1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
95 return (cache->flags & bits) == bits;
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
100 atomic_inc(&cache->count);
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
115 * No better way to resolve, but only to warn.
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
124 * this adds the block group to the fs_info rb tree for the block group
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
141 if (block_group->key.objectid < cache->key.objectid) {
143 } else if (block_group->key.objectid > cache->key.objectid) {
146 spin_unlock(&info->block_group_cache_lock);
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
158 spin_unlock(&info->block_group_cache_lock);
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 struct btrfs_block_group_cache *cache, *ret = NULL;
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
179 cache = rb_entry(n, struct btrfs_block_group_cache,
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
204 spin_unlock(&info->block_group_cache_lock);
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
222 struct btrfs_fs_info *fs_info = cache->fs_info;
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
236 struct btrfs_fs_info *fs_info = cache->fs_info;
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
261 if (logical[nr] > cache->key.objectid +
265 if (logical[nr] + stripe_len <= cache->key.objectid)
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
294 struct btrfs_caching_control *ctl;
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
308 static void put_caching_control(struct btrfs_caching_control *ctl)
310 if (refcount_dec_and_test(&ctl->count))
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
360 ret = btrfs_add_free_space(block_group, start,
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
393 path = btrfs_alloc_path();
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
399 #ifdef CONFIG_BTRFS_DEBUG
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
405 if (btrfs_should_fragment_free_space(block_group))
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
431 if (btrfs_fs_closing(fs_info) > 1) {
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 ret = find_next_key(path, 0, &key);
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
456 ret = btrfs_next_leaf(extent_root, path);
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
466 if (key.objectid < last) {
469 key.type = BTRFS_EXTENT_ITEM_KEY;
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
477 if (key.objectid < block_group->key.objectid) {
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
494 last = key.objectid + key.offset;
496 if (total_found > CACHING_CTL_WAKE_UP) {
499 wake_up(&caching_ctl->wait);
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
512 btrfs_free_path(path);
516 static noinline void caching_thread(struct btrfs_work *work)
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
533 ret = load_extent_tree_free(caching_ctl);
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
555 caching_ctl->progress = (u64)-1;
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
561 wake_up(&caching_ctl->wait);
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
588 spin_lock(&cache->lock);
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
630 spin_lock(&cache->lock);
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
648 btrfs_should_fragment_free_space(cache)) {
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
661 mutex_unlock(&caching_ctl->mutex);
663 wake_up(&caching_ctl->wait);
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
696 btrfs_get_block_group(cache);
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 * return the block group that starts at or after bytenr
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
709 return block_group_cache_tree_search(info, bytenr, 0);
713 * return the block group that contains the given bytenr
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
719 return block_group_cache_tree_search(info, bytenr, 1);
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
744 struct btrfs_space_info *space_info;
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
751 flags = BTRFS_BLOCK_GROUP_METADATA;
753 flags = BTRFS_BLOCK_GROUP_DATA;
756 space_info = __find_space_info(fs_info, flags);
758 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
762 * after adding space to the filesystem, we need to clear the full flags
763 * on all the space infos.
765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 struct list_head *head = &info->space_info;
768 struct btrfs_space_info *found;
771 list_for_each_entry_rcu(found, head, list)
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
780 struct btrfs_key key;
781 struct btrfs_path *path;
783 path = btrfs_alloc_path();
787 key.objectid = start;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
791 btrfs_free_path(path);
796 * helper function to lookup reference count and flags of a tree block.
798 * the head node for delayed ref is used to store the sum of all the
799 * reference count modifications queued up in the rbtree. the head
800 * node may also store the extent flags to set. This way you can check
801 * to see what the reference count and extent flags would be if all of
802 * the delayed refs are not processed.
804 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
805 struct btrfs_fs_info *fs_info, u64 bytenr,
806 u64 offset, int metadata, u64 *refs, u64 *flags)
808 struct btrfs_delayed_ref_head *head;
809 struct btrfs_delayed_ref_root *delayed_refs;
810 struct btrfs_path *path;
811 struct btrfs_extent_item *ei;
812 struct extent_buffer *leaf;
813 struct btrfs_key key;
820 * If we don't have skinny metadata, don't bother doing anything
823 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
824 offset = fs_info->nodesize;
828 path = btrfs_alloc_path();
833 path->skip_locking = 1;
834 path->search_commit_root = 1;
838 key.objectid = bytenr;
841 key.type = BTRFS_METADATA_ITEM_KEY;
843 key.type = BTRFS_EXTENT_ITEM_KEY;
845 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
849 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
850 if (path->slots[0]) {
852 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 if (key.objectid == bytenr &&
855 key.type == BTRFS_EXTENT_ITEM_KEY &&
856 key.offset == fs_info->nodesize)
862 leaf = path->nodes[0];
863 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
864 if (item_size >= sizeof(*ei)) {
865 ei = btrfs_item_ptr(leaf, path->slots[0],
866 struct btrfs_extent_item);
867 num_refs = btrfs_extent_refs(leaf, ei);
868 extent_flags = btrfs_extent_flags(leaf, ei);
870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
871 struct btrfs_extent_item_v0 *ei0;
872 BUG_ON(item_size != sizeof(*ei0));
873 ei0 = btrfs_item_ptr(leaf, path->slots[0],
874 struct btrfs_extent_item_v0);
875 num_refs = btrfs_extent_refs_v0(leaf, ei0);
876 /* FIXME: this isn't correct for data */
877 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
882 BUG_ON(num_refs == 0);
892 delayed_refs = &trans->transaction->delayed_refs;
893 spin_lock(&delayed_refs->lock);
894 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
896 if (!mutex_trylock(&head->mutex)) {
897 refcount_inc(&head->refs);
898 spin_unlock(&delayed_refs->lock);
900 btrfs_release_path(path);
903 * Mutex was contended, block until it's released and try
906 mutex_lock(&head->mutex);
907 mutex_unlock(&head->mutex);
908 btrfs_put_delayed_ref_head(head);
911 spin_lock(&head->lock);
912 if (head->extent_op && head->extent_op->update_flags)
913 extent_flags |= head->extent_op->flags_to_set;
915 BUG_ON(num_refs == 0);
917 num_refs += head->ref_mod;
918 spin_unlock(&head->lock);
919 mutex_unlock(&head->mutex);
921 spin_unlock(&delayed_refs->lock);
923 WARN_ON(num_refs == 0);
927 *flags = extent_flags;
929 btrfs_free_path(path);
934 * Back reference rules. Back refs have three main goals:
936 * 1) differentiate between all holders of references to an extent so that
937 * when a reference is dropped we can make sure it was a valid reference
938 * before freeing the extent.
