2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
28 #include "print-tree.h"
29 #include "transaction.h"
32 #include "ref-cache.h"
34 #define PENDING_EXTENT_INSERT 0
35 #define PENDING_EXTENT_DELETE 1
36 #define PENDING_BACKREF_UPDATE 2
38 struct pending_extent_op {
47 struct list_head list;
51 static int finish_current_insert(struct btrfs_trans_handle *trans,
52 struct btrfs_root *extent_root, int all);
53 static int del_pending_extents(struct btrfs_trans_handle *trans,
54 struct btrfs_root *extent_root, int all);
55 static int pin_down_bytes(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int is_data);
58 static int update_block_group(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, int alloc,
63 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
64 struct btrfs_root *extent_root, u64 alloc_bytes,
65 u64 flags, int force);
67 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
69 return (cache->flags & bits) == bits;
73 * this adds the block group to the fs_info rb tree for the block group
76 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
77 struct btrfs_block_group_cache *block_group)
80 struct rb_node *parent = NULL;
81 struct btrfs_block_group_cache *cache;
83 spin_lock(&info->block_group_cache_lock);
84 p = &info->block_group_cache_tree.rb_node;
88 cache = rb_entry(parent, struct btrfs_block_group_cache,
90 if (block_group->key.objectid < cache->key.objectid) {
92 } else if (block_group->key.objectid > cache->key.objectid) {
95 spin_unlock(&info->block_group_cache_lock);
100 rb_link_node(&block_group->cache_node, parent, p);
101 rb_insert_color(&block_group->cache_node,
102 &info->block_group_cache_tree);
103 spin_unlock(&info->block_group_cache_lock);
109 * This will return the block group at or after bytenr if contains is 0, else
110 * it will return the block group that contains the bytenr
112 static struct btrfs_block_group_cache *
113 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
116 struct btrfs_block_group_cache *cache, *ret = NULL;
120 spin_lock(&info->block_group_cache_lock);
121 n = info->block_group_cache_tree.rb_node;
124 cache = rb_entry(n, struct btrfs_block_group_cache,
126 end = cache->key.objectid + cache->key.offset - 1;
127 start = cache->key.objectid;
129 if (bytenr < start) {
130 if (!contains && (!ret || start < ret->key.objectid))
133 } else if (bytenr > start) {
134 if (contains && bytenr <= end) {
145 atomic_inc(&ret->count);
146 spin_unlock(&info->block_group_cache_lock);
152 * this is only called by cache_block_group, since we could have freed extents
153 * we need to check the pinned_extents for any extents that can't be used yet
154 * since their free space will be released as soon as the transaction commits.
156 static int add_new_free_space(struct btrfs_block_group_cache *block_group,
157 struct btrfs_fs_info *info, u64 start, u64 end)
159 u64 extent_start, extent_end, size;
162 mutex_lock(&info->pinned_mutex);
163 while (start < end) {
164 ret = find_first_extent_bit(&info->pinned_extents, start,
165 &extent_start, &extent_end,
170 if (extent_start == start) {
171 start = extent_end + 1;
172 } else if (extent_start > start && extent_start < end) {
173 size = extent_start - start;
174 ret = btrfs_add_free_space(block_group, start,
177 start = extent_end + 1;
185 ret = btrfs_add_free_space(block_group, start, size);
188 mutex_unlock(&info->pinned_mutex);
193 static int remove_sb_from_cache(struct btrfs_root *root,
194 struct btrfs_block_group_cache *cache)
201 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
202 bytenr = btrfs_sb_offset(i);
203 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
204 cache->key.objectid, bytenr, 0,
205 &logical, &nr, &stripe_len);
208 btrfs_remove_free_space(cache, logical[nr],
216 static int cache_block_group(struct btrfs_root *root,
217 struct btrfs_block_group_cache *block_group)
219 struct btrfs_path *path;
221 struct btrfs_key key;
222 struct extent_buffer *leaf;
229 root = root->fs_info->extent_root;
231 if (block_group->cached)
234 path = btrfs_alloc_path();
240 * we get into deadlocks with paths held by callers of this function.
241 * since the alloc_mutex is protecting things right now, just
242 * skip the locking here
244 path->skip_locking = 1;
245 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
248 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
254 leaf = path->nodes[0];
255 slot = path->slots[0];
256 if (slot >= btrfs_header_nritems(leaf)) {
257 ret = btrfs_next_leaf(root, path);
265 btrfs_item_key_to_cpu(leaf, &key, slot);
266 if (key.objectid < block_group->key.objectid)
269 if (key.objectid >= block_group->key.objectid +
270 block_group->key.offset)
273 if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
274 add_new_free_space(block_group, root->fs_info, last,
277 last = key.objectid + key.offset;
283 add_new_free_space(block_group, root->fs_info, last,
284 block_group->key.objectid +
285 block_group->key.offset);
287 remove_sb_from_cache(root, block_group);
288 block_group->cached = 1;
291 btrfs_free_path(path);
296 * return the block group that starts at or after bytenr
298 static struct btrfs_block_group_cache *
299 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
301 struct btrfs_block_group_cache *cache;
303 cache = block_group_cache_tree_search(info, bytenr, 0);
309 * return the block group that contains teh given bytenr
311 struct btrfs_block_group_cache *btrfs_lookup_block_group(
312 struct btrfs_fs_info *info,
315 struct btrfs_block_group_cache *cache;
317 cache = block_group_cache_tree_search(info, bytenr, 1);
322 static inline void put_block_group(struct btrfs_block_group_cache *cache)
324 if (atomic_dec_and_test(&cache->count))
328 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
331 struct list_head *head = &info->space_info;
332 struct btrfs_space_info *found;
333 list_for_each_entry(found, head, list) {
334 if (found->flags == flags)
340 static u64 div_factor(u64 num, int factor)
349 u64 btrfs_find_block_group(struct btrfs_root *root,
350 u64 search_start, u64 search_hint, int owner)
352 struct btrfs_block_group_cache *cache;
354 u64 last = max(search_hint, search_start);
361 cache = btrfs_lookup_first_block_group(root->fs_info, last);
365 spin_lock(&cache->lock);
366 last = cache->key.objectid + cache->key.offset;
367 used = btrfs_block_group_used(&cache->item);
369 if ((full_search || !cache->ro) &&
370 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
371 if (used + cache->pinned + cache->reserved <
372 div_factor(cache->key.offset, factor)) {
373 group_start = cache->key.objectid;
374 spin_unlock(&cache->lock);
375 put_block_group(cache);
379 spin_unlock(&cache->lock);
380 put_block_group(cache);
388 if (!full_search && factor < 10) {
398 /* simple helper to search for an existing extent at a given offset */
399 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
402 struct btrfs_key key;
403 struct btrfs_path *path;
405 path = btrfs_alloc_path();
407 key.objectid = start;
409 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
410 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
412 btrfs_free_path(path);
417 * Back reference rules. Back refs have three main goals:
419 * 1) differentiate between all holders of references to an extent so that
420 * when a reference is dropped we can make sure it was a valid reference
421 * before freeing the extent.
423 * 2) Provide enough information to quickly find the holders of an extent
424 * if we notice a given block is corrupted or bad.
426 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
427 * maintenance. This is actually the same as #2, but with a slightly
428 * different use case.
430 * File extents can be referenced by:
432 * - multiple snapshots, subvolumes, or different generations in one subvol
433 * - different files inside a single subvolume
434 * - different offsets inside a file (bookend extents in file.c)
436 * The extent ref structure has fields for:
438 * - Objectid of the subvolume root
439 * - Generation number of the tree holding the reference
440 * - objectid of the file holding the reference
441 * - number of references holding by parent node (alway 1 for tree blocks)
443 * Btree leaf may hold multiple references to a file extent. In most cases,
444 * these references are from same file and the corresponding offsets inside
445 * the file are close together.
447 * When a file extent is allocated the fields are filled in:
448 * (root_key.objectid, trans->transid, inode objectid, 1)
450 * When a leaf is cow'd new references are added for every file extent found
451 * in the leaf. It looks similar to the create case, but trans->transid will
452 * be different when the block is cow'd.
454 * (root_key.objectid, trans->transid, inode objectid,
455 * number of references in the leaf)
457 * When a file extent is removed either during snapshot deletion or
458 * file truncation, we find the corresponding back reference and check
459 * the following fields:
461 * (btrfs_header_owner(leaf), btrfs_header_generation(leaf),
464 * Btree extents can be referenced by:
466 * - Different subvolumes
467 * - Different generations of the same subvolume
469 * When a tree block is created, back references are inserted:
471 * (root->root_key.objectid, trans->transid, level, 1)
473 * When a tree block is cow'd, new back references are added for all the
474 * blocks it points to. If the tree block isn't in reference counted root,
475 * the old back references are removed. These new back references are of
476 * the form (trans->transid will have increased since creation):
478 * (root->root_key.objectid, trans->transid, level, 1)
480 * When a backref is in deleting, the following fields are checked:
482 * if backref was for a tree root:
483 * (btrfs_header_owner(itself), btrfs_header_generation(itself), level)
485 * (btrfs_header_owner(parent), btrfs_header_generation(parent), level)
487 * Back Reference Key composing:
489 * The key objectid corresponds to the first byte in the extent, the key
490 * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first
491 * byte of parent extent. If a extent is tree root, the key offset is set
492 * to the key objectid.
