2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
32 #include "print-tree.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
42 #undef SCRAMBLE_DELAYED_REFS
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 struct btrfs_space_info *space_info,
103 enum btrfs_reserve_flush_enum flush,
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
122 return (cache->flags & bits) == bits;
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
127 atomic_inc(&cache->count);
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
142 * No better way to resolve, but only to warn.
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
151 * this adds the block group to the fs_info rb tree for the block group
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group_cache *block_group)
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
168 if (block_group->key.objectid < cache->key.objectid) {
170 } else if (block_group->key.objectid > cache->key.objectid) {
173 spin_unlock(&info->block_group_cache_lock);
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
185 spin_unlock(&info->block_group_cache_lock);
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
198 struct btrfs_block_group_cache *cache, *ret = NULL;
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
206 cache = rb_entry(n, struct btrfs_block_group_cache,
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
227 btrfs_get_block_group(ret);
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
231 spin_unlock(&info->block_group_cache_lock);
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 u64 start, u64 num_bytes)
239 u64 end = start + num_bytes - 1;
240 set_extent_bits(&fs_info->freed_extents[0],
241 start, end, EXTENT_UPTODATE);
242 set_extent_bits(&fs_info->freed_extents[1],
243 start, end, EXTENT_UPTODATE);
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 struct btrfs_block_group_cache *cache)
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
255 clear_extent_bits(&fs_info->freed_extents[0],
256 start, end, EXTENT_UPTODATE);
257 clear_extent_bits(&fs_info->freed_extents[1],
258 start, end, EXTENT_UPTODATE);
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 struct btrfs_block_group_cache *cache)
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(fs_info, cache->key.objectid,
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 bytenr, 0, &logical, &nr, &stripe_len);
288 if (logical[nr] > cache->key.objectid +
292 if (logical[nr] + stripe_len <= cache->key.objectid)
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
305 cache->bytes_super += len;
306 ret = add_excluded_extent(fs_info, start, len);
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
321 struct btrfs_caching_control *ctl;
323 spin_lock(&cache->lock);
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
329 ctl = cache->caching_ctl;
330 refcount_inc(&ctl->count);
331 spin_unlock(&cache->lock);
335 static void put_caching_control(struct btrfs_caching_control *ctl)
337 if (refcount_dec_and_test(&ctl->count))
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
344 struct btrfs_fs_info *fs_info = block_group->fs_info;
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 fs_info->nodesize : fs_info->sectorsize;
349 u64 step = chunk << 1;
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
370 u64 extent_start, extent_end, size, total_added = 0;
373 while (start < end) {
374 ret = find_first_extent_bit(info->pinned_extents, start,
375 &extent_start, &extent_end,
376 EXTENT_DIRTY | EXTENT_UPTODATE,
381 if (extent_start <= start) {
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
386 ret = btrfs_add_free_space(block_group, start,
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 start = extent_end + 1;
398 ret = btrfs_add_free_space(block_group, start, size);
399 BUG_ON(ret); /* -ENOMEM or logic error */
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
410 struct btrfs_path *path;
411 struct extent_buffer *leaf;
412 struct btrfs_key key;
419 path = btrfs_alloc_path();
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
425 #ifdef CONFIG_BTRFS_DEBUG
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
431 if (btrfs_should_fragment_free_space(block_group))
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = READA_FORWARD;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
457 if (btrfs_fs_closing(fs_info) > 1) {
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
465 ret = find_next_key(path, 0, &key);
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info->commit_root_sem)) {
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 up_read(&fs_info->commit_root_sem);
475 mutex_unlock(&caching_ctl->mutex);
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
482 ret = btrfs_next_leaf(extent_root, path);
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
492 if (key.objectid < last) {
495 key.type = BTRFS_EXTENT_ITEM_KEY;
498 caching_ctl->progress = last;
499 btrfs_release_path(path);
503 if (key.objectid < block_group->key.objectid) {
508 if (key.objectid >= block_group->key.objectid +
509 block_group->key.offset)
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
514 total_found += add_new_free_space(block_group,
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
521 last = key.objectid + key.offset;
523 if (total_found > CACHING_CTL_WAKE_UP) {
526 wake_up(&caching_ctl->wait);
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
536 caching_ctl->progress = (u64)-1;
539 btrfs_free_path(path);
543 static noinline void caching_thread(struct btrfs_work *work)
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
548 struct btrfs_root *extent_root;
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
554 extent_root = fs_info->extent_root;
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
562 ret = load_extent_tree_free(caching_ctl);
564 spin_lock(&block_group->lock);
565 block_group->caching_ctl = NULL;
566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 spin_unlock(&block_group->lock);
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group)) {
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
580 fragment_free_space(block_group);
584 caching_ctl->progress = (u64)-1;
586 up_read(&fs_info->commit_root_sem);
587 free_excluded_extents(fs_info, block_group);
588 mutex_unlock(&caching_ctl->mutex);
590 wake_up(&caching_ctl->wait);
592 put_caching_control(caching_ctl);
593 btrfs_put_block_group(block_group);
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
613 refcount_set(&caching_ctl->count, 1);
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
617 spin_lock(&cache->lock);
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
633 ctl = cache->caching_ctl;
634 refcount_inc(&ctl->count);
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 mutex_lock(&caching_ctl->mutex);
657 ret = load_free_space_cache(fs_info, cache);
659 spin_lock(&cache->lock);
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
664 caching_ctl->progress = (u64)-1;
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
670 cache->cached = BTRFS_CACHE_STARTED;
671 cache->has_caching_ctl = 1;
674 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
677 btrfs_should_fragment_free_space(cache)) {
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
687 fragment_free_space(cache);
690 mutex_unlock(&caching_ctl->mutex);
692 wake_up(&caching_ctl->wait);
694 put_caching_control(caching_ctl);
695 free_excluded_extents(fs_info, cache);
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
708 cache->cached = BTRFS_CACHE_STARTED;
709 cache->has_caching_ctl = 1;
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
720 down_write(&fs_info->commit_root_sem);
721 refcount_inc(&caching_ctl->count);
722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 up_write(&fs_info->commit_root_sem);
725 btrfs_get_block_group(cache);
727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
733 * return the block group that starts at or after bytenr
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
738 return block_group_cache_tree_search(info, bytenr, 0);
742 * return the block group that contains the given bytenr
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
748 return block_group_cache_tree_search(info, bytenr, 1);
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
754 struct list_head *head = &info->space_info;
755 struct btrfs_space_info *found;
757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
760 list_for_each_entry_rcu(found, head, list) {
761 if (found->flags & flags) {
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
773 struct btrfs_space_info *space_info;
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
780 flags = BTRFS_BLOCK_GROUP_METADATA;
782 flags = BTRFS_BLOCK_GROUP_DATA;
785 space_info = __find_space_info(fs_info, flags);
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
800 list_for_each_entry_rcu(found, head, list)
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
809 struct btrfs_key key;
810 struct btrfs_path *path;
812 path = btrfs_alloc_path();
816 key.objectid = start;
818 key.type = BTRFS_EXTENT_ITEM_KEY;
819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820 btrfs_free_path(path);
825 * helper function to lookup reference count and flags of a tree block.