940 * 2) Provide enough information to quickly find the holders of an extent
941 * if we notice a given block is corrupted or bad.
943 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
944 * maintenance. This is actually the same as #2, but with a slightly
945 * different use case.
947 * There are two kinds of back refs. The implicit back refs is optimized
948 * for pointers in non-shared tree blocks. For a given pointer in a block,
949 * back refs of this kind provide information about the block's owner tree
950 * and the pointer's key. These information allow us to find the block by
951 * b-tree searching. The full back refs is for pointers in tree blocks not
952 * referenced by their owner trees. The location of tree block is recorded
953 * in the back refs. Actually the full back refs is generic, and can be
954 * used in all cases the implicit back refs is used. The major shortcoming
955 * of the full back refs is its overhead. Every time a tree block gets
956 * COWed, we have to update back refs entry for all pointers in it.
958 * For a newly allocated tree block, we use implicit back refs for
959 * pointers in it. This means most tree related operations only involve
960 * implicit back refs. For a tree block created in old transaction, the
961 * only way to drop a reference to it is COW it. So we can detect the
962 * event that tree block loses its owner tree's reference and do the
963 * back refs conversion.
965 * When a tree block is COWed through a tree, there are four cases:
967 * The reference count of the block is one and the tree is the block's
968 * owner tree. Nothing to do in this case.
970 * The reference count of the block is one and the tree is not the
971 * block's owner tree. In this case, full back refs is used for pointers
972 * in the block. Remove these full back refs, add implicit back refs for
973 * every pointers in the new block.
975 * The reference count of the block is greater than one and the tree is
976 * the block's owner tree. In this case, implicit back refs is used for
977 * pointers in the block. Add full back refs for every pointers in the
978 * block, increase lower level extents' reference counts. The original
979 * implicit back refs are entailed to the new block.
981 * The reference count of the block is greater than one and the tree is
982 * not the block's owner tree. Add implicit back refs for every pointer in
983 * the new block, increase lower level extents' reference count.
985 * Back Reference Key composing:
987 * The key objectid corresponds to the first byte in the extent,
988 * The key type is used to differentiate between types of back refs.
989 * There are different meanings of the key offset for different types
992 * File extents can be referenced by:
994 * - multiple snapshots, subvolumes, or different generations in one subvol
995 * - different files inside a single subvolume
996 * - different offsets inside a file (bookend extents in file.c)
998 * The extent ref structure for the implicit back refs has fields for:
1000 * - Objectid of the subvolume root
1001 * - objectid of the file holding the reference
1002 * - original offset in the file
1003 * - how many bookend extents
1005 * The key offset for the implicit back refs is hash of the first
1008 * The extent ref structure for the full back refs has field for:
1010 * - number of pointers in the tree leaf
1012 * The key offset for the implicit back refs is the first byte of
1015 * When a file extent is allocated, The implicit back refs is used.
1016 * the fields are filled in:
1018 * (root_key.objectid, inode objectid, offset in file, 1)
1020 * When a file extent is removed file truncation, we find the
1021 * corresponding implicit back refs and check the following fields:
1023 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1025 * Btree extents can be referenced by:
1027 * - Different subvolumes
1029 * Both the implicit back refs and the full back refs for tree blocks
1030 * only consist of key. The key offset for the implicit back refs is
1031 * objectid of block's owner tree. The key offset for the full back refs
1032 * is the first byte of parent block.
1034 * When implicit back refs is used, information about the lowest key and
1035 * level of the tree block are required. These information are stored in
1036 * tree block info structure.
