1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_fs_info *fs_info,
56 struct btrfs_delayed_ref_node *node, u64 parent,
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
59 struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 struct btrfs_fs_info *fs_info,
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 struct btrfs_delayed_ref_node *node,
70 struct btrfs_delayed_extent_op *extent_op);
71 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
72 struct btrfs_fs_info *fs_info, u64 flags,
74 static int find_next_key(struct btrfs_path *path, int level,
75 struct btrfs_key *key);
76 static void dump_space_info(struct btrfs_fs_info *fs_info,
77 struct btrfs_space_info *info, u64 bytes,
78 int dump_block_groups);
79 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
81 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
84 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
85 struct btrfs_space_info *space_info,
89 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 return cache->cached == BTRFS_CACHE_FINISHED ||
93 cache->cached == BTRFS_CACHE_ERROR;
96 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
98 return (cache->flags & bits) == bits;
101 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
103 atomic_inc(&cache->count);
106 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
108 if (atomic_dec_and_test(&cache->count)) {
109 WARN_ON(cache->pinned > 0);
110 WARN_ON(cache->reserved > 0);
113 * If not empty, someone is still holding mutex of
114 * full_stripe_lock, which can only be released by caller.
115 * And it will definitely cause use-after-free when caller
116 * tries to release full stripe lock.
118 * No better way to resolve, but only to warn.
120 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
121 kfree(cache->free_space_ctl);
127 * this adds the block group to the fs_info rb tree for the block group
130 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
131 struct btrfs_block_group_cache *block_group)
134 struct rb_node *parent = NULL;
135 struct btrfs_block_group_cache *cache;
137 spin_lock(&info->block_group_cache_lock);
138 p = &info->block_group_cache_tree.rb_node;
142 cache = rb_entry(parent, struct btrfs_block_group_cache,
144 if (block_group->key.objectid < cache->key.objectid) {
146 } else if (block_group->key.objectid > cache->key.objectid) {
149 spin_unlock(&info->block_group_cache_lock);
154 rb_link_node(&block_group->cache_node, parent, p);
155 rb_insert_color(&block_group->cache_node,
156 &info->block_group_cache_tree);
158 if (info->first_logical_byte > block_group->key.objectid)
159 info->first_logical_byte = block_group->key.objectid;
161 spin_unlock(&info->block_group_cache_lock);
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 struct btrfs_block_group_cache *cache, *ret = NULL;
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
182 cache = rb_entry(n, struct btrfs_block_group_cache,
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
203 btrfs_get_block_group(ret);
204 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
205 info->first_logical_byte = ret->key.objectid;
207 spin_unlock(&info->block_group_cache_lock);
212 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
213 u64 start, u64 num_bytes)
215 u64 end = start + num_bytes - 1;
216 set_extent_bits(&fs_info->freed_extents[0],
217 start, end, EXTENT_UPTODATE);
218 set_extent_bits(&fs_info->freed_extents[1],
219 start, end, EXTENT_UPTODATE);
223 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
224 struct btrfs_block_group_cache *cache)
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
231 clear_extent_bits(&fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE);
233 clear_extent_bits(&fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE);
237 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
238 struct btrfs_block_group_cache *cache)
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
248 ret = add_excluded_extent(fs_info, cache->key.objectid,
254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 bytenr = btrfs_sb_offset(i);
256 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
257 bytenr, &logical, &nr, &stripe_len);
264 if (logical[nr] > cache->key.objectid +
268 if (logical[nr] + stripe_len <= cache->key.objectid)
272 if (start < cache->key.objectid) {
273 start = cache->key.objectid;
274 len = (logical[nr] + stripe_len) - start;
276 len = min_t(u64, stripe_len,
277 cache->key.objectid +
278 cache->key.offset - start);
281 cache->bytes_super += len;
282 ret = add_excluded_extent(fs_info, start, len);
294 static struct btrfs_caching_control *
295 get_caching_control(struct btrfs_block_group_cache *cache)
297 struct btrfs_caching_control *ctl;
299 spin_lock(&cache->lock);
300 if (!cache->caching_ctl) {
301 spin_unlock(&cache->lock);
305 ctl = cache->caching_ctl;
306 refcount_inc(&ctl->count);
307 spin_unlock(&cache->lock);
311 static void put_caching_control(struct btrfs_caching_control *ctl)
313 if (refcount_dec_and_test(&ctl->count))
317 #ifdef CONFIG_BTRFS_DEBUG
318 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
320 struct btrfs_fs_info *fs_info = block_group->fs_info;
321 u64 start = block_group->key.objectid;
322 u64 len = block_group->key.offset;
323 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
324 fs_info->nodesize : fs_info->sectorsize;
325 u64 step = chunk << 1;
327 while (len > chunk) {
328 btrfs_remove_free_space(block_group, start, chunk);
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
343 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 struct btrfs_fs_info *info = block_group->fs_info;
347 u64 extent_start, extent_end, size, total_added = 0;
350 while (start < end) {
351 ret = find_first_extent_bit(info->pinned_extents, start,
352 &extent_start, &extent_end,
353 EXTENT_DIRTY | EXTENT_UPTODATE,
358 if (extent_start <= start) {
359 start = extent_end + 1;
360 } else if (extent_start > start && extent_start < end) {
361 size = extent_start - start;
363 ret = btrfs_add_free_space(block_group, start,
365 BUG_ON(ret); /* -ENOMEM or logic error */
366 start = extent_end + 1;
375 ret = btrfs_add_free_space(block_group, start, size);
376 BUG_ON(ret); /* -ENOMEM or logic error */
382 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
385 struct btrfs_fs_info *fs_info = block_group->fs_info;
386 struct btrfs_root *extent_root = fs_info->extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
396 path = btrfs_alloc_path();
400 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 #ifdef CONFIG_BTRFS_DEBUG
404 * If we're fragmenting we don't want to make anybody think we can
405 * allocate from this block group until we've had a chance to fragment
408 if (btrfs_should_fragment_free_space(block_group))
412 * We don't want to deadlock with somebody trying to allocate a new
413 * extent for the extent root while also trying to search the extent
414 * root to add free space. So we skip locking and search the commit
415 * root, since its read-only
417 path->skip_locking = 1;
418 path->search_commit_root = 1;
419 path->reada = READA_FORWARD;
423 key.type = BTRFS_EXTENT_ITEM_KEY;
426 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
430 leaf = path->nodes[0];
431 nritems = btrfs_header_nritems(leaf);
434 if (btrfs_fs_closing(fs_info) > 1) {
439 if (path->slots[0] < nritems) {
440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 ret = find_next_key(path, 0, &key);
446 if (need_resched() ||
447 rwsem_is_contended(&fs_info->commit_root_sem)) {
449 caching_ctl->progress = last;
450 btrfs_release_path(path);
451 up_read(&fs_info->commit_root_sem);
452 mutex_unlock(&caching_ctl->mutex);
454 mutex_lock(&caching_ctl->mutex);
455 down_read(&fs_info->commit_root_sem);
459 ret = btrfs_next_leaf(extent_root, path);
464 leaf = path->nodes[0];
465 nritems = btrfs_header_nritems(leaf);