495 static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans,
496 struct btrfs_root *root,
497 struct btrfs_path *path,
498 u64 bytenr, u64 parent,
499 u64 ref_root, u64 ref_generation,
500 u64 owner_objectid, int del)
502 struct btrfs_key key;
503 struct btrfs_extent_ref *ref;
504 struct extent_buffer *leaf;
508 key.objectid = bytenr;
509 key.type = BTRFS_EXTENT_REF_KEY;
512 ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1);
520 leaf = path->nodes[0];
521 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
522 ref_objectid = btrfs_ref_objectid(leaf, ref);
523 if (btrfs_ref_root(leaf, ref) != ref_root ||
524 btrfs_ref_generation(leaf, ref) != ref_generation ||
525 (ref_objectid != owner_objectid &&
526 ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
537 * updates all the backrefs that are pending on update_list for the
540 static noinline int update_backrefs(struct btrfs_trans_handle *trans,
541 struct btrfs_root *extent_root,
542 struct btrfs_path *path,
543 struct list_head *update_list)
545 struct btrfs_key key;
546 struct btrfs_extent_ref *ref;
547 struct btrfs_fs_info *info = extent_root->fs_info;
548 struct pending_extent_op *op;
549 struct extent_buffer *leaf;
551 struct list_head *cur = update_list->next;
553 u64 ref_root = extent_root->root_key.objectid;
555 op = list_entry(cur, struct pending_extent_op, list);
558 key.objectid = op->bytenr;
559 key.type = BTRFS_EXTENT_REF_KEY;
560 key.offset = op->orig_parent;
562 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
565 leaf = path->nodes[0];
568 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
570 ref_objectid = btrfs_ref_objectid(leaf, ref);
572 if (btrfs_ref_root(leaf, ref) != ref_root ||
573 btrfs_ref_generation(leaf, ref) != op->orig_generation ||
574 (ref_objectid != op->level &&
575 ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
576 printk(KERN_ERR "btrfs couldn't find %llu, parent %llu, "
577 "root %llu, owner %u\n",
578 (unsigned long long)op->bytenr,
579 (unsigned long long)op->orig_parent,
580 (unsigned long long)ref_root, op->level);
581 btrfs_print_leaf(extent_root, leaf);
585 key.objectid = op->bytenr;
586 key.offset = op->parent;
587 key.type = BTRFS_EXTENT_REF_KEY;
588 ret = btrfs_set_item_key_safe(trans, extent_root, path, &key);
590 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
591 btrfs_set_ref_generation(leaf, ref, op->generation);
595 list_del_init(&op->list);
596 unlock_extent(&info->extent_ins, op->bytenr,
597 op->bytenr + op->num_bytes - 1, GFP_NOFS);
600 if (cur == update_list) {
601 btrfs_mark_buffer_dirty(path->nodes[0]);
602 btrfs_release_path(extent_root, path);
606 op = list_entry(cur, struct pending_extent_op, list);
609 while (path->slots[0] < btrfs_header_nritems(leaf)) {
610 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
611 if (key.objectid == op->bytenr &&
612 key.type == BTRFS_EXTENT_REF_KEY)
617 btrfs_mark_buffer_dirty(path->nodes[0]);
618 btrfs_release_path(extent_root, path);
625 static noinline int insert_extents(struct btrfs_trans_handle *trans,
626 struct btrfs_root *extent_root,
627 struct btrfs_path *path,
628 struct list_head *insert_list, int nr)
630 struct btrfs_key *keys;
632 struct pending_extent_op *op;
633 struct extent_buffer *leaf;
634 struct list_head *cur = insert_list->next;
635 struct btrfs_fs_info *info = extent_root->fs_info;
636 u64 ref_root = extent_root->root_key.objectid;
637 int i = 0, last = 0, ret;
643 keys = kzalloc(total * sizeof(struct btrfs_key), GFP_NOFS);
647 data_size = kzalloc(total * sizeof(u32), GFP_NOFS);
653 list_for_each_entry(op, insert_list, list) {
654 keys[i].objectid = op->bytenr;
655 keys[i].offset = op->num_bytes;
656 keys[i].type = BTRFS_EXTENT_ITEM_KEY;
657 data_size[i] = sizeof(struct btrfs_extent_item);
660 keys[i].objectid = op->bytenr;
661 keys[i].offset = op->parent;
662 keys[i].type = BTRFS_EXTENT_REF_KEY;
663 data_size[i] = sizeof(struct btrfs_extent_ref);
667 op = list_entry(cur, struct pending_extent_op, list);
671 ret = btrfs_insert_some_items(trans, extent_root, path,
672 keys+i, data_size+i, total-i);
678 leaf = path->nodes[0];
679 for (c = 0; c < ret; c++) {
680 int ref_first = keys[i].type == BTRFS_EXTENT_REF_KEY;
683 * if the first item we inserted was a backref, then
684 * the EXTENT_ITEM will be the odd c's, else it will
687 if ((ref_first && (c % 2)) ||
688 (!ref_first && !(c % 2))) {
689 struct btrfs_extent_item *itm;
691 itm = btrfs_item_ptr(leaf, path->slots[0] + c,
692 struct btrfs_extent_item);
693 btrfs_set_extent_refs(path->nodes[0], itm, 1);
696 struct btrfs_extent_ref *ref;
698 ref = btrfs_item_ptr(leaf, path->slots[0] + c,
699 struct btrfs_extent_ref);
700 btrfs_set_ref_root(leaf, ref, ref_root);
701 btrfs_set_ref_generation(leaf, ref,
703 btrfs_set_ref_objectid(leaf, ref, op->level);
704 btrfs_set_ref_num_refs(leaf, ref, 1);
709 * using del to see when its ok to free up the
710 * pending_extent_op. In the case where we insert the
711 * last item on the list in order to help do batching
712 * we need to not free the extent op until we actually
713 * insert the extent_item
716 unlock_extent(&info->extent_ins, op->bytenr,
717 op->bytenr + op->num_bytes - 1,
720 list_del_init(&op->list);
722 if (cur != insert_list)
724 struct pending_extent_op,
728 btrfs_mark_buffer_dirty(leaf);
729 btrfs_release_path(extent_root, path);
732 * Ok backref's and items usually go right next to eachother,
733 * but if we could only insert 1 item that means that we
734 * inserted on the end of a leaf, and we have no idea what may
735 * be on the next leaf so we just play it safe. In order to
736 * try and help this case we insert the last thing on our
737 * insert list so hopefully it will end up being the last
738 * thing on the leaf and everything else will be before it,
739 * which will let us insert a whole bunch of items at the same
742 if (ret == 1 && !last && (i + ret < total)) {
744 * last: where we will pick up the next time around
745 * i: our current key to insert, will be total - 1
746 * cur: the current op we are screwing with
751 cur = insert_list->prev;
752 op = list_entry(cur, struct pending_extent_op, list);
755 * ok we successfully inserted the last item on the
756 * list, lets reset everything
758 * i: our current key to insert, so where we left off
760 * last: done with this
761 * cur: the op we are messing with
763 * total: since we inserted the last key, we need to
764 * decrement total so we dont overflow
770 cur = insert_list->next;
771 op = list_entry(cur, struct pending_extent_op,
786 static noinline int insert_extent_backref(struct btrfs_trans_handle *trans,
787 struct btrfs_root *root,
788 struct btrfs_path *path,
789 u64 bytenr, u64 parent,
790 u64 ref_root, u64 ref_generation,
793 struct btrfs_key key;
794 struct extent_buffer *leaf;
795 struct btrfs_extent_ref *ref;
799 key.objectid = bytenr;
800 key.type = BTRFS_EXTENT_REF_KEY;
