Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61         CHUNK_ALLOC_NO_FORCE = 0,
62         CHUNK_ALLOC_LIMITED = 1,
63         CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67                                struct btrfs_fs_info *fs_info,
68                                 struct btrfs_delayed_ref_node *node, u64 parent,
69                                 u64 root_objectid, u64 owner_objectid,
70                                 u64 owner_offset, int refs_to_drop,
71                                 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73                                     struct extent_buffer *leaf,
74                                     struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76                                       struct btrfs_fs_info *fs_info,
77                                       u64 parent, u64 root_objectid,
78                                       u64 flags, u64 owner, u64 offset,
79                                       struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81                                      struct btrfs_fs_info *fs_info,
82                                      u64 parent, u64 root_objectid,
83                                      u64 flags, struct btrfs_disk_key *key,
84                                      int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86                           struct btrfs_fs_info *fs_info, u64 flags,
87                           int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89                          struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91                             struct btrfs_space_info *info, u64 bytes,
92                             int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94                                u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96                                      struct btrfs_space_info *space_info,
97                                      u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99                                      struct btrfs_space_info *space_info,
100                                      u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105         smp_mb();
106         return cache->cached == BTRFS_CACHE_FINISHED ||
107                 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112         return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117         atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122         if (atomic_dec_and_test(&cache->count)) {
123                 WARN_ON(cache->pinned > 0);
124                 WARN_ON(cache->reserved > 0);
125
126                 /*
127                  * If not empty, someone is still holding mutex of
128                  * full_stripe_lock, which can only be released by caller.
129                  * And it will definitely cause use-after-free when caller
130                  * tries to release full stripe lock.
131                  *
132                  * No better way to resolve, but only to warn.
133                  */
134                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135                 kfree(cache->free_space_ctl);
136                 kfree(cache);
137         }
138 }
139
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145                                 struct btrfs_block_group_cache *block_group)
146 {
147         struct rb_node **p;
148         struct rb_node *parent = NULL;
149         struct btrfs_block_group_cache *cache;
150
151         spin_lock(&info->block_group_cache_lock);
152         p = &info->block_group_cache_tree.rb_node;
153
154         while (*p) {
155                 parent = *p;
156                 cache = rb_entry(parent, struct btrfs_block_group_cache,
157                                  cache_node);
158                 if (block_group->key.objectid < cache->key.objectid) {
159                         p = &(*p)->rb_left;
160                 } else if (block_group->key.objectid > cache->key.objectid) {
161                         p = &(*p)->rb_right;
162                 } else {
163                         spin_unlock(&info->block_group_cache_lock);
164                         return -EEXIST;
165                 }
166         }
167
168         rb_link_node(&block_group->cache_node, parent, p);
169         rb_insert_color(&block_group->cache_node,
170                         &info->block_group_cache_tree);
171
172         if (info->first_logical_byte > block_group->key.objectid)
173                 info->first_logical_byte = block_group->key.objectid;
174
175         spin_unlock(&info->block_group_cache_lock);
176
177         return 0;
178 }
179
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186                               int contains)
187 {
188         struct btrfs_block_group_cache *cache, *ret = NULL;
189         struct rb_node *n;
190         u64 end, start;
191
192         spin_lock(&info->block_group_cache_lock);
193         n = info->block_group_cache_tree.rb_node;
194
195         while (n) {
196                 cache = rb_entry(n, struct btrfs_block_group_cache,
197                                  cache_node);
198                 end = cache->key.objectid + cache->key.offset - 1;
199                 start = cache->key.objectid;
200
201                 if (bytenr < start) {
202                         if (!contains && (!ret || start < ret->key.objectid))
203                                 ret = cache;
204                         n = n->rb_left;
205                 } else if (bytenr > start) {
206                         if (contains && bytenr <= end) {
207                                 ret = cache;
208                                 break;
209                         }
210                         n = n->rb_right;
211                 } else {
212                         ret = cache;
213                         break;
214                 }
215         }
216         if (ret) {
217                 btrfs_get_block_group(ret);
218                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219                         info->first_logical_byte = ret->key.objectid;
220         }
221         spin_unlock(&info->block_group_cache_lock);
222
223         return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227                                u64 start, u64 num_bytes)
228 {
229         u64 end = start + num_bytes - 1;
230         set_extent_bits(&fs_info->freed_extents[0],
231                         start, end, EXTENT_UPTODATE);
232         set_extent_bits(&fs_info->freed_extents[1],
233                         start, end, EXTENT_UPTODATE);
234         return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238                                   struct btrfs_block_group_cache *cache)
239 {
240         u64 start, end;
241
242         start = cache->key.objectid;
243         end = start + cache->key.offset - 1;
244
245         clear_extent_bits(&fs_info->freed_extents[0],
246                           start, end, EXTENT_UPTODATE);
247         clear_extent_bits(&fs_info->freed_extents[1],
248                           start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252                                  struct btrfs_block_group_cache *cache)
253 {
254         u64 bytenr;
255         u64 *logical;
256         int stripe_len;
257         int i, nr, ret;
258
259         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261                 cache->bytes_super += stripe_len;
262                 ret = add_excluded_extent(fs_info, cache->key.objectid,
263                                           stripe_len);
264                 if (ret)
265                         return ret;
266         }
267
268         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269                 bytenr = btrfs_sb_offset(i);
270                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271                                        bytenr, 0, &logical, &nr, &stripe_len);
272                 if (ret)
273                         return ret;
274
275                 while (nr--) {
276                         u64 start, len;
277
278                         if (logical[nr] > cache->key.objectid +
279                             cache->key.offset)
280                                 continue;
281
282                         if (logical[nr] + stripe_len <= cache->key.objectid)
283                                 continue;
284
285                         start = logical[nr];
286                         if (start < cache->key.objectid) {
287                                 start = cache->key.objectid;
288                                 len = (logical[nr] + stripe_len) - start;
289                         } else {
290                                 len = min_t(u64, stripe_len,
291                                             cache->key.objectid +
292                                             cache->key.offset - start);
293                         }
294
295                         cache->bytes_super += len;
296                         ret = add_excluded_extent(fs_info, start, len);
297                         if (ret) {
298                                 kfree(logical);
299                                 return ret;
300                         }
301                 }
302
303                 kfree(logical);
304         }
305         return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311         struct btrfs_caching_control *ctl;
312
313         spin_lock(&cache->lock);
314         if (!cache->caching_ctl) {
315                 spin_unlock(&cache->lock);
316                 return NULL;
317         }
318
319         ctl = cache->caching_ctl;
320         refcount_inc(&ctl->count);
321         spin_unlock(&cache->lock);
322         return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327         if (refcount_dec_and_test(&ctl->count))
328                 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334         struct btrfs_fs_info *fs_info = block_group->fs_info;
335         u64 start = block_group->key.objectid;
336         u64 len = block_group->key.offset;
337         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338                 fs_info->nodesize : fs_info->sectorsize;
339         u64 step = chunk << 1;
340
341         while (len > chunk) {
342                 btrfs_remove_free_space(block_group, start, chunk);
343                 start += step;
344                 if (len < step)
345                         len = 0;
346                 else
347                         len -= step;
348         }
349 }
350 #endif
351
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358                        struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360         u64 extent_start, extent_end, size, total_added = 0;
361         int ret;
362
363         while (start < end) {
364                 ret = find_first_extent_bit(info->pinned_extents, start,
365                                             &extent_start, &extent_end,
366                                             EXTENT_DIRTY | EXTENT_UPTODATE,
367                                             NULL);
368                 if (ret)
369                         break;
370
371                 if (extent_start <= start) {
372                         start = extent_end + 1;
373                 } else if (extent_start > start && extent_start < end) {
374                         size = extent_start - start;
375                         total_added += size;
376                         ret = btrfs_add_free_space(block_group, start,
377                                                    size);
378                         BUG_ON(ret); /* -ENOMEM or logic error */
379                         start = extent_end + 1;
380                 } else {
381                         break;
382                 }
383         }
384
385         if (start < end) {
386                 size = end - start;
387                 total_added += size;
388                 ret = btrfs_add_free_space(block_group, start, size);
389                 BUG_ON(ret); /* -ENOMEM or logic error */
390         }
391
392         return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398         struct btrfs_fs_info *fs_info = block_group->fs_info;
399         struct btrfs_root *extent_root = fs_info->extent_root;
400         struct btrfs_path *path;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403         u64 total_found = 0;
404         u64 last = 0;
405         u32 nritems;
406         int ret;
407         bool wakeup = true;
408
409         path = btrfs_alloc_path();
410         if (!path)
411                 return -ENOMEM;
412
413         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416         /*
417          * If we're fragmenting we don't want to make anybody think we can
418          * allocate from this block group until we've had a chance to fragment
419          * the free space.
420          */
421         if (btrfs_should_fragment_free_space(block_group))
422                 wakeup = false;
423 #endif
424         /*
425          * We don't want to deadlock with somebody trying to allocate a new
426          * extent for the extent root while also trying to search the extent
427          * root to add free space.  So we skip locking and search the commit
428          * root, since its read-only
429          */
430         path->skip_locking = 1;
431         path->search_commit_root = 1;
432         path->reada = READA_FORWARD;
433
434         key.objectid = last;
435         key.offset = 0;
436         key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440         if (ret < 0)
441                 goto out;
442
443         leaf = path->nodes[0];
444         nritems = btrfs_header_nritems(leaf);
445
446         while (1) {
447                 if (btrfs_fs_closing(fs_info) > 1) {
448                         last = (u64)-1;
449                         break;
450                 }
451
452                 if (path->slots[0] < nritems) {
453                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454                 } else {
455                         ret = find_next_key(path, 0, &key);
456                         if (ret)
457                                 break;
458
459                         if (need_resched() ||
460                             rwsem_is_contended(&fs_info->commit_root_sem)) {
461                                 if (wakeup)
462                                         caching_ctl->progress = last;
463                                 btrfs_release_path(path);
464                                 up_read(&fs_info->commit_root_sem);
465                                 mutex_unlock(&caching_ctl->mutex);
466                                 cond_resched();
467                                 mutex_lock(&caching_ctl->mutex);
468                                 down_read(&fs_info->commit_root_sem);
469                                 goto next;
470                         }
471
472                         ret = btrfs_next_leaf(extent_root, path);
473                         if (ret < 0)
474                                 goto out;
475                         if (ret)
476                                 break;
477                         leaf = path->nodes[0];
478                         nritems = btrfs_header_nritems(leaf);
479                         continue;
480                 }
481
482                 if (key.objectid < last) {
483                         key.objectid = last;
484                         key.offset = 0;
485                         key.type = BTRFS_EXTENT_ITEM_KEY;
486
487                         if (wakeup)
488                                 caching_ctl->progress = last;
489                         btrfs_release_path(path);
490                         goto next;
491                 }
492
493                 if (key.objectid < block_group->key.objectid) {
494                         path->slots[0]++;
495                         continue;
496                 }
497
498                 if (key.objectid >= block_group->key.objectid +
499                     block_group->key.offset)
500                         break;
501
502                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503                     key.type == BTRFS_METADATA_ITEM_KEY) {
504                         total_found += add_new_free_space(block_group,
505                                                           fs_info, last,
506                                                           key.objectid);
507                         if (key.type == BTRFS_METADATA_ITEM_KEY)
508                                 last = key.objectid +
509                                         fs_info->nodesize;
510                         else
511                                 last = key.objectid + key.offset;
512
513                         if (total_found > CACHING_CTL_WAKE_UP) {
514                                 total_found = 0;
515                                 if (wakeup)
516                                         wake_up(&caching_ctl->wait);
517                         }
518                 }
519                 path->slots[0]++;
520         }
521         ret = 0;
522
523         total_found += add_new_free_space(block_group, fs_info, last,
524                                           block_group->key.objectid +
525                                           block_group->key.offset);
526         caching_ctl->progress = (u64)-1;
527
528 out:
529         btrfs_free_path(path);
530         return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535         struct btrfs_block_group_cache *block_group;
536         struct btrfs_fs_info *fs_info;
537         struct btrfs_caching_control *caching_ctl;
538         struct btrfs_root *extent_root;
539         int ret;
540
541         caching_ctl = container_of(work, struct btrfs_caching_control, work);
542         block_group = caching_ctl->block_group;
543         fs_info = block_group->fs_info;
544         extent_root = fs_info->extent_root;
545
546         mutex_lock(&caching_ctl->mutex);
547         down_read(&fs_info->commit_root_sem);
548
549         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550                 ret = load_free_space_tree(caching_ctl);
551         else
552                 ret = load_extent_tree_free(caching_ctl);
553
554         spin_lock(&block_group->lock);
555         block_group->caching_ctl = NULL;
556         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557         spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560         if (btrfs_should_fragment_free_space(block_group)) {
561                 u64 bytes_used;
562
563                 spin_lock(&block_group->space_info->lock);
564                 spin_lock(&block_group->lock);
565                 bytes_used = block_group->key.offset -
566                         btrfs_block_group_used(&block_group->item);
567                 block_group->space_info->bytes_used += bytes_used >> 1;
568                 spin_unlock(&block_group->lock);
569                 spin_unlock(&block_group->space_info->lock);
570                 fragment_free_space(block_group);
571         }
572 #endif
573
574         caching_ctl->progress = (u64)-1;
575
576         up_read(&fs_info->commit_root_sem);
577         free_excluded_extents(fs_info, block_group);
578         mutex_unlock(&caching_ctl->mutex);
579
580         wake_up(&caching_ctl->wait);
581
582         put_caching_control(caching_ctl);
583         btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587                              int load_cache_only)
588 {
589         DEFINE_WAIT(wait);
590         struct btrfs_fs_info *fs_info = cache->fs_info;
591         struct btrfs_caching_control *caching_ctl;
592         int ret = 0;
593
594         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595         if (!caching_ctl)
596                 return -ENOMEM;
597
598         INIT_LIST_HEAD(&caching_ctl->list);
599         mutex_init(&caching_ctl->mutex);
600         init_waitqueue_head(&caching_ctl->wait);
601         caching_ctl->block_group = cache;
602         caching_ctl->progress = cache->key.objectid;
603         refcount_set(&caching_ctl->count, 1);
604         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605                         caching_thread, NULL, NULL);
606
607         spin_lock(&cache->lock);
608         /*
609          * This should be a rare occasion, but this could happen I think in the
610          * case where one thread starts to load the space cache info, and then
611          * some other thread starts a transaction commit which tries to do an
612          * allocation while the other thread is still loading the space cache
613          * info.  The previous loop should have kept us from choosing this block
614          * group, but if we've moved to the state where we will wait on caching
615          * block groups we need to first check if we're doing a fast load here,
616          * so we can wait for it to finish, otherwise we could end up allocating
617          * from a block group who's cache gets evicted for one reason or
618          * another.
619          */
620         while (cache->cached == BTRFS_CACHE_FAST) {
621                 struct btrfs_caching_control *ctl;
622
623                 ctl = cache->caching_ctl;
624                 refcount_inc(&ctl->count);
625                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626                 spin_unlock(&cache->lock);
627
628                 schedule();
629
630                 finish_wait(&ctl->wait, &wait);
631                 put_caching_control(ctl);
632                 spin_lock(&cache->lock);
633         }
634
635         if (cache->cached != BTRFS_CACHE_NO) {
636                 spin_unlock(&cache->lock);
637                 kfree(caching_ctl);
638                 return 0;
639         }
640         WARN_ON(cache->caching_ctl);
641         cache->caching_ctl = caching_ctl;
642         cache->cached = BTRFS_CACHE_FAST;
643         spin_unlock(&cache->lock);
644
645         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646                 mutex_lock(&caching_ctl->mutex);
647                 ret = load_free_space_cache(fs_info, cache);
648
649                 spin_lock(&cache->lock);
650                 if (ret == 1) {
651                         cache->caching_ctl = NULL;
652                         cache->cached = BTRFS_CACHE_FINISHED;
653                         cache->last_byte_to_unpin = (u64)-1;
654                         caching_ctl->progress = (u64)-1;
655                 } else {
656                         if (load_cache_only) {
657                                 cache->caching_ctl = NULL;
658                                 cache->cached = BTRFS_CACHE_NO;
659                         } else {
660                                 cache->cached = BTRFS_CACHE_STARTED;
661                                 cache->has_caching_ctl = 1;
662                         }
663                 }
664                 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666                 if (ret == 1 &&
667                     btrfs_should_fragment_free_space(cache)) {
668                         u64 bytes_used;
669
670                         spin_lock(&cache->space_info->lock);
671                         spin_lock(&cache->lock);
672                         bytes_used = cache->key.offset -
673                                 btrfs_block_group_used(&cache->item);
674                         cache->space_info->bytes_used += bytes_used >> 1;
675                         spin_unlock(&cache->lock);
676                         spin_unlock(&cache->space_info->lock);
677                         fragment_free_space(cache);
678                 }
679 #endif
680                 mutex_unlock(&caching_ctl->mutex);
681
682                 wake_up(&caching_ctl->wait);
683                 if (ret == 1) {
684                         put_caching_control(caching_ctl);
685                         free_excluded_extents(fs_info, cache);
686                         return 0;
687                 }
688         } else {
689                 /*
690                  * We're either using the free space tree or no caching at all.
691                  * Set cached to the appropriate value and wakeup any waiters.
692                  */
693                 spin_lock(&cache->lock);
694                 if (load_cache_only) {
695                         cache->caching_ctl = NULL;
696                         cache->cached = BTRFS_CACHE_NO;
697                 } else {
698                         cache->cached = BTRFS_CACHE_STARTED;
699                         cache->has_caching_ctl = 1;
700                 }
701                 spin_unlock(&cache->lock);
702                 wake_up(&caching_ctl->wait);
703         }
704
705         if (load_cache_only) {
706                 put_caching_control(caching_ctl);
707                 return 0;
708         }
709
710         down_write(&fs_info->commit_root_sem);
711         refcount_inc(&caching_ctl->count);
712         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713         up_write(&fs_info->commit_root_sem);
714
715         btrfs_get_block_group(cache);
716
717         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719         return ret;
720 }
721
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728         return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735                                                  struct btrfs_fs_info *info,
736                                                  u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742                                                   u64 flags)
743 {
744         struct list_head *head = &info->space_info;
745         struct btrfs_space_info *found;
746
747         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749         rcu_read_lock();
750         list_for_each_entry_rcu(found, head, list) {
751                 if (found->flags & flags) {
752                         rcu_read_unlock();
753                         return found;
754                 }
755         }
756         rcu_read_unlock();
757         return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761                              u64 owner, u64 root_objectid)
762 {
763         struct btrfs_space_info *space_info;
764         u64 flags;
765
766         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
769                 else
770                         flags = BTRFS_BLOCK_GROUP_METADATA;
771         } else {
772                 flags = BTRFS_BLOCK_GROUP_DATA;
773         }
774
775         space_info = __find_space_info(fs_info, flags);
776         ASSERT(space_info);
777         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786         struct list_head *head = &info->space_info;
787         struct btrfs_space_info *found;
788
789         rcu_read_lock();
790         list_for_each_entry_rcu(found, head, list)
791                 found->full = 0;
792         rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798         int ret;
799         struct btrfs_key key;
800         struct btrfs_path *path;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805
806         key.objectid = start;
807         key.offset = len;
808         key.type = BTRFS_EXTENT_ITEM_KEY;
809         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810         btrfs_free_path(path);
811         return ret;
812 }
813
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824                              struct btrfs_fs_info *fs_info, u64 bytenr,
825                              u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827         struct btrfs_delayed_ref_head *head;
828         struct btrfs_delayed_ref_root *delayed_refs;
829         struct btrfs_path *path;
830         struct btrfs_extent_item *ei;
831         struct extent_buffer *leaf;
832         struct btrfs_key key;
833         u32 item_size;
834         u64 num_refs;
835         u64 extent_flags;
836         int ret;
837
838         /*
839          * If we don't have skinny metadata, don't bother doing anything
840          * different
841          */
842         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843                 offset = fs_info->nodesize;
844                 metadata = 0;
845         }
846
847         path = btrfs_alloc_path();
848         if (!path)
849                 return -ENOMEM;
850
851         if (!trans) {
852                 path->skip_locking = 1;
853                 path->search_commit_root = 1;
854         }
855
856 search_again:
857         key.objectid = bytenr;
858         key.offset = offset;
859         if (metadata)
860                 key.type = BTRFS_METADATA_ITEM_KEY;
861         else
862                 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865         if (ret < 0)
866                 goto out_free;
867
868         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869                 if (path->slots[0]) {
870                         path->slots[0]--;
871                         btrfs_item_key_to_cpu(path->nodes[0], &key,
872                                               path->slots[0]);
873                         if (key.objectid == bytenr &&
874                             key.type == BTRFS_EXTENT_ITEM_KEY &&
875                             key.offset == fs_info->nodesize)
876                                 ret = 0;
877                 }
878         }
879
880         if (ret == 0) {
881                 leaf = path->nodes[0];
882                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883                 if (item_size >= sizeof(*ei)) {
884                         ei = btrfs_item_ptr(leaf, path->slots[0],
885                                             struct btrfs_extent_item);
886                         num_refs = btrfs_extent_refs(leaf, ei);
887                         extent_flags = btrfs_extent_flags(leaf, ei);
888                 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890                         struct btrfs_extent_item_v0 *ei0;
891                         BUG_ON(item_size != sizeof(*ei0));
892                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
893                                              struct btrfs_extent_item_v0);
894                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
895                         /* FIXME: this isn't correct for data */
896                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898                         BUG();
899 #endif
900                 }
901                 BUG_ON(num_refs == 0);
902         } else {
903                 num_refs = 0;
904                 extent_flags = 0;
905                 ret = 0;
906         }
907
908         if (!trans)
909                 goto out;
910
911         delayed_refs = &trans->transaction->delayed_refs;
912         spin_lock(&delayed_refs->lock);
913         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914         if (head) {
915                 if (!mutex_trylock(&head->mutex)) {
916                         refcount_inc(&head->refs);
917                         spin_unlock(&delayed_refs->lock);
918
919                         btrfs_release_path(path);
920
921                         /*
922                          * Mutex was contended, block until it's released and try
923                          * again
924                          */
925                         mutex_lock(&head->mutex);
926                         mutex_unlock(&head->mutex);
927                         btrfs_put_delayed_ref_head(head);
928                         goto search_again;
929                 }
930                 spin_lock(&head->lock);
931                 if (head->extent_op && head->extent_op->update_flags)
932                         extent_flags |= head->extent_op->flags_to_set;
933                 else
934                         BUG_ON(num_refs == 0);
935
936                 num_refs += head->ref_mod;
937                 spin_unlock(&head->lock);
938                 mutex_unlock(&head->mutex);
939         }
940         spin_unlock(&delayed_refs->lock);
941 out:
942         WARN_ON(num_refs == 0);
943         if (refs)
944                 *refs = num_refs;
945         if (flags)
946                 *flags = extent_flags;
947 out_free:
948         btrfs_free_path(path);
949         return ret;
950 }
951
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060                                   struct btrfs_fs_info *fs_info,
1061                                   struct btrfs_path *path,
1062                                   u64 owner, u32 extra_size)
1063 {
1064         struct btrfs_root *root = fs_info->extent_root;
1065         struct btrfs_extent_item *item;
1066         struct btrfs_extent_item_v0 *ei0;
1067         struct btrfs_extent_ref_v0 *ref0;
1068         struct btrfs_tree_block_info *bi;
1069         struct extent_buffer *leaf;
1070         struct btrfs_key key;
1071         struct btrfs_key found_key;
1072         u32 new_size = sizeof(*item);
1073         u64 refs;
1074         int ret;
1075
1076         leaf = path->nodes[0];
1077         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081                              struct btrfs_extent_item_v0);
1082         refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084         if (owner == (u64)-1) {
1085                 while (1) {
1086                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087                                 ret = btrfs_next_leaf(root, path);
1088                                 if (ret < 0)
1089                                         return ret;
1090                                 BUG_ON(ret > 0); /* Corruption */
1091                                 leaf = path->nodes[0];
1092                         }
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0]);
1095                         BUG_ON(key.objectid != found_key.objectid);
1096                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097                                 path->slots[0]++;
1098                                 continue;
1099                         }
1100                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101                                               struct btrfs_extent_ref_v0);
1102                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1103                         break;
1104                 }
1105         }
1106         btrfs_release_path(path);
1107
1108         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109                 new_size += sizeof(*bi);
1110
1111         new_size -= sizeof(*ei0);
1112         ret = btrfs_search_slot(trans, root, &key, path,
1113                                 new_size + extra_size, 1);
1114         if (ret < 0)
1115                 return ret;
1116         BUG_ON(ret); /* Corruption */
1117
1118         btrfs_extend_item(fs_info, path, new_size);
1119
1120         leaf = path->nodes[0];
1121         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122         btrfs_set_extent_refs(leaf, item, refs);
1123         /* FIXME: get real generation */
1124         btrfs_set_extent_generation(leaf, item, 0);
1125         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126                 btrfs_set_extent_flags(leaf, item,
1127                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129                 bi = (struct btrfs_tree_block_info *)(item + 1);
1130                 /* FIXME: get first key of the block */
1131                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133         } else {
1134                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135         }
1136         btrfs_mark_buffer_dirty(leaf);
1137         return 0;
1138 }
1139 #endif
1140
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147                                      struct btrfs_extent_inline_ref *iref,
1148                                      enum btrfs_inline_ref_type is_data)
1149 {
1150         int type = btrfs_extent_inline_ref_type(eb, iref);
1151         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155             type == BTRFS_SHARED_DATA_REF_KEY ||
1156             type == BTRFS_EXTENT_DATA_REF_KEY) {
1157                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173                                 return type;
1174                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175                                 ASSERT(eb->fs_info);
1176                                 /*
1177                                  * Every shared one has parent tree
1178                                  * block, which must be aligned to
1179                                  * nodesize.
1180                                  */
1181                                 if (offset &&
1182                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1183                                         return type;
1184                         }
1185                 } else {
1186                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187                         return type;
1188                 }
1189         }
1190
1191         btrfs_print_leaf((struct extent_buffer *)eb);
1192         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193                   eb->start, type);
1194         WARN_ON(1);
1195
1196         return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201         u32 high_crc = ~(u32)0;
1202         u32 low_crc = ~(u32)0;
1203         __le64 lenum;
1204
1205         lenum = cpu_to_le64(root_objectid);
1206         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207         lenum = cpu_to_le64(owner);
1208         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209         lenum = cpu_to_le64(offset);
1210         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212         return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216                                      struct btrfs_extent_data_ref *ref)
1217 {
1218         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219                                     btrfs_extent_data_ref_objectid(leaf, ref),
1220                                     btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224                                  struct btrfs_extent_data_ref *ref,
1225                                  u64 root_objectid, u64 owner, u64 offset)
1226 {
1227         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230                 return 0;
1231         return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235                                            struct btrfs_fs_info *fs_info,
1236                                            struct btrfs_path *path,
1237                                            u64 bytenr, u64 parent,
1238                                            u64 root_objectid,
1239                                            u64 owner, u64 offset)
1240 {
1241         struct btrfs_root *root = fs_info->extent_root;
1242         struct btrfs_key key;
1243         struct btrfs_extent_data_ref *ref;
1244         struct extent_buffer *leaf;
1245         u32 nritems;
1246         int ret;
1247         int recow;
1248         int err = -ENOENT;
1249
1250         key.objectid = bytenr;
1251         if (parent) {
1252                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253                 key.offset = parent;
1254         } else {
1255                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256                 key.offset = hash_extent_data_ref(root_objectid,
1257                                                   owner, offset);
1258         }
1259 again:
1260         recow = 0;
1261         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262         if (ret < 0) {
1263                 err = ret;
1264                 goto fail;
1265         }
1266
1267         if (parent) {
1268                 if (!ret)
1269                         return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272                 btrfs_release_path(path);
1273                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274                 if (ret < 0) {
1275                         err = ret;
1276                         goto fail;
1277                 }
1278                 if (!ret)
1279                         return 0;
1280 #endif
1281                 goto fail;
1282         }
1283
1284         leaf = path->nodes[0];
1285         nritems = btrfs_header_nritems(leaf);
1286         while (1) {
1287                 if (path->slots[0] >= nritems) {
1288                         ret = btrfs_next_leaf(root, path);
1289                         if (ret < 0)
1290                                 err = ret;
1291                         if (ret)
1292                                 goto fail;
1293
1294                         leaf = path->nodes[0];
1295                         nritems = btrfs_header_nritems(leaf);
1296                         recow = 1;
1297                 }
1298
1299                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300                 if (key.objectid != bytenr ||
1301                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302                         goto fail;
1303
1304                 ref = btrfs_item_ptr(leaf, path->slots[0],
1305                                      struct btrfs_extent_data_ref);
1306
1307                 if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                           owner, offset)) {
1309                         if (recow) {
1310                                 btrfs_release_path(path);
1311                                 goto again;
1312                         }
1313                         err = 0;
1314                         break;
1315                 }
1316                 path->slots[0]++;
1317         }
1318 fail:
1319         return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323                                            struct btrfs_fs_info *fs_info,
1324                                            struct btrfs_path *path,
1325                                            u64 bytenr, u64 parent,
1326                                            u64 root_objectid, u64 owner,
1327                                            u64 offset, int refs_to_add)
1328 {
1329         struct btrfs_root *root = fs_info->extent_root;
1330         struct btrfs_key key;
1331         struct extent_buffer *leaf;
1332         u32 size;
1333         u32 num_refs;
1334         int ret;
1335
1336         key.objectid = bytenr;
1337         if (parent) {
1338                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339                 key.offset = parent;
1340                 size = sizeof(struct btrfs_shared_data_ref);
1341         } else {
1342                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343                 key.offset = hash_extent_data_ref(root_objectid,
1344                                                   owner, offset);
1345                 size = sizeof(struct btrfs_extent_data_ref);
1346         }
1347
1348         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349         if (ret && ret != -EEXIST)
1350                 goto fail;
1351
1352         leaf = path->nodes[0];
1353         if (parent) {
1354                 struct btrfs_shared_data_ref *ref;
1355                 ref = btrfs_item_ptr(leaf, path->slots[0],
1356                                      struct btrfs_shared_data_ref);
1357                 if (ret == 0) {
1358                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359                 } else {
1360                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361                         num_refs += refs_to_add;
1362                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363                 }
1364         } else {
1365                 struct btrfs_extent_data_ref *ref;
1366                 while (ret == -EEXIST) {
1367                         ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                              struct btrfs_extent_data_ref);
1369                         if (match_extent_data_ref(leaf, ref, root_objectid,
1370                                                   owner, offset))
1371                                 break;
1372                         btrfs_release_path(path);
1373                         key.offset++;
1374                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1375                                                       size);
1376                         if (ret && ret != -EEXIST)
1377                                 goto fail;
1378
1379                         leaf = path->nodes[0];
1380                 }
1381                 ref = btrfs_item_ptr(leaf, path->slots[0],
1382                                      struct btrfs_extent_data_ref);
1383                 if (ret == 0) {
1384                         btrfs_set_extent_data_ref_root(leaf, ref,
1385                                                        root_objectid);
1386                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389                 } else {
1390                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391                         num_refs += refs_to_add;
1392                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393                 }
1394         }
1395         btrfs_mark_buffer_dirty(leaf);
1396         ret = 0;
1397 fail:
1398         btrfs_release_path(path);
1399         return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403                                            struct btrfs_fs_info *fs_info,
1404                                            struct btrfs_path *path,
1405                                            int refs_to_drop, int *last_ref)
1406 {
1407         struct btrfs_key key;
1408         struct btrfs_extent_data_ref *ref1 = NULL;
1409         struct btrfs_shared_data_ref *ref2 = NULL;
1410         struct extent_buffer *leaf;
1411         u32 num_refs = 0;
1412         int ret = 0;
1413
1414         leaf = path->nodes[0];
1415         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419                                       struct btrfs_extent_data_ref);
1420                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423                                       struct btrfs_shared_data_ref);
1424                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427                 struct btrfs_extent_ref_v0 *ref0;
1428                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429                                       struct btrfs_extent_ref_v0);
1430                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432         } else {
1433                 BUG();
1434         }
1435
1436         BUG_ON(num_refs < refs_to_drop);
1437         num_refs -= refs_to_drop;
1438
1439         if (num_refs == 0) {
1440                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441                 *last_ref = 1;
1442         } else {
1443                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448                 else {
1449                         struct btrfs_extent_ref_v0 *ref0;
1450                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451                                         struct btrfs_extent_ref_v0);
1452                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453                 }
1454 #endif
1455                 btrfs_mark_buffer_dirty(leaf);
1456         }
1457         return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461                                           struct btrfs_extent_inline_ref *iref)
1462 {
1463         struct btrfs_key key;
1464         struct extent_buffer *leaf;
1465         struct btrfs_extent_data_ref *ref1;
1466         struct btrfs_shared_data_ref *ref2;
1467         u32 num_refs = 0;
1468         int type;
1469
1470         leaf = path->nodes[0];
1471         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472         if (iref) {
1473                 /*
1474                  * If type is invalid, we should have bailed out earlier than
1475                  * this call.
1476                  */
1477                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482                 } else {
1483                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485                 }
1486         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488                                       struct btrfs_extent_data_ref);
1489                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492                                       struct btrfs_shared_data_ref);
1493                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496                 struct btrfs_extent_ref_v0 *ref0;
1497                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498                                       struct btrfs_extent_ref_v0);
1499                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501         } else {
1502                 WARN_ON(1);
1503         }
1504         return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508                                           struct btrfs_fs_info *fs_info,
1509                                           struct btrfs_path *path,
1510                                           u64 bytenr, u64 parent,
1511                                           u64 root_objectid)
1512 {
1513         struct btrfs_root *root = fs_info->extent_root;
1514         struct btrfs_key key;
1515         int ret;
1516
1517         key.objectid = bytenr;
1518         if (parent) {
1519                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520                 key.offset = parent;
1521         } else {
1522                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523                 key.offset = root_objectid;
1524         }
1525
1526         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527         if (ret > 0)
1528                 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530         if (ret == -ENOENT && parent) {
1531                 btrfs_release_path(path);
1532                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534                 if (ret > 0)
1535                         ret = -ENOENT;
1536         }
1537 #endif
1538         return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542                                           struct btrfs_fs_info *fs_info,
1543                                           struct btrfs_path *path,
1544                                           u64 bytenr, u64 parent,
1545                                           u64 root_objectid)
1546 {
1547         struct btrfs_key key;
1548         int ret;
1549
1550         key.objectid = bytenr;
1551         if (parent) {
1552                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553                 key.offset = parent;
1554         } else {
1555                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556                 key.offset = root_objectid;
1557         }
1558
1559         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560                                       path, &key, 0);
1561         btrfs_release_path(path);
1562         return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567         int type;
1568         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569                 if (parent > 0)
1570                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1571                 else
1572                         type = BTRFS_TREE_BLOCK_REF_KEY;
1573         } else {
1574                 if (parent > 0)
1575                         type = BTRFS_SHARED_DATA_REF_KEY;
1576                 else
1577                         type = BTRFS_EXTENT_DATA_REF_KEY;
1578         }
1579         return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583                          struct btrfs_key *key)
1584
1585 {
1586         for (; level < BTRFS_MAX_LEVEL; level++) {
1587                 if (!path->nodes[level])
1588                         break;
1589                 if (path->slots[level] + 1 >=
1590                     btrfs_header_nritems(path->nodes[level]))
1591                         continue;
1592                 if (level == 0)
1593                         btrfs_item_key_to_cpu(path->nodes[level], key,
1594                                               path->slots[level] + 1);
1595                 else
1596                         btrfs_node_key_to_cpu(path->nodes[level], key,
1597                                               path->slots[level] + 1);
1598                 return 0;
1599         }
1600         return 1;
1601 }
1602
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *       items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618                                  struct btrfs_fs_info *fs_info,
1619                                  struct btrfs_path *path,
1620                                  struct btrfs_extent_inline_ref **ref_ret,
1621                                  u64 bytenr, u64 num_bytes,
1622                                  u64 parent, u64 root_objectid,
1623                                  u64 owner, u64 offset, int insert)
1624 {
1625         struct btrfs_root *root = fs_info->extent_root;
1626         struct btrfs_key key;
1627         struct extent_buffer *leaf;
1628         struct btrfs_extent_item *ei;
1629         struct btrfs_extent_inline_ref *iref;
1630         u64 flags;
1631         u64 item_size;
1632         unsigned long ptr;
1633         unsigned long end;
1634         int extra_size;
1635         int type;
1636         int want;
1637         int ret;
1638         int err = 0;
1639         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640         int needed;
1641
1642         key.objectid = bytenr;
1643         key.type = BTRFS_EXTENT_ITEM_KEY;
1644         key.offset = num_bytes;
1645
1646         want = extent_ref_type(parent, owner);
1647         if (insert) {
1648                 extra_size = btrfs_extent_inline_ref_size(want);
1649                 path->keep_locks = 1;
1650         } else
1651                 extra_size = -1;
1652
1653         /*
1654          * Owner is our parent level, so we can just add one to get the level
1655          * for the block we are interested in.
1656          */
1657         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658                 key.type = BTRFS_METADATA_ITEM_KEY;
1659                 key.offset = owner;
1660         }
1661
1662 again:
1663         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664         if (ret < 0) {
1665                 err = ret;
1666                 goto out;
1667         }
1668
1669         /*
1670          * We may be a newly converted file system which still has the old fat
1671          * extent entries for metadata, so try and see if we have one of those.
1672          */
1673         if (ret > 0 && skinny_metadata) {
1674                 skinny_metadata = false;
1675                 if (path->slots[0]) {
1676                         path->slots[0]--;
1677                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1678                                               path->slots[0]);
1679                         if (key.objectid == bytenr &&
1680                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1681                             key.offset == num_bytes)
1682                                 ret = 0;
1683                 }
1684                 if (ret) {
1685                         key.objectid = bytenr;
1686                         key.type = BTRFS_EXTENT_ITEM_KEY;
1687                         key.offset = num_bytes;
1688                         btrfs_release_path(path);
1689                         goto again;
1690                 }
1691         }
1692
1693         if (ret && !insert) {
1694                 err = -ENOENT;
1695                 goto out;
1696         } else if (WARN_ON(ret)) {
1697                 err = -EIO;
1698                 goto out;
1699         }
1700
1701         leaf = path->nodes[0];
1702         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704         if (item_size < sizeof(*ei)) {
1705                 if (!insert) {
1706                         err = -ENOENT;
1707                         goto out;
1708                 }
1709                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710                                              extra_size);
1711                 if (ret < 0) {
1712                         err = ret;
1713                         goto out;
1714                 }
1715                 leaf = path->nodes[0];
1716                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717         }
1718 #endif
1719         BUG_ON(item_size < sizeof(*ei));
1720
1721         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722         flags = btrfs_extent_flags(leaf, ei);
1723
1724         ptr = (unsigned long)(ei + 1);
1725         end = (unsigned long)ei + item_size;
1726
1727         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728                 ptr += sizeof(struct btrfs_tree_block_info);
1729                 BUG_ON(ptr > end);
1730         }
1731
1732         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733                 needed = BTRFS_REF_TYPE_DATA;
1734         else
1735                 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737         err = -ENOENT;
1738         while (1) {
1739                 if (ptr >= end) {
1740                         WARN_ON(ptr > end);
1741                         break;
1742                 }
1743                 iref = (struct btrfs_extent_inline_ref *)ptr;
1744                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745                 if (type == BTRFS_REF_TYPE_INVALID) {
1746                         err = -EINVAL;
1747                         goto out;
1748                 }
1749
1750                 if (want < type)
1751                         break;
1752                 if (want > type) {
1753                         ptr += btrfs_extent_inline_ref_size(type);
1754                         continue;
1755                 }
1756
1757                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758                         struct btrfs_extent_data_ref *dref;
1759                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760                         if (match_extent_data_ref(leaf, dref, root_objectid,
1761                                                   owner, offset)) {
1762                                 err = 0;
1763                                 break;
1764                         }
1765                         if (hash_extent_data_ref_item(leaf, dref) <
1766                             hash_extent_data_ref(root_objectid, owner, offset))
1767                                 break;
1768                 } else {
1769                         u64 ref_offset;
1770                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771                         if (parent > 0) {
1772                                 if (parent == ref_offset) {
1773                                         err = 0;
1774                                         break;
1775                                 }
1776                                 if (ref_offset < parent)
1777                                         break;
1778                         } else {
1779                                 if (root_objectid == ref_offset) {
1780                                         err = 0;
1781                                         break;
1782                                 }
1783                                 if (ref_offset < root_objectid)
1784                                         break;
1785                         }
1786                 }
1787                 ptr += btrfs_extent_inline_ref_size(type);
1788         }
1789         if (err == -ENOENT && insert) {
1790                 if (item_size + extra_size >=
1791                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792                         err = -EAGAIN;
1793                         goto out;
1794                 }
1795                 /*
1796                  * To add new inline back ref, we have to make sure
1797                  * there is no corresponding back ref item.
