  * on out everything should be correct, and we can clear the
8993                  * ->restarted flag.
8994                  */
8995                 if (wc->restarted) {
8996                         ret = check_ref_exists(trans, root, bytenr, parent,
8997                                                level - 1);
8998                         if (ret < 0)
8999                                 goto out_unlock;
9000                         if (ret == 0)
9001                                 goto no_delete;
9002                         ret = 0;
9003                         wc->restarted = 0;
9004                 }
9005
9006                 /*
9007                  * Reloc tree doesn't contribute to qgroup numbers, and we have
9008                  * already accounted them at merge time (replace_path),
9009                  * thus we could skip expensive subtree trace here.
9010                  */
9011                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9012                     need_account) {
9013                         ret = btrfs_qgroup_trace_subtree(trans, next,
9014                                                          generation, level - 1);
9015                         if (ret) {
9016                                 btrfs_err_rl(fs_info,
9017                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9018                                              ret);
9019                         }
9020                 }
9021
9022                 /*
9023                  * We need to update the next key in our walk control so we can
9024                  * update the drop_progress key accordingly.  We don't care if
9025                  * find_next_key doesn't find a key because that means we're at
9026                  * the end and are going to clean up now.
9027                  */
9028                 wc->drop_level = level;
9029                 find_next_key(path, level, &wc->drop_progress);
9030
9031                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
9032                                        fs_info->nodesize, parent);
9033                 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
9034                 ret = btrfs_free_extent(trans, &ref);
9035                 if (ret)
9036                         goto out_unlock;
9037         }
9038 no_delete:
9039         *lookup_info = 1;
9040         ret = 1;
9041
9042 out_unlock:
9043         btrfs_tree_unlock(next);
9044         free_extent_buffer(next);
9045
9046         return ret;
9047 }
9048
9049 /*
9050  * helper to process tree block while walking up the tree.
9051  *
9052  * when wc->stage == DROP_REFERENCE, this function drops
9053  * reference count on the block.
9054  *
9055  * when wc->stage == UPDATE_BACKREF, this function changes
9056  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9057  * to UPDATE_BACKREF previously while processing the block.
9058  *
9059  * NOTE: return value 1 means we should stop walking up.
9060  */
9061 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9062                                  struct btrfs_root *root,
9063                                  struct btrfs_path *path,
9064                                  struct walk_control *wc)
9065 {
9066         struct btrfs_fs_info *fs_info = root->fs_info;
9067         int ret;
9068         int level = wc->level;
9069         struct extent_buffer *eb = path->nodes[level];
9070         u64 parent = 0;
9071
9072         if (wc->stage == UPDATE_BACKREF) {
9073                 BUG_ON(wc->shared_level < level);
9074                 if (level < wc->shared_level)
9075                         goto out;
9076
9077                 ret = find_next_key(path, level + 1, &wc->update_progress);
9078                 if (ret > 0)
9079                         wc->update_ref = 0;
9080
9081                 wc->stage = DROP_REFERENCE;
9082                 wc->shared_level = -1;
9083                 path->slots[level] = 0;
9084
9085                 /*
9086                  * check reference count again if the block isn't locked.
9087                  * we should start walking down the tree again if reference
9088                  * count is one.
9089                  */
9090                 if (!path->locks[level]) {
9091                         BUG_ON(level == 0);
9092                         btrfs_tree_lock(eb);
9093                         btrfs_set_lock_blocking_write(eb);
9094                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9095
9096                         ret = btrfs_lookup_extent_info(trans, fs_info,
9097                                                        eb->start, level, 1,
9098                                                        &wc->refs[level],
9099                                                        &wc->flags[level]);
9100                         if (ret < 0) {
9101                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
9102                                 path->locks[level] = 0;
9103                                 return ret;
9104                         }
9105                         BUG_ON(wc->refs[level] == 0);
9106                         if (wc->refs[level] == 1) {
9107                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
9108                                 path->locks[level] = 0;
9109                                 return 1;
9110                         }
9111                 }
9112         }
9113
9114         /* wc->stage == DROP_REFERENCE */
9115         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9116
9117         if (wc->refs[level] == 1) {
9118                 if (level == 0) {
9119                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9120                                 ret = btrfs_dec_ref(trans, root, eb, 1);
9121                         else
9122                                 ret = btrfs_dec_ref(trans, root, eb, 0);
9123                         BUG_ON(ret); /* -ENOMEM */
9124                         if (is_fstree(root->root_key.objectid)) {
9125                                 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9126                                 if (ret) {
9127                                         btrfs_err_rl(fs_info,
9128         "error %d accounting leaf items, quota is out of sync, rescan required",
9129                                              ret);
9130                                 }
9131                         }
9132                 }
9133                 /* make block locked assertion in btrfs_clean_tree_block happy */
9134                 if (!path->locks[level] &&
9135                     btrfs_header_generation(eb) == trans->transid) {
9136                         btrfs_tree_lock(eb);
9137                         btrfs_set_lock_blocking_write(eb);
9138                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9139                 }
9140                 btrfs_clean_tree_block(eb);
9141         }
9142
9143         if (eb == root->node) {
9144                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9145                         parent = eb->start;
9146                 else if (root->root_key.objectid != btrfs_header_owner(eb))
9147                         goto owner_mismatch;
9148         } else {
9149                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9150                         parent = path->nodes[level + 1]->start;
9151                 else if (root->root_key.objectid !=
9152                          btrfs_header_owner(path->nodes[level + 1]))
9153                         goto owner_mismatch;
9154         }
9155
9156         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9157 out:
9158         wc->refs[level] = 0;
9159         wc->flags[level] = 0;
9160         return 0;
9161
9162 owner_mismatch:
9163         btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9164                      btrfs_header_owner(eb), root->root_key.objectid);
9165         return -EUCLEAN;
9166 }
9167
9168 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9169                                    struct btrfs_root *root,
9170                                    struct btrfs_path *path,
9171                                    struct walk_control *wc)
9172 {
9173         int level = wc->level;
9174         int lookup_info = 1;
9175         int ret;
9176
9177         while (level >= 0) {
9178                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9179                 if (ret > 0)
9180                         break;
9181
9182                 if (level == 0)
9183                         break;
9184
9185                 if (path->slots[level] >=
9186                     btrfs_header_nritems(path->nodes[level]))
9187                         break;
9188
9189                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9190                 if (ret > 0) {
9191                         path->slots[level]++;
9192                         continue;
9193                 } else if (ret < 0)
9194                         return ret;
9195                 level = wc->level;
9196         }
9197         return 0;
9198 }
9199
9200 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9201                                  struct btrfs_root *root,
9202                                  struct btrfs_path *path,
9203                                  struct walk_control *wc, int max_level)
9204 {
9205         int level = wc->level;
9206         int ret;
9207
9208         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9209         while (level < max_level && path->nodes[level]) {
9210                 wc->level = level;
9211                 if (path->slots[level] + 1 <
9212                     btrfs_header_nritems(path->nodes[level])) {
9213                         path->slots[level]++;
9214                         return 0;
9215                 } else {
9216                         ret = walk_up_proc(trans, root, path, wc);
9217                         if (ret > 0)
9218                                 return 0;
9219                         if (ret < 0)
9220                                 return ret;
9221
9222                         if (path->locks[level]) {
9223                                 btrfs_tree_unlock_rw(path->nodes[level],
9224                                                      path->locks[level]);
9225                                 path->locks[level] = 0;
9226                         }
9227                         free_extent_buffer(path->nodes[level]);
9228                         path->nodes[level] = NULL;
9229                         level++;
9230                 }
9231         }
9232         return 1;
9233 }
9234
9235 /*
9236  * drop a subvolume tree.
9237  *
9238  * this function traverses the tree freeing any blocks that only
9239  * referenced by the tree.
9240  *
9241  * when a shared tree block is found. this function decreases its
9242  * reference count by one. if update_ref is true, this function
9243  * also make sure backrefs for the shared block and all lower level
9244  * blocks are properly updated.
9245  *
9246  * If called with for_reloc == 0, may exit early with -EAGAIN
9247  */
9248 int btrfs_drop_snapshot(struct btrfs_root *root,
9249                          struct btrfs_block_rsv *block_rsv, int update_ref,
9250                          int for_reloc)
9251 {
9252         struct btrfs_fs_info *fs_info = root->fs_info;
9253         struct btrfs_path *path;
9254         struct btrfs_trans_handle *trans;
9255         struct btrfs_root *tree_root = fs_info->tree_root;
9256         struct btrfs_root_item *root_item = &root->root_item;
9257         struct walk_control *wc;
9258         struct btrfs_key key;
9259         int err = 0;
9260         int ret;
9261         int level;
9262         bool root_dropped = false;
9263
9264         btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
9265
9266         path = btrfs_alloc_path();
9267         if (!path) {
9268                 err = -ENOMEM;
9269                 goto out;
9270         }
9271
9272         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9273         if (!wc) {
9274                 btrfs_free_path(path);
9275                 err = -ENOMEM;
9276                 goto out;
9277         }
9278
9279         trans = btrfs_start_transaction(tree_root, 0);
9280         if (IS_ERR(trans)) {
9281                 err = PTR_ERR(trans);
9282                 goto out_free;
9283         }
9284
9285         err = btrfs_run_delayed_items(trans);
9286         if (err)
9287                 goto out_end_trans;
9288
9289         if (block_rsv)
9290                 trans->block_rsv = block_rsv;
9291
9292         /*
9293          * This will help us catch people modifying the fs tree while we're
9294          * dropping it.  It is unsafe to mess with the fs tree while it's being
9295          * dropped as we unlock the root node and parent nodes as we walk down
9296          * the tree, assuming nothing will change.  If something does change
9297          * then we'll have stale information and drop references to blocks we've
9298          * already dropped.