469 if (key.objectid < last) {
472 key.type = BTRFS_EXTENT_ITEM_KEY;
475 caching_ctl->progress = last;
476 btrfs_release_path(path);
480 if (key.objectid < block_group->key.objectid) {
485 if (key.objectid >= block_group->key.objectid +
486 block_group->key.offset)
489 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
490 key.type == BTRFS_METADATA_ITEM_KEY) {
491 total_found += add_new_free_space(block_group, last,
493 if (key.type == BTRFS_METADATA_ITEM_KEY)
494 last = key.objectid +
497 last = key.objectid + key.offset;
499 if (total_found > CACHING_CTL_WAKE_UP) {
502 wake_up(&caching_ctl->wait);
509 total_found += add_new_free_space(block_group, last,
510 block_group->key.objectid +
511 block_group->key.offset);
512 caching_ctl->progress = (u64)-1;
515 btrfs_free_path(path);
519 static noinline void caching_thread(struct btrfs_work *work)
521 struct btrfs_block_group_cache *block_group;
522 struct btrfs_fs_info *fs_info;
523 struct btrfs_caching_control *caching_ctl;
526 caching_ctl = container_of(work, struct btrfs_caching_control, work);
527 block_group = caching_ctl->block_group;
528 fs_info = block_group->fs_info;
530 mutex_lock(&caching_ctl->mutex);
531 down_read(&fs_info->commit_root_sem);
533 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
534 ret = load_free_space_tree(caching_ctl);
536 ret = load_extent_tree_free(caching_ctl);
538 spin_lock(&block_group->lock);
539 block_group->caching_ctl = NULL;
540 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
541 spin_unlock(&block_group->lock);
543 #ifdef CONFIG_BTRFS_DEBUG
544 if (btrfs_should_fragment_free_space(block_group)) {
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
554 fragment_free_space(block_group);
558 caching_ctl->progress = (u64)-1;
560 up_read(&fs_info->commit_root_sem);
561 free_excluded_extents(fs_info, block_group);
562 mutex_unlock(&caching_ctl->mutex);
564 wake_up(&caching_ctl->wait);
566 put_caching_control(caching_ctl);
567 btrfs_put_block_group(block_group);
570 static int cache_block_group(struct btrfs_block_group_cache *cache,
574 struct btrfs_fs_info *fs_info = cache->fs_info;
575 struct btrfs_caching_control *caching_ctl;
578 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
582 INIT_LIST_HEAD(&caching_ctl->list);
583 mutex_init(&caching_ctl->mutex);
584 init_waitqueue_head(&caching_ctl->wait);
585 caching_ctl->block_group = cache;
586 caching_ctl->progress = cache->key.objectid;
587 refcount_set(&caching_ctl->count, 1);
588 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
589 caching_thread, NULL, NULL);
591 spin_lock(&cache->lock);
593 * This should be a rare occasion, but this could happen I think in the
594 * case where one thread starts to load the space cache info, and then
595 * some other thread starts a transaction commit which tries to do an
596 * allocation while the other thread is still loading the space cache
597 * info. The previous loop should have kept us from choosing this block
598 * group, but if we've moved to the state where we will wait on caching
599 * block groups we need to first check if we're doing a fast load here,
600 * so we can wait for it to finish, otherwise we could end up allocating
601 * from a block group who's cache gets evicted for one reason or
604 while (cache->cached == BTRFS_CACHE_FAST) {
605 struct btrfs_caching_control *ctl;
607 ctl = cache->caching_ctl;
608 refcount_inc(&ctl->count);
609 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
610 spin_unlock(&cache->lock);
614 finish_wait(&ctl->wait, &wait);
615 put_caching_control(ctl);
616 spin_lock(&cache->lock);
619 if (cache->cached != BTRFS_CACHE_NO) {
620 spin_unlock(&cache->lock);
624 WARN_ON(cache->caching_ctl);
625 cache->caching_ctl = caching_ctl;
626 cache->cached = BTRFS_CACHE_FAST;
627 spin_unlock(&cache->lock);
629 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
630 mutex_lock(&caching_ctl->mutex);
631 ret = load_free_space_cache(fs_info, cache);
633 spin_lock(&cache->lock);
635 cache->caching_ctl = NULL;
636 cache->cached = BTRFS_CACHE_FINISHED;
637 cache->last_byte_to_unpin = (u64)-1;
638 caching_ctl->progress = (u64)-1;
640 if (load_cache_only) {
641 cache->caching_ctl = NULL;
642 cache->cached = BTRFS_CACHE_NO;
644 cache->cached = BTRFS_CACHE_STARTED;
645 cache->has_caching_ctl = 1;
648 spin_unlock(&cache->lock);
649 #ifdef CONFIG_BTRFS_DEBUG
651 btrfs_should_fragment_free_space(cache)) {
654 spin_lock(&cache->space_info->lock);
655 spin_lock(&cache->lock);
656 bytes_used = cache->key.offset -
657 btrfs_block_group_used(&cache->item);
658 cache->space_info->bytes_used += bytes_used >> 1;
659 spin_unlock(&cache->lock);
660 spin_unlock(&cache->space_info->lock);
661 fragment_free_space(cache);
664 mutex_unlock(&caching_ctl->mutex);
666 wake_up(&caching_ctl->wait);
668 put_caching_control(caching_ctl);
669 free_excluded_extents(fs_info, cache);
674 * We're either using the free space tree or no caching at all.
675 * Set cached to the appropriate value and wakeup any waiters.
677 spin_lock(&cache->lock);
678 if (load_cache_only) {
679 cache->caching_ctl = NULL;
680 cache->cached = BTRFS_CACHE_NO;
682 cache->cached = BTRFS_CACHE_STARTED;
683 cache->has_caching_ctl = 1;
685 spin_unlock(&cache->lock);
686 wake_up(&caching_ctl->wait);
689 if (load_cache_only) {
690 put_caching_control(caching_ctl);
694 down_write(&fs_info->commit_root_sem);
695 refcount_inc(&caching_ctl->count);
696 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
697 up_write(&fs_info->commit_root_sem);
699 btrfs_get_block_group(cache);
701 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
707 * return the block group that starts at or after bytenr
709 static struct btrfs_block_group_cache *
710 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
712 return block_group_cache_tree_search(info, bytenr, 0);
716 * return the block group that contains the given bytenr
718 struct btrfs_block_group_cache *btrfs_lookup_block_group(
719 struct btrfs_fs_info *info,
722 return block_group_cache_tree_search(info, bytenr, 1);
725 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 struct list_head *head = &info->space_info;
729 struct btrfs_space_info *found;
731 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734 list_for_each_entry_rcu(found, head, list) {
735 if (found->flags & flags) {
744 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
745 bool metadata, u64 root_objectid)
747 struct btrfs_space_info *space_info;
751 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
752 flags = BTRFS_BLOCK_GROUP_SYSTEM;
754 flags = BTRFS_BLOCK_GROUP_METADATA;
756 flags = BTRFS_BLOCK_GROUP_DATA;
759 space_info = __find_space_info(fs_info, flags);
761 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
765 * after adding space to the filesystem, we need to clear the full flags
766 * on all the space infos.
768 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
770 struct list_head *head = &info->space_info;
771 struct btrfs_space_info *found;
774 list_for_each_entry_rcu(found, head, list)
779 /* simple helper to search for an existing data extent at a given offset */
780 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 struct btrfs_key key;
784 struct btrfs_path *path;
786 path = btrfs_alloc_path();
790 key.objectid = start;
792 key.type = BTRFS_EXTENT_ITEM_KEY;
793 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
794 btrfs_free_path(path);
799 * helper function to lookup reference count and flags of a tree block.
801 * the head node for delayed ref is used to store the sum of all the
802 * reference count modifications queued up in the rbtree. the head
803 * node may also store the extent flags to set. This way you can check
804 * to see what the reference count and extent flags would be if all of
805 * the delayed refs are not processed.