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834 struct btrfs_fs_info *fs_info, u64 bytenr,
835 u64 offset, int metadata, u64 *refs, u64 *flags)
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
849 * If we don't have skinny metadata, don't bother doing anything
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
857 path = btrfs_alloc_path();
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
867 key.objectid = bytenr;
870 key.type = BTRFS_METADATA_ITEM_KEY;
872 key.type = BTRFS_EXTENT_ITEM_KEY;
874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879 if (path->slots[0]) {
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
885 key.offset == fs_info->nodesize)
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
911 BUG_ON(num_refs == 0);
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
925 if (!mutex_trylock(&head->mutex)) {
926 refcount_inc(&head->node.refs);
927 spin_unlock(&delayed_refs->lock);
929 btrfs_release_path(path);
932 * Mutex was contended, block until it's released and try
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
940 spin_lock(&head->lock);
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
944 BUG_ON(num_refs == 0);
946 num_refs += head->node.ref_mod;
947 spin_unlock(&head->lock);
948 mutex_unlock(&head->mutex);
950 spin_unlock(&delayed_refs->lock);
952 WARN_ON(num_refs == 0);
956 *flags = extent_flags;
958 btrfs_free_path(path);
963 * Back reference rules. Back refs have three main goals:
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
994 * When a tree block is COWed through a tree, there are four cases:
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1014 * Back Reference Key composing:
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1021 * File extents can be referenced by:
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1027 * The extent ref structure for the implicit back refs has fields for:
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1034 * The key offset for the implicit back refs is hash of the first
1037 * The extent ref structure for the full back refs has field for:
1039 * - number of pointers in the tree leaf
1041 * The key offset for the implicit back refs is the first byte of
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1054 * Btree extents can be referenced by:
1056 * - Different subvolumes
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070 struct btrfs_fs_info *fs_info,
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
1074 struct btrfs_root *root = fs_info->extent_root;
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
1080 struct btrfs_key key;
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1094 if (owner == (u64)-1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1100 BUG_ON(ret > 0); /* Corruption */
1101 leaf = path->nodes[0];
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1116 btrfs_release_path(path);
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1126 BUG_ON(ret); /* Corruption */
1128 btrfs_extend_item(fs_info, path, new_size);
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1146 btrfs_mark_buffer_dirty(leaf);
1152 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1153 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1154 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1156 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1157 struct btrfs_extent_inline_ref *iref,
1158 enum btrfs_inline_ref_type is_data)
1160 int type = btrfs_extent_inline_ref_type(eb, iref);
1161 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1163 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1164 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1165 type == BTRFS_SHARED_DATA_REF_KEY ||
1166 type == BTRFS_EXTENT_DATA_REF_KEY) {
1167 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1168 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1170 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1171 ASSERT(eb->fs_info);
1173 * Every shared one has parent tree
1174 * block, which must be aligned to
1178 IS_ALIGNED(offset, eb->fs_info->nodesize))
1181 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1182 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1184 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1185 ASSERT(eb->fs_info);
1187 * Every shared one has parent tree
1188 * block, which must be aligned to
1192 IS_ALIGNED(offset, eb->fs_info->nodesize))
1196 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1201 btrfs_print_leaf((struct extent_buffer *)eb);
1202 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1206 return BTRFS_REF_TYPE_INVALID;
1209 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1211 u32 high_crc = ~(u32)0;
1212 u32 low_crc = ~(u32)0;
1215 lenum = cpu_to_le64(root_objectid);
1216 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1217 lenum = cpu_to_le64(owner);
1218 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1219 lenum = cpu_to_le64(offset);
1220 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1222 return ((u64)high_crc << 31) ^ (u64)low_crc;
1225 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1226 struct btrfs_extent_data_ref *ref)
1228 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1229 btrfs_extent_data_ref_objectid(leaf, ref),
1230 btrfs_extent_data_ref_offset(leaf, ref));
1233 static int match_extent_data_ref(struct extent_buffer *leaf,
1234 struct btrfs_extent_data_ref *ref,
1235 u64 root_objectid, u64 owner, u64 offset)
1237 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1238 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1239 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1244 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info,
1246 struct btrfs_path *path,
1247 u64 bytenr, u64 parent,
1249 u64 owner, u64 offset)
1251 struct btrfs_root *root = fs_info->extent_root;
1252 struct btrfs_key key;
1253 struct btrfs_extent_data_ref *ref;
1254 struct extent_buffer *leaf;
1260 key.objectid = bytenr;
1262 key.type = BTRFS_SHARED_DATA_REF_KEY;
1263 key.offset = parent;
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 key.type = BTRFS_EXTENT_REF_V0_KEY;
1282 btrfs_release_path(path);
1283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1297 if (path->slots[0] >= nritems) {
1298 ret = btrfs_next_leaf(root, path);
1304 leaf = path->nodes[0];
1305 nritems = btrfs_header_nritems(leaf);
1309 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1310 if (key.objectid != bytenr ||
1311 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1314 ref = btrfs_item_ptr(leaf, path->slots[0],
1315 struct btrfs_extent_data_ref);
1317 if (match_extent_data_ref(leaf, ref, root_objectid,
1320 btrfs_release_path(path);
1332 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info,
1334 struct btrfs_path *path,
1335 u64 bytenr, u64 parent,
1336 u64 root_objectid, u64 owner,
1337 u64 offset, int refs_to_add)
1339 struct btrfs_root *root = fs_info->extent_root;
1340 struct btrfs_key key;
1341 struct extent_buffer *leaf;
1346 key.objectid = bytenr;
1348 key.type = BTRFS_SHARED_DATA_REF_KEY;
1349 key.offset = parent;
1350 size = sizeof(struct btrfs_shared_data_ref);
1352 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1353 key.offset = hash_extent_data_ref(root_objectid,
1355 size = sizeof(struct btrfs_extent_data_ref);
1358 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1359 if (ret && ret != -EEXIST)
1362 leaf = path->nodes[0];
1364 struct btrfs_shared_data_ref *ref;
1365 ref = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1368 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1370 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1371 num_refs += refs_to_add;
1372 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1375 struct btrfs_extent_data_ref *ref;
1376 while (ret == -EEXIST) {
1377 ref = btrfs_item_ptr(leaf, path->slots[0],
1378 struct btrfs_extent_data_ref);
1379 if (match_extent_data_ref(leaf, ref, root_objectid,
1382 btrfs_release_path(path);
1384 ret = btrfs_insert_empty_item(trans, root, path, &key,
1386 if (ret && ret != -EEXIST)
1389 leaf = path->nodes[0];
1391 ref = btrfs_item_ptr(leaf, path->slots[0],
1392 struct btrfs_extent_data_ref);
1394 btrfs_set_extent_data_ref_root(leaf, ref,
1396 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1397 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1398 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1400 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1401 num_refs += refs_to_add;
1402 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1405 btrfs_mark_buffer_dirty(leaf);
1408 btrfs_release_path(path);
1412 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info,
1414 struct btrfs_path *path,
1415 int refs_to_drop, int *last_ref)
1417 struct btrfs_key key;
1418 struct btrfs_extent_data_ref *ref1 = NULL;
1419 struct btrfs_shared_data_ref *ref2 = NULL;
1420 struct extent_buffer *leaf;
1424 leaf = path->nodes[0];
1425 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1427 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1428 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_data_ref);
1430 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1431 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1432 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1433 struct btrfs_shared_data_ref);
1434 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1435 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1436 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1437 struct btrfs_extent_ref_v0 *ref0;
1438 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1439 struct btrfs_extent_ref_v0);
1440 num_refs = btrfs_ref_count_v0(leaf, ref0);
1446 BUG_ON(num_refs < refs_to_drop);
1447 num_refs -= refs_to_drop;
1449 if (num_refs == 0) {
1450 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1453 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1454 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1455 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1456 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1457 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1459 struct btrfs_extent_ref_v0 *ref0;
1460 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1461 struct btrfs_extent_ref_v0);
1462 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1465 btrfs_mark_buffer_dirty(leaf);
1470 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref *iref)
1473 struct btrfs_key key;
1474 struct extent_buffer *leaf;
1475 struct btrfs_extent_data_ref *ref1;
1476 struct btrfs_shared_data_ref *ref2;
1480 leaf = path->nodes[0];
1481 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1484 * If type is invalid, we should have bailed out earlier than
1487 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1488 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1489 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1490 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1491 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1493 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1494 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1496 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1497 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_data_ref);
1499 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1500 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1501 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1502 struct btrfs_shared_data_ref);
1503 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1504 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1505 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1506 struct btrfs_extent_ref_v0 *ref0;
1507 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1508 struct btrfs_extent_ref_v0);
1509 num_refs = btrfs_ref_count_v0(leaf, ref0);
1517 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1518 struct btrfs_fs_info *fs_info,
1519 struct btrfs_path *path,
1520 u64 bytenr, u64 parent,
1523 struct btrfs_root *root = fs_info->extent_root;
1524 struct btrfs_key key;
1527 key.objectid = bytenr;
1529 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1530 key.offset = parent;
1532 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1533 key.offset = root_objectid;
1536 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1539 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1540 if (ret == -ENOENT && parent) {
1541 btrfs_release_path(path);
1542 key.type = BTRFS_EXTENT_REF_V0_KEY;
1543 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1551 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1552 struct btrfs_fs_info *fs_info,
1553 struct btrfs_path *path,
1554 u64 bytenr, u64 parent,
1557 struct btrfs_key key;
1560 key.objectid = bytenr;
1562 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1563 key.offset = parent;
1565 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1566 key.offset = root_objectid;
1569 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1571 btrfs_release_path(path);
1575 static inline int extent_ref_type(u64 parent, u64 owner)
1578 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1580 type = BTRFS_SHARED_BLOCK_REF_KEY;
1582 type = BTRFS_TREE_BLOCK_REF_KEY;
1585 type = BTRFS_SHARED_DATA_REF_KEY;
1587 type = BTRFS_EXTENT_DATA_REF_KEY;
1592 static int find_next_key(struct btrfs_path *path, int level,
1593 struct btrfs_key *key)
1596 for (; level < BTRFS_MAX_LEVEL; level++) {
1597 if (!path->nodes[level])
1599 if (path->slots[level] + 1 >=
1600 btrfs_header_nritems(path->nodes[level]))
1603 btrfs_item_key_to_cpu(path->nodes[level], key,
1604 path->slots[level] + 1);
1606 btrfs_node_key_to_cpu(path->nodes[level], key,
1607 path->slots[level] + 1);
1614 * look for inline back ref. if back ref is found, *ref_ret is set
1615 * to the address of inline back ref, and 0 is returned.
1617 * if back ref isn't found, *ref_ret is set to the address where it
1618 * should be inserted, and -ENOENT is returned.
1620 * if insert is true and there are too many inline back refs, the path
1621 * points to the extent item, and -EAGAIN is returned.
1623 * NOTE: inline back refs are ordered in the same way that back ref
1624 * items in the tree are ordered.
1626 static noinline_for_stack
1627 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1628 struct btrfs_fs_info *fs_info,
1629 struct btrfs_path *path,
1630 struct btrfs_extent_inline_ref **ref_ret,
1631 u64 bytenr, u64 num_bytes,
1632 u64 parent, u64 root_objectid,
1633 u64 owner, u64 offset, int insert)
1635 struct btrfs_root *root = fs_info->extent_root;
1636 struct btrfs_key key;
1637 struct extent_buffer *leaf;
1638 struct btrfs_extent_item *ei;
1639 struct btrfs_extent_inline_ref *iref;
1649 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1652 key.objectid = bytenr;
1653 key.type = BTRFS_EXTENT_ITEM_KEY;
1654 key.offset = num_bytes;
1656 want = extent_ref_type(parent, owner);
1658 extra_size = btrfs_extent_inline_ref_size(want);
1659 path->keep_locks = 1;
1664 * Owner is our parent level, so we can just add one to get the level
1665 * for the block we are interested in.
1667 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1668 key.type = BTRFS_METADATA_ITEM_KEY;
1673 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1680 * We may be a newly converted file system which still has the old fat
1681 * extent entries for metadata, so try and see if we have one of those.
1683 if (ret > 0 && skinny_metadata) {
1684 skinny_metadata = false;
1685 if (path->slots[0]) {
1687 btrfs_item_key_to_cpu(path->nodes[0], &key,
1689 if (key.objectid == bytenr &&
1690 key.type == BTRFS_EXTENT_ITEM_KEY &&
1691 key.offset == num_bytes)
1695 key.objectid = bytenr;
1696 key.type = BTRFS_EXTENT_ITEM_KEY;
1697 key.offset = num_bytes;
1698 btrfs_release_path(path);
1703 if (ret && !insert) {
1706 } else if (WARN_ON(ret)) {
1711 leaf = path->nodes[0];
1712 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1713 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1714 if (item_size < sizeof(*ei)) {
1719 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1725 leaf = path->nodes[0];
1726 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1729 BUG_ON(item_size < sizeof(*ei));
1731 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1732 flags = btrfs_extent_flags(leaf, ei);
1734 ptr = (unsigned long)(ei + 1);
1735 end = (unsigned long)ei + item_size;
1737 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1738 ptr += sizeof(struct btrfs_tree_block_info);
1742 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1743 needed = BTRFS_REF_TYPE_DATA;
1745 needed = BTRFS_REF_TYPE_BLOCK;
1753 iref = (struct btrfs_extent_inline_ref *)ptr;
1754 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1755 if (type == BTRFS_REF_TYPE_INVALID) {
1763 ptr += btrfs_extent_inline_ref_size(type);
1767 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1768 struct btrfs_extent_data_ref *dref;
1769 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1770 if (match_extent_data_ref(leaf, dref, root_objectid,
1775 if (hash_extent_data_ref_item(leaf, dref) <
1776 hash_extent_data_ref(root_objectid, owner, offset))
1780 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1782 if (parent == ref_offset) {
1786 if (ref_offset < parent)
1789 if (root_objectid == ref_offset) {
1793 if (ref_offset < root_objectid)
1797 ptr += btrfs_extent_inline_ref_size(type);
1799 if (err == -ENOENT && insert) {
1800 if (item_size + extra_size >=
1801 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1806 * To add new inline back ref, we have to make sure
1807 * there is no corresponding back ref item.
1808 * For simplicity, we just do not add new inline back
1809 * ref if there is any kind of item for this block
1811 if (find_next_key(path, 0, &key) == 0 &&
1812 key.objectid == bytenr &&
1813 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1818 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1821 path->keep_locks = 0;
1822 btrfs_unlock_up_safe(path, 1);
1828 * helper to add new inline back ref
1830 static noinline_for_stack
1831 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1832 struct btrfs_path *path,
1833 struct btrfs_extent_inline_ref *iref,
1834 u64 parent, u64 root_objectid,
1835 u64 owner, u64 offset, int refs_to_add,
1836 struct btrfs_delayed_extent_op *extent_op)
1838 struct extent_buffer *leaf;
1839 struct btrfs_extent_item *ei;
1842 unsigned long item_offset;
1847 leaf = path->nodes[0];
1848 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1849 item_offset = (unsigned long)iref - (unsigned long)ei;
1851 type = extent_ref_type(parent, owner);
1852 size = btrfs_extent_inline_ref_size(type);
1854 btrfs_extend_item(fs_info, path, size);
1856 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1857 refs = btrfs_extent_refs(leaf, ei);
1858 refs += refs_to_add;
1859 btrfs_set_extent_refs(leaf, ei, refs);
1861 __run_delayed_extent_op(extent_op, leaf, ei);
1863 ptr = (unsigned long)ei + item_offset;
1864 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1865 if (ptr < end - size)
1866 memmove_extent_buffer(leaf, ptr + size, ptr,
1869 iref = (struct btrfs_extent_inline_ref *)ptr;
1870 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1871 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 struct btrfs_extent_data_ref *dref;
1873 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1874 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1875 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1876 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1878 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1879 struct btrfs_shared_data_ref *sref;
1880 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1881 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1882 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1883 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1884 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1886 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1888 btrfs_mark_buffer_dirty(leaf);
1891 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1892 struct btrfs_fs_info *fs_info,
1893 struct btrfs_path *path,
1894 struct btrfs_extent_inline_ref **ref_ret,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner, u64 offset)
1900 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1901 bytenr, num_bytes, parent,
1902 root_objectid, owner, offset, 0);
1906 btrfs_release_path(path);
1909 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1910 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1911 parent, root_objectid);
1913 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1914 parent, root_objectid, owner,
1921 * helper to update/remove inline back ref
1923 static noinline_for_stack
1924 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1925 struct btrfs_path *path,
1926 struct btrfs_extent_inline_ref *iref,
1928 struct btrfs_delayed_extent_op *extent_op,
1931 struct extent_buffer *leaf;
1932 struct btrfs_extent_item *ei;
1933 struct btrfs_extent_data_ref *dref = NULL;
1934 struct btrfs_shared_data_ref *sref = NULL;
1942 leaf = path->nodes[0];
1943 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1944 refs = btrfs_extent_refs(leaf, ei);
1945 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1946 refs += refs_to_mod;
1947 btrfs_set_extent_refs(leaf, ei, refs);
1949 __run_delayed_extent_op(extent_op, leaf, ei);
1952 * If type is invalid, we should have bailed out after
1953 * lookup_inline_extent_backref().
1955 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1956 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1958 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1959 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1960 refs = btrfs_extent_data_ref_count(leaf, dref);
1961 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1962 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1963 refs = btrfs_shared_data_ref_count(leaf, sref);
1966 BUG_ON(refs_to_mod != -1);
1969 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1970 refs += refs_to_mod;
1973 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1974 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1976 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1979 size = btrfs_extent_inline_ref_size(type);
1980 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1981 ptr = (unsigned long)iref;
1982 end = (unsigned long)ei + item_size;
1983 if (ptr + size < end)
1984 memmove_extent_buffer(leaf, ptr, ptr + size,
1987 btrfs_truncate_item(fs_info, path, item_size, 1);
1989 btrfs_mark_buffer_dirty(leaf);
1992 static noinline_for_stack
1993 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1994 struct btrfs_fs_info *fs_info,
1995 struct btrfs_path *path,
1996 u64 bytenr, u64 num_bytes, u64 parent,
1997 u64 root_objectid, u64 owner,
1998 u64 offset, int refs_to_add,
1999 struct btrfs_delayed_extent_op *extent_op)
2001 struct btrfs_extent_inline_ref *iref;
2004 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
2005 bytenr, num_bytes, parent,
2006 root_objectid, owner, offset, 1);
2008 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
2009 update_inline_extent_backref(fs_info, path, iref,
2010 refs_to_add, extent_op, NULL);
2011 } else if (ret == -ENOENT) {
2012 setup_inline_extent_backref(fs_info, path, iref, parent,
2013 root_objectid, owner, offset,
2014 refs_to_add, extent_op);
2020 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2021 struct btrfs_fs_info *fs_info,
2022 struct btrfs_path *path,
2023 u64 bytenr, u64 parent, u64 root_objectid,
2024 u64 owner, u64 offset, int refs_to_add)
2027 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2028 BUG_ON(refs_to_add != 1);
2029 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2030 parent, root_objectid);
2032 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2033 parent, root_objectid,
2034 owner, offset, refs_to_add);
2039 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2040 struct btrfs_fs_info *fs_info,
2041 struct btrfs_path *path,
2042 struct btrfs_extent_inline_ref *iref,
2043 int refs_to_drop, int is_data, int *last_ref)
2047 BUG_ON(!is_data && refs_to_drop != 1);
2049 update_inline_extent_backref(fs_info, path, iref,
2050 -refs_to_drop, NULL, last_ref);
2051 } else if (is_data) {
2052 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2056 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2061 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2062 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2063 u64 *discarded_bytes)
2066 u64 bytes_left, end;
2067 u64 aligned_start = ALIGN(start, 1 << 9);
2069 if (WARN_ON(start != aligned_start)) {
2070 len -= aligned_start - start;
2071 len = round_down(len, 1 << 9);
2072 start = aligned_start;
2075 *discarded_bytes = 0;
2083 /* Skip any superblocks on this device. */
2084 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2085 u64 sb_start = btrfs_sb_offset(j);
2086 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2087 u64 size = sb_start - start;
2089 if (!in_range(sb_start, start, bytes_left) &&
2090 !in_range(sb_end, start, bytes_left) &&
2091 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2095 * Superblock spans beginning of range. Adjust start and
2098 if (sb_start <= start) {
2099 start += sb_end - start;
2104 bytes_left = end - start;
2109 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2112 *discarded_bytes += size;
2113 else if (ret != -EOPNOTSUPP)
2122 bytes_left = end - start;
2126 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2129 *discarded_bytes += bytes_left;
2134 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2135 u64 num_bytes, u64 *actual_bytes)
2138 u64 discarded_bytes = 0;
2139 struct btrfs_bio *bbio = NULL;
2143 * Avoid races with device replace and make sure our bbio has devices
2144 * associated to its stripes that don't go away while we are discarding.
2146 btrfs_bio_counter_inc_blocked(fs_info);
2147 /* Tell the block device(s) that the sectors can be discarded */
2148 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2150 /* Error condition is -ENOMEM */
2152 struct btrfs_bio_stripe *stripe = bbio->stripes;
2156 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2158 if (!stripe->dev->can_discard)
2161 ret = btrfs_issue_discard(stripe->dev->bdev,
2166 discarded_bytes += bytes;
2167 else if (ret != -EOPNOTSUPP)
2168 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2171 * Just in case we get back EOPNOTSUPP for some reason,
2172 * just ignore the return value so we don't screw up
2173 * people calling discard_extent.
2177 btrfs_put_bbio(bbio);
2179 btrfs_bio_counter_dec(fs_info);
2182 *actual_bytes = discarded_bytes;
2185 if (ret == -EOPNOTSUPP)
2190 /* Can return -ENOMEM */
2191 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2192 struct btrfs_fs_info *fs_info,
2193 u64 bytenr, u64 num_bytes, u64 parent,
2194 u64 root_objectid, u64 owner, u64 offset)
2196 int old_ref_mod, new_ref_mod;
2199 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2200 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2203 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2205 root_objectid, (int)owner,
2206 BTRFS_ADD_DELAYED_REF, NULL,
2207 &old_ref_mod, &new_ref_mod);
2209 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2211 root_objectid, owner, offset,
2212 0, BTRFS_ADD_DELAYED_REF,
2213 &old_ref_mod, &new_ref_mod);
2216 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2217 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2222 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2223 struct btrfs_fs_info *fs_info,
2224 struct btrfs_delayed_ref_node *node,
2225 u64 parent, u64 root_objectid,
2226 u64 owner, u64 offset, int refs_to_add,
2227 struct btrfs_delayed_extent_op *extent_op)
2229 struct btrfs_path *path;
2230 struct extent_buffer *leaf;
2231 struct btrfs_extent_item *item;
2232 struct btrfs_key key;
2233 u64 bytenr = node->bytenr;
2234 u64 num_bytes = node->num_bytes;
2238 path = btrfs_alloc_path();
2242 path->reada = READA_FORWARD;
2243 path->leave_spinning = 1;
2244 /* this will setup the path even if it fails to insert the back ref */
2245 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2246 num_bytes, parent, root_objectid,
2248 refs_to_add, extent_op);
2249 if ((ret < 0 && ret != -EAGAIN) || !ret)
2253 * Ok we had -EAGAIN which means we didn't have space to insert and
2254 * inline extent ref, so just update the reference count and add a
2257 leaf = path->nodes[0];
2258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2259 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2260 refs = btrfs_extent_refs(leaf, item);
2261 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263 __run_delayed_extent_op(extent_op, leaf, item);
2265 btrfs_mark_buffer_dirty(leaf);
2266 btrfs_release_path(path);
2268 path->reada = READA_FORWARD;
2269 path->leave_spinning = 1;
2270 /* now insert the actual backref */
2271 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2272 root_objectid, owner, offset, refs_to_add);
2274 btrfs_abort_transaction(trans, ret);
2276 btrfs_free_path(path);
2280 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2281 struct btrfs_fs_info *fs_info,
2282 struct btrfs_delayed_ref_node *node,
2283 struct btrfs_delayed_extent_op *extent_op,
2284 int insert_reserved)
2287 struct btrfs_delayed_data_ref *ref;
2288 struct btrfs_key ins;
2293 ins.objectid = node->bytenr;
2294 ins.offset = node->num_bytes;
2295 ins.type = BTRFS_EXTENT_ITEM_KEY;
2297 ref = btrfs_delayed_node_to_data_ref(node);
2298 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2300 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2301 parent = ref->parent;
2302 ref_root = ref->root;
2304 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2306 flags |= extent_op->flags_to_set;
2307 ret = alloc_reserved_file_extent(trans, fs_info,
2308 parent, ref_root, flags,
2309 ref->objectid, ref->offset,
2310 &ins, node->ref_mod);
2311 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2312 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2313 ref_root, ref->objectid,
2314 ref->offset, node->ref_mod,
2316 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2317 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2318 ref_root, ref->objectid,
2319 ref->offset, node->ref_mod,
2327 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2328 struct extent_buffer *leaf,
2329 struct btrfs_extent_item *ei)
2331 u64 flags = btrfs_extent_flags(leaf, ei);
2332 if (extent_op->update_flags) {
2333 flags |= extent_op->flags_to_set;
2334 btrfs_set_extent_flags(leaf, ei, flags);
2337 if (extent_op->update_key) {
2338 struct btrfs_tree_block_info *bi;
2339 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2340 bi = (struct btrfs_tree_block_info *)(ei + 1);
2341 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2345 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2346 struct btrfs_fs_info *fs_info,
2347 struct btrfs_delayed_ref_node *node,
2348 struct btrfs_delayed_extent_op *extent_op)
2350 struct btrfs_key key;
2351 struct btrfs_path *path;
2352 struct btrfs_extent_item *ei;
2353 struct extent_buffer *leaf;
2357 int metadata = !extent_op->is_data;
2362 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2365 path = btrfs_alloc_path();
2369 key.objectid = node->bytenr;
2372 key.type = BTRFS_METADATA_ITEM_KEY;
2373 key.offset = extent_op->level;
2375 key.type = BTRFS_EXTENT_ITEM_KEY;
2376 key.offset = node->num_bytes;
2380 path->reada = READA_FORWARD;
2381 path->leave_spinning = 1;
2382 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2389 if (path->slots[0] > 0) {
2391 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393 if (key.objectid == node->bytenr &&
2394 key.type == BTRFS_EXTENT_ITEM_KEY &&
2395 key.offset == node->num_bytes)
2399 btrfs_release_path(path);
2402 key.objectid = node->bytenr;
2403 key.offset = node->num_bytes;
2404 key.type = BTRFS_EXTENT_ITEM_KEY;
2413 leaf = path->nodes[0];
2414 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2415 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2416 if (item_size < sizeof(*ei)) {
2417 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2422 leaf = path->nodes[0];
2423 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2426 BUG_ON(item_size < sizeof(*ei));
2427 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2428 __run_delayed_extent_op(extent_op, leaf, ei);
2430 btrfs_mark_buffer_dirty(leaf);
2432 btrfs_free_path(path);
2436 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2437 struct btrfs_fs_info *fs_info,
2438 struct btrfs_delayed_ref_node *node,
2439 struct btrfs_delayed_extent_op *extent_op,
2440 int insert_reserved)
2443 struct btrfs_delayed_tree_ref *ref;
2444 struct btrfs_key ins;
2447 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2449 ref = btrfs_delayed_node_to_tree_ref(node);
2450 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2452 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2453 parent = ref->parent;
2454 ref_root = ref->root;
2456 ins.objectid = node->bytenr;
2457 if (skinny_metadata) {
2458 ins.offset = ref->level;
2459 ins.type = BTRFS_METADATA_ITEM_KEY;
2461 ins.offset = node->num_bytes;
2462 ins.type = BTRFS_EXTENT_ITEM_KEY;
2465 if (node->ref_mod != 1) {
2467 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2468 node->bytenr, node->ref_mod, node->action, ref_root,
2472 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2473 BUG_ON(!extent_op || !extent_op->update_flags);
2474 ret = alloc_reserved_tree_block(trans, fs_info,
2476 extent_op->flags_to_set,
2479 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2480 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2484 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2485 ret = __btrfs_free_extent(trans, fs_info, node,
2487 ref->level, 0, 1, extent_op);
2494 /* helper function to actually process a single delayed ref entry */
2495 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2496 struct btrfs_fs_info *fs_info,
2497 struct btrfs_delayed_ref_node *node,
2498 struct btrfs_delayed_extent_op *extent_op,
2499 int insert_reserved)
2503 if (trans->aborted) {
2504 if (insert_reserved)
2505 btrfs_pin_extent(fs_info, node->bytenr,
2506 node->num_bytes, 1);
2510 if (btrfs_delayed_ref_is_head(node)) {
2511 struct btrfs_delayed_ref_head *head;
2513 * we've hit the end of the chain and we were supposed
2514 * to insert this extent into the tree. But, it got
2515 * deleted before we ever needed to insert it, so all
2516 * we have to do is clean up the accounting
2519 head = btrfs_delayed_node_to_head(node);
2520 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2522 if (head->total_ref_mod < 0) {
2523 struct btrfs_block_group_cache *cache;
2525 cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2527 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2529 btrfs_put_block_group(cache);
2532 if (insert_reserved) {
2533 btrfs_pin_extent(fs_info, node->bytenr,
2534 node->num_bytes, 1);
2535 if (head->is_data) {
2536 ret = btrfs_del_csums(trans, fs_info,
2542 /* Also free its reserved qgroup space */
2543 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2544 head->qgroup_reserved);
2548 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2549 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2550 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2552 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2553 node->type == BTRFS_SHARED_DATA_REF_KEY)
2554 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2561 static inline struct btrfs_delayed_ref_node *
2562 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2564 struct btrfs_delayed_ref_node *ref;
2566 if (list_empty(&head->ref_list))
2570 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2571 * This is to prevent a ref count from going down to zero, which deletes
2572 * the extent item from the extent tree, when there still are references
2573 * to add, which would fail because they would not find the extent item.