1798                  * For simplicity, we just do not add new inline back
1799                  * ref if there is any kind of item for this block
1800                  */
1801                 if (find_next_key(path, 0, &key) == 0 &&
1802                     key.objectid == bytenr &&
1803                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804                         err = -EAGAIN;
1805                         goto out;
1806                 }
1807         }
1808         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810         if (insert) {
1811                 path->keep_locks = 0;
1812                 btrfs_unlock_up_safe(path, 1);
1813         }
1814         return err;
1815 }
1816
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822                                  struct btrfs_path *path,
1823                                  struct btrfs_extent_inline_ref *iref,
1824                                  u64 parent, u64 root_objectid,
1825                                  u64 owner, u64 offset, int refs_to_add,
1826                                  struct btrfs_delayed_extent_op *extent_op)
1827 {
1828         struct extent_buffer *leaf;
1829         struct btrfs_extent_item *ei;
1830         unsigned long ptr;
1831         unsigned long end;
1832         unsigned long item_offset;
1833         u64 refs;
1834         int size;
1835         int type;
1836
1837         leaf = path->nodes[0];
1838         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839         item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841         type = extent_ref_type(parent, owner);
1842         size = btrfs_extent_inline_ref_size(type);
1843
1844         btrfs_extend_item(fs_info, path, size);
1845
1846         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847         refs = btrfs_extent_refs(leaf, ei);
1848         refs += refs_to_add;
1849         btrfs_set_extent_refs(leaf, ei, refs);
1850         if (extent_op)
1851                 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853         ptr = (unsigned long)ei + item_offset;
1854         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855         if (ptr < end - size)
1856                 memmove_extent_buffer(leaf, ptr + size, ptr,
1857                                       end - size - ptr);
1858
1859         iref = (struct btrfs_extent_inline_ref *)ptr;
1860         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                 struct btrfs_extent_data_ref *dref;
1863                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869                 struct btrfs_shared_data_ref *sref;
1870                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875         } else {
1876                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877         }
1878         btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882                                  struct btrfs_fs_info *fs_info,
1883                                  struct btrfs_path *path,
1884                                  struct btrfs_extent_inline_ref **ref_ret,
1885                                  u64 bytenr, u64 num_bytes, u64 parent,
1886                                  u64 root_objectid, u64 owner, u64 offset)
1887 {
1888         int ret;
1889
1890         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891                                            bytenr, num_bytes, parent,
1892                                            root_objectid, owner, offset, 0);
1893         if (ret != -ENOENT)
1894                 return ret;
1895
1896         btrfs_release_path(path);
1897         *ref_ret = NULL;
1898
1899         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901                                             parent, root_objectid);
1902         } else {
1903                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904                                              parent, root_objectid, owner,
1905                                              offset);
1906         }
1907         return ret;
1908 }
1909
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915                                   struct btrfs_path *path,
1916                                   struct btrfs_extent_inline_ref *iref,
1917                                   int refs_to_mod,
1918                                   struct btrfs_delayed_extent_op *extent_op,
1919                                   int *last_ref)
1920 {
1921         struct extent_buffer *leaf;
1922         struct btrfs_extent_item *ei;
1923         struct btrfs_extent_data_ref *dref = NULL;
1924         struct btrfs_shared_data_ref *sref = NULL;
1925         unsigned long ptr;
1926         unsigned long end;
1927         u32 item_size;
1928         int size;
1929         int type;
1930         u64 refs;
1931
1932         leaf = path->nodes[0];
1933         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934         refs = btrfs_extent_refs(leaf, ei);
1935         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936         refs += refs_to_mod;
1937         btrfs_set_extent_refs(leaf, ei, refs);
1938         if (extent_op)
1939                 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941         /*
1942          * If type is invalid, we should have bailed out after
1943          * lookup_inline_extent_backref().
1944          */
1945         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950                 refs = btrfs_extent_data_ref_count(leaf, dref);
1951         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953                 refs = btrfs_shared_data_ref_count(leaf, sref);
1954         } else {
1955                 refs = 1;
1956                 BUG_ON(refs_to_mod != -1);
1957         }
1958
1959         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960         refs += refs_to_mod;
1961
1962         if (refs > 0) {
1963                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965                 else
1966                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967         } else {
1968                 *last_ref = 1;
1969                 size =  btrfs_extent_inline_ref_size(type);
1970                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971                 ptr = (unsigned long)iref;
1972                 end = (unsigned long)ei + item_size;
1973                 if (ptr + size < end)
1974                         memmove_extent_buffer(leaf, ptr, ptr + size,
1975                                               end - ptr - size);
1976                 item_size -= size;
1977                 btrfs_truncate_item(fs_info, path, item_size, 1);
1978         }
1979         btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984                                  struct btrfs_fs_info *fs_info,
1985                                  struct btrfs_path *path,
1986                                  u64 bytenr, u64 num_bytes, u64 parent,
1987                                  u64 root_objectid, u64 owner,
1988                                  u64 offset, int refs_to_add,
1989                                  struct btrfs_delayed_extent_op *extent_op)
1990 {
1991         struct btrfs_extent_inline_ref *iref;
1992         int ret;
1993
1994         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995                                            bytenr, num_bytes, parent,
1996                                            root_objectid, owner, offset, 1);
1997         if (ret == 0) {
1998                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999                 update_inline_extent_backref(fs_info, path, iref,
2000                                              refs_to_add, extent_op, NULL);
2001         } else if (ret == -ENOENT) {
2002                 setup_inline_extent_backref(fs_info, path, iref, parent,
2003                                             root_objectid, owner, offset,
2004                                             refs_to_add, extent_op);
2005                 ret = 0;
2006         }
2007         return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011                                  struct btrfs_fs_info *fs_info,
2012                                  struct btrfs_path *path,
2013                                  u64 bytenr, u64 parent, u64 root_objectid,
2014                                  u64 owner, u64 offset, int refs_to_add)
2015 {
2016         int ret;
2017         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018                 BUG_ON(refs_to_add != 1);
2019                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020                                             parent, root_objectid);
2021         } else {
2022                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023                                              parent, root_objectid,
2024                                              owner, offset, refs_to_add);
2025         }
2026         return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030                                  struct btrfs_fs_info *fs_info,
2031                                  struct btrfs_path *path,
2032                                  struct btrfs_extent_inline_ref *iref,
2033                                  int refs_to_drop, int is_data, int *last_ref)
2034 {
2035         int ret = 0;
2036
2037         BUG_ON(!is_data && refs_to_drop != 1);
2038         if (iref) {
2039                 update_inline_extent_backref(fs_info, path, iref,
2040                                              -refs_to_drop, NULL, last_ref);
2041         } else if (is_data) {
2042                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043                                              last_ref);
2044         } else {
2045                 *last_ref = 1;
2046                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047         }
2048         return ret;
2049 }
2050
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053                                u64 *discarded_bytes)
2054 {
2055         int j, ret = 0;
2056         u64 bytes_left, end;
2057         u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059         if (WARN_ON(start != aligned_start)) {
2060                 len -= aligned_start - start;
2061                 len = round_down(len, 1 << 9);
2062                 start = aligned_start;
2063         }
2064
2065         *discarded_bytes = 0;
2066
2067         if (!len)
2068                 return 0;
2069
2070         end = start + len;
2071         bytes_left = len;
2072
2073         /* Skip any superblocks on this device. */
2074         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075                 u64 sb_start = btrfs_sb_offset(j);
2076                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077                 u64 size = sb_start - start;
2078
2079                 if (!in_range(sb_start, start, bytes_left) &&
2080                     !in_range(sb_end, start, bytes_left) &&
2081                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082                         continue;
2083
2084                 /*
2085                  * Superblock spans beginning of range.  Adjust start and
2086                  * try again.
2087                  */
2088                 if (sb_start <= start) {
2089                         start += sb_end - start;
2090                         if (start > end) {
2091                                 bytes_left = 0;
2092                                 break;
2093                         }
2094                         bytes_left = end - start;
2095                         continue;
2096                 }
2097
2098                 if (size) {
2099                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100                                                    GFP_NOFS, 0);
2101                         if (!ret)
2102                                 *discarded_bytes += size;
2103                         else if (ret != -EOPNOTSUPP)
2104                                 return ret;
2105                 }
2106
2107                 start = sb_end;
2108                 if (start > end) {
2109                         bytes_left = 0;
2110                         break;
2111                 }
2112                 bytes_left = end - start;
2113         }
2114
2115         if (bytes_left) {
2116                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117                                            GFP_NOFS, 0);
2118                 if (!ret)
2119                         *discarded_bytes += bytes_left;
2120         }
2121         return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125                          u64 num_bytes, u64 *actual_bytes)
2126 {
2127         int ret;
2128         u64 discarded_bytes = 0;
2129         struct btrfs_bio *bbio = NULL;
2130
2131
2132         /*
2133          * Avoid races with device replace and make sure our bbio has devices
2134          * associated to its stripes that don't go away while we are discarding.
2135          */
2136         btrfs_bio_counter_inc_blocked(fs_info);
2137         /* Tell the block device(s) that the sectors can be discarded */
2138         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139                               &bbio, 0);
2140         /* Error condition is -ENOMEM */
2141         if (!ret) {
2142                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143                 int i;
2144
2145
2146                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147                         u64 bytes;
2148                         struct request_queue *req_q;
2149
2150                         req_q = bdev_get_queue(stripe->dev->bdev);
2151                         if (!blk_queue_discard(req_q))
2152                                 continue;
2153
2154                         ret = btrfs_issue_discard(stripe->dev->bdev,
2155                                                   stripe->physical,
2156                                                   stripe->length,
2157                                                   &bytes);
2158                         if (!ret)
2159                                 discarded_bytes += bytes;
2160                         else if (ret != -EOPNOTSUPP)
2161                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2162
2163                         /*
2164                          * Just in case we get back EOPNOTSUPP for some reason,
2165                          * just ignore the return value so we don't screw up
2166                          * people calling discard_extent.
2167                          */
2168                         ret = 0;
2169                 }
2170                 btrfs_put_bbio(bbio);
2171         }
2172         btrfs_bio_counter_dec(fs_info);
2173
2174         if (actual_bytes)
2175                 *actual_bytes = discarded_bytes;
2176
2177
2178         if (ret == -EOPNOTSUPP)
2179                 ret = 0;
2180         return ret;
2181 }
2182
2183 /* Can return -ENOMEM */
2184 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2185                          struct btrfs_root *root,
2186                          u64 bytenr, u64 num_bytes, u64 parent,
2187                          u64 root_objectid, u64 owner, u64 offset)
2188 {
2189         struct btrfs_fs_info *fs_info = root->fs_info;
2190         int old_ref_mod, new_ref_mod;
2191         int ret;
2192
2193         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2194                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2195
2196         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2197                            owner, offset, BTRFS_ADD_DELAYED_REF);
2198
2199         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2200                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2201                                                  num_bytes, parent,
2202                                                  root_objectid, (int)owner,
2203                                                  BTRFS_ADD_DELAYED_REF, NULL,
2204                                                  &old_ref_mod, &new_ref_mod);
2205         } else {
2206                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2207                                                  num_bytes, parent,
2208                                                  root_objectid, owner, offset,
2209                                                  0, BTRFS_ADD_DELAYED_REF,
2210                                                  &old_ref_mod, &new_ref_mod);
2211         }
2212
2213         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2214                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2215
2216         return ret;
2217 }
2218
2219 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2220                                   struct btrfs_fs_info *fs_info,
2221                                   struct btrfs_delayed_ref_node *node,
2222                                   u64 parent, u64 root_objectid,
2223                                   u64 owner, u64 offset, int refs_to_add,
2224                                   struct btrfs_delayed_extent_op *extent_op)
2225 {
2226         struct btrfs_path *path;
2227         struct extent_buffer *leaf;
2228         struct btrfs_extent_item *item;
2229         struct btrfs_key key;
2230         u64 bytenr = node->bytenr;
2231         u64 num_bytes = node->num_bytes;
2232         u64 refs;
2233         int ret;
2234
2235         path = btrfs_alloc_path();
2236         if (!path)
2237                 return -ENOMEM;
2238
2239         path->reada = READA_FORWARD;
2240         path->leave_spinning = 1;
2241         /* this will setup the path even if it fails to insert the back ref */
2242         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2243                                            num_bytes, parent, root_objectid,
2244                                            owner, offset,
2245                                            refs_to_add, extent_op);
2246         if ((ret < 0 && ret != -EAGAIN) || !ret)
2247                 goto out;
2248
2249         /*
2250          * Ok we had -EAGAIN which means we didn't have space to insert and
2251          * inline extent ref, so just update the reference count and add a
2252          * normal backref.
2253          */
2254         leaf = path->nodes[0];
2255         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2256         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2257         refs = btrfs_extent_refs(leaf, item);
2258         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2259         if (extent_op)
2260                 __run_delayed_extent_op(extent_op, leaf, item);
2261
2262         btrfs_mark_buffer_dirty(leaf);
2263         btrfs_release_path(path);
2264
2265         path->reada = READA_FORWARD;
2266         path->leave_spinning = 1;
2267         /* now insert the actual backref */
2268         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2269                                     root_objectid, owner, offset, refs_to_add);
2270         if (ret)
2271                 btrfs_abort_transaction(trans, ret);
2272 out:
2273         btrfs_free_path(path);
2274         return ret;
2275 }
2276
2277 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2278                                 struct btrfs_fs_info *fs_info,
2279                                 struct btrfs_delayed_ref_node *node,
2280                                 struct btrfs_delayed_extent_op *extent_op,
2281                                 int insert_reserved)
2282 {
2283         int ret = 0;
2284         struct btrfs_delayed_data_ref *ref;
2285         struct btrfs_key ins;
2286         u64 parent = 0;
2287         u64 ref_root = 0;
2288         u64 flags = 0;
2289
2290         ins.objectid = node->bytenr;
2291         ins.offset = node->num_bytes;
2292         ins.type = BTRFS_EXTENT_ITEM_KEY;
2293
2294         ref = btrfs_delayed_node_to_data_ref(node);
2295         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2296
2297         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2298                 parent = ref->parent;
2299         ref_root = ref->root;
2300
2301         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2302                 if (extent_op)
2303                         flags |= extent_op->flags_to_set;
2304                 ret = alloc_reserved_file_extent(trans, fs_info,
2305                                                  parent, ref_root, flags,
2306                                                  ref->objectid, ref->offset,
2307                                                  &ins, node->ref_mod);
2308         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2309                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2310                                              ref_root, ref->objectid,
2311                                              ref->offset, node->ref_mod,
2312                                              extent_op);
2313         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2314                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2315                                           ref_root, ref->objectid,
2316                                           ref->offset, node->ref_mod,
2317                                           extent_op);
2318         } else {
2319                 BUG();
2320         }
2321         return ret;
2322 }
2323
2324 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2325                                     struct extent_buffer *leaf,
2326                                     struct btrfs_extent_item *ei)
2327 {
2328         u64 flags = btrfs_extent_flags(leaf, ei);
2329         if (extent_op->update_flags) {
2330                 flags |= extent_op->flags_to_set;
2331                 btrfs_set_extent_flags(leaf, ei, flags);
2332         }
2333
2334         if (extent_op->update_key) {
2335                 struct btrfs_tree_block_info *bi;
2336                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2337                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2338                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2339         }
2340 }
2341
2342 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2343                                  struct btrfs_fs_info *fs_info,
2344                                  struct btrfs_delayed_ref_head *head,
2345                                  struct btrfs_delayed_extent_op *extent_op)
2346 {
2347         struct btrfs_key key;
2348         struct btrfs_path *path;
2349         struct btrfs_extent_item *ei;
2350         struct extent_buffer *leaf;
2351         u32 item_size;
2352         int ret;
2353         int err = 0;
2354         int metadata = !extent_op->is_data;
2355
2356         if (trans->aborted)
2357                 return 0;
2358
2359         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2360                 metadata = 0;
2361
2362         path = btrfs_alloc_path();
2363         if (!path)
2364                 return -ENOMEM;
2365
2366         key.objectid = head->bytenr;
2367
2368         if (metadata) {
2369                 key.type = BTRFS_METADATA_ITEM_KEY;
2370                 key.offset = extent_op->level;
2371         } else {
2372                 key.type = BTRFS_EXTENT_ITEM_KEY;
2373                 key.offset = head->num_bytes;
2374         }
2375
2376 again:
2377         path->reada = READA_FORWARD;
2378         path->leave_spinning = 1;
2379         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2380         if (ret < 0) {
2381                 err = ret;
2382                 goto out;
2383         }
2384         if (ret > 0) {
2385                 if (metadata) {
2386                         if (path->slots[0] > 0) {
2387                                 path->slots[0]--;
2388                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2389                                                       path->slots[0]);
2390                                 if (key.objectid == head->bytenr &&
2391                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2392                                     key.offset == head->num_bytes)
2393                                         ret = 0;
2394                         }
2395                         if (ret > 0) {
2396                                 btrfs_release_path(path);
2397                                 metadata = 0;
2398
2399                                 key.objectid = head->bytenr;
2400                                 key.offset = head->num_bytes;
2401                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2402                                 goto again;
2403                         }
2404                 } else {
2405                         err = -EIO;
2406                         goto out;
2407                 }
2408         }
2409
2410         leaf = path->nodes[0];
2411         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2412 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2413         if (item_size < sizeof(*ei)) {
2414                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2415                 if (ret < 0) {
2416                         err = ret;
2417                         goto out;
2418                 }
2419                 leaf = path->nodes[0];
2420                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2421         }
2422 #endif
2423         BUG_ON(item_size < sizeof(*ei));
2424         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2425         __run_delayed_extent_op(extent_op, leaf, ei);
2426
2427         btrfs_mark_buffer_dirty(leaf);
2428 out:
2429         btrfs_free_path(path);
2430         return err;
2431 }
2432
2433 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2434                                 struct btrfs_fs_info *fs_info,
2435                                 struct btrfs_delayed_ref_node *node,
2436                                 struct btrfs_delayed_extent_op *extent_op,
2437                                 int insert_reserved)
2438 {
2439         int ret = 0;
2440         struct btrfs_delayed_tree_ref *ref;
2441         struct btrfs_key ins;
2442         u64 parent = 0;
2443         u64 ref_root = 0;
2444         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2445
2446         ref = btrfs_delayed_node_to_tree_ref(node);
2447         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2448
2449         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2450                 parent = ref->parent;
2451         ref_root = ref->root;
2452
2453         ins.objectid = node->bytenr;
2454         if (skinny_metadata) {
2455                 ins.offset = ref->level;
2456                 ins.type = BTRFS_METADATA_ITEM_KEY;
2457         } else {
2458                 ins.offset = node->num_bytes;
2459                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2460         }
2461
2462         if (node->ref_mod != 1) {
2463                 btrfs_err(fs_info,
2464         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2465                           node->bytenr, node->ref_mod, node->action, ref_root,
2466                           parent);
2467                 return -EIO;
2468         }
2469         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2470                 BUG_ON(!extent_op || !extent_op->update_flags);
2471                 ret = alloc_reserved_tree_block(trans, fs_info,
2472                                                 parent, ref_root,
2473                                                 extent_op->flags_to_set,
2474                                                 &extent_op->key,
2475                                                 ref->level, &ins);
2476         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2477                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2478                                              parent, ref_root,
2479                                              ref->level, 0, 1,
2480                                              extent_op);
2481         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2482                 ret = __btrfs_free_extent(trans, fs_info, node,
2483                                           parent, ref_root,
2484                                           ref->level, 0, 1, extent_op);
2485         } else {
2486                 BUG();
2487         }
2488         return ret;
2489 }
2490
2491 /* helper function to actually process a single delayed ref entry */
2492 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2493                                struct btrfs_fs_info *fs_info,
2494                                struct btrfs_delayed_ref_node *node,
2495                                struct btrfs_delayed_extent_op *extent_op,
2496                                int insert_reserved)
2497 {
2498         int ret = 0;
2499
2500         if (trans->aborted) {
2501                 if (insert_reserved)
2502                         btrfs_pin_extent(fs_info, node->bytenr,
2503                                          node->num_bytes, 1);
2504                 return 0;
2505         }
2506
2507         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2508             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2509                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2510                                            insert_reserved);
2511         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2512                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2513                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2514                                            insert_reserved);
2515         else
2516                 BUG();
2517         return ret;
2518 }
2519
2520 static inline struct btrfs_delayed_ref_node *
2521 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2522 {
2523         struct btrfs_delayed_ref_node *ref;
2524
2525         if (RB_EMPTY_ROOT(&head->ref_tree))
2526                 return NULL;
2527
2528         /*
2529          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530          * This is to prevent a ref count from going down to zero, which deletes
2531          * the extent item from the extent tree, when there still are references
2532          * to add, which would fail because they would not find the extent item.
2533          */
2534         if (!list_empty(&head->ref_add_list))
2535                 return list_first_entry(&head->ref_add_list,
2536                                 struct btrfs_delayed_ref_node, add_list);
2537
2538         ref = rb_entry(rb_first(&head->ref_tree),
2539                        struct btrfs_delayed_ref_node, ref_node);
2540         ASSERT(list_empty(&ref->add_list));
2541         return ref;
2542 }
2543
2544 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2545                                       struct btrfs_delayed_ref_head *head)
2546 {
2547         spin_lock(&delayed_refs->lock);
2548         head->processing = 0;
2549         delayed_refs->num_heads_ready++;
2550         spin_unlock(&delayed_refs->lock);
2551         btrfs_delayed_ref_unlock(head);
2552 }
2553
2554 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2555                              struct btrfs_fs_info *fs_info,
2556                              struct btrfs_delayed_ref_head *head)
2557 {
2558         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2559         int ret;
2560
2561         if (!extent_op)
2562                 return 0;
2563         head->extent_op = NULL;
2564         if (head->must_insert_reserved) {
2565                 btrfs_free_delayed_extent_op(extent_op);
2566                 return 0;
2567         }
2568         spin_unlock(&head->lock);
2569         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2570         btrfs_free_delayed_extent_op(extent_op);
2571         return ret ? ret : 1;
2572 }
2573
2574 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2575                             struct btrfs_fs_info *fs_info,
2576                             struct btrfs_delayed_ref_head *head)
2577 {
2578         struct btrfs_delayed_ref_root *delayed_refs;
2579         int ret;
2580
2581         delayed_refs = &trans->transaction->delayed_refs;
2582
2583         ret = cleanup_extent_op(trans, fs_info, head);
2584         if (ret < 0) {
2585                 unselect_delayed_ref_head(delayed_refs, head);
2586                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2587                 return ret;
2588         } else if (ret) {
2589                 return ret;
2590         }
2591
2592         /*
2593          * Need to drop our head ref lock and re-acquire the delayed ref lock
2594          * and then re-check to make sure nobody got added.
2595          */
2596         spin_unlock(&head->lock);
2597         spin_lock(&delayed_refs->lock);
2598         spin_lock(&head->lock);
2599         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2600                 spin_unlock(&head->lock);
2601                 spin_unlock(&delayed_refs->lock);
2602                 return 1;
2603         }
2604         delayed_refs->num_heads--;
2605         rb_erase(&head->href_node, &delayed_refs->href_root);
2606         RB_CLEAR_NODE(&head->href_node);
2607         spin_unlock(&delayed_refs->lock);
2608         spin_unlock(&head->lock);
2609         atomic_dec(&delayed_refs->num_entries);
2610
2611         trace_run_delayed_ref_head(fs_info, head, 0);
2612
2613         if (head->total_ref_mod < 0) {
2614                 struct btrfs_block_group_cache *cache;
2615
2616                 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2617                 ASSERT(cache);
2618                 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2619                                    -head->num_bytes);
2620                 btrfs_put_block_group(cache);
2621
2622                 if (head->is_data) {
2623                         spin_lock(&delayed_refs->lock);
2624                         delayed_refs->pending_csums -= head->num_bytes;
2625                         spin_unlock(&delayed_refs->lock);
2626                 }
2627         }
2628
2629         if (head->must_insert_reserved) {
2630                 btrfs_pin_extent(fs_info, head->bytenr,
2631                                  head->num_bytes, 1);
2632                 if (head->is_data) {
2633                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2634                                               head->num_bytes);
2635                 }
2636         }
2637
2638         /* Also free its reserved qgroup space */
2639         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2640                                       head->qgroup_reserved);
2641         btrfs_delayed_ref_unlock(head);
2642         btrfs_put_delayed_ref_head(head);
2643         return 0;
2644 }
2645
2646 /*
2647  * Returns 0 on success or if called with an already aborted transaction.
2648  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2649  */
2650 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2651                                              struct btrfs_fs_info *fs_info,
2652                                              unsigned long nr)
2653 {
2654         struct btrfs_delayed_ref_root *delayed_refs;
2655         struct btrfs_delayed_ref_node *ref;
2656         struct btrfs_delayed_ref_head *locked_ref = NULL;
2657         struct btrfs_delayed_extent_op *extent_op;
2658         ktime_t start = ktime_get();
2659         int ret;
2660         unsigned long count = 0;
2661         unsigned long actual_count = 0;
2662         int must_insert_reserved = 0;
2663
2664         delayed_refs = &trans->transaction->delayed_refs;
2665         while (1) {
2666                 if (!locked_ref) {
2667                         if (count >= nr)
2668                                 break;
2669
2670                         spin_lock(&delayed_refs->lock);
2671                         locked_ref = btrfs_select_ref_head(trans);
2672                         if (!locked_ref) {
2673                                 spin_unlock(&delayed_refs->lock);
2674                                 break;
2675                         }
2676
2677                         /* grab the lock that says we are going to process
2678                          * all the refs for this head */
2679                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2680                         spin_unlock(&delayed_refs->lock);
2681                         /*
2682                          * we may have dropped the spin lock to get the head
2683                          * mutex lock, and that might have given someone else
2684                          * time to free the head.  If that's true, it has been
2685                          * removed from our list and we can move on.
2686                          */
2687                         if (ret == -EAGAIN) {
2688                                 locked_ref = NULL;
2689                                 count++;
2690                                 continue;
2691                         }
2692                 }
2693
2694                 /*
2695                  * We need to try and merge add/drops of the same ref since we
2696                  * can run into issues with relocate dropping the implicit ref
2697                  * and then it being added back again before the drop can
2698                  * finish.  If we merged anything we need to re-loop so we can
2699                  * get a good ref.
2700                  * Or we can get node references of the same type that weren't
2701                  * merged when created due to bumps in the tree mod seq, and
2702                  * we need to merge them to prevent adding an inline extent
2703                  * backref before dropping it (triggering a BUG_ON at
2704                  * insert_inline_extent_backref()).
2705                  */
2706                 spin_lock(&locked_ref->lock);
2707                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2708                                          locked_ref);
2709
2710                 /*
2711                  * locked_ref is the head node, so we have to go one
2712                  * node back for any delayed ref updates
2713                  */
2714                 ref = select_delayed_ref(locked_ref);
2715
2716                 if (ref && ref->seq &&
2717                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2718                         spin_unlock(&locked_ref->lock);
2719                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2720                         locked_ref = NULL;
2721                         cond_resched();
2722                         count++;
2723                         continue;
2724                 }
2725
2726                 /*
2727                  * We're done processing refs in this ref_head, clean everything
2728                  * up and move on to the next ref_head.
2729                  */
2730                 if (!ref) {
2731                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2732                         if (ret > 0 ) {
2733                                 /* We dropped our lock, we need to loop. */
2734                                 ret = 0;
2735                                 continue;
2736                         } else if (ret) {
2737                                 return ret;
2738                         }
2739                         locked_ref = NULL;
2740                         count++;
2741                         continue;
2742                 }
2743
2744                 actual_count++;
2745                 ref->in_tree = 0;
2746                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2747                 RB_CLEAR_NODE(&ref->ref_node);
2748                 if (!list_empty(&ref->add_list))
2749                         list_del(&ref->add_list);
2750                 /*
2751                  * When we play the delayed ref, also correct the ref_mod on
2752                  * head
2753                  */
2754                 switch (ref->action) {
2755                 case BTRFS_ADD_DELAYED_REF:
2756                 case BTRFS_ADD_DELAYED_EXTENT:
2757                         locked_ref->ref_mod -= ref->ref_mod;
2758                         break;
2759                 case BTRFS_DROP_DELAYED_REF:
2760                         locked_ref->ref_mod += ref->ref_mod;
2761                         break;
2762                 default:
2763                         WARN_ON(1);
2764                 }
2765                 atomic_dec(&delayed_refs->num_entries);
2766
2767                 /*
2768                  * Record the must-insert_reserved flag before we drop the spin
2769                  * lock.
2770                  */
2771                 must_insert_reserved = locked_ref->must_insert_reserved;
2772                 locked_ref->must_insert_reserved = 0;
2773
2774                 extent_op = locked_ref->extent_op;
2775                 locked_ref->extent_op = NULL;
2776                 spin_unlock(&locked_ref->lock);
2777
2778                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2779                                           must_insert_reserved);
2780
2781                 btrfs_free_delayed_extent_op(extent_op);
2782                 if (ret) {
2783                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2784                         btrfs_put_delayed_ref(ref);
2785                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2786                                     ret);
2787                         return ret;
2788                 }
2789
2790                 btrfs_put_delayed_ref(ref);
2791                 count++;
2792                 cond_resched();
2793         }
2794
2795         /*
2796          * We don't want to include ref heads since we can have empty ref heads
2797          * and those will drastically skew our runtime down since we just do
2798          * accounting, no actual extent tree updates.
2799          */
2800         if (actual_count > 0) {
2801                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2802                 u64 avg;
2803
2804                 /*
2805                  * We weigh the current average higher than our current runtime
2806                  * to avoid large swings in the average.
2807                  */
2808                 spin_lock(&delayed_refs->lock);
2809                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2810                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2811                 spin_unlock(&delayed_refs->lock);
2812         }
2813         return 0;
2814 }
2815
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 /*
2818  * Normally delayed refs get processed in ascending bytenr order. This
2819  * correlates in most cases to the order added. To expose dependencies on this
2820  * order, we start to process the tree in the middle instead of the beginning
2821  */
2822 static u64 find_middle(struct rb_root *root)
2823 {
2824         struct rb_node *n = root->rb_node;
2825         struct btrfs_delayed_ref_node *entry;
2826         int alt = 1;
2827         u64 middle;
2828         u64 first = 0, last = 0;
2829
2830         n = rb_first(root);
2831         if (n) {
2832                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2833                 first = entry->bytenr;
2834         }
2835         n = rb_last(root);
2836         if (n) {
2837                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2838                 last = entry->bytenr;
2839         }
2840         n = root->rb_node;
2841
2842         while (n) {
2843                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2844                 WARN_ON(!entry->in_tree);
2845
2846                 middle = entry->bytenr;
2847
2848                 if (alt)
2849                         n = n->rb_left;
2850                 else
2851                         n = n->rb_right;
2852
2853                 alt = 1 - alt;
2854         }
2855         return middle;
2856 }
2857 #endif
2858
2859 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2860 {
2861         u64 num_bytes;
2862
2863         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2864                              sizeof(struct btrfs_extent_inline_ref));
2865         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2866                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2867
2868         /*
2869          * We don't ever fill up leaves all the way so multiply by 2 just to be
2870          * closer to what we're really going to want to use.
2871          */
2872         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2873 }
2874
2875 /*
2876  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2877  * would require to store the csums for that many bytes.
2878  */
2879 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2880 {
2881         u64 csum_size;
2882         u64 num_csums_per_leaf;
2883         u64 num_csums;
2884
2885         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2886         num_csums_per_leaf = div64_u64(csum_size,
2887                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2888         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2889         num_csums += num_csums_per_leaf - 1;
2890         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2891         return num_csums;
2892 }
2893
2894 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2895                                        struct btrfs_fs_info *fs_info)
2896 {
2897         struct btrfs_block_rsv *global_rsv;
2898         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2899         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2900         unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2901         u64 num_bytes, num_dirty_bgs_bytes;
2902         int ret = 0;
2903
2904         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2905         num_heads = heads_to_leaves(fs_info, num_heads);
2906         if (num_heads > 1)
2907                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2908         num_bytes <<= 1;
2909         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2910                                                         fs_info->nodesize;
2911         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2912                                                              num_dirty_bgs);
2913         global_rsv = &fs_info->global_block_rsv;
2914
2915         /*
2916          * If we can't allocate any more chunks lets make sure we have _lots_ of
2917          * wiggle room since running delayed refs can create more delayed refs.
2918          */
2919         if (global_rsv->space_info->full) {
2920                 num_dirty_bgs_bytes <<= 1;
2921                 num_bytes <<= 1;
2922         }
2923
2924         spin_lock(&global_rsv->lock);
2925         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2926                 ret = 1;
2927         spin_unlock(&global_rsv->lock);
2928         return ret;
2929 }
2930
2931 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2932                                        struct btrfs_fs_info *fs_info)
2933 {
2934         u64 num_entries =
2935                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2936         u64 avg_runtime;
2937         u64 val;
2938
2939         smp_mb();
2940         avg_runtime = fs_info->avg_delayed_ref_runtime;
2941         val = num_entries * avg_runtime;
2942         if (val >= NSEC_PER_SEC)
2943                 return 1;
2944         if (val >= NSEC_PER_SEC / 2)
2945                 return 2;
2946
2947         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2948 }
2949
2950 struct async_delayed_refs {
2951         struct btrfs_root *root;
2952         u64 transid;
2953         int count;
2954         int error;
2955         int sync;
2956         struct completion wait;
2957         struct btrfs_work work;
2958 };
2959
2960 static inline struct async_delayed_refs *
2961 to_async_delayed_refs(struct btrfs_work *work)
2962 {
2963         return container_of(work, struct async_delayed_refs, work);
2964 }
2965
2966 static void delayed_ref_async_start(struct btrfs_work *work)
2967 {
2968         struct async_delayed_refs *async = to_async_delayed_refs(work);
2969         struct btrfs_trans_handle *trans;
2970         struct btrfs_fs_info *fs_info = async->root->fs_info;
2971         int ret;
2972
2973         /* if the commit is already started, we don't need to wait here */
2974         if (btrfs_transaction_blocked(fs_info))
2975                 goto done;
2976
2977         trans = btrfs_join_transaction(async->root);
2978         if (IS_ERR(trans)) {
2979                 async->error = PTR_ERR(trans);
2980                 goto done;
2981         }
2982
2983         /*
2984          * trans->sync means that when we call end_transaction, we won't
2985          * wait on delayed refs
2986          */
2987         trans->sync = true;
2988
2989         /* Don't bother flushing if we got into a different transaction */
2990         if (trans->transid > async->transid)
2991                 goto end;
2992
2993         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2994         if (ret)
2995                 async->error = ret;
2996 end:
2997         ret = btrfs_end_transaction(trans);
2998         if (ret && !async->error)
2999                 async->error = ret;
3000 done:
3001         if (async->sync)
3002                 complete(&async->wait);
3003         else
3004                 kfree(async);
3005 }
3006
3007 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3008                                  unsigned long count, u64 transid, int wait)
3009 {
3010         struct async_delayed_refs *async;
3011         int ret;
3012
3013         async = kmalloc(sizeof(*async), GFP_NOFS);
3014         if (!async)
3015                 return -ENOMEM;
3016
3017         async->root = fs_info->tree_root;
3018         async->count = count;
3019         async->error = 0;
3020         async->transid = transid;
3021         if (wait)
3022                 async->sync = 1;
3023         else
3024                 async->sync = 0;
3025         init_completion(&async->wait);
3026
3027         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3028                         delayed_ref_async_start, NULL, NULL);
3029
3030         btrfs_queue_work(fs_info->extent_workers, &async->work);
3031
3032         if (wait) {
3033                 wait_for_completion(&async->wait);
3034                 ret = async->error;
3035                 kfree(async);
3036                 return ret;
3037         }
3038         return 0;
3039 }
3040
3041 /*
3042  * this starts processing the delayed reference count updates and
3043  * extent insertions we have queued up so far.  count can be
3044  * 0, which means to process everything in the tree at the start
3045  * of the run (but not newly added entries), or it can be some target
3046  * number you'd like to process.
3047  *
3048  * Returns 0 on success or if called with an aborted transaction
3049  * Returns <0 on error and aborts the transaction
3050  */
3051 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3052                            struct btrfs_fs_info *fs_info, unsigned long count)
3053 {
3054         struct rb_node *node;
3055         struct btrfs_delayed_ref_root *delayed_refs;
3056         struct btrfs_delayed_ref_head *head;
3057         int ret;
3058         int run_all = count == (unsigned long)-1;
3059         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3060
3061         /* We'll clean this up in btrfs_cleanup_transaction */
3062         if (trans->aborted)
3063                 return 0;
3064
3065         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3066                 return 0;
3067
3068         delayed_refs = &trans->transaction->delayed_refs;
3069         if (count == 0)
3070                 count = atomic_read(&delayed_refs->num_entries) * 2;
3071
3072 again:
3073 #ifdef SCRAMBLE_DELAYED_REFS
3074         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3075 #endif
3076         trans->can_flush_pending_bgs = false;
3077         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3078         if (ret < 0) {
3079                 btrfs_abort_transaction(trans, ret);
3080                 return ret;
3081         }
3082
3083         if (run_all) {
3084                 if (!list_empty(&trans->new_bgs))
3085                         btrfs_create_pending_block_groups(trans, fs_info);
3086
3087                 spin_lock(&delayed_refs->lock);
3088                 node = rb_first(&delayed_refs->href_root);
3089                 if (!node) {
3090                         spin_unlock(&delayed_refs->lock);
3091                         goto out;
3092                 }
3093                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3094                                 href_node);
3095                 refcount_inc(&head->refs);
3096                 spin_unlock(&delayed_refs->lock);
3097
3098                 /* Mutex was contended, block until it's released and retry. */
3099                 mutex_lock(&head->mutex);
3100                 mutex_unlock(&head->mutex);
3101
3102                 btrfs_put_delayed_ref_head(head);
3103                 cond_resched();
3104                 goto again;
3105         }
3106 out:
3107         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3108         return 0;
3109 }
3110
3111 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3112                                 struct btrfs_fs_info *fs_info,
3113                                 u64 bytenr, u64 num_bytes, u64 flags,
3114                                 int level, int is_data)
3115 {
3116         struct btrfs_delayed_extent_op *extent_op;
3117         int ret;
3118
3119         extent_op = btrfs_alloc_delayed_extent_op();
3120         if (!extent_op)
3121                 return -ENOMEM;
3122
3123         extent_op->flags_to_set = flags;
3124         extent_op->update_flags = true;
3125         extent_op->update_key = false;
3126         extent_op->is_data = is_data ? true : false;
3127         extent_op->level = level;
3128
3129         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3130                                           num_bytes, extent_op);
3131         if (ret)
3132                 btrfs_free_delayed_extent_op(extent_op);
3133         return ret;
3134 }
3135
3136 static noinline int check_delayed_ref(struct btrfs_root *root,
3137                                       struct btrfs_path *path,
3138                                       u64 objectid, u64 offset, u64 bytenr)
3139 {
3140         struct btrfs_delayed_ref_head *head;
3141         struct btrfs_delayed_ref_node *ref;
3142         struct btrfs_delayed_data_ref *data_ref;
3143         struct btrfs_delayed_ref_root *delayed_refs;
3144         struct btrfs_transaction *cur_trans;
3145         struct rb_node *node;
3146         int ret = 0;
3147
3148         cur_trans = root->fs_info->running_transaction;
3149         if (!cur_trans)
3150                 return 0;
3151
3152         delayed_refs = &cur_trans->delayed_refs;
3153         spin_lock(&delayed_refs->lock);
3154         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3155         if (!head) {
3156                 spin_unlock(&delayed_refs->lock);
3157                 return 0;
3158         }
3159
3160         if (!mutex_trylock(&head->mutex)) {
3161                 refcount_inc(&head->refs);
3162                 spin_unlock(&delayed_refs->lock);
3163
3164                 btrfs_release_path(path);
3165
3166                 /*
3167                  * Mutex was contended, block until it's released and let
3168                  * caller try again
3169                  */
3170                 mutex_lock(&head->mutex);
3171                 mutex_unlock(&head->mutex);
3172                 btrfs_put_delayed_ref_head(head);
3173                 return -EAGAIN;
3174         }
3175         spin_unlock(&delayed_refs->lock);
3176
3177         spin_lock(&head->lock);
3178         /*
3179          * XXX: We should replace this with a proper search function in the
3180          * future.
3181          */
3182         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3183                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3184                 /* If it's a shared ref we know a cross reference exists */
3185                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3186                         ret = 1;
3187                         break;
3188                 }
3189
3190                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3191
3192                 /*
3193                  * If our ref doesn't match the one we're currently looking at
3194                  * then we have a cross reference.