807 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
808 struct btrfs_fs_info *fs_info, u64 bytenr,
809 u64 offset, int metadata, u64 *refs, u64 *flags)
811 struct btrfs_delayed_ref_head *head;
812 struct btrfs_delayed_ref_root *delayed_refs;
813 struct btrfs_path *path;
814 struct btrfs_extent_item *ei;
815 struct extent_buffer *leaf;
816 struct btrfs_key key;
823 * If we don't have skinny metadata, don't bother doing anything
826 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
827 offset = fs_info->nodesize;
831 path = btrfs_alloc_path();
836 path->skip_locking = 1;
837 path->search_commit_root = 1;
841 key.objectid = bytenr;
844 key.type = BTRFS_METADATA_ITEM_KEY;
846 key.type = BTRFS_EXTENT_ITEM_KEY;
848 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
853 if (path->slots[0]) {
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
859 key.offset == fs_info->nodesize)
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
885 BUG_ON(num_refs == 0);
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
897 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
899 if (!mutex_trylock(&head->mutex)) {
900 refcount_inc(&head->refs);
901 spin_unlock(&delayed_refs->lock);
903 btrfs_release_path(path);
906 * Mutex was contended, block until it's released and try
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
911 btrfs_put_delayed_ref_head(head);
914 spin_lock(&head->lock);
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
918 BUG_ON(num_refs == 0);
920 num_refs += head->ref_mod;
921 spin_unlock(&head->lock);
922 mutex_unlock(&head->mutex);
924 spin_unlock(&delayed_refs->lock);
926 WARN_ON(num_refs == 0);
930 *flags = extent_flags;
932 btrfs_free_path(path);
937 * Back reference rules. Back refs have three main goals:
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
968 * When a tree block is COWed through a tree, there are four cases:
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
988 * Back Reference Key composing:
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
995 * File extents can be referenced by:
997 * - multiple snapshots, subvolumes, or different generations in one subvol
998 * - different files inside a single subvolume
999 * - different offsets inside a file (bookend extents in file.c)
1001 * The extent ref structure for the implicit back refs has fields for:
1003 * - Objectid of the subvolume root
1004 * - objectid of the file holding the reference
1005 * - original offset in the file
1006 * - how many bookend extents
1008 * The key offset for the implicit back refs is hash of the first
1011 * The extent ref structure for the full back refs has field for:
1013 * - number of pointers in the tree leaf
1015 * The key offset for the implicit back refs is the first byte of
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
1021 * (root_key.objectid, inode objectid, offset in file, 1)
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1028 * Btree extents can be referenced by:
1030 * - Different subvolumes
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
1042 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1044 struct btrfs_fs_info *fs_info,
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
1048 struct btrfs_root *root = fs_info->extent_root;
1049 struct btrfs_extent_item *item;
1050 struct btrfs_extent_item_v0 *ei0;
1051 struct btrfs_extent_ref_v0 *ref0;
1052 struct btrfs_tree_block_info *bi;
1053 struct extent_buffer *leaf;
1054 struct btrfs_key key;
1055 struct btrfs_key found_key;
1056 u32 new_size = sizeof(*item);
1060 leaf = path->nodes[0];
1061 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1063 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1064 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1065 struct btrfs_extent_item_v0);
1066 refs = btrfs_extent_refs_v0(leaf, ei0);
1068 if (owner == (u64)-1) {
1070 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1071 ret = btrfs_next_leaf(root, path);
1074 BUG_ON(ret > 0); /* Corruption */
1075 leaf = path->nodes[0];
1077 btrfs_item_key_to_cpu(leaf, &found_key,
1079 BUG_ON(key.objectid != found_key.objectid);
1080 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1084 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_extent_ref_v0);
1086 owner = btrfs_ref_objectid_v0(leaf, ref0);
1090 btrfs_release_path(path);
1092 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1093 new_size += sizeof(*bi);
1095 new_size -= sizeof(*ei0);
1096 ret = btrfs_search_slot(trans, root, &key, path,
1097 new_size + extra_size, 1);
1100 BUG_ON(ret); /* Corruption */
1102 btrfs_extend_item(fs_info, path, new_size);
1104 leaf = path->nodes[0];
1105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 btrfs_set_extent_refs(leaf, item, refs);
1107 /* FIXME: get real generation */
1108 btrfs_set_extent_generation(leaf, item, 0);
1109 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1110 btrfs_set_extent_flags(leaf, item,
1111 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1112 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1113 bi = (struct btrfs_tree_block_info *)(item + 1);
1114 /* FIXME: get first key of the block */
1115 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1116 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1118 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1120 btrfs_mark_buffer_dirty(leaf);
1126 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1127 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1128 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1130 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1131 struct btrfs_extent_inline_ref *iref,
1132 enum btrfs_inline_ref_type is_data)
1134 int type = btrfs_extent_inline_ref_type(eb, iref);
1135 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1137 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1138 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1139 type == BTRFS_SHARED_DATA_REF_KEY ||
1140 type == BTRFS_EXTENT_DATA_REF_KEY) {
1141 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1142 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1144 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1145 ASSERT(eb->fs_info);
1147 * Every shared one has parent tree
1148 * block, which must be aligned to
1152 IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1156 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1158 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1159 ASSERT(eb->fs_info);
1161 * Every shared one has parent tree
1162 * block, which must be aligned to
1166 IS_ALIGNED(offset, eb->fs_info->nodesize))
1170 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1175 btrfs_print_leaf((struct extent_buffer *)eb);
1176 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1180 return BTRFS_REF_TYPE_INVALID;
1183 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1185 u32 high_crc = ~(u32)0;
1186 u32 low_crc = ~(u32)0;
1189 lenum = cpu_to_le64(root_objectid);
1190 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1191 lenum = cpu_to_le64(owner);
1192 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1193 lenum = cpu_to_le64(offset);
1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1196 return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1200 struct btrfs_extent_data_ref *ref)
1202 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1203 btrfs_extent_data_ref_objectid(leaf, ref),
1204 btrfs_extent_data_ref_offset(leaf, ref));
1207 static int match_extent_data_ref(struct extent_buffer *leaf,
1208 struct btrfs_extent_data_ref *ref,
1209 u64 root_objectid, u64 owner, u64 offset)
1211 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1212 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1213 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1218 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1219 struct btrfs_fs_info *fs_info,
1220 struct btrfs_path *path,
1221 u64 bytenr, u64 parent,
1223 u64 owner, u64 offset)
1225 struct btrfs_root *root = fs_info->extent_root;
1226 struct btrfs_key key;
1227 struct btrfs_extent_data_ref *ref;
1228 struct extent_buffer *leaf;
1234 key.objectid = bytenr;
1236 key.type = BTRFS_SHARED_DATA_REF_KEY;
1237 key.offset = parent;
1239 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1240 key.offset = hash_extent_data_ref(root_objectid,
1245 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1254 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1255 key.type = BTRFS_EXTENT_REF_V0_KEY;
1256 btrfs_release_path(path);
1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1268 leaf = path->nodes[0];
1269 nritems = btrfs_header_nritems(leaf);
1271 if (path->slots[0] >= nritems) {
1272 ret = btrfs_next_leaf(root, path);
1278 leaf = path->nodes[0];
1279 nritems = btrfs_header_nritems(leaf);
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284 if (key.objectid != bytenr ||
