1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
95 return (cache->flags & bits) == bits;
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
100 atomic_inc(&cache->count);
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
115 * No better way to resolve, but only to warn.
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
124 * this adds the block group to the fs_info rb tree for the block group
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
141 if (block_group->key.objectid < cache->key.objectid) {
143 } else if (block_group->key.objectid > cache->key.objectid) {
146 spin_unlock(&info->block_group_cache_lock);
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
158 spin_unlock(&info->block_group_cache_lock);
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 struct btrfs_block_group_cache *cache, *ret = NULL;
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
179 cache = rb_entry(n, struct btrfs_block_group_cache,
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
204 spin_unlock(&info->block_group_cache_lock);
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
222 struct btrfs_fs_info *fs_info = cache->fs_info;
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
236 struct btrfs_fs_info *fs_info = cache->fs_info;
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
261 if (logical[nr] > cache->key.objectid +
265 if (logical[nr] + stripe_len <= cache->key.objectid)
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
294 struct btrfs_caching_control *ctl;
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
308 static void put_caching_control(struct btrfs_caching_control *ctl)
310 if (refcount_dec_and_test(&ctl->count))
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
360 ret = btrfs_add_free_space(block_group, start,
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
393 path = btrfs_alloc_path();
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
399 #ifdef CONFIG_BTRFS_DEBUG
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
405 if (btrfs_should_fragment_free_space(block_group))
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
431 if (btrfs_fs_closing(fs_info) > 1) {
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 ret = find_next_key(path, 0, &key);
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
456 ret = btrfs_next_leaf(extent_root, path);
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
466 if (key.objectid < last) {
469 key.type = BTRFS_EXTENT_ITEM_KEY;
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
477 if (key.objectid < block_group->key.objectid) {
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
494 last = key.objectid + key.offset;
496 if (total_found > CACHING_CTL_WAKE_UP) {
499 wake_up(&caching_ctl->wait);
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
512 btrfs_free_path(path);
516 static noinline void caching_thread(struct btrfs_work *work)
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
533 ret = load_extent_tree_free(caching_ctl);
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
555 caching_ctl->progress = (u64)-1;
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
561 wake_up(&caching_ctl->wait);
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
588 spin_lock(&cache->lock);
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
630 spin_lock(&cache->lock);
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
648 btrfs_should_fragment_free_space(cache)) {
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
661 mutex_unlock(&caching_ctl->mutex);
663 wake_up(&caching_ctl->wait);
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
696 btrfs_get_block_group(cache);
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 * return the block group that starts at or after bytenr
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
709 return block_group_cache_tree_search(info, bytenr, 0);
713 * return the block group that contains the given bytenr
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
719 return block_group_cache_tree_search(info, bytenr, 1);
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
744 struct btrfs_space_info *space_info;
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
751 flags = BTRFS_BLOCK_GROUP_METADATA;
753 flags = BTRFS_BLOCK_GROUP_DATA;
756 space_info = __find_space_info(fs_info, flags);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
772 list_for_each_entry_rcu(found, head, list)
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
781 struct btrfs_key key;
782 struct btrfs_path *path;
784 path = btrfs_alloc_path();
788 key.objectid = start;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
797 * helper function to lookup reference count and flags of a tree block.