9299          */
9300         set_bit(BTRFS_ROOT_DELETING, &root->state);
9301         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9302                 level = btrfs_header_level(root->node);
9303                 path->nodes[level] = btrfs_lock_root_node(root);
9304                 btrfs_set_lock_blocking_write(path->nodes[level]);
9305                 path->slots[level] = 0;
9306                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9307                 memset(&wc->update_progress, 0,
9308                        sizeof(wc->update_progress));
9309         } else {
9310                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9311                 memcpy(&wc->update_progress, &key,
9312                        sizeof(wc->update_progress));
9313
9314                 level = root_item->drop_level;
9315                 BUG_ON(level == 0);
9316                 path->lowest_level = level;
9317                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9318                 path->lowest_level = 0;
9319                 if (ret < 0) {
9320                         err = ret;
9321                         goto out_end_trans;
9322                 }
9323                 WARN_ON(ret > 0);
9324
9325                 /*
9326                  * unlock our path, this is safe because only this
9327                  * function is allowed to delete this snapshot
9328                  */
9329                 btrfs_unlock_up_safe(path, 0);
9330
9331                 level = btrfs_header_level(root->node);
9332                 while (1) {
9333                         btrfs_tree_lock(path->nodes[level]);
9334                         btrfs_set_lock_blocking_write(path->nodes[level]);
9335                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9336
9337                         ret = btrfs_lookup_extent_info(trans, fs_info,
9338                                                 path->nodes[level]->start,
9339                                                 level, 1, &wc->refs[level],
9340                                                 &wc->flags[level]);
9341                         if (ret < 0) {
9342                                 err = ret;
9343                                 goto out_end_trans;
9344                         }
9345                         BUG_ON(wc->refs[level] == 0);
9346
9347                         if (level == root_item->drop_level)
9348                                 break;
9349
9350                         btrfs_tree_unlock(path->nodes[level]);
9351                         path->locks[level] = 0;
9352                         WARN_ON(wc->refs[level] != 1);
9353                         level--;
9354                 }
9355         }
9356
9357         wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
9358         wc->level = level;
9359         wc->shared_level = -1;
9360         wc->stage = DROP_REFERENCE;
9361         wc->update_ref = update_ref;
9362         wc->keep_locks = 0;
9363         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9364
9365         while (1) {
9366
9367                 ret = walk_down_tree(trans, root, path, wc);
9368                 if (ret < 0) {
9369                         err = ret;
9370                         break;
9371                 }
9372
9373                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9374                 if (ret < 0) {
9375                         err = ret;
9376                         break;
9377                 }
9378
9379                 if (ret > 0) {
9380                         BUG_ON(wc->stage != DROP_REFERENCE);
9381                         break;
9382                 }
9383
9384                 if (wc->stage == DROP_REFERENCE) {
9385                         wc->drop_level = wc->level;
9386                         btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9387                                               &wc->drop_progress,
9388                                               path->slots[wc->drop_level]);
9389                 }
9390                 btrfs_cpu_key_to_disk(&root_item->drop_progress,
9391                                       &wc->drop_progress);
9392                 root_item->drop_level = wc->drop_level;
9393
9394                 BUG_ON(wc->level == 0);
9395                 if (btrfs_should_end_transaction(trans) ||
9396                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9397                         ret = btrfs_update_root(trans, tree_root,
9398                                                 &root->root_key,
9399                                                 root_item);
9400                         if (ret) {
9401                                 btrfs_abort_transaction(trans, ret);
9402                                 err = ret;
9403                                 goto out_end_trans;
9404                         }
9405
9406                         btrfs_end_transaction_throttle(trans);
9407                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9408                                 btrfs_debug(fs_info,
9409                                             "drop snapshot early exit");
9410                                 err = -EAGAIN;
9411                                 goto out_free;
9412                         }
9413
9414                         trans = btrfs_start_transaction(tree_root, 0);
9415                         if (IS_ERR(trans)) {
9416                                 err = PTR_ERR(trans);
9417                                 goto out_free;
9418                         }
9419                         if (block_rsv)
9420                                 trans->block_rsv = block_rsv;
9421                 }
9422         }
9423         btrfs_release_path(path);
9424         if (err)
9425                 goto out_end_trans;
9426
9427         ret = btrfs_del_root(trans, &root->root_key);
9428         if (ret) {
9429                 btrfs_abort_transaction(trans, ret);
9430                 err = ret;
9431                 goto out_end_trans;
9432         }
9433
9434         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9435                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9436                                       NULL, NULL);
9437                 if (ret < 0) {
9438                         btrfs_abort_transaction(trans, ret);
9439                         err = ret;
9440                         goto out_end_trans;
9441                 } else if (ret > 0) {
9442                         /* if we fail to delete the orphan item this time
9443                          * around, it'll get picked up the next time.
9444                          *
9445                          * The most common failure here is just -ENOENT.
9446                          */
9447                         btrfs_del_orphan_item(trans, tree_root,
9448                                               root->root_key.objectid);
9449                 }
9450         }
9451
9452         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9453                 btrfs_add_dropped_root(trans, root);
9454         } else {
9455                 free_extent_buffer(root->node);
9456                 free_extent_buffer(root->commit_root);
9457                 btrfs_put_fs_root(root);
9458         }
9459         root_dropped = true;
9460 out_end_trans:
9461         btrfs_end_transaction_throttle(trans);
9462 out_free:
9463         kfree(wc);
9464         btrfs_free_path(path);
9465 out:
9466         /*
9467          * So if we need to stop dropping the snapshot for whatever reason we
9468          * need to make sure to add it back to the dead root list so that we
9469          * keep trying to do the work later.  This also cleans up roots if we
9470          * don't have it in the radix (like when we recover after a power fail
9471          * or unmount) so we don't leak memory.
9472          */
9473         if (!for_reloc && !root_dropped)
9474                 btrfs_add_dead_root(root);
9475         if (err && err != -EAGAIN)
9476                 btrfs_handle_fs_error(fs_info, err, NULL);
9477         return err;
9478 }
9479
9480 /*
9481  * drop subtree rooted at tree block 'node'.
9482  *
9483  * NOTE: this function will unlock and release tree block 'node'
9484  * only used by relocation code
9485  */
9486 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9487                         struct btrfs_root *root,
9488                         struct extent_buffer *node,
9489                         struct extent_buffer *parent)
9490 {
9491         struct btrfs_fs_info *fs_info = root->fs_info;
9492         struct btrfs_path *path;
9493         struct walk_control *wc;
9494         int level;
9495         int parent_level;
9496         int ret = 0;
9497         int wret;
9498
9499         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9500
9501         path = btrfs_alloc_path();
9502         if (!path)
9503                 return -ENOMEM;
9504
9505         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9506         if (!wc) {
9507                 btrfs_free_path(path);
9508                 return -ENOMEM;
9509         }
9510
9511         btrfs_assert_tree_locked(parent);
9512         parent_level = btrfs_header_level(parent);
9513         extent_buffer_get(parent);
9514         path->nodes[parent_level] = parent;
9515         path->slots[parent_level] = btrfs_header_nritems(parent);
9516
9517         btrfs_assert_tree_locked(node);
9518         level = btrfs_header_level(node);
9519         path->nodes[level] = node;
9520         path->slots[level] = 0;
9521         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9522
9523         wc->refs[parent_level] = 1;
9524         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9525         wc->level = level;
9526         wc->shared_level = -1;
9527         wc->stage = DROP_REFERENCE;
9528         wc->update_ref = 0;
9529         wc->keep_locks = 1;
9530         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9531
9532         while (1) {
9533                 wret = walk_down_tree(trans, root, path, wc);
9534                 if (wret < 0) {
9535                         ret = wret;
9536                         break;
9537                 }
9538
9539                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9540                 if (wret < 0)
9541                         ret = wret;
9542                 if (wret != 0)
9543                         break;
9544         }
9545
9546         kfree(wc);
9547         btrfs_free_path(path);
9548         return ret;
9549 }
9550
9551 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9552 {
9553         u64 num_devices;
9554         u64 stripped;
9555
9556         /*
9557          * if restripe for this chunk_type is on pick target profile and
9558          * return, otherwise do the usual balance
9559          */
9560         stripped = get_restripe_target(fs_info, flags);
9561         if (stripped)
9562                 return extended_to_chunk(stripped);
9563
9564         num_devices = fs_info->fs_devices->rw_devices;
9565
9566         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9567                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9568                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9569
9570         if (num_devices == 1) {
9571                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9572                 stripped = flags & ~stripped;
9573
9574                 /* turn raid0 into single device chunks */
9575                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9576                         return stripped;
9577
9578                 /* turn mirroring into duplication */
9579                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9580                              BTRFS_BLOCK_GROUP_RAID10))
9581                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9582         } else {
9583                 /* they already had raid on here, just return */
9584                 if (flags & stripped)
9585                         return flags;
9586
9587                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9588                 stripped = flags & ~stripped;
9589
9590                 /* switch duplicated blocks with raid1 */
9591                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9592                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9593
9594                 /* this is drive concat, leave it alone */
9595         }
9596
9597         return flags;
9598 }
9599
9600 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9601 {
9602         struct btrfs_space_info *sinfo = cache->space_info;
9603         u64 num_bytes;
9604         u64 sinfo_used;
9605         u64 min_allocable_bytes;
9606         int ret = -ENOSPC;
9607
9608         /*
9609          * We need some metadata space and system metadata space for
9610          * allocating chunks in some corner cases until we force to set
9611          * it to be readonly.