3195                  */
3196                 if (data_ref->root != root->root_key.objectid ||
3197                     data_ref->objectid != objectid ||
3198                     data_ref->offset != offset) {
3199                         ret = 1;
3200                         break;
3201                 }
3202         }
3203         spin_unlock(&head->lock);
3204         mutex_unlock(&head->mutex);
3205         return ret;
3206 }
3207
3208 static noinline int check_committed_ref(struct btrfs_root *root,
3209                                         struct btrfs_path *path,
3210                                         u64 objectid, u64 offset, u64 bytenr)
3211 {
3212         struct btrfs_fs_info *fs_info = root->fs_info;
3213         struct btrfs_root *extent_root = fs_info->extent_root;
3214         struct extent_buffer *leaf;
3215         struct btrfs_extent_data_ref *ref;
3216         struct btrfs_extent_inline_ref *iref;
3217         struct btrfs_extent_item *ei;
3218         struct btrfs_key key;
3219         u32 item_size;
3220         int type;
3221         int ret;
3222
3223         key.objectid = bytenr;
3224         key.offset = (u64)-1;
3225         key.type = BTRFS_EXTENT_ITEM_KEY;
3226
3227         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3228         if (ret < 0)
3229                 goto out;
3230         BUG_ON(ret == 0); /* Corruption */
3231
3232         ret = -ENOENT;
3233         if (path->slots[0] == 0)
3234                 goto out;
3235
3236         path->slots[0]--;
3237         leaf = path->nodes[0];
3238         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3239
3240         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3241                 goto out;
3242
3243         ret = 1;
3244         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3246         if (item_size < sizeof(*ei)) {
3247                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3248                 goto out;
3249         }
3250 #endif
3251         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3252
3253         if (item_size != sizeof(*ei) +
3254             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3255                 goto out;
3256
3257         if (btrfs_extent_generation(leaf, ei) <=
3258             btrfs_root_last_snapshot(&root->root_item))
3259                 goto out;
3260
3261         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3262
3263         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3264         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3265                 goto out;
3266
3267         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3268         if (btrfs_extent_refs(leaf, ei) !=
3269             btrfs_extent_data_ref_count(leaf, ref) ||
3270             btrfs_extent_data_ref_root(leaf, ref) !=
3271             root->root_key.objectid ||
3272             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3273             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3274                 goto out;
3275
3276         ret = 0;
3277 out:
3278         return ret;
3279 }
3280
3281 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3282                           u64 bytenr)
3283 {
3284         struct btrfs_path *path;
3285         int ret;
3286         int ret2;
3287
3288         path = btrfs_alloc_path();
3289         if (!path)
3290                 return -ENOENT;
3291
3292         do {
3293                 ret = check_committed_ref(root, path, objectid,
3294                                           offset, bytenr);
3295                 if (ret && ret != -ENOENT)
3296                         goto out;
3297
3298                 ret2 = check_delayed_ref(root, path, objectid,
3299                                          offset, bytenr);
3300         } while (ret2 == -EAGAIN);
3301
3302         if (ret2 && ret2 != -ENOENT) {
3303                 ret = ret2;
3304                 goto out;
3305         }
3306
3307         if (ret != -ENOENT || ret2 != -ENOENT)
3308                 ret = 0;
3309 out:
3310         btrfs_free_path(path);
3311         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3312                 WARN_ON(ret > 0);
3313         return ret;
3314 }
3315
3316 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3317                            struct btrfs_root *root,
3318                            struct extent_buffer *buf,
3319                            int full_backref, int inc)
3320 {
3321         struct btrfs_fs_info *fs_info = root->fs_info;
3322         u64 bytenr;
3323         u64 num_bytes;
3324         u64 parent;
3325         u64 ref_root;
3326         u32 nritems;
3327         struct btrfs_key key;
3328         struct btrfs_file_extent_item *fi;
3329         int i;
3330         int level;
3331         int ret = 0;
3332         int (*process_func)(struct btrfs_trans_handle *,
3333                             struct btrfs_root *,
3334                             u64, u64, u64, u64, u64, u64);
3335
3336
3337         if (btrfs_is_testing(fs_info))
3338                 return 0;
3339
3340         ref_root = btrfs_header_owner(buf);
3341         nritems = btrfs_header_nritems(buf);
3342         level = btrfs_header_level(buf);
3343
3344         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3345                 return 0;
3346
3347         if (inc)
3348                 process_func = btrfs_inc_extent_ref;
3349         else
3350                 process_func = btrfs_free_extent;
3351
3352         if (full_backref)
3353                 parent = buf->start;
3354         else
3355                 parent = 0;
3356
3357         for (i = 0; i < nritems; i++) {
3358                 if (level == 0) {
3359                         btrfs_item_key_to_cpu(buf, &key, i);
3360                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3361                                 continue;
3362                         fi = btrfs_item_ptr(buf, i,
3363                                             struct btrfs_file_extent_item);
3364                         if (btrfs_file_extent_type(buf, fi) ==
3365                             BTRFS_FILE_EXTENT_INLINE)
3366                                 continue;
3367                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3368                         if (bytenr == 0)
3369                                 continue;
3370
3371                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3372                         key.offset -= btrfs_file_extent_offset(buf, fi);
3373                         ret = process_func(trans, root, bytenr, num_bytes,
3374                                            parent, ref_root, key.objectid,
3375                                            key.offset);
3376                         if (ret)
3377                                 goto fail;
3378                 } else {
3379                         bytenr = btrfs_node_blockptr(buf, i);
3380                         num_bytes = fs_info->nodesize;
3381                         ret = process_func(trans, root, bytenr, num_bytes,
3382                                            parent, ref_root, level - 1, 0);
3383                         if (ret)
3384                                 goto fail;
3385                 }
3386         }
3387         return 0;
3388 fail:
3389         return ret;
3390 }
3391
3392 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3393                   struct extent_buffer *buf, int full_backref)
3394 {
3395         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3396 }
3397
3398 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3399                   struct extent_buffer *buf, int full_backref)
3400 {
3401         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3402 }
3403
3404 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3405                                  struct btrfs_fs_info *fs_info,
3406                                  struct btrfs_path *path,
3407                                  struct btrfs_block_group_cache *cache)
3408 {
3409         int ret;
3410         struct btrfs_root *extent_root = fs_info->extent_root;
3411         unsigned long bi;
3412         struct extent_buffer *leaf;
3413
3414         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3415         if (ret) {
3416                 if (ret > 0)
3417                         ret = -ENOENT;
3418                 goto fail;
3419         }
3420
3421         leaf = path->nodes[0];
3422         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3423         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3424         btrfs_mark_buffer_dirty(leaf);
3425 fail:
3426         btrfs_release_path(path);
3427         return ret;
3428
3429 }
3430
3431 static struct btrfs_block_group_cache *
3432 next_block_group(struct btrfs_fs_info *fs_info,
3433                  struct btrfs_block_group_cache *cache)
3434 {
3435         struct rb_node *node;
3436
3437         spin_lock(&fs_info->block_group_cache_lock);
3438
3439         /* If our block group was removed, we need a full search. */
3440         if (RB_EMPTY_NODE(&cache->cache_node)) {
3441                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3442
3443                 spin_unlock(&fs_info->block_group_cache_lock);
3444                 btrfs_put_block_group(cache);
3445                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3446         }
3447         node = rb_next(&cache->cache_node);
3448         btrfs_put_block_group(cache);
3449         if (node) {
3450                 cache = rb_entry(node, struct btrfs_block_group_cache,
3451                                  cache_node);
3452                 btrfs_get_block_group(cache);
3453         } else
3454                 cache = NULL;
3455         spin_unlock(&fs_info->block_group_cache_lock);
3456         return cache;
3457 }
3458
3459 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3460                             struct btrfs_trans_handle *trans,
3461                             struct btrfs_path *path)
3462 {
3463         struct btrfs_fs_info *fs_info = block_group->fs_info;
3464         struct btrfs_root *root = fs_info->tree_root;
3465         struct inode *inode = NULL;
3466         struct extent_changeset *data_reserved = NULL;
3467         u64 alloc_hint = 0;
3468         int dcs = BTRFS_DC_ERROR;
3469         u64 num_pages = 0;
3470         int retries = 0;
3471         int ret = 0;
3472
3473         /*
3474          * If this block group is smaller than 100 megs don't bother caching the
3475          * block group.
3476          */
3477         if (block_group->key.offset < (100 * SZ_1M)) {
3478                 spin_lock(&block_group->lock);
3479                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3480                 spin_unlock(&block_group->lock);
3481                 return 0;
3482         }
3483
3484         if (trans->aborted)
3485                 return 0;
3486 again:
3487         inode = lookup_free_space_inode(fs_info, block_group, path);
3488         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3489                 ret = PTR_ERR(inode);
3490                 btrfs_release_path(path);
3491                 goto out;
3492         }
3493
3494         if (IS_ERR(inode)) {
3495                 BUG_ON(retries);
3496                 retries++;
3497
3498                 if (block_group->ro)
3499                         goto out_free;
3500
3501                 ret = create_free_space_inode(fs_info, trans, block_group,
3502                                               path);
3503                 if (ret)
3504                         goto out_free;
3505                 goto again;
3506         }
3507
3508         /*
3509          * We want to set the generation to 0, that way if anything goes wrong
3510          * from here on out we know not to trust this cache when we load up next
3511          * time.
3512          */
3513         BTRFS_I(inode)->generation = 0;
3514         ret = btrfs_update_inode(trans, root, inode);
3515         if (ret) {
3516                 /*
3517                  * So theoretically we could recover from this, simply set the
3518                  * super cache generation to 0 so we know to invalidate the
3519                  * cache, but then we'd have to keep track of the block groups
3520                  * that fail this way so we know we _have_ to reset this cache
3521                  * before the next commit or risk reading stale cache.  So to
3522                  * limit our exposure to horrible edge cases lets just abort the
3523                  * transaction, this only happens in really bad situations
3524                  * anyway.
3525                  */
3526                 btrfs_abort_transaction(trans, ret);
3527                 goto out_put;
3528         }
3529         WARN_ON(ret);
3530
3531         /* We've already setup this transaction, go ahead and exit */
3532         if (block_group->cache_generation == trans->transid &&
3533             i_size_read(inode)) {
3534                 dcs = BTRFS_DC_SETUP;
3535                 goto out_put;
3536         }
3537
3538         if (i_size_read(inode) > 0) {
3539                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3540                                         &fs_info->global_block_rsv);
3541                 if (ret)
3542                         goto out_put;
3543
3544                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3545                 if (ret)
3546                         goto out_put;
3547         }
3548
3549         spin_lock(&block_group->lock);
3550         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3551             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3552                 /*
3553                  * don't bother trying to write stuff out _if_
3554                  * a) we're not cached,
3555                  * b) we're with nospace_cache mount option,
3556                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3557                  */
3558                 dcs = BTRFS_DC_WRITTEN;
3559                 spin_unlock(&block_group->lock);
3560                 goto out_put;
3561         }
3562         spin_unlock(&block_group->lock);
3563
3564         /*
3565          * We hit an ENOSPC when setting up the cache in this transaction, just
3566          * skip doing the setup, we've already cleared the cache so we're safe.
3567          */
3568         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3569                 ret = -ENOSPC;
3570                 goto out_put;
3571         }
3572
3573         /*
3574          * Try to preallocate enough space based on how big the block group is.
3575          * Keep in mind this has to include any pinned space which could end up
3576          * taking up quite a bit since it's not folded into the other space
3577          * cache.
3578          */
3579         num_pages = div_u64(block_group->key.offset, SZ_256M);
3580         if (!num_pages)
3581                 num_pages = 1;
3582
3583         num_pages *= 16;
3584         num_pages *= PAGE_SIZE;
3585
3586         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3587         if (ret)
3588                 goto out_put;
3589
3590         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3591                                               num_pages, num_pages,
3592                                               &alloc_hint);
3593         /*
3594          * Our cache requires contiguous chunks so that we don't modify a bunch
3595          * of metadata or split extents when writing the cache out, which means
3596          * we can enospc if we are heavily fragmented in addition to just normal
3597          * out of space conditions.  So if we hit this just skip setting up any
3598          * other block groups for this transaction, maybe we'll unpin enough
3599          * space the next time around.
3600          */
3601         if (!ret)
3602                 dcs = BTRFS_DC_SETUP;
3603         else if (ret == -ENOSPC)
3604                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3605
3606 out_put:
3607         iput(inode);
3608 out_free:
3609         btrfs_release_path(path);
3610 out:
3611         spin_lock(&block_group->lock);
3612         if (!ret && dcs == BTRFS_DC_SETUP)
3613                 block_group->cache_generation = trans->transid;
3614         block_group->disk_cache_state = dcs;
3615         spin_unlock(&block_group->lock);
3616
3617         extent_changeset_free(data_reserved);
3618         return ret;
3619 }
3620
3621 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3622                             struct btrfs_fs_info *fs_info)
3623 {
3624         struct btrfs_block_group_cache *cache, *tmp;
3625         struct btrfs_transaction *cur_trans = trans->transaction;
3626         struct btrfs_path *path;
3627
3628         if (list_empty(&cur_trans->dirty_bgs) ||
3629             !btrfs_test_opt(fs_info, SPACE_CACHE))
3630                 return 0;
3631
3632         path = btrfs_alloc_path();
3633         if (!path)
3634                 return -ENOMEM;
3635
3636         /* Could add new block groups, use _safe just in case */
3637         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3638                                  dirty_list) {
3639                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3640                         cache_save_setup(cache, trans, path);
3641         }
3642
3643         btrfs_free_path(path);
3644         return 0;
3645 }
3646
3647 /*
3648  * transaction commit does final block group cache writeback during a
3649  * critical section where nothing is allowed to change the FS.  This is
3650  * required in order for the cache to actually match the block group,
3651  * but can introduce a lot of latency into the commit.
3652  *
3653  * So, btrfs_start_dirty_block_groups is here to kick off block group
3654  * cache IO.  There's a chance we'll have to redo some of it if the
3655  * block group changes again during the commit, but it greatly reduces
3656  * the commit latency by getting rid of the easy block groups while
3657  * we're still allowing others to join the commit.
3658  */
3659 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3660                                    struct btrfs_fs_info *fs_info)
3661 {
3662         struct btrfs_block_group_cache *cache;
3663         struct btrfs_transaction *cur_trans = trans->transaction;
3664         int ret = 0;
3665         int should_put;
3666         struct btrfs_path *path = NULL;
3667         LIST_HEAD(dirty);
3668         struct list_head *io = &cur_trans->io_bgs;
3669         int num_started = 0;
3670         int loops = 0;
3671
3672         spin_lock(&cur_trans->dirty_bgs_lock);
3673         if (list_empty(&cur_trans->dirty_bgs)) {
3674                 spin_unlock(&cur_trans->dirty_bgs_lock);
3675                 return 0;
3676         }
3677         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3678         spin_unlock(&cur_trans->dirty_bgs_lock);
3679
3680 again:
3681         /*
3682          * make sure all the block groups on our dirty list actually
3683          * exist
3684          */
3685         btrfs_create_pending_block_groups(trans, fs_info);
3686
3687         if (!path) {
3688                 path = btrfs_alloc_path();
3689                 if (!path)
3690                         return -ENOMEM;
3691         }
3692
3693         /*
3694          * cache_write_mutex is here only to save us from balance or automatic
3695          * removal of empty block groups deleting this block group while we are
3696          * writing out the cache
3697          */
3698         mutex_lock(&trans->transaction->cache_write_mutex);
3699         while (!list_empty(&dirty)) {
3700                 cache = list_first_entry(&dirty,
3701                                          struct btrfs_block_group_cache,
3702                                          dirty_list);
3703                 /*
3704                  * this can happen if something re-dirties a block
3705                  * group that is already under IO.  Just wait for it to
3706                  * finish and then do it all again
3707                  */
3708                 if (!list_empty(&cache->io_list)) {
3709                         list_del_init(&cache->io_list);
3710                         btrfs_wait_cache_io(trans, cache, path);
3711                         btrfs_put_block_group(cache);
3712                 }
3713
3714
3715                 /*
3716                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3717                  * if it should update the cache_state.  Don't delete
3718                  * until after we wait.
3719                  *
3720                  * Since we're not running in the commit critical section
3721                  * we need the dirty_bgs_lock to protect from update_block_group
3722                  */
3723                 spin_lock(&cur_trans->dirty_bgs_lock);
3724                 list_del_init(&cache->dirty_list);
3725                 spin_unlock(&cur_trans->dirty_bgs_lock);
3726
3727                 should_put = 1;
3728
3729                 cache_save_setup(cache, trans, path);
3730
3731                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3732                         cache->io_ctl.inode = NULL;
3733                         ret = btrfs_write_out_cache(fs_info, trans,
3734                                                     cache, path);
3735                         if (ret == 0 && cache->io_ctl.inode) {
3736                                 num_started++;
3737                                 should_put = 0;
3738
3739                                 /*
3740                                  * the cache_write_mutex is protecting
3741                                  * the io_list
3742                                  */
3743                                 list_add_tail(&cache->io_list, io);
3744                         } else {
3745                                 /*
3746                                  * if we failed to write the cache, the
3747                                  * generation will be bad and life goes on
3748                                  */
3749                                 ret = 0;
3750                         }
3751                 }
3752                 if (!ret) {
3753                         ret = write_one_cache_group(trans, fs_info,
3754                                                     path, cache);
3755                         /*
3756                          * Our block group might still be attached to the list
3757                          * of new block groups in the transaction handle of some
3758                          * other task (struct btrfs_trans_handle->new_bgs). This
3759                          * means its block group item isn't yet in the extent
3760                          * tree. If this happens ignore the error, as we will
3761                          * try again later in the critical section of the
3762                          * transaction commit.
3763                          */
3764                         if (ret == -ENOENT) {
3765                                 ret = 0;
3766                                 spin_lock(&cur_trans->dirty_bgs_lock);
3767                                 if (list_empty(&cache->dirty_list)) {
3768                                         list_add_tail(&cache->dirty_list,
3769                                                       &cur_trans->dirty_bgs);
3770                                         btrfs_get_block_group(cache);
3771                                 }
3772                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3773                         } else if (ret) {
3774                                 btrfs_abort_transaction(trans, ret);
3775                         }
3776                 }
3777
3778                 /* if its not on the io list, we need to put the block group */
3779                 if (should_put)
3780                         btrfs_put_block_group(cache);
3781
3782                 if (ret)
3783                         break;
3784
3785                 /*
3786                  * Avoid blocking other tasks for too long. It might even save
3787                  * us from writing caches for block groups that are going to be
3788                  * removed.
3789                  */
3790                 mutex_unlock(&trans->transaction->cache_write_mutex);
3791                 mutex_lock(&trans->transaction->cache_write_mutex);
3792         }
3793         mutex_unlock(&trans->transaction->cache_write_mutex);
3794
3795         /*
3796          * go through delayed refs for all the stuff we've just kicked off
3797          * and then loop back (just once)
3798          */
3799         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3800         if (!ret && loops == 0) {
3801                 loops++;
3802                 spin_lock(&cur_trans->dirty_bgs_lock);
3803                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3804                 /*
3805                  * dirty_bgs_lock protects us from concurrent block group
3806                  * deletes too (not just cache_write_mutex).
3807                  */
3808                 if (!list_empty(&dirty)) {
3809                         spin_unlock(&cur_trans->dirty_bgs_lock);
3810                         goto again;
3811                 }
3812                 spin_unlock(&cur_trans->dirty_bgs_lock);
3813         } else if (ret < 0) {
3814                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3815         }
3816
3817         btrfs_free_path(path);
3818         return ret;
3819 }
3820
3821 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3822                                    struct btrfs_fs_info *fs_info)
3823 {
3824         struct btrfs_block_group_cache *cache;
3825         struct btrfs_transaction *cur_trans = trans->transaction;
3826         int ret = 0;
3827         int should_put;
3828         struct btrfs_path *path;
3829         struct list_head *io = &cur_trans->io_bgs;
3830         int num_started = 0;
3831
3832         path = btrfs_alloc_path();
3833         if (!path)
3834                 return -ENOMEM;
3835
3836         /*
3837          * Even though we are in the critical section of the transaction commit,
3838          * we can still have concurrent tasks adding elements to this
3839          * transaction's list of dirty block groups. These tasks correspond to
3840          * endio free space workers started when writeback finishes for a
3841          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3842          * allocate new block groups as a result of COWing nodes of the root
3843          * tree when updating the free space inode. The writeback for the space
3844          * caches is triggered by an earlier call to
3845          * btrfs_start_dirty_block_groups() and iterations of the following
3846          * loop.
3847          * Also we want to do the cache_save_setup first and then run the
3848          * delayed refs to make sure we have the best chance at doing this all
3849          * in one shot.
3850          */
3851         spin_lock(&cur_trans->dirty_bgs_lock);
3852         while (!list_empty(&cur_trans->dirty_bgs)) {
3853                 cache = list_first_entry(&cur_trans->dirty_bgs,
3854                                          struct btrfs_block_group_cache,
3855                                          dirty_list);
3856
3857                 /*
3858                  * this can happen if cache_save_setup re-dirties a block
3859                  * group that is already under IO.  Just wait for it to
3860                  * finish and then do it all again
3861                  */
3862                 if (!list_empty(&cache->io_list)) {
3863                         spin_unlock(&cur_trans->dirty_bgs_lock);
3864                         list_del_init(&cache->io_list);
3865                         btrfs_wait_cache_io(trans, cache, path);
3866                         btrfs_put_block_group(cache);
3867                         spin_lock(&cur_trans->dirty_bgs_lock);
3868                 }
3869
3870                 /*
3871                  * don't remove from the dirty list until after we've waited
3872                  * on any pending IO
3873                  */
3874                 list_del_init(&cache->dirty_list);
3875                 spin_unlock(&cur_trans->dirty_bgs_lock);
3876                 should_put = 1;
3877
3878                 cache_save_setup(cache, trans, path);
3879
3880                 if (!ret)
3881                         ret = btrfs_run_delayed_refs(trans, fs_info,
3882                                                      (unsigned long) -1);
3883
3884                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3885                         cache->io_ctl.inode = NULL;
3886                         ret = btrfs_write_out_cache(fs_info, trans,
3887                                                     cache, path);
3888                         if (ret == 0 && cache->io_ctl.inode) {
3889                                 num_started++;
3890                                 should_put = 0;
3891                                 list_add_tail(&cache->io_list, io);
3892                         } else {
3893                                 /*
3894                                  * if we failed to write the cache, the
3895                                  * generation will be bad and life goes on
3896                                  */
3897                                 ret = 0;
3898                         }
3899                 }
3900                 if (!ret) {
3901                         ret = write_one_cache_group(trans, fs_info,
3902                                                     path, cache);
3903                         /*
3904                          * One of the free space endio workers might have
3905                          * created a new block group while updating a free space
3906                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3907                          * and hasn't released its transaction handle yet, in
3908                          * which case the new block group is still attached to
3909                          * its transaction handle and its creation has not
3910                          * finished yet (no block group item in the extent tree
3911                          * yet, etc). If this is the case, wait for all free
3912                          * space endio workers to finish and retry. This is a
3913                          * a very rare case so no need for a more efficient and
3914                          * complex approach.
3915                          */
3916                         if (ret == -ENOENT) {
3917                                 wait_event(cur_trans->writer_wait,
3918                                    atomic_read(&cur_trans->num_writers) == 1);
3919                                 ret = write_one_cache_group(trans, fs_info,
3920                                                             path, cache);
3921                         }
3922                         if (ret)
3923                                 btrfs_abort_transaction(trans, ret);
3924                 }
3925
3926                 /* if its not on the io list, we need to put the block group */
3927                 if (should_put)
3928                         btrfs_put_block_group(cache);
3929                 spin_lock(&cur_trans->dirty_bgs_lock);
3930         }
3931         spin_unlock(&cur_trans->dirty_bgs_lock);
3932
3933         while (!list_empty(io)) {
3934                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3935                                          io_list);
3936                 list_del_init(&cache->io_list);
3937                 btrfs_wait_cache_io(trans, cache, path);
3938                 btrfs_put_block_group(cache);
3939         }
3940
3941         btrfs_free_path(path);
3942         return ret;
3943 }
3944
3945 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3946 {
3947         struct btrfs_block_group_cache *block_group;
3948         int readonly = 0;
3949
3950         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3951         if (!block_group || block_group->ro)
3952                 readonly = 1;
3953         if (block_group)
3954                 btrfs_put_block_group(block_group);
3955         return readonly;
3956 }
3957
3958 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3959 {
3960         struct btrfs_block_group_cache *bg;
3961         bool ret = true;
3962
3963         bg = btrfs_lookup_block_group(fs_info, bytenr);
3964         if (!bg)
3965                 return false;
3966
3967         spin_lock(&bg->lock);
3968         if (bg->ro)
3969                 ret = false;
3970         else
3971                 atomic_inc(&bg->nocow_writers);
3972         spin_unlock(&bg->lock);
3973
3974         /* no put on block group, done by btrfs_dec_nocow_writers */
3975         if (!ret)
3976                 btrfs_put_block_group(bg);
3977
3978         return ret;
3979
3980 }
3981
3982 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3983 {
3984         struct btrfs_block_group_cache *bg;
3985
3986         bg = btrfs_lookup_block_group(fs_info, bytenr);
3987         ASSERT(bg);
3988         if (atomic_dec_and_test(&bg->nocow_writers))
3989                 wake_up_atomic_t(&bg->nocow_writers);
3990         /*
3991          * Once for our lookup and once for the lookup done by a previous call
3992          * to btrfs_inc_nocow_writers()
3993          */
3994         btrfs_put_block_group(bg);
3995         btrfs_put_block_group(bg);
3996 }
3997
3998 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3999 {
4000         wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4001                          TASK_UNINTERRUPTIBLE);
4002 }
4003
4004 static const char *alloc_name(u64 flags)
4005 {
4006         switch (flags) {
4007         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4008                 return "mixed";
4009         case BTRFS_BLOCK_GROUP_METADATA:
4010                 return "metadata";
4011         case BTRFS_BLOCK_GROUP_DATA:
4012                 return "data";
4013         case BTRFS_BLOCK_GROUP_SYSTEM:
4014                 return "system";
4015         default:
4016                 WARN_ON(1);
4017                 return "invalid-combination";
4018         };
4019 }
4020
4021 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4022                              struct btrfs_space_info **new)
4023 {
4024
4025         struct btrfs_space_info *space_info;
4026         int i;
4027         int ret;
4028
4029         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4030         if (!space_info)
4031                 return -ENOMEM;
4032
4033         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4034                                  GFP_KERNEL);
4035         if (ret) {
4036                 kfree(space_info);
4037                 return ret;
4038         }
4039
4040         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4041                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4042         init_rwsem(&space_info->groups_sem);
4043         spin_lock_init(&space_info->lock);
4044         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4045         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4046         init_waitqueue_head(&space_info->wait);
4047         INIT_LIST_HEAD(&space_info->ro_bgs);
4048         INIT_LIST_HEAD(&space_info->tickets);
4049         INIT_LIST_HEAD(&space_info->priority_tickets);
4050
4051         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4052                                     info->space_info_kobj, "%s",
4053                                     alloc_name(space_info->flags));
4054         if (ret) {
4055                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4056                 kfree(space_info);
4057                 return ret;
4058         }
4059
4060         *new = space_info;
4061         list_add_rcu(&space_info->list, &info->space_info);
4062         if (flags & BTRFS_BLOCK_GROUP_DATA)
4063                 info->data_sinfo = space_info;
4064
4065         return ret;
4066 }
4067
4068 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4069                              u64 total_bytes, u64 bytes_used,
4070                              u64 bytes_readonly,
4071                              struct btrfs_space_info **space_info)
4072 {
4073         struct btrfs_space_info *found;
4074         int factor;
4075
4076         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4077                      BTRFS_BLOCK_GROUP_RAID10))
4078                 factor = 2;
4079         else
4080                 factor = 1;
4081
4082         found = __find_space_info(info, flags);
4083         ASSERT(found);
4084         spin_lock(&found->lock);
4085         found->total_bytes += total_bytes;
4086         found->disk_total += total_bytes * factor;
4087         found->bytes_used += bytes_used;
4088         found->disk_used += bytes_used * factor;
4089         found->bytes_readonly += bytes_readonly;
4090         if (total_bytes > 0)
4091                 found->full = 0;
4092         space_info_add_new_bytes(info, found, total_bytes -
4093                                  bytes_used - bytes_readonly);
4094         spin_unlock(&found->lock);
4095         *space_info = found;
4096 }
4097
4098 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4099 {
4100         u64 extra_flags = chunk_to_extended(flags) &
4101                                 BTRFS_EXTENDED_PROFILE_MASK;
4102
4103         write_seqlock(&fs_info->profiles_lock);
4104         if (flags & BTRFS_BLOCK_GROUP_DATA)
4105                 fs_info->avail_data_alloc_bits |= extra_flags;
4106         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4108         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4109                 fs_info->avail_system_alloc_bits |= extra_flags;
4110         write_sequnlock(&fs_info->profiles_lock);
4111 }
4112
4113 /*
4114  * returns target flags in extended format or 0 if restripe for this
4115  * chunk_type is not in progress
4116  *
4117  * should be called with either volume_mutex or balance_lock held
4118  */
4119 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4120 {
4121         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4122         u64 target = 0;
4123
4124         if (!bctl)
4125                 return 0;
4126
4127         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4128             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4130         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4131                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4133         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4134                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4135                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4136         }
4137
4138         return target;
4139 }
4140
4141 /*
4142  * @flags: available profiles in extended format (see ctree.h)
4143  *
4144  * Returns reduced profile in chunk format.  If profile changing is in
4145  * progress (either running or paused) picks the target profile (if it's
4146  * already available), otherwise falls back to plain reducing.
4147  */
4148 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4149 {
4150         u64 num_devices = fs_info->fs_devices->rw_devices;
4151         u64 target;
4152         u64 raid_type;
4153         u64 allowed = 0;
4154
4155         /*
4156          * see if restripe for this chunk_type is in progress, if so
4157          * try to reduce to the target profile
4158          */
4159         spin_lock(&fs_info->balance_lock);
4160         target = get_restripe_target(fs_info, flags);
4161         if (target) {
4162                 /* pick target profile only if it's already available */
4163                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4164                         spin_unlock(&fs_info->balance_lock);
4165                         return extended_to_chunk(target);
4166                 }
4167         }
4168         spin_unlock(&fs_info->balance_lock);
4169
4170         /* First, mask out the RAID levels which aren't possible */
4171         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4172                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4173                         allowed |= btrfs_raid_group[raid_type];
4174         }
4175         allowed &= flags;
4176
4177         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4178                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4179         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4180                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4181         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4182                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4183         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4184                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4185         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4186                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4187
4188         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4189
4190         return extended_to_chunk(flags | allowed);
4191 }
4192
4193 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4194 {
4195         unsigned seq;
4196         u64 flags;
4197
4198         do {
4199                 flags = orig_flags;
4200                 seq = read_seqbegin(&fs_info->profiles_lock);
4201
4202                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4203                         flags |= fs_info->avail_data_alloc_bits;
4204                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4205                         flags |= fs_info->avail_system_alloc_bits;
4206                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4207                         flags |= fs_info->avail_metadata_alloc_bits;
4208         } while (read_seqretry(&fs_info->profiles_lock, seq));
4209
4210         return btrfs_reduce_alloc_profile(fs_info, flags);
4211 }
4212
4213 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4214 {
4215         struct btrfs_fs_info *fs_info = root->fs_info;
4216         u64 flags;
4217         u64 ret;
4218
4219         if (data)
4220                 flags = BTRFS_BLOCK_GROUP_DATA;
4221         else if (root == fs_info->chunk_root)
4222                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4223         else
4224                 flags = BTRFS_BLOCK_GROUP_METADATA;
4225
4226         ret = get_alloc_profile(fs_info, flags);
4227         return ret;
4228 }
4229
4230 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4231 {
4232         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4233 }
4234
4235 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4236 {
4237         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4238 }
4239
4240 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4241 {
4242         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4243 }
4244
4245 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4246                                  bool may_use_included)
4247 {
4248         ASSERT(s_info);
4249         return s_info->bytes_used + s_info->bytes_reserved +
4250                 s_info->bytes_pinned + s_info->bytes_readonly +
4251                 (may_use_included ? s_info->bytes_may_use : 0);
4252 }
4253
4254 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4255 {
4256         struct btrfs_root *root = inode->root;
4257         struct btrfs_fs_info *fs_info = root->fs_info;
4258         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4259         u64 used;
4260         int ret = 0;
4261         int need_commit = 2;
4262         int have_pinned_space;
4263
4264         /* make sure bytes are sectorsize aligned */
4265         bytes = ALIGN(bytes, fs_info->sectorsize);
4266
4267         if (btrfs_is_free_space_inode(inode)) {
4268                 need_commit = 0;
4269                 ASSERT(current->journal_info);
4270         }
4271
4272 again:
4273         /* make sure we have enough space to handle the data first */
4274         spin_lock(&data_sinfo->lock);
4275         used = btrfs_space_info_used(data_sinfo, true);
4276
4277         if (used + bytes > data_sinfo->total_bytes) {
4278                 struct btrfs_trans_handle *trans;
4279
4280                 /*
4281                  * if we don't have enough free bytes in this space then we need
4282                  * to alloc a new chunk.
4283                  */
4284                 if (!data_sinfo->full) {
4285                         u64 alloc_target;
4286
4287                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4288                         spin_unlock(&data_sinfo->lock);
4289
4290                         alloc_target = btrfs_data_alloc_profile(fs_info);
4291                         /*
4292                          * It is ugly that we don't call nolock join
4293                          * transaction for the free space inode case here.
4294                          * But it is safe because we only do the data space
4295                          * reservation for the free space cache in the
4296                          * transaction context, the common join transaction
4297                          * just increase the counter of the current transaction
4298                          * handler, doesn't try to acquire the trans_lock of
4299                          * the fs.
4300                          */
4301                         trans = btrfs_join_transaction(root);
4302                         if (IS_ERR(trans))
4303                                 return PTR_ERR(trans);
4304
4305                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4306                                              CHUNK_ALLOC_NO_FORCE);
4307                         btrfs_end_transaction(trans);
4308                         if (ret < 0) {
4309                                 if (ret != -ENOSPC)
4310                                         return ret;
4311                                 else {
4312                                         have_pinned_space = 1;
4313                                         goto commit_trans;
4314                                 }
4315                         }
4316
4317                         goto again;
4318                 }
4319
4320                 /*
4321                  * If we don't have enough pinned space to deal with this
4322                  * allocation, and no removed chunk in current transaction,
4323                  * don't bother committing the transaction.
4324                  */
4325                 have_pinned_space = percpu_counter_compare(
4326                         &data_sinfo->total_bytes_pinned,
4327                         used + bytes - data_sinfo->total_bytes);
4328                 spin_unlock(&data_sinfo->lock);
4329
4330                 /* commit the current transaction and try again */
4331 commit_trans:
4332                 if (need_commit &&
4333                     !atomic_read(&fs_info->open_ioctl_trans)) {
4334                         need_commit--;
4335
4336                         if (need_commit > 0) {
4337                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4338                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4339                                                          (u64)-1);
4340                         }
4341
4342                         trans = btrfs_join_transaction(root);
4343                         if (IS_ERR(trans))
4344                                 return PTR_ERR(trans);
4345                         if (have_pinned_space >= 0 ||
4346                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4347                                      &trans->transaction->flags) ||
4348                             need_commit > 0) {
4349                                 ret = btrfs_commit_transaction(trans);
4350                                 if (ret)
4351                                         return ret;
4352                                 /*
4353                                  * The cleaner kthread might still be doing iput
4354                                  * operations. Wait for it to finish so that
4355                                  * more space is released.
4356                                  */
4357                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4358                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4359                                 goto again;
4360                         } else {
4361                                 btrfs_end_transaction(trans);
4362                         }
4363                 }
4364
4365                 trace_btrfs_space_reservation(fs_info,
4366                                               "space_info:enospc",
4367                                               data_sinfo->flags, bytes, 1);
4368                 return -ENOSPC;
4369         }
4370         data_sinfo->bytes_may_use += bytes;
4371         trace_btrfs_space_reservation(fs_info, "space_info",
4372                                       data_sinfo->flags, bytes, 1);
4373         spin_unlock(&data_sinfo->lock);
4374
4375         return ret;
4376 }
4377
4378 int btrfs_check_data_free_space(struct inode *inode,
4379                         struct extent_changeset **reserved, u64 start, u64 len)
4380 {
4381         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4382         int ret;
4383
4384         /* align the range */
4385         len = round_up(start + len, fs_info->sectorsize) -
4386               round_down(start, fs_info->sectorsize);
4387         start = round_down(start, fs_info->sectorsize);
4388
4389         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4390         if (ret < 0)
4391                 return ret;
4392
4393         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4394         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4395         if (ret < 0)
4396                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4397         else
4398                 ret = 0;
4399         return ret;
4400 }
4401
4402 /*
4403  * Called if we need to clear a data reservation for this inode
4404  * Normally in a error case.
4405  *
4406  * This one will *NOT* use accurate qgroup reserved space API, just for case
4407  * which we can't sleep and is sure it won't affect qgroup reserved space.
4408  * Like clear_bit_hook().
4409  */
4410 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4411                                             u64 len)
4412 {
4413         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4414         struct btrfs_space_info *data_sinfo;
4415
4416         /* Make sure the range is aligned to sectorsize */
4417         len = round_up(start + len, fs_info->sectorsize) -
4418               round_down(start, fs_info->sectorsize);
4419         start = round_down(start, fs_info->sectorsize);
4420
4421         data_sinfo = fs_info->data_sinfo;
4422         spin_lock(&data_sinfo->lock);
4423         if (WARN_ON(data_sinfo->bytes_may_use < len))
4424                 data_sinfo->bytes_may_use = 0;
4425         else
4426                 data_sinfo->bytes_may_use -= len;
4427         trace_btrfs_space_reservation(fs_info, "space_info",
4428                                       data_sinfo->flags, len, 0);
4429         spin_unlock(&data_sinfo->lock);
4430 }
4431
4432 /*
4433  * Called if we need to clear a data reservation for this inode
4434  * Normally in a error case.
4435  *
4436  * This one will handle the per-inode data rsv map for accurate reserved
4437  * space framework.
4438  */
4439 void btrfs_free_reserved_data_space(struct inode *inode,
4440                         struct extent_changeset *reserved, u64 start, u64 len)
4441 {
4442         struct btrfs_root *root = BTRFS_I(inode)->root;
4443
4444         /* Make sure the range is aligned to sectorsize */
4445         len = round_up(start + len, root->fs_info->sectorsize) -
4446               round_down(start, root->fs_info->sectorsize);
4447         start = round_down(start, root->fs_info->sectorsize);
4448
4449         btrfs_free_reserved_data_space_noquota(inode, start, len);
4450         btrfs_qgroup_free_data(inode, reserved, start, len);
4451 }
4452
4453 static void force_metadata_allocation(struct btrfs_fs_info *info)
4454 {
4455         struct list_head *head = &info->space_info;
4456         struct btrfs_space_info *found;
4457
4458         rcu_read_lock();
4459         list_for_each_entry_rcu(found, head, list) {
4460                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4461                         found->force_alloc = CHUNK_ALLOC_FORCE;
4462         }
4463         rcu_read_unlock();
4464 }
4465
4466 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4467 {
4468         return (global->size << 1);
4469 }
4470
4471 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4472                               struct btrfs_space_info *sinfo, int force)
4473 {
4474         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4475         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4476         u64 thresh;
4477
4478         if (force == CHUNK_ALLOC_FORCE)
4479                 return 1;
4480
4481         /*
4482          * We need to take into account the global rsv because for all intents
4483          * and purposes it's used space.  Don't worry about locking the
4484          * global_rsv, it doesn't change except when the transaction commits.
4485          */
4486         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4487                 bytes_used += calc_global_rsv_need_space(global_rsv);
4488
4489         /*
4490          * in limited mode, we want to have some free space up to
4491          * about 1% of the FS size.
4492          */
4493         if (force == CHUNK_ALLOC_LIMITED) {
4494                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4495                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4496
4497                 if (sinfo->total_bytes - bytes_used < thresh)
4498                         return 1;
4499         }
4500
4501         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4502                 return 0;
4503         return 1;
4504 }
4505
4506 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4507 {
4508         u64 num_dev;
4509
4510         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4511                     BTRFS_BLOCK_GROUP_RAID0 |
4512                     BTRFS_BLOCK_GROUP_RAID5 |
4513                     BTRFS_BLOCK_GROUP_RAID6))
4514                 num_dev = fs_info->fs_devices->rw_devices;
4515         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4516                 num_dev = 2;
4517         else
4518                 num_dev = 1;    /* DUP or single */
4519
4520         return num_dev;
4521 }
4522
4523 /*
4524  * If @is_allocation is true, reserve space in the system space info necessary
4525  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4526  * removing a chunk.
4527  */
4528 void check_system_chunk(struct btrfs_trans_handle *trans,
4529                         struct btrfs_fs_info *fs_info, u64 type)
4530 {
4531         struct btrfs_space_info *info;
4532         u64 left;
4533         u64 thresh;
4534         int ret = 0;
4535         u64 num_devs;
4536
4537         /*
4538          * Needed because we can end up allocating a system chunk and for an
4539          * atomic and race free space reservation in the chunk block reserve.
4540          */
4541         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4542
4543         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4544         spin_lock(&info->lock);
4545         left = info->total_bytes - btrfs_space_info_used(info, true);
4546         spin_unlock(&info->lock);
4547
4548         num_devs = get_profile_num_devs(fs_info, type);
4549
4550         /* num_devs device items to update and 1 chunk item to add or remove */
4551         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4552                 btrfs_calc_trans_metadata_size(fs_info, 1);
4553
4554         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4555                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4556                            left, thresh, type);
4557                 dump_space_info(fs_info, info, 0, 0);
4558         }
4559
4560         if (left < thresh) {
4561                 u64 flags = btrfs_system_alloc_profile(fs_info);
4562
4563                 /*
4564                  * Ignore failure to create system chunk. We might end up not
4565                  * needing it, as we might not need to COW all nodes/leafs from
4566                  * the paths we visit in the chunk tree (they were already COWed
4567                  * or created in the current transaction for example).