2575 if (!list_empty(&head->ref_add_list))
2576 return list_first_entry(&head->ref_add_list,
2577 struct btrfs_delayed_ref_node, add_list);
2579 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2581 ASSERT(list_empty(&ref->add_list));
2586 * Returns 0 on success or if called with an already aborted transaction.
2587 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2589 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2590 struct btrfs_fs_info *fs_info,
2593 struct btrfs_delayed_ref_root *delayed_refs;
2594 struct btrfs_delayed_ref_node *ref;
2595 struct btrfs_delayed_ref_head *locked_ref = NULL;
2596 struct btrfs_delayed_extent_op *extent_op;
2597 ktime_t start = ktime_get();
2599 unsigned long count = 0;
2600 unsigned long actual_count = 0;
2601 int must_insert_reserved = 0;
2603 delayed_refs = &trans->transaction->delayed_refs;
2609 spin_lock(&delayed_refs->lock);
2610 locked_ref = btrfs_select_ref_head(trans);
2612 spin_unlock(&delayed_refs->lock);
2616 /* grab the lock that says we are going to process
2617 * all the refs for this head */
2618 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2619 spin_unlock(&delayed_refs->lock);
2621 * we may have dropped the spin lock to get the head
2622 * mutex lock, and that might have given someone else
2623 * time to free the head. If that's true, it has been
2624 * removed from our list and we can move on.
2626 if (ret == -EAGAIN) {
2634 * We need to try and merge add/drops of the same ref since we
2635 * can run into issues with relocate dropping the implicit ref
2636 * and then it being added back again before the drop can
2637 * finish. If we merged anything we need to re-loop so we can
2639 * Or we can get node references of the same type that weren't
2640 * merged when created due to bumps in the tree mod seq, and
2641 * we need to merge them to prevent adding an inline extent
2642 * backref before dropping it (triggering a BUG_ON at
2643 * insert_inline_extent_backref()).
2645 spin_lock(&locked_ref->lock);
2646 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2650 * locked_ref is the head node, so we have to go one
2651 * node back for any delayed ref updates
2653 ref = select_delayed_ref(locked_ref);
2655 if (ref && ref->seq &&
2656 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2657 spin_unlock(&locked_ref->lock);
2658 spin_lock(&delayed_refs->lock);
2659 locked_ref->processing = 0;
2660 delayed_refs->num_heads_ready++;
2661 spin_unlock(&delayed_refs->lock);
2662 btrfs_delayed_ref_unlock(locked_ref);
2670 * record the must insert reserved flag before we
2671 * drop the spin lock.
2673 must_insert_reserved = locked_ref->must_insert_reserved;
2674 locked_ref->must_insert_reserved = 0;
2676 extent_op = locked_ref->extent_op;
2677 locked_ref->extent_op = NULL;
2682 /* All delayed refs have been processed, Go ahead
2683 * and send the head node to run_one_delayed_ref,
2684 * so that any accounting fixes can happen
2686 ref = &locked_ref->node;
2688 if (extent_op && must_insert_reserved) {
2689 btrfs_free_delayed_extent_op(extent_op);
2694 spin_unlock(&locked_ref->lock);
2695 ret = run_delayed_extent_op(trans, fs_info,
2697 btrfs_free_delayed_extent_op(extent_op);
2701 * Need to reset must_insert_reserved if
2702 * there was an error so the abort stuff
2703 * can cleanup the reserved space
2706 if (must_insert_reserved)
2707 locked_ref->must_insert_reserved = 1;
2708 spin_lock(&delayed_refs->lock);
2709 locked_ref->processing = 0;
2710 delayed_refs->num_heads_ready++;
2711 spin_unlock(&delayed_refs->lock);
2712 btrfs_debug(fs_info,
2713 "run_delayed_extent_op returned %d",
2715 btrfs_delayed_ref_unlock(locked_ref);
2722 * Need to drop our head ref lock and re-acquire the
2723 * delayed ref lock and then re-check to make sure
2726 spin_unlock(&locked_ref->lock);
2727 spin_lock(&delayed_refs->lock);
2728 spin_lock(&locked_ref->lock);
2729 if (!list_empty(&locked_ref->ref_list) ||
2730 locked_ref->extent_op) {
2731 spin_unlock(&locked_ref->lock);
2732 spin_unlock(&delayed_refs->lock);
2736 delayed_refs->num_heads--;
2737 rb_erase(&locked_ref->href_node,
2738 &delayed_refs->href_root);
2739 spin_unlock(&delayed_refs->lock);
2743 list_del(&ref->list);
2744 if (!list_empty(&ref->add_list))
2745 list_del(&ref->add_list);
2747 atomic_dec(&delayed_refs->num_entries);
2749 if (!btrfs_delayed_ref_is_head(ref)) {
2751 * when we play the delayed ref, also correct the
2754 switch (ref->action) {
2755 case BTRFS_ADD_DELAYED_REF:
2756 case BTRFS_ADD_DELAYED_EXTENT:
2757 locked_ref->node.ref_mod -= ref->ref_mod;
2759 case BTRFS_DROP_DELAYED_REF:
2760 locked_ref->node.ref_mod += ref->ref_mod;
2766 spin_unlock(&locked_ref->lock);
2768 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2769 must_insert_reserved);
2771 btrfs_free_delayed_extent_op(extent_op);
2773 spin_lock(&delayed_refs->lock);
2774 locked_ref->processing = 0;
2775 delayed_refs->num_heads_ready++;
2776 spin_unlock(&delayed_refs->lock);
2777 btrfs_delayed_ref_unlock(locked_ref);
2778 btrfs_put_delayed_ref(ref);
2779 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2785 * If this node is a head, that means all the refs in this head
2786 * have been dealt with, and we will pick the next head to deal
2787 * with, so we must unlock the head and drop it from the cluster
2788 * list before we release it.