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
821 * If we don't have skinny metadata, don't bother doing anything
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
829 path = btrfs_alloc_path();
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
839 key.objectid = bytenr;
842 key.type = BTRFS_METADATA_ITEM_KEY;
844 key.type = BTRFS_EXTENT_ITEM_KEY;
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
872 btrfs_print_v0_err(fs_info);
874 btrfs_abort_transaction(trans, ret);
876 btrfs_handle_fs_error(fs_info, ret, NULL);
881 BUG_ON(num_refs == 0);
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
899 btrfs_release_path(path);
902 * Mutex was contended, block until it's released and try
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
914 BUG_ON(num_refs == 0);
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
920 spin_unlock(&delayed_refs->lock);
922 WARN_ON(num_refs == 0);
926 *flags = extent_flags;
928 btrfs_free_path(path);
933 * Back reference rules. Back refs have three main goals:
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
964 * When a tree block is COWed through a tree, there are four cases:
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
984 * Back Reference Key composing:
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
991 * File extents can be referenced by:
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
997 * The extent ref structure for the implicit back refs has fields for:
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1004 * The key offset for the implicit back refs is hash of the first
1007 * The extent ref structure for the full back refs has field for:
1009 * - number of pointers in the tree leaf
1011 * The key offset for the implicit back refs is the first byte of
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1024 * Btree extents can be referenced by:
1026 * - Different subvolumes
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1093 return BTRFS_REF_TYPE_INVALID;
1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1102 lenum = cpu_to_le64(root_objectid);
1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 lenum = cpu_to_le64(owner);
1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 lenum = cpu_to_le64(offset);
1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1135 u64 owner, u64 offset)
1137 struct btrfs_root *root = trans->fs_info->extent_root;
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
1140 struct extent_buffer *leaf;
1146 key.objectid = bytenr;
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1169 leaf = path->nodes[0];
1170 nritems = btrfs_header_nritems(leaf);
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1195 btrfs_release_path(path);
1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
1213 struct btrfs_root *root = trans->fs_info->extent_root;
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
1220 key.objectid = bytenr;
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1229 size = sizeof(struct btrfs_extent_data_ref);
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1236 leaf = path->nodes[0];
1238 struct btrfs_shared_data_ref *ref;
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_shared_data_ref);
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1256 btrfs_release_path(path);
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1260 if (ret && ret != -EEXIST)
1263 leaf = path->nodes[0];
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1279 btrfs_mark_buffer_dirty(leaf);
1282 btrfs_release_path(path);
1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 struct btrfs_path *path,
1288 int refs_to_drop, int *last_ref)
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
1293 struct extent_buffer *leaf;
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
1319 if (num_refs == 0) {
1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 btrfs_mark_buffer_dirty(leaf);
1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 struct btrfs_extent_inline_ref *iref)
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1348 * If type is invalid, we should have bailed out earlier than
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1379 struct btrfs_root *root = trans->fs_info->extent_root;
1380 struct btrfs_key key;
1383 key.objectid = bytenr;
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1403 struct btrfs_key key;
1406 key.objectid = bytenr;
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1417 btrfs_release_path(path);
1421 static inline int extent_ref_type(u64 parent, u64 owner)
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
1442 for (; level < BTRFS_MAX_LEVEL; level++) {
1443 if (!path->nodes[level])
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1472 static noinline_for_stack
1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1480 struct btrfs_fs_info *fs_info = trans->fs_info;
1481 struct btrfs_root *root = fs_info->extent_root;
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1502 want = extent_ref_type(parent, owner);
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1541 key.objectid = bytenr;
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1549 if (ret && !insert) {
1552 } else if (WARN_ON(ret)) {
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 if (unlikely(item_size < sizeof(*ei))) {
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 ptr += sizeof(struct btrfs_tree_block_info);
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1580 needed = BTRFS_REF_TYPE_BLOCK;
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1617 if (parent == ref_offset) {
1621 if (ref_offset < parent)
1624 if (root_objectid == ref_offset) {
1628 if (ref_offset < root_objectid)
1632 ptr += btrfs_extent_inline_ref_size(type);
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1663 * helper to add new inline back ref
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1677 unsigned long item_offset;
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1689 btrfs_extend_item(fs_info, path, size);
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1723 btrfs_mark_buffer_dirty(leaf);
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1740 btrfs_release_path(path);