9612          */
9613         if ((sinfo->flags &
9614              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9615             !force)
9616                 min_allocable_bytes = SZ_1M;
9617         else
9618                 min_allocable_bytes = 0;
9619
9620         spin_lock(&sinfo->lock);
9621         spin_lock(&cache->lock);
9622
9623         if (cache->ro) {
9624                 cache->ro++;
9625                 ret = 0;
9626                 goto out;
9627         }
9628
9629         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9630                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9631         sinfo_used = btrfs_space_info_used(sinfo, true);
9632
9633         if (sinfo_used + num_bytes + min_allocable_bytes <=
9634             sinfo->total_bytes) {
9635                 sinfo->bytes_readonly += num_bytes;
9636                 cache->ro++;
9637                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9638                 ret = 0;
9639         }
9640 out:
9641         spin_unlock(&cache->lock);
9642         spin_unlock(&sinfo->lock);
9643         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9644                 btrfs_info(cache->fs_info,
9645                         "unable to make block group %llu ro",
9646                         cache->key.objectid);
9647                 btrfs_info(cache->fs_info,
9648                         "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9649                         sinfo_used, num_bytes, min_allocable_bytes);
9650                 dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9651         }
9652         return ret;
9653 }
9654
9655 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9656
9657 {
9658         struct btrfs_fs_info *fs_info = cache->fs_info;
9659         struct btrfs_trans_handle *trans;
9660         u64 alloc_flags;
9661         int ret;
9662
9663 again:
9664         trans = btrfs_join_transaction(fs_info->extent_root);
9665         if (IS_ERR(trans))
9666                 return PTR_ERR(trans);
9667
9668         /*
9669          * we're not allowed to set block groups readonly after the dirty
9670          * block groups cache has started writing.  If it already started,
9671          * back off and let this transaction commit
9672          */
9673         mutex_lock(&fs_info->ro_block_group_mutex);
9674         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9675                 u64 transid = trans->transid;
9676
9677                 mutex_unlock(&fs_info->ro_block_group_mutex);
9678                 btrfs_end_transaction(trans);
9679
9680                 ret = btrfs_wait_for_commit(fs_info, transid);
9681                 if (ret)
9682                         return ret;
9683                 goto again;
9684         }
9685
9686         /*
9687          * if we are changing raid levels, try to allocate a corresponding
9688          * block group with the new raid level.
9689          */
9690         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9691         if (alloc_flags != cache->flags) {
9692                 ret = do_chunk_alloc(trans, alloc_flags,
9693                                      CHUNK_ALLOC_FORCE);
9694                 /*
9695                  * ENOSPC is allowed here, we may have enough space
9696                  * already allocated at the new raid level to
9697                  * carry on
9698                  */
9699                 if (ret == -ENOSPC)
9700                         ret = 0;
9701                 if (ret < 0)
9702                         goto out;
9703         }
9704
9705         ret = inc_block_group_ro(cache, 0);
9706         if (!ret)
9707                 goto out;
9708         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9709         ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9710         if (ret < 0)
9711                 goto out;
9712         ret = inc_block_group_ro(cache, 0);
9713 out:
9714         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9715                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9716                 mutex_lock(&fs_info->chunk_mutex);
9717                 check_system_chunk(trans, alloc_flags);
9718                 mutex_unlock(&fs_info->chunk_mutex);
9719         }
9720         mutex_unlock(&fs_info->ro_block_group_mutex);
9721
9722         btrfs_end_transaction(trans);
9723         return ret;
9724 }
9725
9726 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9727 {
9728         u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9729
9730         return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9731 }
9732
9733 /*
9734  * helper to account the unused space of all the readonly block group in the
9735  * space_info. takes mirrors into account.
9736  */
9737 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9738 {
9739         struct btrfs_block_group_cache *block_group;
9740         u64 free_bytes = 0;
9741         int factor;
9742
9743         /* It's df, we don't care if it's racy */
9744         if (list_empty(&sinfo->ro_bgs))
9745                 return 0;
9746
9747         spin_lock(&sinfo->lock);
9748         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9749                 spin_lock(&block_group->lock);
9750
9751                 if (!block_group->ro) {
9752                         spin_unlock(&block_group->lock);
9753                         continue;
9754                 }
9755
9756                 factor = btrfs_bg_type_to_factor(block_group->flags);
9757                 free_bytes += (block_group->key.offset -
9758                                btrfs_block_group_used(&block_group->item)) *
9759                                factor;
9760
9761                 spin_unlock(&block_group->lock);
9762         }
9763         spin_unlock(&sinfo->lock);
9764
9765         return free_bytes;
9766 }
9767
9768 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9769 {
9770         struct btrfs_space_info *sinfo = cache->space_info;
9771         u64 num_bytes;
9772
9773         BUG_ON(!cache->ro);
9774
9775         spin_lock(&sinfo->lock);
9776         spin_lock(&cache->lock);
9777         if (!--cache->ro) {
9778                 num_bytes = cache->key.offset - cache->reserved -
9779                             cache->pinned - cache->bytes_super -
9780                             btrfs_block_group_used(&cache->item);
9781                 sinfo->bytes_readonly -= num_bytes;
9782                 list_del_init(&cache->ro_list);
9783         }
9784         spin_unlock(&cache->lock);
9785         spin_unlock(&sinfo->lock);
9786 }
9787
9788 /*
9789  * Checks to see if it's even possible to relocate this block group.
9790  *
9791  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9792  * ok to go ahead and try.
9793  */
9794 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9795 {
9796         struct btrfs_block_group_cache *block_group;
9797         struct btrfs_space_info *space_info;
9798         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9799         struct btrfs_device *device;
9800         u64 min_free;
9801         u64 dev_min = 1;
9802         u64 dev_nr = 0;
9803         u64 target;
9804         int debug;
9805         int index;
9806         int full = 0;
9807         int ret = 0;
9808
9809         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9810
9811         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9812
9813         /* odd, couldn't find the block group, leave it alone */
9814         if (!block_group) {
9815                 if (debug)
9816                         btrfs_warn(fs_info,
9817                                    "can't find block group for bytenr %llu",
9818                                    bytenr);
9819                 return -1;
9820         }
9821
9822         min_free = btrfs_block_group_used(&block_group->item);
9823
9824         /* no bytes used, we're good */
9825         if (!min_free)
9826                 goto out;
9827
9828         space_info = block_group->space_info;
9829         spin_lock(&space_info->lock);
9830
9831         full = space_info->full;
9832
9833         /*
9834          * if this is the last block group we have in this space, we can't
9835          * relocate it unless we're able to allocate a new chunk below.
9836          *
9837          * Otherwise, we need to make sure we have room in the space to handle
9838          * all of the extents from this block group.  If we can, we're good
9839          */
9840         if ((space_info->total_bytes != block_group->key.offset) &&
9841             (btrfs_space_info_used(space_info, false) + min_free <
9842              space_info->total_bytes)) {
9843                 spin_unlock(&space_info->lock);
9844                 goto out;
9845         }
9846         spin_unlock(&space_info->lock);
9847
9848         /*
9849          * ok we don't have enough space, but maybe we have free space on our
9850          * devices to allocate new chunks for relocation, so loop through our
9851          * alloc devices and guess if we have enough space.  if this block
9852          * group is going to be restriped, run checks against the target
9853          * profile instead of the current one.
9854          */
9855         ret = -1;
9856
9857         /*
9858          * index:
9859          *      0: raid10
9860          *      1: raid1
9861          *      2: dup
9862          *      3: raid0
9863          *      4: single
9864          */
9865         target = get_restripe_target(fs_info, block_group->flags);
9866         if (target) {
9867                 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9868         } else {
9869                 /*
9870                  * this is just a balance, so if we were marked as full
9871                  * we know there is no space for a new chunk
9872                  */
9873                 if (full) {
9874                         if (debug)
9875                                 btrfs_warn(fs_info,
9876                                            "no space to alloc new chunk for block group %llu",
9877                                            block_group->key.objectid);
9878                         goto out;
9879                 }
9880
9881                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9882         }
9883
9884         if (index == BTRFS_RAID_RAID10) {
9885                 dev_min = 4;
9886                 /* Divide by 2 */
9887                 min_free >>= 1;
9888         } else if (index == BTRFS_RAID_RAID1) {
9889                 dev_min = 2;
9890         } else if (index == BTRFS_RAID_DUP) {
9891                 /* Multiply by 2 */
9892                 min_free <<= 1;
9893         } else if (index == BTRFS_RAID_RAID0) {
9894                 dev_min = fs_devices->rw_devices;
9895                 min_free = div64_u64(min_free, dev_min);
9896         }
9897
9898         mutex_lock(&fs_info->chunk_mutex);
9899         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9900                 u64 dev_offset;
9901
9902                 /*
9903                  * check to make sure we can actually find a chunk with enough
9904                  * space to fit our block group in.