1285 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 ref = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_data_ref);
1291 if (match_extent_data_ref(leaf, ref, root_objectid,
1294 btrfs_release_path(path);
1306 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1307 struct btrfs_path *path,
1308 u64 bytenr, u64 parent,
1309 u64 root_objectid, u64 owner,
1310 u64 offset, int refs_to_add)
1312 struct btrfs_root *root = trans->fs_info->extent_root;
1313 struct btrfs_key key;
1314 struct extent_buffer *leaf;
1319 key.objectid = bytenr;
1321 key.type = BTRFS_SHARED_DATA_REF_KEY;
1322 key.offset = parent;
1323 size = sizeof(struct btrfs_shared_data_ref);
1325 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1326 key.offset = hash_extent_data_ref(root_objectid,
1328 size = sizeof(struct btrfs_extent_data_ref);
1331 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1332 if (ret && ret != -EEXIST)
1335 leaf = path->nodes[0];
1337 struct btrfs_shared_data_ref *ref;
1338 ref = btrfs_item_ptr(leaf, path->slots[0],
1339 struct btrfs_shared_data_ref);
1341 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1343 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1344 num_refs += refs_to_add;
1345 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1348 struct btrfs_extent_data_ref *ref;
1349 while (ret == -EEXIST) {
1350 ref = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 if (match_extent_data_ref(leaf, ref, root_objectid,
1355 btrfs_release_path(path);
1357 ret = btrfs_insert_empty_item(trans, root, path, &key,
1359 if (ret && ret != -EEXIST)
1362 leaf = path->nodes[0];
1364 ref = btrfs_item_ptr(leaf, path->slots[0],
1365 struct btrfs_extent_data_ref);
1367 btrfs_set_extent_data_ref_root(leaf, ref,
1369 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1370 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1371 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1374 num_refs += refs_to_add;
1375 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1378 btrfs_mark_buffer_dirty(leaf);
1381 btrfs_release_path(path);
1385 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1386 struct btrfs_fs_info *fs_info,
1387 struct btrfs_path *path,
1388 int refs_to_drop, int *last_ref)
1390 struct btrfs_key key;
1391 struct btrfs_extent_data_ref *ref1 = NULL;
1392 struct btrfs_shared_data_ref *ref2 = NULL;
1393 struct extent_buffer *leaf;
1397 leaf = path->nodes[0];
1398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1400 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1401 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1402 struct btrfs_extent_data_ref);
1403 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1404 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1405 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1406 struct btrfs_shared_data_ref);
1407 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1408 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1409 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1410 struct btrfs_extent_ref_v0 *ref0;
1411 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1412 struct btrfs_extent_ref_v0);
1413 num_refs = btrfs_ref_count_v0(leaf, ref0);
1419 BUG_ON(num_refs < refs_to_drop);
1420 num_refs -= refs_to_drop;
1422 if (num_refs == 0) {
1423 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1426 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1427 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1428 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1429 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1430 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1432 struct btrfs_extent_ref_v0 *ref0;
1433 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_ref_v0);
1435 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1438 btrfs_mark_buffer_dirty(leaf);
1443 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1444 struct btrfs_extent_inline_ref *iref)
1446 struct btrfs_key key;
1447 struct extent_buffer *leaf;
1448 struct btrfs_extent_data_ref *ref1;
1449 struct btrfs_shared_data_ref *ref2;
1453 leaf = path->nodes[0];
1454 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1457 * If type is invalid, we should have bailed out earlier than
1460 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1461 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1462 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1463 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1464 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1466 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1467 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1469 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1470 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1471 struct btrfs_extent_data_ref);
1472 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1473 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1474 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1475 struct btrfs_shared_data_ref);
1476 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1477 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1478 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1479 struct btrfs_extent_ref_v0 *ref0;
1480 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1481 struct btrfs_extent_ref_v0);
1482 num_refs = btrfs_ref_count_v0(leaf, ref0);
1490 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1491 struct btrfs_fs_info *fs_info,
1492 struct btrfs_path *path,
1493 u64 bytenr, u64 parent,
1496 struct btrfs_root *root = fs_info->extent_root;
1497 struct btrfs_key key;
1500 key.objectid = bytenr;
1502 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1503 key.offset = parent;
1505 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1506 key.offset = root_objectid;
1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1512 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1513 if (ret == -ENOENT && parent) {
1514 btrfs_release_path(path);
1515 key.type = BTRFS_EXTENT_REF_V0_KEY;
1516 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1524 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1525 struct btrfs_path *path,
1526 u64 bytenr, u64 parent,
1529 struct btrfs_key key;
1532 key.objectid = bytenr;
1534 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1535 key.offset = parent;
1537 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1538 key.offset = root_objectid;
1541 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1543 btrfs_release_path(path);
1547 static inline int extent_ref_type(u64 parent, u64 owner)
1550 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1552 type = BTRFS_SHARED_BLOCK_REF_KEY;
1554 type = BTRFS_TREE_BLOCK_REF_KEY;
1557 type = BTRFS_SHARED_DATA_REF_KEY;
1559 type = BTRFS_EXTENT_DATA_REF_KEY;
1564 static int find_next_key(struct btrfs_path *path, int level,
1565 struct btrfs_key *key)
1568 for (; level < BTRFS_MAX_LEVEL; level++) {
1569 if (!path->nodes[level])
1571 if (path->slots[level] + 1 >=
1572 btrfs_header_nritems(path->nodes[level]))
1575 btrfs_item_key_to_cpu(path->nodes[level], key,
1576 path->slots[level] + 1);
1578 btrfs_node_key_to_cpu(path->nodes[level], key,
1579 path->slots[level] + 1);
1586 * look for inline back ref. if back ref is found, *ref_ret is set
1587 * to the address of inline back ref, and 0 is returned.
1589 * if back ref isn't found, *ref_ret is set to the address where it
1590 * should be inserted, and -ENOENT is returned.
1592 * if insert is true and there are too many inline back refs, the path
1593 * points to the extent item, and -EAGAIN is returned.
1595 * NOTE: inline back refs are ordered in the same way that back ref
1596 * items in the tree are ordered.
1598 static noinline_for_stack
1599 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1600 struct btrfs_fs_info *fs_info,
1601 struct btrfs_path *path,
1602 struct btrfs_extent_inline_ref **ref_ret,
1603 u64 bytenr, u64 num_bytes,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int insert)
1607 struct btrfs_root *root = fs_info->extent_root;
1608 struct btrfs_key key;
1609 struct extent_buffer *leaf;
1610 struct btrfs_extent_item *ei;
1611 struct btrfs_extent_inline_ref *iref;
1621 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1624 key.objectid = bytenr;
1625 key.type = BTRFS_EXTENT_ITEM_KEY;
1626 key.offset = num_bytes;
1628 want = extent_ref_type(parent, owner);
1630 extra_size = btrfs_extent_inline_ref_size(want);
1631 path->keep_locks = 1;
1636 * Owner is our level, so we can just add one to get the level for the
1637 * block we are interested in.
1639 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1640 key.type = BTRFS_METADATA_ITEM_KEY;
1645 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1652 * We may be a newly converted file system which still has the old fat
1653 * extent entries for metadata, so try and see if we have one of those.