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
1754 * helper to update/remove inline back ref
1756 static noinline_for_stack
1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1760 struct btrfs_delayed_extent_op *extent_op,
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1798 BUG_ON(refs_to_mod != -1);
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1819 btrfs_truncate_item(fs_info, path, item_size, 1);
1821 btrfs_mark_buffer_dirty(leaf);
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1832 struct btrfs_extent_inline_ref *iref;
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(path, iref, refs_to_add,
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data, int *last_ref)
1876 BUG_ON(!is_data && refs_to_drop != 1);
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1890 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
1895 u64 bytes_left, end;
1896 u64 aligned_start = ALIGN(start, 1 << 9);
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1904 *discarded_bytes = 0;
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1924 * Superblock spans beginning of range. Adjust start and
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1933 bytes_left = end - start;
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1951 bytes_left = end - start;
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1958 *discarded_bytes += bytes_left;
1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 u64 num_bytes, u64 *actual_bytes)
1967 u64 discarded_bytes = 0;
1968 struct btrfs_bio *bbio = NULL;
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1975 btrfs_bio_counter_inc_blocked(fs_info);
1976 /* Tell the block device(s) that the sectors can be discarded */
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1979 /* Error condition is -ENOMEM */
1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1987 struct request_queue *req_q;
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
2002 discarded_bytes += bytes;
2003 else if (ret != -EOPNOTSUPP)
2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2013 btrfs_put_bbio(bbio);
2015 btrfs_bio_counter_dec(fs_info);
2018 *actual_bytes = discarded_bytes;
2021 if (ret == -EOPNOTSUPP)
2026 /* Can return -ENOMEM */
2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 u64 bytenr, u64 num_bytes, u64 parent,
2030 u64 root_objectid, u64 owner, u64 offset)
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 int old_ref_mod, new_ref_mod;
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
2047 &old_ref_mod, &new_ref_mod);
2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2051 root_objectid, owner, offset,
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2068 * @trans: Handle of transaction
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2093 * @refs_to_add Number of references to add
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_delayed_ref_node *node,
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2114 path = btrfs_alloc_path();
2118 path->reada = READA_FORWARD;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 __run_delayed_extent_op(extent_op, leaf, item);
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
2149 btrfs_abort_transaction(trans, ret);
2151 btrfs_free_path(path);
2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2171 ref = btrfs_delayed_node_to_data_ref(node);
2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
2176 ref_root = ref->root;
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2180 flags |= extent_op->flags_to_set;
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 ret = __btrfs_free_extent(trans, node, parent,
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 struct btrfs_delayed_ref_head *head,
2220 struct btrfs_delayed_extent_op *extent_op)
2222 struct btrfs_fs_info *fs_info = trans->fs_info;
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2230 int metadata = !extent_op->is_data;
2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2238 path = btrfs_alloc_path();
2242 key.objectid = head->bytenr;
2245 key.type = BTRFS_METADATA_ITEM_KEY;
2246 key.offset = extent_op->level;
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2249 key.offset = head->num_bytes;
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2262 if (path->slots[0] > 0) {
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2266 if (key.objectid == head->bytenr &&
2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 key.offset == head->num_bytes)
2272 btrfs_release_path(path);
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2289 if (unlikely(item_size < sizeof(*ei))) {
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
2299 btrfs_mark_buffer_dirty(leaf);
2301 btrfs_free_path(path);
2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
2311 struct btrfs_delayed_tree_ref *ref;
2315 ref = btrfs_delayed_node_to_tree_ref(node);
2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
2320 ref_root = ref->root;
2322 if (node->ref_mod != 1) {
2323 btrfs_err(trans->fs_info,
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 BUG_ON(!extent_op || !extent_op->update_flags);
2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2344 /* helper function to actually process a single delayed ref entry */
2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
2352 if (trans->aborted) {
2353 if (insert_reserved)
2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 node->num_bytes, 1);
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 ret = run_delayed_tree_ref(trans, node, extent_op,
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 ret = run_delayed_data_ref(trans, node, extent_op,
2369 if (ret && insert_reserved)
2370 btrfs_pin_extent(trans->fs_info, node->bytenr,
2371 node->num_bytes, 1);
2375 static inline struct btrfs_delayed_ref_node *
2376 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2378 struct btrfs_delayed_ref_node *ref;
2380 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2384 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2385 * This is to prevent a ref count from going down to zero, which deletes
2386 * the extent item from the extent tree, when there still are references
2387 * to add, which would fail because they would not find the extent item.