4568                  */
4569                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4570         }
4571
4572         if (!ret) {
4573                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4574                                           &fs_info->chunk_block_rsv,
4575                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4576                 if (!ret)
4577                         trans->chunk_bytes_reserved += thresh;
4578         }
4579 }
4580
4581 /*
4582  * If force is CHUNK_ALLOC_FORCE:
4583  *    - return 1 if it successfully allocates a chunk,
4584  *    - return errors including -ENOSPC otherwise.
4585  * If force is NOT CHUNK_ALLOC_FORCE:
4586  *    - return 0 if it doesn't need to allocate a new chunk,
4587  *    - return 1 if it successfully allocates a chunk,
4588  *    - return errors including -ENOSPC otherwise.
4589  */
4590 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4591                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4592 {
4593         struct btrfs_space_info *space_info;
4594         int wait_for_alloc = 0;
4595         int ret = 0;
4596
4597         /* Don't re-enter if we're already allocating a chunk */
4598         if (trans->allocating_chunk)
4599                 return -ENOSPC;
4600
4601         space_info = __find_space_info(fs_info, flags);
4602         if (!space_info) {
4603                 ret = create_space_info(fs_info, flags, &space_info);
4604                 if (ret)
4605                         return ret;
4606         }
4607
4608 again:
4609         spin_lock(&space_info->lock);
4610         if (force < space_info->force_alloc)
4611                 force = space_info->force_alloc;
4612         if (space_info->full) {
4613                 if (should_alloc_chunk(fs_info, space_info, force))
4614                         ret = -ENOSPC;
4615                 else
4616                         ret = 0;
4617                 spin_unlock(&space_info->lock);
4618                 return ret;
4619         }
4620
4621         if (!should_alloc_chunk(fs_info, space_info, force)) {
4622                 spin_unlock(&space_info->lock);
4623                 return 0;
4624         } else if (space_info->chunk_alloc) {
4625                 wait_for_alloc = 1;
4626         } else {
4627                 space_info->chunk_alloc = 1;
4628         }
4629
4630         spin_unlock(&space_info->lock);
4631
4632         mutex_lock(&fs_info->chunk_mutex);
4633
4634         /*
4635          * The chunk_mutex is held throughout the entirety of a chunk
4636          * allocation, so once we've acquired the chunk_mutex we know that the
4637          * other guy is done and we need to recheck and see if we should
4638          * allocate.
4639          */
4640         if (wait_for_alloc) {
4641                 mutex_unlock(&fs_info->chunk_mutex);
4642                 wait_for_alloc = 0;
4643                 goto again;
4644         }
4645
4646         trans->allocating_chunk = true;
4647
4648         /*
4649          * If we have mixed data/metadata chunks we want to make sure we keep
4650          * allocating mixed chunks instead of individual chunks.
4651          */
4652         if (btrfs_mixed_space_info(space_info))
4653                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4654
4655         /*
4656          * if we're doing a data chunk, go ahead and make sure that
4657          * we keep a reasonable number of metadata chunks allocated in the
4658          * FS as well.
4659          */
4660         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4661                 fs_info->data_chunk_allocations++;
4662                 if (!(fs_info->data_chunk_allocations %
4663                       fs_info->metadata_ratio))
4664                         force_metadata_allocation(fs_info);
4665         }
4666
4667         /*
4668          * Check if we have enough space in SYSTEM chunk because we may need
4669          * to update devices.
4670          */
4671         check_system_chunk(trans, fs_info, flags);
4672
4673         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4674         trans->allocating_chunk = false;
4675
4676         spin_lock(&space_info->lock);
4677         if (ret < 0 && ret != -ENOSPC)
4678                 goto out;
4679         if (ret)
4680                 space_info->full = 1;
4681         else
4682                 ret = 1;
4683
4684         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4685 out:
4686         space_info->chunk_alloc = 0;
4687         spin_unlock(&space_info->lock);
4688         mutex_unlock(&fs_info->chunk_mutex);
4689         /*
4690          * When we allocate a new chunk we reserve space in the chunk block
4691          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4692          * add new nodes/leafs to it if we end up needing to do it when
4693          * inserting the chunk item and updating device items as part of the
4694          * second phase of chunk allocation, performed by
4695          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4696          * large number of new block groups to create in our transaction
4697          * handle's new_bgs list to avoid exhausting the chunk block reserve
4698          * in extreme cases - like having a single transaction create many new
4699          * block groups when starting to write out the free space caches of all
4700          * the block groups that were made dirty during the lifetime of the
4701          * transaction.
4702          */
4703         if (trans->can_flush_pending_bgs &&
4704             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4705                 btrfs_create_pending_block_groups(trans, fs_info);
4706                 btrfs_trans_release_chunk_metadata(trans);
4707         }
4708         return ret;
4709 }
4710
4711 static int can_overcommit(struct btrfs_fs_info *fs_info,
4712                           struct btrfs_space_info *space_info, u64 bytes,
4713                           enum btrfs_reserve_flush_enum flush,
4714                           bool system_chunk)
4715 {
4716         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4717         u64 profile;
4718         u64 space_size;
4719         u64 avail;
4720         u64 used;
4721
4722         /* Don't overcommit when in mixed mode. */
4723         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4724                 return 0;
4725
4726         if (system_chunk)
4727                 profile = btrfs_system_alloc_profile(fs_info);
4728         else
4729                 profile = btrfs_metadata_alloc_profile(fs_info);
4730
4731         used = btrfs_space_info_used(space_info, false);
4732
4733         /*
4734          * We only want to allow over committing if we have lots of actual space
4735          * free, but if we don't have enough space to handle the global reserve
4736          * space then we could end up having a real enospc problem when trying
4737          * to allocate a chunk or some other such important allocation.
4738          */
4739         spin_lock(&global_rsv->lock);
4740         space_size = calc_global_rsv_need_space(global_rsv);
4741         spin_unlock(&global_rsv->lock);
4742         if (used + space_size >= space_info->total_bytes)
4743                 return 0;
4744
4745         used += space_info->bytes_may_use;
4746
4747         avail = atomic64_read(&fs_info->free_chunk_space);
4748
4749         /*
4750          * If we have dup, raid1 or raid10 then only half of the free
4751          * space is actually useable.  For raid56, the space info used
4752          * doesn't include the parity drive, so we don't have to
4753          * change the math
4754          */
4755         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4756                        BTRFS_BLOCK_GROUP_RAID1 |
4757                        BTRFS_BLOCK_GROUP_RAID10))
4758                 avail >>= 1;
4759
4760         /*
4761          * If we aren't flushing all things, let us overcommit up to
4762          * 1/2th of the space. If we can flush, don't let us overcommit
4763          * too much, let it overcommit up to 1/8 of the space.
4764          */
4765         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4766                 avail >>= 3;
4767         else
4768                 avail >>= 1;
4769
4770         if (used + bytes < space_info->total_bytes + avail)
4771                 return 1;
4772         return 0;
4773 }
4774
4775 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4776                                          unsigned long nr_pages, int nr_items)
4777 {
4778         struct super_block *sb = fs_info->sb;
4779
4780         if (down_read_trylock(&sb->s_umount)) {
4781                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4782                 up_read(&sb->s_umount);
4783         } else {
4784                 /*
4785                  * We needn't worry the filesystem going from r/w to r/o though
4786                  * we don't acquire ->s_umount mutex, because the filesystem
4787                  * should guarantee the delalloc inodes list be empty after
4788                  * the filesystem is readonly(all dirty pages are written to
4789                  * the disk).
4790                  */
4791                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4792                 if (!current->journal_info)
4793                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4794         }
4795 }
4796
4797 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4798                                         u64 to_reclaim)
4799 {
4800         u64 bytes;
4801         u64 nr;
4802
4803         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4804         nr = div64_u64(to_reclaim, bytes);
4805         if (!nr)
4806                 nr = 1;
4807         return nr;
4808 }
4809
4810 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4811
4812 /*
4813  * shrink metadata reservation for delalloc
4814  */
4815 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4816                             u64 orig, bool wait_ordered)
4817 {
4818         struct btrfs_space_info *space_info;
4819         struct btrfs_trans_handle *trans;
4820         u64 delalloc_bytes;
4821         u64 max_reclaim;
4822         u64 items;
4823         long time_left;
4824         unsigned long nr_pages;
4825         int loops;
4826         enum btrfs_reserve_flush_enum flush;
4827
4828         /* Calc the number of the pages we need flush for space reservation */
4829         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4830         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4831
4832         trans = (struct btrfs_trans_handle *)current->journal_info;
4833         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4834
4835         delalloc_bytes = percpu_counter_sum_positive(
4836                                                 &fs_info->delalloc_bytes);
4837         if (delalloc_bytes == 0) {
4838                 if (trans)
4839                         return;
4840                 if (wait_ordered)
4841                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4842                 return;
4843         }
4844
4845         loops = 0;
4846         while (delalloc_bytes && loops < 3) {
4847                 max_reclaim = min(delalloc_bytes, to_reclaim);
4848                 nr_pages = max_reclaim >> PAGE_SHIFT;
4849                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4850                 /*
4851                  * We need to wait for the async pages to actually start before
4852                  * we do anything.
4853                  */
4854                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4855                 if (!max_reclaim)
4856                         goto skip_async;
4857
4858                 if (max_reclaim <= nr_pages)
4859                         max_reclaim = 0;
4860                 else
4861                         max_reclaim -= nr_pages;
4862
4863                 wait_event(fs_info->async_submit_wait,
4864                            atomic_read(&fs_info->async_delalloc_pages) <=
4865                            (int)max_reclaim);
4866 skip_async:
4867                 if (!trans)
4868                         flush = BTRFS_RESERVE_FLUSH_ALL;
4869                 else
4870                         flush = BTRFS_RESERVE_NO_FLUSH;
4871                 spin_lock(&space_info->lock);
4872                 if (list_empty(&space_info->tickets) &&
4873                     list_empty(&space_info->priority_tickets)) {
4874                         spin_unlock(&space_info->lock);
4875                         break;
4876                 }
4877                 spin_unlock(&space_info->lock);
4878
4879                 loops++;
4880                 if (wait_ordered && !trans) {
4881                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4882                 } else {
4883                         time_left = schedule_timeout_killable(1);
4884                         if (time_left)
4885                                 break;
4886                 }
4887                 delalloc_bytes = percpu_counter_sum_positive(
4888                                                 &fs_info->delalloc_bytes);
4889         }
4890 }
4891
4892 struct reserve_ticket {
4893         u64 bytes;
4894         int error;
4895         struct list_head list;
4896         wait_queue_head_t wait;
4897 };
4898
4899 /**
4900  * maybe_commit_transaction - possibly commit the transaction if its ok to
4901  * @root - the root we're allocating for
4902  * @bytes - the number of bytes we want to reserve
4903  * @force - force the commit
4904  *
4905  * This will check to make sure that committing the transaction will actually
4906  * get us somewhere and then commit the transaction if it does.  Otherwise it
4907  * will return -ENOSPC.
4908  */
4909 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4910                                   struct btrfs_space_info *space_info)
4911 {
4912         struct reserve_ticket *ticket = NULL;
4913         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4914         struct btrfs_trans_handle *trans;
4915         u64 bytes;
4916
4917         trans = (struct btrfs_trans_handle *)current->journal_info;
4918         if (trans)
4919                 return -EAGAIN;
4920
4921         spin_lock(&space_info->lock);
4922         if (!list_empty(&space_info->priority_tickets))
4923                 ticket = list_first_entry(&space_info->priority_tickets,
4924                                           struct reserve_ticket, list);
4925         else if (!list_empty(&space_info->tickets))
4926                 ticket = list_first_entry(&space_info->tickets,
4927                                           struct reserve_ticket, list);
4928         bytes = (ticket) ? ticket->bytes : 0;
4929         spin_unlock(&space_info->lock);
4930
4931         if (!bytes)
4932                 return 0;
4933
4934         /* See if there is enough pinned space to make this reservation */
4935         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4936                                    bytes) >= 0)
4937                 goto commit;
4938
4939         /*
4940          * See if there is some space in the delayed insertion reservation for
4941          * this reservation.
4942          */
4943         if (space_info != delayed_rsv->space_info)
4944                 return -ENOSPC;
4945
4946         spin_lock(&delayed_rsv->lock);
4947         if (delayed_rsv->size > bytes)
4948                 bytes = 0;
4949         else
4950                 bytes -= delayed_rsv->size;
4951         spin_unlock(&delayed_rsv->lock);
4952
4953         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4954                                    bytes) < 0) {
4955                 return -ENOSPC;
4956         }
4957
4958 commit:
4959         trans = btrfs_join_transaction(fs_info->extent_root);
4960         if (IS_ERR(trans))
4961                 return -ENOSPC;
4962
4963         return btrfs_commit_transaction(trans);
4964 }
4965
4966 /*
4967  * Try to flush some data based on policy set by @state. This is only advisory
4968  * and may fail for various reasons. The caller is supposed to examine the
4969  * state of @space_info to detect the outcome.
4970  */
4971 static void flush_space(struct btrfs_fs_info *fs_info,
4972                        struct btrfs_space_info *space_info, u64 num_bytes,
4973                        int state)
4974 {
4975         struct btrfs_root *root = fs_info->extent_root;
4976         struct btrfs_trans_handle *trans;
4977         int nr;
4978         int ret = 0;
4979
4980         switch (state) {
4981         case FLUSH_DELAYED_ITEMS_NR:
4982         case FLUSH_DELAYED_ITEMS:
4983                 if (state == FLUSH_DELAYED_ITEMS_NR)
4984                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4985                 else
4986                         nr = -1;
4987
4988                 trans = btrfs_join_transaction(root);
4989                 if (IS_ERR(trans)) {
4990                         ret = PTR_ERR(trans);
4991                         break;
4992                 }
4993                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4994                 btrfs_end_transaction(trans);
4995                 break;
4996         case FLUSH_DELALLOC:
4997         case FLUSH_DELALLOC_WAIT:
4998                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4999                                 state == FLUSH_DELALLOC_WAIT);
5000                 break;
5001         case ALLOC_CHUNK:
5002                 trans = btrfs_join_transaction(root);
5003                 if (IS_ERR(trans)) {
5004                         ret = PTR_ERR(trans);
5005                         break;
5006                 }
5007                 ret = do_chunk_alloc(trans, fs_info,
5008                                      btrfs_metadata_alloc_profile(fs_info),
5009                                      CHUNK_ALLOC_NO_FORCE);
5010                 btrfs_end_transaction(trans);
5011                 if (ret > 0 || ret == -ENOSPC)
5012                         ret = 0;
5013                 break;
5014         case COMMIT_TRANS:
5015                 ret = may_commit_transaction(fs_info, space_info);
5016                 break;
5017         default:
5018                 ret = -ENOSPC;
5019                 break;
5020         }
5021
5022         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5023                                 ret);
5024         return;
5025 }
5026
5027 static inline u64
5028 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5029                                  struct btrfs_space_info *space_info,
5030                                  bool system_chunk)
5031 {
5032         struct reserve_ticket *ticket;
5033         u64 used;
5034         u64 expected;
5035         u64 to_reclaim = 0;
5036
5037         list_for_each_entry(ticket, &space_info->tickets, list)
5038                 to_reclaim += ticket->bytes;
5039         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5040                 to_reclaim += ticket->bytes;
5041         if (to_reclaim)
5042                 return to_reclaim;
5043
5044         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5045         if (can_overcommit(fs_info, space_info, to_reclaim,
5046                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5047                 return 0;
5048
5049         used = btrfs_space_info_used(space_info, true);
5050
5051         if (can_overcommit(fs_info, space_info, SZ_1M,
5052                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5053                 expected = div_factor_fine(space_info->total_bytes, 95);
5054         else
5055                 expected = div_factor_fine(space_info->total_bytes, 90);
5056
5057         if (used > expected)
5058                 to_reclaim = used - expected;
5059         else
5060                 to_reclaim = 0;
5061         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5062                                      space_info->bytes_reserved);
5063         return to_reclaim;
5064 }
5065
5066 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5067                                         struct btrfs_space_info *space_info,
5068                                         u64 used, bool system_chunk)
5069 {
5070         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5071
5072         /* If we're just plain full then async reclaim just slows us down. */
5073         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5074                 return 0;
5075
5076         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5077                                               system_chunk))
5078                 return 0;
5079
5080         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5081                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5082 }
5083
5084 static void wake_all_tickets(struct list_head *head)
5085 {
5086         struct reserve_ticket *ticket;
5087
5088         while (!list_empty(head)) {
5089                 ticket = list_first_entry(head, struct reserve_ticket, list);
5090                 list_del_init(&ticket->list);
5091                 ticket->error = -ENOSPC;
5092                 wake_up(&ticket->wait);
5093         }
5094 }
5095
5096 /*
5097  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5098  * will loop and continuously try to flush as long as we are making progress.
5099  * We count progress as clearing off tickets each time we have to loop.
5100  */
5101 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5102 {
5103         struct btrfs_fs_info *fs_info;
5104         struct btrfs_space_info *space_info;
5105         u64 to_reclaim;
5106         int flush_state;
5107         int commit_cycles = 0;
5108         u64 last_tickets_id;
5109
5110         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5111         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5112
5113         spin_lock(&space_info->lock);
5114         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5115                                                       false);
5116         if (!to_reclaim) {
5117                 space_info->flush = 0;
5118                 spin_unlock(&space_info->lock);
5119                 return;
5120         }
5121         last_tickets_id = space_info->tickets_id;
5122         spin_unlock(&space_info->lock);
5123
5124         flush_state = FLUSH_DELAYED_ITEMS_NR;
5125         do {
5126                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5127                 spin_lock(&space_info->lock);
5128                 if (list_empty(&space_info->tickets)) {
5129                         space_info->flush = 0;
5130                         spin_unlock(&space_info->lock);
5131                         return;
5132                 }
5133                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5134                                                               space_info,
5135                                                               false);
5136                 if (last_tickets_id == space_info->tickets_id) {
5137                         flush_state++;
5138                 } else {
5139                         last_tickets_id = space_info->tickets_id;
5140                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5141                         if (commit_cycles)
5142                                 commit_cycles--;
5143                 }
5144
5145                 if (flush_state > COMMIT_TRANS) {
5146                         commit_cycles++;
5147                         if (commit_cycles > 2) {
5148                                 wake_all_tickets(&space_info->tickets);
5149                                 space_info->flush = 0;
5150                         } else {
5151                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5152                         }
5153                 }
5154                 spin_unlock(&space_info->lock);
5155         } while (flush_state <= COMMIT_TRANS);
5156 }
5157
5158 void btrfs_init_async_reclaim_work(struct work_struct *work)
5159 {
5160         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5161 }
5162
5163 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5164                                             struct btrfs_space_info *space_info,
5165                                             struct reserve_ticket *ticket)
5166 {
5167         u64 to_reclaim;
5168         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5169
5170         spin_lock(&space_info->lock);
5171         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5172                                                       false);
5173         if (!to_reclaim) {
5174                 spin_unlock(&space_info->lock);
5175                 return;
5176         }
5177         spin_unlock(&space_info->lock);
5178
5179         do {
5180                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5181                 flush_state++;
5182                 spin_lock(&space_info->lock);
5183                 if (ticket->bytes == 0) {
5184                         spin_unlock(&space_info->lock);
5185                         return;
5186                 }
5187                 spin_unlock(&space_info->lock);
5188
5189                 /*
5190                  * Priority flushers can't wait on delalloc without
5191                  * deadlocking.
5192                  */
5193                 if (flush_state == FLUSH_DELALLOC ||
5194                     flush_state == FLUSH_DELALLOC_WAIT)
5195                         flush_state = ALLOC_CHUNK;
5196         } while (flush_state < COMMIT_TRANS);
5197 }
5198
5199 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5200                                struct btrfs_space_info *space_info,
5201                                struct reserve_ticket *ticket, u64 orig_bytes)
5202
5203 {
5204         DEFINE_WAIT(wait);
5205         int ret = 0;
5206
5207         spin_lock(&space_info->lock);
5208         while (ticket->bytes > 0 && ticket->error == 0) {
5209                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5210                 if (ret) {
5211                         ret = -EINTR;
5212                         break;
5213                 }
5214                 spin_unlock(&space_info->lock);
5215
5216                 schedule();
5217
5218                 finish_wait(&ticket->wait, &wait);
5219                 spin_lock(&space_info->lock);
5220         }
5221         if (!ret)
5222                 ret = ticket->error;
5223         if (!list_empty(&ticket->list))
5224                 list_del_init(&ticket->list);
5225         if (ticket->bytes && ticket->bytes < orig_bytes) {
5226                 u64 num_bytes = orig_bytes - ticket->bytes;
5227                 space_info->bytes_may_use -= num_bytes;
5228                 trace_btrfs_space_reservation(fs_info, "space_info",
5229                                               space_info->flags, num_bytes, 0);
5230         }
5231         spin_unlock(&space_info->lock);
5232
5233         return ret;
5234 }
5235
5236 /**
5237  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5238  * @root - the root we're allocating for
5239  * @space_info - the space info we want to allocate from
5240  * @orig_bytes - the number of bytes we want
5241  * @flush - whether or not we can flush to make our reservation
5242  *
5243  * This will reserve orig_bytes number of bytes from the space info associated
5244  * with the block_rsv.  If there is not enough space it will make an attempt to
5245  * flush out space to make room.  It will do this by flushing delalloc if
5246  * possible or committing the transaction.  If flush is 0 then no attempts to
5247  * regain reservations will be made and this will fail if there is not enough
5248  * space already.
5249  */
5250 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5251                                     struct btrfs_space_info *space_info,
5252                                     u64 orig_bytes,
5253                                     enum btrfs_reserve_flush_enum flush,
5254                                     bool system_chunk)
5255 {
5256         struct reserve_ticket ticket;
5257         u64 used;
5258         int ret = 0;
5259
5260         ASSERT(orig_bytes);
5261         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5262
5263         spin_lock(&space_info->lock);
5264         ret = -ENOSPC;
5265         used = btrfs_space_info_used(space_info, true);
5266
5267         /*
5268          * If we have enough space then hooray, make our reservation and carry
5269          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5270          * If not things get more complicated.
5271          */
5272         if (used + orig_bytes <= space_info->total_bytes) {
5273                 space_info->bytes_may_use += orig_bytes;
5274                 trace_btrfs_space_reservation(fs_info, "space_info",
5275                                               space_info->flags, orig_bytes, 1);
5276                 ret = 0;
5277         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5278                                   system_chunk)) {
5279                 space_info->bytes_may_use += orig_bytes;
5280                 trace_btrfs_space_reservation(fs_info, "space_info",
5281                                               space_info->flags, orig_bytes, 1);
5282                 ret = 0;
5283         }
5284
5285         /*
5286          * If we couldn't make a reservation then setup our reservation ticket
5287          * and kick the async worker if it's not already running.
5288          *
5289          * If we are a priority flusher then we just need to add our ticket to
5290          * the list and we will do our own flushing further down.
5291          */
5292         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5293                 ticket.bytes = orig_bytes;
5294                 ticket.error = 0;
5295                 init_waitqueue_head(&ticket.wait);
5296                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5297                         list_add_tail(&ticket.list, &space_info->tickets);
5298                         if (!space_info->flush) {
5299                                 space_info->flush = 1;
5300                                 trace_btrfs_trigger_flush(fs_info,
5301                                                           space_info->flags,
5302                                                           orig_bytes, flush,
5303                                                           "enospc");
5304                                 queue_work(system_unbound_wq,
5305                                            &fs_info->async_reclaim_work);
5306                         }
5307                 } else {
5308                         list_add_tail(&ticket.list,
5309                                       &space_info->priority_tickets);
5310                 }
5311         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5312                 used += orig_bytes;
5313                 /*
5314                  * We will do the space reservation dance during log replay,
5315                  * which means we won't have fs_info->fs_root set, so don't do
5316                  * the async reclaim as we will panic.
5317                  */
5318                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5319                     need_do_async_reclaim(fs_info, space_info,
5320                                           used, system_chunk) &&
5321                     !work_busy(&fs_info->async_reclaim_work)) {
5322                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5323                                                   orig_bytes, flush, "preempt");
5324                         queue_work(system_unbound_wq,
5325                                    &fs_info->async_reclaim_work);
5326                 }
5327         }
5328         spin_unlock(&space_info->lock);
5329         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5330                 return ret;
5331
5332         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5333                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5334                                            orig_bytes);
5335
5336         ret = 0;
5337         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5338         spin_lock(&space_info->lock);
5339         if (ticket.bytes) {
5340                 if (ticket.bytes < orig_bytes) {
5341                         u64 num_bytes = orig_bytes - ticket.bytes;
5342                         space_info->bytes_may_use -= num_bytes;
5343                         trace_btrfs_space_reservation(fs_info, "space_info",
5344                                                       space_info->flags,
5345                                                       num_bytes, 0);
5346
5347                 }
5348                 list_del_init(&ticket.list);
5349                 ret = -ENOSPC;
5350         }
5351         spin_unlock(&space_info->lock);
5352         ASSERT(list_empty(&ticket.list));
5353         return ret;
5354 }
5355
5356 /**
5357  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5358  * @root - the root we're allocating for
5359  * @block_rsv - the block_rsv we're allocating for
5360  * @orig_bytes - the number of bytes we want
5361  * @flush - whether or not we can flush to make our reservation
5362  *
5363  * This will reserve orgi_bytes number of bytes from the space info associated
5364  * with the block_rsv.  If there is not enough space it will make an attempt to
5365  * flush out space to make room.  It will do this by flushing delalloc if
5366  * possible or committing the transaction.  If flush is 0 then no attempts to
5367  * regain reservations will be made and this will fail if there is not enough
5368  * space already.
5369  */
5370 static int reserve_metadata_bytes(struct btrfs_root *root,
5371                                   struct btrfs_block_rsv *block_rsv,
5372                                   u64 orig_bytes,
5373                                   enum btrfs_reserve_flush_enum flush)
5374 {
5375         struct btrfs_fs_info *fs_info = root->fs_info;
5376         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5377         int ret;
5378         bool system_chunk = (root == fs_info->chunk_root);
5379
5380         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5381                                        orig_bytes, flush, system_chunk);
5382         if (ret == -ENOSPC &&
5383             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5384                 if (block_rsv != global_rsv &&
5385                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5386                         ret = 0;
5387         }
5388         if (ret == -ENOSPC)
5389                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5390                                               block_rsv->space_info->flags,
5391                                               orig_bytes, 1);
5392         return ret;
5393 }
5394
5395 static struct btrfs_block_rsv *get_block_rsv(
5396                                         const struct btrfs_trans_handle *trans,
5397                                         const struct btrfs_root *root)
5398 {
5399         struct btrfs_fs_info *fs_info = root->fs_info;
5400         struct btrfs_block_rsv *block_rsv = NULL;
5401
5402         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5403             (root == fs_info->csum_root && trans->adding_csums) ||
5404             (root == fs_info->uuid_root))
5405                 block_rsv = trans->block_rsv;
5406
5407         if (!block_rsv)
5408                 block_rsv = root->block_rsv;
5409
5410         if (!block_rsv)
5411                 block_rsv = &fs_info->empty_block_rsv;
5412
5413         return block_rsv;
5414 }
5415
5416 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5417                                u64 num_bytes)
5418 {
5419         int ret = -ENOSPC;
5420         spin_lock(&block_rsv->lock);
5421         if (block_rsv->reserved >= num_bytes) {
5422                 block_rsv->reserved -= num_bytes;
5423                 if (block_rsv->reserved < block_rsv->size)
5424                         block_rsv->full = 0;
5425                 ret = 0;
5426         }
5427         spin_unlock(&block_rsv->lock);
5428         return ret;
5429 }
5430
5431 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5432                                 u64 num_bytes, int update_size)
5433 {
5434         spin_lock(&block_rsv->lock);
5435         block_rsv->reserved += num_bytes;
5436         if (update_size)
5437                 block_rsv->size += num_bytes;
5438         else if (block_rsv->reserved >= block_rsv->size)
5439                 block_rsv->full = 1;
5440         spin_unlock(&block_rsv->lock);
5441 }
5442
5443 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5444                              struct btrfs_block_rsv *dest, u64 num_bytes,
5445                              int min_factor)
5446 {
5447         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5448         u64 min_bytes;
5449
5450         if (global_rsv->space_info != dest->space_info)
5451                 return -ENOSPC;
5452
5453         spin_lock(&global_rsv->lock);
5454         min_bytes = div_factor(global_rsv->size, min_factor);
5455         if (global_rsv->reserved < min_bytes + num_bytes) {
5456                 spin_unlock(&global_rsv->lock);
5457                 return -ENOSPC;
5458         }
5459         global_rsv->reserved -= num_bytes;
5460         if (global_rsv->reserved < global_rsv->size)
5461                 global_rsv->full = 0;
5462         spin_unlock(&global_rsv->lock);
5463
5464         block_rsv_add_bytes(dest, num_bytes, 1);
5465         return 0;
5466 }
5467
5468 /*
5469  * This is for space we already have accounted in space_info->bytes_may_use, so
5470  * basically when we're returning space from block_rsv's.
5471  */
5472 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5473                                      struct btrfs_space_info *space_info,
5474                                      u64 num_bytes)
5475 {
5476         struct reserve_ticket *ticket;
5477         struct list_head *head;
5478         u64 used;
5479         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5480         bool check_overcommit = false;
5481
5482         spin_lock(&space_info->lock);
5483         head = &space_info->priority_tickets;
5484
5485         /*
5486          * If we are over our limit then we need to check and see if we can
5487          * overcommit, and if we can't then we just need to free up our space
5488          * and not satisfy any requests.
5489          */
5490         used = btrfs_space_info_used(space_info, true);
5491         if (used - num_bytes >= space_info->total_bytes)
5492                 check_overcommit = true;
5493 again:
5494         while (!list_empty(head) && num_bytes) {
5495                 ticket = list_first_entry(head, struct reserve_ticket,
5496                                           list);
5497                 /*
5498                  * We use 0 bytes because this space is already reserved, so
5499                  * adding the ticket space would be a double count.
5500                  */
5501                 if (check_overcommit &&
5502                     !can_overcommit(fs_info, space_info, 0, flush, false))
5503                         break;
5504                 if (num_bytes >= ticket->bytes) {
5505                         list_del_init(&ticket->list);
5506                         num_bytes -= ticket->bytes;
5507                         ticket->bytes = 0;
5508                         space_info->tickets_id++;
5509                         wake_up(&ticket->wait);
5510                 } else {
5511                         ticket->bytes -= num_bytes;
5512                         num_bytes = 0;
5513                 }
5514         }
5515
5516         if (num_bytes && head == &space_info->priority_tickets) {
5517                 head = &space_info->tickets;
5518                 flush = BTRFS_RESERVE_FLUSH_ALL;
5519                 goto again;
5520         }
5521         space_info->bytes_may_use -= num_bytes;
5522         trace_btrfs_space_reservation(fs_info, "space_info",
5523                                       space_info->flags, num_bytes, 0);
5524         spin_unlock(&space_info->lock);
5525 }
5526
5527 /*
5528  * This is for newly allocated space that isn't accounted in
5529  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5530  * we use this helper.
5531  */
5532 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5533                                      struct btrfs_space_info *space_info,
5534                                      u64 num_bytes)
5535 {
5536         struct reserve_ticket *ticket;
5537         struct list_head *head = &space_info->priority_tickets;
5538
5539 again:
5540         while (!list_empty(head) && num_bytes) {
5541                 ticket = list_first_entry(head, struct reserve_ticket,
5542                                           list);
5543                 if (num_bytes >= ticket->bytes) {
5544                         trace_btrfs_space_reservation(fs_info, "space_info",
5545                                                       space_info->flags,
5546                                                       ticket->bytes, 1);
5547                         list_del_init(&ticket->list);
5548                         num_bytes -= ticket->bytes;
5549                         space_info->bytes_may_use += ticket->bytes;
5550                         ticket->bytes = 0;
5551                         space_info->tickets_id++;
5552                         wake_up(&ticket->wait);
5553                 } else {
5554                         trace_btrfs_space_reservation(fs_info, "space_info",
5555                                                       space_info->flags,
5556                                                       num_bytes, 1);
5557                         space_info->bytes_may_use += num_bytes;
5558                         ticket->bytes -= num_bytes;
5559                         num_bytes = 0;
5560                 }
5561         }
5562
5563         if (num_bytes && head == &space_info->priority_tickets) {
5564                 head = &space_info->tickets;
5565                 goto again;
5566         }
5567 }
5568
5569 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5570                                     struct btrfs_block_rsv *block_rsv,
5571                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5572 {
5573         struct btrfs_space_info *space_info = block_rsv->space_info;
5574         u64 ret;
5575
5576         spin_lock(&block_rsv->lock);
5577         if (num_bytes == (u64)-1)
5578                 num_bytes = block_rsv->size;
5579         block_rsv->size -= num_bytes;
5580         if (block_rsv->reserved >= block_rsv->size) {
5581                 num_bytes = block_rsv->reserved - block_rsv->size;
5582                 block_rsv->reserved = block_rsv->size;
5583                 block_rsv->full = 1;
5584         } else {
5585                 num_bytes = 0;
5586         }
5587         spin_unlock(&block_rsv->lock);
5588
5589         ret = num_bytes;
5590         if (num_bytes > 0) {
5591                 if (dest) {
5592                         spin_lock(&dest->lock);
5593                         if (!dest->full) {
5594                                 u64 bytes_to_add;
5595
5596                                 bytes_to_add = dest->size - dest->reserved;
5597                                 bytes_to_add = min(num_bytes, bytes_to_add);
5598                                 dest->reserved += bytes_to_add;
5599                                 if (dest->reserved >= dest->size)
5600                                         dest->full = 1;
5601                                 num_bytes -= bytes_to_add;
5602                         }
5603                         spin_unlock(&dest->lock);
5604                 }
5605                 if (num_bytes)
5606                         space_info_add_old_bytes(fs_info, space_info,
5607                                                  num_bytes);
5608         }
5609         return ret;
5610 }
5611
5612 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5613                             struct btrfs_block_rsv *dst, u64 num_bytes,
5614                             int update_size)
5615 {
5616         int ret;
5617
5618         ret = block_rsv_use_bytes(src, num_bytes);
5619         if (ret)
5620                 return ret;
5621
5622         block_rsv_add_bytes(dst, num_bytes, update_size);
5623         return 0;
5624 }
5625
5626 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5627 {
5628         memset(rsv, 0, sizeof(*rsv));
5629         spin_lock_init(&rsv->lock);
5630         rsv->type = type;
5631 }
5632
5633 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5634                                    struct btrfs_block_rsv *rsv,
5635                                    unsigned short type)
5636 {
5637         btrfs_init_block_rsv(rsv, type);
5638         rsv->space_info = __find_space_info(fs_info,
5639                                             BTRFS_BLOCK_GROUP_METADATA);
5640 }
5641
5642 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5643                                               unsigned short type)
5644 {
5645         struct btrfs_block_rsv *block_rsv;
5646
5647         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5648         if (!block_rsv)
5649                 return NULL;
5650
5651         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5652         return block_rsv;
5653 }
5654
5655 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5656                           struct btrfs_block_rsv *rsv)
5657 {
5658         if (!rsv)
5659                 return;
5660         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5661         kfree(rsv);
5662 }
5663
5664 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5665 {
5666         kfree(rsv);
5667 }
5668
5669 int btrfs_block_rsv_add(struct btrfs_root *root,
5670                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5671                         enum btrfs_reserve_flush_enum flush)
5672 {
5673         int ret;
5674
5675         if (num_bytes == 0)
5676                 return 0;
5677
5678         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5679         if (!ret) {
5680                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5681                 return 0;
5682         }
5683
5684         return ret;
5685 }
5686
5687 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5688 {
5689         u64 num_bytes = 0;
5690         int ret = -ENOSPC;
5691
5692         if (!block_rsv)
5693                 return 0;
5694
5695         spin_lock(&block_rsv->lock);
5696         num_bytes = div_factor(block_rsv->size, min_factor);
5697         if (block_rsv->reserved >= num_bytes)
5698                 ret = 0;
5699         spin_unlock(&block_rsv->lock);
5700
5701         return ret;
5702 }
5703
5704 int btrfs_block_rsv_refill(struct btrfs_root *root,
5705                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5706                            enum btrfs_reserve_flush_enum flush)
5707 {
5708         u64 num_bytes = 0;
5709         int ret = -ENOSPC;
5710
5711         if (!block_rsv)
5712                 return 0;
5713
5714         spin_lock(&block_rsv->lock);
5715         num_bytes = min_reserved;
5716         if (block_rsv->reserved >= num_bytes)
5717                 ret = 0;
5718         else
5719                 num_bytes -= block_rsv->reserved;
5720         spin_unlock(&block_rsv->lock);
5721
5722         if (!ret)
5723                 return 0;
5724
5725         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5726         if (!ret) {
5727                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5728                 return 0;
5729         }
5730
5731         return ret;
5732 }
5733
5734 /**
5735  * btrfs_inode_rsv_refill - refill the inode block rsv.
5736  * @inode - the inode we are refilling.
5737  * @flush - the flusing restriction.
5738  *
5739  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5740  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5741  * or return if we already have enough space.  This will also handle the resreve
5742  * tracepoint for the reserved amount.
5743  */
5744 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5745                                   enum btrfs_reserve_flush_enum flush)
5746 {
5747         struct btrfs_root *root = inode->root;
5748         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5749         u64 num_bytes = 0;
5750         int ret = -ENOSPC;
5751
5752         spin_lock(&block_rsv->lock);
5753         if (block_rsv->reserved < block_rsv->size)
5754                 num_bytes = block_rsv->size - block_rsv->reserved;
5755         spin_unlock(&block_rsv->lock);
5756
5757         if (num_bytes == 0)
5758                 return 0;
5759
5760         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5761         if (!ret) {
5762                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5763                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5764                                               btrfs_ino(inode), num_bytes, 1);
5765         }
5766         return ret;
5767 }
5768
5769 /**
5770  * btrfs_inode_rsv_release - release any excessive reservation.
5771  * @inode - the inode we need to release from.
5772  *
5773  * This is the same as btrfs_block_rsv_release, except that it handles the
5774  * tracepoint for the reservation.
5775  */
5776 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5777 {
5778         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5779         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5780         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5781         u64 released = 0;
5782
5783         /*
5784          * Since we statically set the block_rsv->size we just want to say we
5785          * are releasing 0 bytes, and then we'll just get the reservation over
5786          * the size free'd.
5787          */
5788         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5789         if (released > 0)
5790                 trace_btrfs_space_reservation(fs_info, "delalloc",
5791                                               btrfs_ino(inode), released, 0);
5792 }
5793
5794 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5795                              struct btrfs_block_rsv *block_rsv,
5796                              u64 num_bytes)
5797 {
5798         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5799
5800         if (global_rsv == block_rsv ||
5801             block_rsv->space_info != global_rsv->space_info)
5802                 global_rsv = NULL;
5803         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5804 }
5805
5806 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5807 {
5808         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5809         struct btrfs_space_info *sinfo = block_rsv->space_info;
5810         u64 num_bytes;
5811
5812         /*
5813          * The global block rsv is based on the size of the extent tree, the
5814          * checksum tree and the root tree.  If the fs is empty we want to set
5815          * it to a minimal amount for safety.
5816          */
5817         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5818                 btrfs_root_used(&fs_info->csum_root->root_item) +
5819                 btrfs_root_used(&fs_info->tree_root->root_item);
5820         num_bytes = max_t(u64, num_bytes, SZ_16M);
5821
5822         spin_lock(&sinfo->lock);
5823         spin_lock(&block_rsv->lock);
5824
5825         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5826
5827         if (block_rsv->reserved < block_rsv->size) {
5828                 num_bytes = btrfs_space_info_used(sinfo, true);
5829                 if (sinfo->total_bytes > num_bytes) {
5830                         num_bytes = sinfo->total_bytes - num_bytes;
5831                         num_bytes = min(num_bytes,
5832                                         block_rsv->size - block_rsv->reserved);
5833                         block_rsv->reserved += num_bytes;
5834                         sinfo->bytes_may_use += num_bytes;
5835                         trace_btrfs_space_reservation(fs_info, "space_info",
5836                                                       sinfo->flags, num_bytes,
5837                                                       1);
5838                 }
5839         } else if (block_rsv->reserved > block_rsv->size) {
5840                 num_bytes = block_rsv->reserved - block_rsv->size;
5841                 sinfo->bytes_may_use -= num_bytes;
5842                 trace_btrfs_space_reservation(fs_info, "space_info",
5843                                       sinfo->flags, num_bytes, 0);
5844                 block_rsv->reserved = block_rsv->size;
5845         }
5846
5847         if (block_rsv->reserved == block_rsv->size)
5848                 block_rsv->full = 1;
5849         else
5850                 block_rsv->full = 0;
5851
5852         spin_unlock(&block_rsv->lock);
5853         spin_unlock(&sinfo->lock);
5854 }
5855
5856 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5857 {
5858         struct btrfs_space_info *space_info;
5859
5860         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5861         fs_info->chunk_block_rsv.space_info = space_info;
5862
5863         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5864         fs_info->global_block_rsv.space_info = space_info;
5865         fs_info->trans_block_rsv.space_info = space_info;
5866         fs_info->empty_block_rsv.space_info = space_info;
5867         fs_info->delayed_block_rsv.space_info = space_info;
5868
5869         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5870         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5871         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5872         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5873         if (fs_info->quota_root)
5874                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5875         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5876
5877         update_global_block_rsv(fs_info);
5878 }
5879
5880 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5881 {
5882         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5883                                 (u64)-1);
5884         WARN_ON(fs_info->trans_block_rsv.size > 0);
5885         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5886         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5887         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5888         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5889         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5890 }
5891
5892 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5893                                   struct btrfs_fs_info *fs_info)
5894 {
5895         if (!trans->block_rsv) {
5896                 ASSERT(!trans->bytes_reserved);
5897                 return;
5898         }
5899
5900         if (!trans->bytes_reserved)
5901                 return;
5902
5903         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5904         trace_btrfs_space_reservation(fs_info, "transaction",
5905                                       trans->transid, trans->bytes_reserved, 0);
5906         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5907                                 trans->bytes_reserved);
5908         trans->bytes_reserved = 0;
5909 }
5910
5911 /*
5912  * To be called after all the new block groups attached to the transaction
5913  * handle have been created (btrfs_create_pending_block_groups()).