803 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref));
805 leaf = path->nodes[0];
806 ref = btrfs_item_ptr(leaf, path->slots[0],
807 struct btrfs_extent_ref);
808 btrfs_set_ref_root(leaf, ref, ref_root);
809 btrfs_set_ref_generation(leaf, ref, ref_generation);
810 btrfs_set_ref_objectid(leaf, ref, owner_objectid);
811 btrfs_set_ref_num_refs(leaf, ref, 1);
812 } else if (ret == -EEXIST) {
814 BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID);
815 leaf = path->nodes[0];
816 ref = btrfs_item_ptr(leaf, path->slots[0],
817 struct btrfs_extent_ref);
818 if (btrfs_ref_root(leaf, ref) != ref_root ||
819 btrfs_ref_generation(leaf, ref) != ref_generation) {
825 num_refs = btrfs_ref_num_refs(leaf, ref);
826 BUG_ON(num_refs == 0);
827 btrfs_set_ref_num_refs(leaf, ref, num_refs + 1);
829 existing_owner = btrfs_ref_objectid(leaf, ref);
830 if (existing_owner != owner_objectid &&
831 existing_owner != BTRFS_MULTIPLE_OBJECTIDS) {
832 btrfs_set_ref_objectid(leaf, ref,
833 BTRFS_MULTIPLE_OBJECTIDS);
839 btrfs_mark_buffer_dirty(path->nodes[0]);
841 btrfs_release_path(root, path);
845 static noinline int remove_extent_backref(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root,
847 struct btrfs_path *path)
849 struct extent_buffer *leaf;
850 struct btrfs_extent_ref *ref;
854 leaf = path->nodes[0];
855 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
856 num_refs = btrfs_ref_num_refs(leaf, ref);
857 BUG_ON(num_refs == 0);
860 ret = btrfs_del_item(trans, root, path);
862 btrfs_set_ref_num_refs(leaf, ref, num_refs);
863 btrfs_mark_buffer_dirty(leaf);
865 btrfs_release_path(root, path);
869 #ifdef BIO_RW_DISCARD
870 static void btrfs_issue_discard(struct block_device *bdev,
873 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
877 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
880 #ifdef BIO_RW_DISCARD
882 u64 map_length = num_bytes;
883 struct btrfs_multi_bio *multi = NULL;
885 /* Tell the block device(s) that the sectors can be discarded */
886 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
887 bytenr, &map_length, &multi, 0);
889 struct btrfs_bio_stripe *stripe = multi->stripes;
892 if (map_length > num_bytes)
893 map_length = num_bytes;
895 for (i = 0; i < multi->num_stripes; i++, stripe++) {
896 btrfs_issue_discard(stripe->dev->bdev,
909 static noinline int free_extents(struct btrfs_trans_handle *trans,
910 struct btrfs_root *extent_root,
911 struct list_head *del_list)
913 struct btrfs_fs_info *info = extent_root->fs_info;
914 struct btrfs_path *path;
915 struct btrfs_key key, found_key;
916 struct extent_buffer *leaf;
917 struct list_head *cur;
918 struct pending_extent_op *op;
919 struct btrfs_extent_item *ei;
920 int ret, num_to_del, extent_slot = 0, found_extent = 0;
924 path = btrfs_alloc_path();
930 /* search for the backref for the current ref we want to delete */
931 cur = del_list->next;
932 op = list_entry(cur, struct pending_extent_op, list);
933 ret = lookup_extent_backref(trans, extent_root, path, op->bytenr,
935 extent_root->root_key.objectid,
936 op->orig_generation, op->level, 1);
938 printk(KERN_ERR "btrfs unable to find backref byte nr %llu "
939 "root %llu gen %llu owner %u\n",
940 (unsigned long long)op->bytenr,
941 (unsigned long long)extent_root->root_key.objectid,
942 (unsigned long long)op->orig_generation, op->level);
943 btrfs_print_leaf(extent_root, path->nodes[0]);
948 extent_slot = path->slots[0];
953 * if we aren't the first item on the leaf we can move back one and see
954 * if our ref is right next to our extent item
956 if (likely(extent_slot)) {
958 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
960 if (found_key.objectid == op->bytenr &&
961 found_key.type == BTRFS_EXTENT_ITEM_KEY &&
962 found_key.offset == op->num_bytes) {
969 * if we didn't find the extent we need to delete the backref and then
970 * search for the extent item key so we can update its ref count
973 key.objectid = op->bytenr;
974 key.type = BTRFS_EXTENT_ITEM_KEY;
975 key.offset = op->num_bytes;
977 ret = remove_extent_backref(trans, extent_root, path);
979 btrfs_release_path(extent_root, path);
980 ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1);
982 extent_slot = path->slots[0];
985 /* this is where we update the ref count for the extent */
986 leaf = path->nodes[0];
987 ei = btrfs_item_ptr(leaf, extent_slot, struct btrfs_extent_item);
988 refs = btrfs_extent_refs(leaf, ei);
991 btrfs_set_extent_refs(leaf, ei, refs);
993 btrfs_mark_buffer_dirty(leaf);
996 * This extent needs deleting. The reason cur_slot is extent_slot +
997 * num_to_del is because extent_slot points to the slot where the extent
998 * is, and if the backref was not right next to the extent we will be
999 * deleting at least 1 item, and will want to start searching at the
1000 * slot directly next to extent_slot. However if we did find the
1001 * backref next to the extent item them we will be deleting at least 2
1002 * items and will want to start searching directly after the ref slot
1005 struct list_head *pos, *n, *end;
1006 int cur_slot = extent_slot+num_to_del;
1010 path->slots[0] = extent_slot;
1011 bytes_freed = op->num_bytes;
1013 mutex_lock(&info->pinned_mutex);
1014 ret = pin_down_bytes(trans, extent_root, op->bytenr,
1015 op->num_bytes, op->level >=
1016 BTRFS_FIRST_FREE_OBJECTID);
1017 mutex_unlock(&info->pinned_mutex);
1022 * we need to see if we can delete multiple things at once, so
1023 * start looping through the list of extents we are wanting to
1024 * delete and see if their extent/backref's are right next to
1025 * eachother and the extents only have 1 ref
1027 for (pos = cur->next; pos != del_list; pos = pos->next) {
1028 struct pending_extent_op *tmp;
1030 tmp = list_entry(pos, struct pending_extent_op, list);
1032 /* we only want to delete extent+ref at this stage */
1033 if (cur_slot >= btrfs_header_nritems(leaf) - 1)
1036 btrfs_item_key_to_cpu(leaf, &found_key, cur_slot);
1037 if (found_key.objectid != tmp->bytenr ||
1038 found_key.type != BTRFS_EXTENT_ITEM_KEY ||
1039 found_key.offset != tmp->num_bytes)
1042 /* check to make sure this extent only has one ref */
1043 ei = btrfs_item_ptr(leaf, cur_slot,
1044 struct btrfs_extent_item);
1045 if (btrfs_extent_refs(leaf, ei) != 1)
1048 btrfs_item_key_to_cpu(leaf, &found_key, cur_slot+1);
1049 if (found_key.objectid != tmp->bytenr ||
1050 found_key.type != BTRFS_EXTENT_REF_KEY ||
1051 found_key.offset != tmp->orig_parent)
1055 * the ref is right next to the extent, we can set the
1056 * ref count to 0 since we will delete them both now
1058 btrfs_set_extent_refs(leaf, ei, 0);
1060 /* pin down the bytes for this extent */
1061 mutex_lock(&info->pinned_mutex);
1062 ret = pin_down_bytes(trans, extent_root, tmp->bytenr,
1063 tmp->num_bytes, tmp->level >=
1064 BTRFS_FIRST_FREE_OBJECTID);
1065 mutex_unlock(&info->pinned_mutex);
1069 * use the del field to tell if we need to go ahead and
1070 * free up the extent when we delete the item or not.