9905                  */
9906                 if (device->total_bytes > device->bytes_used + min_free &&
9907                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9908                         ret = find_free_dev_extent(device, min_free,
9909                                                    &dev_offset, NULL);
9910                         if (!ret)
9911                                 dev_nr++;
9912
9913                         if (dev_nr >= dev_min)
9914                                 break;
9915
9916                         ret = -1;
9917                 }
9918         }
9919         if (debug && ret == -1)
9920                 btrfs_warn(fs_info,
9921                            "no space to allocate a new chunk for block group %llu",
9922                            block_group->key.objectid);
9923         mutex_unlock(&fs_info->chunk_mutex);
9924 out:
9925         btrfs_put_block_group(block_group);
9926         return ret;
9927 }
9928
9929 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9930                                   struct btrfs_path *path,
9931                                   struct btrfs_key *key)
9932 {
9933         struct btrfs_root *root = fs_info->extent_root;
9934         int ret = 0;
9935         struct btrfs_key found_key;
9936         struct extent_buffer *leaf;
9937         struct btrfs_block_group_item bg;
9938         u64 flags;
9939         int slot;
9940
9941         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9942         if (ret < 0)
9943                 goto out;
9944
9945         while (1) {
9946                 slot = path->slots[0];
9947                 leaf = path->nodes[0];
9948                 if (slot >= btrfs_header_nritems(leaf)) {
9949                         ret = btrfs_next_leaf(root, path);
9950                         if (ret == 0)
9951                                 continue;
9952                         if (ret < 0)
9953                                 goto out;
9954                         break;
9955                 }
9956                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9957
9958                 if (found_key.objectid >= key->objectid &&
9959                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9960                         struct extent_map_tree *em_tree;
9961                         struct extent_map *em;
9962
9963                         em_tree = &root->fs_info->mapping_tree;
9964                         read_lock(&em_tree->lock);
9965                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9966                                                    found_key.offset);
9967                         read_unlock(&em_tree->lock);
9968                         if (!em) {
9969                                 btrfs_err(fs_info,
9970                         "logical %llu len %llu found bg but no related chunk",
9971                                           found_key.objectid, found_key.offset);
9972                                 ret = -ENOENT;
9973                         } else if (em->start != found_key.objectid ||
9974                                    em->len != found_key.offset) {
9975                                 btrfs_err(fs_info,
9976                 "block group %llu len %llu mismatch with chunk %llu len %llu",
9977                                           found_key.objectid, found_key.offset,
9978                                           em->start, em->len);
9979                                 ret = -EUCLEAN;
9980                         } else {
9981                                 read_extent_buffer(leaf, &bg,
9982                                         btrfs_item_ptr_offset(leaf, slot),
9983                                         sizeof(bg));
9984                                 flags = btrfs_block_group_flags(&bg) &
9985                                         BTRFS_BLOCK_GROUP_TYPE_MASK;
9986
9987                                 if (flags != (em->map_lookup->type &
9988                                               BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9989                                         btrfs_err(fs_info,
9990 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9991                                                 found_key.objectid,
9992                                                 found_key.offset, flags,
9993                                                 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9994                                                  em->map_lookup->type));
9995                                         ret = -EUCLEAN;
9996                                 } else {
9997                                         ret = 0;
9998                                 }
9999                         }
10000                         free_extent_map(em);
10001                         goto out;
10002                 }
10003                 path->slots[0]++;
10004         }
10005 out:
10006         return ret;
10007 }
10008
10009 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10010 {
10011         struct btrfs_block_group_cache *block_group;
10012         u64 last = 0;
10013
10014         while (1) {
10015                 struct inode *inode;
10016
10017                 block_group = btrfs_lookup_first_block_group(info, last);
10018                 while (block_group) {
10019                         wait_block_group_cache_done(block_group);
10020                         spin_lock(&block_group->lock);
10021                         if (block_group->iref)
10022                                 break;
10023                         spin_unlock(&block_group->lock);
10024                         block_group = next_block_group(block_group);
10025                 }
10026                 if (!block_group) {
10027                         if (last == 0)
10028                                 break;
10029                         last = 0;
10030                         continue;
10031                 }
10032
10033                 inode = block_group->inode;
10034                 block_group->iref = 0;
10035                 block_group->inode = NULL;
10036                 spin_unlock(&block_group->lock);
10037                 ASSERT(block_group->io_ctl.inode == NULL);
10038                 iput(inode);
10039                 last = block_group->key.objectid + block_group->key.offset;
10040                 btrfs_put_block_group(block_group);
10041         }
10042 }
10043
10044 /*
10045  * Must be called only after stopping all workers, since we could have block
10046  * group caching kthreads running, and therefore they could race with us if we
10047  * freed the block groups before stopping them.
10048  */
10049 int btrfs_free_block_groups(struct btrfs_fs_info *info)
10050 {
10051         struct btrfs_block_group_cache *block_group;
10052         struct btrfs_space_info *space_info;
10053         struct btrfs_caching_control *caching_ctl;
10054         struct rb_node *n;
10055
10056         down_write(&info->commit_root_sem);
10057         while (!list_empty(&info->caching_block_groups)) {
10058                 caching_ctl = list_entry(info->caching_block_groups.next,
10059                                          struct btrfs_caching_control, list);
10060                 list_del(&caching_ctl->list);
10061                 put_caching_control(caching_ctl);
10062         }
10063         up_write(&info->commit_root_sem);
10064
10065         spin_lock(&info->unused_bgs_lock);
10066         while (!list_empty(&info->unused_bgs)) {
10067                 block_group = list_first_entry(&info->unused_bgs,
10068                                                struct btrfs_block_group_cache,
10069                                                bg_list);
10070                 list_del_init(&block_group->bg_list);
10071                 btrfs_put_block_group(block_group);
10072         }
10073         spin_unlock(&info->unused_bgs_lock);
10074
10075         spin_lock(&info->block_group_cache_lock);
10076         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10077                 block_group = rb_entry(n, struct btrfs_block_group_cache,
10078                                        cache_node);
10079                 rb_erase(&block_group->cache_node,
10080                          &info->block_group_cache_tree);
10081                 RB_CLEAR_NODE(&block_group->cache_node);
10082                 spin_unlock(&info->block_group_cache_lock);
10083
10084                 down_write(&block_group->space_info->groups_sem);
10085                 list_del(&block_group->list);
10086                 up_write(&block_group->space_info->groups_sem);
10087
10088                 /*
10089                  * We haven't cached this block group, which means we could
10090                  * possibly have excluded extents on this block group.
10091                  */
10092                 if (block_group->cached == BTRFS_CACHE_NO ||
10093                     block_group->cached == BTRFS_CACHE_ERROR)
10094                         free_excluded_extents(block_group);
10095
10096                 btrfs_remove_free_space_cache(block_group);
10097                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
10098                 ASSERT(list_empty(&block_group->dirty_list));
10099                 ASSERT(list_empty(&block_group->io_list));
10100                 ASSERT(list_empty(&block_group->bg_list));
10101                 ASSERT(atomic_read(&block_group->count) == 1);
10102                 btrfs_put_block_group(block_group);
10103
10104                 spin_lock(&info->block_group_cache_lock);
10105         }
10106         spin_unlock(&info->block_group_cache_lock);
10107
10108         /* now that all the block groups are freed, go through and
10109          * free all the space_info structs.  This is only called during
10110          * the final stages of unmount, and so we know nobody is
10111          * using them.  We call synchronize_rcu() once before we start,
10112          * just to be on the safe side.
10113          */
10114         synchronize_rcu();
10115
10116         release_global_block_rsv(info);
10117
10118         while (!list_empty(&info->space_info)) {
10119                 int i;
10120
10121                 space_info = list_entry(info->space_info.next,
10122                                         struct btrfs_space_info,
10123                                         list);
10124
10125                 /*
10126                  * Do not hide this behind enospc_debug, this is actually
10127                  * important and indicates a real bug if this happens.
10128                  */
10129                 if (WARN_ON(space_info->bytes_pinned > 0 ||
10130                             space_info->bytes_reserved > 0 ||
10131                             space_info->bytes_may_use > 0))
10132                         dump_space_info(info, space_info, 0, 0);
10133                 list_del(&space_info->list);
10134                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10135                         struct kobject *kobj;
10136                         kobj = space_info->block_group_kobjs[i];
10137                         space_info->block_group_kobjs[i] = NULL;
10138                         if (kobj) {
10139                                 kobject_del(kobj);
10140                                 kobject_put(kobj);
10141                         }
10142                 }
10143                 kobject_del(&space_info->kobj);
10144                 kobject_put(&space_info->kobj);
10145         }
10146         return 0;
10147 }
10148
10149 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
10150 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10151 {
10152         struct btrfs_space_info *space_info;
10153         struct raid_kobject *rkobj;
10154         LIST_HEAD(list);
10155         int index;
10156         int ret = 0;
10157
10158         spin_lock(&fs_info->pending_raid_kobjs_lock);
10159         list_splice_init(&fs_info->pending_raid_kobjs, &list);
10160         spin_unlock(&fs_info->pending_raid_kobjs_lock);
10161
10162         list_for_each_entry(rkobj, &list, list) {
10163                 space_info = __find_space_info(fs_info, rkobj->flags);
10164                 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10165
10166                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10167                                   "%s", get_raid_name(index));
10168                 if (ret) {
10169                         kobject_put(&rkobj->kobj);
10170                         break;
10171                 }
10172         }
10173         if (ret)
10174                 btrfs_warn(fs_info,
10175                            "failed to add kobject for block cache, ignoring");
10176 }
10177
10178 static void link_block_group(struct btrfs_block_group_cache *cache)
10179 {
10180         struct btrfs_space_info *space_info = cache->space_info;
10181         struct btrfs_fs_info *fs_info = cache->fs_info;
10182         int index = btrfs_bg_flags_to_raid_index(cache->flags);
10183         bool first = false;
10184
10185         down_write(&space_info->groups_sem);
10186         if (list_empty(&space_info->block_groups[index]))
10187                 first = true;
10188         list_add_tail(&cache->list, &space_info->block_groups[index]);
10189         up_write(&space_info->groups_sem);
10190
10191         if (first) {
10192                 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10193                 if (!rkobj) {
10194                         btrfs_warn(cache->fs_info,
10195                                 "couldn't alloc memory for raid level kobject");
10196                         return;
10197                 }
10198                 rkobj->flags = cache->flags;
10199                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10200
10201                 spin_lock(&fs_info->pending_raid_kobjs_lock);
10202                 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10203                 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10204                 space_info->block_group_kobjs[index] = &rkobj->kobj;
10205         }
10206 }
10207
10208 static struct btrfs_block_group_cache *
10209 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10210                                u64 start, u64 size)
10211 {
10212         struct btrfs_block_group_cache *cache;
10213
10214         cache = kzalloc(sizeof(*cache), GFP_NOFS);
10215         if (!cache)
10216                 return NULL;
10217
10218         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10219                                         GFP_NOFS);
10220         if (!cache->free_space_ctl) {
10221                 kfree(cache);
10222                 return NULL;
10223         }
10224
10225         cache->key.objectid = start;
10226         cache->key.offset = size;
10227         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10228
10229         cache->fs_info = fs_info;
10230         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10231         set_free_space_tree_thresholds(cache);
10232
10233         atomic_set(&cache->count, 1);
10234         spin_lock_init(&cache->lock);
10235         init_rwsem(&cache->data_rwsem);
10236         INIT_LIST_HEAD(&cache->list);
10237         INIT_LIST_HEAD(&cache->cluster_list);
10238         INIT_LIST_HEAD(&cache->bg_list);
10239         INIT_LIST_HEAD(&cache->ro_list);
10240         INIT_LIST_HEAD(&cache->dirty_list);
10241         INIT_LIST_HEAD(&cache->io_list);
10242         btrfs_init_free_space_ctl(cache);
10243         atomic_set(&cache->trimming, 0);
10244         mutex_init(&cache->free_space_lock);
10245         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10246
10247         return cache;
10248 }
10249
10250
10251 /*
10252  * Iterate all chunks and verify that each of them has the corresponding block
10253  * group
10254  */
10255 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10256 {
10257         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
10258         struct extent_map *em;
10259         struct btrfs_block_group_cache *bg;
10260         u64 start = 0;
10261         int ret = 0;
10262
10263         while (1) {
10264                 read_lock(&map_tree->lock);
10265                 /*
10266                  * lookup_extent_mapping will return the first extent map
10267                  * intersecting the range, so setting @len to 1 is enough to
10268                  * get the first chunk.