1039 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1040 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1041 struct btrfs_fs_info *fs_info,
1042 struct btrfs_path *path,
1043 u64 owner, u32 extra_size)
1045 struct btrfs_root *root = fs_info->extent_root;
1046 struct btrfs_extent_item *item;
1047 struct btrfs_extent_item_v0 *ei0;
1048 struct btrfs_extent_ref_v0 *ref0;
1049 struct btrfs_tree_block_info *bi;
1050 struct extent_buffer *leaf;
1051 struct btrfs_key key;
1052 struct btrfs_key found_key;
1053 u32 new_size = sizeof(*item);
1057 leaf = path->nodes[0];
1058 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1061 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1062 struct btrfs_extent_item_v0);
1063 refs = btrfs_extent_refs_v0(leaf, ei0);
1065 if (owner == (u64)-1) {
1067 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1068 ret = btrfs_next_leaf(root, path);
1071 BUG_ON(ret > 0); /* Corruption */
1072 leaf = path->nodes[0];
1074 btrfs_item_key_to_cpu(leaf, &found_key,
1076 BUG_ON(key.objectid != found_key.objectid);
1077 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1081 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1082 struct btrfs_extent_ref_v0);
1083 owner = btrfs_ref_objectid_v0(leaf, ref0);
1087 btrfs_release_path(path);
1089 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1090 new_size += sizeof(*bi);
1092 new_size -= sizeof(*ei0);
1093 ret = btrfs_search_slot(trans, root, &key, path,
1094 new_size + extra_size, 1);
1097 BUG_ON(ret); /* Corruption */
1099 btrfs_extend_item(fs_info, path, new_size);
1101 leaf = path->nodes[0];
1102 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1103 btrfs_set_extent_refs(leaf, item, refs);
1104 /* FIXME: get real generation */
1105 btrfs_set_extent_generation(leaf, item, 0);
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1107 btrfs_set_extent_flags(leaf, item,
1108 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1109 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1110 bi = (struct btrfs_tree_block_info *)(item + 1);
1111 /* FIXME: get first key of the block */
1112 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1113 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 btrfs_mark_buffer_dirty(leaf);
1123 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1124 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1125 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1127 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1128 struct btrfs_extent_inline_ref *iref,
1129 enum btrfs_inline_ref_type is_data)
1131 int type = btrfs_extent_inline_ref_type(eb, iref);
1132 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1134 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1135 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1136 type == BTRFS_SHARED_DATA_REF_KEY ||
1137 type == BTRFS_EXTENT_DATA_REF_KEY) {
1138 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1139 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1141 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1142 ASSERT(eb->fs_info);
1144 * Every shared one has parent tree
1145 * block, which must be aligned to
1149 IS_ALIGNED(offset, eb->fs_info->nodesize))
1152 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1153 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1155 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1156 ASSERT(eb->fs_info);
1158 * Every shared one has parent tree
1159 * block, which must be aligned to
1163 IS_ALIGNED(offset, eb->fs_info->nodesize))
1167 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1172 btrfs_print_leaf((struct extent_buffer *)eb);
1173 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1177 return BTRFS_REF_TYPE_INVALID;
1180 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1182 u32 high_crc = ~(u32)0;
1183 u32 low_crc = ~(u32)0;
1186 lenum = cpu_to_le64(root_objectid);
1187 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1188 lenum = cpu_to_le64(owner);
1189 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1190 lenum = cpu_to_le64(offset);
1191 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1193 return ((u64)high_crc << 31) ^ (u64)low_crc;
1196 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1197 struct btrfs_extent_data_ref *ref)
1199 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1200 btrfs_extent_data_ref_objectid(leaf, ref),
1201 btrfs_extent_data_ref_offset(leaf, ref));
1204 static int match_extent_data_ref(struct extent_buffer *leaf,
1205 struct btrfs_extent_data_ref *ref,
1206 u64 root_objectid, u64 owner, u64 offset)
1208 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1209 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1210 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1215 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1216 struct btrfs_path *path,
1217 u64 bytenr, u64 parent,
1219 u64 owner, u64 offset)
1221 struct btrfs_root *root = trans->fs_info->extent_root;
1222 struct btrfs_key key;
1223 struct btrfs_extent_data_ref *ref;
1224 struct extent_buffer *leaf;
1230 key.objectid = bytenr;
1232 key.type = BTRFS_SHARED_DATA_REF_KEY;
1233 key.offset = parent;
1235 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1236 key.offset = hash_extent_data_ref(root_objectid,
1241 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1250 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1251 key.type = BTRFS_EXTENT_REF_V0_KEY;
1252 btrfs_release_path(path);
1253 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1264 leaf = path->nodes[0];
1265 nritems = btrfs_header_nritems(leaf);
1267 if (path->slots[0] >= nritems) {
1268 ret = btrfs_next_leaf(root, path);
1274 leaf = path->nodes[0];
1275 nritems = btrfs_header_nritems(leaf);
1279 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1280 if (key.objectid != bytenr ||
1281 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1284 ref = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_data_ref);
1287 if (match_extent_data_ref(leaf, ref, root_objectid,
1290 btrfs_release_path(path);
1302 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1303 struct btrfs_path *path,
1304 u64 bytenr, u64 parent,
1305 u64 root_objectid, u64 owner,
1306 u64 offset, int refs_to_add)
1308 struct btrfs_root *root = trans->fs_info->extent_root;
1309 struct btrfs_key key;
1310 struct extent_buffer *leaf;
1315 key.objectid = bytenr;
1317 key.type = BTRFS_SHARED_DATA_REF_KEY;
1318 key.offset = parent;
1319 size = sizeof(struct btrfs_shared_data_ref);
1321 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1322 key.offset = hash_extent_data_ref(root_objectid,
1324 size = sizeof(struct btrfs_extent_data_ref);
1327 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1328 if (ret && ret != -EEXIST)
1331 leaf = path->nodes[0];
1333 struct btrfs_shared_data_ref *ref;
1334 ref = btrfs_item_ptr(leaf, path->slots[0],
1335 struct btrfs_shared_data_ref);
1337 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1340 num_refs += refs_to_add;
1341 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1344 struct btrfs_extent_data_ref *ref;
1345 while (ret == -EEXIST) {
1346 ref = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_extent_data_ref);