2389 if (!list_empty(&head->ref_add_list))
2390 return list_first_entry(&head->ref_add_list,
2391 struct btrfs_delayed_ref_node, add_list);
2393 ref = rb_entry(rb_first_cached(&head->ref_tree),
2394 struct btrfs_delayed_ref_node, ref_node);
2395 ASSERT(list_empty(&ref->add_list));
2399 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2400 struct btrfs_delayed_ref_head *head)
2402 spin_lock(&delayed_refs->lock);
2403 head->processing = 0;
2404 delayed_refs->num_heads_ready++;
2405 spin_unlock(&delayed_refs->lock);
2406 btrfs_delayed_ref_unlock(head);
2409 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2410 struct btrfs_delayed_ref_head *head)
2412 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2417 head->extent_op = NULL;
2418 if (head->must_insert_reserved) {
2419 btrfs_free_delayed_extent_op(extent_op);
2422 spin_unlock(&head->lock);
2423 ret = run_delayed_extent_op(trans, head, extent_op);
2424 btrfs_free_delayed_extent_op(extent_op);
2425 return ret ? ret : 1;
2428 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2429 struct btrfs_delayed_ref_head *head)
2432 struct btrfs_fs_info *fs_info = trans->fs_info;
2433 struct btrfs_delayed_ref_root *delayed_refs;
2436 delayed_refs = &trans->transaction->delayed_refs;
2438 ret = cleanup_extent_op(trans, head);
2440 unselect_delayed_ref_head(delayed_refs, head);
2441 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2448 * Need to drop our head ref lock and re-acquire the delayed ref lock
2449 * and then re-check to make sure nobody got added.
2451 spin_unlock(&head->lock);
2452 spin_lock(&delayed_refs->lock);
2453 spin_lock(&head->lock);
2454 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2455 spin_unlock(&head->lock);
2456 spin_unlock(&delayed_refs->lock);
2459 delayed_refs->num_heads--;
2460 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
2461 RB_CLEAR_NODE(&head->href_node);
2462 spin_unlock(&head->lock);
2463 spin_unlock(&delayed_refs->lock);
2464 atomic_dec(&delayed_refs->num_entries);
2466 trace_run_delayed_ref_head(fs_info, head, 0);
2468 if (head->total_ref_mod < 0) {
2469 struct btrfs_space_info *space_info;
2473 flags = BTRFS_BLOCK_GROUP_DATA;
2474 else if (head->is_system)
2475 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2477 flags = BTRFS_BLOCK_GROUP_METADATA;
2478 space_info = __find_space_info(fs_info, flags);
2480 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2482 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2484 if (head->is_data) {
2485 spin_lock(&delayed_refs->lock);
2486 delayed_refs->pending_csums -= head->num_bytes;
2487 spin_unlock(&delayed_refs->lock);
2491 if (head->must_insert_reserved) {
2492 btrfs_pin_extent(fs_info, head->bytenr,
2493 head->num_bytes, 1);
2494 if (head->is_data) {
2495 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2500 /* Also free its reserved qgroup space */
2501 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2502 head->qgroup_reserved);
2503 btrfs_delayed_ref_unlock(head);
2504 btrfs_put_delayed_ref_head(head);
2508 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2509 struct btrfs_trans_handle *trans)
2511 struct btrfs_delayed_ref_root *delayed_refs =
2512 &trans->transaction->delayed_refs;
2513 struct btrfs_delayed_ref_head *head = NULL;
2516 spin_lock(&delayed_refs->lock);
2517 head = btrfs_select_ref_head(delayed_refs);
2519 spin_unlock(&delayed_refs->lock);
2524 * Grab the lock that says we are going to process all the refs for
2527 ret = btrfs_delayed_ref_lock(delayed_refs, head);
2528 spin_unlock(&delayed_refs->lock);
2531 * We may have dropped the spin lock to get the head mutex lock, and
2532 * that might have given someone else time to free the head. If that's
2533 * true, it has been removed from our list and we can move on.