10269                  */
10270                 em = lookup_extent_mapping(map_tree, start, 1);
10271                 read_unlock(&map_tree->lock);
10272                 if (!em)
10273                         break;
10274
10275                 bg = btrfs_lookup_block_group(fs_info, em->start);
10276                 if (!bg) {
10277                         btrfs_err(fs_info,
10278         "chunk start=%llu len=%llu doesn't have corresponding block group",
10279                                      em->start, em->len);
10280                         ret = -EUCLEAN;
10281                         free_extent_map(em);
10282                         break;
10283                 }
10284                 if (bg->key.objectid != em->start ||
10285                     bg->key.offset != em->len ||
10286                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10287                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10288                         btrfs_err(fs_info,
10289 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10290                                 em->start, em->len,
10291                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10292                                 bg->key.objectid, bg->key.offset,
10293                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10294                         ret = -EUCLEAN;
10295                         free_extent_map(em);
10296                         btrfs_put_block_group(bg);
10297                         break;
10298                 }
10299                 start = em->start + em->len;
10300                 free_extent_map(em);
10301                 btrfs_put_block_group(bg);
10302         }
10303         return ret;
10304 }
10305
10306 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10307 {
10308         struct btrfs_path *path;
10309         int ret;
10310         struct btrfs_block_group_cache *cache;
10311         struct btrfs_space_info *space_info;
10312         struct btrfs_key key;
10313         struct btrfs_key found_key;
10314         struct extent_buffer *leaf;
10315         int need_clear = 0;
10316         u64 cache_gen;
10317         u64 feature;
10318         int mixed;
10319
10320         feature = btrfs_super_incompat_flags(info->super_copy);
10321         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10322
10323         key.objectid = 0;
10324         key.offset = 0;
10325         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10326         path = btrfs_alloc_path();
10327         if (!path)
10328                 return -ENOMEM;
10329         path->reada = READA_FORWARD;
10330
10331         cache_gen = btrfs_super_cache_generation(info->super_copy);
10332         if (btrfs_test_opt(info, SPACE_CACHE) &&
10333             btrfs_super_generation(info->super_copy) != cache_gen)
10334                 need_clear = 1;
10335         if (btrfs_test_opt(info, CLEAR_CACHE))
10336                 need_clear = 1;
10337
10338         while (1) {
10339                 ret = find_first_block_group(info, path, &key);
10340                 if (ret > 0)
10341                         break;
10342                 if (ret != 0)
10343                         goto error;
10344
10345                 leaf = path->nodes[0];
10346                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10347
10348                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10349                                                        found_key.offset);
10350                 if (!cache) {
10351                         ret = -ENOMEM;
10352                         goto error;
10353                 }
10354
10355                 if (need_clear) {
10356                         /*
10357                          * When we mount with old space cache, we need to
10358                          * set BTRFS_DC_CLEAR and set dirty flag.
10359                          *
10360                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10361                          *    truncate the old free space cache inode and
10362                          *    setup a new one.
10363                          * b) Setting 'dirty flag' makes sure that we flush
10364                          *    the new space cache info onto disk.
10365                          */
10366                         if (btrfs_test_opt(info, SPACE_CACHE))
10367                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10368                 }
10369
10370                 read_extent_buffer(leaf, &cache->item,
10371                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10372                                    sizeof(cache->item));
10373                 cache->flags = btrfs_block_group_flags(&cache->item);
10374                 if (!mixed &&
10375                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10376                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10377                         btrfs_err(info,
10378 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10379                                   cache->key.objectid);
10380                         ret = -EINVAL;
10381                         goto error;
10382                 }
10383
10384                 key.objectid = found_key.objectid + found_key.offset;
10385                 btrfs_release_path(path);
10386
10387                 /*
10388                  * We need to exclude the super stripes now so that the space
10389                  * info has super bytes accounted for, otherwise we'll think
10390                  * we have more space than we actually do.
10391                  */
10392                 ret = exclude_super_stripes(cache);
10393                 if (ret) {
10394                         /*
10395                          * We may have excluded something, so call this just in
10396                          * case.
10397                          */
10398                         free_excluded_extents(cache);
10399                         btrfs_put_block_group(cache);
10400                         goto error;
10401                 }
10402
10403                 /*
10404                  * check for two cases, either we are full, and therefore
10405                  * don't need to bother with the caching work since we won't
10406                  * find any space, or we are empty, and we can just add all
10407                  * the space in and be done with it.  This saves us _a_lot_ of
10408                  * time, particularly in the full case.
10409                  */
10410                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10411                         cache->last_byte_to_unpin = (u64)-1;
10412                         cache->cached = BTRFS_CACHE_FINISHED;
10413                         free_excluded_extents(cache);
10414                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10415                         cache->last_byte_to_unpin = (u64)-1;
10416                         cache->cached = BTRFS_CACHE_FINISHED;
10417                         add_new_free_space(cache, found_key.objectid,
10418                                            found_key.objectid +
10419                                            found_key.offset);
10420                         free_excluded_extents(cache);
10421                 }
10422
10423                 ret = btrfs_add_block_group_cache(info, cache);
10424                 if (ret) {
10425                         btrfs_remove_free_space_cache(cache);
10426                         btrfs_put_block_group(cache);
10427                         goto error;
10428                 }
10429
10430                 trace_btrfs_add_block_group(info, cache, 0);
10431                 update_space_info(info, cache->flags, found_key.offset,
10432                                   btrfs_block_group_used(&cache->item),
10433                                   cache->bytes_super, &space_info);
10434
10435                 cache->space_info = space_info;
10436
10437                 link_block_group(cache);
10438
10439                 set_avail_alloc_bits(info, cache->flags);
10440                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10441                         inc_block_group_ro(cache, 1);
10442                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10443                         ASSERT(list_empty(&cache->bg_list));
10444                         btrfs_mark_bg_unused(cache);
10445                 }
10446         }
10447
10448         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10449                 if (!(get_alloc_profile(info, space_info->flags) &
10450                       (BTRFS_BLOCK_GROUP_RAID10 |
10451                        BTRFS_BLOCK_GROUP_RAID1 |
10452                        BTRFS_BLOCK_GROUP_RAID5 |
10453                        BTRFS_BLOCK_GROUP_RAID6 |
10454                        BTRFS_BLOCK_GROUP_DUP)))
10455                         continue;
10456                 /*
10457                  * avoid allocating from un-mirrored block group if there are
10458                  * mirrored block groups.
10459                  */
10460                 list_for_each_entry(cache,
10461                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10462                                 list)
10463                         inc_block_group_ro(cache, 1);
10464                 list_for_each_entry(cache,
10465                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10466                                 list)
10467                         inc_block_group_ro(cache, 1);
10468         }
10469
10470         btrfs_add_raid_kobjects(info);
10471         init_global_block_rsv(info);
10472         ret = check_chunk_block_group_mappings(info);
10473 error:
10474         btrfs_free_path(path);
10475         return ret;
10476 }
10477
10478 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10479 {
10480         struct btrfs_fs_info *fs_info = trans->fs_info;
10481         struct btrfs_block_group_cache *block_group;
10482         struct btrfs_root *extent_root = fs_info->extent_root;
10483         struct btrfs_block_group_item item;
10484         struct btrfs_key key;
10485         int ret = 0;
10486
10487         if (!trans->can_flush_pending_bgs)
10488                 return;
10489
10490         while (!list_empty(&trans->new_bgs)) {
10491                 block_group = list_first_entry(&trans->new_bgs,
10492                                                struct btrfs_block_group_cache,
10493                                                bg_list);
10494                 if (ret)
10495                         goto next;
10496
10497                 spin_lock(&block_group->lock);
10498                 memcpy(&item, &block_group->item, sizeof(item));
10499                 memcpy(&key, &block_group->key, sizeof(key));
10500                 spin_unlock(&block_group->lock);
10501
10502                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10503                                         sizeof(item));
10504                 if (ret)
10505                         btrfs_abort_transaction(trans, ret);
10506                 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10507                 if (ret)
10508                         btrfs_abort_transaction(trans, ret);
10509                 add_block_group_free_space(trans, block_group);
10510                 /* already aborted the transaction if it failed. */
10511 next:
10512                 btrfs_delayed_refs_rsv_release(fs_info, 1);
10513                 list_del_init(&block_group->bg_list);
10514         }
10515         btrfs_trans_release_chunk_metadata(trans);
10516 }
10517
10518 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10519                            u64 type, u64 chunk_offset, u64 size)
10520 {
10521         struct btrfs_fs_info *fs_info = trans->fs_info;
10522         struct btrfs_block_group_cache *cache;
10523         int ret;
10524
10525         btrfs_set_log_full_commit(trans);
10526
10527         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10528         if (!cache)
10529                 return -ENOMEM;
10530
10531         btrfs_set_block_group_used(&cache->item, bytes_used);
10532         btrfs_set_block_group_chunk_objectid(&cache->item,
10533                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10534         btrfs_set_block_group_flags(&cache->item, type);
10535
10536         cache->flags = type;
10537         cache->last_byte_to_unpin = (u64)-1;
10538         cache->cached = BTRFS_CACHE_FINISHED;
10539         cache->needs_free_space = 1;
10540         ret = exclude_super_stripes(cache);
10541         if (ret) {
10542                 /*
10543                  * We may have excluded something, so call this just in
10544                  * case.