1073 bytes_freed += tmp->num_bytes;
1080 /* update the free space counters */
1081 spin_lock(&info->delalloc_lock);
1082 super_used = btrfs_super_bytes_used(&info->super_copy);
1083 btrfs_set_super_bytes_used(&info->super_copy,
1084 super_used - bytes_freed);
1086 root_used = btrfs_root_used(&extent_root->root_item);
1087 btrfs_set_root_used(&extent_root->root_item,
1088 root_used - bytes_freed);
1089 spin_unlock(&info->delalloc_lock);
1091 /* delete the items */
1092 ret = btrfs_del_items(trans, extent_root, path,
1093 path->slots[0], num_to_del);
1097 * loop through the extents we deleted and do the cleanup work
1100 for (pos = cur, n = pos->next; pos != end;
1101 pos = n, n = pos->next) {
1102 struct pending_extent_op *tmp;
1103 tmp = list_entry(pos, struct pending_extent_op, list);
1106 * remember tmp->del tells us wether or not we pinned
1109 ret = update_block_group(trans, extent_root,
1110 tmp->bytenr, tmp->num_bytes, 0,
1114 list_del_init(&tmp->list);
1115 unlock_extent(&info->extent_ins, tmp->bytenr,
1116 tmp->bytenr + tmp->num_bytes - 1,
1120 } else if (refs && found_extent) {
1122 * the ref and extent were right next to eachother, but the
1123 * extent still has a ref, so just free the backref and keep
1126 ret = remove_extent_backref(trans, extent_root, path);
1129 list_del_init(&op->list);
1130 unlock_extent(&info->extent_ins, op->bytenr,
1131 op->bytenr + op->num_bytes - 1, GFP_NOFS);
1135 * the extent has multiple refs and the backref we were looking
1136 * for was not right next to it, so just unlock and go next,
1139 list_del_init(&op->list);
1140 unlock_extent(&info->extent_ins, op->bytenr,
1141 op->bytenr + op->num_bytes - 1, GFP_NOFS);
1145 btrfs_release_path(extent_root, path);
1146 if (!list_empty(del_list))
1150 btrfs_free_path(path);
1154 static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
1155 struct btrfs_root *root, u64 bytenr,
1156 u64 orig_parent, u64 parent,
1157 u64 orig_root, u64 ref_root,
1158 u64 orig_generation, u64 ref_generation,
1162 struct btrfs_root *extent_root = root->fs_info->extent_root;
1163 struct btrfs_path *path;
1165 if (root == root->fs_info->extent_root) {
1166 struct pending_extent_op *extent_op;
1169 BUG_ON(owner_objectid >= BTRFS_MAX_LEVEL);
1170 num_bytes = btrfs_level_size(root, (int)owner_objectid);
1171 mutex_lock(&root->fs_info->extent_ins_mutex);
1172 if (test_range_bit(&root->fs_info->extent_ins, bytenr,
1173 bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) {
1175 ret = get_state_private(&root->fs_info->extent_ins,
1178 extent_op = (struct pending_extent_op *)
1179 (unsigned long)priv;
1180 BUG_ON(extent_op->parent != orig_parent);
1181 BUG_ON(extent_op->generation != orig_generation);
1183 extent_op->parent = parent;
1184 extent_op->generation = ref_generation;
1186 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
1189 extent_op->type = PENDING_BACKREF_UPDATE;
1190 extent_op->bytenr = bytenr;
1191 extent_op->num_bytes = num_bytes;
1192 extent_op->parent = parent;
1193 extent_op->orig_parent = orig_parent;
1194 extent_op->generation = ref_generation;
1195 extent_op->orig_generation = orig_generation;
1196 extent_op->level = (int)owner_objectid;
1197 INIT_LIST_HEAD(&extent_op->list);
1200 set_extent_bits(&root->fs_info->extent_ins,
1201 bytenr, bytenr + num_bytes - 1,
1202 EXTENT_WRITEBACK, GFP_NOFS);
1203 set_state_private(&root->fs_info->extent_ins,
1204 bytenr, (unsigned long)extent_op);
1206 mutex_unlock(&root->fs_info->extent_ins_mutex);
1210 path = btrfs_alloc_path();
1213 ret = lookup_extent_backref(trans, extent_root, path,
1214 bytenr, orig_parent, orig_root,
1215 orig_generation, owner_objectid, 1);
1218 ret = remove_extent_backref(trans, extent_root, path);
1221 ret = insert_extent_backref(trans, extent_root, path, bytenr,
1222 parent, ref_root, ref_generation,
1225 finish_current_insert(trans, extent_root, 0);
1226 del_pending_extents(trans, extent_root, 0);
1228 btrfs_free_path(path);
1232 int btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
1233 struct btrfs_root *root, u64 bytenr,
1234 u64 orig_parent, u64 parent,
1235 u64 ref_root, u64 ref_generation,
1239 if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
1240 owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
1242 ret = __btrfs_update_extent_ref(trans, root, bytenr, orig_parent,
1243 parent, ref_root, ref_root,
1244 ref_generation, ref_generation,
1249 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root, u64 bytenr,
1251 u64 orig_parent, u64 parent,
1252 u64 orig_root, u64 ref_root,
1253 u64 orig_generation, u64 ref_generation,
1256 struct btrfs_path *path;
1258 struct btrfs_key key;
1259 struct extent_buffer *l;
1260 struct btrfs_extent_item *item;
1263 path = btrfs_alloc_path();
1268 key.objectid = bytenr;
1269 key.type = BTRFS_EXTENT_ITEM_KEY;
1270 key.offset = (u64)-1;
1272 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
1276 BUG_ON(ret == 0 || path->slots[0] == 0);
1281 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1282 if (key.objectid != bytenr) {
1283 btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]);
1284 printk(KERN_ERR "btrfs wanted %llu found %llu\n",
1285 (unsigned long long)bytenr,
1286 (unsigned long long)key.objectid);
1289 BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY);
1291 item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
1292 refs = btrfs_extent_refs(l, item);
1293 btrfs_set_extent_refs(l, item, refs + 1);
1294 btrfs_mark_buffer_dirty(path->nodes[0]);
1296 btrfs_release_path(root->fs_info->extent_root, path);
1299 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1300 path, bytenr, parent,
1301 ref_root, ref_generation,
1304 finish_current_insert(trans, root->fs_info->extent_root, 0);
1305 del_pending_extents(trans, root->fs_info->extent_root, 0);
1307 btrfs_free_path(path);
1311 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1312 struct btrfs_root *root,
1313 u64 bytenr, u64 num_bytes, u64 parent,
1314 u64 ref_root, u64 ref_generation,
1318 if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
1319 owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
1321 ret = __btrfs_inc_extent_ref(trans, root, bytenr, 0, parent,
1322 0, ref_root, 0, ref_generation,
1327 int btrfs_extent_post_op(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root)
1335 finish_current_insert(trans, root->fs_info->extent_root, 1);
1336 del_pending_extents(trans, root->fs_info->extent_root, 1);
1338 /* is there more work to do? */
1339 ret = find_first_extent_bit(&root->fs_info->pending_del,
1340 0, &start, &end, EXTENT_WRITEBACK);
1343 ret = find_first_extent_bit(&root->fs_info->extent_ins,
1344 0, &start, &end, EXTENT_WRITEBACK);
1352 int btrfs_lookup_extent_ref(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root, u64 bytenr,
1354 u64 num_bytes, u32 *refs)
1356 struct btrfs_path *path;
1358 struct btrfs_key key;
1359 struct extent_buffer *l;
1360 struct btrfs_extent_item *item;
1362 WARN_ON(num_bytes < root->sectorsize);
1363 path = btrfs_alloc_path();
1365 key.objectid = bytenr;
1366 key.offset = num_bytes;
1367 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
1368 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
1373 btrfs_print_leaf(root, path->nodes[0]);
1374 printk(KERN_INFO "btrfs failed to find block number %llu\n",
1375 (unsigned long long)bytenr);
1379 item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
1380 *refs = btrfs_extent_refs(l, item);
1382 btrfs_free_path(path);
1386 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root, u64 objectid, u64 bytenr)
1389 struct btrfs_root *extent_root = root->fs_info->extent_root;
1390 struct btrfs_path *path;
1391 struct extent_buffer *leaf;
1392 struct btrfs_extent_ref *ref_item;
1393 struct btrfs_key key;
1394 struct btrfs_key found_key;
1400 key.objectid = bytenr;
1401 key.offset = (u64)-1;
1402 key.type = BTRFS_EXTENT_ITEM_KEY;
1404 path = btrfs_alloc_path();
1405 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1411 if (path->slots[0] == 0)
1415 leaf = path->nodes[0];
1416 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1418 if (found_key.objectid != bytenr ||
1419 found_key.type != BTRFS_EXTENT_ITEM_KEY)
1422 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1424 leaf = path->nodes[0];
1425 nritems = btrfs_header_nritems(leaf);
1426 if (path->slots[0] >= nritems) {
1427 ret = btrfs_next_leaf(extent_root, path);
1434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1435 if (found_key.objectid != bytenr)
1438 if (found_key.type != BTRFS_EXTENT_REF_KEY) {
1443 ref_item = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref);
1445 ref_root = btrfs_ref_root(leaf, ref_item);
1446 if ((ref_root != root->root_key.objectid &&
1447 ref_root != BTRFS_TREE_LOG_OBJECTID) ||
1448 objectid != btrfs_ref_objectid(leaf, ref_item)) {
1452 if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) {
1461 btrfs_free_path(path);
1465 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1466 struct extent_buffer *buf, u32 nr_extents)
1468 struct btrfs_key key;
1469 struct btrfs_file_extent_item *fi;
1477 if (!root->ref_cows)
1480 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1482 root_gen = root->root_key.offset;
1485 root_gen = trans->transid - 1;
1488 level = btrfs_header_level(buf);
1489 nritems = btrfs_header_nritems(buf);
1492 struct btrfs_leaf_ref *ref;
1493 struct btrfs_extent_info *info;
1495 ref = btrfs_alloc_leaf_ref(root, nr_extents);
1501 ref->root_gen = root_gen;
1502 ref->bytenr = buf->start;
1503 ref->owner = btrfs_header_owner(buf);
1504 ref->generation = btrfs_header_generation(buf);
1505 ref->nritems = nr_extents;
1506 info = ref->extents;
1508 for (i = 0; nr_extents > 0 && i < nritems; i++) {
1510 btrfs_item_key_to_cpu(buf, &key, i);
1511 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1513 fi = btrfs_item_ptr(buf, i,
1514 struct btrfs_file_extent_item);
1515 if (btrfs_file_extent_type(buf, fi) ==
1516 BTRFS_FILE_EXTENT_INLINE)
1518 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1519 if (disk_bytenr == 0)
1522 info->bytenr = disk_bytenr;
1524 btrfs_file_extent_disk_num_bytes(buf, fi);
1525 info->objectid = key.objectid;
1526 info->offset = key.offset;
1530 ret = btrfs_add_leaf_ref(root, ref, shared);
1531 if (ret == -EEXIST && shared) {
1532 struct btrfs_leaf_ref *old;
1533 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
1535 btrfs_remove_leaf_ref(root, old);
1536 btrfs_free_leaf_ref(root, old);
1537 ret = btrfs_add_leaf_ref(root, ref, shared);
1540 btrfs_free_leaf_ref(root, ref);
1546 /* when a block goes through cow, we update the reference counts of
1547 * everything that block points to. The internal pointers of the block
1548 * can be in just about any order, and it is likely to have clusters of
1549 * things that are close together and clusters of things that are not.
1551 * To help reduce the seeks that come with updating all of these reference
1552 * counts, sort them by byte number before actual updates are done.