1348 if (match_extent_data_ref(leaf, ref, root_objectid,
1351 btrfs_release_path(path);
1353 ret = btrfs_insert_empty_item(trans, root, path, &key,
1355 if (ret && ret != -EEXIST)
1358 leaf = path->nodes[0];
1360 ref = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_data_ref);
1363 btrfs_set_extent_data_ref_root(leaf, ref,
1365 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1366 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1367 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1369 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1370 num_refs += refs_to_add;
1371 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1374 btrfs_mark_buffer_dirty(leaf);
1377 btrfs_release_path(path);
1381 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1382 struct btrfs_path *path,
1383 int refs_to_drop, int *last_ref)
1385 struct btrfs_key key;
1386 struct btrfs_extent_data_ref *ref1 = NULL;
1387 struct btrfs_shared_data_ref *ref2 = NULL;
1388 struct extent_buffer *leaf;
1392 leaf = path->nodes[0];
1393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1396 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1397 struct btrfs_extent_data_ref);
1398 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1399 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1400 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1401 struct btrfs_shared_data_ref);
1402 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1403 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1404 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1405 struct btrfs_extent_ref_v0 *ref0;
1406 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1407 struct btrfs_extent_ref_v0);
1408 num_refs = btrfs_ref_count_v0(leaf, ref0);
1414 BUG_ON(num_refs < refs_to_drop);
1415 num_refs -= refs_to_drop;
1417 if (num_refs == 0) {
1418 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1421 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1422 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1423 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1424 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1433 btrfs_mark_buffer_dirty(leaf);
1438 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1439 struct btrfs_extent_inline_ref *iref)
1441 struct btrfs_key key;
1442 struct extent_buffer *leaf;
1443 struct btrfs_extent_data_ref *ref1;
1444 struct btrfs_shared_data_ref *ref2;
1448 leaf = path->nodes[0];
1449 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1452 * If type is invalid, we should have bailed out earlier than
1455 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1456 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1457 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1458 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1459 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1461 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1462 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1464 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1465 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1466 struct btrfs_extent_data_ref);
1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1469 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1470 struct btrfs_shared_data_ref);
1471 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1472 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1473 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1474 struct btrfs_extent_ref_v0 *ref0;
1475 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1476 struct btrfs_extent_ref_v0);
1477 num_refs = btrfs_ref_count_v0(leaf, ref0);
1485 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1486 struct btrfs_path *path,
1487 u64 bytenr, u64 parent,
1490 struct btrfs_root *root = trans->fs_info->extent_root;
1491 struct btrfs_key key;
1494 key.objectid = bytenr;
1496 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 key.offset = parent;
1499 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1500 key.offset = root_objectid;
1503 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1506 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1507 if (ret == -ENOENT && parent) {
1508 btrfs_release_path(path);
1509 key.type = BTRFS_EXTENT_REF_V0_KEY;
1510 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1518 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1519 struct btrfs_path *path,
1520 u64 bytenr, u64 parent,
1523 struct btrfs_key key;
1526 key.objectid = bytenr;
1528 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1529 key.offset = parent;
1531 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1532 key.offset = root_objectid;
1535 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1537 btrfs_release_path(path);
1541 static inline int extent_ref_type(u64 parent, u64 owner)
1544 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1546 type = BTRFS_SHARED_BLOCK_REF_KEY;
1548 type = BTRFS_TREE_BLOCK_REF_KEY;
1551 type = BTRFS_SHARED_DATA_REF_KEY;
1553 type = BTRFS_EXTENT_DATA_REF_KEY;
1558 static int find_next_key(struct btrfs_path *path, int level,
1559 struct btrfs_key *key)
1562 for (; level < BTRFS_MAX_LEVEL; level++) {
1563 if (!path->nodes[level])
1565 if (path->slots[level] + 1 >=
1566 btrfs_header_nritems(path->nodes[level]))
1569 btrfs_item_key_to_cpu(path->nodes[level], key,
1570 path->slots[level] + 1);
1572 btrfs_node_key_to_cpu(path->nodes[level], key,
1573 path->slots[level] + 1);
1580 * look for inline back ref. if back ref is found, *ref_ret is set
1581 * to the address of inline back ref, and 0 is returned.
1583 * if back ref isn't found, *ref_ret is set to the address where it
1584 * should be inserted, and -ENOENT is returned.
1586 * if insert is true and there are too many inline back refs, the path
1587 * points to the extent item, and -EAGAIN is returned.
1589 * NOTE: inline back refs are ordered in the same way that back ref
1590 * items in the tree are ordered.
1592 static noinline_for_stack
1593 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1594 struct btrfs_path *path,
1595 struct btrfs_extent_inline_ref **ref_ret,
1596 u64 bytenr, u64 num_bytes,
1597 u64 parent, u64 root_objectid,
1598 u64 owner, u64 offset, int insert)
1600 struct btrfs_fs_info *fs_info = trans->fs_info;
1601 struct btrfs_root *root = fs_info->extent_root;
1602 struct btrfs_key key;
1603 struct extent_buffer *leaf;
1604 struct btrfs_extent_item *ei;
1605 struct btrfs_extent_inline_ref *iref;
1615 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1618 key.objectid = bytenr;
1619 key.type = BTRFS_EXTENT_ITEM_KEY;
1620 key.offset = num_bytes;
1622 want = extent_ref_type(parent, owner);
1624 extra_size = btrfs_extent_inline_ref_size(want);
1625 path->keep_locks = 1;
1630 * Owner is our level, so we can just add one to get the level for the
1631 * block we are interested in.
1633 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1634 key.type = BTRFS_METADATA_ITEM_KEY;
1639 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1646 * We may be a newly converted file system which still has the old fat
1647 * extent entries for metadata, so try and see if we have one of those.