5914  */
5915 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5916 {
5917         struct btrfs_fs_info *fs_info = trans->fs_info;
5918
5919         if (!trans->chunk_bytes_reserved)
5920                 return;
5921
5922         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5923
5924         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5925                                 trans->chunk_bytes_reserved);
5926         trans->chunk_bytes_reserved = 0;
5927 }
5928
5929 /* Can only return 0 or -ENOSPC */
5930 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5931                                   struct btrfs_inode *inode)
5932 {
5933         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5934         struct btrfs_root *root = inode->root;
5935         /*
5936          * We always use trans->block_rsv here as we will have reserved space
5937          * for our orphan when starting the transaction, using get_block_rsv()
5938          * here will sometimes make us choose the wrong block rsv as we could be
5939          * doing a reloc inode for a non refcounted root.
5940          */
5941         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5942         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5943
5944         /*
5945          * We need to hold space in order to delete our orphan item once we've
5946          * added it, so this takes the reservation so we can release it later
5947          * when we are truly done with the orphan item.
5948          */
5949         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5950
5951         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5952                         num_bytes, 1);
5953         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5954 }
5955
5956 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5957 {
5958         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5959         struct btrfs_root *root = inode->root;
5960         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5961
5962         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5963                         num_bytes, 0);
5964         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5965 }
5966
5967 /*
5968  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5969  * root: the root of the parent directory
5970  * rsv: block reservation
5971  * items: the number of items that we need do reservation
5972  * qgroup_reserved: used to return the reserved size in qgroup
5973  *
5974  * This function is used to reserve the space for snapshot/subvolume
5975  * creation and deletion. Those operations are different with the
5976  * common file/directory operations, they change two fs/file trees
5977  * and root tree, the number of items that the qgroup reserves is
5978  * different with the free space reservation. So we can not use
5979  * the space reservation mechanism in start_transaction().
5980  */
5981 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5982                                      struct btrfs_block_rsv *rsv,
5983                                      int items,
5984                                      u64 *qgroup_reserved,
5985                                      bool use_global_rsv)
5986 {
5987         u64 num_bytes;
5988         int ret;
5989         struct btrfs_fs_info *fs_info = root->fs_info;
5990         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5991
5992         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5993                 /* One for parent inode, two for dir entries */
5994                 num_bytes = 3 * fs_info->nodesize;
5995                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5996                 if (ret)
5997                         return ret;
5998         } else {
5999                 num_bytes = 0;
6000         }
6001
6002         *qgroup_reserved = num_bytes;
6003
6004         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6005         rsv->space_info = __find_space_info(fs_info,
6006                                             BTRFS_BLOCK_GROUP_METADATA);
6007         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6008                                   BTRFS_RESERVE_FLUSH_ALL);
6009
6010         if (ret == -ENOSPC && use_global_rsv)
6011                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6012
6013         if (ret && *qgroup_reserved)
6014                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6015
6016         return ret;
6017 }
6018
6019 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6020                                       struct btrfs_block_rsv *rsv)
6021 {
6022         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6023 }
6024
6025 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6026                                                  struct btrfs_inode *inode)
6027 {
6028         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6029         u64 reserve_size = 0;
6030         u64 csum_leaves;
6031         unsigned outstanding_extents;
6032
6033         lockdep_assert_held(&inode->lock);
6034         outstanding_extents = inode->outstanding_extents;
6035         if (outstanding_extents)
6036                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6037                                                 outstanding_extents + 1);
6038         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6039                                                  inode->csum_bytes);
6040         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6041                                                        csum_leaves);
6042
6043         spin_lock(&block_rsv->lock);
6044         block_rsv->size = reserve_size;
6045         spin_unlock(&block_rsv->lock);
6046 }
6047
6048 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6049 {
6050         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6051         struct btrfs_root *root = inode->root;
6052         unsigned nr_extents;
6053         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6054         int ret = 0;
6055         bool delalloc_lock = true;
6056
6057         /* If we are a free space inode we need to not flush since we will be in
6058          * the middle of a transaction commit.  We also don't need the delalloc
6059          * mutex since we won't race with anybody.  We need this mostly to make
6060          * lockdep shut its filthy mouth.
6061          *
6062          * If we have a transaction open (can happen if we call truncate_block
6063          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6064          */
6065         if (btrfs_is_free_space_inode(inode)) {
6066                 flush = BTRFS_RESERVE_NO_FLUSH;
6067                 delalloc_lock = false;
6068         } else if (current->journal_info) {
6069                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6070         }
6071
6072         if (flush != BTRFS_RESERVE_NO_FLUSH &&
6073             btrfs_transaction_in_commit(fs_info))
6074                 schedule_timeout(1);
6075
6076         if (delalloc_lock)
6077                 mutex_lock(&inode->delalloc_mutex);
6078
6079         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6080
6081         /* Add our new extents and calculate the new rsv size. */
6082         spin_lock(&inode->lock);
6083         nr_extents = count_max_extents(num_bytes);
6084         btrfs_mod_outstanding_extents(inode, nr_extents);
6085         inode->csum_bytes += num_bytes;
6086         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6087         spin_unlock(&inode->lock);
6088
6089         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6090                 ret = btrfs_qgroup_reserve_meta(root,
6091                                 nr_extents * fs_info->nodesize, true);
6092                 if (ret)
6093                         goto out_fail;
6094         }
6095
6096         ret = btrfs_inode_rsv_refill(inode, flush);
6097         if (unlikely(ret)) {
6098                 btrfs_qgroup_free_meta(root,
6099                                        nr_extents * fs_info->nodesize);
6100                 goto out_fail;
6101         }
6102
6103         if (delalloc_lock)
6104                 mutex_unlock(&inode->delalloc_mutex);
6105         return 0;
6106
6107 out_fail:
6108         spin_lock(&inode->lock);
6109         nr_extents = count_max_extents(num_bytes);
6110         btrfs_mod_outstanding_extents(inode, -nr_extents);
6111         inode->csum_bytes -= num_bytes;
6112         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6113         spin_unlock(&inode->lock);
6114
6115         btrfs_inode_rsv_release(inode);
6116         if (delalloc_lock)
6117                 mutex_unlock(&inode->delalloc_mutex);
6118         return ret;
6119 }
6120
6121 /**
6122  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6123  * @inode: the inode to release the reservation for.
6124  * @num_bytes: the number of bytes we are releasing.
6125  *
6126  * This will release the metadata reservation for an inode.  This can be called
6127  * once we complete IO for a given set of bytes to release their metadata
6128  * reservations, or on error for the same reason.
6129  */
6130 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6131 {
6132         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6133
6134         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6135         spin_lock(&inode->lock);
6136         inode->csum_bytes -= num_bytes;
6137         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6138         spin_unlock(&inode->lock);
6139
6140         if (btrfs_is_testing(fs_info))
6141                 return;
6142
6143         btrfs_inode_rsv_release(inode);
6144 }
6145
6146 /**
6147  * btrfs_delalloc_release_extents - release our outstanding_extents
6148  * @inode: the inode to balance the reservation for.
6149  * @num_bytes: the number of bytes we originally reserved with
6150  *
6151  * When we reserve space we increase outstanding_extents for the extents we may
6152  * add.  Once we've set the range as delalloc or created our ordered extents we
6153  * have outstanding_extents to track the real usage, so we use this to free our
6154  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6155  * with btrfs_delalloc_reserve_metadata.
6156  */
6157 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6158 {
6159         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6160         unsigned num_extents;
6161
6162         spin_lock(&inode->lock);
6163         num_extents = count_max_extents(num_bytes);
6164         btrfs_mod_outstanding_extents(inode, -num_extents);
6165         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6166         spin_unlock(&inode->lock);
6167
6168         if (btrfs_is_testing(fs_info))
6169                 return;
6170
6171         btrfs_inode_rsv_release(inode);
6172 }
6173
6174 /**
6175  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6176  * delalloc
6177  * @inode: inode we're writing to
6178  * @start: start range we are writing to
6179  * @len: how long the range we are writing to
6180  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6181  *            current reservation.
6182  *
6183  * This will do the following things
6184  *
6185  * o reserve space in data space info for num bytes
6186  *   and reserve precious corresponding qgroup space
6187  *   (Done in check_data_free_space)
6188  *
6189  * o reserve space for metadata space, based on the number of outstanding
6190  *   extents and how much csums will be needed
6191  *   also reserve metadata space in a per root over-reserve method.
6192  * o add to the inodes->delalloc_bytes
6193  * o add it to the fs_info's delalloc inodes list.
6194  *   (Above 3 all done in delalloc_reserve_metadata)
6195  *
6196  * Return 0 for success
6197  * Return <0 for error(-ENOSPC or -EQUOT)
6198  */
6199 int btrfs_delalloc_reserve_space(struct inode *inode,
6200                         struct extent_changeset **reserved, u64 start, u64 len)
6201 {
6202         int ret;
6203
6204         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6205         if (ret < 0)
6206                 return ret;
6207         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6208         if (ret < 0)
6209                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6210         return ret;
6211 }
6212
6213 /**
6214  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6215  * @inode: inode we're releasing space for
6216  * @start: start position of the space already reserved
6217  * @len: the len of the space already reserved
6218  * @release_bytes: the len of the space we consumed or didn't use
6219  *
6220  * This function will release the metadata space that was not used and will
6221  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6222  * list if there are no delalloc bytes left.
6223  * Also it will handle the qgroup reserved space.
6224  */
6225 void btrfs_delalloc_release_space(struct inode *inode,
6226                                   struct extent_changeset *reserved,
6227                                   u64 start, u64 len)
6228 {
6229         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6230         btrfs_free_reserved_data_space(inode, reserved, start, len);
6231 }
6232
6233 static int update_block_group(struct btrfs_trans_handle *trans,
6234                               struct btrfs_fs_info *info, u64 bytenr,
6235                               u64 num_bytes, int alloc)
6236 {
6237         struct btrfs_block_group_cache *cache = NULL;
6238         u64 total = num_bytes;
6239         u64 old_val;
6240         u64 byte_in_group;
6241         int factor;
6242
6243         /* block accounting for super block */
6244         spin_lock(&info->delalloc_root_lock);
6245         old_val = btrfs_super_bytes_used(info->super_copy);
6246         if (alloc)
6247                 old_val += num_bytes;
6248         else
6249                 old_val -= num_bytes;
6250         btrfs_set_super_bytes_used(info->super_copy, old_val);
6251         spin_unlock(&info->delalloc_root_lock);
6252
6253         while (total) {
6254                 cache = btrfs_lookup_block_group(info, bytenr);
6255                 if (!cache)
6256                         return -ENOENT;
6257                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6258                                     BTRFS_BLOCK_GROUP_RAID1 |
6259                                     BTRFS_BLOCK_GROUP_RAID10))
6260                         factor = 2;
6261                 else
6262                         factor = 1;
6263                 /*
6264                  * If this block group has free space cache written out, we
6265                  * need to make sure to load it if we are removing space.  This
6266                  * is because we need the unpinning stage to actually add the
6267                  * space back to the block group, otherwise we will leak space.
6268                  */
6269                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6270                         cache_block_group(cache, 1);
6271
6272                 byte_in_group = bytenr - cache->key.objectid;
6273                 WARN_ON(byte_in_group > cache->key.offset);
6274
6275                 spin_lock(&cache->space_info->lock);
6276                 spin_lock(&cache->lock);
6277
6278                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6279                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6280                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6281
6282                 old_val = btrfs_block_group_used(&cache->item);
6283                 num_bytes = min(total, cache->key.offset - byte_in_group);
6284                 if (alloc) {
6285                         old_val += num_bytes;
6286                         btrfs_set_block_group_used(&cache->item, old_val);
6287                         cache->reserved -= num_bytes;
6288                         cache->space_info->bytes_reserved -= num_bytes;
6289                         cache->space_info->bytes_used += num_bytes;
6290                         cache->space_info->disk_used += num_bytes * factor;
6291                         spin_unlock(&cache->lock);
6292                         spin_unlock(&cache->space_info->lock);
6293                 } else {
6294                         old_val -= num_bytes;
6295                         btrfs_set_block_group_used(&cache->item, old_val);
6296                         cache->pinned += num_bytes;
6297                         cache->space_info->bytes_pinned += num_bytes;
6298                         cache->space_info->bytes_used -= num_bytes;
6299                         cache->space_info->disk_used -= num_bytes * factor;
6300                         spin_unlock(&cache->lock);
6301                         spin_unlock(&cache->space_info->lock);
6302
6303                         trace_btrfs_space_reservation(info, "pinned",
6304                                                       cache->space_info->flags,
6305                                                       num_bytes, 1);
6306                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6307                                            num_bytes);
6308                         set_extent_dirty(info->pinned_extents,
6309                                          bytenr, bytenr + num_bytes - 1,
6310                                          GFP_NOFS | __GFP_NOFAIL);
6311                 }
6312
6313                 spin_lock(&trans->transaction->dirty_bgs_lock);
6314                 if (list_empty(&cache->dirty_list)) {
6315                         list_add_tail(&cache->dirty_list,
6316                                       &trans->transaction->dirty_bgs);
6317                                 trans->transaction->num_dirty_bgs++;
6318                         btrfs_get_block_group(cache);
6319                 }
6320                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6321
6322                 /*
6323                  * No longer have used bytes in this block group, queue it for
6324                  * deletion. We do this after adding the block group to the
6325                  * dirty list to avoid races between cleaner kthread and space
6326                  * cache writeout.
6327                  */
6328                 if (!alloc && old_val == 0) {
6329                         spin_lock(&info->unused_bgs_lock);
6330                         if (list_empty(&cache->bg_list)) {
6331                                 btrfs_get_block_group(cache);
6332                                 list_add_tail(&cache->bg_list,
6333                                               &info->unused_bgs);
6334                         }
6335                         spin_unlock(&info->unused_bgs_lock);
6336                 }
6337
6338                 btrfs_put_block_group(cache);
6339                 total -= num_bytes;
6340                 bytenr += num_bytes;
6341         }
6342         return 0;
6343 }
6344
6345 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6346 {
6347         struct btrfs_block_group_cache *cache;
6348         u64 bytenr;
6349
6350         spin_lock(&fs_info->block_group_cache_lock);
6351         bytenr = fs_info->first_logical_byte;
6352         spin_unlock(&fs_info->block_group_cache_lock);
6353
6354         if (bytenr < (u64)-1)
6355                 return bytenr;
6356
6357         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6358         if (!cache)
6359                 return 0;
6360
6361         bytenr = cache->key.objectid;
6362         btrfs_put_block_group(cache);
6363
6364         return bytenr;
6365 }
6366
6367 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6368                            struct btrfs_block_group_cache *cache,
6369                            u64 bytenr, u64 num_bytes, int reserved)
6370 {
6371         spin_lock(&cache->space_info->lock);
6372         spin_lock(&cache->lock);
6373         cache->pinned += num_bytes;
6374         cache->space_info->bytes_pinned += num_bytes;
6375         if (reserved) {
6376                 cache->reserved -= num_bytes;
6377                 cache->space_info->bytes_reserved -= num_bytes;
6378         }
6379         spin_unlock(&cache->lock);
6380         spin_unlock(&cache->space_info->lock);
6381
6382         trace_btrfs_space_reservation(fs_info, "pinned",
6383                                       cache->space_info->flags, num_bytes, 1);
6384         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6385         set_extent_dirty(fs_info->pinned_extents, bytenr,
6386                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6387         return 0;
6388 }
6389
6390 /*
6391  * this function must be called within transaction
6392  */
6393 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6394                      u64 bytenr, u64 num_bytes, int reserved)
6395 {
6396         struct btrfs_block_group_cache *cache;
6397
6398         cache = btrfs_lookup_block_group(fs_info, bytenr);
6399         BUG_ON(!cache); /* Logic error */
6400
6401         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6402
6403         btrfs_put_block_group(cache);
6404         return 0;
6405 }
6406
6407 /*
6408  * this function must be called within transaction
6409  */
6410 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6411                                     u64 bytenr, u64 num_bytes)
6412 {
6413         struct btrfs_block_group_cache *cache;
6414         int ret;
6415
6416         cache = btrfs_lookup_block_group(fs_info, bytenr);
6417         if (!cache)
6418                 return -EINVAL;
6419
6420         /*
6421          * pull in the free space cache (if any) so that our pin
6422          * removes the free space from the cache.  We have load_only set
6423          * to one because the slow code to read in the free extents does check
6424          * the pinned extents.
6425          */
6426         cache_block_group(cache, 1);
6427
6428         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6429
6430         /* remove us from the free space cache (if we're there at all) */
6431         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6432         btrfs_put_block_group(cache);
6433         return ret;
6434 }
6435
6436 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6437                                    u64 start, u64 num_bytes)
6438 {
6439         int ret;
6440         struct btrfs_block_group_cache *block_group;
6441         struct btrfs_caching_control *caching_ctl;
6442
6443         block_group = btrfs_lookup_block_group(fs_info, start);
6444         if (!block_group)
6445                 return -EINVAL;
6446
6447         cache_block_group(block_group, 0);
6448         caching_ctl = get_caching_control(block_group);
6449
6450         if (!caching_ctl) {
6451                 /* Logic error */
6452                 BUG_ON(!block_group_cache_done(block_group));
6453                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6454         } else {
6455                 mutex_lock(&caching_ctl->mutex);
6456
6457                 if (start >= caching_ctl->progress) {
6458                         ret = add_excluded_extent(fs_info, start, num_bytes);
6459                 } else if (start + num_bytes <= caching_ctl->progress) {
6460                         ret = btrfs_remove_free_space(block_group,
6461                                                       start, num_bytes);
6462                 } else {
6463                         num_bytes = caching_ctl->progress - start;
6464                         ret = btrfs_remove_free_space(block_group,
6465                                                       start, num_bytes);
6466                         if (ret)
6467                                 goto out_lock;
6468
6469                         num_bytes = (start + num_bytes) -
6470                                 caching_ctl->progress;
6471                         start = caching_ctl->progress;
6472                         ret = add_excluded_extent(fs_info, start, num_bytes);
6473                 }
6474 out_lock:
6475                 mutex_unlock(&caching_ctl->mutex);
6476                 put_caching_control(caching_ctl);
6477         }
6478         btrfs_put_block_group(block_group);
6479         return ret;
6480 }
6481
6482 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6483                                  struct extent_buffer *eb)
6484 {
6485         struct btrfs_file_extent_item *item;
6486         struct btrfs_key key;
6487         int found_type;
6488         int i;
6489
6490         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6491                 return 0;
6492
6493         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6494                 btrfs_item_key_to_cpu(eb, &key, i);
6495                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6496                         continue;
6497                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6498                 found_type = btrfs_file_extent_type(eb, item);
6499                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6500                         continue;
6501                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6502                         continue;
6503                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6504                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6505                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6506         }
6507
6508         return 0;
6509 }
6510
6511 static void
6512 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6513 {
6514         atomic_inc(&bg->reservations);
6515 }
6516
6517 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6518                                         const u64 start)
6519 {
6520         struct btrfs_block_group_cache *bg;
6521
6522         bg = btrfs_lookup_block_group(fs_info, start);
6523         ASSERT(bg);
6524         if (atomic_dec_and_test(&bg->reservations))
6525                 wake_up_atomic_t(&bg->reservations);
6526         btrfs_put_block_group(bg);
6527 }
6528
6529 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6530 {
6531         struct btrfs_space_info *space_info = bg->space_info;
6532
6533         ASSERT(bg->ro);
6534
6535         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6536                 return;
6537
6538         /*
6539          * Our block group is read only but before we set it to read only,
6540          * some task might have had allocated an extent from it already, but it
6541          * has not yet created a respective ordered extent (and added it to a
6542          * root's list of ordered extents).
6543          * Therefore wait for any task currently allocating extents, since the
6544          * block group's reservations counter is incremented while a read lock
6545          * on the groups' semaphore is held and decremented after releasing
6546          * the read access on that semaphore and creating the ordered extent.
6547          */
6548         down_write(&space_info->groups_sem);
6549         up_write(&space_info->groups_sem);
6550
6551         wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6552                          TASK_UNINTERRUPTIBLE);
6553 }
6554
6555 /**
6556  * btrfs_add_reserved_bytes - update the block_group and space info counters
6557  * @cache:      The cache we are manipulating
6558  * @ram_bytes:  The number of bytes of file content, and will be same to
6559  *              @num_bytes except for the compress path.
6560  * @num_bytes:  The number of bytes in question
6561  * @delalloc:   The blocks are allocated for the delalloc write
6562  *
6563  * This is called by the allocator when it reserves space. If this is a
6564  * reservation and the block group has become read only we cannot make the
6565  * reservation and return -EAGAIN, otherwise this function always succeeds.
6566  */
6567 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6568                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6569 {
6570         struct btrfs_space_info *space_info = cache->space_info;
6571         int ret = 0;
6572
6573         spin_lock(&space_info->lock);
6574         spin_lock(&cache->lock);
6575         if (cache->ro) {
6576                 ret = -EAGAIN;
6577         } else {
6578                 cache->reserved += num_bytes;
6579                 space_info->bytes_reserved += num_bytes;
6580
6581                 trace_btrfs_space_reservation(cache->fs_info,
6582                                 "space_info", space_info->flags,
6583                                 ram_bytes, 0);
6584                 space_info->bytes_may_use -= ram_bytes;
6585                 if (delalloc)
6586                         cache->delalloc_bytes += num_bytes;
6587         }
6588         spin_unlock(&cache->lock);
6589         spin_unlock(&space_info->lock);
6590         return ret;
6591 }
6592
6593 /**
6594  * btrfs_free_reserved_bytes - update the block_group and space info counters
6595  * @cache:      The cache we are manipulating
6596  * @num_bytes:  The number of bytes in question
6597  * @delalloc:   The blocks are allocated for the delalloc write
6598  *
6599  * This is called by somebody who is freeing space that was never actually used
6600  * on disk.  For example if you reserve some space for a new leaf in transaction
6601  * A and before transaction A commits you free that leaf, you call this with
6602  * reserve set to 0 in order to clear the reservation.
6603  */
6604
6605 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6606                                      u64 num_bytes, int delalloc)
6607 {
6608         struct btrfs_space_info *space_info = cache->space_info;
6609         int ret = 0;
6610
6611         spin_lock(&space_info->lock);
6612         spin_lock(&cache->lock);
6613         if (cache->ro)
6614                 space_info->bytes_readonly += num_bytes;
6615         cache->reserved -= num_bytes;
6616         space_info->bytes_reserved -= num_bytes;
6617
6618         if (delalloc)
6619                 cache->delalloc_bytes -= num_bytes;
6620         spin_unlock(&cache->lock);
6621         spin_unlock(&space_info->lock);
6622         return ret;
6623 }
6624 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6625 {
6626         struct btrfs_caching_control *next;
6627         struct btrfs_caching_control *caching_ctl;
6628         struct btrfs_block_group_cache *cache;
6629
6630         down_write(&fs_info->commit_root_sem);
6631
6632         list_for_each_entry_safe(caching_ctl, next,
6633                                  &fs_info->caching_block_groups, list) {
6634                 cache = caching_ctl->block_group;
6635                 if (block_group_cache_done(cache)) {
6636                         cache->last_byte_to_unpin = (u64)-1;
6637                         list_del_init(&caching_ctl->list);
6638                         put_caching_control(caching_ctl);
6639                 } else {
6640                         cache->last_byte_to_unpin = caching_ctl->progress;
6641                 }
6642         }
6643
6644         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6645                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6646         else
6647                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6648
6649         up_write(&fs_info->commit_root_sem);
6650
6651         update_global_block_rsv(fs_info);
6652 }
6653
6654 /*
6655  * Returns the free cluster for the given space info and sets empty_cluster to
6656  * what it should be based on the mount options.
6657  */
6658 static struct btrfs_free_cluster *
6659 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6660                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6661 {
6662         struct btrfs_free_cluster *ret = NULL;
6663
6664         *empty_cluster = 0;
6665         if (btrfs_mixed_space_info(space_info))
6666                 return ret;
6667
6668         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6669                 ret = &fs_info->meta_alloc_cluster;
6670                 if (btrfs_test_opt(fs_info, SSD))
6671                         *empty_cluster = SZ_2M;
6672                 else
6673                         *empty_cluster = SZ_64K;
6674         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6675                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6676                 *empty_cluster = SZ_2M;
6677                 ret = &fs_info->data_alloc_cluster;
6678         }
6679
6680         return ret;
6681 }
6682
6683 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6684                               u64 start, u64 end,
6685                               const bool return_free_space)
6686 {
6687         struct btrfs_block_group_cache *cache = NULL;
6688         struct btrfs_space_info *space_info;
6689         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6690         struct btrfs_free_cluster *cluster = NULL;
6691         u64 len;
6692         u64 total_unpinned = 0;
6693         u64 empty_cluster = 0;
6694         bool readonly;
6695
6696         while (start <= end) {
6697                 readonly = false;
6698                 if (!cache ||
6699                     start >= cache->key.objectid + cache->key.offset) {
6700                         if (cache)
6701                                 btrfs_put_block_group(cache);
6702                         total_unpinned = 0;
6703                         cache = btrfs_lookup_block_group(fs_info, start);
6704                         BUG_ON(!cache); /* Logic error */
6705
6706                         cluster = fetch_cluster_info(fs_info,
6707                                                      cache->space_info,
6708                                                      &empty_cluster);
6709                         empty_cluster <<= 1;
6710                 }
6711
6712                 len = cache->key.objectid + cache->key.offset - start;
6713                 len = min(len, end + 1 - start);
6714
6715                 if (start < cache->last_byte_to_unpin) {
6716                         len = min(len, cache->last_byte_to_unpin - start);
6717                         if (return_free_space)
6718                                 btrfs_add_free_space(cache, start, len);
6719                 }
6720
6721                 start += len;
6722                 total_unpinned += len;
6723                 space_info = cache->space_info;
6724
6725                 /*
6726                  * If this space cluster has been marked as fragmented and we've
6727                  * unpinned enough in this block group to potentially allow a
6728                  * cluster to be created inside of it go ahead and clear the
6729                  * fragmented check.
6730                  */
6731                 if (cluster && cluster->fragmented &&
6732                     total_unpinned > empty_cluster) {
6733                         spin_lock(&cluster->lock);
6734                         cluster->fragmented = 0;
6735                         spin_unlock(&cluster->lock);
6736                 }
6737
6738                 spin_lock(&space_info->lock);
6739                 spin_lock(&cache->lock);
6740                 cache->pinned -= len;
6741                 space_info->bytes_pinned -= len;
6742
6743                 trace_btrfs_space_reservation(fs_info, "pinned",
6744                                               space_info->flags, len, 0);
6745                 space_info->max_extent_size = 0;
6746                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6747                 if (cache->ro) {
6748                         space_info->bytes_readonly += len;
6749                         readonly = true;
6750                 }
6751                 spin_unlock(&cache->lock);
6752                 if (!readonly && return_free_space &&
6753                     global_rsv->space_info == space_info) {
6754                         u64 to_add = len;
6755
6756                         spin_lock(&global_rsv->lock);
6757                         if (!global_rsv->full) {
6758                                 to_add = min(len, global_rsv->size -
6759                                              global_rsv->reserved);
6760                                 global_rsv->reserved += to_add;
6761                                 space_info->bytes_may_use += to_add;
6762                                 if (global_rsv->reserved >= global_rsv->size)
6763                                         global_rsv->full = 1;
6764                                 trace_btrfs_space_reservation(fs_info,
6765                                                               "space_info",
6766                                                               space_info->flags,
6767                                                               to_add, 1);
6768                                 len -= to_add;
6769                         }
6770                         spin_unlock(&global_rsv->lock);
6771                         /* Add to any tickets we may have */
6772                         if (len)
6773                                 space_info_add_new_bytes(fs_info, space_info,
6774                                                          len);
6775                 }
6776                 spin_unlock(&space_info->lock);
6777         }
6778
6779         if (cache)
6780                 btrfs_put_block_group(cache);
6781         return 0;
6782 }
6783
6784 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6785                                struct btrfs_fs_info *fs_info)
6786 {
6787         struct btrfs_block_group_cache *block_group, *tmp;
6788         struct list_head *deleted_bgs;
6789         struct extent_io_tree *unpin;
6790         u64 start;
6791         u64 end;
6792         int ret;
6793
6794         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6795                 unpin = &fs_info->freed_extents[1];
6796         else
6797                 unpin = &fs_info->freed_extents[0];
6798
6799         while (!trans->aborted) {
6800                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6801                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6802                                             EXTENT_DIRTY, NULL);
6803                 if (ret) {
6804                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6805                         break;
6806                 }
6807
6808                 if (btrfs_test_opt(fs_info, DISCARD))
6809                         ret = btrfs_discard_extent(fs_info, start,
6810                                                    end + 1 - start, NULL);
6811
6812                 clear_extent_dirty(unpin, start, end);
6813                 unpin_extent_range(fs_info, start, end, true);
6814                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6815                 cond_resched();
6816         }
6817
6818         /*
6819          * Transaction is finished.  We don't need the lock anymore.  We
6820          * do need to clean up the block groups in case of a transaction
6821          * abort.
6822          */
6823         deleted_bgs = &trans->transaction->deleted_bgs;
6824         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6825                 u64 trimmed = 0;
6826
6827                 ret = -EROFS;
6828                 if (!trans->aborted)
6829                         ret = btrfs_discard_extent(fs_info,
6830                                                    block_group->key.objectid,
6831                                                    block_group->key.offset,
6832                                                    &trimmed);
6833
6834                 list_del_init(&block_group->bg_list);
6835                 btrfs_put_block_group_trimming(block_group);
6836                 btrfs_put_block_group(block_group);
6837
6838                 if (ret) {
6839                         const char *errstr = btrfs_decode_error(ret);
6840                         btrfs_warn(fs_info,
6841                            "discard failed while removing blockgroup: errno=%d %s",
6842                                    ret, errstr);
6843                 }
6844         }
6845
6846         return 0;
6847 }
6848
6849 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6850                                 struct btrfs_fs_info *info,
6851                                 struct btrfs_delayed_ref_node *node, u64 parent,
6852                                 u64 root_objectid, u64 owner_objectid,
6853                                 u64 owner_offset, int refs_to_drop,
6854                                 struct btrfs_delayed_extent_op *extent_op)
6855 {
6856         struct btrfs_key key;
6857         struct btrfs_path *path;
6858         struct btrfs_root *extent_root = info->extent_root;
6859         struct extent_buffer *leaf;
6860         struct btrfs_extent_item *ei;
6861         struct btrfs_extent_inline_ref *iref;
6862         int ret;
6863         int is_data;
6864         int extent_slot = 0;
6865         int found_extent = 0;
6866         int num_to_del = 1;
6867         u32 item_size;
6868         u64 refs;
6869         u64 bytenr = node->bytenr;
6870         u64 num_bytes = node->num_bytes;
6871         int last_ref = 0;
6872         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6873
6874         path = btrfs_alloc_path();
6875         if (!path)
6876                 return -ENOMEM;
6877
6878         path->reada = READA_FORWARD;
6879         path->leave_spinning = 1;
6880
6881         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6882         BUG_ON(!is_data && refs_to_drop != 1);
6883
6884         if (is_data)
6885                 skinny_metadata = false;
6886
6887         ret = lookup_extent_backref(trans, info, path, &iref,
6888                                     bytenr, num_bytes, parent,
6889                                     root_objectid, owner_objectid,
6890                                     owner_offset);
6891         if (ret == 0) {
6892                 extent_slot = path->slots[0];
6893                 while (extent_slot >= 0) {
6894                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6895                                               extent_slot);
6896                         if (key.objectid != bytenr)
6897                                 break;
6898                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6899                             key.offset == num_bytes) {
6900                                 found_extent = 1;
6901                                 break;
6902                         }
6903                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6904                             key.offset == owner_objectid) {
6905                                 found_extent = 1;
6906                                 break;
6907                         }
6908                         if (path->slots[0] - extent_slot > 5)
6909                                 break;
6910                         extent_slot--;
6911                 }
6912 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6913                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6914                 if (found_extent && item_size < sizeof(*ei))
6915                         found_extent = 0;
6916 #endif
6917                 if (!found_extent) {
6918                         BUG_ON(iref);
6919                         ret = remove_extent_backref(trans, info, path, NULL,
6920                                                     refs_to_drop,
6921                                                     is_data, &last_ref);
6922                         if (ret) {
6923                                 btrfs_abort_transaction(trans, ret);
6924                                 goto out;
6925                         }
6926                         btrfs_release_path(path);
6927                         path->leave_spinning = 1;
6928
6929                         key.objectid = bytenr;
6930                         key.type = BTRFS_EXTENT_ITEM_KEY;
6931                         key.offset = num_bytes;
6932
6933                         if (!is_data && skinny_metadata) {
6934                                 key.type = BTRFS_METADATA_ITEM_KEY;
6935                                 key.offset = owner_objectid;
6936                         }
6937
6938                         ret = btrfs_search_slot(trans, extent_root,
6939                                                 &key, path, -1, 1);
6940                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6941                                 /*
6942                                  * Couldn't find our skinny metadata item,
6943                                  * see if we have ye olde extent item.
6944                                  */
6945                                 path->slots[0]--;
6946                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6947                                                       path->slots[0]);
6948                                 if (key.objectid == bytenr &&
6949                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6950                                     key.offset == num_bytes)
6951                                         ret = 0;
6952                         }
6953
6954                         if (ret > 0 && skinny_metadata) {
6955                                 skinny_metadata = false;
6956                                 key.objectid = bytenr;
6957                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6958                                 key.offset = num_bytes;
6959                                 btrfs_release_path(path);
6960                                 ret = btrfs_search_slot(trans, extent_root,
6961                                                         &key, path, -1, 1);
6962                         }
6963
6964                         if (ret) {
6965                                 btrfs_err(info,
6966                                           "umm, got %d back from search, was looking for %llu",
6967                                           ret, bytenr);
6968                                 if (ret > 0)
6969                                         btrfs_print_leaf(path->nodes[0]);
6970                         }
6971                         if (ret < 0) {
6972                                 btrfs_abort_transaction(trans, ret);
6973                                 goto out;
6974                         }
6975                         extent_slot = path->slots[0];
6976                 }
6977         } else if (WARN_ON(ret == -ENOENT)) {
6978                 btrfs_print_leaf(path->nodes[0]);
6979                 btrfs_err(info,
6980                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6981                         bytenr, parent, root_objectid, owner_objectid,
6982                         owner_offset);
6983                 btrfs_abort_transaction(trans, ret);
6984                 goto out;
6985         } else {
6986                 btrfs_abort_transaction(trans, ret);
6987                 goto out;
6988         }
6989
6990         leaf = path->nodes[0];
6991         item_size = btrfs_item_size_nr(leaf, extent_slot);
6992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6993         if (item_size < sizeof(*ei)) {
6994                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6995                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6996                                              0);
6997                 if (ret < 0) {
6998                         btrfs_abort_transaction(trans, ret);
6999                         goto out;
7000                 }
7001
7002                 btrfs_release_path(path);
7003                 path->leave_spinning = 1;
7004
7005                 key.objectid = bytenr;
7006                 key.type = BTRFS_EXTENT_ITEM_KEY;
7007                 key.offset = num_bytes;
7008
7009                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7010                                         -1, 1);
7011                 if (ret) {
7012                         btrfs_err(info,
7013                                   "umm, got %d back from search, was looking for %llu",
7014                                 ret, bytenr);
7015                         btrfs_print_leaf(path->nodes[0]);
7016                 }
7017                 if (ret < 0) {
7018                         btrfs_abort_transaction(trans, ret);
7019                         goto out;
7020                 }
7021
7022                 extent_slot = path->slots[0];
7023                 leaf = path->nodes[0];
7024                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7025         }
7026 #endif
7027         BUG_ON(item_size < sizeof(*ei));
7028         ei = btrfs_item_ptr(leaf, extent_slot,
7029                             struct btrfs_extent_item);
7030         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7031             key.type == BTRFS_EXTENT_ITEM_KEY) {
7032                 struct btrfs_tree_block_info *bi;
7033                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7034                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7035                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7036         }
7037
7038         refs = btrfs_extent_refs(leaf, ei);
7039         if (refs < refs_to_drop) {
7040                 btrfs_err(info,
7041                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7042                           refs_to_drop, refs, bytenr);
7043                 ret = -EINVAL;
7044                 btrfs_abort_transaction(trans, ret);
7045                 goto out;
7046         }
7047         refs -= refs_to_drop;
7048
7049         if (refs > 0) {
7050                 if (extent_op)
7051                         __run_delayed_extent_op(extent_op, leaf, ei);
7052                 /*
7053                  * In the case of inline back ref, reference count will
7054                  * be updated by remove_extent_backref
7055                  */
7056                 if (iref) {
7057                         BUG_ON(!found_extent);
7058                 } else {
7059                         btrfs_set_extent_refs(leaf, ei, refs);
7060                         btrfs_mark_buffer_dirty(leaf);
7061                 }
7062                 if (found_extent) {
7063                         ret = remove_extent_backref(trans, info, path,
7064                                                     iref, refs_to_drop,
7065                                                     is_data, &last_ref);
7066                         if (ret) {
7067                                 btrfs_abort_transaction(trans, ret);
7068                                 goto out;
7069                         }
7070                 }
7071         } else {
7072                 if (found_extent) {
7073                         BUG_ON(is_data && refs_to_drop !=
7074                                extent_data_ref_count(path, iref));
7075                         if (iref) {
7076                                 BUG_ON(path->slots[0] != extent_slot);
7077                         } else {
7078                                 BUG_ON(path->slots[0] != extent_slot + 1);
7079                                 path->slots[0] = extent_slot;
7080                                 num_to_del = 2;
7081                         }
7082                 }
7083
7084                 last_ref = 1;
7085                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7086                                       num_to_del);
7087                 if (ret) {
7088                         btrfs_abort_transaction(trans, ret);
7089                         goto out;
7090                 }
7091                 btrfs_release_path(path);
7092
7093                 if (is_data) {
7094                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7095                         if (ret) {
7096                                 btrfs_abort_transaction(trans, ret);
7097                                 goto out;
7098                         }
7099                 }
7100
7101                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7102                 if (ret) {
7103                         btrfs_abort_transaction(trans, ret);
7104                         goto out;
7105                 }
7106
7107                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7108                 if (ret) {
7109                         btrfs_abort_transaction(trans, ret);
7110                         goto out;
7111                 }
7112         }
7113         btrfs_release_path(path);
7114
7115 out:
7116         btrfs_free_path(path);
7117         return ret;
7118 }
7119
7120 /*
7121  * when we free an block, it is possible (and likely) that we free the last
7122  * delayed ref for that extent as well.  This searches the delayed ref tree for
7123  * a given extent, and if there are no other delayed refs to be processed, it
7124  * removes it from the tree.
7125  */
7126 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7127                                       u64 bytenr)
7128 {
7129         struct btrfs_delayed_ref_head *head;
7130         struct btrfs_delayed_ref_root *delayed_refs;
7131         int ret = 0;
7132
7133         delayed_refs = &trans->transaction->delayed_refs;
7134         spin_lock(&delayed_refs->lock);
7135         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7136         if (!head)
7137                 goto out_delayed_unlock;
7138
7139         spin_lock(&head->lock);
7140         if (!RB_EMPTY_ROOT(&head->ref_tree))
7141                 goto out;
7142
7143         if (head->extent_op) {
7144                 if (!head->must_insert_reserved)
7145                         goto out;
7146                 btrfs_free_delayed_extent_op(head->extent_op);
7147                 head->extent_op = NULL;
7148         }
7149
7150         /*
7151          * waiting for the lock here would deadlock.  If someone else has it
7152          * locked they are already in the process of dropping it anyway
7153          */
7154         if (!mutex_trylock(&head->mutex))
7155                 goto out;
7156
7157         /*
7158          * at this point we have a head with no other entries.  Go
7159          * ahead and process it.