1554 * struct refsort is used to match byte number to slot in the btree block.
1555 * we sort based on the byte number and then use the slot to actually
1558 * struct refsort is smaller than strcut btrfs_item and smaller than
1559 * struct btrfs_key_ptr. Since we're currently limited to the page size
1560 * for a btree block, there's no way for a kmalloc of refsorts for a
1561 * single node to be bigger than a page.
1569 * for passing into sort()
1571 static int refsort_cmp(const void *a_void, const void *b_void)
1573 const struct refsort *a = a_void;
1574 const struct refsort *b = b_void;
1576 if (a->bytenr < b->bytenr)
1578 if (a->bytenr > b->bytenr)
1584 noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root,
1586 struct extent_buffer *orig_buf,
1587 struct extent_buffer *buf, u32 *nr_extents)
1593 u64 orig_generation;
1594 struct refsort *sorted;
1596 u32 nr_file_extents = 0;
1597 struct btrfs_key key;
1598 struct btrfs_file_extent_item *fi;
1605 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
1606 u64, u64, u64, u64, u64, u64, u64, u64);
1608 ref_root = btrfs_header_owner(buf);
1609 ref_generation = btrfs_header_generation(buf);
1610 orig_root = btrfs_header_owner(orig_buf);
1611 orig_generation = btrfs_header_generation(orig_buf);
1613 nritems = btrfs_header_nritems(buf);
1614 level = btrfs_header_level(buf);
1616 sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS);
1619 if (root->ref_cows) {
1620 process_func = __btrfs_inc_extent_ref;
1623 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1626 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1628 process_func = __btrfs_update_extent_ref;
1632 * we make two passes through the items. In the first pass we
1633 * only record the byte number and slot. Then we sort based on
1634 * byte number and do the actual work based on the sorted results
1636 for (i = 0; i < nritems; i++) {
1639 btrfs_item_key_to_cpu(buf, &key, i);
1640 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1642 fi = btrfs_item_ptr(buf, i,
1643 struct btrfs_file_extent_item);
1644 if (btrfs_file_extent_type(buf, fi) ==
1645 BTRFS_FILE_EXTENT_INLINE)
1647 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1652 sorted[refi].bytenr = bytenr;
1653 sorted[refi].slot = i;
1656 bytenr = btrfs_node_blockptr(buf, i);
1657 sorted[refi].bytenr = bytenr;
1658 sorted[refi].slot = i;
1663 * if refi == 0, we didn't actually put anything into the sorted
1664 * array and we're done
1669 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
1671 for (i = 0; i < refi; i++) {
1673 slot = sorted[i].slot;
1674 bytenr = sorted[i].bytenr;
1677 btrfs_item_key_to_cpu(buf, &key, slot);
1679 ret = process_func(trans, root, bytenr,
1680 orig_buf->start, buf->start,
1681 orig_root, ref_root,
1682 orig_generation, ref_generation,
1691 ret = process_func(trans, root, bytenr,
1692 orig_buf->start, buf->start,
1693 orig_root, ref_root,
1694 orig_generation, ref_generation,
1707 *nr_extents = nr_file_extents;
1709 *nr_extents = nritems;
1718 int btrfs_update_ref(struct btrfs_trans_handle *trans,
1719 struct btrfs_root *root, struct extent_buffer *orig_buf,
1720 struct extent_buffer *buf, int start_slot, int nr)
1727 u64 orig_generation;
1728 struct btrfs_key key;
1729 struct btrfs_file_extent_item *fi;
1735 BUG_ON(start_slot < 0);
1736 BUG_ON(start_slot + nr > btrfs_header_nritems(buf));
1738 ref_root = btrfs_header_owner(buf);
1739 ref_generation = btrfs_header_generation(buf);
1740 orig_root = btrfs_header_owner(orig_buf);
1741 orig_generation = btrfs_header_generation(orig_buf);
1742 level = btrfs_header_level(buf);
1744 if (!root->ref_cows) {
1746 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1749 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1753 for (i = 0, slot = start_slot; i < nr; i++, slot++) {
1756 btrfs_item_key_to_cpu(buf, &key, slot);
1757 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1759 fi = btrfs_item_ptr(buf, slot,
1760 struct btrfs_file_extent_item);
1761 if (btrfs_file_extent_type(buf, fi) ==
1762 BTRFS_FILE_EXTENT_INLINE)
1764 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1767 ret = __btrfs_update_extent_ref(trans, root, bytenr,
1768 orig_buf->start, buf->start,
1769 orig_root, ref_root,
1770 orig_generation, ref_generation,
1775 bytenr = btrfs_node_blockptr(buf, slot);
1776 ret = __btrfs_update_extent_ref(trans, root, bytenr,
1777 orig_buf->start, buf->start,
1778 orig_root, ref_root,
1779 orig_generation, ref_generation,
1791 static int write_one_cache_group(struct btrfs_trans_handle *trans,
1792 struct btrfs_root *root,
1793 struct btrfs_path *path,
1794 struct btrfs_block_group_cache *cache)
1798 struct btrfs_root *extent_root = root->fs_info->extent_root;
1800 struct extent_buffer *leaf;
1802 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
1807 leaf = path->nodes[0];
1808 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
1809 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
1810 btrfs_mark_buffer_dirty(leaf);
1811 btrfs_release_path(extent_root, path);
1813 finish_current_insert(trans, extent_root, 0);
1814 pending_ret = del_pending_extents(trans, extent_root, 0);
1823 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1824 struct btrfs_root *root)
1826 struct btrfs_block_group_cache *cache, *entry;
1830 struct btrfs_path *path;
1833 path = btrfs_alloc_path();
1839 spin_lock(&root->fs_info->block_group_cache_lock);
1840 for (n = rb_first(&root->fs_info->block_group_cache_tree);
1841 n; n = rb_next(n)) {
1842 entry = rb_entry(n, struct btrfs_block_group_cache,
1849 spin_unlock(&root->fs_info->block_group_cache_lock);
1855 last += cache->key.offset;
1857 err = write_one_cache_group(trans, root,
1860 * if we fail to write the cache group, we want
1861 * to keep it marked dirty in hopes that a later
1869 btrfs_free_path(path);
1873 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
1875 struct btrfs_block_group_cache *block_group;
1878 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1879 if (!block_group || block_group->ro)
1882 put_block_group(block_group);
1886 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
1887 u64 total_bytes, u64 bytes_used,
1888 struct btrfs_space_info **space_info)
1890 struct btrfs_space_info *found;
1892 found = __find_space_info(info, flags);
1894 spin_lock(&found->lock);
1895 found->total_bytes += total_bytes;
1896 found->bytes_used += bytes_used;
1898 spin_unlock(&found->lock);
1899 *space_info = found;
1902 found = kzalloc(sizeof(*found), GFP_NOFS);
1906 list_add(&found->list, &info->space_info);
1907 INIT_LIST_HEAD(&found->block_groups);
1908 init_rwsem(&found->groups_sem);
1909 spin_lock_init(&found->lock);
1910 found->flags = flags;
1911 found->total_bytes = total_bytes;
1912 found->bytes_used = bytes_used;
1913 found->bytes_pinned = 0;
1914 found->bytes_reserved = 0;
1915 found->bytes_readonly = 0;
1916 found->bytes_delalloc = 0;
1918 found->force_alloc = 0;
1919 *space_info = found;
1923 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1925 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
1926 BTRFS_BLOCK_GROUP_RAID1 |
1927 BTRFS_BLOCK_GROUP_RAID10 |
1928 BTRFS_BLOCK_GROUP_DUP);
1930 if (flags & BTRFS_BLOCK_GROUP_DATA)
1931 fs_info->avail_data_alloc_bits |= extra_flags;
1932 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1933 fs_info->avail_metadata_alloc_bits |= extra_flags;
1934 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1935 fs_info->avail_system_alloc_bits |= extra_flags;
1939 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
1941 spin_lock(&cache->space_info->lock);
1942 spin_lock(&cache->lock);
1944 cache->space_info->bytes_readonly += cache->key.offset -
1945 btrfs_block_group_used(&cache->item);
1948 spin_unlock(&cache->lock);
1949 spin_unlock(&cache->space_info->lock);
1952 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
1954 u64 num_devices = root->fs_info->fs_devices->rw_devices;
1956 if (num_devices == 1)
1957 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
1958 if (num_devices < 4)
1959 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
1961 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
1962 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
1963 BTRFS_BLOCK_GROUP_RAID10))) {
1964 flags &= ~BTRFS_BLOCK_GROUP_DUP;
1967 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
1968 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
1969 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
1972 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
1973 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
1974 (flags & BTRFS_BLOCK_GROUP_RAID10) |
1975 (flags & BTRFS_BLOCK_GROUP_DUP)))
1976 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
1980 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
1982 struct btrfs_fs_info *info = root->fs_info;
1986 alloc_profile = info->avail_data_alloc_bits &
1987 info->data_alloc_profile;
1988 data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
1989 } else if (root == root->fs_info->chunk_root) {
1990 alloc_profile = info->avail_system_alloc_bits &
1991 info->system_alloc_profile;
1992 data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
1994 alloc_profile = info->avail_metadata_alloc_bits &
1995 info->metadata_alloc_profile;
1996 data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
1999 return btrfs_reduce_alloc_profile(root, data);
2002 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2006 alloc_target = btrfs_get_alloc_profile(root, 1);
2007 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2012 * for now this just makes sure we have at least 5% of our metadata space free
2015 int btrfs_check_metadata_free_space(struct btrfs_root *root)
2017 struct btrfs_fs_info *info = root->fs_info;
2018 struct btrfs_space_info *meta_sinfo;
2019 u64 alloc_target, thresh;
2020 int committed = 0, ret;
2022 /* get the space info for where the metadata will live */
2023 alloc_target = btrfs_get_alloc_profile(root, 0);
2024 meta_sinfo = __find_space_info(info, alloc_target);
2027 spin_lock(&meta_sinfo->lock);
2028 if (!meta_sinfo->full)
2029 thresh = meta_sinfo->total_bytes * 80;
2031 thresh = meta_sinfo->total_bytes * 95;
2033 do_div(thresh, 100);
2035 if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
2036 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) {
2037 struct btrfs_trans_handle *trans;
2038 if (!meta_sinfo->full) {
2039 meta_sinfo->force_alloc = 1;
2040 spin_unlock(&meta_sinfo->lock);
2042 trans = btrfs_start_transaction(root, 1);
2046 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2047 2 * 1024 * 1024, alloc_target, 0);
2048 btrfs_end_transaction(trans, root);
2051 spin_unlock(&meta_sinfo->lock);
2055 trans = btrfs_join_transaction(root, 1);
2058 ret = btrfs_commit_transaction(trans, root);
2065 spin_unlock(&meta_sinfo->lock);
2071 * This will check the space that the inode allocates from to make sure we have
2072 * enough space for bytes.