2536 head = ERR_PTR(-EAGAIN);
2541 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2542 struct btrfs_delayed_ref_head *locked_ref,
2543 unsigned long *run_refs)
2545 struct btrfs_fs_info *fs_info = trans->fs_info;
2546 struct btrfs_delayed_ref_root *delayed_refs;
2547 struct btrfs_delayed_extent_op *extent_op;
2548 struct btrfs_delayed_ref_node *ref;
2549 int must_insert_reserved = 0;
2552 delayed_refs = &trans->transaction->delayed_refs;
2554 lockdep_assert_held(&locked_ref->mutex);
2555 lockdep_assert_held(&locked_ref->lock);
2557 while ((ref = select_delayed_ref(locked_ref))) {
2559 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2560 spin_unlock(&locked_ref->lock);
2561 unselect_delayed_ref_head(delayed_refs, locked_ref);
2567 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2568 RB_CLEAR_NODE(&ref->ref_node);
2569 if (!list_empty(&ref->add_list))
2570 list_del(&ref->add_list);
2572 * When we play the delayed ref, also correct the ref_mod on
2575 switch (ref->action) {
2576 case BTRFS_ADD_DELAYED_REF:
2577 case BTRFS_ADD_DELAYED_EXTENT:
2578 locked_ref->ref_mod -= ref->ref_mod;
2580 case BTRFS_DROP_DELAYED_REF:
2581 locked_ref->ref_mod += ref->ref_mod;
2586 atomic_dec(&delayed_refs->num_entries);
2589 * Record the must_insert_reserved flag before we drop the
2592 must_insert_reserved = locked_ref->must_insert_reserved;
2593 locked_ref->must_insert_reserved = 0;
2595 extent_op = locked_ref->extent_op;
2596 locked_ref->extent_op = NULL;
2597 spin_unlock(&locked_ref->lock);
2599 ret = run_one_delayed_ref(trans, ref, extent_op,
2600 must_insert_reserved);
2602 btrfs_free_delayed_extent_op(extent_op);
2604 unselect_delayed_ref_head(delayed_refs, locked_ref);
2605 btrfs_put_delayed_ref(ref);
2606 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2611 btrfs_put_delayed_ref(ref);
2614 spin_lock(&locked_ref->lock);
2615 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2622 * Returns 0 on success or if called with an already aborted transaction.
2623 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2625 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2628 struct btrfs_fs_info *fs_info = trans->fs_info;
2629 struct btrfs_delayed_ref_root *delayed_refs;
2630 struct btrfs_delayed_ref_head *locked_ref = NULL;
2631 ktime_t start = ktime_get();
2633 unsigned long count = 0;
2634 unsigned long actual_count = 0;
2636 delayed_refs = &trans->transaction->delayed_refs;
2639 locked_ref = btrfs_obtain_ref_head(trans);
2640 if (IS_ERR_OR_NULL(locked_ref)) {
2641 if (PTR_ERR(locked_ref) == -EAGAIN) {
2650 * We need to try and merge add/drops of the same ref since we
2651 * can run into issues with relocate dropping the implicit ref
2652 * and then it being added back again before the drop can
2653 * finish. If we merged anything we need to re-loop so we can
2655 * Or we can get node references of the same type that weren't
2656 * merged when created due to bumps in the tree mod seq, and
2657 * we need to merge them to prevent adding an inline extent
2658 * backref before dropping it (triggering a BUG_ON at
2659 * insert_inline_extent_backref()).
2661 spin_lock(&locked_ref->lock);
2662 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2664 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2666 if (ret < 0 && ret != -EAGAIN) {
2668 * Error, btrfs_run_delayed_refs_for_head already
2669 * unlocked everything so just bail out
2674 * Success, perform the usual cleanup of a processed
2677 ret = cleanup_ref_head(trans, locked_ref);
2679 /* We dropped our lock, we need to loop. */
2688 * Either success case or btrfs_run_delayed_refs_for_head
2689 * returned -EAGAIN, meaning we need to select another head
2694 } while ((nr != -1 && count < nr) || locked_ref);
2697 * We don't want to include ref heads since we can have empty ref heads
2698 * and those will drastically skew our runtime down since we just do
2699 * accounting, no actual extent tree updates.
2701 if (actual_count > 0) {
2702 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2706 * We weigh the current average higher than our current runtime
2707 * to avoid large swings in the average.