10545                  */
10546                 free_excluded_extents(cache);
10547                 btrfs_put_block_group(cache);
10548                 return ret;
10549         }
10550
10551         add_new_free_space(cache, chunk_offset, chunk_offset + size);
10552
10553         free_excluded_extents(cache);
10554
10555 #ifdef CONFIG_BTRFS_DEBUG
10556         if (btrfs_should_fragment_free_space(cache)) {
10557                 u64 new_bytes_used = size - bytes_used;
10558
10559                 bytes_used += new_bytes_used >> 1;
10560                 fragment_free_space(cache);
10561         }
10562 #endif
10563         /*
10564          * Ensure the corresponding space_info object is created and
10565          * assigned to our block group. We want our bg to be added to the rbtree
10566          * with its ->space_info set.
10567          */
10568         cache->space_info = __find_space_info(fs_info, cache->flags);
10569         ASSERT(cache->space_info);
10570
10571         ret = btrfs_add_block_group_cache(fs_info, cache);
10572         if (ret) {
10573                 btrfs_remove_free_space_cache(cache);
10574                 btrfs_put_block_group(cache);
10575                 return ret;
10576         }
10577
10578         /*
10579          * Now that our block group has its ->space_info set and is inserted in
10580          * the rbtree, update the space info's counters.
10581          */
10582         trace_btrfs_add_block_group(fs_info, cache, 1);
10583         update_space_info(fs_info, cache->flags, size, bytes_used,
10584                                 cache->bytes_super, &cache->space_info);
10585         update_global_block_rsv(fs_info);
10586
10587         link_block_group(cache);
10588
10589         list_add_tail(&cache->bg_list, &trans->new_bgs);
10590         trans->delayed_ref_updates++;
10591         btrfs_update_delayed_refs_rsv(trans);
10592
10593         set_avail_alloc_bits(fs_info, type);
10594         return 0;
10595 }
10596
10597 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10598 {
10599         u64 extra_flags = chunk_to_extended(flags) &
10600                                 BTRFS_EXTENDED_PROFILE_MASK;
10601
10602         write_seqlock(&fs_info->profiles_lock);
10603         if (flags & BTRFS_BLOCK_GROUP_DATA)
10604                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10605         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10606                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10607         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10608                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10609         write_sequnlock(&fs_info->profiles_lock);
10610 }
10611
10612 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10613                              u64 group_start, struct extent_map *em)
10614 {
10615         struct btrfs_fs_info *fs_info = trans->fs_info;
10616         struct btrfs_root *root = fs_info->extent_root;
10617         struct btrfs_path *path;
10618         struct btrfs_block_group_cache *block_group;
10619         struct btrfs_free_cluster *cluster;
10620         struct btrfs_root *tree_root = fs_info->tree_root;
10621         struct btrfs_key key;
10622         struct inode *inode;
10623         struct kobject *kobj = NULL;
10624         int ret;
10625         int index;
10626         int factor;
10627         struct btrfs_caching_control *caching_ctl = NULL;
10628         bool remove_em;
10629         bool remove_rsv = false;
10630
10631         block_group = btrfs_lookup_block_group(fs_info, group_start);
10632         BUG_ON(!block_group);
10633         BUG_ON(!block_group->ro);
10634
10635         trace_btrfs_remove_block_group(block_group);
10636         /*
10637          * Free the reserved super bytes from this block group before
10638          * remove it.
10639          */
10640         free_excluded_extents(block_group);
10641         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10642                                   block_group->key.offset);
10643
10644         memcpy(&key, &block_group->key, sizeof(key));
10645         index = btrfs_bg_flags_to_raid_index(block_group->flags);
10646         factor = btrfs_bg_type_to_factor(block_group->flags);
10647
10648         /* make sure this block group isn't part of an allocation cluster */
10649         cluster = &fs_info->data_alloc_cluster;
10650         spin_lock(&cluster->refill_lock);
10651         btrfs_return_cluster_to_free_space(block_group, cluster);
10652         spin_unlock(&cluster->refill_lock);
10653
10654         /*
10655          * make sure this block group isn't part of a metadata
10656          * allocation cluster
10657          */
10658         cluster = &fs_info->meta_alloc_cluster;
10659         spin_lock(&cluster->refill_lock);
10660         btrfs_return_cluster_to_free_space(block_group, cluster);
10661         spin_unlock(&cluster->refill_lock);
10662
10663         path = btrfs_alloc_path();
10664         if (!path) {
10665                 ret = -ENOMEM;
10666                 goto out;
10667         }
10668
10669         /*
10670          * get the inode first so any iput calls done for the io_list
10671          * aren't the final iput (no unlinks allowed now)
10672          */
10673         inode = lookup_free_space_inode(block_group, path);
10674
10675         mutex_lock(&trans->transaction->cache_write_mutex);
10676         /*
10677          * Make sure our free space cache IO is done before removing the
10678          * free space inode
10679          */
10680         spin_lock(&trans->transaction->dirty_bgs_lock);
10681         if (!list_empty(&block_group->io_list)) {
10682                 list_del_init(&block_group->io_list);
10683
10684                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10685
10686                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10687                 btrfs_wait_cache_io(trans, block_group, path);
10688                 btrfs_put_block_group(block_group);
10689                 spin_lock(&trans->transaction->dirty_bgs_lock);
10690         }
10691
10692         if (!list_empty(&block_group->dirty_list)) {
10693                 list_del_init(&block_group->dirty_list);
10694                 remove_rsv = true;
10695                 btrfs_put_block_group(block_group);
10696         }
10697         spin_unlock(&trans->transaction->dirty_bgs_lock);
10698         mutex_unlock(&trans->transaction->cache_write_mutex);
10699
10700         if (!IS_ERR(inode)) {
10701                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10702                 if (ret) {
10703                         btrfs_add_delayed_iput(inode);
10704                         goto out;
10705                 }
10706                 clear_nlink(inode);
10707                 /* One for the block groups ref */
10708                 spin_lock(&block_group->lock);
10709                 if (block_group->iref) {
10710                         block_group->iref = 0;
10711                         block_group->inode = NULL;
10712                         spin_unlock(&block_group->lock);
10713                         iput(inode);
10714                 } else {
10715                         spin_unlock(&block_group->lock);
10716                 }
10717                 /* One for our lookup ref */
10718                 btrfs_add_delayed_iput(inode);
10719         }
10720
10721         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10722         key.offset = block_group->key.objectid;
10723         key.type = 0;
10724
10725         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10726         if (ret < 0)
10727                 goto out;
10728         if (ret > 0)
10729                 btrfs_release_path(path);
10730         if (ret == 0) {
10731                 ret = btrfs_del_item(trans, tree_root, path);
10732                 if (ret)
10733                         goto out;
10734                 btrfs_release_path(path);
10735         }
10736
10737         spin_lock(&fs_info->block_group_cache_lock);
10738         rb_erase(&block_group->cache_node,
10739                  &fs_info->block_group_cache_tree);
10740         RB_CLEAR_NODE(&block_group->cache_node);
10741
10742         if (fs_info->first_logical_byte == block_group->key.objectid)
10743                 fs_info->first_logical_byte = (u64)-1;
10744         spin_unlock(&fs_info->block_group_cache_lock);
10745
10746         down_write(&block_group->space_info->groups_sem);
10747         /*
10748          * we must use list_del_init so people can check to see if they
10749          * are still on the list after taking the semaphore
10750          */
10751         list_del_init(&block_group->list);
10752         if (list_empty(&block_group->space_info->block_groups[index])) {
10753                 kobj = block_group->space_info->block_group_kobjs[index];
10754                 block_group->space_info->block_group_kobjs[index] = NULL;
10755                 clear_avail_alloc_bits(fs_info, block_group->flags);
10756         }
10757         up_write(&block_group->space_info->groups_sem);
10758         if (kobj) {
10759                 kobject_del(kobj);
10760                 kobject_put(kobj);
10761         }
10762
10763         if (block_group->has_caching_ctl)
10764                 caching_ctl = get_caching_control(block_group);
10765         if (block_group->cached == BTRFS_CACHE_STARTED)
10766                 wait_block_group_cache_done(block_group);
10767         if (block_group->has_caching_ctl) {
10768                 down_write(&fs_info->commit_root_sem);
10769                 if (!caching_ctl) {
10770                         struct btrfs_caching_control *ctl;
10771
10772                         list_for_each_entry(ctl,
10773                                     &fs_info->caching_block_groups, list)
10774                                 if (ctl->block_group == block_group) {
10775                                         caching_ctl = ctl;
10776                                         refcount_inc(&caching_ctl->count);
10777                                         break;
10778                                 }
10779                 }
10780                 if (caching_ctl)
10781                         list_del_init(&caching_ctl->list);
10782                 up_write(&fs_info->commit_root_sem);
10783                 if (caching_ctl) {
10784                         /* Once for the caching bgs list and once for us. */
10785                         put_caching_control(caching_ctl);
10786                         put_caching_control(caching_ctl);
10787                 }
10788         }
10789
10790         spin_lock(&trans->transaction->dirty_bgs_lock);
10791         WARN_ON(!list_empty(&block_group->dirty_list));
10792         WARN_ON(!list_empty(&block_group->io_list));
10793         spin_unlock(&trans->transaction->dirty_bgs_lock);
10794
10795         btrfs_remove_free_space_cache(block_group);
10796
10797         spin_lock(&block_group->space_info->lock);
10798         list_del_init(&block_group->ro_list);
10799
10800         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10801                 WARN_ON(block_group->space_info->total_bytes
10802                         < block_group->key.offset);
10803                 WARN_ON(block_group->space_info->bytes_readonly
10804                         < block_group->key.offset);
10805                 WARN_ON(block_group->space_info->disk_total
10806                         < block_group->key.offset * factor);
10807         }
10808         block_group->space_info->total_bytes -= block_group->key.offset;
10809         block_group->space_info->bytes_readonly -= block_group->key.offset;
10810         block_group->space_info->disk_total -= block_group->key.offset * factor;
10811
10812         spin_unlock(&block_group->space_info->lock);
10813
10814         memcpy(&key, &block_group->key, sizeof(key));
10815
10816         mutex_lock(&fs_info->chunk_mutex);
10817         spin_lock(&block_group->lock);
10818         block_group->removed = 1;
10819         /*
10820          * At this point trimming can't start on this block group, because we
10821          * removed the block group from the tree fs_info->block_group_cache_tree
10822          * so no one can't find it anymore and even if someone already got this
10823          * block group before we removed it from the rbtree, they have already
10824          * incremented block_group->trimming - if they didn't, they won't find
10825          * any free space entries because we already removed them all when we
10826          * called btrfs_remove_free_space_cache().