1649 if (ret > 0 && skinny_metadata) {
1650 skinny_metadata = false;
1651 if (path->slots[0]) {
1653 btrfs_item_key_to_cpu(path->nodes[0], &key,
1655 if (key.objectid == bytenr &&
1656 key.type == BTRFS_EXTENT_ITEM_KEY &&
1657 key.offset == num_bytes)
1661 key.objectid = bytenr;
1662 key.type = BTRFS_EXTENT_ITEM_KEY;
1663 key.offset = num_bytes;
1664 btrfs_release_path(path);
1669 if (ret && !insert) {
1672 } else if (WARN_ON(ret)) {
1677 leaf = path->nodes[0];
1678 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1679 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1680 if (item_size < sizeof(*ei)) {
1685 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1691 leaf = path->nodes[0];
1692 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1695 BUG_ON(item_size < sizeof(*ei));
1697 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1698 flags = btrfs_extent_flags(leaf, ei);
1700 ptr = (unsigned long)(ei + 1);
1701 end = (unsigned long)ei + item_size;
1703 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1704 ptr += sizeof(struct btrfs_tree_block_info);
1708 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1709 needed = BTRFS_REF_TYPE_DATA;
1711 needed = BTRFS_REF_TYPE_BLOCK;
1719 iref = (struct btrfs_extent_inline_ref *)ptr;
1720 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1721 if (type == BTRFS_REF_TYPE_INVALID) {
1729 ptr += btrfs_extent_inline_ref_size(type);
1733 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1734 struct btrfs_extent_data_ref *dref;
1735 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1736 if (match_extent_data_ref(leaf, dref, root_objectid,
1741 if (hash_extent_data_ref_item(leaf, dref) <
1742 hash_extent_data_ref(root_objectid, owner, offset))
1746 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1748 if (parent == ref_offset) {
1752 if (ref_offset < parent)
1755 if (root_objectid == ref_offset) {
1759 if (ref_offset < root_objectid)
1763 ptr += btrfs_extent_inline_ref_size(type);
1765 if (err == -ENOENT && insert) {
1766 if (item_size + extra_size >=
1767 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1772 * To add new inline back ref, we have to make sure
1773 * there is no corresponding back ref item.
1774 * For simplicity, we just do not add new inline back
1775 * ref if there is any kind of item for this block
1777 if (find_next_key(path, 0, &key) == 0 &&
1778 key.objectid == bytenr &&
1779 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1784 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1787 path->keep_locks = 0;
1788 btrfs_unlock_up_safe(path, 1);
1794 * helper to add new inline back ref
1796 static noinline_for_stack
1797 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref *iref,
1800 u64 parent, u64 root_objectid,
1801 u64 owner, u64 offset, int refs_to_add,
1802 struct btrfs_delayed_extent_op *extent_op)
1804 struct extent_buffer *leaf;
1805 struct btrfs_extent_item *ei;
1808 unsigned long item_offset;
1813 leaf = path->nodes[0];
1814 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1815 item_offset = (unsigned long)iref - (unsigned long)ei;
1817 type = extent_ref_type(parent, owner);
1818 size = btrfs_extent_inline_ref_size(type);
1820 btrfs_extend_item(fs_info, path, size);
1822 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1823 refs = btrfs_extent_refs(leaf, ei);
1824 refs += refs_to_add;
1825 btrfs_set_extent_refs(leaf, ei, refs);
1827 __run_delayed_extent_op(extent_op, leaf, ei);
1829 ptr = (unsigned long)ei + item_offset;
1830 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1831 if (ptr < end - size)
1832 memmove_extent_buffer(leaf, ptr + size, ptr,
1835 iref = (struct btrfs_extent_inline_ref *)ptr;
1836 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1837 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1838 struct btrfs_extent_data_ref *dref;
1839 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1840 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1841 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1842 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1843 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1844 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1845 struct btrfs_shared_data_ref *sref;
1846 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1847 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1848 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1849 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1850 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1852 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1854 btrfs_mark_buffer_dirty(leaf);
1857 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1858 struct btrfs_path *path,
1859 struct btrfs_extent_inline_ref **ref_ret,
1860 u64 bytenr, u64 num_bytes, u64 parent,
1861 u64 root_objectid, u64 owner, u64 offset)
1865 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1866 num_bytes, parent, root_objectid,
1871 btrfs_release_path(path);
1874 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1875 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1878 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1879 root_objectid, owner, offset);
1885 * helper to update/remove inline back ref
1887 static noinline_for_stack
1888 void update_inline_extent_backref(struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
1891 struct btrfs_delayed_extent_op *extent_op,
1894 struct extent_buffer *leaf = path->nodes[0];
1895 struct btrfs_fs_info *fs_info = leaf->fs_info;
1896 struct btrfs_extent_item *ei;
1897 struct btrfs_extent_data_ref *dref = NULL;
1898 struct btrfs_shared_data_ref *sref = NULL;
1906 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1907 refs = btrfs_extent_refs(leaf, ei);
1908 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1909 refs += refs_to_mod;
1910 btrfs_set_extent_refs(leaf, ei, refs);
1912 __run_delayed_extent_op(extent_op, leaf, ei);
1915 * If type is invalid, we should have bailed out after
1916 * lookup_inline_extent_backref().