2709 spin_lock(&delayed_refs->lock);
2710 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2711 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2712 spin_unlock(&delayed_refs->lock);
2717 #ifdef SCRAMBLE_DELAYED_REFS
2719 * Normally delayed refs get processed in ascending bytenr order. This
2720 * correlates in most cases to the order added. To expose dependencies on this
2721 * order, we start to process the tree in the middle instead of the beginning
2723 static u64 find_middle(struct rb_root *root)
2725 struct rb_node *n = root->rb_node;
2726 struct btrfs_delayed_ref_node *entry;
2729 u64 first = 0, last = 0;
2733 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 first = entry->bytenr;
2738 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2739 last = entry->bytenr;
2744 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2745 WARN_ON(!entry->in_tree);
2747 middle = entry->bytenr;
2760 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2764 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2765 sizeof(struct btrfs_extent_inline_ref));
2766 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2767 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2770 * We don't ever fill up leaves all the way so multiply by 2 just to be
2771 * closer to what we're really going to want to use.
2773 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2777 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2778 * would require to store the csums for that many bytes.
2780 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2783 u64 num_csums_per_leaf;
2786 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2787 num_csums_per_leaf = div64_u64(csum_size,
2788 (u64)btrfs_super_csum_size(fs_info->super_copy));
2789 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2790 num_csums += num_csums_per_leaf - 1;
2791 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2795 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans)
2797 struct btrfs_fs_info *fs_info = trans->fs_info;
2798 struct btrfs_block_rsv *global_rsv;
2799 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2800 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2801 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2802 u64 num_bytes, num_dirty_bgs_bytes;
2805 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2806 num_heads = heads_to_leaves(fs_info, num_heads);
2808 num_bytes += (num_heads - 1) * fs_info->nodesize;
2810 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2812 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2814 global_rsv = &fs_info->global_block_rsv;
2817 * If we can't allocate any more chunks lets make sure we have _lots_ of
2818 * wiggle room since running delayed refs can create more delayed refs.
2820 if (global_rsv->space_info->full) {
2821 num_dirty_bgs_bytes <<= 1;
2825 spin_lock(&global_rsv->lock);
2826 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2828 spin_unlock(&global_rsv->lock);
2832 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2835 atomic_read(&trans->transaction->delayed_refs.num_entries);
2840 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2841 val = num_entries * avg_runtime;
2842 if (val >= NSEC_PER_SEC)
2844 if (val >= NSEC_PER_SEC / 2)
2847 return btrfs_check_space_for_delayed_refs(trans);
2850 struct async_delayed_refs {
2851 struct btrfs_root *root;
2856 struct completion wait;
2857 struct btrfs_work work;
2860 static inline struct async_delayed_refs *
2861 to_async_delayed_refs(struct btrfs_work *work)
2863 return container_of(work, struct async_delayed_refs, work);
2866 static void delayed_ref_async_start(struct btrfs_work *work)
2868 struct async_delayed_refs *async = to_async_delayed_refs(work);
2869 struct btrfs_trans_handle *trans;
2870 struct btrfs_fs_info *fs_info = async->root->fs_info;
2873 /* if the commit is already started, we don't need to wait here */
2874 if (btrfs_transaction_blocked(fs_info))
2877 trans = btrfs_join_transaction(async->root);
2878 if (IS_ERR(trans)) {
2879 async->error = PTR_ERR(trans);
2884 * trans->sync means that when we call end_transaction, we won't
2885 * wait on delayed refs
2889 /* Don't bother flushing if we got into a different transaction */
2890 if (trans->transid > async->transid)
2893 ret = btrfs_run_delayed_refs(trans, async->count);
2897 ret = btrfs_end_transaction(trans);
2898 if (ret && !async->error)
2902 complete(&async->wait);
2907 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2908 unsigned long count, u64 transid, int wait)
2910 struct async_delayed_refs *async;
2913 async = kmalloc(sizeof(*async), GFP_NOFS);
2917 async->root = fs_info->tree_root;
2918 async->count = count;
2920 async->transid = transid;
2925 init_completion(&async->wait);
2927 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2928 delayed_ref_async_start, NULL, NULL);
2930 btrfs_queue_work(fs_info->extent_workers, &async->work);
2933 wait_for_completion(&async->wait);
2942 * this starts processing the delayed reference count updates and
2943 * extent insertions we have queued up so far. count can be
2944 * 0, which means to process everything in the tree at the start
2945 * of the run (but not newly added entries), or it can be some target
2946 * number you'd like to process.