1655 if (ret > 0 && skinny_metadata) {
1656 skinny_metadata = false;
1657 if (path->slots[0]) {
1659 btrfs_item_key_to_cpu(path->nodes[0], &key,
1661 if (key.objectid == bytenr &&
1662 key.type == BTRFS_EXTENT_ITEM_KEY &&
1663 key.offset == num_bytes)
1667 key.objectid = bytenr;
1668 key.type = BTRFS_EXTENT_ITEM_KEY;
1669 key.offset = num_bytes;
1670 btrfs_release_path(path);
1675 if (ret && !insert) {
1678 } else if (WARN_ON(ret)) {
1683 leaf = path->nodes[0];
1684 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1685 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1686 if (item_size < sizeof(*ei)) {
1691 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1697 leaf = path->nodes[0];
1698 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701 BUG_ON(item_size < sizeof(*ei));
1703 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1704 flags = btrfs_extent_flags(leaf, ei);
1706 ptr = (unsigned long)(ei + 1);
1707 end = (unsigned long)ei + item_size;
1709 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1710 ptr += sizeof(struct btrfs_tree_block_info);
1714 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1715 needed = BTRFS_REF_TYPE_DATA;
1717 needed = BTRFS_REF_TYPE_BLOCK;
1725 iref = (struct btrfs_extent_inline_ref *)ptr;
1726 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1727 if (type == BTRFS_REF_TYPE_INVALID) {
1735 ptr += btrfs_extent_inline_ref_size(type);
1739 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1740 struct btrfs_extent_data_ref *dref;
1741 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1742 if (match_extent_data_ref(leaf, dref, root_objectid,
1747 if (hash_extent_data_ref_item(leaf, dref) <
1748 hash_extent_data_ref(root_objectid, owner, offset))
1752 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1754 if (parent == ref_offset) {
1758 if (ref_offset < parent)
1761 if (root_objectid == ref_offset) {
1765 if (ref_offset < root_objectid)
1769 ptr += btrfs_extent_inline_ref_size(type);
1771 if (err == -ENOENT && insert) {
1772 if (item_size + extra_size >=
1773 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 * To add new inline back ref, we have to make sure
1779 * there is no corresponding back ref item.
1780 * For simplicity, we just do not add new inline back
1781 * ref if there is any kind of item for this block
1783 if (find_next_key(path, 0, &key) == 0 &&
1784 key.objectid == bytenr &&
1785 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1793 path->keep_locks = 0;
1794 btrfs_unlock_up_safe(path, 1);
1800 * helper to add new inline back ref
1802 static noinline_for_stack
1803 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 u64 parent, u64 root_objectid,
1807 u64 owner, u64 offset, int refs_to_add,
1808 struct btrfs_delayed_extent_op *extent_op)
1810 struct extent_buffer *leaf;
1811 struct btrfs_extent_item *ei;
1814 unsigned long item_offset;
1819 leaf = path->nodes[0];
1820 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1821 item_offset = (unsigned long)iref - (unsigned long)ei;
1823 type = extent_ref_type(parent, owner);
1824 size = btrfs_extent_inline_ref_size(type);
1826 btrfs_extend_item(fs_info, path, size);
1828 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1829 refs = btrfs_extent_refs(leaf, ei);
1830 refs += refs_to_add;
1831 btrfs_set_extent_refs(leaf, ei, refs);
1833 __run_delayed_extent_op(extent_op, leaf, ei);
1835 ptr = (unsigned long)ei + item_offset;
1836 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1837 if (ptr < end - size)
1838 memmove_extent_buffer(leaf, ptr + size, ptr,
1841 iref = (struct btrfs_extent_inline_ref *)ptr;
1842 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1843 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1844 struct btrfs_extent_data_ref *dref;
1845 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1846 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1847 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1848 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1849 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1850 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1851 struct btrfs_shared_data_ref *sref;
1852 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1853 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1854 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1855 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1856 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1860 btrfs_mark_buffer_dirty(leaf);
1863 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_fs_info *fs_info,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref **ref_ret,
1867 u64 bytenr, u64 num_bytes, u64 parent,
1868 u64 root_objectid, u64 owner, u64 offset)
1872 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1873 bytenr, num_bytes, parent,
1874 root_objectid, owner, offset, 0);
1878 btrfs_release_path(path);
1881 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1882 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1883 parent, root_objectid);
1885 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1886 parent, root_objectid, owner,
1893 * helper to update/remove inline back ref
1895 static noinline_for_stack
1896 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1897 struct btrfs_path *path,
1898 struct btrfs_extent_inline_ref *iref,
1900 struct btrfs_delayed_extent_op *extent_op,
1903 struct extent_buffer *leaf;
1904 struct btrfs_extent_item *ei;
1905 struct btrfs_extent_data_ref *dref = NULL;
1906 struct btrfs_shared_data_ref *sref = NULL;
1914 leaf = path->nodes[0];
1915 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1916 refs = btrfs_extent_refs(leaf, ei);
1917 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1918 refs += refs_to_mod;
1919 btrfs_set_extent_refs(leaf, ei, refs);
1921 __run_delayed_extent_op(extent_op, leaf, ei);
1924 * If type is invalid, we should have bailed out after
1925 * lookup_inline_extent_backref().
1927 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1928 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1930 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1931 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1932 refs = btrfs_extent_data_ref_count(leaf, dref);
1933 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1934 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1935 refs = btrfs_shared_data_ref_count(leaf, sref);
1938 BUG_ON(refs_to_mod != -1);
1941 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1942 refs += refs_to_mod;
1945 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1946 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1948 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1951 size = btrfs_extent_inline_ref_size(type);
1952 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1953 ptr = (unsigned long)iref;
1954 end = (unsigned long)ei + item_size;
1955 if (ptr + size < end)
1956 memmove_extent_buffer(leaf, ptr, ptr + size,
1959 btrfs_truncate_item(fs_info, path, item_size, 1);
1961 btrfs_mark_buffer_dirty(leaf);
1964 static noinline_for_stack
1965 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1966 struct btrfs_fs_info *fs_info,
1967 struct btrfs_path *path,
1968 u64 bytenr, u64 num_bytes, u64 parent,
1969 u64 root_objectid, u64 owner,
1970 u64 offset, int refs_to_add,
1971 struct btrfs_delayed_extent_op *extent_op)
1973 struct btrfs_extent_inline_ref *iref;
1976 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1977 bytenr, num_bytes, parent,
1978 root_objectid, owner, offset, 1);
1980 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1981 update_inline_extent_backref(fs_info, path, iref,
1982 refs_to_add, extent_op, NULL);
1983 } else if (ret == -ENOENT) {
1984 setup_inline_extent_backref(fs_info, path, iref, parent,
1985 root_objectid, owner, offset,
1986 refs_to_add, extent_op);
1992 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1993 struct btrfs_fs_info *fs_info,
1994 struct btrfs_path *path,
1995 u64 bytenr, u64 parent, u64 root_objectid,
1996 u64 owner, u64 offset, int refs_to_add)
1999 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2000 BUG_ON(refs_to_add != 1);
2001 ret = insert_tree_block_ref(trans, path, bytenr, parent,
2004 ret = insert_extent_data_ref(trans, path, bytenr, parent,
2005 root_objectid, owner, offset,
2011 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2012 struct btrfs_fs_info *fs_info,
2013 struct btrfs_path *path,
2014 struct btrfs_extent_inline_ref *iref,
2015 int refs_to_drop, int is_data, int *last_ref)
2019 BUG_ON(!is_data && refs_to_drop != 1);
2021 update_inline_extent_backref(fs_info, path, iref,
2022 -refs_to_drop, NULL, last_ref);
2023 } else if (is_data) {
2024 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2028 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2034 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2035 u64 *discarded_bytes)
2038 u64 bytes_left, end;
2039 u64 aligned_start = ALIGN(start, 1 << 9);
2041 if (WARN_ON(start != aligned_start)) {
2042 len -= aligned_start - start;
2043 len = round_down(len, 1 << 9);
2044 start = aligned_start;
2047 *discarded_bytes = 0;
2055 /* Skip any superblocks on this device. */
2056 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2057 u64 sb_start = btrfs_sb_offset(j);
2058 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2059 u64 size = sb_start - start;
2061 if (!in_range(sb_start, start, bytes_left) &&
2062 !in_range(sb_end, start, bytes_left) &&
2063 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2067 * Superblock spans beginning of range. Adjust start and
2070 if (sb_start <= start) {
2071 start += sb_end - start;
2076 bytes_left = end - start;
2081 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2084 *discarded_bytes += size;
2085 else if (ret != -EOPNOTSUPP)
2094 bytes_left = end - start;
2098 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2101 *discarded_bytes += bytes_left;
2106 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2107 u64 num_bytes, u64 *actual_bytes)
2110 u64 discarded_bytes = 0;
2111 struct btrfs_bio *bbio = NULL;
2115 * Avoid races with device replace and make sure our bbio has devices
2116 * associated to its stripes that don't go away while we are discarding.