2074 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
2077 struct btrfs_space_info *data_sinfo;
2078 int ret = 0, committed = 0;
2080 /* make sure bytes are sectorsize aligned */
2081 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2083 data_sinfo = BTRFS_I(inode)->space_info;
2085 /* make sure we have enough space to handle the data first */
2086 spin_lock(&data_sinfo->lock);
2087 if (data_sinfo->total_bytes - data_sinfo->bytes_used -
2088 data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
2089 data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
2090 data_sinfo->bytes_may_use < bytes) {
2091 struct btrfs_trans_handle *trans;
2094 * if we don't have enough free bytes in this space then we need
2095 * to alloc a new chunk.
2097 if (!data_sinfo->full) {
2100 data_sinfo->force_alloc = 1;
2101 spin_unlock(&data_sinfo->lock);
2103 alloc_target = btrfs_get_alloc_profile(root, 1);
2104 trans = btrfs_start_transaction(root, 1);
2108 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2109 bytes + 2 * 1024 * 1024,
2111 btrfs_end_transaction(trans, root);
2116 spin_unlock(&data_sinfo->lock);
2118 /* commit the current transaction and try again */
2121 trans = btrfs_join_transaction(root, 1);
2124 ret = btrfs_commit_transaction(trans, root);
2130 printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
2131 ", %llu bytes_used, %llu bytes_reserved, "
2132 "%llu bytes_pinned, %llu bytes_readonly, %llu may use"
2133 "%llu total\n", bytes, data_sinfo->bytes_delalloc,
2134 data_sinfo->bytes_used, data_sinfo->bytes_reserved,
2135 data_sinfo->bytes_pinned, data_sinfo->bytes_readonly,
2136 data_sinfo->bytes_may_use, data_sinfo->total_bytes);
2139 data_sinfo->bytes_may_use += bytes;
2140 BTRFS_I(inode)->reserved_bytes += bytes;
2141 spin_unlock(&data_sinfo->lock);
2143 return btrfs_check_metadata_free_space(root);
2147 * if there was an error for whatever reason after calling
2148 * btrfs_check_data_free_space, call this so we can cleanup the counters.
2150 void btrfs_free_reserved_data_space(struct btrfs_root *root,
2151 struct inode *inode, u64 bytes)
2153 struct btrfs_space_info *data_sinfo;
2155 /* make sure bytes are sectorsize aligned */
2156 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2158 data_sinfo = BTRFS_I(inode)->space_info;
2159 spin_lock(&data_sinfo->lock);
2160 data_sinfo->bytes_may_use -= bytes;
2161 BTRFS_I(inode)->reserved_bytes -= bytes;
2162 spin_unlock(&data_sinfo->lock);
2165 /* called when we are adding a delalloc extent to the inode's io_tree */
2166 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
2169 struct btrfs_space_info *data_sinfo;
2171 /* get the space info for where this inode will be storing its data */
2172 data_sinfo = BTRFS_I(inode)->space_info;
2174 /* make sure we have enough space to handle the data first */
2175 spin_lock(&data_sinfo->lock);
2176 data_sinfo->bytes_delalloc += bytes;
2179 * we are adding a delalloc extent without calling
2180 * btrfs_check_data_free_space first. This happens on a weird
2181 * writepage condition, but shouldn't hurt our accounting
2183 if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
2184 data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
2185 BTRFS_I(inode)->reserved_bytes = 0;
2187 data_sinfo->bytes_may_use -= bytes;
2188 BTRFS_I(inode)->reserved_bytes -= bytes;
2191 spin_unlock(&data_sinfo->lock);
2194 /* called when we are clearing an delalloc extent from the inode's io_tree */
2195 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
2198 struct btrfs_space_info *info;
2200 info = BTRFS_I(inode)->space_info;
2202 spin_lock(&info->lock);
2203 info->bytes_delalloc -= bytes;
2204 spin_unlock(&info->lock);
2207 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *extent_root, u64 alloc_bytes,
2209 u64 flags, int force)
2211 struct btrfs_space_info *space_info;
2215 mutex_lock(&extent_root->fs_info->chunk_mutex);
2217 flags = btrfs_reduce_alloc_profile(extent_root, flags);
2219 space_info = __find_space_info(extent_root->fs_info, flags);
2221 ret = update_space_info(extent_root->fs_info, flags,
2225 BUG_ON(!space_info);
2227 spin_lock(&space_info->lock);
2228 if (space_info->force_alloc) {
2230 space_info->force_alloc = 0;
2232 if (space_info->full) {
2233 spin_unlock(&space_info->lock);
2237 thresh = space_info->total_bytes - space_info->bytes_readonly;
2238 thresh = div_factor(thresh, 6);
2240 (space_info->bytes_used + space_info->bytes_pinned +
2241 space_info->bytes_reserved + alloc_bytes) < thresh) {
2242 spin_unlock(&space_info->lock);
2245 spin_unlock(&space_info->lock);
2247 ret = btrfs_alloc_chunk(trans, extent_root, flags);
2249 space_info->full = 1;
2251 mutex_unlock(&extent_root->fs_info->chunk_mutex);
2255 static int update_block_group(struct btrfs_trans_handle *trans,
2256 struct btrfs_root *root,
2257 u64 bytenr, u64 num_bytes, int alloc,
2260 struct btrfs_block_group_cache *cache;
2261 struct btrfs_fs_info *info = root->fs_info;
2262 u64 total = num_bytes;
2267 cache = btrfs_lookup_block_group(info, bytenr);
2270 byte_in_group = bytenr - cache->key.objectid;
2271 WARN_ON(byte_in_group > cache->key.offset);
2273 spin_lock(&cache->space_info->lock);
2274 spin_lock(&cache->lock);
2276 old_val = btrfs_block_group_used(&cache->item);
2277 num_bytes = min(total, cache->key.offset - byte_in_group);
2279 old_val += num_bytes;
2280 cache->space_info->bytes_used += num_bytes;
2282 cache->space_info->bytes_readonly -= num_bytes;
2283 btrfs_set_block_group_used(&cache->item, old_val);
2284 spin_unlock(&cache->lock);
2285 spin_unlock(&cache->space_info->lock);
2287 old_val -= num_bytes;
2288 cache->space_info->bytes_used -= num_bytes;
2290 cache->space_info->bytes_readonly += num_bytes;
2291 btrfs_set_block_group_used(&cache->item, old_val);
2292 spin_unlock(&cache->lock);
2293 spin_unlock(&cache->space_info->lock);
2297 ret = btrfs_discard_extent(root, bytenr,
2301 ret = btrfs_add_free_space(cache, bytenr,
2306 put_block_group(cache);
2308 bytenr += num_bytes;
2313 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
2315 struct btrfs_block_group_cache *cache;
2318 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
2322 bytenr = cache->key.objectid;
2323 put_block_group(cache);
2328 int btrfs_update_pinned_extents(struct btrfs_root *root,
2329 u64 bytenr, u64 num, int pin)
2332 struct btrfs_block_group_cache *cache;
2333 struct btrfs_fs_info *fs_info = root->fs_info;
2335 WARN_ON(!mutex_is_locked(&root->fs_info->pinned_mutex));
2337 set_extent_dirty(&fs_info->pinned_extents,
2338 bytenr, bytenr + num - 1, GFP_NOFS);
2340 clear_extent_dirty(&fs_info->pinned_extents,
2341 bytenr, bytenr + num - 1, GFP_NOFS);
2344 cache = btrfs_lookup_block_group(fs_info, bytenr);
2346 len = min(num, cache->key.offset -
2347 (bytenr - cache->key.objectid));
2349 spin_lock(&cache->space_info->lock);
2350 spin_lock(&cache->lock);
2351 cache->pinned += len;
2352 cache->space_info->bytes_pinned += len;