7160          */
7161         rb_erase(&head->href_node, &delayed_refs->href_root);
7162         RB_CLEAR_NODE(&head->href_node);
7163         atomic_dec(&delayed_refs->num_entries);
7164
7165         /*
7166          * we don't take a ref on the node because we're removing it from the
7167          * tree, so we just steal the ref the tree was holding.
7168          */
7169         delayed_refs->num_heads--;
7170         if (head->processing == 0)
7171                 delayed_refs->num_heads_ready--;
7172         head->processing = 0;
7173         spin_unlock(&head->lock);
7174         spin_unlock(&delayed_refs->lock);
7175
7176         BUG_ON(head->extent_op);
7177         if (head->must_insert_reserved)
7178                 ret = 1;
7179
7180         mutex_unlock(&head->mutex);
7181         btrfs_put_delayed_ref_head(head);
7182         return ret;
7183 out:
7184         spin_unlock(&head->lock);
7185
7186 out_delayed_unlock:
7187         spin_unlock(&delayed_refs->lock);
7188         return 0;
7189 }
7190
7191 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7192                            struct btrfs_root *root,
7193                            struct extent_buffer *buf,
7194                            u64 parent, int last_ref)
7195 {
7196         struct btrfs_fs_info *fs_info = root->fs_info;
7197         int pin = 1;
7198         int ret;
7199
7200         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7201                 int old_ref_mod, new_ref_mod;
7202
7203                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7204                                    root->root_key.objectid,
7205                                    btrfs_header_level(buf), 0,
7206                                    BTRFS_DROP_DELAYED_REF);
7207                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7208                                                  buf->len, parent,
7209                                                  root->root_key.objectid,
7210                                                  btrfs_header_level(buf),
7211                                                  BTRFS_DROP_DELAYED_REF, NULL,
7212                                                  &old_ref_mod, &new_ref_mod);
7213                 BUG_ON(ret); /* -ENOMEM */
7214                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7215         }
7216
7217         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7218                 struct btrfs_block_group_cache *cache;
7219
7220                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7221                         ret = check_ref_cleanup(trans, buf->start);
7222                         if (!ret)
7223                                 goto out;
7224                 }
7225
7226                 pin = 0;
7227                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7228
7229                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7230                         pin_down_extent(fs_info, cache, buf->start,
7231                                         buf->len, 1);
7232                         btrfs_put_block_group(cache);
7233                         goto out;
7234                 }
7235
7236                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7237
7238                 btrfs_add_free_space(cache, buf->start, buf->len);
7239                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7240                 btrfs_put_block_group(cache);
7241                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7242         }
7243 out:
7244         if (pin)
7245                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7246                                  root->root_key.objectid);
7247
7248         if (last_ref) {
7249                 /*
7250                  * Deleting the buffer, clear the corrupt flag since it doesn't
7251                  * matter anymore.
7252                  */
7253                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7254         }
7255 }
7256
7257 /* Can return -ENOMEM */
7258 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7259                       struct btrfs_root *root,
7260                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7261                       u64 owner, u64 offset)
7262 {
7263         struct btrfs_fs_info *fs_info = root->fs_info;
7264         int old_ref_mod, new_ref_mod;
7265         int ret;
7266
7267         if (btrfs_is_testing(fs_info))
7268                 return 0;
7269
7270         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7271                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7272                                    root_objectid, owner, offset,
7273                                    BTRFS_DROP_DELAYED_REF);
7274
7275         /*
7276          * tree log blocks never actually go into the extent allocation
7277          * tree, just update pinning info and exit early.
7278          */
7279         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7280                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7281                 /* unlocks the pinned mutex */
7282                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7283                 old_ref_mod = new_ref_mod = 0;
7284                 ret = 0;
7285         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7286                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7287                                                  num_bytes, parent,
7288                                                  root_objectid, (int)owner,
7289                                                  BTRFS_DROP_DELAYED_REF, NULL,
7290                                                  &old_ref_mod, &new_ref_mod);
7291         } else {
7292                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7293                                                  num_bytes, parent,
7294                                                  root_objectid, owner, offset,
7295                                                  0, BTRFS_DROP_DELAYED_REF,
7296                                                  &old_ref_mod, &new_ref_mod);
7297         }
7298
7299         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7300                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7301
7302         return ret;
7303 }
7304
7305 /*
7306  * when we wait for progress in the block group caching, its because
7307  * our allocation attempt failed at least once.  So, we must sleep
7308  * and let some progress happen before we try again.
7309  *
7310  * This function will sleep at least once waiting for new free space to
7311  * show up, and then it will check the block group free space numbers
7312  * for our min num_bytes.  Another option is to have it go ahead
7313  * and look in the rbtree for a free extent of a given size, but this
7314  * is a good start.
7315  *
7316  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7317  * any of the information in this block group.
7318  */
7319 static noinline void
7320 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7321                                 u64 num_bytes)
7322 {
7323         struct btrfs_caching_control *caching_ctl;
7324
7325         caching_ctl = get_caching_control(cache);
7326         if (!caching_ctl)
7327                 return;
7328
7329         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7330                    (cache->free_space_ctl->free_space >= num_bytes));
7331
7332         put_caching_control(caching_ctl);
7333 }
7334
7335 static noinline int
7336 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7337 {
7338         struct btrfs_caching_control *caching_ctl;
7339         int ret = 0;
7340
7341         caching_ctl = get_caching_control(cache);
7342         if (!caching_ctl)
7343                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7344
7345         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7346         if (cache->cached == BTRFS_CACHE_ERROR)
7347                 ret = -EIO;
7348         put_caching_control(caching_ctl);
7349         return ret;
7350 }
7351
7352 int __get_raid_index(u64 flags)
7353 {
7354         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7355                 return BTRFS_RAID_RAID10;
7356         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7357                 return BTRFS_RAID_RAID1;
7358         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7359                 return BTRFS_RAID_DUP;
7360         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7361                 return BTRFS_RAID_RAID0;
7362         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7363                 return BTRFS_RAID_RAID5;
7364         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7365                 return BTRFS_RAID_RAID6;
7366
7367         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7368 }
7369
7370 int get_block_group_index(struct btrfs_block_group_cache *cache)
7371 {
7372         return __get_raid_index(cache->flags);
7373 }
7374
7375 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7376         [BTRFS_RAID_RAID10]     = "raid10",
7377         [BTRFS_RAID_RAID1]      = "raid1",
7378         [BTRFS_RAID_DUP]        = "dup",
7379         [BTRFS_RAID_RAID0]      = "raid0",
7380         [BTRFS_RAID_SINGLE]     = "single",
7381         [BTRFS_RAID_RAID5]      = "raid5",
7382         [BTRFS_RAID_RAID6]      = "raid6",
7383 };
7384
7385 static const char *get_raid_name(enum btrfs_raid_types type)
7386 {
7387         if (type >= BTRFS_NR_RAID_TYPES)
7388                 return NULL;
7389
7390         return btrfs_raid_type_names[type];
7391 }
7392
7393 enum btrfs_loop_type {
7394         LOOP_CACHING_NOWAIT = 0,
7395         LOOP_CACHING_WAIT = 1,
7396         LOOP_ALLOC_CHUNK = 2,
7397         LOOP_NO_EMPTY_SIZE = 3,
7398 };
7399
7400 static inline void
7401 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7402                        int delalloc)
7403 {
7404         if (delalloc)
7405                 down_read(&cache->data_rwsem);
7406 }
7407
7408 static inline void
7409 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7410                        int delalloc)
7411 {
7412         btrfs_get_block_group(cache);
7413         if (delalloc)
7414                 down_read(&cache->data_rwsem);
7415 }
7416
7417 static struct btrfs_block_group_cache *
7418 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7419                    struct btrfs_free_cluster *cluster,
7420                    int delalloc)
7421 {
7422         struct btrfs_block_group_cache *used_bg = NULL;
7423
7424         spin_lock(&cluster->refill_lock);
7425         while (1) {
7426                 used_bg = cluster->block_group;
7427                 if (!used_bg)
7428                         return NULL;
7429
7430                 if (used_bg == block_group)
7431                         return used_bg;
7432
7433                 btrfs_get_block_group(used_bg);
7434
7435                 if (!delalloc)
7436                         return used_bg;
7437
7438                 if (down_read_trylock(&used_bg->data_rwsem))
7439                         return used_bg;
7440
7441                 spin_unlock(&cluster->refill_lock);
7442
7443                 /* We should only have one-level nested. */
7444                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7445
7446                 spin_lock(&cluster->refill_lock);
7447                 if (used_bg == cluster->block_group)
7448                         return used_bg;
7449
7450                 up_read(&used_bg->data_rwsem);
7451                 btrfs_put_block_group(used_bg);
7452         }
7453 }
7454
7455 static inline void
7456 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7457                          int delalloc)
7458 {
7459         if (delalloc)
7460                 up_read(&cache->data_rwsem);
7461         btrfs_put_block_group(cache);
7462 }
7463
7464 /*
7465  * walks the btree of allocated extents and find a hole of a given size.
7466  * The key ins is changed to record the hole:
7467  * ins->objectid == start position
7468  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7469  * ins->offset == the size of the hole.
7470  * Any available blocks before search_start are skipped.
7471  *
7472  * If there is no suitable free space, we will record the max size of
7473  * the free space extent currently.
7474  */
7475 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7476                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7477                                 u64 hint_byte, struct btrfs_key *ins,
7478                                 u64 flags, int delalloc)
7479 {
7480         int ret = 0;
7481         struct btrfs_root *root = fs_info->extent_root;
7482         struct btrfs_free_cluster *last_ptr = NULL;
7483         struct btrfs_block_group_cache *block_group = NULL;
7484         u64 search_start = 0;
7485         u64 max_extent_size = 0;
7486         u64 empty_cluster = 0;
7487         struct btrfs_space_info *space_info;
7488         int loop = 0;
7489         int index = __get_raid_index(flags);
7490         bool failed_cluster_refill = false;
7491         bool failed_alloc = false;
7492         bool use_cluster = true;
7493         bool have_caching_bg = false;
7494         bool orig_have_caching_bg = false;
7495         bool full_search = false;
7496
7497         WARN_ON(num_bytes < fs_info->sectorsize);
7498         ins->type = BTRFS_EXTENT_ITEM_KEY;
7499         ins->objectid = 0;
7500         ins->offset = 0;
7501
7502         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7503
7504         space_info = __find_space_info(fs_info, flags);
7505         if (!space_info) {
7506                 btrfs_err(fs_info, "No space info for %llu", flags);
7507                 return -ENOSPC;
7508         }
7509
7510         /*
7511          * If our free space is heavily fragmented we may not be able to make
7512          * big contiguous allocations, so instead of doing the expensive search
7513          * for free space, simply return ENOSPC with our max_extent_size so we
7514          * can go ahead and search for a more manageable chunk.
7515          *
7516          * If our max_extent_size is large enough for our allocation simply
7517          * disable clustering since we will likely not be able to find enough
7518          * space to create a cluster and induce latency trying.
7519          */
7520         if (unlikely(space_info->max_extent_size)) {
7521                 spin_lock(&space_info->lock);
7522                 if (space_info->max_extent_size &&
7523                     num_bytes > space_info->max_extent_size) {
7524                         ins->offset = space_info->max_extent_size;
7525                         spin_unlock(&space_info->lock);
7526                         return -ENOSPC;
7527                 } else if (space_info->max_extent_size) {
7528                         use_cluster = false;
7529                 }
7530                 spin_unlock(&space_info->lock);
7531         }
7532
7533         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7534         if (last_ptr) {
7535                 spin_lock(&last_ptr->lock);
7536                 if (last_ptr->block_group)
7537                         hint_byte = last_ptr->window_start;
7538                 if (last_ptr->fragmented) {
7539                         /*
7540                          * We still set window_start so we can keep track of the
7541                          * last place we found an allocation to try and save
7542                          * some time.
7543                          */
7544                         hint_byte = last_ptr->window_start;
7545                         use_cluster = false;
7546                 }
7547                 spin_unlock(&last_ptr->lock);
7548         }
7549
7550         search_start = max(search_start, first_logical_byte(fs_info, 0));
7551         search_start = max(search_start, hint_byte);
7552         if (search_start == hint_byte) {
7553                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7554                 /*
7555                  * we don't want to use the block group if it doesn't match our
7556                  * allocation bits, or if its not cached.
7557                  *
7558                  * However if we are re-searching with an ideal block group
7559                  * picked out then we don't care that the block group is cached.
7560                  */
7561                 if (block_group && block_group_bits(block_group, flags) &&
7562                     block_group->cached != BTRFS_CACHE_NO) {
7563                         down_read(&space_info->groups_sem);
7564                         if (list_empty(&block_group->list) ||
7565                             block_group->ro) {
7566                                 /*
7567                                  * someone is removing this block group,
7568                                  * we can't jump into the have_block_group
7569                                  * target because our list pointers are not
7570                                  * valid
7571                                  */
7572                                 btrfs_put_block_group(block_group);
7573                                 up_read(&space_info->groups_sem);
7574                         } else {
7575                                 index = get_block_group_index(block_group);
7576                                 btrfs_lock_block_group(block_group, delalloc);
7577                                 goto have_block_group;
7578                         }
7579                 } else if (block_group) {
7580                         btrfs_put_block_group(block_group);
7581                 }
7582         }
7583 search:
7584         have_caching_bg = false;
7585         if (index == 0 || index == __get_raid_index(flags))
7586                 full_search = true;
7587         down_read(&space_info->groups_sem);
7588         list_for_each_entry(block_group, &space_info->block_groups[index],
7589                             list) {
7590                 u64 offset;
7591                 int cached;
7592
7593                 /* If the block group is read-only, we can skip it entirely. */
7594                 if (unlikely(block_group->ro))
7595                         continue;
7596
7597                 btrfs_grab_block_group(block_group, delalloc);
7598                 search_start = block_group->key.objectid;
7599
7600                 /*
7601                  * this can happen if we end up cycling through all the
7602                  * raid types, but we want to make sure we only allocate
7603                  * for the proper type.
7604                  */
7605                 if (!block_group_bits(block_group, flags)) {
7606                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7607                                 BTRFS_BLOCK_GROUP_RAID1 |
7608                                 BTRFS_BLOCK_GROUP_RAID5 |
7609                                 BTRFS_BLOCK_GROUP_RAID6 |
7610                                 BTRFS_BLOCK_GROUP_RAID10;
7611
7612                         /*
7613                          * if they asked for extra copies and this block group
7614                          * doesn't provide them, bail.  This does allow us to
7615                          * fill raid0 from raid1.
7616                          */
7617                         if ((flags & extra) && !(block_group->flags & extra))
7618                                 goto loop;
7619                 }
7620
7621 have_block_group:
7622                 cached = block_group_cache_done(block_group);
7623                 if (unlikely(!cached)) {
7624                         have_caching_bg = true;
7625                         ret = cache_block_group(block_group, 0);
7626                         BUG_ON(ret < 0);
7627                         ret = 0;
7628                 }
7629
7630                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7631                         goto loop;
7632
7633                 /*
7634                  * Ok we want to try and use the cluster allocator, so
7635                  * lets look there
7636                  */
7637                 if (last_ptr && use_cluster) {
7638                         struct btrfs_block_group_cache *used_block_group;
7639                         unsigned long aligned_cluster;
7640                         /*
7641                          * the refill lock keeps out other
7642                          * people trying to start a new cluster
7643                          */
7644                         used_block_group = btrfs_lock_cluster(block_group,
7645                                                               last_ptr,
7646                                                               delalloc);
7647                         if (!used_block_group)
7648                                 goto refill_cluster;
7649
7650                         if (used_block_group != block_group &&
7651                             (used_block_group->ro ||
7652                              !block_group_bits(used_block_group, flags)))
7653                                 goto release_cluster;
7654
7655                         offset = btrfs_alloc_from_cluster(used_block_group,
7656                                                 last_ptr,
7657                                                 num_bytes,
7658                                                 used_block_group->key.objectid,
7659                                                 &max_extent_size);
7660                         if (offset) {
7661                                 /* we have a block, we're done */
7662                                 spin_unlock(&last_ptr->refill_lock);
7663                                 trace_btrfs_reserve_extent_cluster(fs_info,
7664                                                 used_block_group,
7665                                                 search_start, num_bytes);
7666                                 if (used_block_group != block_group) {
7667                                         btrfs_release_block_group(block_group,
7668                                                                   delalloc);
7669                                         block_group = used_block_group;
7670                                 }
7671                                 goto checks;
7672                         }
7673
7674                         WARN_ON(last_ptr->block_group != used_block_group);
7675 release_cluster:
7676                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7677                          * set up a new clusters, so lets just skip it
7678                          * and let the allocator find whatever block
7679                          * it can find.  If we reach this point, we
7680                          * will have tried the cluster allocator
7681                          * plenty of times and not have found
7682                          * anything, so we are likely way too
7683                          * fragmented for the clustering stuff to find
7684                          * anything.
7685                          *
7686                          * However, if the cluster is taken from the
7687                          * current block group, release the cluster
7688                          * first, so that we stand a better chance of
7689                          * succeeding in the unclustered
7690                          * allocation.  */
7691                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7692                             used_block_group != block_group) {
7693                                 spin_unlock(&last_ptr->refill_lock);
7694                                 btrfs_release_block_group(used_block_group,
7695                                                           delalloc);
7696                                 goto unclustered_alloc;
7697                         }
7698
7699                         /*
7700                          * this cluster didn't work out, free it and
7701                          * start over
7702                          */
7703                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7704
7705                         if (used_block_group != block_group)
7706                                 btrfs_release_block_group(used_block_group,
7707                                                           delalloc);
7708 refill_cluster:
7709                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7710                                 spin_unlock(&last_ptr->refill_lock);
7711                                 goto unclustered_alloc;
7712                         }
7713
7714                         aligned_cluster = max_t(unsigned long,
7715                                                 empty_cluster + empty_size,
7716                                               block_group->full_stripe_len);
7717
7718                         /* allocate a cluster in this block group */
7719                         ret = btrfs_find_space_cluster(fs_info, block_group,
7720                                                        last_ptr, search_start,
7721                                                        num_bytes,
7722                                                        aligned_cluster);
7723                         if (ret == 0) {
7724                                 /*
7725                                  * now pull our allocation out of this
7726                                  * cluster
7727                                  */
7728                                 offset = btrfs_alloc_from_cluster(block_group,
7729                                                         last_ptr,
7730                                                         num_bytes,
7731                                                         search_start,
7732                                                         &max_extent_size);
7733                                 if (offset) {
7734                                         /* we found one, proceed */
7735                                         spin_unlock(&last_ptr->refill_lock);
7736                                         trace_btrfs_reserve_extent_cluster(fs_info,
7737                                                 block_group, search_start,
7738                                                 num_bytes);
7739                                         goto checks;
7740                                 }
7741                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7742                                    && !failed_cluster_refill) {
7743                                 spin_unlock(&last_ptr->refill_lock);
7744
7745                                 failed_cluster_refill = true;
7746                                 wait_block_group_cache_progress(block_group,
7747                                        num_bytes + empty_cluster + empty_size);
7748                                 goto have_block_group;
7749                         }
7750
7751                         /*
7752                          * at this point we either didn't find a cluster
7753                          * or we weren't able to allocate a block from our
7754                          * cluster.  Free the cluster we've been trying
7755                          * to use, and go to the next block group
7756                          */
7757                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7758                         spin_unlock(&last_ptr->refill_lock);
7759                         goto loop;
7760                 }
7761
7762 unclustered_alloc:
7763                 /*
7764                  * We are doing an unclustered alloc, set the fragmented flag so
7765                  * we don't bother trying to setup a cluster again until we get
7766                  * more space.
7767                  */
7768                 if (unlikely(last_ptr)) {
7769                         spin_lock(&last_ptr->lock);
7770                         last_ptr->fragmented = 1;
7771                         spin_unlock(&last_ptr->lock);
7772                 }
7773                 if (cached) {
7774                         struct btrfs_free_space_ctl *ctl =
7775                                 block_group->free_space_ctl;
7776
7777                         spin_lock(&ctl->tree_lock);
7778                         if (ctl->free_space <
7779                             num_bytes + empty_cluster + empty_size) {
7780                                 if (ctl->free_space > max_extent_size)
7781                                         max_extent_size = ctl->free_space;
7782                                 spin_unlock(&ctl->tree_lock);
7783                                 goto loop;
7784                         }
7785                         spin_unlock(&ctl->tree_lock);
7786                 }
7787
7788                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7789                                                     num_bytes, empty_size,
7790                                                     &max_extent_size);
7791                 /*
7792                  * If we didn't find a chunk, and we haven't failed on this
7793                  * block group before, and this block group is in the middle of
7794                  * caching and we are ok with waiting, then go ahead and wait
7795                  * for progress to be made, and set failed_alloc to true.
7796                  *
7797                  * If failed_alloc is true then we've already waited on this
7798                  * block group once and should move on to the next block group.
7799                  */
7800                 if (!offset && !failed_alloc && !cached &&
7801                     loop > LOOP_CACHING_NOWAIT) {
7802                         wait_block_group_cache_progress(block_group,
7803                                                 num_bytes + empty_size);
7804                         failed_alloc = true;
7805                         goto have_block_group;
7806                 } else if (!offset) {
7807                         goto loop;
7808                 }
7809 checks:
7810                 search_start = ALIGN(offset, fs_info->stripesize);
7811
7812                 /* move on to the next group */
7813                 if (search_start + num_bytes >
7814                     block_group->key.objectid + block_group->key.offset) {
7815                         btrfs_add_free_space(block_group, offset, num_bytes);
7816                         goto loop;
7817                 }
7818
7819                 if (offset < search_start)
7820                         btrfs_add_free_space(block_group, offset,
7821                                              search_start - offset);
7822                 BUG_ON(offset > search_start);
7823
7824                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7825                                 num_bytes, delalloc);
7826                 if (ret == -EAGAIN) {
7827                         btrfs_add_free_space(block_group, offset, num_bytes);
7828                         goto loop;
7829                 }
7830                 btrfs_inc_block_group_reservations(block_group);
7831
7832                 /* we are all good, lets return */
7833                 ins->objectid = search_start;
7834                 ins->offset = num_bytes;
7835
7836                 trace_btrfs_reserve_extent(fs_info, block_group,
7837                                            search_start, num_bytes);
7838                 btrfs_release_block_group(block_group, delalloc);
7839                 break;
7840 loop:
7841                 failed_cluster_refill = false;
7842                 failed_alloc = false;
7843                 BUG_ON(index != get_block_group_index(block_group));
7844                 btrfs_release_block_group(block_group, delalloc);
7845                 cond_resched();
7846         }
7847         up_read(&space_info->groups_sem);
7848
7849         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7850                 && !orig_have_caching_bg)
7851                 orig_have_caching_bg = true;
7852
7853         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7854                 goto search;
7855
7856         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7857                 goto search;
7858
7859         /*
7860          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7861          *                      caching kthreads as we move along
7862          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7863          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7864          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7865          *                      again
7866          */
7867         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7868                 index = 0;
7869                 if (loop == LOOP_CACHING_NOWAIT) {
7870                         /*
7871                          * We want to skip the LOOP_CACHING_WAIT step if we
7872                          * don't have any uncached bgs and we've already done a
7873                          * full search through.
7874                          */
7875                         if (orig_have_caching_bg || !full_search)
7876                                 loop = LOOP_CACHING_WAIT;
7877                         else
7878                                 loop = LOOP_ALLOC_CHUNK;
7879                 } else {
7880                         loop++;
7881                 }
7882
7883                 if (loop == LOOP_ALLOC_CHUNK) {
7884                         struct btrfs_trans_handle *trans;
7885                         int exist = 0;
7886
7887                         trans = current->journal_info;
7888                         if (trans)
7889                                 exist = 1;
7890                         else
7891                                 trans = btrfs_join_transaction(root);
7892
7893                         if (IS_ERR(trans)) {
7894                                 ret = PTR_ERR(trans);
7895                                 goto out;
7896                         }
7897
7898                         ret = do_chunk_alloc(trans, fs_info, flags,
7899                                              CHUNK_ALLOC_FORCE);
7900
7901                         /*
7902                          * If we can't allocate a new chunk we've already looped
7903                          * through at least once, move on to the NO_EMPTY_SIZE
7904                          * case.
7905                          */
7906                         if (ret == -ENOSPC)
7907                                 loop = LOOP_NO_EMPTY_SIZE;
7908
7909                         /*
7910                          * Do not bail out on ENOSPC since we
7911                          * can do more things.
7912                          */
7913                         if (ret < 0 && ret != -ENOSPC)
7914                                 btrfs_abort_transaction(trans, ret);
7915                         else
7916                                 ret = 0;
7917                         if (!exist)
7918                                 btrfs_end_transaction(trans);
7919                         if (ret)
7920                                 goto out;
7921                 }
7922
7923                 if (loop == LOOP_NO_EMPTY_SIZE) {
7924                         /*
7925                          * Don't loop again if we already have no empty_size and
7926                          * no empty_cluster.
7927                          */
7928                         if (empty_size == 0 &&
7929                             empty_cluster == 0) {
7930                                 ret = -ENOSPC;
7931                                 goto out;
7932                         }
7933                         empty_size = 0;
7934                         empty_cluster = 0;
7935                 }
7936
7937                 goto search;
7938         } else if (!ins->objectid) {
7939                 ret = -ENOSPC;
7940         } else if (ins->objectid) {
7941                 if (!use_cluster && last_ptr) {
7942                         spin_lock(&last_ptr->lock);
7943                         last_ptr->window_start = ins->objectid;
7944                         spin_unlock(&last_ptr->lock);
7945                 }
7946                 ret = 0;
7947         }
7948 out:
7949         if (ret == -ENOSPC) {
7950                 spin_lock(&space_info->lock);
7951                 space_info->max_extent_size = max_extent_size;
7952                 spin_unlock(&space_info->lock);
7953                 ins->offset = max_extent_size;
7954         }
7955         return ret;
7956 }
7957
7958 static void dump_space_info(struct btrfs_fs_info *fs_info,
7959                             struct btrfs_space_info *info, u64 bytes,
7960                             int dump_block_groups)
7961 {
7962         struct btrfs_block_group_cache *cache;
7963         int index = 0;
7964
7965         spin_lock(&info->lock);
7966         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7967                    info->flags,
7968                    info->total_bytes - btrfs_space_info_used(info, true),
7969                    info->full ? "" : "not ");
7970         btrfs_info(fs_info,
7971                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7972                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7973                 info->bytes_reserved, info->bytes_may_use,
7974                 info->bytes_readonly);
7975         spin_unlock(&info->lock);
7976
7977         if (!dump_block_groups)
7978                 return;
7979
7980         down_read(&info->groups_sem);
7981 again:
7982         list_for_each_entry(cache, &info->block_groups[index], list) {
7983                 spin_lock(&cache->lock);
7984                 btrfs_info(fs_info,
7985                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7986                         cache->key.objectid, cache->key.offset,
7987                         btrfs_block_group_used(&cache->item), cache->pinned,
7988                         cache->reserved, cache->ro ? "[readonly]" : "");
7989                 btrfs_dump_free_space(cache, bytes);
7990                 spin_unlock(&cache->lock);
7991         }
7992         if (++index < BTRFS_NR_RAID_TYPES)
7993                 goto again;
7994         up_read(&info->groups_sem);
7995 }
7996
7997 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7998                          u64 num_bytes, u64 min_alloc_size,
7999                          u64 empty_size, u64 hint_byte,
8000                          struct btrfs_key *ins, int is_data, int delalloc)
8001 {
8002         struct btrfs_fs_info *fs_info = root->fs_info;
8003         bool final_tried = num_bytes == min_alloc_size;
8004         u64 flags;
8005         int ret;
8006
8007         flags = get_alloc_profile_by_root(root, is_data);
8008 again:
8009         WARN_ON(num_bytes < fs_info->sectorsize);
8010         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8011                                hint_byte, ins, flags, delalloc);
8012         if (!ret && !is_data) {
8013                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8014         } else if (ret == -ENOSPC) {
8015                 if (!final_tried && ins->offset) {
8016                         num_bytes = min(num_bytes >> 1, ins->offset);
8017                         num_bytes = round_down(num_bytes,
8018                                                fs_info->sectorsize);
8019                         num_bytes = max(num_bytes, min_alloc_size);
8020                         ram_bytes = num_bytes;
8021                         if (num_bytes == min_alloc_size)
8022                                 final_tried = true;
8023                         goto again;
8024                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8025                         struct btrfs_space_info *sinfo;
8026
8027                         sinfo = __find_space_info(fs_info, flags);
8028                         btrfs_err(fs_info,
8029                                   "allocation failed flags %llu, wanted %llu",
8030                                   flags, num_bytes);
8031                         if (sinfo)
8032                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8033                 }
8034         }
8035
8036         return ret;
8037 }
8038
8039 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8040                                         u64 start, u64 len,
8041                                         int pin, int delalloc)
8042 {
8043         struct btrfs_block_group_cache *cache;
8044         int ret = 0;
8045
8046         cache = btrfs_lookup_block_group(fs_info, start);
8047         if (!cache) {
8048                 btrfs_err(fs_info, "Unable to find block group for %llu",
8049                           start);
8050                 return -ENOSPC;
8051         }
8052
8053         if (pin)
8054                 pin_down_extent(fs_info, cache, start, len, 1);
8055         else {
8056                 if (btrfs_test_opt(fs_info, DISCARD))
8057                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8058                 btrfs_add_free_space(cache, start, len);
8059                 btrfs_free_reserved_bytes(cache, len, delalloc);
8060                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8061         }
8062
8063         btrfs_put_block_group(cache);
8064         return ret;
8065 }
8066
8067 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8068                                u64 start, u64 len, int delalloc)
8069 {
8070         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8071 }
8072
8073 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8074                                        u64 start, u64 len)
8075 {
8076         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8077 }
8078
8079 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8080                                       struct btrfs_fs_info *fs_info,
8081                                       u64 parent, u64 root_objectid,
8082                                       u64 flags, u64 owner, u64 offset,
8083                                       struct btrfs_key *ins, int ref_mod)
8084 {
8085         int ret;
8086         struct btrfs_extent_item *extent_item;
8087         struct btrfs_extent_inline_ref *iref;
8088         struct btrfs_path *path;
8089         struct extent_buffer *leaf;
8090         int type;
8091         u32 size;
8092
8093         if (parent > 0)
8094                 type = BTRFS_SHARED_DATA_REF_KEY;
8095         else
8096                 type = BTRFS_EXTENT_DATA_REF_KEY;
8097
8098         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8099
8100         path = btrfs_alloc_path();
8101         if (!path)
8102                 return -ENOMEM;
8103
8104         path->leave_spinning = 1;
8105         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8106                                       ins, size);
8107         if (ret) {
8108                 btrfs_free_path(path);
8109                 return ret;
8110         }
8111
8112         leaf = path->nodes[0];
8113         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8114                                      struct btrfs_extent_item);
8115         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8116         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8117         btrfs_set_extent_flags(leaf, extent_item,
8118                                flags | BTRFS_EXTENT_FLAG_DATA);
8119
8120         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8121         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8122         if (parent > 0) {
8123                 struct btrfs_shared_data_ref *ref;
8124                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8125                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8126                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8127         } else {
8128                 struct btrfs_extent_data_ref *ref;
8129                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8130                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8131                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8132                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8133                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8134         }
8135
8136         btrfs_mark_buffer_dirty(path->nodes[0]);
8137         btrfs_free_path(path);
8138
8139         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8140                                           ins->offset);
8141         if (ret)
8142                 return ret;
8143
8144         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8145         if (ret) { /* -ENOENT, logic error */
8146                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8147                         ins->objectid, ins->offset);
8148                 BUG();
8149         }
8150         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8151         return ret;
8152 }
8153
8154 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8155                                      struct btrfs_fs_info *fs_info,
8156                                      u64 parent, u64 root_objectid,
8157                                      u64 flags, struct btrfs_disk_key *key,
8158                                      int level, struct btrfs_key *ins)
8159 {
8160         int ret;
8161         struct btrfs_extent_item *extent_item;
8162         struct btrfs_tree_block_info *block_info;
8163         struct btrfs_extent_inline_ref *iref;
8164         struct btrfs_path *path;
8165         struct extent_buffer *leaf;
8166         u32 size = sizeof(*extent_item) + sizeof(*iref);
8167         u64 num_bytes = ins->offset;
8168         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8169
8170         if (!skinny_metadata)
8171                 size += sizeof(*block_info);
8172
8173         path = btrfs_alloc_path();
8174         if (!path) {
8175                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8176                                                    fs_info->nodesize);
8177                 return -ENOMEM;
8178         }
8179
8180         path->leave_spinning = 1;
8181         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8182                                       ins, size);
8183         if (ret) {
8184                 btrfs_free_path(path);
8185                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8186                                                    fs_info->nodesize);
8187                 return ret;
8188         }
8189
8190         leaf = path->nodes[0];
8191         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8192                                      struct btrfs_extent_item);
8193         btrfs_set_extent_refs(leaf, extent_item, 1);
8194         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8195         btrfs_set_extent_flags(leaf, extent_item,
8196                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8197
8198         if (skinny_metadata) {
8199                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8200                 num_bytes = fs_info->nodesize;
8201         } else {
8202                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8203                 btrfs_set_tree_block_key(leaf, block_info, key);
8204                 btrfs_set_tree_block_level(leaf, block_info, level);
8205                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8206         }
8207
8208         if (parent > 0) {
8209                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8210                 btrfs_set_extent_inline_ref_type(leaf, iref,
8211                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8212                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8213         } else {
8214                 btrfs_set_extent_inline_ref_type(leaf, iref,
8215                                                  BTRFS_TREE_BLOCK_REF_KEY);
8216                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8217         }
8218
8219         btrfs_mark_buffer_dirty(leaf);
8220         btrfs_free_path(path);
8221
8222         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8223                                           num_bytes);
8224         if (ret)
8225                 return ret;
8226
8227         ret = update_block_group(trans, fs_info, ins->objectid,
8228                                  fs_info->nodesize, 1);
8229         if (ret) { /* -ENOENT, logic error */
8230                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8231                         ins->objectid, ins->offset);
8232                 BUG();
8233         }
8234
8235         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8236                                           fs_info->nodesize);
8237         return ret;
8238 }
8239
8240 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8241                                      struct btrfs_root *root, u64 owner,
8242                                      u64 offset, u64 ram_bytes,
8243                                      struct btrfs_key *ins)
8244 {
8245         struct btrfs_fs_info *fs_info = root->fs_info;
8246         int ret;
8247
8248         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8249
8250         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8251                            root->root_key.objectid, owner, offset,
8252                            BTRFS_ADD_DELAYED_EXTENT);
8253
8254         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8255                                          ins->offset, 0,
8256                                          root->root_key.objectid, owner,
8257                                          offset, ram_bytes,
8258                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8259         return ret;
8260 }
8261
8262 /*
8263  * this is used by the tree logging recovery code.  It records that
8264  * an extent has been allocated and makes sure to clear the free
8265  * space cache bits as well
8266  */
8267 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8268                                    struct btrfs_fs_info *fs_info,
8269                                    u64 root_objectid, u64 owner, u64 offset,
8270                                    struct btrfs_key *ins)
8271 {
8272         int ret;
8273         struct btrfs_block_group_cache *block_group;
8274         struct btrfs_space_info *space_info;
8275
8276         /*
8277          * Mixed block groups will exclude before processing the log so we only
8278          * need to do the exclude dance if this fs isn't mixed.
8279          */
8280         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8281                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8282                                               ins->offset);
8283                 if (ret)
8284                         return ret;
8285         }
8286
8287         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8288         if (!block_group)
8289                 return -EINVAL;
8290
8291         space_info = block_group->space_info;
8292         spin_lock(&space_info->lock);
8293         spin_lock(&block_group->lock);
8294         space_info->bytes_reserved += ins->offset;
8295         block_group->reserved += ins->offset;
8296         spin_unlock(&block_group->lock);
8297         spin_unlock(&space_info->lock);
8298
8299         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8300                                          0, owner, offset, ins, 1);
8301         btrfs_put_block_group(block_group);
8302         return ret;
8303 }
8304
8305 static struct extent_buffer *
8306 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8307                       u64 bytenr, int level)
8308 {
8309         struct btrfs_fs_info *fs_info = root->fs_info;
8310         struct extent_buffer *buf;
8311
8312         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8313         if (IS_ERR(buf))
8314                 return buf;
8315
8316         btrfs_set_header_generation(buf, trans->transid);
8317         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8318         btrfs_tree_lock(buf);
8319         clean_tree_block(fs_info, buf);
8320         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8321
8322         btrfs_set_lock_blocking(buf);
8323         set_extent_buffer_uptodate(buf);
8324
8325         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8326                 buf->log_index = root->log_transid % 2;
8327                 /*
8328                  * we allow two log transactions at a time, use different
8329                  * EXENT bit to differentiate dirty pages.
8330                  */
8331                 if (buf->log_index == 0)
8332                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8333                                         buf->start + buf->len - 1, GFP_NOFS);
8334                 else
8335                         set_extent_new(&root->dirty_log_pages, buf->start,
8336                                         buf->start + buf->len - 1);
8337         } else {
8338                 buf->log_index = -1;
8339                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8340                          buf->start + buf->len - 1, GFP_NOFS);
8341         }
8342         trans->dirty = true;
8343         /* this returns a buffer locked for blocking */
8344         return buf;
8345 }
8346
8347 static struct btrfs_block_rsv *
8348 use_block_rsv(struct btrfs_trans_handle *trans,
8349               struct btrfs_root *root, u32 blocksize)
8350 {
8351         struct btrfs_fs_info *fs_info = root->fs_info;
8352         struct btrfs_block_rsv *block_rsv;
8353         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8354         int ret;
8355         bool global_updated = false;
8356
8357         block_rsv = get_block_rsv(trans, root);
8358
8359         if (unlikely(block_rsv->size == 0))
8360                 goto try_reserve;
8361 again:
8362         ret = block_rsv_use_bytes(block_rsv, blocksize);
8363         if (!ret)
8364                 return block_rsv;
8365
8366         if (block_rsv->failfast)
8367                 return ERR_PTR(ret);
8368
8369         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8370                 global_updated = true;
8371                 update_global_block_rsv(fs_info);
8372                 goto again;
8373         }
8374
8375         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8376                 static DEFINE_RATELIMIT_STATE(_rs,
8377                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8378                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8379                 if (__ratelimit(&_rs))
8380                         WARN(1, KERN_DEBUG
8381                                 "BTRFS: block rsv returned %d\n", ret);
8382         }
8383 try_reserve:
8384         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8385                                      BTRFS_RESERVE_NO_FLUSH);
8386         if (!ret)
8387                 return block_rsv;
8388         /*
8389          * If we couldn't reserve metadata bytes try and use some from
8390          * the global reserve if its space type is the same as the global
8391          * reservation.
8392          */
8393         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8394             block_rsv->space_info == global_rsv->space_info) {
8395                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8396                 if (!ret)
8397                         return global_rsv;
8398         }
8399         return ERR_PTR(ret);
8400 }
8401
8402 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8403                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8404 {
8405         block_rsv_add_bytes(block_rsv, blocksize, 0);
8406         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8407 }
8408
8409 /*
8410  * finds a free extent and does all the dirty work required for allocation
8411  * returns the tree buffer or an ERR_PTR on error.