2118 btrfs_bio_counter_inc_blocked(fs_info);
2119 /* Tell the block device(s) that the sectors can be discarded */
2120 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2122 /* Error condition is -ENOMEM */
2124 struct btrfs_bio_stripe *stripe = bbio->stripes;
2128 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2130 struct request_queue *req_q;
2132 if (!stripe->dev->bdev) {
2133 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2136 req_q = bdev_get_queue(stripe->dev->bdev);
2137 if (!blk_queue_discard(req_q))
2140 ret = btrfs_issue_discard(stripe->dev->bdev,
2145 discarded_bytes += bytes;
2146 else if (ret != -EOPNOTSUPP)
2147 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2150 * Just in case we get back EOPNOTSUPP for some reason,
2151 * just ignore the return value so we don't screw up
2152 * people calling discard_extent.
2156 btrfs_put_bbio(bbio);
2158 btrfs_bio_counter_dec(fs_info);
2161 *actual_bytes = discarded_bytes;
2164 if (ret == -EOPNOTSUPP)
2169 /* Can return -ENOMEM */
2170 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root,
2172 u64 bytenr, u64 num_bytes, u64 parent,
2173 u64 root_objectid, u64 owner, u64 offset)
2175 struct btrfs_fs_info *fs_info = root->fs_info;
2176 int old_ref_mod, new_ref_mod;
2179 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2180 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2182 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2183 owner, offset, BTRFS_ADD_DELAYED_REF);
2185 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2186 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2188 root_objectid, (int)owner,
2189 BTRFS_ADD_DELAYED_REF, NULL,
2190 &old_ref_mod, &new_ref_mod);
2192 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2194 root_objectid, owner, offset,
2195 0, BTRFS_ADD_DELAYED_REF,
2196 &old_ref_mod, &new_ref_mod);
2199 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2200 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2202 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2209 * __btrfs_inc_extent_ref - insert backreference for a given extent
2211 * @trans: Handle of transaction
2213 * @node: The delayed ref node used to get the bytenr/length for
2214 * extent whose references are incremented.
2216 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2217 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2218 * bytenr of the parent block. Since new extents are always
2219 * created with indirect references, this will only be the case
2220 * when relocating a shared extent. In that case, root_objectid
2221 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2224 * @root_objectid: The id of the root where this modification has originated,
2225 * this can be either one of the well-known metadata trees or
2226 * the subvolume id which references this extent.
2228 * @owner: For data extents it is the inode number of the owning file.
2229 * For metadata extents this parameter holds the level in the
2230 * tree of the extent.
2232 * @offset: For metadata extents the offset is ignored and is currently
2233 * always passed as 0. For data extents it is the fileoffset
2234 * this extent belongs to.
2236 * @refs_to_add Number of references to add
2238 * @extent_op Pointer to a structure, holding information necessary when
2239 * updating a tree block's flags
2242 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2243 struct btrfs_fs_info *fs_info,
2244 struct btrfs_delayed_ref_node *node,
2245 u64 parent, u64 root_objectid,
2246 u64 owner, u64 offset, int refs_to_add,
2247 struct btrfs_delayed_extent_op *extent_op)
2249 struct btrfs_path *path;
2250 struct extent_buffer *leaf;
2251 struct btrfs_extent_item *item;
2252 struct btrfs_key key;
2253 u64 bytenr = node->bytenr;
2254 u64 num_bytes = node->num_bytes;
2258 path = btrfs_alloc_path();
2262 path->reada = READA_FORWARD;
2263 path->leave_spinning = 1;
2264 /* this will setup the path even if it fails to insert the back ref */
2265 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2266 num_bytes, parent, root_objectid,
2268 refs_to_add, extent_op);
2269 if ((ret < 0 && ret != -EAGAIN) || !ret)
2273 * Ok we had -EAGAIN which means we didn't have space to insert and
2274 * inline extent ref, so just update the reference count and add a
2277 leaf = path->nodes[0];
2278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2280 refs = btrfs_extent_refs(leaf, item);
2281 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2283 __run_delayed_extent_op(extent_op, leaf, item);
2285 btrfs_mark_buffer_dirty(leaf);
2286 btrfs_release_path(path);
2288 path->reada = READA_FORWARD;
2289 path->leave_spinning = 1;
2290 /* now insert the actual backref */
2291 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2292 root_objectid, owner, offset, refs_to_add);
2294 btrfs_abort_transaction(trans, ret);
2296 btrfs_free_path(path);
2300 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2301 struct btrfs_fs_info *fs_info,
2302 struct btrfs_delayed_ref_node *node,
2303 struct btrfs_delayed_extent_op *extent_op,
2304 int insert_reserved)
2307 struct btrfs_delayed_data_ref *ref;
2308 struct btrfs_key ins;
2313 ins.objectid = node->bytenr;
2314 ins.offset = node->num_bytes;
2315 ins.type = BTRFS_EXTENT_ITEM_KEY;
2317 ref = btrfs_delayed_node_to_data_ref(node);
2318 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2320 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2321 parent = ref->parent;
2322 ref_root = ref->root;
2324 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2326 flags |= extent_op->flags_to_set;
2327 ret = alloc_reserved_file_extent(trans, fs_info,
2328 parent, ref_root, flags,
2329 ref->objectid, ref->offset,
2330 &ins, node->ref_mod);
2331 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2332 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2333 ref_root, ref->objectid,
2334 ref->offset, node->ref_mod,
2336 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2337 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2338 ref_root, ref->objectid,
2339 ref->offset, node->ref_mod,
2347 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2348 struct extent_buffer *leaf,
2349 struct btrfs_extent_item *ei)
2351 u64 flags = btrfs_extent_flags(leaf, ei);
2352 if (extent_op->update_flags) {
2353 flags |= extent_op->flags_to_set;
2354 btrfs_set_extent_flags(leaf, ei, flags);
2357 if (extent_op->update_key) {
2358 struct btrfs_tree_block_info *bi;
2359 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2360 bi = (struct btrfs_tree_block_info *)(ei + 1);
2361 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2365 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2366 struct btrfs_fs_info *fs_info,
2367 struct btrfs_delayed_ref_head *head,
2368 struct btrfs_delayed_extent_op *extent_op)
2370 struct btrfs_key key;
2371 struct btrfs_path *path;
2372 struct btrfs_extent_item *ei;
2373 struct extent_buffer *leaf;
2377 int metadata = !extent_op->is_data;
2382 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2385 path = btrfs_alloc_path();
2389 key.objectid = head->bytenr;
2392 key.type = BTRFS_METADATA_ITEM_KEY;
2393 key.offset = extent_op->level;
2395 key.type = BTRFS_EXTENT_ITEM_KEY;
2396 key.offset = head->num_bytes;
2400 path->reada = READA_FORWARD;
2401 path->leave_spinning = 1;