1918 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1919 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1921 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1922 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1923 refs = btrfs_extent_data_ref_count(leaf, dref);
1924 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1925 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1926 refs = btrfs_shared_data_ref_count(leaf, sref);
1929 BUG_ON(refs_to_mod != -1);
1932 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1933 refs += refs_to_mod;
1936 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1937 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1939 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1942 size = btrfs_extent_inline_ref_size(type);
1943 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1944 ptr = (unsigned long)iref;
1945 end = (unsigned long)ei + item_size;
1946 if (ptr + size < end)
1947 memmove_extent_buffer(leaf, ptr, ptr + size,
1950 btrfs_truncate_item(fs_info, path, item_size, 1);
1952 btrfs_mark_buffer_dirty(leaf);
1955 static noinline_for_stack
1956 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1957 struct btrfs_path *path,
1958 u64 bytenr, u64 num_bytes, u64 parent,
1959 u64 root_objectid, u64 owner,
1960 u64 offset, int refs_to_add,
1961 struct btrfs_delayed_extent_op *extent_op)
1963 struct btrfs_extent_inline_ref *iref;
1966 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1967 num_bytes, parent, root_objectid,
1970 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1971 update_inline_extent_backref(path, iref, refs_to_add,
1973 } else if (ret == -ENOENT) {
1974 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1975 root_objectid, owner, offset,
1976 refs_to_add, extent_op);
1982 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1983 struct btrfs_path *path,
1984 u64 bytenr, u64 parent, u64 root_objectid,
1985 u64 owner, u64 offset, int refs_to_add)
1988 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1989 BUG_ON(refs_to_add != 1);
1990 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1993 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1994 root_objectid, owner, offset,
2000 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2001 struct btrfs_path *path,
2002 struct btrfs_extent_inline_ref *iref,
2003 int refs_to_drop, int is_data, int *last_ref)
2007 BUG_ON(!is_data && refs_to_drop != 1);
2009 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
2011 } else if (is_data) {
2012 ret = remove_extent_data_ref(trans, path, refs_to_drop,
2016 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
2021 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2022 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2023 u64 *discarded_bytes)
2026 u64 bytes_left, end;
2027 u64 aligned_start = ALIGN(start, 1 << 9);
2029 if (WARN_ON(start != aligned_start)) {
2030 len -= aligned_start - start;
2031 len = round_down(len, 1 << 9);
2032 start = aligned_start;
2035 *discarded_bytes = 0;
2043 /* Skip any superblocks on this device. */
2044 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2045 u64 sb_start = btrfs_sb_offset(j);
2046 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2047 u64 size = sb_start - start;
2049 if (!in_range(sb_start, start, bytes_left) &&
2050 !in_range(sb_end, start, bytes_left) &&
2051 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2055 * Superblock spans beginning of range. Adjust start and
2058 if (sb_start <= start) {
2059 start += sb_end - start;
2064 bytes_left = end - start;
2069 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2072 *discarded_bytes += size;
2073 else if (ret != -EOPNOTSUPP)
2082 bytes_left = end - start;
2086 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2089 *discarded_bytes += bytes_left;
2094 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2095 u64 num_bytes, u64 *actual_bytes)
2098 u64 discarded_bytes = 0;
2099 struct btrfs_bio *bbio = NULL;
2103 * Avoid races with device replace and make sure our bbio has devices
2104 * associated to its stripes that don't go away while we are discarding.
2106 btrfs_bio_counter_inc_blocked(fs_info);
2107 /* Tell the block device(s) that the sectors can be discarded */
2108 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2110 /* Error condition is -ENOMEM */
2112 struct btrfs_bio_stripe *stripe = bbio->stripes;
2116 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2118 struct request_queue *req_q;
2120 if (!stripe->dev->bdev) {
2121 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2124 req_q = bdev_get_queue(stripe->dev->bdev);
2125 if (!blk_queue_discard(req_q))
2128 ret = btrfs_issue_discard(stripe->dev->bdev,
2133 discarded_bytes += bytes;
2134 else if (ret != -EOPNOTSUPP)
2135 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2138 * Just in case we get back EOPNOTSUPP for some reason,
2139 * just ignore the return value so we don't screw up
2140 * people calling discard_extent.
2144 btrfs_put_bbio(bbio);
2146 btrfs_bio_counter_dec(fs_info);
2149 *actual_bytes = discarded_bytes;
2152 if (ret == -EOPNOTSUPP)
2157 /* Can return -ENOMEM */
2158 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2159 struct btrfs_root *root,
2160 u64 bytenr, u64 num_bytes, u64 parent,
2161 u64 root_objectid, u64 owner, u64 offset)
2163 struct btrfs_fs_info *fs_info = root->fs_info;
2164 int old_ref_mod, new_ref_mod;
2167 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2168 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2170 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2171 owner, offset, BTRFS_ADD_DELAYED_REF);
2173 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2174 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2176 root_objectid, (int)owner,
2177 BTRFS_ADD_DELAYED_REF, NULL,
2178 &old_ref_mod, &new_ref_mod);
2180 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2182 root_objectid, owner, offset,
2183 0, BTRFS_ADD_DELAYED_REF,
2184 &old_ref_mod, &new_ref_mod);
2187 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2188 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2190 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2197 * __btrfs_inc_extent_ref - insert backreference for a given extent
2199 * @trans: Handle of transaction
2201 * @node: The delayed ref node used to get the bytenr/length for
2202 * extent whose references are incremented.
2204 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2205 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2206 * bytenr of the parent block. Since new extents are always
2207 * created with indirect references, this will only be the case
2208 * when relocating a shared extent. In that case, root_objectid
2209 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2212 * @root_objectid: The id of the root where this modification has originated,
2213 * this can be either one of the well-known metadata trees or
2214 * the subvolume id which references this extent.
2216 * @owner: For data extents it is the inode number of the owning file.
2217 * For metadata extents this parameter holds the level in the
2218 * tree of the extent.
2220 * @offset: For metadata extents the offset is ignored and is currently
2221 * always passed as 0. For data extents it is the fileoffset
2222 * this extent belongs to.