2353 spin_unlock(&cache->lock);
2354 spin_unlock(&cache->space_info->lock);
2355 fs_info->total_pinned += len;
2357 spin_lock(&cache->space_info->lock);
2358 spin_lock(&cache->lock);
2359 cache->pinned -= len;
2360 cache->space_info->bytes_pinned -= len;
2361 spin_unlock(&cache->lock);
2362 spin_unlock(&cache->space_info->lock);
2363 fs_info->total_pinned -= len;
2365 btrfs_add_free_space(cache, bytenr, len);
2367 put_block_group(cache);
2374 static int update_reserved_extents(struct btrfs_root *root,
2375 u64 bytenr, u64 num, int reserve)
2378 struct btrfs_block_group_cache *cache;
2379 struct btrfs_fs_info *fs_info = root->fs_info;
2382 cache = btrfs_lookup_block_group(fs_info, bytenr);
2384 len = min(num, cache->key.offset -
2385 (bytenr - cache->key.objectid));
2387 spin_lock(&cache->space_info->lock);
2388 spin_lock(&cache->lock);
2390 cache->reserved += len;
2391 cache->space_info->bytes_reserved += len;
2393 cache->reserved -= len;
2394 cache->space_info->bytes_reserved -= len;
2396 spin_unlock(&cache->lock);
2397 spin_unlock(&cache->space_info->lock);
2398 put_block_group(cache);
2405 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
2410 struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
2413 mutex_lock(&root->fs_info->pinned_mutex);
2415 ret = find_first_extent_bit(pinned_extents, last,
2416 &start, &end, EXTENT_DIRTY);
2419 set_extent_dirty(copy, start, end, GFP_NOFS);
2422 mutex_unlock(&root->fs_info->pinned_mutex);
2426 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2427 struct btrfs_root *root,
2428 struct extent_io_tree *unpin)
2434 mutex_lock(&root->fs_info->pinned_mutex);
2436 ret = find_first_extent_bit(unpin, 0, &start, &end,
2441 ret = btrfs_discard_extent(root, start, end + 1 - start);
2443 btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
2444 clear_extent_dirty(unpin, start, end, GFP_NOFS);
2446 if (need_resched()) {
2447 mutex_unlock(&root->fs_info->pinned_mutex);
2449 mutex_lock(&root->fs_info->pinned_mutex);
2452 mutex_unlock(&root->fs_info->pinned_mutex);
2456 static int finish_current_insert(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *extent_root, int all)
2463 struct btrfs_fs_info *info = extent_root->fs_info;
2464 struct btrfs_path *path;
2465 struct pending_extent_op *extent_op, *tmp;
2466 struct list_head insert_list, update_list;
2468 int num_inserts = 0, max_inserts, restart = 0;
2470 path = btrfs_alloc_path();
2471 INIT_LIST_HEAD(&insert_list);
2472 INIT_LIST_HEAD(&update_list);
2474 max_inserts = extent_root->leafsize /
2475 (2 * sizeof(struct btrfs_key) + 2 * sizeof(struct btrfs_item) +
2476 sizeof(struct btrfs_extent_ref) +
2477 sizeof(struct btrfs_extent_item));
2479 mutex_lock(&info->extent_ins_mutex);
2481 ret = find_first_extent_bit(&info->extent_ins, search, &start,
2482 &end, EXTENT_WRITEBACK);
2484 if (restart && !num_inserts &&
2485 list_empty(&update_list)) {
2493 ret = try_lock_extent(&info->extent_ins, start, end, GFP_NOFS);
2498 if (need_resched()) {
2499 mutex_unlock(&info->extent_ins_mutex);
2501 mutex_lock(&info->extent_ins_mutex);
2506 ret = get_state_private(&info->extent_ins, start, &priv);
2508 extent_op = (struct pending_extent_op *)(unsigned long) priv;
2510 if (extent_op->type == PENDING_EXTENT_INSERT) {
2512 list_add_tail(&extent_op->list, &insert_list);
2514 if (num_inserts == max_inserts) {
2518 } else if (extent_op->type == PENDING_BACKREF_UPDATE) {
2519 list_add_tail(&extent_op->list, &update_list);
2527 * process the update list, clear the writeback bit for it, and if
2528 * somebody marked this thing for deletion then just unlock it and be
2529 * done, the free_extents will handle it
2531 list_for_each_entry_safe(extent_op, tmp, &update_list, list) {
2532 clear_extent_bits(&info->extent_ins, extent_op->bytenr,
2533 extent_op->bytenr + extent_op->num_bytes - 1,
2534 EXTENT_WRITEBACK, GFP_NOFS);
2535 if (extent_op->del) {
2536 list_del_init(&extent_op->list);
2537 unlock_extent(&info->extent_ins, extent_op->bytenr,
2538 extent_op->bytenr + extent_op->num_bytes
2543 mutex_unlock(&info->extent_ins_mutex);
2546 * still have things left on the update list, go ahead an update
2549 if (!list_empty(&update_list)) {
2550 ret = update_backrefs(trans, extent_root, path, &update_list);
2553 /* we may have COW'ed new blocks, so lets start over */
2559 * if no inserts need to be done, but we skipped some extents and we
2560 * need to make sure everything is cleaned then reset everything and
2561 * go back to the beginning
2563 if (!num_inserts && restart) {
2566 INIT_LIST_HEAD(&update_list);
2567 INIT_LIST_HEAD(&insert_list);
2569 } else if (!num_inserts) {
2574 * process the insert extents list. Again if we are deleting this
2575 * extent, then just unlock it, pin down the bytes if need be, and be
2576 * done with it. Saves us from having to actually insert the extent
2577 * into the tree and then subsequently come along and delete it
2579 mutex_lock(&info->extent_ins_mutex);
2580 list_for_each_entry_safe(extent_op, tmp, &insert_list, list) {
2581 clear_extent_bits(&info->extent_ins, extent_op->bytenr,
2582 extent_op->bytenr + extent_op->num_bytes - 1,
2583 EXTENT_WRITEBACK, GFP_NOFS);
2584 if (extent_op->del) {
2586 list_del_init(&extent_op->list);
2587 unlock_extent(&info->extent_ins, extent_op->bytenr,
2588 extent_op->bytenr + extent_op->num_bytes
2591 mutex_lock(&extent_root->fs_info->pinned_mutex);
2592 ret = pin_down_bytes(trans, extent_root,
2594 extent_op->num_bytes, 0);
2595 mutex_unlock(&extent_root->fs_info->pinned_mutex);
2597 spin_lock(&info->delalloc_lock);
2598 used = btrfs_super_bytes_used(&info->super_copy);
2599 btrfs_set_super_bytes_used(&info->super_copy,
2600 used - extent_op->num_bytes);
2601 used = btrfs_root_used(&extent_root->root_item);
2602 btrfs_set_root_used(&extent_root->root_item,
2603 used - extent_op->num_bytes);
2604 spin_unlock(&info->delalloc_lock);
2606 ret = update_block_group(trans, extent_root,
2608 extent_op->num_bytes,
2615 mutex_unlock(&info->extent_ins_mutex);
2617 ret = insert_extents(trans, extent_root, path, &insert_list,
2622 * if restart is set for whatever reason we need to go back and start
2623 * searching through the pending list again.
2625 * We just inserted some extents, which could have resulted in new
2626 * blocks being allocated, which would result in new blocks needing
2627 * updates, so if all is set we _must_ restart to get the updated
2630 if (restart || all) {
2631 INIT_LIST_HEAD(&insert_list);
2632 INIT_LIST_HEAD(&update_list);
2639 btrfs_free_path(path);
2643 static int pin_down_bytes(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root,
2645 u64 bytenr, u64 num_bytes, int is_data)
2648 struct extent_buffer *buf;
2653 buf = btrfs_find_tree_block(root, bytenr, num_bytes);
2657 /* we can reuse a block if it hasn't been written
2658 * and it is from this transaction. We can't
2659 * reuse anything from the tree log root because
2660 * it has tiny sub-transactions.