2402 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2409 if (path->slots[0] > 0) {
2411 btrfs_item_key_to_cpu(path->nodes[0], &key,
2413 if (key.objectid == head->bytenr &&
2414 key.type == BTRFS_EXTENT_ITEM_KEY &&
2415 key.offset == head->num_bytes)
2419 btrfs_release_path(path);
2422 key.objectid = head->bytenr;
2423 key.offset = head->num_bytes;
2424 key.type = BTRFS_EXTENT_ITEM_KEY;
2433 leaf = path->nodes[0];
2434 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2435 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2436 if (item_size < sizeof(*ei)) {
2437 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2442 leaf = path->nodes[0];
2443 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2446 BUG_ON(item_size < sizeof(*ei));
2447 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2448 __run_delayed_extent_op(extent_op, leaf, ei);
2450 btrfs_mark_buffer_dirty(leaf);
2452 btrfs_free_path(path);
2456 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2457 struct btrfs_fs_info *fs_info,
2458 struct btrfs_delayed_ref_node *node,
2459 struct btrfs_delayed_extent_op *extent_op,
2460 int insert_reserved)
2463 struct btrfs_delayed_tree_ref *ref;
2467 ref = btrfs_delayed_node_to_tree_ref(node);
2468 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2470 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2471 parent = ref->parent;
2472 ref_root = ref->root;
2474 if (node->ref_mod != 1) {
2476 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2477 node->bytenr, node->ref_mod, node->action, ref_root,
2481 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2482 BUG_ON(!extent_op || !extent_op->update_flags);
2483 ret = alloc_reserved_tree_block(trans, node, extent_op);
2484 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2485 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2489 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2490 ret = __btrfs_free_extent(trans, fs_info, node,
2492 ref->level, 0, 1, extent_op);
2499 /* helper function to actually process a single delayed ref entry */
2500 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2501 struct btrfs_fs_info *fs_info,
2502 struct btrfs_delayed_ref_node *node,
2503 struct btrfs_delayed_extent_op *extent_op,
2504 int insert_reserved)
2508 if (trans->aborted) {
2509 if (insert_reserved)
2510 btrfs_pin_extent(fs_info, node->bytenr,
2511 node->num_bytes, 1);
2515 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2516 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2517 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2519 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2520 node->type == BTRFS_SHARED_DATA_REF_KEY)
2521 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2528 static inline struct btrfs_delayed_ref_node *
2529 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2531 struct btrfs_delayed_ref_node *ref;
2533 if (RB_EMPTY_ROOT(&head->ref_tree))
2537 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2538 * This is to prevent a ref count from going down to zero, which deletes
2539 * the extent item from the extent tree, when there still are references
2540 * to add, which would fail because they would not find the extent item.
2542 if (!list_empty(&head->ref_add_list))
2543 return list_first_entry(&head->ref_add_list,
2544 struct btrfs_delayed_ref_node, add_list);
2546 ref = rb_entry(rb_first(&head->ref_tree),
2547 struct btrfs_delayed_ref_node, ref_node);
2548 ASSERT(list_empty(&ref->add_list));
2552 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2553 struct btrfs_delayed_ref_head *head)
2555 spin_lock(&delayed_refs->lock);
2556 head->processing = 0;
2557 delayed_refs->num_heads_ready++;
2558 spin_unlock(&delayed_refs->lock);
2559 btrfs_delayed_ref_unlock(head);
2562 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2563 struct btrfs_fs_info *fs_info,
2564 struct btrfs_delayed_ref_head *head)
2566 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2571 head->extent_op = NULL;
2572 if (head->must_insert_reserved) {
2573 btrfs_free_delayed_extent_op(extent_op);
2576 spin_unlock(&head->lock);
2577 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2578 btrfs_free_delayed_extent_op(extent_op);
2579 return ret ? ret : 1;
2582 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2583 struct btrfs_fs_info *fs_info,
2584 struct btrfs_delayed_ref_head *head)
2586 struct btrfs_delayed_ref_root *delayed_refs;
2589 delayed_refs = &trans->transaction->delayed_refs;
2591 ret = cleanup_extent_op(trans, fs_info, head);
2593 unselect_delayed_ref_head(delayed_refs, head);
2594 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2601 * Need to drop our head ref lock and re-acquire the delayed ref lock
2602 * and then re-check to make sure nobody got added.
2604 spin_unlock(&head->lock);
2605 spin_lock(&delayed_refs->lock);
2606 spin_lock(&head->lock);
2607 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2608 spin_unlock(&head->lock);
2609 spin_unlock(&delayed_refs->lock);
2612 delayed_refs->num_heads--;
2613 rb_erase(&head->href_node, &delayed_refs->href_root);
2614 RB_CLEAR_NODE(&head->href_node);
2615 spin_unlock(&head->lock);
2616 spin_unlock(&delayed_refs->lock);
2617 atomic_dec(&delayed_refs->num_entries);
2619 trace_run_delayed_ref_head(fs_info, head, 0);
2621 if (head->total_ref_mod < 0) {
2622 struct btrfs_space_info *space_info;
2626 flags = BTRFS_BLOCK_GROUP_DATA;
2627 else if (head->is_system)
2628 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2630 flags = BTRFS_BLOCK_GROUP_METADATA;
2631 space_info = __find_space_info(fs_info, flags);
2633 percpu_counter_add(&space_info->total_bytes_pinned,
2636 if (head->is_data) {
2637 spin_lock(&delayed_refs->lock);
2638 delayed_refs->pending_csums -= head->num_bytes;
2639 spin_unlock(&delayed_refs->lock);
2643 if (head->must_insert_reserved) {
2644 btrfs_pin_extent(fs_info, head->bytenr,
2645 head->num_bytes, 1);
2646 if (head->is_data) {
2647 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2652 /* Also free its reserved qgroup space */
2653 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2654 head->qgroup_reserved);
2655 btrfs_delayed_ref_unlock(head);
2656 btrfs_put_delayed_ref_head(head);
2661 * Returns 0 on success or if called with an already aborted transaction.
2662 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2664 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2667 struct btrfs_fs_info *fs_info = trans->fs_info;
2668 struct btrfs_delayed_ref_root *delayed_refs;
2669 struct btrfs_delayed_ref_node *ref;
2670 struct btrfs_delayed_ref_head *locked_ref = NULL;
2671 struct btrfs_delayed_extent_op *extent_op;
2672 ktime_t start = ktime_get();
2674 unsigned long count = 0;
2675 unsigned long actual_count = 0;
2676 int must_insert_reserved = 0;
2678 delayed_refs = &trans->transaction->delayed_refs;
2684 spin_lock(&delayed_refs->lock);
2685 locked_ref = btrfs_select_ref_head(trans);
2687 spin_unlock(&delayed_refs->lock);
2691 /* grab the lock that says we are going to process
2692 * all the refs for this head */
2693 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2694 spin_unlock(&delayed_refs->lock);
2696 * we may have dropped the spin lock to get the head
2697 * mutex lock, and that might have given someone else
2698 * time to free the head. If that's true, it has been
2699 * removed from our list and we can move on.