2224 * @refs_to_add Number of references to add
2226 * @extent_op Pointer to a structure, holding information necessary when
2227 * updating a tree block's flags
2230 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2231 struct btrfs_delayed_ref_node *node,
2232 u64 parent, u64 root_objectid,
2233 u64 owner, u64 offset, int refs_to_add,
2234 struct btrfs_delayed_extent_op *extent_op)
2236 struct btrfs_path *path;
2237 struct extent_buffer *leaf;
2238 struct btrfs_extent_item *item;
2239 struct btrfs_key key;
2240 u64 bytenr = node->bytenr;
2241 u64 num_bytes = node->num_bytes;
2245 path = btrfs_alloc_path();
2249 path->reada = READA_FORWARD;
2250 path->leave_spinning = 1;
2251 /* this will setup the path even if it fails to insert the back ref */
2252 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2253 parent, root_objectid, owner,
2254 offset, refs_to_add, extent_op);
2255 if ((ret < 0 && ret != -EAGAIN) || !ret)
2259 * Ok we had -EAGAIN which means we didn't have space to insert and
2260 * inline extent ref, so just update the reference count and add a
2263 leaf = path->nodes[0];
2264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2265 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2266 refs = btrfs_extent_refs(leaf, item);
2267 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2269 __run_delayed_extent_op(extent_op, leaf, item);
2271 btrfs_mark_buffer_dirty(leaf);
2272 btrfs_release_path(path);
2274 path->reada = READA_FORWARD;
2275 path->leave_spinning = 1;
2276 /* now insert the actual backref */
2277 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2278 owner, offset, refs_to_add);
2280 btrfs_abort_transaction(trans, ret);
2282 btrfs_free_path(path);
2286 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2287 struct btrfs_delayed_ref_node *node,
2288 struct btrfs_delayed_extent_op *extent_op,
2289 int insert_reserved)
2292 struct btrfs_delayed_data_ref *ref;
2293 struct btrfs_key ins;
2298 ins.objectid = node->bytenr;
2299 ins.offset = node->num_bytes;
2300 ins.type = BTRFS_EXTENT_ITEM_KEY;
2302 ref = btrfs_delayed_node_to_data_ref(node);
2303 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2305 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2306 parent = ref->parent;
2307 ref_root = ref->root;
2309 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2311 flags |= extent_op->flags_to_set;
2312 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2313 flags, ref->objectid,
2316 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2317 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2318 ref->objectid, ref->offset,
2319 node->ref_mod, extent_op);
2320 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2321 ret = __btrfs_free_extent(trans, node, parent,
2322 ref_root, ref->objectid,
2323 ref->offset, node->ref_mod,
2331 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2332 struct extent_buffer *leaf,
2333 struct btrfs_extent_item *ei)
2335 u64 flags = btrfs_extent_flags(leaf, ei);
2336 if (extent_op->update_flags) {
2337 flags |= extent_op->flags_to_set;
2338 btrfs_set_extent_flags(leaf, ei, flags);
2341 if (extent_op->update_key) {
2342 struct btrfs_tree_block_info *bi;
2343 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2344 bi = (struct btrfs_tree_block_info *)(ei + 1);
2345 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2349 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2350 struct btrfs_delayed_ref_head *head,
2351 struct btrfs_delayed_extent_op *extent_op)
2353 struct btrfs_fs_info *fs_info = trans->fs_info;
2354 struct btrfs_key key;
2355 struct btrfs_path *path;
2356 struct btrfs_extent_item *ei;
2357 struct extent_buffer *leaf;
2361 int metadata = !extent_op->is_data;
2366 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2369 path = btrfs_alloc_path();
2373 key.objectid = head->bytenr;
2376 key.type = BTRFS_METADATA_ITEM_KEY;
2377 key.offset = extent_op->level;
2379 key.type = BTRFS_EXTENT_ITEM_KEY;
2380 key.offset = head->num_bytes;
2384 path->reada = READA_FORWARD;
2385 path->leave_spinning = 1;
2386 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2393 if (path->slots[0] > 0) {
2395 btrfs_item_key_to_cpu(path->nodes[0], &key,
2397 if (key.objectid == head->bytenr &&
2398 key.type == BTRFS_EXTENT_ITEM_KEY &&
2399 key.offset == head->num_bytes)
2403 btrfs_release_path(path);
2406 key.objectid = head->bytenr;
2407 key.offset = head->num_bytes;
2408 key.type = BTRFS_EXTENT_ITEM_KEY;
2417 leaf = path->nodes[0];
2418 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 if (item_size < sizeof(*ei)) {
2421 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2426 leaf = path->nodes[0];
2427 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2430 BUG_ON(item_size < sizeof(*ei));
2431 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2432 __run_delayed_extent_op(extent_op, leaf, ei);
2434 btrfs_mark_buffer_dirty(leaf);
2436 btrfs_free_path(path);
2440 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2441 struct btrfs_delayed_ref_node *node,
2442 struct btrfs_delayed_extent_op *extent_op,
2443 int insert_reserved)
2446 struct btrfs_delayed_tree_ref *ref;
2450 ref = btrfs_delayed_node_to_tree_ref(node);
2451 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2453 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454 parent = ref->parent;
2455 ref_root = ref->root;
2457 if (node->ref_mod != 1) {
2458 btrfs_err(trans->fs_info,
2459 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2460 node->bytenr, node->ref_mod, node->action, ref_root,
2464 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2465 BUG_ON(!extent_op || !extent_op->update_flags);
2466 ret = alloc_reserved_tree_block(trans, node, extent_op);
2467 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2468 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2469 ref->level, 0, 1, extent_op);
2470 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2471 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2472 ref->level, 0, 1, extent_op);
2479 /* helper function to actually process a single delayed ref entry */
2480 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2481 struct btrfs_delayed_ref_node *node,
2482 struct btrfs_delayed_extent_op *extent_op,
2483 int insert_reserved)
2487 if (trans->aborted) {
2488 if (insert_reserved)
2489 btrfs_pin_extent(trans->fs_info, node->bytenr,
2490 node->num_bytes, 1);
2494 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2495 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2496 ret = run_delayed_tree_ref(trans, node, extent_op,
2498 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2499 node->type == BTRFS_SHARED_DATA_REF_KEY)
2500 ret = run_delayed_data_ref(trans, node, extent_op,
2507 static inline struct btrfs_delayed_ref_node *
2508 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2510 struct btrfs_delayed_ref_node *ref;
2512 if (RB_EMPTY_ROOT(&head->ref_tree))
2516 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2517 * This is to prevent a ref count from going down to zero, which deletes
2518 * the extent item from the extent tree, when there still are references
2519 * to add, which would fail because they would not find the extent item.
