1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_fs_info *fs_info,
56 struct btrfs_delayed_ref_node *node, u64 parent,
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
59 struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 struct btrfs_fs_info *fs_info,
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 struct btrfs_fs_info *fs_info,
70 u64 parent, u64 root_objectid,
71 u64 flags, struct btrfs_disk_key *key,
72 int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74 struct btrfs_fs_info *fs_info, u64 flags,
76 static int find_next_key(struct btrfs_path *path, int level,
77 struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *info, u64 bytes,
80 int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 struct btrfs_space_info *space_info,
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 struct btrfs_space_info *space_info,
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
94 return cache->cached == BTRFS_CACHE_FINISHED ||
95 cache->cached == BTRFS_CACHE_ERROR;
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
100 return (cache->flags & bits) == bits;
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
105 atomic_inc(&cache->count);
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
110 if (atomic_dec_and_test(&cache->count)) {
111 WARN_ON(cache->pinned > 0);
112 WARN_ON(cache->reserved > 0);
115 * If not empty, someone is still holding mutex of
116 * full_stripe_lock, which can only be released by caller.
117 * And it will definitely cause use-after-free when caller
118 * tries to release full stripe lock.
120 * No better way to resolve, but only to warn.
122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123 kfree(cache->free_space_ctl);
129 * this adds the block group to the fs_info rb tree for the block group
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133 struct btrfs_block_group_cache *block_group)
136 struct rb_node *parent = NULL;
137 struct btrfs_block_group_cache *cache;
139 spin_lock(&info->block_group_cache_lock);
140 p = &info->block_group_cache_tree.rb_node;
144 cache = rb_entry(parent, struct btrfs_block_group_cache,
146 if (block_group->key.objectid < cache->key.objectid) {
148 } else if (block_group->key.objectid > cache->key.objectid) {
151 spin_unlock(&info->block_group_cache_lock);
156 rb_link_node(&block_group->cache_node, parent, p);
157 rb_insert_color(&block_group->cache_node,
158 &info->block_group_cache_tree);
160 if (info->first_logical_byte > block_group->key.objectid)
161 info->first_logical_byte = block_group->key.objectid;
163 spin_unlock(&info->block_group_cache_lock);
169 * This will return the block group at or after bytenr if contains is 0, else
170 * it will return the block group that contains the bytenr
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
176 struct btrfs_block_group_cache *cache, *ret = NULL;
180 spin_lock(&info->block_group_cache_lock);
181 n = info->block_group_cache_tree.rb_node;
184 cache = rb_entry(n, struct btrfs_block_group_cache,
186 end = cache->key.objectid + cache->key.offset - 1;
187 start = cache->key.objectid;
189 if (bytenr < start) {
190 if (!contains && (!ret || start < ret->key.objectid))
193 } else if (bytenr > start) {
194 if (contains && bytenr <= end) {
205 btrfs_get_block_group(ret);
206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 info->first_logical_byte = ret->key.objectid;
209 spin_unlock(&info->block_group_cache_lock);
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215 u64 start, u64 num_bytes)
217 u64 end = start + num_bytes - 1;
218 set_extent_bits(&fs_info->freed_extents[0],
219 start, end, EXTENT_UPTODATE);
220 set_extent_bits(&fs_info->freed_extents[1],
221 start, end, EXTENT_UPTODATE);
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226 struct btrfs_block_group_cache *cache)
230 start = cache->key.objectid;
231 end = start + cache->key.offset - 1;
233 clear_extent_bits(&fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE);
235 clear_extent_bits(&fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE);
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240 struct btrfs_block_group_cache *cache)
247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 cache->bytes_super += stripe_len;
250 ret = add_excluded_extent(fs_info, cache->key.objectid,
256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 bytenr = btrfs_sb_offset(i);
258 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259 bytenr, 0, &logical, &nr, &stripe_len);
266 if (logical[nr] > cache->key.objectid +
270 if (logical[nr] + stripe_len <= cache->key.objectid)
274 if (start < cache->key.objectid) {
275 start = cache->key.objectid;
276 len = (logical[nr] + stripe_len) - start;
278 len = min_t(u64, stripe_len,
279 cache->key.objectid +
280 cache->key.offset - start);
283 cache->bytes_super += len;
284 ret = add_excluded_extent(fs_info, start, len);
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
299 struct btrfs_caching_control *ctl;
301 spin_lock(&cache->lock);
302 if (!cache->caching_ctl) {
303 spin_unlock(&cache->lock);
307 ctl = cache->caching_ctl;
308 refcount_inc(&ctl->count);
309 spin_unlock(&cache->lock);
313 static void put_caching_control(struct btrfs_caching_control *ctl)
315 if (refcount_dec_and_test(&ctl->count))
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
322 struct btrfs_fs_info *fs_info = block_group->fs_info;
323 u64 start = block_group->key.objectid;
324 u64 len = block_group->key.offset;
325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326 fs_info->nodesize : fs_info->sectorsize;
327 u64 step = chunk << 1;
329 while (len > chunk) {
330 btrfs_remove_free_space(block_group, start, chunk);
341 * this is only called by cache_block_group, since we could have freed extents
342 * we need to check the pinned_extents for any extents that can't be used yet
343 * since their free space will be released as soon as the transaction commits.
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 struct btrfs_fs_info *info, u64 start, u64 end)
348 u64 extent_start, extent_end, size, total_added = 0;
351 while (start < end) {
352 ret = find_first_extent_bit(info->pinned_extents, start,
353 &extent_start, &extent_end,
354 EXTENT_DIRTY | EXTENT_UPTODATE,
359 if (extent_start <= start) {
360 start = extent_end + 1;
361 } else if (extent_start > start && extent_start < end) {
362 size = extent_start - start;
364 ret = btrfs_add_free_space(block_group, start,
366 BUG_ON(ret); /* -ENOMEM or logic error */
367 start = extent_end + 1;
376 ret = btrfs_add_free_space(block_group, start, size);
377 BUG_ON(ret); /* -ENOMEM or logic error */
383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 struct btrfs_fs_info *fs_info = block_group->fs_info;
387 struct btrfs_root *extent_root = fs_info->extent_root;
388 struct btrfs_path *path;
389 struct extent_buffer *leaf;
390 struct btrfs_key key;
397 path = btrfs_alloc_path();
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 #ifdef CONFIG_BTRFS_DEBUG
405 * If we're fragmenting we don't want to make anybody think we can
406 * allocate from this block group until we've had a chance to fragment
409 if (btrfs_should_fragment_free_space(block_group))
413 * We don't want to deadlock with somebody trying to allocate a new
414 * extent for the extent root while also trying to search the extent
415 * root to add free space. So we skip locking and search the commit
416 * root, since its read-only
418 path->skip_locking = 1;
419 path->search_commit_root = 1;
420 path->reada = READA_FORWARD;
424 key.type = BTRFS_EXTENT_ITEM_KEY;
427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
435 if (btrfs_fs_closing(fs_info) > 1) {
440 if (path->slots[0] < nritems) {
441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 ret = find_next_key(path, 0, &key);
447 if (need_resched() ||
448 rwsem_is_contended(&fs_info->commit_root_sem)) {
450 caching_ctl->progress = last;
451 btrfs_release_path(path);
452 up_read(&fs_info->commit_root_sem);
453 mutex_unlock(&caching_ctl->mutex);
455 mutex_lock(&caching_ctl->mutex);
456 down_read(&fs_info->commit_root_sem);
460 ret = btrfs_next_leaf(extent_root, path);
465 leaf = path->nodes[0];
466 nritems = btrfs_header_nritems(leaf);
470 if (key.objectid < last) {
473 key.type = BTRFS_EXTENT_ITEM_KEY;
476 caching_ctl->progress = last;
477 btrfs_release_path(path);
481 if (key.objectid < block_group->key.objectid) {
486 if (key.objectid >= block_group->key.objectid +
487 block_group->key.offset)
490 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 key.type == BTRFS_METADATA_ITEM_KEY) {
492 total_found += add_new_free_space(block_group,
495 if (key.type == BTRFS_METADATA_ITEM_KEY)
496 last = key.objectid +
499 last = key.objectid + key.offset;
501 if (total_found > CACHING_CTL_WAKE_UP) {
504 wake_up(&caching_ctl->wait);
511 total_found += add_new_free_space(block_group, fs_info, last,
512 block_group->key.objectid +
513 block_group->key.offset);
514 caching_ctl->progress = (u64)-1;
517 btrfs_free_path(path);
521 static noinline void caching_thread(struct btrfs_work *work)
523 struct btrfs_block_group_cache *block_group;
524 struct btrfs_fs_info *fs_info;
525 struct btrfs_caching_control *caching_ctl;
528 caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 block_group = caching_ctl->block_group;
530 fs_info = block_group->fs_info;
532 mutex_lock(&caching_ctl->mutex);
533 down_read(&fs_info->commit_root_sem);
535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 ret = load_free_space_tree(caching_ctl);
538 ret = load_extent_tree_free(caching_ctl);
540 spin_lock(&block_group->lock);
541 block_group->caching_ctl = NULL;
542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543 spin_unlock(&block_group->lock);
545 #ifdef CONFIG_BTRFS_DEBUG
546 if (btrfs_should_fragment_free_space(block_group)) {
549 spin_lock(&block_group->space_info->lock);
550 spin_lock(&block_group->lock);
551 bytes_used = block_group->key.offset -
552 btrfs_block_group_used(&block_group->item);
553 block_group->space_info->bytes_used += bytes_used >> 1;
554 spin_unlock(&block_group->lock);
555 spin_unlock(&block_group->space_info->lock);
556 fragment_free_space(block_group);
560 caching_ctl->progress = (u64)-1;
562 up_read(&fs_info->commit_root_sem);
563 free_excluded_extents(fs_info, block_group);
564 mutex_unlock(&caching_ctl->mutex);
566 wake_up(&caching_ctl->wait);
568 put_caching_control(caching_ctl);
569 btrfs_put_block_group(block_group);
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
576 struct btrfs_fs_info *fs_info = cache->fs_info;
577 struct btrfs_caching_control *caching_ctl;
580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
584 INIT_LIST_HEAD(&caching_ctl->list);
585 mutex_init(&caching_ctl->mutex);
586 init_waitqueue_head(&caching_ctl->wait);
587 caching_ctl->block_group = cache;
588 caching_ctl->progress = cache->key.objectid;
589 refcount_set(&caching_ctl->count, 1);
590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 caching_thread, NULL, NULL);
593 spin_lock(&cache->lock);
595 * This should be a rare occasion, but this could happen I think in the
596 * case where one thread starts to load the space cache info, and then
597 * some other thread starts a transaction commit which tries to do an
598 * allocation while the other thread is still loading the space cache
599 * info. The previous loop should have kept us from choosing this block
600 * group, but if we've moved to the state where we will wait on caching
601 * block groups we need to first check if we're doing a fast load here,
602 * so we can wait for it to finish, otherwise we could end up allocating
603 * from a block group who's cache gets evicted for one reason or
606 while (cache->cached == BTRFS_CACHE_FAST) {
607 struct btrfs_caching_control *ctl;
609 ctl = cache->caching_ctl;
610 refcount_inc(&ctl->count);
611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 spin_unlock(&cache->lock);
616 finish_wait(&ctl->wait, &wait);
617 put_caching_control(ctl);
618 spin_lock(&cache->lock);
621 if (cache->cached != BTRFS_CACHE_NO) {
622 spin_unlock(&cache->lock);
626 WARN_ON(cache->caching_ctl);
627 cache->caching_ctl = caching_ctl;
628 cache->cached = BTRFS_CACHE_FAST;
629 spin_unlock(&cache->lock);
631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632 mutex_lock(&caching_ctl->mutex);
633 ret = load_free_space_cache(fs_info, cache);
635 spin_lock(&cache->lock);
637 cache->caching_ctl = NULL;
638 cache->cached = BTRFS_CACHE_FINISHED;
639 cache->last_byte_to_unpin = (u64)-1;
640 caching_ctl->progress = (u64)-1;
642 if (load_cache_only) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_NO;
646 cache->cached = BTRFS_CACHE_STARTED;
647 cache->has_caching_ctl = 1;
650 spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
653 btrfs_should_fragment_free_space(cache)) {
656 spin_lock(&cache->space_info->lock);
657 spin_lock(&cache->lock);
658 bytes_used = cache->key.offset -
659 btrfs_block_group_used(&cache->item);
660 cache->space_info->bytes_used += bytes_used >> 1;
661 spin_unlock(&cache->lock);
662 spin_unlock(&cache->space_info->lock);
663 fragment_free_space(cache);
666 mutex_unlock(&caching_ctl->mutex);
668 wake_up(&caching_ctl->wait);
670 put_caching_control(caching_ctl);
671 free_excluded_extents(fs_info, cache);
676 * We're either using the free space tree or no caching at all.
677 * Set cached to the appropriate value and wakeup any waiters.
679 spin_lock(&cache->lock);
680 if (load_cache_only) {
681 cache->caching_ctl = NULL;
682 cache->cached = BTRFS_CACHE_NO;
684 cache->cached = BTRFS_CACHE_STARTED;
685 cache->has_caching_ctl = 1;
687 spin_unlock(&cache->lock);
688 wake_up(&caching_ctl->wait);
691 if (load_cache_only) {
692 put_caching_control(caching_ctl);
696 down_write(&fs_info->commit_root_sem);
697 refcount_inc(&caching_ctl->count);
698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699 up_write(&fs_info->commit_root_sem);
701 btrfs_get_block_group(cache);
703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
709 * return the block group that starts at or after bytenr
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
714 return block_group_cache_tree_search(info, bytenr, 0);
718 * return the block group that contains the given bytenr
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 struct btrfs_fs_info *info,
724 return block_group_cache_tree_search(info, bytenr, 1);
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
730 struct list_head *head = &info->space_info;
731 struct btrfs_space_info *found;
733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
736 list_for_each_entry_rcu(found, head, list) {
737 if (found->flags & flags) {
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 bool metadata, u64 root_objectid)
749 struct btrfs_space_info *space_info;
753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 flags = BTRFS_BLOCK_GROUP_SYSTEM;
756 flags = BTRFS_BLOCK_GROUP_METADATA;
758 flags = BTRFS_BLOCK_GROUP_DATA;
761 space_info = __find_space_info(fs_info, flags);
763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
767 * after adding space to the filesystem, we need to clear the full flags
768 * on all the space infos.
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
772 struct list_head *head = &info->space_info;
773 struct btrfs_space_info *found;
776 list_for_each_entry_rcu(found, head, list)
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
785 struct btrfs_key key;
786 struct btrfs_path *path;
788 path = btrfs_alloc_path();
792 key.objectid = start;
794 key.type = BTRFS_EXTENT_ITEM_KEY;
795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796 btrfs_free_path(path);
801 * helper function to lookup reference count and flags of a tree block.
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 struct btrfs_fs_info *fs_info, u64 bytenr,
811 u64 offset, int metadata, u64 *refs, u64 *flags)
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
825 * If we don't have skinny metadata, don't bother doing anything
828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 offset = fs_info->nodesize;
833 path = btrfs_alloc_path();
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
843 key.objectid = bytenr;
846 key.type = BTRFS_METADATA_ITEM_KEY;
848 key.type = BTRFS_EXTENT_ITEM_KEY;
850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855 if (path->slots[0]) {
857 btrfs_item_key_to_cpu(path->nodes[0], &key,
859 if (key.objectid == bytenr &&
860 key.type == BTRFS_EXTENT_ITEM_KEY &&
861 key.offset == fs_info->nodesize)
867 leaf = path->nodes[0];
868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 if (item_size >= sizeof(*ei)) {
870 ei = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item);
872 num_refs = btrfs_extent_refs(leaf, ei);
873 extent_flags = btrfs_extent_flags(leaf, ei);
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 struct btrfs_extent_item_v0 *ei0;
877 BUG_ON(item_size != sizeof(*ei0));
878 ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 struct btrfs_extent_item_v0);
880 num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 /* FIXME: this isn't correct for data */
882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
887 BUG_ON(num_refs == 0);
897 delayed_refs = &trans->transaction->delayed_refs;
898 spin_lock(&delayed_refs->lock);
899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
901 if (!mutex_trylock(&head->mutex)) {
902 refcount_inc(&head->refs);
903 spin_unlock(&delayed_refs->lock);
905 btrfs_release_path(path);
908 * Mutex was contended, block until it's released and try
911 mutex_lock(&head->mutex);
912 mutex_unlock(&head->mutex);
913 btrfs_put_delayed_ref_head(head);
916 spin_lock(&head->lock);
917 if (head->extent_op && head->extent_op->update_flags)
918 extent_flags |= head->extent_op->flags_to_set;
920 BUG_ON(num_refs == 0);
922 num_refs += head->ref_mod;
923 spin_unlock(&head->lock);
924 mutex_unlock(&head->mutex);
926 spin_unlock(&delayed_refs->lock);
928 WARN_ON(num_refs == 0);
932 *flags = extent_flags;
934 btrfs_free_path(path);
939 * Back reference rules. Back refs have three main goals:
941 * 1) differentiate between all holders of references to an extent so that
942 * when a reference is dropped we can make sure it was a valid reference
943 * before freeing the extent.
945 * 2) Provide enough information to quickly find the holders of an extent
946 * if we notice a given block is corrupted or bad.
948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949 * maintenance. This is actually the same as #2, but with a slightly
950 * different use case.
952 * There are two kinds of back refs. The implicit back refs is optimized
953 * for pointers in non-shared tree blocks. For a given pointer in a block,
954 * back refs of this kind provide information about the block's owner tree
955 * and the pointer's key. These information allow us to find the block by
956 * b-tree searching. The full back refs is for pointers in tree blocks not
957 * referenced by their owner trees. The location of tree block is recorded
958 * in the back refs. Actually the full back refs is generic, and can be
959 * used in all cases the implicit back refs is used. The major shortcoming
960 * of the full back refs is its overhead. Every time a tree block gets
961 * COWed, we have to update back refs entry for all pointers in it.
963 * For a newly allocated tree block, we use implicit back refs for
964 * pointers in it. This means most tree related operations only involve
965 * implicit back refs. For a tree block created in old transaction, the
966 * only way to drop a reference to it is COW it. So we can detect the
967 * event that tree block loses its owner tree's reference and do the
968 * back refs conversion.
970 * When a tree block is COWed through a tree, there are four cases:
972 * The reference count of the block is one and the tree is the block's
973 * owner tree. Nothing to do in this case.
975 * The reference count of the block is one and the tree is not the
976 * block's owner tree. In this case, full back refs is used for pointers
977 * in the block. Remove these full back refs, add implicit back refs for
978 * every pointers in the new block.
980 * The reference count of the block is greater than one and the tree is
981 * the block's owner tree. In this case, implicit back refs is used for
982 * pointers in the block. Add full back refs for every pointers in the
983 * block, increase lower level extents' reference counts. The original
984 * implicit back refs are entailed to the new block.
986 * The reference count of the block is greater than one and the tree is
987 * not the block's owner tree. Add implicit back refs for every pointer in
988 * the new block, increase lower level extents' reference count.
990 * Back Reference Key composing:
992 * The key objectid corresponds to the first byte in the extent,
993 * The key type is used to differentiate between types of back refs.
994 * There are different meanings of the key offset for different types
997 * File extents can be referenced by:
999 * - multiple snapshots, subvolumes, or different generations in one subvol
1000 * - different files inside a single subvolume
1001 * - different offsets inside a file (bookend extents in file.c)
1003 * The extent ref structure for the implicit back refs has fields for:
1005 * - Objectid of the subvolume root
1006 * - objectid of the file holding the reference
1007 * - original offset in the file
1008 * - how many bookend extents
1010 * The key offset for the implicit back refs is hash of the first
1013 * The extent ref structure for the full back refs has field for:
1015 * - number of pointers in the tree leaf
1017 * The key offset for the implicit back refs is the first byte of
1020 * When a file extent is allocated, The implicit back refs is used.
1021 * the fields are filled in:
1023 * (root_key.objectid, inode objectid, offset in file, 1)
1025 * When a file extent is removed file truncation, we find the
1026 * corresponding implicit back refs and check the following fields:
1028 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1030 * Btree extents can be referenced by:
1032 * - Different subvolumes
1034 * Both the implicit back refs and the full back refs for tree blocks
1035 * only consist of key. The key offset for the implicit back refs is
1036 * objectid of block's owner tree. The key offset for the full back refs
1037 * is the first byte of parent block.
1039 * When implicit back refs is used, information about the lowest key and
1040 * level of the tree block are required. These information are stored in
1041 * tree block info structure.
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046 struct btrfs_fs_info *fs_info,
1047 struct btrfs_path *path,
1048 u64 owner, u32 extra_size)
1050 struct btrfs_root *root = fs_info->extent_root;
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
1056 struct btrfs_key key;
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1070 if (owner == (u64)-1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1076 BUG_ON(ret > 0); /* Corruption */
1077 leaf = path->nodes[0];
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 btrfs_release_path(path);
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1102 BUG_ON(ret); /* Corruption */
1104 btrfs_extend_item(fs_info, path, new_size);
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1122 btrfs_mark_buffer_dirty(leaf);
1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 struct btrfs_extent_inline_ref *iref,
1134 enum btrfs_inline_ref_type is_data)
1136 int type = btrfs_extent_inline_ref_type(eb, iref);
1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1139 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 type == BTRFS_SHARED_DATA_REF_KEY ||
1142 type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 ASSERT(eb->fs_info);
1149 * Every shared one has parent tree
1150 * block, which must be aligned to
1154 IS_ALIGNED(offset, eb->fs_info->nodesize))
1157 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1158 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1160 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 ASSERT(eb->fs_info);
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1177 btrfs_print_leaf((struct extent_buffer *)eb);
1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1182 return BTRFS_REF_TYPE_INVALID;
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1187 u32 high_crc = ~(u32)0;
1188 u32 low_crc = ~(u32)0;
1191 lenum = cpu_to_le64(root_objectid);
1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193 lenum = cpu_to_le64(owner);
1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195 lenum = cpu_to_le64(offset);
1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1198 return ((u64)high_crc << 31) ^ (u64)low_crc;
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 struct btrfs_extent_data_ref *ref)
1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 btrfs_extent_data_ref_objectid(leaf, ref),
1206 btrfs_extent_data_ref_offset(leaf, ref));
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210 struct btrfs_extent_data_ref *ref,
1211 u64 root_objectid, u64 owner, u64 offset)
1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221 struct btrfs_fs_info *fs_info,
1222 struct btrfs_path *path,
1223 u64 bytenr, u64 parent,
1225 u64 owner, u64 offset)
1227 struct btrfs_root *root = fs_info->extent_root;
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref;
1230 struct extent_buffer *leaf;
1236 key.objectid = bytenr;
1238 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 key.offset = parent;
1241 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 key.offset = hash_extent_data_ref(root_objectid,
1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 key.type = BTRFS_EXTENT_REF_V0_KEY;
1258 btrfs_release_path(path);
1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1270 leaf = path->nodes[0];
1271 nritems = btrfs_header_nritems(leaf);
1273 if (path->slots[0] >= nritems) {
1274 ret = btrfs_next_leaf(root, path);
1280 leaf = path->nodes[0];
1281 nritems = btrfs_header_nritems(leaf);
1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 if (key.objectid != bytenr ||
1287 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1293 if (match_extent_data_ref(leaf, ref, root_objectid,
1296 btrfs_release_path(path);
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info,
1310 struct btrfs_path *path,
1311 u64 bytenr, u64 parent,
1312 u64 root_objectid, u64 owner,
1313 u64 offset, int refs_to_add)
1315 struct btrfs_root *root = fs_info->extent_root;
1316 struct btrfs_key key;
1317 struct extent_buffer *leaf;
1322 key.objectid = bytenr;
1324 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 key.offset = parent;
1326 size = sizeof(struct btrfs_shared_data_ref);
1328 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 key.offset = hash_extent_data_ref(root_objectid,
1331 size = sizeof(struct btrfs_extent_data_ref);
1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 if (ret && ret != -EEXIST)
1338 leaf = path->nodes[0];
1340 struct btrfs_shared_data_ref *ref;
1341 ref = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_shared_data_ref);
1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 num_refs += refs_to_add;
1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1351 struct btrfs_extent_data_ref *ref;
1352 while (ret == -EEXIST) {
1353 ref = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_extent_data_ref);
1355 if (match_extent_data_ref(leaf, ref, root_objectid,
1358 btrfs_release_path(path);
1360 ret = btrfs_insert_empty_item(trans, root, path, &key,
1362 if (ret && ret != -EEXIST)
1365 leaf = path->nodes[0];
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1370 btrfs_set_extent_data_ref_root(leaf, ref,
1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1376 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 num_refs += refs_to_add;
1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1381 btrfs_mark_buffer_dirty(leaf);
1384 btrfs_release_path(path);
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389 struct btrfs_fs_info *fs_info,
1390 struct btrfs_path *path,
1391 int refs_to_drop, int *last_ref)
1393 struct btrfs_key key;
1394 struct btrfs_extent_data_ref *ref1 = NULL;
1395 struct btrfs_shared_data_ref *ref2 = NULL;
1396 struct extent_buffer *leaf;
1400 leaf = path->nodes[0];
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
1422 BUG_ON(num_refs < refs_to_drop);
1423 num_refs -= refs_to_drop;
1425 if (num_refs == 0) {
1426 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1435 struct btrfs_extent_ref_v0 *ref0;
1436 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_extent_ref_v0);
1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1441 btrfs_mark_buffer_dirty(leaf);
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref *iref)
1449 struct btrfs_key key;
1450 struct extent_buffer *leaf;
1451 struct btrfs_extent_data_ref *ref1;
1452 struct btrfs_shared_data_ref *ref2;
1456 leaf = path->nodes[0];
1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1460 * If type is invalid, we should have bailed out earlier than
1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 struct btrfs_extent_data_ref);
1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 struct btrfs_shared_data_ref);
1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 struct btrfs_extent_ref_v0 *ref0;
1483 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 struct btrfs_extent_ref_v0);
1485 num_refs = btrfs_ref_count_v0(leaf, ref0);
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494 struct btrfs_fs_info *fs_info,
1495 struct btrfs_path *path,
1496 u64 bytenr, u64 parent,
1499 struct btrfs_root *root = fs_info->extent_root;
1500 struct btrfs_key key;
1503 key.objectid = bytenr;
1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 key.offset = parent;
1508 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 key.offset = root_objectid;
1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 if (ret == -ENOENT && parent) {
1517 btrfs_release_path(path);
1518 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528 struct btrfs_fs_info *fs_info,
1529 struct btrfs_path *path,
1530 u64 bytenr, u64 parent,
1533 struct btrfs_key key;
1536 key.objectid = bytenr;
1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 key.offset = parent;
1541 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 key.offset = root_objectid;
1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1547 btrfs_release_path(path);
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1556 type = BTRFS_SHARED_BLOCK_REF_KEY;
1558 type = BTRFS_TREE_BLOCK_REF_KEY;
1561 type = BTRFS_SHARED_DATA_REF_KEY;
1563 type = BTRFS_EXTENT_DATA_REF_KEY;
1568 static int find_next_key(struct btrfs_path *path, int level,
1569 struct btrfs_key *key)
1572 for (; level < BTRFS_MAX_LEVEL; level++) {
1573 if (!path->nodes[level])
1575 if (path->slots[level] + 1 >=
1576 btrfs_header_nritems(path->nodes[level]))
1579 btrfs_item_key_to_cpu(path->nodes[level], key,
1580 path->slots[level] + 1);
1582 btrfs_node_key_to_cpu(path->nodes[level], key,
1583 path->slots[level] + 1);
1590 * look for inline back ref. if back ref is found, *ref_ret is set
1591 * to the address of inline back ref, and 0 is returned.
1593 * if back ref isn't found, *ref_ret is set to the address where it
1594 * should be inserted, and -ENOENT is returned.
1596 * if insert is true and there are too many inline back refs, the path
1597 * points to the extent item, and -EAGAIN is returned.
1599 * NOTE: inline back refs are ordered in the same way that back ref
1600 * items in the tree are ordered.
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604 struct btrfs_fs_info *fs_info,
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes,
1608 u64 parent, u64 root_objectid,
1609 u64 owner, u64 offset, int insert)
1611 struct btrfs_root *root = fs_info->extent_root;
1612 struct btrfs_key key;
1613 struct extent_buffer *leaf;
1614 struct btrfs_extent_item *ei;
1615 struct btrfs_extent_inline_ref *iref;
1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1628 key.objectid = bytenr;
1629 key.type = BTRFS_EXTENT_ITEM_KEY;
1630 key.offset = num_bytes;
1632 want = extent_ref_type(parent, owner);
1634 extra_size = btrfs_extent_inline_ref_size(want);
1635 path->keep_locks = 1;
1640 * Owner is our parent level, so we can just add one to get the level
1641 * for the block we are interested in.
1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 key.type = BTRFS_METADATA_ITEM_KEY;
1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1656 * We may be a newly converted file system which still has the old fat
1657 * extent entries for metadata, so try and see if we have one of those.
1659 if (ret > 0 && skinny_metadata) {
1660 skinny_metadata = false;
1661 if (path->slots[0]) {
1663 btrfs_item_key_to_cpu(path->nodes[0], &key,
1665 if (key.objectid == bytenr &&
1666 key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 key.offset == num_bytes)
1671 key.objectid = bytenr;
1672 key.type = BTRFS_EXTENT_ITEM_KEY;
1673 key.offset = num_bytes;
1674 btrfs_release_path(path);
1679 if (ret && !insert) {
1682 } else if (WARN_ON(ret)) {
1687 leaf = path->nodes[0];
1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 if (item_size < sizeof(*ei)) {
1695 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1705 BUG_ON(item_size < sizeof(*ei));
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 flags = btrfs_extent_flags(leaf, ei);
1710 ptr = (unsigned long)(ei + 1);
1711 end = (unsigned long)ei + item_size;
1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714 ptr += sizeof(struct btrfs_tree_block_info);
1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 needed = BTRFS_REF_TYPE_DATA;
1721 needed = BTRFS_REF_TYPE_BLOCK;
1729 iref = (struct btrfs_extent_inline_ref *)ptr;
1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 if (type == BTRFS_REF_TYPE_INVALID) {
1739 ptr += btrfs_extent_inline_ref_size(type);
1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 struct btrfs_extent_data_ref *dref;
1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 if (match_extent_data_ref(leaf, dref, root_objectid,
1751 if (hash_extent_data_ref_item(leaf, dref) <
1752 hash_extent_data_ref(root_objectid, owner, offset))
1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1758 if (parent == ref_offset) {
1762 if (ref_offset < parent)
1765 if (root_objectid == ref_offset) {
1769 if (ref_offset < root_objectid)
1773 ptr += btrfs_extent_inline_ref_size(type);
1775 if (err == -ENOENT && insert) {
1776 if (item_size + extra_size >=
1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1782 * To add new inline back ref, we have to make sure
1783 * there is no corresponding back ref item.
1784 * For simplicity, we just do not add new inline back
1785 * ref if there is any kind of item for this block
1787 if (find_next_key(path, 0, &key) == 0 &&
1788 key.objectid == bytenr &&
1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1797 path->keep_locks = 0;
1798 btrfs_unlock_up_safe(path, 1);
1804 * helper to add new inline back ref
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808 struct btrfs_path *path,
1809 struct btrfs_extent_inline_ref *iref,
1810 u64 parent, u64 root_objectid,
1811 u64 owner, u64 offset, int refs_to_add,
1812 struct btrfs_delayed_extent_op *extent_op)
1814 struct extent_buffer *leaf;
1815 struct btrfs_extent_item *ei;
1818 unsigned long item_offset;
1823 leaf = path->nodes[0];
1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 item_offset = (unsigned long)iref - (unsigned long)ei;
1827 type = extent_ref_type(parent, owner);
1828 size = btrfs_extent_inline_ref_size(type);
1830 btrfs_extend_item(fs_info, path, size);
1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 refs = btrfs_extent_refs(leaf, ei);
1834 refs += refs_to_add;
1835 btrfs_set_extent_refs(leaf, ei, refs);
1837 __run_delayed_extent_op(extent_op, leaf, ei);
1839 ptr = (unsigned long)ei + item_offset;
1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 if (ptr < end - size)
1842 memmove_extent_buffer(leaf, ptr + size, ptr,
1845 iref = (struct btrfs_extent_inline_ref *)ptr;
1846 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 struct btrfs_extent_data_ref *dref;
1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 struct btrfs_shared_data_ref *sref;
1856 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1864 btrfs_mark_buffer_dirty(leaf);
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868 struct btrfs_fs_info *fs_info,
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref **ref_ret,
1871 u64 bytenr, u64 num_bytes, u64 parent,
1872 u64 root_objectid, u64 owner, u64 offset)
1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877 bytenr, num_bytes, parent,
1878 root_objectid, owner, offset, 0);
1882 btrfs_release_path(path);
1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 parent, root_objectid);
1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 parent, root_objectid, owner,
1897 * helper to update/remove inline back ref
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901 struct btrfs_path *path,
1902 struct btrfs_extent_inline_ref *iref,
1904 struct btrfs_delayed_extent_op *extent_op,
1907 struct extent_buffer *leaf;
1908 struct btrfs_extent_item *ei;
1909 struct btrfs_extent_data_ref *dref = NULL;
1910 struct btrfs_shared_data_ref *sref = NULL;
1918 leaf = path->nodes[0];
1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 refs = btrfs_extent_refs(leaf, ei);
1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 refs += refs_to_mod;
1923 btrfs_set_extent_refs(leaf, ei, refs);
1925 __run_delayed_extent_op(extent_op, leaf, ei);
1928 * If type is invalid, we should have bailed out after
1929 * lookup_inline_extent_backref().
1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 refs = btrfs_extent_data_ref_count(leaf, dref);
1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 refs = btrfs_shared_data_ref_count(leaf, sref);
1942 BUG_ON(refs_to_mod != -1);
1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 refs += refs_to_mod;
1949 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1952 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1955 size = btrfs_extent_inline_ref_size(type);
1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 ptr = (unsigned long)iref;
1958 end = (unsigned long)ei + item_size;
1959 if (ptr + size < end)
1960 memmove_extent_buffer(leaf, ptr, ptr + size,
1963 btrfs_truncate_item(fs_info, path, item_size, 1);
1965 btrfs_mark_buffer_dirty(leaf);
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970 struct btrfs_fs_info *fs_info,
1971 struct btrfs_path *path,
1972 u64 bytenr, u64 num_bytes, u64 parent,
1973 u64 root_objectid, u64 owner,
1974 u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1977 struct btrfs_extent_inline_ref *iref;
1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981 bytenr, num_bytes, parent,
1982 root_objectid, owner, offset, 1);
1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985 update_inline_extent_backref(fs_info, path, iref,
1986 refs_to_add, extent_op, NULL);
1987 } else if (ret == -ENOENT) {
1988 setup_inline_extent_backref(fs_info, path, iref, parent,
1989 root_objectid, owner, offset,
1990 refs_to_add, extent_op);
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997 struct btrfs_fs_info *fs_info,
1998 struct btrfs_path *path,
1999 u64 bytenr, u64 parent, u64 root_objectid,
2000 u64 owner, u64 offset, int refs_to_add)
2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 BUG_ON(refs_to_add != 1);
2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006 parent, root_objectid);
2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009 parent, root_objectid,
2010 owner, offset, refs_to_add);
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016 struct btrfs_fs_info *fs_info,
2017 struct btrfs_path *path,
2018 struct btrfs_extent_inline_ref *iref,
2019 int refs_to_drop, int is_data, int *last_ref)
2023 BUG_ON(!is_data && refs_to_drop != 1);
2025 update_inline_extent_backref(fs_info, path, iref,
2026 -refs_to_drop, NULL, last_ref);
2027 } else if (is_data) {
2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2032 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2037 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 u64 *discarded_bytes)
2042 u64 bytes_left, end;
2043 u64 aligned_start = ALIGN(start, 1 << 9);
2045 if (WARN_ON(start != aligned_start)) {
2046 len -= aligned_start - start;
2047 len = round_down(len, 1 << 9);
2048 start = aligned_start;
2051 *discarded_bytes = 0;
2059 /* Skip any superblocks on this device. */
2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 u64 sb_start = btrfs_sb_offset(j);
2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 u64 size = sb_start - start;
2065 if (!in_range(sb_start, start, bytes_left) &&
2066 !in_range(sb_end, start, bytes_left) &&
2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2071 * Superblock spans beginning of range. Adjust start and
2074 if (sb_start <= start) {
2075 start += sb_end - start;
2080 bytes_left = end - start;
2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2088 *discarded_bytes += size;
2089 else if (ret != -EOPNOTSUPP)
2098 bytes_left = end - start;
2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2105 *discarded_bytes += bytes_left;
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111 u64 num_bytes, u64 *actual_bytes)
2114 u64 discarded_bytes = 0;
2115 struct btrfs_bio *bbio = NULL;
2119 * Avoid races with device replace and make sure our bbio has devices
2120 * associated to its stripes that don't go away while we are discarding.
2122 btrfs_bio_counter_inc_blocked(fs_info);
2123 /* Tell the block device(s) that the sectors can be discarded */
2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2126 /* Error condition is -ENOMEM */
2128 struct btrfs_bio_stripe *stripe = bbio->stripes;
2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2134 struct request_queue *req_q;
2136 if (!stripe->dev->bdev) {
2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2140 req_q = bdev_get_queue(stripe->dev->bdev);
2141 if (!blk_queue_discard(req_q))
2144 ret = btrfs_issue_discard(stripe->dev->bdev,
2149 discarded_bytes += bytes;
2150 else if (ret != -EOPNOTSUPP)
2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2154 * Just in case we get back EOPNOTSUPP for some reason,
2155 * just ignore the return value so we don't screw up
2156 * people calling discard_extent.
2160 btrfs_put_bbio(bbio);
2162 btrfs_bio_counter_dec(fs_info);
2165 *actual_bytes = discarded_bytes;
2168 if (ret == -EOPNOTSUPP)
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 u64 bytenr, u64 num_bytes, u64 parent,
2177 u64 root_objectid, u64 owner, u64 offset)
2179 struct btrfs_fs_info *fs_info = root->fs_info;
2180 int old_ref_mod, new_ref_mod;
2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 owner, offset, BTRFS_ADD_DELAYED_REF);
2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2192 root_objectid, (int)owner,
2193 BTRFS_ADD_DELAYED_REF, NULL,
2194 &old_ref_mod, &new_ref_mod);
2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2198 root_objectid, owner, offset,
2199 0, BTRFS_ADD_DELAYED_REF,
2200 &old_ref_mod, &new_ref_mod);
2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2204 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2206 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2212 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2213 struct btrfs_fs_info *fs_info,
2214 struct btrfs_delayed_ref_node *node,
2215 u64 parent, u64 root_objectid,
2216 u64 owner, u64 offset, int refs_to_add,
2217 struct btrfs_delayed_extent_op *extent_op)
2219 struct btrfs_path *path;
2220 struct extent_buffer *leaf;
2221 struct btrfs_extent_item *item;
2222 struct btrfs_key key;
2223 u64 bytenr = node->bytenr;
2224 u64 num_bytes = node->num_bytes;
2228 path = btrfs_alloc_path();
2232 path->reada = READA_FORWARD;
2233 path->leave_spinning = 1;
2234 /* this will setup the path even if it fails to insert the back ref */
2235 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2236 num_bytes, parent, root_objectid,
2238 refs_to_add, extent_op);
2239 if ((ret < 0 && ret != -EAGAIN) || !ret)
2243 * Ok we had -EAGAIN which means we didn't have space to insert and
2244 * inline extent ref, so just update the reference count and add a
2247 leaf = path->nodes[0];
2248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2249 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250 refs = btrfs_extent_refs(leaf, item);
2251 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2253 __run_delayed_extent_op(extent_op, leaf, item);
2255 btrfs_mark_buffer_dirty(leaf);
2256 btrfs_release_path(path);
2258 path->reada = READA_FORWARD;
2259 path->leave_spinning = 1;
2260 /* now insert the actual backref */
2261 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2262 root_objectid, owner, offset, refs_to_add);
2264 btrfs_abort_transaction(trans, ret);
2266 btrfs_free_path(path);
2270 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2271 struct btrfs_fs_info *fs_info,
2272 struct btrfs_delayed_ref_node *node,
2273 struct btrfs_delayed_extent_op *extent_op,
2274 int insert_reserved)
2277 struct btrfs_delayed_data_ref *ref;
2278 struct btrfs_key ins;
2283 ins.objectid = node->bytenr;
2284 ins.offset = node->num_bytes;
2285 ins.type = BTRFS_EXTENT_ITEM_KEY;
2287 ref = btrfs_delayed_node_to_data_ref(node);
2288 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2290 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2291 parent = ref->parent;
2292 ref_root = ref->root;
2294 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2296 flags |= extent_op->flags_to_set;
2297 ret = alloc_reserved_file_extent(trans, fs_info,
2298 parent, ref_root, flags,
2299 ref->objectid, ref->offset,
2300 &ins, node->ref_mod);
2301 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2302 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2303 ref_root, ref->objectid,
2304 ref->offset, node->ref_mod,
2306 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2307 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2308 ref_root, ref->objectid,
2309 ref->offset, node->ref_mod,
2317 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2318 struct extent_buffer *leaf,
2319 struct btrfs_extent_item *ei)
2321 u64 flags = btrfs_extent_flags(leaf, ei);
2322 if (extent_op->update_flags) {
2323 flags |= extent_op->flags_to_set;
2324 btrfs_set_extent_flags(leaf, ei, flags);
2327 if (extent_op->update_key) {
2328 struct btrfs_tree_block_info *bi;
2329 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2330 bi = (struct btrfs_tree_block_info *)(ei + 1);
2331 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2335 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2336 struct btrfs_fs_info *fs_info,
2337 struct btrfs_delayed_ref_head *head,
2338 struct btrfs_delayed_extent_op *extent_op)
2340 struct btrfs_key key;
2341 struct btrfs_path *path;
2342 struct btrfs_extent_item *ei;
2343 struct extent_buffer *leaf;
2347 int metadata = !extent_op->is_data;
2352 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2355 path = btrfs_alloc_path();
2359 key.objectid = head->bytenr;
2362 key.type = BTRFS_METADATA_ITEM_KEY;
2363 key.offset = extent_op->level;
2365 key.type = BTRFS_EXTENT_ITEM_KEY;
2366 key.offset = head->num_bytes;
2370 path->reada = READA_FORWARD;
2371 path->leave_spinning = 1;
2372 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2379 if (path->slots[0] > 0) {
2381 btrfs_item_key_to_cpu(path->nodes[0], &key,
2383 if (key.objectid == head->bytenr &&
2384 key.type == BTRFS_EXTENT_ITEM_KEY &&
2385 key.offset == head->num_bytes)
2389 btrfs_release_path(path);
2392 key.objectid = head->bytenr;
2393 key.offset = head->num_bytes;
2394 key.type = BTRFS_EXTENT_ITEM_KEY;
2403 leaf = path->nodes[0];
2404 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2406 if (item_size < sizeof(*ei)) {
2407 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2412 leaf = path->nodes[0];
2413 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416 BUG_ON(item_size < sizeof(*ei));
2417 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418 __run_delayed_extent_op(extent_op, leaf, ei);
2420 btrfs_mark_buffer_dirty(leaf);
2422 btrfs_free_path(path);
2426 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2427 struct btrfs_fs_info *fs_info,
2428 struct btrfs_delayed_ref_node *node,
2429 struct btrfs_delayed_extent_op *extent_op,
2430 int insert_reserved)
2433 struct btrfs_delayed_tree_ref *ref;
2434 struct btrfs_key ins;
2437 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2439 ref = btrfs_delayed_node_to_tree_ref(node);
2440 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2442 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2443 parent = ref->parent;
2444 ref_root = ref->root;
2446 ins.objectid = node->bytenr;
2447 if (skinny_metadata) {
2448 ins.offset = ref->level;
2449 ins.type = BTRFS_METADATA_ITEM_KEY;
2451 ins.offset = node->num_bytes;
2452 ins.type = BTRFS_EXTENT_ITEM_KEY;
2455 if (node->ref_mod != 1) {
2457 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2458 node->bytenr, node->ref_mod, node->action, ref_root,
2462 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2463 BUG_ON(!extent_op || !extent_op->update_flags);
2464 ret = alloc_reserved_tree_block(trans, fs_info,
2466 extent_op->flags_to_set,
2469 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2470 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2474 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2475 ret = __btrfs_free_extent(trans, fs_info, node,
2477 ref->level, 0, 1, extent_op);
2484 /* helper function to actually process a single delayed ref entry */
2485 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2486 struct btrfs_fs_info *fs_info,
2487 struct btrfs_delayed_ref_node *node,
2488 struct btrfs_delayed_extent_op *extent_op,
2489 int insert_reserved)
2493 if (trans->aborted) {
2494 if (insert_reserved)
2495 btrfs_pin_extent(fs_info, node->bytenr,
2496 node->num_bytes, 1);
2500 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2501 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2502 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2504 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2505 node->type == BTRFS_SHARED_DATA_REF_KEY)
2506 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2513 static inline struct btrfs_delayed_ref_node *
2514 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2516 struct btrfs_delayed_ref_node *ref;
2518 if (RB_EMPTY_ROOT(&head->ref_tree))
2522 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2523 * This is to prevent a ref count from going down to zero, which deletes
2524 * the extent item from the extent tree, when there still are references
2525 * to add, which would fail because they would not find the extent item.
2527 if (!list_empty(&head->ref_add_list))
2528 return list_first_entry(&head->ref_add_list,
2529 struct btrfs_delayed_ref_node, add_list);
2531 ref = rb_entry(rb_first(&head->ref_tree),
2532 struct btrfs_delayed_ref_node, ref_node);
2533 ASSERT(list_empty(&ref->add_list));
2537 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2538 struct btrfs_delayed_ref_head *head)
2540 spin_lock(&delayed_refs->lock);
2541 head->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(head);
2547 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2548 struct btrfs_fs_info *fs_info,
2549 struct btrfs_delayed_ref_head *head)
2551 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2556 head->extent_op = NULL;
2557 if (head->must_insert_reserved) {
2558 btrfs_free_delayed_extent_op(extent_op);
2561 spin_unlock(&head->lock);
2562 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2563 btrfs_free_delayed_extent_op(extent_op);
2564 return ret ? ret : 1;
2567 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568 struct btrfs_fs_info *fs_info,
2569 struct btrfs_delayed_ref_head *head)
2571 struct btrfs_delayed_ref_root *delayed_refs;
2574 delayed_refs = &trans->transaction->delayed_refs;
2576 ret = cleanup_extent_op(trans, fs_info, head);
2578 unselect_delayed_ref_head(delayed_refs, head);
2579 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2586 * Need to drop our head ref lock and re-acquire the delayed ref lock
2587 * and then re-check to make sure nobody got added.
2589 spin_unlock(&head->lock);
2590 spin_lock(&delayed_refs->lock);
2591 spin_lock(&head->lock);
2592 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2593 spin_unlock(&head->lock);
2594 spin_unlock(&delayed_refs->lock);
2597 delayed_refs->num_heads--;
2598 rb_erase(&head->href_node, &delayed_refs->href_root);
2599 RB_CLEAR_NODE(&head->href_node);
2600 spin_unlock(&delayed_refs->lock);
2601 spin_unlock(&head->lock);
2602 atomic_dec(&delayed_refs->num_entries);
2604 trace_run_delayed_ref_head(fs_info, head, 0);
2606 if (head->total_ref_mod < 0) {
2607 struct btrfs_space_info *space_info;
2611 flags = BTRFS_BLOCK_GROUP_DATA;
2612 else if (head->is_system)
2613 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2615 flags = BTRFS_BLOCK_GROUP_METADATA;
2616 space_info = __find_space_info(fs_info, flags);
2618 percpu_counter_add(&space_info->total_bytes_pinned,
2621 if (head->is_data) {
2622 spin_lock(&delayed_refs->lock);
2623 delayed_refs->pending_csums -= head->num_bytes;
2624 spin_unlock(&delayed_refs->lock);
2628 if (head->must_insert_reserved) {
2629 btrfs_pin_extent(fs_info, head->bytenr,
2630 head->num_bytes, 1);
2631 if (head->is_data) {
2632 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2637 /* Also free its reserved qgroup space */
2638 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2639 head->qgroup_reserved);
2640 btrfs_delayed_ref_unlock(head);
2641 btrfs_put_delayed_ref_head(head);
2646 * Returns 0 on success or if called with an already aborted transaction.
2647 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2649 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2652 struct btrfs_fs_info *fs_info = trans->fs_info;
2653 struct btrfs_delayed_ref_root *delayed_refs;
2654 struct btrfs_delayed_ref_node *ref;
2655 struct btrfs_delayed_ref_head *locked_ref = NULL;
2656 struct btrfs_delayed_extent_op *extent_op;
2657 ktime_t start = ktime_get();
2659 unsigned long count = 0;
2660 unsigned long actual_count = 0;
2661 int must_insert_reserved = 0;
2663 delayed_refs = &trans->transaction->delayed_refs;
2669 spin_lock(&delayed_refs->lock);
2670 locked_ref = btrfs_select_ref_head(trans);
2672 spin_unlock(&delayed_refs->lock);
2676 /* grab the lock that says we are going to process
2677 * all the refs for this head */
2678 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2679 spin_unlock(&delayed_refs->lock);
2681 * we may have dropped the spin lock to get the head
2682 * mutex lock, and that might have given someone else
2683 * time to free the head. If that's true, it has been
2684 * removed from our list and we can move on.
2686 if (ret == -EAGAIN) {
2694 * We need to try and merge add/drops of the same ref since we
2695 * can run into issues with relocate dropping the implicit ref
2696 * and then it being added back again before the drop can
2697 * finish. If we merged anything we need to re-loop so we can
2699 * Or we can get node references of the same type that weren't
2700 * merged when created due to bumps in the tree mod seq, and
2701 * we need to merge them to prevent adding an inline extent
2702 * backref before dropping it (triggering a BUG_ON at
2703 * insert_inline_extent_backref()).
2705 spin_lock(&locked_ref->lock);
2706 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2710 * locked_ref is the head node, so we have to go one
2711 * node back for any delayed ref updates
2713 ref = select_delayed_ref(locked_ref);
2715 if (ref && ref->seq &&
2716 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2717 spin_unlock(&locked_ref->lock);
2718 unselect_delayed_ref_head(delayed_refs, locked_ref);
2726 * We're done processing refs in this ref_head, clean everything
2727 * up and move on to the next ref_head.
2730 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2732 /* We dropped our lock, we need to loop. */
2745 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2746 RB_CLEAR_NODE(&ref->ref_node);
2747 if (!list_empty(&ref->add_list))
2748 list_del(&ref->add_list);
2750 * When we play the delayed ref, also correct the ref_mod on
2753 switch (ref->action) {
2754 case BTRFS_ADD_DELAYED_REF:
2755 case BTRFS_ADD_DELAYED_EXTENT:
2756 locked_ref->ref_mod -= ref->ref_mod;
2758 case BTRFS_DROP_DELAYED_REF:
2759 locked_ref->ref_mod += ref->ref_mod;
2764 atomic_dec(&delayed_refs->num_entries);
2767 * Record the must-insert_reserved flag before we drop the spin
2770 must_insert_reserved = locked_ref->must_insert_reserved;
2771 locked_ref->must_insert_reserved = 0;
2773 extent_op = locked_ref->extent_op;
2774 locked_ref->extent_op = NULL;
2775 spin_unlock(&locked_ref->lock);
2777 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2778 must_insert_reserved);
2780 btrfs_free_delayed_extent_op(extent_op);
2782 unselect_delayed_ref_head(delayed_refs, locked_ref);
2783 btrfs_put_delayed_ref(ref);
2784 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2789 btrfs_put_delayed_ref(ref);
2795 * We don't want to include ref heads since we can have empty ref heads
2796 * and those will drastically skew our runtime down since we just do
2797 * accounting, no actual extent tree updates.
2799 if (actual_count > 0) {
2800 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2804 * We weigh the current average higher than our current runtime
2805 * to avoid large swings in the average.
2807 spin_lock(&delayed_refs->lock);
2808 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2809 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2810 spin_unlock(&delayed_refs->lock);
2815 #ifdef SCRAMBLE_DELAYED_REFS
2817 * Normally delayed refs get processed in ascending bytenr order. This
2818 * correlates in most cases to the order added. To expose dependencies on this
2819 * order, we start to process the tree in the middle instead of the beginning
2821 static u64 find_middle(struct rb_root *root)
2823 struct rb_node *n = root->rb_node;
2824 struct btrfs_delayed_ref_node *entry;
2827 u64 first = 0, last = 0;
2831 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2832 first = entry->bytenr;
2836 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837 last = entry->bytenr;
2842 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2843 WARN_ON(!entry->in_tree);
2845 middle = entry->bytenr;
2858 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2862 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2863 sizeof(struct btrfs_extent_inline_ref));
2864 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2865 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2868 * We don't ever fill up leaves all the way so multiply by 2 just to be
2869 * closer to what we're really going to want to use.
2871 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2875 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2876 * would require to store the csums for that many bytes.
2878 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2881 u64 num_csums_per_leaf;
2884 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2885 num_csums_per_leaf = div64_u64(csum_size,
2886 (u64)btrfs_super_csum_size(fs_info->super_copy));
2887 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2888 num_csums += num_csums_per_leaf - 1;
2889 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2893 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2894 struct btrfs_fs_info *fs_info)
2896 struct btrfs_block_rsv *global_rsv;
2897 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2898 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2899 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2900 u64 num_bytes, num_dirty_bgs_bytes;
2903 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2904 num_heads = heads_to_leaves(fs_info, num_heads);
2906 num_bytes += (num_heads - 1) * fs_info->nodesize;
2908 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2910 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2912 global_rsv = &fs_info->global_block_rsv;
2915 * If we can't allocate any more chunks lets make sure we have _lots_ of
2916 * wiggle room since running delayed refs can create more delayed refs.
2918 if (global_rsv->space_info->full) {
2919 num_dirty_bgs_bytes <<= 1;
2923 spin_lock(&global_rsv->lock);
2924 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2926 spin_unlock(&global_rsv->lock);
2930 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2931 struct btrfs_fs_info *fs_info)
2934 atomic_read(&trans->transaction->delayed_refs.num_entries);
2939 avg_runtime = fs_info->avg_delayed_ref_runtime;
2940 val = num_entries * avg_runtime;
2941 if (val >= NSEC_PER_SEC)
2943 if (val >= NSEC_PER_SEC / 2)
2946 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2949 struct async_delayed_refs {
2950 struct btrfs_root *root;
2955 struct completion wait;
2956 struct btrfs_work work;
2959 static inline struct async_delayed_refs *
2960 to_async_delayed_refs(struct btrfs_work *work)
2962 return container_of(work, struct async_delayed_refs, work);
2965 static void delayed_ref_async_start(struct btrfs_work *work)
2967 struct async_delayed_refs *async = to_async_delayed_refs(work);
2968 struct btrfs_trans_handle *trans;
2969 struct btrfs_fs_info *fs_info = async->root->fs_info;
2972 /* if the commit is already started, we don't need to wait here */
2973 if (btrfs_transaction_blocked(fs_info))
2976 trans = btrfs_join_transaction(async->root);
2977 if (IS_ERR(trans)) {
2978 async->error = PTR_ERR(trans);
2983 * trans->sync means that when we call end_transaction, we won't
2984 * wait on delayed refs
2988 /* Don't bother flushing if we got into a different transaction */
2989 if (trans->transid > async->transid)
2992 ret = btrfs_run_delayed_refs(trans, async->count);
2996 ret = btrfs_end_transaction(trans);
2997 if (ret && !async->error)
3001 complete(&async->wait);
3006 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3007 unsigned long count, u64 transid, int wait)
3009 struct async_delayed_refs *async;
3012 async = kmalloc(sizeof(*async), GFP_NOFS);
3016 async->root = fs_info->tree_root;
3017 async->count = count;
3019 async->transid = transid;
3024 init_completion(&async->wait);
3026 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3027 delayed_ref_async_start, NULL, NULL);
3029 btrfs_queue_work(fs_info->extent_workers, &async->work);
3032 wait_for_completion(&async->wait);
3041 * this starts processing the delayed reference count updates and
3042 * extent insertions we have queued up so far. count can be
3043 * 0, which means to process everything in the tree at the start
3044 * of the run (but not newly added entries), or it can be some target
3045 * number you'd like to process.
3047 * Returns 0 on success or if called with an aborted transaction
3048 * Returns <0 on error and aborts the transaction
3050 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3051 unsigned long count)
3053 struct btrfs_fs_info *fs_info = trans->fs_info;
3054 struct rb_node *node;
3055 struct btrfs_delayed_ref_root *delayed_refs;
3056 struct btrfs_delayed_ref_head *head;