2701 if (ret == -EAGAIN) {
2709 * We need to try and merge add/drops of the same ref since we
2710 * can run into issues with relocate dropping the implicit ref
2711 * and then it being added back again before the drop can
2712 * finish. If we merged anything we need to re-loop so we can
2714 * Or we can get node references of the same type that weren't
2715 * merged when created due to bumps in the tree mod seq, and
2716 * we need to merge them to prevent adding an inline extent
2717 * backref before dropping it (triggering a BUG_ON at
2718 * insert_inline_extent_backref()).
2720 spin_lock(&locked_ref->lock);
2721 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2723 ref = select_delayed_ref(locked_ref);
2725 if (ref && ref->seq &&
2726 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2727 spin_unlock(&locked_ref->lock);
2728 unselect_delayed_ref_head(delayed_refs, locked_ref);
2736 * We're done processing refs in this ref_head, clean everything
2737 * up and move on to the next ref_head.
2740 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2742 /* We dropped our lock, we need to loop. */
2755 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2756 RB_CLEAR_NODE(&ref->ref_node);
2757 if (!list_empty(&ref->add_list))
2758 list_del(&ref->add_list);
2760 * When we play the delayed ref, also correct the ref_mod on
2763 switch (ref->action) {
2764 case BTRFS_ADD_DELAYED_REF:
2765 case BTRFS_ADD_DELAYED_EXTENT:
2766 locked_ref->ref_mod -= ref->ref_mod;
2768 case BTRFS_DROP_DELAYED_REF:
2769 locked_ref->ref_mod += ref->ref_mod;
2774 atomic_dec(&delayed_refs->num_entries);
2777 * Record the must-insert_reserved flag before we drop the spin
2780 must_insert_reserved = locked_ref->must_insert_reserved;
2781 locked_ref->must_insert_reserved = 0;
2783 extent_op = locked_ref->extent_op;
2784 locked_ref->extent_op = NULL;
2785 spin_unlock(&locked_ref->lock);
2787 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2788 must_insert_reserved);
2790 btrfs_free_delayed_extent_op(extent_op);
2792 unselect_delayed_ref_head(delayed_refs, locked_ref);
2793 btrfs_put_delayed_ref(ref);
2794 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2799 btrfs_put_delayed_ref(ref);
2805 * We don't want to include ref heads since we can have empty ref heads
2806 * and those will drastically skew our runtime down since we just do
2807 * accounting, no actual extent tree updates.
2809 if (actual_count > 0) {
2810 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2814 * We weigh the current average higher than our current runtime
2815 * to avoid large swings in the average.
2817 spin_lock(&delayed_refs->lock);
2818 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2819 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2820 spin_unlock(&delayed_refs->lock);
2825 #ifdef SCRAMBLE_DELAYED_REFS
2827 * Normally delayed refs get processed in ascending bytenr order. This
2828 * correlates in most cases to the order added. To expose dependencies on this
2829 * order, we start to process the tree in the middle instead of the beginning
2831 static u64 find_middle(struct rb_root *root)
2833 struct rb_node *n = root->rb_node;
2834 struct btrfs_delayed_ref_node *entry;
2837 u64 first = 0, last = 0;
2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 first = entry->bytenr;
2846 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2847 last = entry->bytenr;
2852 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2853 WARN_ON(!entry->in_tree);
2855 middle = entry->bytenr;
2868 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2872 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2873 sizeof(struct btrfs_extent_inline_ref));
2874 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2878 * We don't ever fill up leaves all the way so multiply by 2 just to be
2879 * closer to what we're really going to want to use.
2881 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2885 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2886 * would require to store the csums for that many bytes.
2888 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2891 u64 num_csums_per_leaf;
2894 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2895 num_csums_per_leaf = div64_u64(csum_size,
2896 (u64)btrfs_super_csum_size(fs_info->super_copy));
2897 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2898 num_csums += num_csums_per_leaf - 1;
2899 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2903 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2904 struct btrfs_fs_info *fs_info)
2906 struct btrfs_block_rsv *global_rsv;
2907 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2908 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2909 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2910 u64 num_bytes, num_dirty_bgs_bytes;
2913 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2914 num_heads = heads_to_leaves(fs_info, num_heads);
2916 num_bytes += (num_heads - 1) * fs_info->nodesize;
2918 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2920 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2922 global_rsv = &fs_info->global_block_rsv;
2925 * If we can't allocate any more chunks lets make sure we have _lots_ of
2926 * wiggle room since running delayed refs can create more delayed refs.
2928 if (global_rsv->space_info->full) {
2929 num_dirty_bgs_bytes <<= 1;
2933 spin_lock(&global_rsv->lock);
2934 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2936 spin_unlock(&global_rsv->lock);
2940 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2941 struct btrfs_fs_info *fs_info)
2944 atomic_read(&trans->transaction->delayed_refs.num_entries);
2949 avg_runtime = fs_info->avg_delayed_ref_runtime;
2950 val = num_entries * avg_runtime;
2951 if (val >= NSEC_PER_SEC)
2953 if (val >= NSEC_PER_SEC / 2)
2956 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2959 struct async_delayed_refs {
2960 struct btrfs_root *root;
2965 struct completion wait;
2966 struct btrfs_work work;
2969 static inline struct async_delayed_refs *
2970 to_async_delayed_refs(struct btrfs_work *work)
2972 return container_of(work, struct async_delayed_refs, work);
2975 static void delayed_ref_async_start(struct btrfs_work *work)
2977 struct async_delayed_refs *async = to_async_delayed_refs(work);
2978 struct btrfs_trans_handle *trans;
2979 struct btrfs_fs_info *fs_info = async->root->fs_info;
2982 /* if the commit is already started, we don't need to wait here */
2983 if (btrfs_transaction_blocked(fs_info))
2986 trans = btrfs_join_transaction(async->root);
2987 if (IS_ERR(trans)) {
2988 async->error = PTR_ERR(trans);
2993 * trans->sync means that when we call end_transaction, we won't
2994 * wait on delayed refs
2998 /* Don't bother flushing if we got into a different transaction */
2999 if (trans->transid > async->transid)
3002 ret = btrfs_run_delayed_refs(trans, async->count);
3006 ret = btrfs_end_transaction(trans);
3007 if (ret && !async->error)
3011 complete(&async->wait);
3016 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3017 unsigned long count, u64 transid, int wait)
3019 struct async_delayed_refs *async;
3022 async = kmalloc(sizeof(*async), GFP_NOFS);
3026 async->root = fs_info->tree_root;
3027 async->count = count;
3029 async->transid = transid;
3034 init_completion(&async->wait);
3036 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3037 delayed_ref_async_start, NULL, NULL);
3039 btrfs_queue_work(fs_info->extent_workers, &async->work);
3042 wait_for_completion(&async->wait);
3051 * this starts processing the delayed reference count updates and
3052 * extent insertions we have queued up so far. count can be
3053 * 0, which means to process everything in the tree at the start
3054 * of the run (but not newly added entries), or it can be some target
3055 * number you'd like to process.
3057 * Returns 0 on success or if called with an aborted transaction
3058 * Returns <0 on error and aborts the transaction
3060 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3061 unsigned long count)
3063 struct btrfs_fs_info *fs_info = trans->fs_info;
3064 struct rb_node *node;
3065 struct btrfs_delayed_ref_root *delayed_refs;