2948 * Returns 0 on success or if called with an aborted transaction
2949 * Returns <0 on error and aborts the transaction
2951 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2952 unsigned long count)
2954 struct btrfs_fs_info *fs_info = trans->fs_info;
2955 struct rb_node *node;
2956 struct btrfs_delayed_ref_root *delayed_refs;
2957 struct btrfs_delayed_ref_head *head;
2959 int run_all = count == (unsigned long)-1;
2961 /* We'll clean this up in btrfs_cleanup_transaction */
2965 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2968 delayed_refs = &trans->transaction->delayed_refs;
2970 count = atomic_read(&delayed_refs->num_entries) * 2;
2973 #ifdef SCRAMBLE_DELAYED_REFS
2974 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2976 ret = __btrfs_run_delayed_refs(trans, count);
2978 btrfs_abort_transaction(trans, ret);
2983 if (!list_empty(&trans->new_bgs))
2984 btrfs_create_pending_block_groups(trans);
2986 spin_lock(&delayed_refs->lock);
2987 node = rb_first_cached(&delayed_refs->href_root);
2989 spin_unlock(&delayed_refs->lock);
2992 head = rb_entry(node, struct btrfs_delayed_ref_head,
2994 refcount_inc(&head->refs);
2995 spin_unlock(&delayed_refs->lock);
2997 /* Mutex was contended, block until it's released and retry. */
2998 mutex_lock(&head->mutex);
2999 mutex_unlock(&head->mutex);
3001 btrfs_put_delayed_ref_head(head);
3009 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3010 struct btrfs_fs_info *fs_info,
3011 u64 bytenr, u64 num_bytes, u64 flags,
3012 int level, int is_data)
3014 struct btrfs_delayed_extent_op *extent_op;
3017 extent_op = btrfs_alloc_delayed_extent_op();
3021 extent_op->flags_to_set = flags;
3022 extent_op->update_flags = true;
3023 extent_op->update_key = false;
3024 extent_op->is_data = is_data ? true : false;
3025 extent_op->level = level;
3027 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3028 num_bytes, extent_op);
3030 btrfs_free_delayed_extent_op(extent_op);
3034 static noinline int check_delayed_ref(struct btrfs_root *root,
3035 struct btrfs_path *path,
3036 u64 objectid, u64 offset, u64 bytenr)
3038 struct btrfs_delayed_ref_head *head;
3039 struct btrfs_delayed_ref_node *ref;
3040 struct btrfs_delayed_data_ref *data_ref;
3041 struct btrfs_delayed_ref_root *delayed_refs;
3042 struct btrfs_transaction *cur_trans;
3043 struct rb_node *node;
3046 spin_lock(&root->fs_info->trans_lock);
3047 cur_trans = root->fs_info->running_transaction;
3049 refcount_inc(&cur_trans->use_count);
3050 spin_unlock(&root->fs_info->trans_lock);
3054 delayed_refs = &cur_trans->delayed_refs;
3055 spin_lock(&delayed_refs->lock);
3056 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3058 spin_unlock(&delayed_refs->lock);
3059 btrfs_put_transaction(cur_trans);
3063 if (!mutex_trylock(&head->mutex)) {
3064 refcount_inc(&head->refs);
3065 spin_unlock(&delayed_refs->lock);
3067 btrfs_release_path(path);
3070 * Mutex was contended, block until it's released and let
3073 mutex_lock(&head->mutex);
3074 mutex_unlock(&head->mutex);
3075 btrfs_put_delayed_ref_head(head);
3076 btrfs_put_transaction(cur_trans);
3079 spin_unlock(&delayed_refs->lock);
3081 spin_lock(&head->lock);
3083 * XXX: We should replace this with a proper search function in the
3086 for (node = rb_first_cached(&head->ref_tree); node;
3087 node = rb_next(node)) {
3088 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3089 /* If it's a shared ref we know a cross reference exists */
3090 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {