1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
55 * Declare a helper function to detect underflow of various space info members
57 #define DECLARE_SPACE_INFO_UPDATE(name) \
58 static inline void update_##name(struct btrfs_space_info *sinfo, \
61 if (bytes < 0 && sinfo->name < -bytes) { \
66 sinfo->name += bytes; \
69 DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
70 DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
72 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
77 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
85 struct btrfs_delayed_ref_node *node,
86 struct btrfs_delayed_extent_op *extent_op);
87 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
96 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
99 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
113 return (cache->flags & bits) == bits;
116 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
118 atomic_inc(&cache->count);
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
133 * No better way to resolve, but only to warn.
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
136 kfree(cache->free_space_ctl);
142 * this adds the block group to the fs_info rb tree for the block group
145 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
146 struct btrfs_block_group_cache *block_group)
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
159 if (block_group->key.objectid < cache->key.objectid) {
161 } else if (block_group->key.objectid > cache->key.objectid) {
164 spin_unlock(&info->block_group_cache_lock);
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
176 spin_unlock(&info->block_group_cache_lock);
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
185 static struct btrfs_block_group_cache *
186 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 struct btrfs_block_group_cache *cache, *ret = NULL;
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
197 cache = rb_entry(n, struct btrfs_block_group_cache,
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
218 btrfs_get_block_group(ret);
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
222 spin_unlock(&info->block_group_cache_lock);
227 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
228 u64 start, u64 num_bytes)
230 u64 end = start + num_bytes - 1;
231 set_extent_bits(&fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE);
233 set_extent_bits(&fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE);
238 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
240 struct btrfs_fs_info *fs_info = cache->fs_info;
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
246 clear_extent_bits(&fs_info->freed_extents[0],
247 start, end, EXTENT_UPTODATE);
248 clear_extent_bits(&fs_info->freed_extents[1],
249 start, end, EXTENT_UPTODATE);
252 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
254 struct btrfs_fs_info *fs_info = cache->fs_info;
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
263 ret = add_excluded_extent(fs_info, cache->key.objectid,
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
272 bytenr, &logical, &nr, &stripe_len);
279 if (logical[nr] > cache->key.objectid +
283 if (logical[nr] + stripe_len <= cache->key.objectid)
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
296 cache->bytes_super += len;
297 ret = add_excluded_extent(fs_info, start, len);
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
312 struct btrfs_caching_control *ctl;
314 spin_lock(&cache->lock);
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
320 ctl = cache->caching_ctl;
321 refcount_inc(&ctl->count);
322 spin_unlock(&cache->lock);
326 static void put_caching_control(struct btrfs_caching_control *ctl)
328 if (refcount_dec_and_test(&ctl->count))
332 #ifdef CONFIG_BTRFS_DEBUG
333 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
335 struct btrfs_fs_info *fs_info = block_group->fs_info;
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
339 fs_info->nodesize : fs_info->sectorsize;
340 u64 step = chunk << 1;
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
358 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 struct btrfs_fs_info *info = block_group->fs_info;
362 u64 extent_start, extent_end, size, total_added = 0;
365 while (start < end) {
366 ret = find_first_extent_bit(info->pinned_extents, start,
367 &extent_start, &extent_end,
368 EXTENT_DIRTY | EXTENT_UPTODATE,
373 if (extent_start <= start) {
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
378 ret = btrfs_add_free_space(block_group, start,
380 BUG_ON(ret); /* -ENOMEM or logic error */
381 start = extent_end + 1;
390 ret = btrfs_add_free_space(block_group, start, size);
391 BUG_ON(ret); /* -ENOMEM or logic error */
397 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
402 struct btrfs_path *path;
403 struct extent_buffer *leaf;
404 struct btrfs_key key;
411 path = btrfs_alloc_path();
415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
417 #ifdef CONFIG_BTRFS_DEBUG
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
423 if (btrfs_should_fragment_free_space(block_group))
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
432 path->skip_locking = 1;
433 path->search_commit_root = 1;
434 path->reada = READA_FORWARD;
438 key.type = BTRFS_EXTENT_ITEM_KEY;
441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
449 if (btrfs_fs_closing(fs_info) > 1) {
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
457 ret = find_next_key(path, 0, &key);
461 if (need_resched() ||
462 rwsem_is_contended(&fs_info->commit_root_sem)) {
464 caching_ctl->progress = last;
465 btrfs_release_path(path);
466 up_read(&fs_info->commit_root_sem);
467 mutex_unlock(&caching_ctl->mutex);
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
474 ret = btrfs_next_leaf(extent_root, path);
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
484 if (key.objectid < last) {
487 key.type = BTRFS_EXTENT_ITEM_KEY;
490 caching_ctl->progress = last;
491 btrfs_release_path(path);
495 if (key.objectid < block_group->key.objectid) {
500 if (key.objectid >= block_group->key.objectid +
501 block_group->key.offset)
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
506 total_found += add_new_free_space(block_group, last,
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
512 last = key.objectid + key.offset;
514 if (total_found > CACHING_CTL_WAKE_UP) {
517 wake_up(&caching_ctl->wait);
524 total_found += add_new_free_space(block_group, last,
525 block_group->key.objectid +
526 block_group->key.offset);
527 caching_ctl->progress = (u64)-1;
530 btrfs_free_path(path);
534 static noinline void caching_thread(struct btrfs_work *work)
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
551 ret = load_extent_tree_free(caching_ctl);
553 spin_lock(&block_group->lock);
554 block_group->caching_ctl = NULL;
555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 spin_unlock(&block_group->lock);
558 #ifdef CONFIG_BTRFS_DEBUG
559 if (btrfs_should_fragment_free_space(block_group)) {
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
569 fragment_free_space(block_group);
573 caching_ctl->progress = (u64)-1;
575 up_read(&fs_info->commit_root_sem);
576 free_excluded_extents(block_group);
577 mutex_unlock(&caching_ctl->mutex);
579 wake_up(&caching_ctl->wait);
581 put_caching_control(caching_ctl);
582 btrfs_put_block_group(block_group);
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
602 refcount_set(&caching_ctl->count, 1);
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
606 spin_lock(&cache->lock);
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
622 ctl = cache->caching_ctl;
623 refcount_inc(&ctl->count);
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
645 mutex_lock(&caching_ctl->mutex);
646 ret = load_free_space_cache(fs_info, cache);
648 spin_lock(&cache->lock);
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
653 caching_ctl->progress = (u64)-1;
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
659 cache->cached = BTRFS_CACHE_STARTED;
660 cache->has_caching_ctl = 1;
663 spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
666 btrfs_should_fragment_free_space(cache)) {
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
676 fragment_free_space(cache);
679 mutex_unlock(&caching_ctl->mutex);
681 wake_up(&caching_ctl->wait);
683 put_caching_control(caching_ctl);
684 free_excluded_extents(cache);
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
697 cache->cached = BTRFS_CACHE_STARTED;
698 cache->has_caching_ctl = 1;
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
709 down_write(&fs_info->commit_root_sem);
710 refcount_inc(&caching_ctl->count);
711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 up_write(&fs_info->commit_root_sem);
714 btrfs_get_block_group(cache);
716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
722 * return the block group that starts at or after bytenr
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 return block_group_cache_tree_search(info, bytenr, 0);
731 * return the block group that contains the given bytenr
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
737 return block_group_cache_tree_search(info, bytenr, 1);
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 struct list_head *head = &info->space_info;
744 struct btrfs_space_info *found;
746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749 list_for_each_entry_rcu(found, head, list) {
750 if (found->flags & flags) {
759 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
760 bool metadata, u64 root_objectid)
762 struct btrfs_space_info *space_info;
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 flags = BTRFS_BLOCK_GROUP_METADATA;
771 flags = BTRFS_BLOCK_GROUP_DATA;
774 space_info = __find_space_info(fs_info, flags);
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
790 list_for_each_entry_rcu(found, head, list)
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
799 struct btrfs_key key;
800 struct btrfs_path *path;
802 path = btrfs_alloc_path();
806 key.objectid = start;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 btrfs_free_path(path);
815 * helper function to lookup reference count and flags of a tree block.
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info, u64 bytenr,
825 u64 offset, int metadata, u64 *refs, u64 *flags)
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
839 * If we don't have skinny metadata, don't bother doing anything
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
847 path = btrfs_alloc_path();
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
857 key.objectid = bytenr;
860 key.type = BTRFS_METADATA_ITEM_KEY;
862 key.type = BTRFS_EXTENT_ITEM_KEY;
864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 if (path->slots[0]) {
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
875 key.offset == fs_info->nodesize)
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
890 btrfs_print_v0_err(fs_info);
892 btrfs_abort_transaction(trans, ret);
894 btrfs_handle_fs_error(fs_info, ret, NULL);
899 BUG_ON(num_refs == 0);
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
913 if (!mutex_trylock(&head->mutex)) {
914 refcount_inc(&head->refs);
915 spin_unlock(&delayed_refs->lock);
917 btrfs_release_path(path);
920 * Mutex was contended, block until it's released and try
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
925 btrfs_put_delayed_ref_head(head);
928 spin_lock(&head->lock);
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
932 BUG_ON(num_refs == 0);
934 num_refs += head->ref_mod;
935 spin_unlock(&head->lock);
936 mutex_unlock(&head->mutex);
938 spin_unlock(&delayed_refs->lock);
940 WARN_ON(num_refs == 0);
944 *flags = extent_flags;
946 btrfs_free_path(path);
951 * Back reference rules. Back refs have three main goals:
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
982 * When a tree block is COWed through a tree, there are four cases:
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1002 * Back Reference Key composing:
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1009 * File extents can be referenced by:
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
1012 * - different files inside a single subvolume
1013 * - different offsets inside a file (bookend extents in file.c)
1015 * The extent ref structure for the implicit back refs has fields for:
1017 * - Objectid of the subvolume root
1018 * - objectid of the file holding the reference
1019 * - original offset in the file
1020 * - how many bookend extents
1022 * The key offset for the implicit back refs is hash of the first
1025 * The extent ref structure for the full back refs has field for:
1027 * - number of pointers in the tree leaf
1029 * The key offset for the implicit back refs is the first byte of
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
1035 * (root_key.objectid, inode objectid, offset in file, 1)
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 * Btree extents can be referenced by:
1044 * - Different subvolumes
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1061 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1111 return BTRFS_REF_TYPE_INVALID;
1114 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1120 lenum = cpu_to_le64(root_objectid);
1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1122 lenum = cpu_to_le64(owner);
1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1124 lenum = cpu_to_le64(offset);
1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1130 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1138 static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1149 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1153 u64 owner, u64 offset)
1155 struct btrfs_root *root = trans->fs_info->extent_root;
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
1158 struct extent_buffer *leaf;
1164 key.objectid = bytenr;
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1187 leaf = path->nodes[0];
1188 nritems = btrfs_header_nritems(leaf);
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1213 btrfs_release_path(path);
1225 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
1231 struct btrfs_root *root = trans->fs_info->extent_root;
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
1238 key.objectid = bytenr;
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1247 size = sizeof(struct btrfs_extent_data_ref);
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1254 leaf = path->nodes[0];
1256 struct btrfs_shared_data_ref *ref;
1257 ref = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1274 btrfs_release_path(path);
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1278 if (ret && ret != -EEXIST)
1281 leaf = path->nodes[0];
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1297 btrfs_mark_buffer_dirty(leaf);
1300 btrfs_release_path(path);
1304 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1305 struct btrfs_path *path,
1306 int refs_to_drop, int *last_ref)
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
1311 struct extent_buffer *leaf;
1315 leaf = path->nodes[0];
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
1337 if (num_refs == 0) {
1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1345 btrfs_mark_buffer_dirty(leaf);
1350 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1351 struct btrfs_extent_inline_ref *iref)
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1366 * If type is invalid, we should have bailed out earlier than
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1392 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1397 struct btrfs_root *root = trans->fs_info->extent_root;
1398 struct btrfs_key key;
1401 key.objectid = bytenr;
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1416 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1421 struct btrfs_key key;
1424 key.objectid = bytenr;
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1435 btrfs_release_path(path);
1439 static inline int extent_ref_type(u64 parent, u64 owner)
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1456 static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
1460 for (; level < BTRFS_MAX_LEVEL; level++) {
1461 if (!path->nodes[level])
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1490 static noinline_for_stack
1491 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1498 struct btrfs_fs_info *fs_info = trans->fs_info;
1499 struct btrfs_root *root = fs_info->extent_root;
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1516 key.objectid = bytenr;
1517 key.type = BTRFS_EXTENT_ITEM_KEY;
1518 key.offset = num_bytes;
1520 want = extent_ref_type(parent, owner);
1522 extra_size = btrfs_extent_inline_ref_size(want);
1523 path->keep_locks = 1;
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1559 key.objectid = bytenr;
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1567 if (ret && !insert) {
1570 } else if (WARN_ON(ret)) {
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 if (unlikely(item_size < sizeof(*ei))) {
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1591 ptr += sizeof(struct btrfs_tree_block_info);
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1598 needed = BTRFS_REF_TYPE_BLOCK;
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1635 if (parent == ref_offset) {
1639 if (ref_offset < parent)
1642 if (root_objectid == ref_offset) {
1646 if (ref_offset < root_objectid)
1650 ptr += btrfs_extent_inline_ref_size(type);
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1681 * helper to add new inline back ref
1683 static noinline_for_stack
1684 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1695 unsigned long item_offset;
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1707 btrfs_extend_item(fs_info, path, size);
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1741 btrfs_mark_buffer_dirty(leaf);
1744 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1758 btrfs_release_path(path);
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
1772 * helper to update/remove inline back ref
1774 static noinline_for_stack
1775 void update_inline_extent_backref(struct btrfs_path *path,
1776 struct btrfs_extent_inline_ref *iref,
1778 struct btrfs_delayed_extent_op *extent_op,
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1816 BUG_ON(refs_to_mod != -1);
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1837 btrfs_truncate_item(fs_info, path, item_size, 1);
1839 btrfs_mark_buffer_dirty(leaf);
1842 static noinline_for_stack
1843 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1850 struct btrfs_extent_inline_ref *iref;
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1858 update_inline_extent_backref(path, iref, refs_to_add,
1860 } else if (ret == -ENOENT) {
1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1869 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1887 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
1890 int refs_to_drop, int is_data, int *last_ref)
1894 BUG_ON(!is_data && refs_to_drop != 1);
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1898 } else if (is_data) {
1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1908 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1909 u64 *discarded_bytes)
1912 u64 bytes_left, end;
1913 u64 aligned_start = ALIGN(start, 1 << 9);
1915 if (WARN_ON(start != aligned_start)) {
1916 len -= aligned_start - start;
1917 len = round_down(len, 1 << 9);
1918 start = aligned_start;
1921 *discarded_bytes = 0;
1929 /* Skip any superblocks on this device. */
1930 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1931 u64 sb_start = btrfs_sb_offset(j);
1932 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1933 u64 size = sb_start - start;
1935 if (!in_range(sb_start, start, bytes_left) &&
1936 !in_range(sb_end, start, bytes_left) &&
1937 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1941 * Superblock spans beginning of range. Adjust start and
1944 if (sb_start <= start) {
1945 start += sb_end - start;
1950 bytes_left = end - start;
1955 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1958 *discarded_bytes += size;
1959 else if (ret != -EOPNOTSUPP)
1968 bytes_left = end - start;
1972 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1975 *discarded_bytes += bytes_left;
1980 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1981 u64 num_bytes, u64 *actual_bytes)
1984 u64 discarded_bytes = 0;
1985 struct btrfs_bio *bbio = NULL;
1989 * Avoid races with device replace and make sure our bbio has devices
1990 * associated to its stripes that don't go away while we are discarding.
1992 btrfs_bio_counter_inc_blocked(fs_info);
1993 /* Tell the block device(s) that the sectors can be discarded */
1994 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 /* Error condition is -ENOMEM */
1998 struct btrfs_bio_stripe *stripe = bbio->stripes;
2002 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2004 struct request_queue *req_q;
2006 if (!stripe->dev->bdev) {
2007 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2010 req_q = bdev_get_queue(stripe->dev->bdev);
2011 if (!blk_queue_discard(req_q))
2014 ret = btrfs_issue_discard(stripe->dev->bdev,
2019 discarded_bytes += bytes;
2020 else if (ret != -EOPNOTSUPP)
2021 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2024 * Just in case we get back EOPNOTSUPP for some reason,
2025 * just ignore the return value so we don't screw up
2026 * people calling discard_extent.
2030 btrfs_put_bbio(bbio);
2032 btrfs_bio_counter_dec(fs_info);
2035 *actual_bytes = discarded_bytes;
2038 if (ret == -EOPNOTSUPP)
2043 /* Can return -ENOMEM */
2044 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2045 struct btrfs_root *root,
2046 u64 bytenr, u64 num_bytes, u64 parent,
2047 u64 root_objectid, u64 owner, u64 offset)
2049 struct btrfs_fs_info *fs_info = root->fs_info;
2050 int old_ref_mod, new_ref_mod;
2053 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2054 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2057 owner, offset, BTRFS_ADD_DELAYED_REF);
2059 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2060 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2062 root_objectid, (int)owner,
2063 BTRFS_ADD_DELAYED_REF, NULL,
2064 &old_ref_mod, &new_ref_mod);
2066 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2068 root_objectid, owner, offset,
2069 0, BTRFS_ADD_DELAYED_REF,
2070 &old_ref_mod, &new_ref_mod);
2073 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2074 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2083 * __btrfs_inc_extent_ref - insert backreference for a given extent
2085 * @trans: Handle of transaction
2087 * @node: The delayed ref node used to get the bytenr/length for
2088 * extent whose references are incremented.
2090 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2091 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2092 * bytenr of the parent block. Since new extents are always
2093 * created with indirect references, this will only be the case
2094 * when relocating a shared extent. In that case, root_objectid
2095 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2098 * @root_objectid: The id of the root where this modification has originated,
2099 * this can be either one of the well-known metadata trees or
2100 * the subvolume id which references this extent.
2102 * @owner: For data extents it is the inode number of the owning file.
2103 * For metadata extents this parameter holds the level in the
2104 * tree of the extent.
2106 * @offset: For metadata extents the offset is ignored and is currently
2107 * always passed as 0. For data extents it is the fileoffset
2108 * this extent belongs to.
2110 * @refs_to_add Number of references to add
2112 * @extent_op Pointer to a structure, holding information necessary when
2113 * updating a tree block's flags
2116 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2117 struct btrfs_delayed_ref_node *node,
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2122 struct btrfs_path *path;
2123 struct extent_buffer *leaf;
2124 struct btrfs_extent_item *item;
2125 struct btrfs_key key;
2126 u64 bytenr = node->bytenr;
2127 u64 num_bytes = node->num_bytes;
2131 path = btrfs_alloc_path();
2135 path->reada = READA_FORWARD;
2136 path->leave_spinning = 1;
2137 /* this will setup the path even if it fails to insert the back ref */
2138 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2139 parent, root_objectid, owner,
2140 offset, refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 __run_delayed_extent_op(extent_op, leaf, item);
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2160 path->reada = READA_FORWARD;
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2164 owner, offset, refs_to_add);
2166 btrfs_abort_transaction(trans, ret);
2168 btrfs_free_path(path);
2172 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2173 struct btrfs_delayed_ref_node *node,
2174 struct btrfs_delayed_extent_op *extent_op,
2175 int insert_reserved)
2178 struct btrfs_delayed_data_ref *ref;
2179 struct btrfs_key ins;
2184 ins.objectid = node->bytenr;
2185 ins.offset = node->num_bytes;
2186 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188 ref = btrfs_delayed_node_to_data_ref(node);
2189 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2191 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2192 parent = ref->parent;
2193 ref_root = ref->root;
2195 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 flags |= extent_op->flags_to_set;
2198 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2199 flags, ref->objectid,
2202 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2203 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2204 ref->objectid, ref->offset,
2205 node->ref_mod, extent_op);
2206 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2207 ret = __btrfs_free_extent(trans, node, parent,
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
2217 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2218 struct extent_buffer *leaf,
2219 struct btrfs_extent_item *ei)
2221 u64 flags = btrfs_extent_flags(leaf, ei);
2222 if (extent_op->update_flags) {
2223 flags |= extent_op->flags_to_set;
2224 btrfs_set_extent_flags(leaf, ei, flags);
2227 if (extent_op->update_key) {
2228 struct btrfs_tree_block_info *bi;
2229 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2230 bi = (struct btrfs_tree_block_info *)(ei + 1);
2231 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2236 struct btrfs_delayed_ref_head *head,
2237 struct btrfs_delayed_extent_op *extent_op)
2239 struct btrfs_fs_info *fs_info = trans->fs_info;
2240 struct btrfs_key key;
2241 struct btrfs_path *path;
2242 struct btrfs_extent_item *ei;
2243 struct extent_buffer *leaf;
2247 int metadata = !extent_op->is_data;
2252 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255 path = btrfs_alloc_path();
2259 key.objectid = head->bytenr;
2262 key.type = BTRFS_METADATA_ITEM_KEY;
2263 key.offset = extent_op->level;
2265 key.type = BTRFS_EXTENT_ITEM_KEY;
2266 key.offset = head->num_bytes;
2270 path->reada = READA_FORWARD;
2271 path->leave_spinning = 1;
2272 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2279 if (path->slots[0] > 0) {
2281 btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 if (key.objectid == head->bytenr &&
2284 key.type == BTRFS_EXTENT_ITEM_KEY &&
2285 key.offset == head->num_bytes)
2289 btrfs_release_path(path);
2292 key.objectid = head->bytenr;
2293 key.offset = head->num_bytes;
2294 key.type = BTRFS_EXTENT_ITEM_KEY;
2303 leaf = path->nodes[0];
2304 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306 if (unlikely(item_size < sizeof(*ei))) {
2308 btrfs_print_v0_err(fs_info);
2309 btrfs_abort_transaction(trans, err);
2313 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2314 __run_delayed_extent_op(extent_op, leaf, ei);
2316 btrfs_mark_buffer_dirty(leaf);
2318 btrfs_free_path(path);
2322 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
2328 struct btrfs_delayed_tree_ref *ref;
2332 ref = btrfs_delayed_node_to_tree_ref(node);
2333 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2335 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2336 parent = ref->parent;
2337 ref_root = ref->root;
2339 if (node->ref_mod != 1) {
2340 btrfs_err(trans->fs_info,
2341 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2342 node->bytenr, node->ref_mod, node->action, ref_root,
2346 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2347 BUG_ON(!extent_op || !extent_op->update_flags);
2348 ret = alloc_reserved_tree_block(trans, node, extent_op);
2349 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2350 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2351 ref->level, 0, 1, extent_op);
2352 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2353 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2354 ref->level, 0, 1, extent_op);
2361 /* helper function to actually process a single delayed ref entry */
2362 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2363 struct btrfs_delayed_ref_node *node,
2364 struct btrfs_delayed_extent_op *extent_op,
2365 int insert_reserved)
2369 if (trans->aborted) {
2370 if (insert_reserved)
2371 btrfs_pin_extent(trans->fs_info, node->bytenr,
2372 node->num_bytes, 1);
2376 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2377 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2378 ret = run_delayed_tree_ref(trans, node, extent_op,
2380 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2381 node->type == BTRFS_SHARED_DATA_REF_KEY)
2382 ret = run_delayed_data_ref(trans, node, extent_op,
2386 if (ret && insert_reserved)
2387 btrfs_pin_extent(trans->fs_info, node->bytenr,
2388 node->num_bytes, 1);
2392 static inline struct btrfs_delayed_ref_node *
2393 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395 struct btrfs_delayed_ref_node *ref;
2397 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2401 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2402 * This is to prevent a ref count from going down to zero, which deletes
2403 * the extent item from the extent tree, when there still are references
2404 * to add, which would fail because they would not find the extent item.
2406 if (!list_empty(&head->ref_add_list))
2407 return list_first_entry(&head->ref_add_list,
2408 struct btrfs_delayed_ref_node, add_list);
2410 ref = rb_entry(rb_first_cached(&head->ref_tree),
2411 struct btrfs_delayed_ref_node, ref_node);
2412 ASSERT(list_empty(&ref->add_list));
2416 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2417 struct btrfs_delayed_ref_head *head)
2419 spin_lock(&delayed_refs->lock);
2420 head->processing = 0;
2421 delayed_refs->num_heads_ready++;
2422 spin_unlock(&delayed_refs->lock);
2423 btrfs_delayed_ref_unlock(head);
2426 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2427 struct btrfs_delayed_ref_head *head)
2429 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2434 if (head->must_insert_reserved) {
2435 head->extent_op = NULL;
2436 btrfs_free_delayed_extent_op(extent_op);
2442 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2443 struct btrfs_delayed_ref_head *head)
2445 struct btrfs_delayed_extent_op *extent_op;
2448 extent_op = cleanup_extent_op(head);
2451 head->extent_op = NULL;
2452 spin_unlock(&head->lock);
2453 ret = run_delayed_extent_op(trans, head, extent_op);
2454 btrfs_free_delayed_extent_op(extent_op);
2455 return ret ? ret : 1;
2458 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2459 struct btrfs_delayed_ref_root *delayed_refs,
2460 struct btrfs_delayed_ref_head *head)
2462 int nr_items = 1; /* Dropping this ref head update. */
2464 if (head->total_ref_mod < 0) {
2465 struct btrfs_space_info *space_info;
2469 flags = BTRFS_BLOCK_GROUP_DATA;
2470 else if (head->is_system)
2471 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 flags = BTRFS_BLOCK_GROUP_METADATA;
2474 space_info = __find_space_info(fs_info, flags);
2476 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2481 * We had csum deletions accounted for in our delayed refs rsv,
2482 * we need to drop the csum leaves for this update from our
2485 if (head->is_data) {
2486 spin_lock(&delayed_refs->lock);
2487 delayed_refs->pending_csums -= head->num_bytes;
2488 spin_unlock(&delayed_refs->lock);
2489 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2494 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2497 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2498 struct btrfs_delayed_ref_head *head)
2501 struct btrfs_fs_info *fs_info = trans->fs_info;
2502 struct btrfs_delayed_ref_root *delayed_refs;
2505 delayed_refs = &trans->transaction->delayed_refs;
2507 ret = run_and_cleanup_extent_op(trans, head);
2509 unselect_delayed_ref_head(delayed_refs, head);
2510 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2517 * Need to drop our head ref lock and re-acquire the delayed ref lock
2518 * and then re-check to make sure nobody got added.
2520 spin_unlock(&head->lock);
2521 spin_lock(&delayed_refs->lock);
2522 spin_lock(&head->lock);
2523 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2524 spin_unlock(&head->lock);
2525 spin_unlock(&delayed_refs->lock);
2528 btrfs_delete_ref_head(delayed_refs, head);
2529 spin_unlock(&head->lock);
2530 spin_unlock(&delayed_refs->lock);
2532 if (head->must_insert_reserved) {
2533 btrfs_pin_extent(fs_info, head->bytenr,
2534 head->num_bytes, 1);
2535 if (head->is_data) {
2536 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2541 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2543 trace_run_delayed_ref_head(fs_info, head, 0);
2544 btrfs_delayed_ref_unlock(head);
2545 btrfs_put_delayed_ref_head(head);
2549 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2550 struct btrfs_trans_handle *trans)
2552 struct btrfs_delayed_ref_root *delayed_refs =
2553 &trans->transaction->delayed_refs;
2554 struct btrfs_delayed_ref_head *head = NULL;
2557 spin_lock(&delayed_refs->lock);
2558 head = btrfs_select_ref_head(delayed_refs);
2560 spin_unlock(&delayed_refs->lock);
2565 * Grab the lock that says we are going to process all the refs for
2568 ret = btrfs_delayed_ref_lock(delayed_refs, head);
2569 spin_unlock(&delayed_refs->lock);
2572 * We may have dropped the spin lock to get the head mutex lock, and
2573 * that might have given someone else time to free the head. If that's
2574 * true, it has been removed from our list and we can move on.
2577 head = ERR_PTR(-EAGAIN);
2582 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2583 struct btrfs_delayed_ref_head *locked_ref,
2584 unsigned long *run_refs)
2586 struct btrfs_fs_info *fs_info = trans->fs_info;
2587 struct btrfs_delayed_ref_root *delayed_refs;
2588 struct btrfs_delayed_extent_op *extent_op;
2589 struct btrfs_delayed_ref_node *ref;
2590 int must_insert_reserved = 0;
2593 delayed_refs = &trans->transaction->delayed_refs;
2595 lockdep_assert_held(&locked_ref->mutex);
2596 lockdep_assert_held(&locked_ref->lock);
2598 while ((ref = select_delayed_ref(locked_ref))) {
2600 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2601 spin_unlock(&locked_ref->lock);
2602 unselect_delayed_ref_head(delayed_refs, locked_ref);
2608 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2609 RB_CLEAR_NODE(&ref->ref_node);
2610 if (!list_empty(&ref->add_list))
2611 list_del(&ref->add_list);
2613 * When we play the delayed ref, also correct the ref_mod on
2616 switch (ref->action) {
2617 case BTRFS_ADD_DELAYED_REF:
2618 case BTRFS_ADD_DELAYED_EXTENT:
2619 locked_ref->ref_mod -= ref->ref_mod;
2621 case BTRFS_DROP_DELAYED_REF:
2622 locked_ref->ref_mod += ref->ref_mod;
2627 atomic_dec(&delayed_refs->num_entries);
2630 * Record the must_insert_reserved flag before we drop the
2633 must_insert_reserved = locked_ref->must_insert_reserved;
2634 locked_ref->must_insert_reserved = 0;
2636 extent_op = locked_ref->extent_op;
2637 locked_ref->extent_op = NULL;
2638 spin_unlock(&locked_ref->lock);
2640 ret = run_one_delayed_ref(trans, ref, extent_op,
2641 must_insert_reserved);
2643 btrfs_free_delayed_extent_op(extent_op);
2645 unselect_delayed_ref_head(delayed_refs, locked_ref);
2646 btrfs_put_delayed_ref(ref);
2647 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 btrfs_put_delayed_ref(ref);
2655 spin_lock(&locked_ref->lock);
2656 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2663 * Returns 0 on success or if called with an already aborted transaction.
2664 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2666 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2669 struct btrfs_fs_info *fs_info = trans->fs_info;
2670 struct btrfs_delayed_ref_root *delayed_refs;
2671 struct btrfs_delayed_ref_head *locked_ref = NULL;
2672 ktime_t start = ktime_get();
2674 unsigned long count = 0;
2675 unsigned long actual_count = 0;
2677 delayed_refs = &trans->transaction->delayed_refs;
2680 locked_ref = btrfs_obtain_ref_head(trans);
2681 if (IS_ERR_OR_NULL(locked_ref)) {
2682 if (PTR_ERR(locked_ref) == -EAGAIN) {
2691 * We need to try and merge add/drops of the same ref since we
2692 * can run into issues with relocate dropping the implicit ref
2693 * and then it being added back again before the drop can
2694 * finish. If we merged anything we need to re-loop so we can
2696 * Or we can get node references of the same type that weren't
2697 * merged when created due to bumps in the tree mod seq, and
2698 * we need to merge them to prevent adding an inline extent
2699 * backref before dropping it (triggering a BUG_ON at
2700 * insert_inline_extent_backref()).
2702 spin_lock(&locked_ref->lock);
2703 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2705 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2707 if (ret < 0 && ret != -EAGAIN) {
2709 * Error, btrfs_run_delayed_refs_for_head already
2710 * unlocked everything so just bail out
2715 * Success, perform the usual cleanup of a processed
2718 ret = cleanup_ref_head(trans, locked_ref);
2720 /* We dropped our lock, we need to loop. */
2729 * Either success case or btrfs_run_delayed_refs_for_head
2730 * returned -EAGAIN, meaning we need to select another head
2735 } while ((nr != -1 && count < nr) || locked_ref);
2738 * We don't want to include ref heads since we can have empty ref heads
2739 * and those will drastically skew our runtime down since we just do
2740 * accounting, no actual extent tree updates.
2742 if (actual_count > 0) {
2743 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2747 * We weigh the current average higher than our current runtime
2748 * to avoid large swings in the average.
2750 spin_lock(&delayed_refs->lock);
2751 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2752 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2753 spin_unlock(&delayed_refs->lock);
2758 #ifdef SCRAMBLE_DELAYED_REFS
2760 * Normally delayed refs get processed in ascending bytenr order. This
2761 * correlates in most cases to the order added. To expose dependencies on this
2762 * order, we start to process the tree in the middle instead of the beginning
2764 static u64 find_middle(struct rb_root *root)
2766 struct rb_node *n = root->rb_node;
2767 struct btrfs_delayed_ref_node *entry;
2770 u64 first = 0, last = 0;
2774 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2775 first = entry->bytenr;
2779 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2780 last = entry->bytenr;
2785 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2786 WARN_ON(!entry->in_tree);
2788 middle = entry->bytenr;
2801 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2805 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2806 sizeof(struct btrfs_extent_inline_ref));
2807 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2808 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2811 * We don't ever fill up leaves all the way so multiply by 2 just to be
2812 * closer to what we're really going to want to use.
2814 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2818 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2819 * would require to store the csums for that many bytes.
2821 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2824 u64 num_csums_per_leaf;
2827 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2828 num_csums_per_leaf = div64_u64(csum_size,
2829 (u64)btrfs_super_csum_size(fs_info->super_copy));
2830 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2831 num_csums += num_csums_per_leaf - 1;
2832 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2836 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2838 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2839 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2843 spin_lock(&global_rsv->lock);
2844 reserved = global_rsv->reserved;
2845 spin_unlock(&global_rsv->lock);
2848 * Since the global reserve is just kind of magic we don't really want
2849 * to rely on it to save our bacon, so if our size is more than the
2850 * delayed_refs_rsv and the global rsv then it's time to think about
2853 spin_lock(&delayed_refs_rsv->lock);
2854 reserved += delayed_refs_rsv->reserved;
2855 if (delayed_refs_rsv->size >= reserved)
2857 spin_unlock(&delayed_refs_rsv->lock);
2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2864 atomic_read(&trans->transaction->delayed_refs.num_entries);
2869 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2870 val = num_entries * avg_runtime;
2871 if (val >= NSEC_PER_SEC)
2873 if (val >= NSEC_PER_SEC / 2)
2876 return btrfs_check_space_for_delayed_refs(trans->fs_info);
2880 * this starts processing the delayed reference count updates and
2881 * extent insertions we have queued up so far. count can be
2882 * 0, which means to process everything in the tree at the start
2883 * of the run (but not newly added entries), or it can be some target
2884 * number you'd like to process.
2886 * Returns 0 on success or if called with an aborted transaction
2887 * Returns <0 on error and aborts the transaction
2889 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2890 unsigned long count)
2892 struct btrfs_fs_info *fs_info = trans->fs_info;
2893 struct rb_node *node;
2894 struct btrfs_delayed_ref_root *delayed_refs;
2895 struct btrfs_delayed_ref_head *head;
2897 int run_all = count == (unsigned long)-1;
2899 /* We'll clean this up in btrfs_cleanup_transaction */
2903 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2906 delayed_refs = &trans->transaction->delayed_refs;
2908 count = atomic_read(&delayed_refs->num_entries) * 2;
2911 #ifdef SCRAMBLE_DELAYED_REFS
2912 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2914 ret = __btrfs_run_delayed_refs(trans, count);
2916 btrfs_abort_transaction(trans, ret);
2921 btrfs_create_pending_block_groups(trans);
2923 spin_lock(&delayed_refs->lock);
2924 node = rb_first_cached(&delayed_refs->href_root);
2926 spin_unlock(&delayed_refs->lock);
2929 head = rb_entry(node, struct btrfs_delayed_ref_head,
2931 refcount_inc(&head->refs);
2932 spin_unlock(&delayed_refs->lock);
2934 /* Mutex was contended, block until it's released and retry. */
2935 mutex_lock(&head->mutex);
2936 mutex_unlock(&head->mutex);
2938 btrfs_put_delayed_ref_head(head);
2946 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2947 struct btrfs_fs_info *fs_info,
2948 u64 bytenr, u64 num_bytes, u64 flags,
2949 int level, int is_data)
2951 struct btrfs_delayed_extent_op *extent_op;
2954 extent_op = btrfs_alloc_delayed_extent_op();
2958 extent_op->flags_to_set = flags;
2959 extent_op->update_flags = true;
2960 extent_op->update_key = false;
2961 extent_op->is_data = is_data ? true : false;
2962 extent_op->level = level;
2964 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2965 num_bytes, extent_op);
2967 btrfs_free_delayed_extent_op(extent_op);
2971 static noinline int check_delayed_ref(struct btrfs_root *root,
2972 struct btrfs_path *path,
2973 u64 objectid, u64 offset, u64 bytenr)
2975 struct btrfs_delayed_ref_head *head;
2976 struct btrfs_delayed_ref_node *ref;
2977 struct btrfs_delayed_data_ref *data_ref;
2978 struct btrfs_delayed_ref_root *delayed_refs;
2979 struct btrfs_transaction *cur_trans;
2980 struct rb_node *node;
2983 spin_lock(&root->fs_info->trans_lock);
2984 cur_trans = root->fs_info->running_transaction;
2986 refcount_inc(&cur_trans->use_count);
2987 spin_unlock(&root->fs_info->trans_lock);
2991 delayed_refs = &cur_trans->delayed_refs;
2992 spin_lock(&delayed_refs->lock);
2993 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2995 spin_unlock(&delayed_refs->lock);
2996 btrfs_put_transaction(cur_trans);
3000 if (!mutex_trylock(&head->mutex)) {
3001 refcount_inc(&head->refs);
3002 spin_unlock(&delayed_refs->lock);
3004 btrfs_release_path(path);
3007 * Mutex was contended, block until it's released and let
3010 mutex_lock(&head->mutex);
3011 mutex_unlock(&head->mutex);
3012 btrfs_put_delayed_ref_head(head);
3013 btrfs_put_transaction(cur_trans);
3016 spin_unlock(&delayed_refs->lock);
3018 spin_lock(&head->lock);
3020 * XXX: We should replace this with a proper search function in the
3023 for (node = rb_first_cached(&head->ref_tree); node;
3024 node = rb_next(node)) {
3025 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3026 /* If it's a shared ref we know a cross reference exists */
3027 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3032 data_ref = btrfs_delayed_node_to_data_ref(ref);
3035 * If our ref doesn't match the one we're currently looking at
3036 * then we have a cross reference.
3038 if (data_ref->root != root->root_key.objectid ||
3039 data_ref->objectid != objectid ||
3040 data_ref->offset != offset) {
3045 spin_unlock(&head->lock);
3046 mutex_unlock(&head->mutex);
3047 btrfs_put_transaction(cur_trans);
3051 static noinline int check_committed_ref(struct btrfs_root *root,
3052 struct btrfs_path *path,
3053 u64 objectid, u64 offset, u64 bytenr)
3055 struct btrfs_fs_info *fs_info = root->fs_info;
3056 struct btrfs_root *extent_root = fs_info->extent_root;
3057 struct extent_buffer *leaf;
3058 struct btrfs_extent_data_ref *ref;
3059 struct btrfs_extent_inline_ref *iref;
3060 struct btrfs_extent_item *ei;
3061 struct btrfs_key key;
3066 key.objectid = bytenr;
3067 key.offset = (u64)-1;
3068 key.type = BTRFS_EXTENT_ITEM_KEY;
3070 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3073 BUG_ON(ret == 0); /* Corruption */
3076 if (path->slots[0] == 0)
3080 leaf = path->nodes[0];
3081 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3083 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3087 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3090 if (item_size != sizeof(*ei) +
3091 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3094 if (btrfs_extent_generation(leaf, ei) <=
3095 btrfs_root_last_snapshot(&root->root_item))
3098 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3100 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3101 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3104 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3105 if (btrfs_extent_refs(leaf, ei) !=
3106 btrfs_extent_data_ref_count(leaf, ref) ||
3107 btrfs_extent_data_ref_root(leaf, ref) !=
3108 root->root_key.objectid ||
3109 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3110 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3118 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3121 struct btrfs_path *path;
3124 path = btrfs_alloc_path();
3129 ret = check_committed_ref(root, path, objectid,
3131 if (ret && ret != -ENOENT)
3134 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3135 } while (ret == -EAGAIN);
3138 btrfs_free_path(path);
3139 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3144 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3145 struct btrfs_root *root,
3146 struct extent_buffer *buf,
3147 int full_backref, int inc)
3149 struct btrfs_fs_info *fs_info = root->fs_info;
3155 struct btrfs_key key;
3156 struct btrfs_file_extent_item *fi;
3160 int (*process_func)(struct btrfs_trans_handle *,
3161 struct btrfs_root *,
3162 u64, u64, u64, u64, u64, u64);
3165 if (btrfs_is_testing(fs_info))
3168 ref_root = btrfs_header_owner(buf);
3169 nritems = btrfs_header_nritems(buf);
3170 level = btrfs_header_level(buf);
3172 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3176 process_func = btrfs_inc_extent_ref;
3178 process_func = btrfs_free_extent;
3181 parent = buf->start;
3185 for (i = 0; i < nritems; i++) {
3187 btrfs_item_key_to_cpu(buf, &key, i);
3188 if (key.type != BTRFS_EXTENT_DATA_KEY)
3190 fi = btrfs_item_ptr(buf, i,
3191 struct btrfs_file_extent_item);
3192 if (btrfs_file_extent_type(buf, fi) ==
3193 BTRFS_FILE_EXTENT_INLINE)
3195 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3199 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3200 key.offset -= btrfs_file_extent_offset(buf, fi);
3201 ret = process_func(trans, root, bytenr, num_bytes,
3202 parent, ref_root, key.objectid,
3207 bytenr = btrfs_node_blockptr(buf, i);
3208 num_bytes = fs_info->nodesize;
3209 ret = process_func(trans, root, bytenr, num_bytes,
3210 parent, ref_root, level - 1, 0);
3220 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3221 struct extent_buffer *buf, int full_backref)
3223 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3226 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3227 struct extent_buffer *buf, int full_backref)
3229 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3232 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3233 struct btrfs_path *path,
3234 struct btrfs_block_group_cache *cache)
3236 struct btrfs_fs_info *fs_info = trans->fs_info;
3238 struct btrfs_root *extent_root = fs_info->extent_root;
3240 struct extent_buffer *leaf;
3242 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3249 leaf = path->nodes[0];
3250 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3251 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3252 btrfs_mark_buffer_dirty(leaf);
3254 btrfs_release_path(path);
3259 static struct btrfs_block_group_cache *
3260 next_block_group(struct btrfs_fs_info *fs_info,
3261 struct btrfs_block_group_cache *cache)
3263 struct rb_node *node;
3265 spin_lock(&fs_info->block_group_cache_lock);
3267 /* If our block group was removed, we need a full search. */
3268 if (RB_EMPTY_NODE(&cache->cache_node)) {
3269 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3271 spin_unlock(&fs_info->block_group_cache_lock);
3272 btrfs_put_block_group(cache);
3273 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3275 node = rb_next(&cache->cache_node);
3276 btrfs_put_block_group(cache);
3278 cache = rb_entry(node, struct btrfs_block_group_cache,
3280 btrfs_get_block_group(cache);
3283 spin_unlock(&fs_info->block_group_cache_lock);
3287 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3288 struct btrfs_trans_handle *trans,
3289 struct btrfs_path *path)
3291 struct btrfs_fs_info *fs_info = block_group->fs_info;
3292 struct btrfs_root *root = fs_info->tree_root;
3293 struct inode *inode = NULL;
3294 struct extent_changeset *data_reserved = NULL;
3296 int dcs = BTRFS_DC_ERROR;
3302 * If this block group is smaller than 100 megs don't bother caching the
3305 if (block_group->key.offset < (100 * SZ_1M)) {
3306 spin_lock(&block_group->lock);
3307 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3308 spin_unlock(&block_group->lock);
3315 inode = lookup_free_space_inode(fs_info, block_group, path);
3316 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3317 ret = PTR_ERR(inode);
3318 btrfs_release_path(path);
3322 if (IS_ERR(inode)) {
3326 if (block_group->ro)
3329 ret = create_free_space_inode(trans, block_group, path);
3336 * We want to set the generation to 0, that way if anything goes wrong
3337 * from here on out we know not to trust this cache when we load up next
3340 BTRFS_I(inode)->generation = 0;
3341 ret = btrfs_update_inode(trans, root, inode);
3344 * So theoretically we could recover from this, simply set the
3345 * super cache generation to 0 so we know to invalidate the
3346 * cache, but then we'd have to keep track of the block groups
3347 * that fail this way so we know we _have_ to reset this cache
3348 * before the next commit or risk reading stale cache. So to
3349 * limit our exposure to horrible edge cases lets just abort the
3350 * transaction, this only happens in really bad situations
3353 btrfs_abort_transaction(trans, ret);
3358 /* We've already setup this transaction, go ahead and exit */
3359 if (block_group->cache_generation == trans->transid &&
3360 i_size_read(inode)) {
3361 dcs = BTRFS_DC_SETUP;
3365 if (i_size_read(inode) > 0) {
3366 ret = btrfs_check_trunc_cache_free_space(fs_info,
3367 &fs_info->global_block_rsv);
3371 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3376 spin_lock(&block_group->lock);
3377 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3378 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3380 * don't bother trying to write stuff out _if_
3381 * a) we're not cached,
3382 * b) we're with nospace_cache mount option,
3383 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3385 dcs = BTRFS_DC_WRITTEN;
3386 spin_unlock(&block_group->lock);
3389 spin_unlock(&block_group->lock);
3392 * We hit an ENOSPC when setting up the cache in this transaction, just
3393 * skip doing the setup, we've already cleared the cache so we're safe.
3395 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3401 * Try to preallocate enough space based on how big the block group is.
3402 * Keep in mind this has to include any pinned space which could end up
3403 * taking up quite a bit since it's not folded into the other space
3406 num_pages = div_u64(block_group->key.offset, SZ_256M);
3411 num_pages *= PAGE_SIZE;
3413 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3417 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3418 num_pages, num_pages,
3421 * Our cache requires contiguous chunks so that we don't modify a bunch
3422 * of metadata or split extents when writing the cache out, which means
3423 * we can enospc if we are heavily fragmented in addition to just normal
3424 * out of space conditions. So if we hit this just skip setting up any
3425 * other block groups for this transaction, maybe we'll unpin enough
3426 * space the next time around.
3429 dcs = BTRFS_DC_SETUP;
3430 else if (ret == -ENOSPC)
3431 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3436 btrfs_release_path(path);
3438 spin_lock(&block_group->lock);
3439 if (!ret && dcs == BTRFS_DC_SETUP)
3440 block_group->cache_generation = trans->transid;
3441 block_group->disk_cache_state = dcs;
3442 spin_unlock(&block_group->lock);
3444 extent_changeset_free(data_reserved);
3448 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3450 struct btrfs_fs_info *fs_info = trans->fs_info;
3451 struct btrfs_block_group_cache *cache, *tmp;
3452 struct btrfs_transaction *cur_trans = trans->transaction;
3453 struct btrfs_path *path;
3455 if (list_empty(&cur_trans->dirty_bgs) ||
3456 !btrfs_test_opt(fs_info, SPACE_CACHE))
3459 path = btrfs_alloc_path();
3463 /* Could add new block groups, use _safe just in case */
3464 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3466 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3467 cache_save_setup(cache, trans, path);
3470 btrfs_free_path(path);
3475 * transaction commit does final block group cache writeback during a
3476 * critical section where nothing is allowed to change the FS. This is
3477 * required in order for the cache to actually match the block group,
3478 * but can introduce a lot of latency into the commit.
3480 * So, btrfs_start_dirty_block_groups is here to kick off block group
3481 * cache IO. There's a chance we'll have to redo some of it if the
3482 * block group changes again during the commit, but it greatly reduces
3483 * the commit latency by getting rid of the easy block groups while
3484 * we're still allowing others to join the commit.
3486 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3488 struct btrfs_fs_info *fs_info = trans->fs_info;
3489 struct btrfs_block_group_cache *cache;
3490 struct btrfs_transaction *cur_trans = trans->transaction;
3493 struct btrfs_path *path = NULL;
3495 struct list_head *io = &cur_trans->io_bgs;
3496 int num_started = 0;
3499 spin_lock(&cur_trans->dirty_bgs_lock);
3500 if (list_empty(&cur_trans->dirty_bgs)) {
3501 spin_unlock(&cur_trans->dirty_bgs_lock);
3504 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3505 spin_unlock(&cur_trans->dirty_bgs_lock);
3509 * make sure all the block groups on our dirty list actually
3512 btrfs_create_pending_block_groups(trans);
3515 path = btrfs_alloc_path();
3521 * cache_write_mutex is here only to save us from balance or automatic
3522 * removal of empty block groups deleting this block group while we are
3523 * writing out the cache
3525 mutex_lock(&trans->transaction->cache_write_mutex);
3526 while (!list_empty(&dirty)) {
3527 bool drop_reserve = true;
3529 cache = list_first_entry(&dirty,
3530 struct btrfs_block_group_cache,
3533 * this can happen if something re-dirties a block
3534 * group that is already under IO. Just wait for it to
3535 * finish and then do it all again
3537 if (!list_empty(&cache->io_list)) {
3538 list_del_init(&cache->io_list);
3539 btrfs_wait_cache_io(trans, cache, path);
3540 btrfs_put_block_group(cache);
3545 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3546 * if it should update the cache_state. Don't delete
3547 * until after we wait.
3549 * Since we're not running in the commit critical section
3550 * we need the dirty_bgs_lock to protect from update_block_group
3552 spin_lock(&cur_trans->dirty_bgs_lock);
3553 list_del_init(&cache->dirty_list);
3554 spin_unlock(&cur_trans->dirty_bgs_lock);
3558 cache_save_setup(cache, trans, path);
3560 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3561 cache->io_ctl.inode = NULL;