8412  */
8413 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8414                                              struct btrfs_root *root,
8415                                              u64 parent, u64 root_objectid,
8416                                              const struct btrfs_disk_key *key,
8417                                              int level, u64 hint,
8418                                              u64 empty_size)
8419 {
8420         struct btrfs_fs_info *fs_info = root->fs_info;
8421         struct btrfs_key ins;
8422         struct btrfs_block_rsv *block_rsv;
8423         struct extent_buffer *buf;
8424         struct btrfs_delayed_extent_op *extent_op;
8425         u64 flags = 0;
8426         int ret;
8427         u32 blocksize = fs_info->nodesize;
8428         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8429
8430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8431         if (btrfs_is_testing(fs_info)) {
8432                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8433                                             level);
8434                 if (!IS_ERR(buf))
8435                         root->alloc_bytenr += blocksize;
8436                 return buf;
8437         }
8438 #endif
8439
8440         block_rsv = use_block_rsv(trans, root, blocksize);
8441         if (IS_ERR(block_rsv))
8442                 return ERR_CAST(block_rsv);
8443
8444         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8445                                    empty_size, hint, &ins, 0, 0);
8446         if (ret)
8447                 goto out_unuse;
8448
8449         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8450         if (IS_ERR(buf)) {
8451                 ret = PTR_ERR(buf);
8452                 goto out_free_reserved;
8453         }
8454
8455         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8456                 if (parent == 0)
8457                         parent = ins.objectid;
8458                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8459         } else
8460                 BUG_ON(parent > 0);
8461
8462         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8463                 extent_op = btrfs_alloc_delayed_extent_op();
8464                 if (!extent_op) {
8465                         ret = -ENOMEM;
8466                         goto out_free_buf;
8467                 }
8468                 if (key)
8469                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8470                 else
8471                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8472                 extent_op->flags_to_set = flags;
8473                 extent_op->update_key = skinny_metadata ? false : true;
8474                 extent_op->update_flags = true;
8475                 extent_op->is_data = false;
8476                 extent_op->level = level;
8477
8478                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8479                                    root_objectid, level, 0,
8480                                    BTRFS_ADD_DELAYED_EXTENT);
8481                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8482                                                  ins.offset, parent,
8483                                                  root_objectid, level,
8484                                                  BTRFS_ADD_DELAYED_EXTENT,
8485                                                  extent_op, NULL, NULL);
8486                 if (ret)
8487                         goto out_free_delayed;
8488         }
8489         return buf;
8490
8491 out_free_delayed:
8492         btrfs_free_delayed_extent_op(extent_op);
8493 out_free_buf:
8494         free_extent_buffer(buf);
8495 out_free_reserved:
8496         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8497 out_unuse:
8498         unuse_block_rsv(fs_info, block_rsv, blocksize);
8499         return ERR_PTR(ret);
8500 }
8501
8502 struct walk_control {
8503         u64 refs[BTRFS_MAX_LEVEL];
8504         u64 flags[BTRFS_MAX_LEVEL];
8505         struct btrfs_key update_progress;
8506         int stage;
8507         int level;
8508         int shared_level;
8509         int update_ref;
8510         int keep_locks;
8511         int reada_slot;
8512         int reada_count;
8513         int for_reloc;
8514 };
8515
8516 #define DROP_REFERENCE  1
8517 #define UPDATE_BACKREF  2
8518
8519 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8520                                      struct btrfs_root *root,
8521                                      struct walk_control *wc,
8522                                      struct btrfs_path *path)
8523 {
8524         struct btrfs_fs_info *fs_info = root->fs_info;
8525         u64 bytenr;
8526         u64 generation;
8527         u64 refs;
8528         u64 flags;
8529         u32 nritems;
8530         struct btrfs_key key;
8531         struct extent_buffer *eb;
8532         int ret;
8533         int slot;
8534         int nread = 0;
8535
8536         if (path->slots[wc->level] < wc->reada_slot) {
8537                 wc->reada_count = wc->reada_count * 2 / 3;
8538                 wc->reada_count = max(wc->reada_count, 2);
8539         } else {
8540                 wc->reada_count = wc->reada_count * 3 / 2;
8541                 wc->reada_count = min_t(int, wc->reada_count,
8542                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8543         }
8544
8545         eb = path->nodes[wc->level];
8546         nritems = btrfs_header_nritems(eb);
8547
8548         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8549                 if (nread >= wc->reada_count)
8550                         break;
8551
8552                 cond_resched();
8553                 bytenr = btrfs_node_blockptr(eb, slot);
8554                 generation = btrfs_node_ptr_generation(eb, slot);
8555
8556                 if (slot == path->slots[wc->level])
8557                         goto reada;
8558
8559                 if (wc->stage == UPDATE_BACKREF &&
8560                     generation <= root->root_key.offset)
8561                         continue;
8562
8563                 /* We don't lock the tree block, it's OK to be racy here */
8564                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8565                                                wc->level - 1, 1, &refs,
8566                                                &flags);
8567                 /* We don't care about errors in readahead. */
8568                 if (ret < 0)
8569                         continue;
8570                 BUG_ON(refs == 0);
8571
8572                 if (wc->stage == DROP_REFERENCE) {
8573                         if (refs == 1)
8574                                 goto reada;
8575
8576                         if (wc->level == 1 &&
8577                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578                                 continue;
8579                         if (!wc->update_ref ||
8580                             generation <= root->root_key.offset)
8581                                 continue;
8582                         btrfs_node_key_to_cpu(eb, &key, slot);
8583                         ret = btrfs_comp_cpu_keys(&key,
8584                                                   &wc->update_progress);
8585                         if (ret < 0)
8586                                 continue;
8587                 } else {
8588                         if (wc->level == 1 &&
8589                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8590                                 continue;
8591                 }
8592 reada:
8593                 readahead_tree_block(fs_info, bytenr);
8594                 nread++;
8595         }
8596         wc->reada_slot = slot;
8597 }
8598
8599 /*
8600  * helper to process tree block while walking down the tree.
8601  *
8602  * when wc->stage == UPDATE_BACKREF, this function updates
8603  * back refs for pointers in the block.
8604  *
8605  * NOTE: return value 1 means we should stop walking down.
8606  */
8607 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8608                                    struct btrfs_root *root,
8609                                    struct btrfs_path *path,
8610                                    struct walk_control *wc, int lookup_info)
8611 {
8612         struct btrfs_fs_info *fs_info = root->fs_info;
8613         int level = wc->level;
8614         struct extent_buffer *eb = path->nodes[level];
8615         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8616         int ret;
8617
8618         if (wc->stage == UPDATE_BACKREF &&
8619             btrfs_header_owner(eb) != root->root_key.objectid)
8620                 return 1;
8621
8622         /*
8623          * when reference count of tree block is 1, it won't increase
8624          * again. once full backref flag is set, we never clear it.
8625          */
8626         if (lookup_info &&
8627             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8628              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8629                 BUG_ON(!path->locks[level]);
8630                 ret = btrfs_lookup_extent_info(trans, fs_info,
8631                                                eb->start, level, 1,
8632                                                &wc->refs[level],
8633                                                &wc->flags[level]);
8634                 BUG_ON(ret == -ENOMEM);
8635                 if (ret)
8636                         return ret;
8637                 BUG_ON(wc->refs[level] == 0);
8638         }
8639
8640         if (wc->stage == DROP_REFERENCE) {
8641                 if (wc->refs[level] > 1)
8642                         return 1;
8643
8644                 if (path->locks[level] && !wc->keep_locks) {
8645                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8646                         path->locks[level] = 0;
8647                 }
8648                 return 0;
8649         }
8650
8651         /* wc->stage == UPDATE_BACKREF */
8652         if (!(wc->flags[level] & flag)) {
8653                 BUG_ON(!path->locks[level]);
8654                 ret = btrfs_inc_ref(trans, root, eb, 1);
8655                 BUG_ON(ret); /* -ENOMEM */
8656                 ret = btrfs_dec_ref(trans, root, eb, 0);
8657                 BUG_ON(ret); /* -ENOMEM */
8658                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8659                                                   eb->len, flag,
8660                                                   btrfs_header_level(eb), 0);
8661                 BUG_ON(ret); /* -ENOMEM */
8662                 wc->flags[level] |= flag;
8663         }
8664
8665         /*
8666          * the block is shared by multiple trees, so it's not good to
8667          * keep the tree lock
8668          */
8669         if (path->locks[level] && level > 0) {
8670                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8671                 path->locks[level] = 0;
8672         }
8673         return 0;
8674 }
8675
8676 /*
8677  * helper to process tree block pointer.
8678  *
8679  * when wc->stage == DROP_REFERENCE, this function checks
8680  * reference count of the block pointed to. if the block
8681  * is shared and we need update back refs for the subtree
8682  * rooted at the block, this function changes wc->stage to
8683  * UPDATE_BACKREF. if the block is shared and there is no
8684  * need to update back, this function drops the reference
8685  * to the block.
8686  *
8687  * NOTE: return value 1 means we should stop walking down.
8688  */
8689 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8690                                  struct btrfs_root *root,
8691                                  struct btrfs_path *path,
8692                                  struct walk_control *wc, int *lookup_info)
8693 {
8694         struct btrfs_fs_info *fs_info = root->fs_info;
8695         u64 bytenr;
8696         u64 generation;
8697         u64 parent;
8698         u32 blocksize;
8699         struct btrfs_key key;
8700         struct extent_buffer *next;
8701         int level = wc->level;
8702         int reada = 0;
8703         int ret = 0;
8704         bool need_account = false;
8705
8706         generation = btrfs_node_ptr_generation(path->nodes[level],
8707                                                path->slots[level]);
8708         /*
8709          * if the lower level block was created before the snapshot
8710          * was created, we know there is no need to update back refs
8711          * for the subtree
8712          */
8713         if (wc->stage == UPDATE_BACKREF &&
8714             generation <= root->root_key.offset) {
8715                 *lookup_info = 1;
8716                 return 1;
8717         }
8718
8719         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8720         blocksize = fs_info->nodesize;
8721
8722         next = find_extent_buffer(fs_info, bytenr);
8723         if (!next) {
8724                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8725                 if (IS_ERR(next))
8726                         return PTR_ERR(next);
8727
8728                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8729                                                level - 1);
8730                 reada = 1;
8731         }
8732         btrfs_tree_lock(next);
8733         btrfs_set_lock_blocking(next);
8734
8735         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8736                                        &wc->refs[level - 1],
8737                                        &wc->flags[level - 1]);
8738         if (ret < 0)
8739                 goto out_unlock;
8740
8741         if (unlikely(wc->refs[level - 1] == 0)) {
8742                 btrfs_err(fs_info, "Missing references.");
8743                 ret = -EIO;
8744                 goto out_unlock;
8745         }
8746         *lookup_info = 0;
8747
8748         if (wc->stage == DROP_REFERENCE) {
8749                 if (wc->refs[level - 1] > 1) {
8750                         need_account = true;
8751                         if (level == 1 &&
8752                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8753                                 goto skip;
8754
8755                         if (!wc->update_ref ||
8756                             generation <= root->root_key.offset)
8757                                 goto skip;
8758
8759                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8760                                               path->slots[level]);
8761                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8762                         if (ret < 0)
8763                                 goto skip;
8764
8765                         wc->stage = UPDATE_BACKREF;
8766                         wc->shared_level = level - 1;
8767                 }
8768         } else {
8769                 if (level == 1 &&
8770                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8771                         goto skip;
8772         }
8773
8774         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8775                 btrfs_tree_unlock(next);
8776                 free_extent_buffer(next);
8777                 next = NULL;
8778                 *lookup_info = 1;
8779         }
8780
8781         if (!next) {
8782                 if (reada && level == 1)
8783                         reada_walk_down(trans, root, wc, path);
8784                 next = read_tree_block(fs_info, bytenr, generation);
8785                 if (IS_ERR(next)) {
8786                         return PTR_ERR(next);
8787                 } else if (!extent_buffer_uptodate(next)) {
8788                         free_extent_buffer(next);
8789                         return -EIO;
8790                 }
8791                 btrfs_tree_lock(next);
8792                 btrfs_set_lock_blocking(next);
8793         }
8794
8795         level--;
8796         ASSERT(level == btrfs_header_level(next));
8797         if (level != btrfs_header_level(next)) {
8798                 btrfs_err(root->fs_info, "mismatched level");
8799                 ret = -EIO;
8800                 goto out_unlock;
8801         }
8802         path->nodes[level] = next;
8803         path->slots[level] = 0;
8804         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8805         wc->level = level;
8806         if (wc->level == 1)
8807                 wc->reada_slot = 0;
8808         return 0;
8809 skip:
8810         wc->refs[level - 1] = 0;
8811         wc->flags[level - 1] = 0;
8812         if (wc->stage == DROP_REFERENCE) {
8813                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8814                         parent = path->nodes[level]->start;
8815                 } else {
8816                         ASSERT(root->root_key.objectid ==
8817                                btrfs_header_owner(path->nodes[level]));
8818                         if (root->root_key.objectid !=
8819                             btrfs_header_owner(path->nodes[level])) {
8820                                 btrfs_err(root->fs_info,
8821                                                 "mismatched block owner");
8822                                 ret = -EIO;
8823                                 goto out_unlock;
8824                         }
8825                         parent = 0;
8826                 }
8827
8828                 if (need_account) {
8829                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8830                                                          generation, level - 1);
8831                         if (ret) {
8832                                 btrfs_err_rl(fs_info,
8833                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8834                                              ret);
8835                         }
8836                 }
8837                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8838                                         parent, root->root_key.objectid,
8839                                         level - 1, 0);
8840                 if (ret)
8841                         goto out_unlock;
8842         }
8843
8844         *lookup_info = 1;
8845         ret = 1;
8846
8847 out_unlock:
8848         btrfs_tree_unlock(next);
8849         free_extent_buffer(next);
8850
8851         return ret;
8852 }
8853
8854 /*
8855  * helper to process tree block while walking up the tree.
8856  *
8857  * when wc->stage == DROP_REFERENCE, this function drops
8858  * reference count on the block.
8859  *
8860  * when wc->stage == UPDATE_BACKREF, this function changes
8861  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8862  * to UPDATE_BACKREF previously while processing the block.
8863  *
8864  * NOTE: return value 1 means we should stop walking up.
8865  */
8866 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8867                                  struct btrfs_root *root,
8868                                  struct btrfs_path *path,
8869                                  struct walk_control *wc)
8870 {
8871         struct btrfs_fs_info *fs_info = root->fs_info;
8872         int ret;
8873         int level = wc->level;
8874         struct extent_buffer *eb = path->nodes[level];
8875         u64 parent = 0;
8876
8877         if (wc->stage == UPDATE_BACKREF) {
8878                 BUG_ON(wc->shared_level < level);
8879                 if (level < wc->shared_level)
8880                         goto out;
8881
8882                 ret = find_next_key(path, level + 1, &wc->update_progress);
8883                 if (ret > 0)
8884                         wc->update_ref = 0;
8885
8886                 wc->stage = DROP_REFERENCE;
8887                 wc->shared_level = -1;
8888                 path->slots[level] = 0;
8889
8890                 /*
8891                  * check reference count again if the block isn't locked.
8892                  * we should start walking down the tree again if reference
8893                  * count is one.
8894                  */
8895                 if (!path->locks[level]) {
8896                         BUG_ON(level == 0);
8897                         btrfs_tree_lock(eb);
8898                         btrfs_set_lock_blocking(eb);
8899                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8900
8901                         ret = btrfs_lookup_extent_info(trans, fs_info,
8902                                                        eb->start, level, 1,
8903                                                        &wc->refs[level],
8904                                                        &wc->flags[level]);
8905                         if (ret < 0) {
8906                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8907                                 path->locks[level] = 0;
8908                                 return ret;
8909                         }
8910                         BUG_ON(wc->refs[level] == 0);
8911                         if (wc->refs[level] == 1) {
8912                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8913                                 path->locks[level] = 0;
8914                                 return 1;
8915                         }
8916                 }
8917         }
8918
8919         /* wc->stage == DROP_REFERENCE */
8920         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8921
8922         if (wc->refs[level] == 1) {
8923                 if (level == 0) {
8924                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8925                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8926                         else
8927                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8928                         BUG_ON(ret); /* -ENOMEM */
8929                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8930                         if (ret) {
8931                                 btrfs_err_rl(fs_info,
8932                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8933                                              ret);
8934                         }
8935                 }
8936                 /* make block locked assertion in clean_tree_block happy */
8937                 if (!path->locks[level] &&
8938                     btrfs_header_generation(eb) == trans->transid) {
8939                         btrfs_tree_lock(eb);
8940                         btrfs_set_lock_blocking(eb);
8941                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8942                 }
8943                 clean_tree_block(fs_info, eb);
8944         }
8945
8946         if (eb == root->node) {
8947                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8948                         parent = eb->start;
8949                 else
8950                         BUG_ON(root->root_key.objectid !=
8951                                btrfs_header_owner(eb));
8952         } else {
8953                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8954                         parent = path->nodes[level + 1]->start;
8955                 else
8956                         BUG_ON(root->root_key.objectid !=
8957                                btrfs_header_owner(path->nodes[level + 1]));
8958         }
8959
8960         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8961 out:
8962         wc->refs[level] = 0;
8963         wc->flags[level] = 0;
8964         return 0;
8965 }
8966
8967 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8968                                    struct btrfs_root *root,
8969                                    struct btrfs_path *path,
8970                                    struct walk_control *wc)
8971 {
8972         int level = wc->level;
8973         int lookup_info = 1;
8974         int ret;
8975
8976         while (level >= 0) {
8977                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8978                 if (ret > 0)
8979                         break;
8980
8981                 if (level == 0)
8982                         break;
8983
8984                 if (path->slots[level] >=
8985                     btrfs_header_nritems(path->nodes[level]))
8986                         break;
8987
8988                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8989                 if (ret > 0) {
8990                         path->slots[level]++;
8991                         continue;
8992                 } else if (ret < 0)
8993                         return ret;
8994                 level = wc->level;
8995         }
8996         return 0;
8997 }
8998
8999 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9000                                  struct btrfs_root *root,
9001                                  struct btrfs_path *path,
9002                                  struct walk_control *wc, int max_level)
9003 {
9004         int level = wc->level;
9005         int ret;
9006
9007         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9008         while (level < max_level && path->nodes[level]) {
9009                 wc->level = level;
9010                 if (path->slots[level] + 1 <
9011                     btrfs_header_nritems(path->nodes[level])) {
9012                         path->slots[level]++;
9013                         return 0;
9014                 } else {
9015                         ret = walk_up_proc(trans, root, path, wc);
9016                         if (ret > 0)
9017                                 return 0;
9018
9019                         if (path->locks[level]) {
9020                                 btrfs_tree_unlock_rw(path->nodes[level],
9021                                                      path->locks[level]);
9022                                 path->locks[level] = 0;
9023                         }
9024                         free_extent_buffer(path->nodes[level]);
9025                         path->nodes[level] = NULL;
9026                         level++;
9027                 }
9028         }
9029         return 1;
9030 }
9031
9032 /*
9033  * drop a subvolume tree.
9034  *
9035  * this function traverses the tree freeing any blocks that only
9036  * referenced by the tree.
9037  *
9038  * when a shared tree block is found. this function decreases its
9039  * reference count by one. if update_ref is true, this function
9040  * also make sure backrefs for the shared block and all lower level
9041  * blocks are properly updated.
9042  *
9043  * If called with for_reloc == 0, may exit early with -EAGAIN
9044  */
9045 int btrfs_drop_snapshot(struct btrfs_root *root,
9046                          struct btrfs_block_rsv *block_rsv, int update_ref,
9047                          int for_reloc)
9048 {
9049         struct btrfs_fs_info *fs_info = root->fs_info;
9050         struct btrfs_path *path;
9051         struct btrfs_trans_handle *trans;
9052         struct btrfs_root *tree_root = fs_info->tree_root;
9053         struct btrfs_root_item *root_item = &root->root_item;
9054         struct walk_control *wc;
9055         struct btrfs_key key;
9056         int err = 0;
9057         int ret;
9058         int level;
9059         bool root_dropped = false;
9060
9061         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9062
9063         path = btrfs_alloc_path();
9064         if (!path) {
9065                 err = -ENOMEM;
9066                 goto out;
9067         }
9068
9069         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9070         if (!wc) {
9071                 btrfs_free_path(path);
9072                 err = -ENOMEM;
9073                 goto out;
9074         }
9075
9076         trans = btrfs_start_transaction(tree_root, 0);
9077         if (IS_ERR(trans)) {
9078                 err = PTR_ERR(trans);
9079                 goto out_free;
9080         }
9081
9082         if (block_rsv)
9083                 trans->block_rsv = block_rsv;
9084
9085         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9086                 level = btrfs_header_level(root->node);
9087                 path->nodes[level] = btrfs_lock_root_node(root);
9088                 btrfs_set_lock_blocking(path->nodes[level]);
9089                 path->slots[level] = 0;
9090                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9091                 memset(&wc->update_progress, 0,
9092                        sizeof(wc->update_progress));
9093         } else {
9094                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9095                 memcpy(&wc->update_progress, &key,
9096                        sizeof(wc->update_progress));
9097
9098                 level = root_item->drop_level;
9099                 BUG_ON(level == 0);
9100                 path->lowest_level = level;
9101                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9102                 path->lowest_level = 0;
9103                 if (ret < 0) {
9104                         err = ret;
9105                         goto out_end_trans;
9106                 }
9107                 WARN_ON(ret > 0);
9108
9109                 /*
9110                  * unlock our path, this is safe because only this
9111                  * function is allowed to delete this snapshot
9112                  */
9113                 btrfs_unlock_up_safe(path, 0);
9114
9115                 level = btrfs_header_level(root->node);
9116                 while (1) {
9117                         btrfs_tree_lock(path->nodes[level]);
9118                         btrfs_set_lock_blocking(path->nodes[level]);
9119                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9120
9121                         ret = btrfs_lookup_extent_info(trans, fs_info,
9122                                                 path->nodes[level]->start,
9123                                                 level, 1, &wc->refs[level],
9124                                                 &wc->flags[level]);
9125                         if (ret < 0) {
9126                                 err = ret;
9127                                 goto out_end_trans;
9128                         }
9129                         BUG_ON(wc->refs[level] == 0);
9130
9131                         if (level == root_item->drop_level)
9132                                 break;
9133
9134                         btrfs_tree_unlock(path->nodes[level]);
9135                         path->locks[level] = 0;
9136                         WARN_ON(wc->refs[level] != 1);
9137                         level--;
9138                 }
9139         }
9140
9141         wc->level = level;
9142         wc->shared_level = -1;
9143         wc->stage = DROP_REFERENCE;
9144         wc->update_ref = update_ref;
9145         wc->keep_locks = 0;
9146         wc->for_reloc = for_reloc;
9147         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9148
9149         while (1) {
9150
9151                 ret = walk_down_tree(trans, root, path, wc);
9152                 if (ret < 0) {
9153                         err = ret;
9154                         break;
9155                 }
9156
9157                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9158                 if (ret < 0) {
9159                         err = ret;
9160                         break;
9161                 }
9162
9163                 if (ret > 0) {
9164                         BUG_ON(wc->stage != DROP_REFERENCE);
9165                         break;
9166                 }
9167
9168                 if (wc->stage == DROP_REFERENCE) {
9169                         level = wc->level;
9170                         btrfs_node_key(path->nodes[level],
9171                                        &root_item->drop_progress,
9172                                        path->slots[level]);
9173                         root_item->drop_level = level;
9174                 }
9175
9176                 BUG_ON(wc->level == 0);
9177                 if (btrfs_should_end_transaction(trans) ||
9178                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9179                         ret = btrfs_update_root(trans, tree_root,
9180                                                 &root->root_key,
9181                                                 root_item);
9182                         if (ret) {
9183                                 btrfs_abort_transaction(trans, ret);
9184                                 err = ret;
9185                                 goto out_end_trans;
9186                         }
9187
9188                         btrfs_end_transaction_throttle(trans);
9189                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9190                                 btrfs_debug(fs_info,
9191                                             "drop snapshot early exit");
9192                                 err = -EAGAIN;
9193                                 goto out_free;
9194                         }
9195
9196                         trans = btrfs_start_transaction(tree_root, 0);
9197                         if (IS_ERR(trans)) {
9198                                 err = PTR_ERR(trans);
9199                                 goto out_free;
9200                         }
9201                         if (block_rsv)
9202                                 trans->block_rsv = block_rsv;
9203                 }
9204         }
9205         btrfs_release_path(path);
9206         if (err)
9207                 goto out_end_trans;
9208
9209         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9210         if (ret) {
9211                 btrfs_abort_transaction(trans, ret);
9212                 err = ret;
9213                 goto out_end_trans;
9214         }
9215
9216         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9217                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9218                                       NULL, NULL);
9219                 if (ret < 0) {
9220                         btrfs_abort_transaction(trans, ret);
9221                         err = ret;
9222                         goto out_end_trans;
9223                 } else if (ret > 0) {
9224                         /* if we fail to delete the orphan item this time
9225                          * around, it'll get picked up the next time.
9226                          *
9227                          * The most common failure here is just -ENOENT.
9228                          */
9229                         btrfs_del_orphan_item(trans, tree_root,
9230                                               root->root_key.objectid);
9231                 }
9232         }
9233
9234         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9235                 btrfs_add_dropped_root(trans, root);
9236         } else {
9237                 free_extent_buffer(root->node);
9238                 free_extent_buffer(root->commit_root);
9239                 btrfs_put_fs_root(root);
9240         }
9241         root_dropped = true;
9242 out_end_trans:
9243         btrfs_end_transaction_throttle(trans);
9244 out_free:
9245         kfree(wc);
9246         btrfs_free_path(path);
9247 out:
9248         /*
9249          * So if we need to stop dropping the snapshot for whatever reason we
9250          * need to make sure to add it back to the dead root list so that we
9251          * keep trying to do the work later.  This also cleans up roots if we
9252          * don't have it in the radix (like when we recover after a power fail
9253          * or unmount) so we don't leak memory.
9254          */
9255         if (!for_reloc && !root_dropped)
9256                 btrfs_add_dead_root(root);
9257         if (err && err != -EAGAIN)
9258                 btrfs_handle_fs_error(fs_info, err, NULL);
9259         return err;
9260 }
9261
9262 /*
9263  * drop subtree rooted at tree block 'node'.
9264  *
9265  * NOTE: this function will unlock and release tree block 'node'
9266  * only used by relocation code
9267  */
9268 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9269                         struct btrfs_root *root,
9270                         struct extent_buffer *node,
9271                         struct extent_buffer *parent)
9272 {
9273         struct btrfs_fs_info *fs_info = root->fs_info;
9274         struct btrfs_path *path;
9275         struct walk_control *wc;
9276         int level;
9277         int parent_level;
9278         int ret = 0;
9279         int wret;
9280
9281         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9282
9283         path = btrfs_alloc_path();
9284         if (!path)
9285                 return -ENOMEM;
9286
9287         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9288         if (!wc) {
9289                 btrfs_free_path(path);
9290                 return -ENOMEM;
9291         }
9292
9293         btrfs_assert_tree_locked(parent);
9294         parent_level = btrfs_header_level(parent);
9295         extent_buffer_get(parent);
9296         path->nodes[parent_level] = parent;
9297         path->slots[parent_level] = btrfs_header_nritems(parent);
9298
9299         btrfs_assert_tree_locked(node);
9300         level = btrfs_header_level(node);
9301         path->nodes[level] = node;
9302         path->slots[level] = 0;
9303         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9304
9305         wc->refs[parent_level] = 1;
9306         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9307         wc->level = level;
9308         wc->shared_level = -1;
9309         wc->stage = DROP_REFERENCE;
9310         wc->update_ref = 0;
9311         wc->keep_locks = 1;
9312         wc->for_reloc = 1;
9313         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9314
9315         while (1) {
9316                 wret = walk_down_tree(trans, root, path, wc);
9317                 if (wret < 0) {
9318                         ret = wret;
9319                         break;
9320                 }
9321
9322                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9323                 if (wret < 0)
9324                         ret = wret;
9325                 if (wret != 0)
9326                         break;
9327         }
9328
9329         kfree(wc);
9330         btrfs_free_path(path);
9331         return ret;
9332 }
9333
9334 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9335 {
9336         u64 num_devices;
9337         u64 stripped;
9338
9339         /*
9340          * if restripe for this chunk_type is on pick target profile and
9341          * return, otherwise do the usual balance
9342          */
9343         stripped = get_restripe_target(fs_info, flags);
9344         if (stripped)
9345                 return extended_to_chunk(stripped);
9346
9347         num_devices = fs_info->fs_devices->rw_devices;
9348
9349         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9350                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9351                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9352
9353         if (num_devices == 1) {
9354                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9355                 stripped = flags & ~stripped;
9356
9357                 /* turn raid0 into single device chunks */
9358                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9359                         return stripped;
9360
9361                 /* turn mirroring into duplication */
9362                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9363                              BTRFS_BLOCK_GROUP_RAID10))
9364                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9365         } else {
9366                 /* they already had raid on here, just return */
9367                 if (flags & stripped)
9368                         return flags;
9369
9370                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9371                 stripped = flags & ~stripped;
9372
9373                 /* switch duplicated blocks with raid1 */
9374                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9375                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9376
9377                 /* this is drive concat, leave it alone */
9378         }
9379
9380         return flags;
9381 }
9382
9383 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9384 {
9385         struct btrfs_space_info *sinfo = cache->space_info;
9386         u64 num_bytes;
9387         u64 min_allocable_bytes;
9388         int ret = -ENOSPC;
9389
9390         /*
9391          * We need some metadata space and system metadata space for
9392          * allocating chunks in some corner cases until we force to set
9393          * it to be readonly.
9394          */
9395         if ((sinfo->flags &
9396              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9397             !force)
9398                 min_allocable_bytes = SZ_1M;
9399         else
9400                 min_allocable_bytes = 0;
9401
9402         spin_lock(&sinfo->lock);
9403         spin_lock(&cache->lock);
9404
9405         if (cache->ro) {
9406                 cache->ro++;
9407                 ret = 0;
9408                 goto out;
9409         }
9410
9411         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9412                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9413
9414         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9415             min_allocable_bytes <= sinfo->total_bytes) {
9416                 sinfo->bytes_readonly += num_bytes;
9417                 cache->ro++;
9418                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9419                 ret = 0;
9420         }
9421 out:
9422         spin_unlock(&cache->lock);
9423         spin_unlock(&sinfo->lock);
9424         return ret;
9425 }
9426
9427 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9428                              struct btrfs_block_group_cache *cache)
9429
9430 {
9431         struct btrfs_trans_handle *trans;
9432         u64 alloc_flags;
9433         int ret;
9434
9435 again:
9436         trans = btrfs_join_transaction(fs_info->extent_root);
9437         if (IS_ERR(trans))
9438                 return PTR_ERR(trans);
9439
9440         /*
9441          * we're not allowed to set block groups readonly after the dirty
9442          * block groups cache has started writing.  If it already started,
9443          * back off and let this transaction commit
9444          */
9445         mutex_lock(&fs_info->ro_block_group_mutex);
9446         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9447                 u64 transid = trans->transid;
9448
9449                 mutex_unlock(&fs_info->ro_block_group_mutex);
9450                 btrfs_end_transaction(trans);
9451
9452                 ret = btrfs_wait_for_commit(fs_info, transid);
9453                 if (ret)
9454                         return ret;
9455                 goto again;
9456         }
9457
9458         /*
9459          * if we are changing raid levels, try to allocate a corresponding
9460          * block group with the new raid level.
9461          */
9462         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9463         if (alloc_flags != cache->flags) {
9464                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9465                                      CHUNK_ALLOC_FORCE);
9466                 /*
9467                  * ENOSPC is allowed here, we may have enough space
9468                  * already allocated at the new raid level to
9469                  * carry on
9470                  */
9471                 if (ret == -ENOSPC)
9472                         ret = 0;
9473                 if (ret < 0)
9474                         goto out;
9475         }
9476
9477         ret = inc_block_group_ro(cache, 0);
9478         if (!ret)
9479                 goto out;
9480         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9481         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9482                              CHUNK_ALLOC_FORCE);
9483         if (ret < 0)
9484                 goto out;
9485         ret = inc_block_group_ro(cache, 0);
9486 out:
9487         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9488                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9489                 mutex_lock(&fs_info->chunk_mutex);
9490                 check_system_chunk(trans, fs_info, alloc_flags);
9491                 mutex_unlock(&fs_info->chunk_mutex);
9492         }
9493         mutex_unlock(&fs_info->ro_block_group_mutex);
9494
9495         btrfs_end_transaction(trans);
9496         return ret;
9497 }
9498
9499 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9500                             struct btrfs_fs_info *fs_info, u64 type)
9501 {
9502         u64 alloc_flags = get_alloc_profile(fs_info, type);
9503
9504         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9505 }
9506
9507 /*
9508  * helper to account the unused space of all the readonly block group in the
9509  * space_info. takes mirrors into account.
9510  */
9511 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9512 {
9513         struct btrfs_block_group_cache *block_group;
9514         u64 free_bytes = 0;
9515         int factor;
9516
9517         /* It's df, we don't care if it's racy */
9518         if (list_empty(&sinfo->ro_bgs))
9519                 return 0;
9520
9521         spin_lock(&sinfo->lock);
9522         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9523                 spin_lock(&block_group->lock);
9524
9525                 if (!block_group->ro) {
9526                         spin_unlock(&block_group->lock);
9527                         continue;
9528                 }
9529
9530                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9531                                           BTRFS_BLOCK_GROUP_RAID10 |
9532                                           BTRFS_BLOCK_GROUP_DUP))
9533                         factor = 2;
9534                 else
9535                         factor = 1;
9536
9537                 free_bytes += (block_group->key.offset -
9538                                btrfs_block_group_used(&block_group->item)) *
9539                                factor;
9540
9541                 spin_unlock(&block_group->lock);
9542         }
9543         spin_unlock(&sinfo->lock);
9544
9545         return free_bytes;
9546 }
9547
9548 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9549 {
9550         struct btrfs_space_info *sinfo = cache->space_info;
9551         u64 num_bytes;
9552
9553         BUG_ON(!cache->ro);
9554
9555         spin_lock(&sinfo->lock);
9556         spin_lock(&cache->lock);
9557         if (!--cache->ro) {
9558                 num_bytes = cache->key.offset - cache->reserved -
9559                             cache->pinned - cache->bytes_super -
9560                             btrfs_block_group_used(&cache->item);
9561                 sinfo->bytes_readonly -= num_bytes;
9562                 list_del_init(&cache->ro_list);
9563         }
9564         spin_unlock(&cache->lock);
9565         spin_unlock(&sinfo->lock);
9566 }
9567
9568 /*
9569  * checks to see if its even possible to relocate this block group.
9570  *
9571  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9572  * ok to go ahead and try.
9573  */
9574 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9575 {
9576         struct btrfs_root *root = fs_info->extent_root;
9577         struct btrfs_block_group_cache *block_group;
9578         struct btrfs_space_info *space_info;
9579         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9580         struct btrfs_device *device;
9581         struct btrfs_trans_handle *trans;
9582         u64 min_free;
9583         u64 dev_min = 1;
9584         u64 dev_nr = 0;
9585         u64 target;
9586         int debug;
9587         int index;
9588         int full = 0;
9589         int ret = 0;
9590
9591         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9592
9593         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9594
9595         /* odd, couldn't find the block group, leave it alone */
9596         if (!block_group) {
9597                 if (debug)
9598                         btrfs_warn(fs_info,
9599                                    "can't find block group for bytenr %llu",
9600                                    bytenr);
9601                 return -1;
9602         }
9603
9604         min_free = btrfs_block_group_used(&block_group->item);
9605
9606         /* no bytes used, we're good */
9607         if (!min_free)
9608                 goto out;
9609
9610         space_info = block_group->space_info;
9611         spin_lock(&space_info->lock);
9612
9613         full = space_info->full;
9614
9615         /*
9616          * if this is the last block group we have in this space, we can't
9617          * relocate it unless we're able to allocate a new chunk below.
9618          *
9619          * Otherwise, we need to make sure we have room in the space to handle
9620          * all of the extents from this block group.  If we can, we're good
9621          */
9622         if ((space_info->total_bytes != block_group->key.offset) &&
9623             (btrfs_space_info_used(space_info, false) + min_free <
9624              space_info->total_bytes)) {
9625                 spin_unlock(&space_info->lock);
9626                 goto out;
9627         }
9628         spin_unlock(&space_info->lock);
9629
9630         /*
9631          * ok we don't have enough space, but maybe we have free space on our
9632          * devices to allocate new chunks for relocation, so loop through our
9633          * alloc devices and guess if we have enough space.  if this block
9634          * group is going to be restriped, run checks against the target
9635          * profile instead of the current one.
9636          */
9637         ret = -1;
9638
9639         /*
9640          * index:
9641          *      0: raid10
9642          *      1: raid1
9643          *      2: dup
9644          *      3: raid0
9645          *      4: single
9646          */
9647         target = get_restripe_target(fs_info, block_group->flags);
9648         if (target) {
9649                 index = __get_raid_index(extended_to_chunk(target));
9650         } else {
9651                 /*
9652                  * this is just a balance, so if we were marked as full
9653                  * we know there is no space for a new chunk
9654                  */
9655                 if (full) {
9656                         if (debug)
9657                                 btrfs_warn(fs_info,
9658                                            "no space to alloc new chunk for block group %llu",
9659                                            block_group->key.objectid);
9660                         goto out;
9661                 }
9662
9663                 index = get_block_group_index(block_group);
9664         }
9665
9666         if (index == BTRFS_RAID_RAID10) {
9667                 dev_min = 4;
9668                 /* Divide by 2 */
9669                 min_free >>= 1;
9670         } else if (index == BTRFS_RAID_RAID1) {
9671                 dev_min = 2;
9672         } else if (index == BTRFS_RAID_DUP) {
9673                 /* Multiply by 2 */
9674                 min_free <<= 1;
9675         } else if (index == BTRFS_RAID_RAID0) {
9676                 dev_min = fs_devices->rw_devices;
9677                 min_free = div64_u64(min_free, dev_min);
9678         }
9679
9680         /* We need to do this so that we can look at pending chunks */
9681         trans = btrfs_join_transaction(root);
9682         if (IS_ERR(trans)) {
9683                 ret = PTR_ERR(trans);
9684                 goto out;
9685         }
9686
9687         mutex_lock(&fs_info->chunk_mutex);
9688         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9689                 u64 dev_offset;
9690
9691                 /*
9692                  * check to make sure we can actually find a chunk with enough
9693                  * space to fit our block group in.
9694                  */
9695                 if (device->total_bytes > device->bytes_used + min_free &&
9696                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9697                         ret = find_free_dev_extent(trans, device, min_free,
9698                                                    &dev_offset, NULL);
9699                         if (!ret)
9700                                 dev_nr++;
9701
9702                         if (dev_nr >= dev_min)
9703                                 break;
9704
9705                         ret = -1;
9706                 }
9707         }
9708         if (debug && ret == -1)
9709                 btrfs_warn(fs_info,
9710                            "no space to allocate a new chunk for block group %llu",
9711                            block_group->key.objectid);
9712         mutex_unlock(&fs_info->chunk_mutex);
9713         btrfs_end_transaction(trans);
9714 out:
9715         btrfs_put_block_group(block_group);
9716         return ret;
9717 }
9718
9719 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9720                                   struct btrfs_path *path,
9721                                   struct btrfs_key *key)
9722 {
9723         struct btrfs_root *root = fs_info->extent_root;
9724         int ret = 0;
9725         struct btrfs_key found_key;
9726         struct extent_buffer *leaf;
9727         int slot;
9728
9729         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9730         if (ret < 0)
9731                 goto out;
9732
9733         while (1) {
9734                 slot = path->slots[0];
9735                 leaf = path->nodes[0];
9736                 if (slot >= btrfs_header_nritems(leaf)) {
9737                         ret = btrfs_next_leaf(root, path);
9738                         if (ret == 0)
9739                                 continue;
9740                         if (ret < 0)
9741                                 goto out;
9742                         break;
9743                 }
9744                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9745
9746                 if (found_key.objectid >= key->objectid &&
9747                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9748                         struct extent_map_tree *em_tree;
9749                         struct extent_map *em;
9750
9751                         em_tree = &root->fs_info->mapping_tree.map_tree;
9752                         read_lock(&em_tree->lock);
9753                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9754                                                    found_key.offset);
9755                         read_unlock(&em_tree->lock);
9756                         if (!em) {
9757                                 btrfs_err(fs_info,
9758                         "logical %llu len %llu found bg but no related chunk",
9759                                           found_key.objectid, found_key.offset);
9760                                 ret = -ENOENT;
9761                         } else {
9762                                 ret = 0;
9763                         }
9764                         free_extent_map(em);
9765                         goto out;
9766                 }
9767                 path->slots[0]++;
9768         }
9769 out:
9770         return ret;
9771 }
9772
9773 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9774 {
9775         struct btrfs_block_group_cache *block_group;
9776         u64 last = 0;
9777
9778         while (1) {
9779                 struct inode *inode;
9780
9781                 block_group = btrfs_lookup_first_block_group(info, last);
9782                 while (block_group) {
9783                         spin_lock(&block_group->lock);
9784                         if (block_group->iref)
9785                                 break;
9786                         spin_unlock(&block_group->lock);
9787                         block_group = next_block_group(info, block_group);
9788                 }
9789                 if (!block_group) {
9790                         if (last == 0)
9791                                 break;
9792                         last = 0;
9793                         continue;
9794                 }
9795
9796                 inode = block_group->inode;
9797                 block_group->iref = 0;
9798                 block_group->inode = NULL;
9799                 spin_unlock(&block_group->lock);
9800                 ASSERT(block_group->io_ctl.inode == NULL);
9801                 iput(inode);
9802                 last = block_group->key.objectid + block_group->key.offset;
9803                 btrfs_put_block_group(block_group);
9804         }
9805 }
9806
9807 /*
9808  * Must be called only after stopping all workers, since we could have block
9809  * group caching kthreads running, and therefore they could race with us if we
9810  * freed the block groups before stopping them.