10827          *
10828          * And we must not remove the extent map from the fs_info->mapping_tree
10829          * to prevent the same logical address range and physical device space
10830          * ranges from being reused for a new block group. This is because our
10831          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10832          * completely transactionless, so while it is trimming a range the
10833          * currently running transaction might finish and a new one start,
10834          * allowing for new block groups to be created that can reuse the same
10835          * physical device locations unless we take this special care.
10836          *
10837          * There may also be an implicit trim operation if the file system
10838          * is mounted with -odiscard. The same protections must remain
10839          * in place until the extents have been discarded completely when
10840          * the transaction commit has completed.
10841          */
10842         remove_em = (atomic_read(&block_group->trimming) == 0);
10843         spin_unlock(&block_group->lock);
10844
10845         mutex_unlock(&fs_info->chunk_mutex);
10846
10847         ret = remove_block_group_free_space(trans, block_group);
10848         if (ret)
10849                 goto out;
10850
10851         btrfs_put_block_group(block_group);
10852         btrfs_put_block_group(block_group);
10853
10854         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10855         if (ret > 0)
10856                 ret = -EIO;
10857         if (ret < 0)
10858                 goto out;
10859
10860         ret = btrfs_del_item(trans, root, path);
10861         if (ret)
10862                 goto out;
10863
10864         if (remove_em) {
10865                 struct extent_map_tree *em_tree;
10866
10867                 em_tree = &fs_info->mapping_tree;
10868                 write_lock(&em_tree->lock);
10869                 remove_extent_mapping(em_tree, em);
10870                 write_unlock(&em_tree->lock);
10871                 /* once for the tree */
10872                 free_extent_map(em);
10873         }
10874 out:
10875         if (remove_rsv)
10876                 btrfs_delayed_refs_rsv_release(fs_info, 1);
10877         btrfs_free_path(path);
10878         return ret;
10879 }
10880
10881 struct btrfs_trans_handle *
10882 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10883                                      const u64 chunk_offset)
10884 {
10885         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
10886         struct extent_map *em;
10887         struct map_lookup *map;
10888         unsigned int num_items;
10889
10890         read_lock(&em_tree->lock);
10891         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10892         read_unlock(&em_tree->lock);
10893         ASSERT(em && em->start == chunk_offset);
10894
10895         /*
10896          * We need to reserve 3 + N units from the metadata space info in order
10897          * to remove a block group (done at btrfs_remove_chunk() and at
10898          * btrfs_remove_block_group()), which are used for:
10899          *
10900          * 1 unit for adding the free space inode's orphan (located in the tree
10901          * of tree roots).
10902          * 1 unit for deleting the block group item (located in the extent
10903          * tree).
10904          * 1 unit for deleting the free space item (located in tree of tree
10905          * roots).
10906          * N units for deleting N device extent items corresponding to each
10907          * stripe (located in the device tree).
10908          *
10909          * In order to remove a block group we also need to reserve units in the
10910          * system space info in order to update the chunk tree (update one or
10911          * more device items and remove one chunk item), but this is done at
10912          * btrfs_remove_chunk() through a call to check_system_chunk().
10913          */
10914         map = em->map_lookup;
10915         num_items = 3 + map->num_stripes;
10916         free_extent_map(em);
10917
10918         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10919                                                            num_items, 1);
10920 }
10921
10922 /*
10923  * Process the unused_bgs list and remove any that don't have any allocated
10924  * space inside of them.
10925  */
10926 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10927 {
10928         struct btrfs_block_group_cache *block_group;
10929         struct btrfs_space_info *space_info;
10930         struct btrfs_trans_handle *trans;
10931         int ret = 0;
10932
10933         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10934                 return;
10935
10936         spin_lock(&fs_info->unused_bgs_lock);
10937         while (!list_empty(&fs_info->unused_bgs)) {
10938                 u64 start, end;
10939                 int trimming;
10940
10941                 block_group = list_first_entry(&fs_info->unused_bgs,
10942                                                struct btrfs_block_group_cache,
10943                                                bg_list);
10944                 list_del_init(&block_group->bg_list);
10945
10946                 space_info = block_group->space_info;
10947
10948                 if (ret || btrfs_mixed_space_info(space_info)) {
10949                         btrfs_put_block_group(block_group);
10950                         continue;
10951                 }
10952                 spin_unlock(&fs_info->unused_bgs_lock);
10953
10954                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10955
10956                 /* Don't want to race with allocators so take the groups_sem */
10957                 down_write(&space_info->groups_sem);
10958                 spin_lock(&block_group->lock);
10959                 if (block_group->reserved || block_group->pinned ||
10960                     btrfs_block_group_used(&block_group->item) ||
10961                     block_group->ro ||
10962                     list_is_singular(&block_group->list)) {
10963                         /*
10964                          * We want to bail if we made new allocations or have
10965                          * outstanding allocations in this block group.  We do
10966                          * the ro check in case balance is currently acting on
10967                          * this block group.
10968                          */
10969                         trace_btrfs_skip_unused_block_group(block_group);
10970                         spin_unlock(&block_group->lock);
10971                         up_write(&space_info->groups_sem);
10972                         goto next;
10973                 }
10974                 spin_unlock(&block_group->lock);
10975
10976                 /* We don't want to force the issue, only flip if it's ok. */
10977                 ret = inc_block_group_ro(block_group, 0);
10978                 up_write(&space_info->groups_sem);
10979                 if (ret < 0) {
10980                         ret = 0;
10981                         goto next;
10982                 }
10983
10984                 /*
10985                  * Want to do this before we do anything else so we can recover
10986                  * properly if we fail to join the transaction.
10987                  */
10988                 trans = btrfs_start_trans_remove_block_group(fs_info,
10989                                                      block_group->key.objectid);
10990                 if (IS_ERR(trans)) {
10991                         btrfs_dec_block_group_ro(block_group);
10992                         ret = PTR_ERR(trans);
10993                         goto next;
10994                 }
10995
10996                 /*
10997                  * We could have pending pinned extents for this block group,
10998                  * just delete them, we don't care about them anymore.
10999                  */
11000                 start = block_group->key.objectid;
11001                 end = start + block_group->key.offset - 1;
11002                 /*
11003                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
11004                  * btrfs_finish_extent_commit(). If we are at transaction N,
11005                  * another task might be running finish_extent_commit() for the
11006                  * previous transaction N - 1, and have seen a range belonging
11007                  * to the block group in freed_extents[] before we were able to
11008                  * clear the whole block group range from freed_extents[]. This
11009                  * means that task can lookup for the block group after we
11010                  * unpinned it from freed_extents[] and removed it, leading to
11011                  * a BUG_ON() at btrfs_unpin_extent_range().
11012                  */
11013                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
11014                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
11015                                   EXTENT_DIRTY);
11016                 if (ret) {
11017                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11018                         btrfs_dec_block_group_ro(block_group);
11019                         goto end_trans;
11020                 }
11021                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
11022                                   EXTENT_DIRTY);
11023                 if (ret) {
11024                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11025                         btrfs_dec_block_group_ro(block_group);
11026                         goto end_trans;
11027                 }
11028                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11029
11030                 /* Reset pinned so btrfs_put_block_group doesn't complain */
11031                 spin_lock(&space_info->lock);
11032                 spin_lock(&block_group->lock);
11033
11034                 update_bytes_pinned(space_info, -block_group->pinned);
11035                 space_info->bytes_readonly += block_group->pinned;
11036                 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11037                                    -block_group->pinned,
11038                                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
11039                 block_group->pinned = 0;
11040
11041                 spin_unlock(&block_group->lock);
11042                 spin_unlock(&space_info->lock);
11043
11044                 /* DISCARD can flip during remount */
11045                 trimming = btrfs_test_opt(fs_info, DISCARD);
11046
11047                 /* Implicit trim during transaction commit. */
11048                 if (trimming)
11049                         btrfs_get_block_group_trimming(block_group);
11050
11051                 /*
11052                  * Btrfs_remove_chunk will abort the transaction if things go
11053                  * horribly wrong.
11054                  */
11055                 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
11056
11057                 if (ret) {
11058                         if (trimming)
11059                                 btrfs_put_block_group_trimming(block_group);
11060                         goto end_trans;
11061                 }
11062
11063                 /*
11064                  * If we're not mounted with -odiscard, we can just forget
11065                  * about this block group. Otherwise we'll need to wait
11066                  * until transaction commit to do the actual discard.