2790 if (btrfs_delayed_ref_is_head(ref)) {
2791 if (locked_ref->is_data &&
2792 locked_ref->total_ref_mod < 0) {
2793 spin_lock(&delayed_refs->lock);
2794 delayed_refs->pending_csums -= ref->num_bytes;
2795 spin_unlock(&delayed_refs->lock);
2797 btrfs_delayed_ref_unlock(locked_ref);
2800 btrfs_put_delayed_ref(ref);
2806 * We don't want to include ref heads since we can have empty ref heads
2807 * and those will drastically skew our runtime down since we just do
2808 * accounting, no actual extent tree updates.
2810 if (actual_count > 0) {
2811 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2815 * We weigh the current average higher than our current runtime
2816 * to avoid large swings in the average.
2818 spin_lock(&delayed_refs->lock);
2819 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2820 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2821 spin_unlock(&delayed_refs->lock);
2826 #ifdef SCRAMBLE_DELAYED_REFS
2828 * Normally delayed refs get processed in ascending bytenr order. This
2829 * correlates in most cases to the order added. To expose dependencies on this
2830 * order, we start to process the tree in the middle instead of the beginning
2832 static u64 find_middle(struct rb_root *root)
2834 struct rb_node *n = root->rb_node;
2835 struct btrfs_delayed_ref_node *entry;
2838 u64 first = 0, last = 0;
2842 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2843 first = entry->bytenr;
2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848 last = entry->bytenr;
2853 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2854 WARN_ON(!entry->in_tree);
2856 middle = entry->bytenr;
2869 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2873 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2874 sizeof(struct btrfs_extent_inline_ref));
2875 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2876 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2879 * We don't ever fill up leaves all the way so multiply by 2 just to be
2880 * closer to what we're really going to want to use.
2882 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2886 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2887 * would require to store the csums for that many bytes.
2889 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2892 u64 num_csums_per_leaf;
2895 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2896 num_csums_per_leaf = div64_u64(csum_size,
2897 (u64)btrfs_super_csum_size(fs_info->super_copy));
2898 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2899 num_csums += num_csums_per_leaf - 1;
2900 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2904 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2905 struct btrfs_fs_info *fs_info)
2907 struct btrfs_block_rsv *global_rsv;
2908 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2909 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2910 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2911 u64 num_bytes, num_dirty_bgs_bytes;
2914 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2915 num_heads = heads_to_leaves(fs_info, num_heads);
2917 num_bytes += (num_heads - 1) * fs_info->nodesize;
2919 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2921 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2923 global_rsv = &fs_info->global_block_rsv;
2926 * If we can't allocate any more chunks lets make sure we have _lots_ of
2927 * wiggle room since running delayed refs can create more delayed refs.
2929 if (global_rsv->space_info->full) {
2930 num_dirty_bgs_bytes <<= 1;
2934 spin_lock(&global_rsv->lock);
2935 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2937 spin_unlock(&global_rsv->lock);
2941 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2942 struct btrfs_fs_info *fs_info)
2945 atomic_read(&trans->transaction->delayed_refs.num_entries);
2950 avg_runtime = fs_info->avg_delayed_ref_runtime;
2951 val = num_entries * avg_runtime;
2952 if (val >= NSEC_PER_SEC)
2954 if (val >= NSEC_PER_SEC / 2)
2957 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2960 struct async_delayed_refs {
2961 struct btrfs_root *root;
2966 struct completion wait;
2967 struct btrfs_work work;
2970 static inline struct async_delayed_refs *
2971 to_async_delayed_refs(struct btrfs_work *work)
2973 return container_of(work, struct async_delayed_refs, work);
2976 static void delayed_ref_async_start(struct btrfs_work *work)
2978 struct async_delayed_refs *async = to_async_delayed_refs(work);
2979 struct btrfs_trans_handle *trans;
2980 struct btrfs_fs_info *fs_info = async->root->fs_info;
2983 /* if the commit is already started, we don't need to wait here */
2984 if (btrfs_transaction_blocked(fs_info))
2987 trans = btrfs_join_transaction(async->root);
2988 if (IS_ERR(trans)) {
2989 async->error = PTR_ERR(trans);
2994 * trans->sync means that when we call end_transaction, we won't
2995 * wait on delayed refs
2999 /* Don't bother flushing if we got into a different transaction */
3000 if (trans->transid > async->transid)
3003 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
3007 ret = btrfs_end_transaction(trans);
3008 if (ret && !async->error)
3012 complete(&async->wait);
3017 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3018 unsigned long count, u64 transid, int wait)
3020 struct async_delayed_refs *async;