9811  */
9812 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9813 {
9814         struct btrfs_block_group_cache *block_group;
9815         struct btrfs_space_info *space_info;
9816         struct btrfs_caching_control *caching_ctl;
9817         struct rb_node *n;
9818
9819         down_write(&info->commit_root_sem);
9820         while (!list_empty(&info->caching_block_groups)) {
9821                 caching_ctl = list_entry(info->caching_block_groups.next,
9822                                          struct btrfs_caching_control, list);
9823                 list_del(&caching_ctl->list);
9824                 put_caching_control(caching_ctl);
9825         }
9826         up_write(&info->commit_root_sem);
9827
9828         spin_lock(&info->unused_bgs_lock);
9829         while (!list_empty(&info->unused_bgs)) {
9830                 block_group = list_first_entry(&info->unused_bgs,
9831                                                struct btrfs_block_group_cache,
9832                                                bg_list);
9833                 list_del_init(&block_group->bg_list);
9834                 btrfs_put_block_group(block_group);
9835         }
9836         spin_unlock(&info->unused_bgs_lock);
9837
9838         spin_lock(&info->block_group_cache_lock);
9839         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9840                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9841                                        cache_node);
9842                 rb_erase(&block_group->cache_node,
9843                          &info->block_group_cache_tree);
9844                 RB_CLEAR_NODE(&block_group->cache_node);
9845                 spin_unlock(&info->block_group_cache_lock);
9846
9847                 down_write(&block_group->space_info->groups_sem);
9848                 list_del(&block_group->list);
9849                 up_write(&block_group->space_info->groups_sem);
9850
9851                 /*
9852                  * We haven't cached this block group, which means we could
9853                  * possibly have excluded extents on this block group.
9854                  */
9855                 if (block_group->cached == BTRFS_CACHE_NO ||
9856                     block_group->cached == BTRFS_CACHE_ERROR)
9857                         free_excluded_extents(info, block_group);
9858
9859                 btrfs_remove_free_space_cache(block_group);
9860                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9861                 ASSERT(list_empty(&block_group->dirty_list));
9862                 ASSERT(list_empty(&block_group->io_list));
9863                 ASSERT(list_empty(&block_group->bg_list));
9864                 ASSERT(atomic_read(&block_group->count) == 1);
9865                 btrfs_put_block_group(block_group);
9866
9867                 spin_lock(&info->block_group_cache_lock);
9868         }
9869         spin_unlock(&info->block_group_cache_lock);
9870
9871         /* now that all the block groups are freed, go through and
9872          * free all the space_info structs.  This is only called during
9873          * the final stages of unmount, and so we know nobody is
9874          * using them.  We call synchronize_rcu() once before we start,
9875          * just to be on the safe side.
9876          */
9877         synchronize_rcu();
9878
9879         release_global_block_rsv(info);
9880
9881         while (!list_empty(&info->space_info)) {
9882                 int i;
9883
9884                 space_info = list_entry(info->space_info.next,
9885                                         struct btrfs_space_info,
9886                                         list);
9887
9888                 /*
9889                  * Do not hide this behind enospc_debug, this is actually
9890                  * important and indicates a real bug if this happens.
9891                  */
9892                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9893                             space_info->bytes_reserved > 0 ||
9894                             space_info->bytes_may_use > 0))
9895                         dump_space_info(info, space_info, 0, 0);
9896                 list_del(&space_info->list);
9897                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9898                         struct kobject *kobj;
9899                         kobj = space_info->block_group_kobjs[i];
9900                         space_info->block_group_kobjs[i] = NULL;
9901                         if (kobj) {
9902                                 kobject_del(kobj);
9903                                 kobject_put(kobj);
9904                         }
9905                 }
9906                 kobject_del(&space_info->kobj);
9907                 kobject_put(&space_info->kobj);
9908         }
9909         return 0;
9910 }
9911
9912 static void link_block_group(struct btrfs_block_group_cache *cache)
9913 {
9914         struct btrfs_space_info *space_info = cache->space_info;
9915         int index = get_block_group_index(cache);
9916         bool first = false;
9917
9918         down_write(&space_info->groups_sem);
9919         if (list_empty(&space_info->block_groups[index]))
9920                 first = true;
9921         list_add_tail(&cache->list, &space_info->block_groups[index]);
9922         up_write(&space_info->groups_sem);
9923
9924         if (first) {
9925                 struct raid_kobject *rkobj;
9926                 int ret;
9927
9928                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9929                 if (!rkobj)
9930                         goto out_err;
9931                 rkobj->raid_type = index;
9932                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9933                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9934                                   "%s", get_raid_name(index));
9935                 if (ret) {
9936                         kobject_put(&rkobj->kobj);
9937                         goto out_err;
9938                 }
9939                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9940         }
9941
9942         return;
9943 out_err:
9944         btrfs_warn(cache->fs_info,
9945                    "failed to add kobject for block cache, ignoring");
9946 }
9947
9948 static struct btrfs_block_group_cache *
9949 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9950                                u64 start, u64 size)
9951 {
9952         struct btrfs_block_group_cache *cache;
9953
9954         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9955         if (!cache)
9956                 return NULL;
9957
9958         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9959                                         GFP_NOFS);
9960         if (!cache->free_space_ctl) {
9961                 kfree(cache);
9962                 return NULL;
9963         }
9964
9965         cache->key.objectid = start;
9966         cache->key.offset = size;
9967         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9968
9969         cache->fs_info = fs_info;
9970         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9971         set_free_space_tree_thresholds(cache);
9972
9973         atomic_set(&cache->count, 1);
9974         spin_lock_init(&cache->lock);
9975         init_rwsem(&cache->data_rwsem);
9976         INIT_LIST_HEAD(&cache->list);
9977         INIT_LIST_HEAD(&cache->cluster_list);
9978         INIT_LIST_HEAD(&cache->bg_list);
9979         INIT_LIST_HEAD(&cache->ro_list);
9980         INIT_LIST_HEAD(&cache->dirty_list);
9981         INIT_LIST_HEAD(&cache->io_list);
9982         btrfs_init_free_space_ctl(cache);
9983         atomic_set(&cache->trimming, 0);
9984         mutex_init(&cache->free_space_lock);
9985         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9986
9987         return cache;
9988 }
9989
9990 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9991 {
9992         struct btrfs_path *path;
9993         int ret;
9994         struct btrfs_block_group_cache *cache;
9995         struct btrfs_space_info *space_info;
9996         struct btrfs_key key;
9997         struct btrfs_key found_key;
9998         struct extent_buffer *leaf;
9999         int need_clear = 0;
10000         u64 cache_gen;
10001         u64 feature;
10002         int mixed;
10003
10004         feature = btrfs_super_incompat_flags(info->super_copy);
10005         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10006
10007         key.objectid = 0;
10008         key.offset = 0;
10009         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10010         path = btrfs_alloc_path();
10011         if (!path)
10012                 return -ENOMEM;
10013         path->reada = READA_FORWARD;
10014
10015         cache_gen = btrfs_super_cache_generation(info->super_copy);
10016         if (btrfs_test_opt(info, SPACE_CACHE) &&
10017             btrfs_super_generation(info->super_copy) != cache_gen)
10018                 need_clear = 1;
10019         if (btrfs_test_opt(info, CLEAR_CACHE))
10020                 need_clear = 1;
10021
10022         while (1) {
10023                 ret = find_first_block_group(info, path, &key);
10024                 if (ret > 0)
10025                         break;
10026                 if (ret != 0)
10027                         goto error;
10028
10029                 leaf = path->nodes[0];
10030                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10031
10032                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10033                                                        found_key.offset);
10034                 if (!cache) {
10035                         ret = -ENOMEM;
10036                         goto error;
10037                 }
10038
10039                 if (need_clear) {
10040                         /*
10041                          * When we mount with old space cache, we need to
10042                          * set BTRFS_DC_CLEAR and set dirty flag.
10043                          *
10044                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10045                          *    truncate the old free space cache inode and
10046                          *    setup a new one.
10047                          * b) Setting 'dirty flag' makes sure that we flush
10048                          *    the new space cache info onto disk.
10049                          */
10050                         if (btrfs_test_opt(info, SPACE_CACHE))
10051                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10052                 }
10053
10054                 read_extent_buffer(leaf, &cache->item,
10055                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10056                                    sizeof(cache->item));
10057                 cache->flags = btrfs_block_group_flags(&cache->item);
10058                 if (!mixed &&
10059                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10060                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10061                         btrfs_err(info,
10062 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10063                                   cache->key.objectid);
10064                         ret = -EINVAL;
10065                         goto error;
10066                 }
10067
10068                 key.objectid = found_key.objectid + found_key.offset;
10069                 btrfs_release_path(path);
10070
10071                 /*
10072                  * We need to exclude the super stripes now so that the space
10073                  * info has super bytes accounted for, otherwise we'll think
10074                  * we have more space than we actually do.
10075                  */
10076                 ret = exclude_super_stripes(info, cache);
10077                 if (ret) {
10078                         /*
10079                          * We may have excluded something, so call this just in
10080                          * case.
10081                          */
10082                         free_excluded_extents(info, cache);
10083                         btrfs_put_block_group(cache);
10084                         goto error;
10085                 }
10086
10087                 /*
10088                  * check for two cases, either we are full, and therefore
10089                  * don't need to bother with the caching work since we won't
10090                  * find any space, or we are empty, and we can just add all
10091                  * the space in and be done with it.  This saves us _alot_ of
10092                  * time, particularly in the full case.
10093                  */
10094                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10095                         cache->last_byte_to_unpin = (u64)-1;
10096                         cache->cached = BTRFS_CACHE_FINISHED;
10097                         free_excluded_extents(info, cache);
10098                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10099                         cache->last_byte_to_unpin = (u64)-1;
10100                         cache->cached = BTRFS_CACHE_FINISHED;
10101                         add_new_free_space(cache, info,
10102                                            found_key.objectid,
10103                                            found_key.objectid +
10104                                            found_key.offset);
10105                         free_excluded_extents(info, cache);
10106                 }
10107
10108                 ret = btrfs_add_block_group_cache(info, cache);
10109                 if (ret) {
10110                         btrfs_remove_free_space_cache(cache);
10111                         btrfs_put_block_group(cache);
10112                         goto error;
10113                 }
10114
10115                 trace_btrfs_add_block_group(info, cache, 0);
10116                 update_space_info(info, cache->flags, found_key.offset,
10117                                   btrfs_block_group_used(&cache->item),
10118                                   cache->bytes_super, &space_info);
10119
10120                 cache->space_info = space_info;
10121
10122                 link_block_group(cache);
10123
10124                 set_avail_alloc_bits(info, cache->flags);
10125                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10126                         inc_block_group_ro(cache, 1);
10127                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10128                         spin_lock(&info->unused_bgs_lock);
10129                         /* Should always be true but just in case. */
10130                         if (list_empty(&cache->bg_list)) {
10131                                 btrfs_get_block_group(cache);
10132                                 list_add_tail(&cache->bg_list,
10133                                               &info->unused_bgs);
10134                         }
10135                         spin_unlock(&info->unused_bgs_lock);
10136                 }
10137         }
10138
10139         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10140                 if (!(get_alloc_profile(info, space_info->flags) &
10141                       (BTRFS_BLOCK_GROUP_RAID10 |
10142                        BTRFS_BLOCK_GROUP_RAID1 |
10143                        BTRFS_BLOCK_GROUP_RAID5 |
10144                        BTRFS_BLOCK_GROUP_RAID6 |
10145                        BTRFS_BLOCK_GROUP_DUP)))
10146                         continue;
10147                 /*
10148                  * avoid allocating from un-mirrored block group if there are
10149                  * mirrored block groups.
10150                  */
10151                 list_for_each_entry(cache,
10152                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10153                                 list)
10154                         inc_block_group_ro(cache, 1);
10155                 list_for_each_entry(cache,
10156                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10157                                 list)
10158                         inc_block_group_ro(cache, 1);
10159         }
10160
10161         init_global_block_rsv(info);
10162         ret = 0;
10163 error:
10164         btrfs_free_path(path);
10165         return ret;
10166 }
10167
10168 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10169                                        struct btrfs_fs_info *fs_info)
10170 {
10171         struct btrfs_block_group_cache *block_group, *tmp;
10172         struct btrfs_root *extent_root = fs_info->extent_root;
10173         struct btrfs_block_group_item item;
10174         struct btrfs_key key;
10175         int ret = 0;
10176         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10177
10178         trans->can_flush_pending_bgs = false;
10179         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10180                 if (ret)
10181                         goto next;
10182
10183                 spin_lock(&block_group->lock);
10184                 memcpy(&item, &block_group->item, sizeof(item));
10185                 memcpy(&key, &block_group->key, sizeof(key));
10186                 spin_unlock(&block_group->lock);
10187
10188                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10189                                         sizeof(item));
10190                 if (ret)
10191                         btrfs_abort_transaction(trans, ret);
10192                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10193                                                key.offset);
10194                 if (ret)
10195                         btrfs_abort_transaction(trans, ret);
10196                 add_block_group_free_space(trans, fs_info, block_group);
10197                 /* already aborted the transaction if it failed. */
10198 next:
10199                 list_del_init(&block_group->bg_list);
10200         }
10201         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10202 }
10203
10204 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10205                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10206                            u64 type, u64 chunk_offset, u64 size)
10207 {
10208         struct btrfs_block_group_cache *cache;
10209         int ret;
10210
10211         btrfs_set_log_full_commit(fs_info, trans);
10212
10213         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10214         if (!cache)
10215                 return -ENOMEM;
10216
10217         btrfs_set_block_group_used(&cache->item, bytes_used);
10218         btrfs_set_block_group_chunk_objectid(&cache->item,
10219                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10220         btrfs_set_block_group_flags(&cache->item, type);
10221
10222         cache->flags = type;
10223         cache->last_byte_to_unpin = (u64)-1;
10224         cache->cached = BTRFS_CACHE_FINISHED;
10225         cache->needs_free_space = 1;
10226         ret = exclude_super_stripes(fs_info, cache);
10227         if (ret) {
10228                 /*
10229                  * We may have excluded something, so call this just in
10230                  * case.
10231                  */
10232                 free_excluded_extents(fs_info, cache);
10233                 btrfs_put_block_group(cache);
10234                 return ret;
10235         }
10236
10237         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10238
10239         free_excluded_extents(fs_info, cache);
10240
10241 #ifdef CONFIG_BTRFS_DEBUG
10242         if (btrfs_should_fragment_free_space(cache)) {
10243                 u64 new_bytes_used = size - bytes_used;
10244
10245                 bytes_used += new_bytes_used >> 1;
10246                 fragment_free_space(cache);
10247         }
10248 #endif
10249         /*
10250          * Ensure the corresponding space_info object is created and
10251          * assigned to our block group. We want our bg to be added to the rbtree
10252          * with its ->space_info set.
10253          */
10254         cache->space_info = __find_space_info(fs_info, cache->flags);
10255         if (!cache->space_info) {
10256                 ret = create_space_info(fs_info, cache->flags,
10257                                        &cache->space_info);
10258                 if (ret) {
10259                         btrfs_remove_free_space_cache(cache);
10260                         btrfs_put_block_group(cache);
10261                         return ret;
10262                 }
10263         }
10264
10265         ret = btrfs_add_block_group_cache(fs_info, cache);
10266         if (ret) {
10267                 btrfs_remove_free_space_cache(cache);
10268                 btrfs_put_block_group(cache);
10269                 return ret;
10270         }
10271
10272         /*
10273          * Now that our block group has its ->space_info set and is inserted in
10274          * the rbtree, update the space info's counters.
10275          */
10276         trace_btrfs_add_block_group(fs_info, cache, 1);
10277         update_space_info(fs_info, cache->flags, size, bytes_used,
10278                                 cache->bytes_super, &cache->space_info);
10279         update_global_block_rsv(fs_info);
10280
10281         link_block_group(cache);
10282
10283         list_add_tail(&cache->bg_list, &trans->new_bgs);
10284
10285         set_avail_alloc_bits(fs_info, type);
10286         return 0;
10287 }
10288
10289 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10290 {
10291         u64 extra_flags = chunk_to_extended(flags) &
10292                                 BTRFS_EXTENDED_PROFILE_MASK;
10293
10294         write_seqlock(&fs_info->profiles_lock);
10295         if (flags & BTRFS_BLOCK_GROUP_DATA)
10296                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10297         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10298                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10299         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10300                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10301         write_sequnlock(&fs_info->profiles_lock);
10302 }
10303
10304 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10305                              struct btrfs_fs_info *fs_info, u64 group_start,
10306                              struct extent_map *em)
10307 {
10308         struct btrfs_root *root = fs_info->extent_root;
10309         struct btrfs_path *path;
10310         struct btrfs_block_group_cache *block_group;
10311         struct btrfs_free_cluster *cluster;
10312         struct btrfs_root *tree_root = fs_info->tree_root;
10313         struct btrfs_key key;
10314         struct inode *inode;
10315         struct kobject *kobj = NULL;
10316         int ret;
10317         int index;
10318         int factor;
10319         struct btrfs_caching_control *caching_ctl = NULL;
10320         bool remove_em;
10321
10322         block_group = btrfs_lookup_block_group(fs_info, group_start);
10323         BUG_ON(!block_group);
10324         BUG_ON(!block_group->ro);
10325
10326         /*
10327          * Free the reserved super bytes from this block group before
10328          * remove it.
10329          */
10330         free_excluded_extents(fs_info, block_group);
10331         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10332                                   block_group->key.offset);
10333
10334         memcpy(&key, &block_group->key, sizeof(key));
10335         index = get_block_group_index(block_group);
10336         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10337                                   BTRFS_BLOCK_GROUP_RAID1 |
10338                                   BTRFS_BLOCK_GROUP_RAID10))
10339                 factor = 2;
10340         else
10341                 factor = 1;
10342
10343         /* make sure this block group isn't part of an allocation cluster */
10344         cluster = &fs_info->data_alloc_cluster;
10345         spin_lock(&cluster->refill_lock);
10346         btrfs_return_cluster_to_free_space(block_group, cluster);
10347         spin_unlock(&cluster->refill_lock);
10348
10349         /*
10350          * make sure this block group isn't part of a metadata
10351          * allocation cluster
10352          */
10353         cluster = &fs_info->meta_alloc_cluster;
10354         spin_lock(&cluster->refill_lock);
10355         btrfs_return_cluster_to_free_space(block_group, cluster);
10356         spin_unlock(&cluster->refill_lock);
10357
10358         path = btrfs_alloc_path();
10359         if (!path) {
10360                 ret = -ENOMEM;
10361                 goto out;
10362         }
10363
10364         /*
10365          * get the inode first so any iput calls done for the io_list
10366          * aren't the final iput (no unlinks allowed now)
10367          */
10368         inode = lookup_free_space_inode(fs_info, block_group, path);
10369
10370         mutex_lock(&trans->transaction->cache_write_mutex);
10371         /*
10372          * make sure our free spache cache IO is done before remove the
10373          * free space inode
10374          */
10375         spin_lock(&trans->transaction->dirty_bgs_lock);
10376         if (!list_empty(&block_group->io_list)) {
10377                 list_del_init(&block_group->io_list);
10378
10379                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10380
10381                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10382                 btrfs_wait_cache_io(trans, block_group, path);
10383                 btrfs_put_block_group(block_group);
10384                 spin_lock(&trans->transaction->dirty_bgs_lock);
10385         }
10386
10387         if (!list_empty(&block_group->dirty_list)) {
10388                 list_del_init(&block_group->dirty_list);
10389                 btrfs_put_block_group(block_group);
10390         }
10391         spin_unlock(&trans->transaction->dirty_bgs_lock);
10392         mutex_unlock(&trans->transaction->cache_write_mutex);
10393
10394         if (!IS_ERR(inode)) {
10395                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10396                 if (ret) {
10397                         btrfs_add_delayed_iput(inode);
10398                         goto out;
10399                 }
10400                 clear_nlink(inode);
10401                 /* One for the block groups ref */
10402                 spin_lock(&block_group->lock);
10403                 if (block_group->iref) {
10404                         block_group->iref = 0;
10405                         block_group->inode = NULL;
10406                         spin_unlock(&block_group->lock);
10407                         iput(inode);
10408                 } else {
10409                         spin_unlock(&block_group->lock);
10410                 }
10411                 /* One for our lookup ref */
10412                 btrfs_add_delayed_iput(inode);
10413         }
10414
10415         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10416         key.offset = block_group->key.objectid;
10417         key.type = 0;
10418
10419         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10420         if (ret < 0)
10421                 goto out;
10422         if (ret > 0)
10423                 btrfs_release_path(path);
10424         if (ret == 0) {
10425                 ret = btrfs_del_item(trans, tree_root, path);
10426                 if (ret)
10427                         goto out;
10428                 btrfs_release_path(path);
10429         }
10430
10431         spin_lock(&fs_info->block_group_cache_lock);
10432         rb_erase(&block_group->cache_node,
10433                  &fs_info->block_group_cache_tree);
10434         RB_CLEAR_NODE(&block_group->cache_node);
10435
10436         if (fs_info->first_logical_byte == block_group->key.objectid)
10437                 fs_info->first_logical_byte = (u64)-1;
10438         spin_unlock(&fs_info->block_group_cache_lock);
10439
10440         down_write(&block_group->space_info->groups_sem);
10441         /*
10442          * we must use list_del_init so people can check to see if they
10443          * are still on the list after taking the semaphore
10444          */
10445         list_del_init(&block_group->list);
10446         if (list_empty(&block_group->space_info->block_groups[index])) {
10447                 kobj = block_group->space_info->block_group_kobjs[index];
10448                 block_group->space_info->block_group_kobjs[index] = NULL;
10449                 clear_avail_alloc_bits(fs_info, block_group->flags);
10450         }
10451         up_write(&block_group->space_info->groups_sem);
10452         if (kobj) {
10453                 kobject_del(kobj);
10454                 kobject_put(kobj);
10455         }
10456
10457         if (block_group->has_caching_ctl)
10458                 caching_ctl = get_caching_control(block_group);
10459         if (block_group->cached == BTRFS_CACHE_STARTED)
10460                 wait_block_group_cache_done(block_group);
10461         if (block_group->has_caching_ctl) {
10462                 down_write(&fs_info->commit_root_sem);
10463                 if (!caching_ctl) {
10464                         struct btrfs_caching_control *ctl;
10465
10466                         list_for_each_entry(ctl,
10467                                     &fs_info->caching_block_groups, list)
10468                                 if (ctl->block_group == block_group) {
10469                                         caching_ctl = ctl;
10470                                         refcount_inc(&caching_ctl->count);
10471                                         break;
10472                                 }
10473                 }
10474                 if (caching_ctl)
10475                         list_del_init(&caching_ctl->list);
10476                 up_write(&fs_info->commit_root_sem);
10477                 if (caching_ctl) {
10478                         /* Once for the caching bgs list and once for us. */
10479                         put_caching_control(caching_ctl);
10480                         put_caching_control(caching_ctl);
10481                 }
10482         }
10483
10484         spin_lock(&trans->transaction->dirty_bgs_lock);
10485         if (!list_empty(&block_group->dirty_list)) {
10486                 WARN_ON(1);
10487         }
10488         if (!list_empty(&block_group->io_list)) {
10489                 WARN_ON(1);
10490         }
10491         spin_unlock(&trans->transaction->dirty_bgs_lock);
10492         btrfs_remove_free_space_cache(block_group);
10493
10494         spin_lock(&block_group->space_info->lock);
10495         list_del_init(&block_group->ro_list);
10496
10497         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10498                 WARN_ON(block_group->space_info->total_bytes
10499                         < block_group->key.offset);
10500                 WARN_ON(block_group->space_info->bytes_readonly
10501                         < block_group->key.offset);
10502                 WARN_ON(block_group->space_info->disk_total
10503                         < block_group->key.offset * factor);
10504         }
10505         block_group->space_info->total_bytes -= block_group->key.offset;
10506         block_group->space_info->bytes_readonly -= block_group->key.offset;
10507         block_group->space_info->disk_total -= block_group->key.offset * factor;
10508
10509         spin_unlock(&block_group->space_info->lock);
10510
10511         memcpy(&key, &block_group->key, sizeof(key));
10512
10513         mutex_lock(&fs_info->chunk_mutex);
10514         if (!list_empty(&em->list)) {
10515                 /* We're in the transaction->pending_chunks list. */
10516                 free_extent_map(em);
10517         }
10518         spin_lock(&block_group->lock);
10519         block_group->removed = 1;
10520         /*
10521          * At this point trimming can't start on this block group, because we
10522          * removed the block group from the tree fs_info->block_group_cache_tree
10523          * so no one can't find it anymore and even if someone already got this
10524          * block group before we removed it from the rbtree, they have already
10525          * incremented block_group->trimming - if they didn't, they won't find
10526          * any free space entries because we already removed them all when we
10527          * called btrfs_remove_free_space_cache().
10528          *
10529          * And we must not remove the extent map from the fs_info->mapping_tree
10530          * to prevent the same logical address range and physical device space
10531          * ranges from being reused for a new block group. This is because our
10532          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10533          * completely transactionless, so while it is trimming a range the
10534          * currently running transaction might finish and a new one start,
10535          * allowing for new block groups to be created that can reuse the same
10536          * physical device locations unless we take this special care.
10537          *
10538          * There may also be an implicit trim operation if the file system
10539          * is mounted with -odiscard. The same protections must remain
10540          * in place until the extents have been discarded completely when
10541          * the transaction commit has completed.
10542          */
10543         remove_em = (atomic_read(&block_group->trimming) == 0);
10544         /*
10545          * Make sure a trimmer task always sees the em in the pinned_chunks list
10546          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10547          * before checking block_group->removed).
10548          */
10549         if (!remove_em) {
10550                 /*
10551                  * Our em might be in trans->transaction->pending_chunks which
10552                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10553                  * and so is the fs_info->pinned_chunks list.
10554                  *
10555                  * So at this point we must be holding the chunk_mutex to avoid
10556                  * any races with chunk allocation (more specifically at
10557                  * volumes.c:contains_pending_extent()), to ensure it always
10558                  * sees the em, either in the pending_chunks list or in the
10559                  * pinned_chunks list.
10560                  */
10561                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10562         }
10563         spin_unlock(&block_group->lock);
10564
10565         if (remove_em) {
10566                 struct extent_map_tree *em_tree;
10567
10568                 em_tree = &fs_info->mapping_tree.map_tree;
10569                 write_lock(&em_tree->lock);
10570                 /*
10571                  * The em might be in the pending_chunks list, so make sure the
10572                  * chunk mutex is locked, since remove_extent_mapping() will
10573                  * delete us from that list.
10574                  */
10575                 remove_extent_mapping(em_tree, em);
10576                 write_unlock(&em_tree->lock);
10577                 /* once for the tree */
10578                 free_extent_map(em);
10579         }
10580
10581         mutex_unlock(&fs_info->chunk_mutex);
10582
10583         ret = remove_block_group_free_space(trans, fs_info, block_group);
10584         if (ret)
10585                 goto out;
10586
10587         btrfs_put_block_group(block_group);
10588         btrfs_put_block_group(block_group);
10589
10590         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10591         if (ret > 0)
10592                 ret = -EIO;
10593         if (ret < 0)
10594                 goto out;
10595
10596         ret = btrfs_del_item(trans, root, path);
10597 out:
10598         btrfs_free_path(path);
10599         return ret;
10600 }
10601
10602 struct btrfs_trans_handle *
10603 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10604                                      const u64 chunk_offset)
10605 {
10606         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10607         struct extent_map *em;
10608         struct map_lookup *map;
10609         unsigned int num_items;
10610
10611         read_lock(&em_tree->lock);
10612         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10613         read_unlock(&em_tree->lock);
10614         ASSERT(em && em->start == chunk_offset);
10615
10616         /*
10617          * We need to reserve 3 + N units from the metadata space info in order
10618          * to remove a block group (done at btrfs_remove_chunk() and at
10619          * btrfs_remove_block_group()), which are used for:
10620          *
10621          * 1 unit for adding the free space inode's orphan (located in the tree
10622          * of tree roots).
10623          * 1 unit for deleting the block group item (located in the extent
10624          * tree).
10625          * 1 unit for deleting the free space item (located in tree of tree
10626          * roots).
10627          * N units for deleting N device extent items corresponding to each
10628          * stripe (located in the device tree).
10629          *
10630          * In order to remove a block group we also need to reserve units in the
10631          * system space info in order to update the chunk tree (update one or
10632          * more device items and remove one chunk item), but this is done at
10633          * btrfs_remove_chunk() through a call to check_system_chunk().
10634          */
10635         map = em->map_lookup;
10636         num_items = 3 + map->num_stripes;
10637         free_extent_map(em);
10638
10639         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10640                                                            num_items, 1);
10641 }
10642
10643 /*
10644  * Process the unused_bgs list and remove any that don't have any allocated
10645  * space inside of them.
10646  */
10647 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10648 {
10649         struct btrfs_block_group_cache *block_group;
10650         struct btrfs_space_info *space_info;
10651         struct btrfs_trans_handle *trans;
10652         int ret = 0;
10653
10654         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10655                 return;
10656
10657         spin_lock(&fs_info->unused_bgs_lock);
10658         while (!list_empty(&fs_info->unused_bgs)) {
10659                 u64 start, end;
10660                 int trimming;
10661
10662                 block_group = list_first_entry(&fs_info->unused_bgs,
10663                                                struct btrfs_block_group_cache,
10664                                                bg_list);
10665                 list_del_init(&block_group->bg_list);
10666
10667                 space_info = block_group->space_info;
10668
10669                 if (ret || btrfs_mixed_space_info(space_info)) {
10670                         btrfs_put_block_group(block_group);
10671                         continue;
10672                 }
10673                 spin_unlock(&fs_info->unused_bgs_lock);
10674
10675                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10676
10677                 /* Don't want to race with allocators so take the groups_sem */
10678                 down_write(&space_info->groups_sem);
10679                 spin_lock(&block_group->lock);
10680                 if (block_group->reserved ||
10681                     btrfs_block_group_used(&block_group->item) ||
10682                     block_group->ro ||
10683                     list_is_singular(&block_group->list)) {
10684                         /*
10685                          * We want to bail if we made new allocations or have
10686                          * outstanding allocations in this block group.  We do
10687                          * the ro check in case balance is currently acting on
10688                          * this block group.
10689                          */
10690                         spin_unlock(&block_group->lock);
10691                         up_write(&space_info->groups_sem);
10692                         goto next;
10693                 }
10694                 spin_unlock(&block_group->lock);
10695
10696                 /* We don't want to force the issue, only flip if it's ok. */
10697                 ret = inc_block_group_ro(block_group, 0);
10698                 up_write(&space_info->groups_sem);
10699                 if (ret < 0) {
10700                         ret = 0;
10701                         goto next;
10702                 }
10703
10704                 /*
10705                  * Want to do this before we do anything else so we can recover
10706                  * properly if we fail to join the transaction.
10707                  */
10708                 trans = btrfs_start_trans_remove_block_group(fs_info,
10709                                                      block_group->key.objectid);
10710                 if (IS_ERR(trans)) {
10711                         btrfs_dec_block_group_ro(block_group);
10712                         ret = PTR_ERR(trans);
10713                         goto next;
10714                 }
10715
10716                 /*
10717                  * We could have pending pinned extents for this block group,
10718                  * just delete them, we don't care about them anymore.
10719                  */
10720                 start = block_group->key.objectid;
10721                 end = start + block_group->key.offset - 1;
10722                 /*
10723                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10724                  * btrfs_finish_extent_commit(). If we are at transaction N,
10725                  * another task might be running finish_extent_commit() for the
10726                  * previous transaction N - 1, and have seen a range belonging
10727                  * to the block group in freed_extents[] before we were able to
10728                  * clear the whole block group range from freed_extents[]. This
10729                  * means that task can lookup for the block group after we
10730                  * unpinned it from freed_extents[] and removed it, leading to
10731                  * a BUG_ON() at btrfs_unpin_extent_range().
10732                  */
10733                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10734                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10735                                   EXTENT_DIRTY);
10736                 if (ret) {
10737                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10738                         btrfs_dec_block_group_ro(block_group);
10739                         goto end_trans;
10740                 }
10741                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10742                                   EXTENT_DIRTY);
10743                 if (ret) {
10744                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10745                         btrfs_dec_block_group_ro(block_group);
10746                         goto end_trans;
10747                 }
10748                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10749
10750                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10751                 spin_lock(&space_info->lock);
10752                 spin_lock(&block_group->lock);
10753
10754                 space_info->bytes_pinned -= block_group->pinned;
10755                 space_info->bytes_readonly += block_group->pinned;
10756                 percpu_counter_add(&space_info->total_bytes_pinned,
10757                                    -block_group->pinned);
10758                 block_group->pinned = 0;
10759
10760                 spin_unlock(&block_group->lock);
10761                 spin_unlock(&space_info->lock);
10762
10763                 /* DISCARD can flip during remount */
10764                 trimming = btrfs_test_opt(fs_info, DISCARD);
10765
10766                 /* Implicit trim during transaction commit. */
10767                 if (trimming)
10768                         btrfs_get_block_group_trimming(block_group);
10769
10770                 /*
10771                  * Btrfs_remove_chunk will abort the transaction if things go
10772                  * horribly wrong.
10773                  */
10774                 ret = btrfs_remove_chunk(trans, fs_info,
10775                                          block_group->key.objectid);
10776
10777                 if (ret) {
10778                         if (trimming)
10779                                 btrfs_put_block_group_trimming(block_group);
10780                         goto end_trans;
10781                 }
10782
10783                 /*
10784                  * If we're not mounted with -odiscard, we can just forget
10785                  * about this block group. Otherwise we'll need to wait
10786                  * until transaction commit to do the actual discard.
10787                  */
10788                 if (trimming) {
10789                         spin_lock(&fs_info->unused_bgs_lock);
10790                         /*
10791                          * A concurrent scrub might have added us to the list
10792                          * fs_info->unused_bgs, so use a list_move operation
10793                          * to add the block group to the deleted_bgs list.
10794                          */
10795                         list_move(&block_group->bg_list,
10796                                   &trans->transaction->deleted_bgs);
10797                         spin_unlock(&fs_info->unused_bgs_lock);
10798                         btrfs_get_block_group(block_group);
10799                 }
10800 end_trans:
10801                 btrfs_end_transaction(trans);
10802 next:
10803                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10804                 btrfs_put_block_group(block_group);
10805                 spin_lock(&fs_info->unused_bgs_lock);
10806         }
10807         spin_unlock(&fs_info->unused_bgs_lock);
10808 }
10809
10810 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10811 {
10812         struct btrfs_space_info *space_info;
10813         struct btrfs_super_block *disk_super;
10814         u64 features;
10815         u64 flags;
10816         int mixed = 0;
10817         int ret;
10818
10819         disk_super = fs_info->super_copy;
10820         if (!btrfs_super_root(disk_super))
10821                 return -EINVAL;
10822
10823         features = btrfs_super_incompat_flags(disk_super);
10824         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10825                 mixed = 1;
10826
10827         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10828         ret = create_space_info(fs_info, flags, &space_info);
10829         if (ret)
10830                 goto out;
10831
10832         if (mixed) {
10833                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10834                 ret = create_space_info(fs_info, flags, &space_info);
10835         } else {
10836                 flags = BTRFS_BLOCK_GROUP_METADATA;
10837                 ret = create_space_info(fs_info, flags, &space_info);
10838                 if (ret)
10839                         goto out;
10840
10841                 flags = BTRFS_BLOCK_GROUP_DATA;
10842                 ret = create_space_info(fs_info, flags, &space_info);
10843         }
10844 out:
10845         return ret;
10846 }
10847
10848 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10849                                    u64 start, u64 end)
10850 {
10851         return unpin_extent_range(fs_info, start, end, false);
10852 }
10853
10854 /*
10855  * It used to be that old block groups would be left around forever.
10856  * Iterating over them would be enough to trim unused space.  Since we
10857  * now automatically remove them, we also need to iterate over unallocated
10858  * space.
10859  *
10860  * We don't want a transaction for this since the discard may take a
10861  * substantial amount of time.  We don't require that a transaction be
10862  * running, but we do need to take a running transaction into account
10863  * to ensure that we're not discarding chunks that were released in
10864  * the current transaction.
10865  *
10866  * Holding the chunks lock will prevent other threads from allocating
10867  * or releasing chunks, but it won't prevent a running transaction
10868  * from committing and releasing the memory that the pending chunks
10869  * list head uses.  For that, we need to take a reference to the
10870  * transaction.
10871  */
10872 static int btrfs_trim_free_extents(struct btrfs_device *device,
10873                                    u64 minlen, u64 *trimmed)
10874 {
10875         u64 start = 0, len = 0;
10876         int ret;
10877
10878         *trimmed = 0;
10879
10880         /* Not writeable = nothing to do. */
10881         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10882                 return 0;
10883
10884         /* No free space = nothing to do. */
10885         if (device->total_bytes <= device->bytes_used)
10886                 return 0;
10887
10888         ret = 0;
10889
10890         while (1) {
10891                 struct btrfs_fs_info *fs_info = device->fs_info;
10892                 struct btrfs_transaction *trans;
10893                 u64 bytes;
10894
10895                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10896                 if (ret)
10897                         return ret;
10898
10899                 down_read(&fs_info->commit_root_sem);
10900
10901                 spin_lock(&fs_info->trans_lock);
10902                 trans = fs_info->running_transaction;
10903                 if (trans)
10904                         refcount_inc(&trans->use_count);
10905                 spin_unlock(&fs_info->trans_lock);
10906
10907                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10908                                                  &start, &len);
10909                 if (trans)
10910                         btrfs_put_transaction(trans);
10911
10912                 if (ret) {
10913                         up_read(&fs_info->commit_root_sem);
10914                         mutex_unlock(&fs_info->chunk_mutex);
10915                         if (ret == -ENOSPC)
10916                                 ret = 0;
10917                         break;
10918                 }
10919
10920                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10921                 up_read(&fs_info->commit_root_sem);
10922                 mutex_unlock(&fs_info->chunk_mutex);
10923
10924                 if (ret)
10925                         break;
10926
10927                 start += len;
10928                 *trimmed += bytes;
10929
10930                 if (fatal_signal_pending(current)) {
10931                         ret = -ERESTARTSYS;
10932                         break;
10933                 }
10934
10935                 cond_resched();
10936         }
10937
10938         return ret;
10939 }
10940
10941 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10942 {
10943         struct btrfs_block_group_cache *cache = NULL;
10944         struct btrfs_device *device;
10945         struct list_head *devices;
10946         u64 group_trimmed;
10947         u64 start;
10948         u64 end;
10949         u64 trimmed = 0;
10950         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10951         int ret = 0;
10952
10953         /*
10954          * try to trim all FS space, our block group may start from non-zero.
10955          */
10956         if (range->len == total_bytes)
10957                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10958         else
10959                 cache = btrfs_lookup_block_group(fs_info, range->start);
10960
10961         while (cache) {
10962                 if (cache->key.objectid >= (range->start + range->len)) {
10963                         btrfs_put_block_group(cache);
10964                         break;
10965                 }
10966
10967                 start = max(range->start, cache->key.objectid);
10968                 end = min(range->start + range->len,
10969                                 cache->key.objectid + cache->key.offset);
10970
10971                 if (end - start >= range->minlen) {
10972                         if (!block_group_cache_done(cache)) {
10973                                 ret = cache_block_group(cache, 0);
10974                                 if (ret) {
10975                                         btrfs_put_block_group(cache);
10976                                         break;
10977                                 }
10978                                 ret = wait_block_group_cache_done(cache);
10979                                 if (ret) {
10980                                         btrfs_put_block_group(cache);
10981                                         break;
10982                                 }
10983                         }
10984                         ret = btrfs_trim_block_group(cache,
10985                                                      &group_trimmed,
10986                                                      start,
10987                                                      end,
10988                                                      range->minlen);
10989
10990                         trimmed += group_trimmed;
10991                         if (ret) {
10992                                 btrfs_put_block_group(cache);
10993                                 break;
10994                         }
10995                 }
10996
10997                 cache = next_block_group(fs_info, cache);
10998         }
10999
11000         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11001         devices = &fs_info->fs_devices->alloc_list;
11002         list_for_each_entry(device, devices, dev_alloc_list) {
11003                 ret = btrfs_trim_free_extents(device, range->minlen,
11004                                               &group_trimmed);
11005                 if (ret)
11006                         break;
11007
11008                 trimmed += group_trimmed;
11009         }
11010         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11011
11012         range->len = trimmed;
11013         return ret;
11014 }
11015
11016 /*
11017  * btrfs_{start,end}_write_no_snapshotting() are similar to
11018  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11019  * data into the page cache through nocow before the subvolume is snapshoted,
11020  * but flush the data into disk after the snapshot creation, or to prevent
11021  * operations while snapshotting is ongoing and that cause the snapshot to be
11022  * inconsistent (writes followed by expanding truncates for example).
11023  */
11024 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11025 {
11026         percpu_counter_dec(&root->subv_writers->counter);
11027         /*
11028          * Make sure counter is updated before we wake up waiters.
11029          */
11030         smp_mb();
11031         if (waitqueue_active(&root->subv_writers->wait))
11032                 wake_up(&root->subv_writers->wait);
11033 }
11034
11035 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11036 {
11037         if (atomic_read(&root->will_be_snapshotted))
11038                 return 0;
11039
11040         percpu_counter_inc(&root->subv_writers->counter);
11041         /*
11042          * Make sure counter is updated before we check for snapshot creation.
11043          */
11044         smp_mb();
11045         if (atomic_read(&root->will_be_snapshotted)) {
11046                 btrfs_end_write_no_snapshotting(root);
11047                 return 0;
11048         }
11049         return 1;
11050 }
11051
11052 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11053 {
11054         while (true) {
11055                 int ret;
11056
11057                 ret = btrfs_start_write_no_snapshotting(root);
11058                 if (ret)
11059                         break;
11060                 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11061                                  TASK_UNINTERRUPTIBLE);
11062         }
11063 }