2662 if (btrfs_buffer_uptodate(buf, 0) &&
2663 btrfs_try_tree_lock(buf)) {
2664 u64 header_owner = btrfs_header_owner(buf);
2665 u64 header_transid = btrfs_header_generation(buf);
2666 if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
2667 header_owner != BTRFS_TREE_RELOC_OBJECTID &&
2668 header_transid == trans->transid &&
2669 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2670 clean_tree_block(NULL, root, buf);
2671 btrfs_tree_unlock(buf);
2672 free_extent_buffer(buf);
2675 btrfs_tree_unlock(buf);
2677 free_extent_buffer(buf);
2679 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2686 * remove an extent from the root, returns 0 on success
2688 static int __free_extent(struct btrfs_trans_handle *trans,
2689 struct btrfs_root *root,
2690 u64 bytenr, u64 num_bytes, u64 parent,
2691 u64 root_objectid, u64 ref_generation,
2692 u64 owner_objectid, int pin, int mark_free)
2694 struct btrfs_path *path;
2695 struct btrfs_key key;
2696 struct btrfs_fs_info *info = root->fs_info;
2697 struct btrfs_root *extent_root = info->extent_root;
2698 struct extent_buffer *leaf;
2700 int extent_slot = 0;
2701 int found_extent = 0;
2703 struct btrfs_extent_item *ei;
2706 key.objectid = bytenr;
2707 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
2708 key.offset = num_bytes;
2709 path = btrfs_alloc_path();
2714 ret = lookup_extent_backref(trans, extent_root, path,
2715 bytenr, parent, root_objectid,
2716 ref_generation, owner_objectid, 1);
2718 struct btrfs_key found_key;
2719 extent_slot = path->slots[0];
2720 while (extent_slot > 0) {
2722 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2724 if (found_key.objectid != bytenr)
2726 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
2727 found_key.offset == num_bytes) {
2731 if (path->slots[0] - extent_slot > 5)
2734 if (!found_extent) {
2735 ret = remove_extent_backref(trans, extent_root, path);
2737 btrfs_release_path(extent_root, path);
2738 ret = btrfs_search_slot(trans, extent_root,
2741 printk(KERN_ERR "umm, got %d back from search"
2742 ", was looking for %llu\n", ret,
2743 (unsigned long long)bytenr);
2744 btrfs_print_leaf(extent_root, path->nodes[0]);
2747 extent_slot = path->slots[0];
2750 btrfs_print_leaf(extent_root, path->nodes[0]);
2752 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
2753 "root %llu gen %llu owner %llu\n",
2754 (unsigned long long)bytenr,
2755 (unsigned long long)root_objectid,
2756 (unsigned long long)ref_generation,
2757 (unsigned long long)owner_objectid);
2760 leaf = path->nodes[0];
2761 ei = btrfs_item_ptr(leaf, extent_slot,
2762 struct btrfs_extent_item);
2763 refs = btrfs_extent_refs(leaf, ei);
2766 btrfs_set_extent_refs(leaf, ei, refs);
2768 btrfs_mark_buffer_dirty(leaf);
2770 if (refs == 0 && found_extent && path->slots[0] == extent_slot + 1) {
2771 struct btrfs_extent_ref *ref;
2772 ref = btrfs_item_ptr(leaf, path->slots[0],
2773 struct btrfs_extent_ref);
2774 BUG_ON(btrfs_ref_num_refs(leaf, ref) != 1);
2775 /* if the back ref and the extent are next to each other
2776 * they get deleted below in one shot
2778 path->slots[0] = extent_slot;
2780 } else if (found_extent) {
2781 /* otherwise delete the extent back ref */
2782 ret = remove_extent_backref(trans, extent_root, path);
2784 /* if refs are 0, we need to setup the path for deletion */
2786 btrfs_release_path(extent_root, path);
2787 ret = btrfs_search_slot(trans, extent_root, &key, path,
2798 mutex_lock(&root->fs_info->pinned_mutex);
2799 ret = pin_down_bytes(trans, root, bytenr, num_bytes,
2800 owner_objectid >= BTRFS_FIRST_FREE_OBJECTID);
2801 mutex_unlock(&root->fs_info->pinned_mutex);
2806 /* block accounting for super block */
2807 spin_lock(&info->delalloc_lock);
2808 super_used = btrfs_super_bytes_used(&info->super_copy);
2809 btrfs_set_super_bytes_used(&info->super_copy,
2810 super_used - num_bytes);
2812 /* block accounting for root item */
2813 root_used = btrfs_root_used(&root->root_item);
2814 btrfs_set_root_used(&root->root_item,
2815 root_used - num_bytes);
2816 spin_unlock(&info->delalloc_lock);
2817 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
2820 btrfs_release_path(extent_root, path);
2822 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
2823 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
2827 ret = update_block_group(trans, root, bytenr, num_bytes, 0,
2831 btrfs_free_path(path);
2832 finish_current_insert(trans, extent_root, 0);
2837 * find all the blocks marked as pending in the radix tree and remove
2838 * them from the extent map
2840 static int del_pending_extents(struct btrfs_trans_handle *trans,
2841 struct btrfs_root *extent_root, int all)
2849 int nr = 0, skipped = 0;
2850 struct extent_io_tree *pending_del;
2851 struct extent_io_tree *extent_ins;
2852 struct pending_extent_op *extent_op;
2853 struct btrfs_fs_info *info = extent_root->fs_info;
2854 struct list_head delete_list;
2856 INIT_LIST_HEAD(&delete_list);
2857 extent_ins = &extent_root->fs_info->extent_ins;
2858 pending_del = &extent_root->fs_info->pending_del;
2861 mutex_lock(&info->extent_ins_mutex);
2863 ret = find_first_extent_bit(pending_del, search, &start, &end,
2866 if (all && skipped && !nr) {
2871 mutex_unlock(&info->extent_ins_mutex);
2875 ret = try_lock_extent(extent_ins, start, end, GFP_NOFS);
2880 if (need_resched()) {
2881 mutex_unlock(&info->extent_ins_mutex);
2883 mutex_lock(&info->extent_ins_mutex);
2890 ret = get_state_private(pending_del, start, &priv);
2892 extent_op = (struct pending_extent_op *)(unsigned long)priv;
2894 clear_extent_bits(pending_del, start, end, EXTENT_WRITEBACK,
2896 if (!test_range_bit(extent_ins, start, end,
2897 EXTENT_WRITEBACK, 0)) {
2898 list_add_tail(&extent_op->list, &delete_list);
2903 ret = get_state_private(&info->extent_ins, start,
2906 extent_op = (struct pending_extent_op *)
2907 (unsigned long)priv;
2909 clear_extent_bits(&info->extent_ins, start, end,
2910 EXTENT_WRITEBACK, GFP_NOFS);
2912 if (extent_op->type == PENDING_BACKREF_UPDATE) {
2913 list_add_tail(&extent_op->list, &delete_list);
2919 mutex_lock(&extent_root->fs_info->pinned_mutex);
2920 ret = pin_down_bytes(trans, extent_root, start,
2921 end + 1 - start, 0);
2922 mutex_unlock(&extent_root->fs_info->pinned_mutex);
2924 ret = update_block_group(trans, extent_root, start,
2925 end + 1 - start, 0, ret > 0);
2927 unlock_extent(extent_ins, start, end, GFP_NOFS);
2936 if (need_resched()) {
2937 mutex_unlock(&info->extent_ins_mutex);
2939 mutex_lock(&info->extent_ins_mutex);
2944 ret = free_extents(trans, extent_root, &delete_list);
2948 if (all && skipped) {
2949 INIT_LIST_HEAD(&delete_list);
2956 finish_current_insert(trans, extent_root, 0);
2961 * remove an extent from the root, returns 0 on success
2963 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2964 struct btrfs_root *root,
2965 u64 bytenr, u64 num_bytes, u64 parent,
2966 u64 root_objectid, u64 ref_generation,
2967 u64 owner_objectid, int pin)
2969 struct btrfs_root *extent_root = root->fs_info->extent_root;
2973 WARN_ON(num_bytes < root->sectorsize);
2974 if (root == extent_root) {
2975 struct pending_extent_op *extent_op = NULL;
2977 mutex_lock(&root->fs_info->extent_ins_mutex);
2978 if (test_range_bit(&root->fs_info->extent_ins, bytenr,
2979 bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) {
2981 ret = get_state_private(&root->fs_info->extent_ins,
2984 extent_op = (struct pending_extent_op *)
2985 (unsigned long)priv;
2988 if (extent_op->type == PENDING_EXTENT_INSERT) {
2989 mutex_unlock(&root->fs_info->extent_ins_mutex);
2995 ref_generation = extent_op->orig_generation;
2996 parent = extent_op->orig_parent;
2999 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
3002 extent_op->type = PENDING_EXTENT_DELETE;
3003 extent_op->bytenr = bytenr;
3004 extent_op->num_bytes = num_bytes;
3005 extent_op->parent = parent;
3006 extent_op->orig_parent = parent;
3007 extent_op->generation = ref_generation;
3008 extent_op->orig_generation = ref_generation;
3009 extent_op->level = (int)owner_objectid;
3010 INIT_LIST_HEAD(&extent_op->list);
3013 set_extent_bits(&root->fs_info->pending_del,
3014 bytenr, bytenr + num_bytes - 1,
3015 EXTENT_WRITEBACK, GFP_NOFS);
3016 set_state_private(&root->fs_info->pending_del,
3017 bytenr, (unsigned long)extent_op);
3018 mutex_unlock(&root->fs_info->extent_ins_mutex);
3021 /* if metadata always pin */
3022 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
3023 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
3024 mutex_lock(&root->fs_info->pinned_mutex);
3025 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
3026 mutex_unlock(&root->fs_info->pinned_mutex);
3027 update_reserved_extents(root, bytenr, num_bytes, 0);
3033 /* if data pin when any transaction has committed this */
3034 if (ref_generation != trans->transid)