11067                  */
11068                 if (trimming) {
11069                         spin_lock(&fs_info->unused_bgs_lock);
11070                         /*
11071                          * A concurrent scrub might have added us to the list
11072                          * fs_info->unused_bgs, so use a list_move operation
11073                          * to add the block group to the deleted_bgs list.
11074                          */
11075                         list_move(&block_group->bg_list,
11076                                   &trans->transaction->deleted_bgs);
11077                         spin_unlock(&fs_info->unused_bgs_lock);
11078                         btrfs_get_block_group(block_group);
11079                 }
11080 end_trans:
11081                 btrfs_end_transaction(trans);
11082 next:
11083                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11084                 btrfs_put_block_group(block_group);
11085                 spin_lock(&fs_info->unused_bgs_lock);
11086         }
11087         spin_unlock(&fs_info->unused_bgs_lock);
11088 }
11089
11090 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11091 {
11092         struct btrfs_super_block *disk_super;
11093         u64 features;
11094         u64 flags;
11095         int mixed = 0;
11096         int ret;
11097
11098         disk_super = fs_info->super_copy;
11099         if (!btrfs_super_root(disk_super))
11100                 return -EINVAL;
11101
11102         features = btrfs_super_incompat_flags(disk_super);
11103         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11104                 mixed = 1;
11105
11106         flags = BTRFS_BLOCK_GROUP_SYSTEM;
11107         ret = create_space_info(fs_info, flags);
11108         if (ret)
11109                 goto out;
11110
11111         if (mixed) {
11112                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11113                 ret = create_space_info(fs_info, flags);
11114         } else {
11115                 flags = BTRFS_BLOCK_GROUP_METADATA;
11116                 ret = create_space_info(fs_info, flags);
11117                 if (ret)
11118                         goto out;
11119
11120                 flags = BTRFS_BLOCK_GROUP_DATA;
11121                 ret = create_space_info(fs_info, flags);
11122         }
11123 out:
11124         return ret;
11125 }
11126
11127 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11128                                    u64 start, u64 end)
11129 {
11130         return unpin_extent_range(fs_info, start, end, false);
11131 }
11132
11133 /*
11134  * It used to be that old block groups would be left around forever.
11135  * Iterating over them would be enough to trim unused space.  Since we
11136  * now automatically remove them, we also need to iterate over unallocated
11137  * space.
11138  *
11139  * We don't want a transaction for this since the discard may take a
11140  * substantial amount of time.  We don't require that a transaction be
11141  * running, but we do need to take a running transaction into account
11142  * to ensure that we're not discarding chunks that were released or
11143  * allocated in the current transaction.
11144  *
11145  * Holding the chunks lock will prevent other threads from allocating
11146  * or releasing chunks, but it won't prevent a running transaction
11147  * from committing and releasing the memory that the pending chunks
11148  * list head uses.  For that, we need to take a reference to the
11149  * transaction and hold the commit root sem.  We only need to hold
11150  * it while performing the free space search since we have already
11151  * held back allocations.
11152  */
11153 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
11154 {
11155         u64 start = SZ_1M, len = 0, end = 0;
11156         int ret;
11157
11158         *trimmed = 0;
11159
11160         /* Discard not supported = nothing to do. */
11161         if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11162                 return 0;
11163
11164         /* Not writable = nothing to do. */
11165         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
11166                 return 0;
11167
11168         /* No free space = nothing to do. */
11169         if (device->total_bytes <= device->bytes_used)
11170                 return 0;
11171
11172         ret = 0;
11173
11174         while (1) {
11175                 struct btrfs_fs_info *fs_info = device->fs_info;
11176                 u64 bytes;
11177
11178                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11179                 if (ret)
11180                         break;
11181
11182                 find_first_clear_extent_bit(&device->alloc_state, start,
11183                                             &start, &end,
11184                                             CHUNK_TRIMMED | CHUNK_ALLOCATED);
11185                 /*
11186                  * If find_first_clear_extent_bit find a range that spans the
11187                  * end of the device it will set end to -1, in this case it's up
11188                  * to the caller to trim the value to the size of the device.
11189                  */
11190                 end = min(end, device->total_bytes - 1);
11191                 len = end - start + 1;
11192
11193                 /* We didn't find any extents */
11194                 if (!len) {
11195                         mutex_unlock(&fs_info->chunk_mutex);
11196                         ret = 0;
11197                         break;
11198                 }
11199
11200                 ret = btrfs_issue_discard(device->bdev, start, len,
11201                                           &bytes);
11202                 if (!ret)
11203                         set_extent_bits(&device->alloc_state, start,
11204                                         start + bytes - 1,
11205                                         CHUNK_TRIMMED);
11206                 mutex_unlock(&fs_info->chunk_mutex);
11207
11208                 if (ret)
11209                         break;
11210
11211                 start += len;
11212                 *trimmed += bytes;
11213
11214                 if (fatal_signal_pending(current)) {
11215                         ret = -ERESTARTSYS;
11216                         break;
11217                 }
11218
11219                 cond_resched();
11220         }
11221
11222         return ret;
11223 }
11224
11225 /*
11226  * Trim the whole filesystem by:
11227  * 1) trimming the free space in each block group
11228  * 2) trimming the unallocated space on each device
11229  *
11230  * This will also continue trimming even if a block group or device encounters
11231  * an error.  The return value will be the last error, or 0 if nothing bad
11232  * happens.
11233  */
11234 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11235 {
11236         struct btrfs_block_group_cache *cache = NULL;
11237         struct btrfs_device *device;
11238         struct list_head *devices;
11239         u64 group_trimmed;
11240         u64 start;
11241         u64 end;
11242         u64 trimmed = 0;
11243         u64 bg_failed = 0;
11244         u64 dev_failed = 0;
11245         int bg_ret = 0;
11246         int dev_ret = 0;
11247         int ret = 0;
11248
11249         cache = btrfs_lookup_first_block_group(fs_info, range->start);
11250         for (; cache; cache = next_block_group(cache)) {
11251                 if (cache->key.objectid >= (range->start + range->len)) {
11252                         btrfs_put_block_group(cache);
11253                         break;
11254                 }
11255
11256                 start = max(range->start, cache->key.objectid);
11257                 end = min(range->start + range->len,
11258                                 cache->key.objectid + cache->key.offset);
11259
11260                 if (end - start >= range->minlen) {
11261                         if (!block_group_cache_done(cache)) {
11262                                 ret = cache_block_group(cache, 0);
11263                                 if (ret) {
11264                                         bg_failed++;
11265                                         bg_ret = ret;
11266                                         continue;
11267                                 }
11268                                 ret = wait_block_group_cache_done(cache);
11269                                 if (ret) {
11270                                         bg_failed++;
11271                                         bg_ret = ret;
11272                                         continue;
11273                                 }
11274                         }
11275                         ret = btrfs_trim_block_group(cache,
11276                                                      &group_trimmed,
11277                                                      start,
11278                                                      end,
11279                                                      range->minlen);
11280
11281                         trimmed += group_trimmed;
11282                         if (ret) {
11283                                 bg_failed++;
11284                                 bg_ret = ret;
11285                                 continue;
11286                         }
11287                 }
11288         }
11289
11290         if (bg_failed)
11291                 btrfs_warn(fs_info,
11292                         "failed to trim %llu block group(s), last error %d",
11293                         bg_failed, bg_ret);
11294         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11295         devices = &fs_info->fs_devices->devices;
11296         list_for_each_entry(device, devices, dev_list) {
11297                 ret = btrfs_trim_free_extents(device, &group_trimmed);
11298                 if (ret) {
11299                         dev_failed++;
11300                         dev_ret = ret;
11301                         break;
11302                 }
11303
11304                 trimmed += group_trimmed;
11305         }
11306         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11307
11308         if (dev_failed)
11309                 btrfs_warn(fs_info,
11310                         "failed to trim %llu device(s), last error %d",
11311                         dev_failed, dev_ret);
11312         range->len = trimmed;
11313         if (bg_ret)
11314                 return bg_ret;
11315         return dev_ret;
11316 }
11317
11318 /*
11319  * btrfs_{start,end}_write_no_snapshotting() are similar to
11320  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11321  * data into the page cache through nocow before the subvolume is snapshoted,
11322  * but flush the data into disk after the snapshot creation, or to prevent
11323  * operations while snapshotting is ongoing and that cause the snapshot to be
11324  * inconsistent (writes followed by expanding truncates for example).
11325  */
11326 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11327 {
11328         percpu_counter_dec(&root->subv_writers->counter);
11329         cond_wake_up(&root->subv_writers->wait);
11330 }
11331
11332 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11333 {
11334         if (atomic_read(&root->will_be_snapshotted))
11335                 return 0;
11336
11337         percpu_counter_inc(&root->subv_writers->counter);
11338         /*
11339          * Make sure counter is updated before we check for snapshot creation.
11340          */
11341         smp_mb();
11342         if (atomic_read(&root->will_be_snapshotted)) {
11343                 btrfs_end_write_no_snapshotting(root);
11344                 return 0;
11345         }
11346         return 1;
11347 }
11348
11349 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11350 {
11351         while (true) {
11352                 int ret;
11353
11354                 ret = btrfs_start_write_no_snapshotting(root);
11355                 if (ret)
11356                         break;
11357                 wait_var_event(&root->will_be_snapshotted,
11358                                !atomic_read(&root->will_be_snapshotted));
11359         }
11360 }
11361
11362 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11363 {
11364         struct btrfs_fs_info *fs_info = bg->fs_info;
11365
11366         spin_lock(&fs_info->unused_bgs_lock);
11367         if (list_empty(&bg->bg_list)) {
11368                 btrfs_get_block_group(bg);
11369                 trace_btrfs_add_unused_block_group(bg);
11370                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11371         }
11372         spin_unlock(&fs_info->unused_bgs_lock);
11373 }