2521 if (!list_empty(&head->ref_add_list))
2522 return list_first_entry(&head->ref_add_list,
2523 struct btrfs_delayed_ref_node, add_list);
2525 ref = rb_entry(rb_first(&head->ref_tree),
2526 struct btrfs_delayed_ref_node, ref_node);
2527 ASSERT(list_empty(&ref->add_list));
2531 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2532 struct btrfs_delayed_ref_head *head)
2534 spin_lock(&delayed_refs->lock);
2535 head->processing = 0;
2536 delayed_refs->num_heads_ready++;
2537 spin_unlock(&delayed_refs->lock);
2538 btrfs_delayed_ref_unlock(head);
2541 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2542 struct btrfs_delayed_ref_head *head)
2544 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2549 head->extent_op = NULL;
2550 if (head->must_insert_reserved) {
2551 btrfs_free_delayed_extent_op(extent_op);
2554 spin_unlock(&head->lock);
2555 ret = run_delayed_extent_op(trans, head, extent_op);
2556 btrfs_free_delayed_extent_op(extent_op);
2557 return ret ? ret : 1;
2560 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2561 struct btrfs_delayed_ref_head *head)
2564 struct btrfs_fs_info *fs_info = trans->fs_info;
2565 struct btrfs_delayed_ref_root *delayed_refs;
2568 delayed_refs = &trans->transaction->delayed_refs;
2570 ret = cleanup_extent_op(trans, head);
2572 unselect_delayed_ref_head(delayed_refs, head);
2573 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2580 * Need to drop our head ref lock and re-acquire the delayed ref lock
2581 * and then re-check to make sure nobody got added.
2583 spin_unlock(&head->lock);
2584 spin_lock(&delayed_refs->lock);
2585 spin_lock(&head->lock);
2586 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2587 spin_unlock(&head->lock);
2588 spin_unlock(&delayed_refs->lock);
2591 delayed_refs->num_heads--;
2592 rb_erase(&head->href_node, &delayed_refs->href_root);
2593 RB_CLEAR_NODE(&head->href_node);
2594 spin_unlock(&head->lock);
2595 spin_unlock(&delayed_refs->lock);
2596 atomic_dec(&delayed_refs->num_entries);
2598 trace_run_delayed_ref_head(fs_info, head, 0);
2600 if (head->total_ref_mod < 0) {
2601 struct btrfs_space_info *space_info;
2605 flags = BTRFS_BLOCK_GROUP_DATA;
2606 else if (head->is_system)
2607 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2609 flags = BTRFS_BLOCK_GROUP_METADATA;
2610 space_info = __find_space_info(fs_info, flags);
2612 percpu_counter_add(&space_info->total_bytes_pinned,
2615 if (head->is_data) {
2616 spin_lock(&delayed_refs->lock);
2617 delayed_refs->pending_csums -= head->num_bytes;
2618 spin_unlock(&delayed_refs->lock);
2622 if (head->must_insert_reserved) {
2623 btrfs_pin_extent(fs_info, head->bytenr,
2624 head->num_bytes, 1);
2625 if (head->is_data) {
2626 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2631 /* Also free its reserved qgroup space */
2632 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2633 head->qgroup_reserved);
2634 btrfs_delayed_ref_unlock(head);
2635 btrfs_put_delayed_ref_head(head);
2640 * Returns 0 on success or if called with an already aborted transaction.
2641 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2643 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2646 struct btrfs_fs_info *fs_info = trans->fs_info;
2647 struct btrfs_delayed_ref_root *delayed_refs;
2648 struct btrfs_delayed_ref_node *ref;
2649 struct btrfs_delayed_ref_head *locked_ref = NULL;
2650 struct btrfs_delayed_extent_op *extent_op;
2651 ktime_t start = ktime_get();
2653 unsigned long count = 0;
2654 unsigned long actual_count = 0;
2655 int must_insert_reserved = 0;
2657 delayed_refs = &trans->transaction->delayed_refs;
2663 spin_lock(&delayed_refs->lock);
2664 locked_ref = btrfs_select_ref_head(trans);
2666 spin_unlock(&delayed_refs->lock);
2670 /* grab the lock that says we are going to process
2671 * all the refs for this head */
2672 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2673 spin_unlock(&delayed_refs->lock);
2675 * we may have dropped the spin lock to get the head
2676 * mutex lock, and that might have given someone else
2677 * time to free the head. If that's true, it has been
2678 * removed from our list and we can move on.
2680 if (ret == -EAGAIN) {
2688 * We need to try and merge add/drops of the same ref since we
2689 * can run into issues with relocate dropping the implicit ref
2690 * and then it being added back again before the drop can
2691 * finish. If we merged anything we need to re-loop so we can
2693 * Or we can get node references of the same type that weren't
2694 * merged when created due to bumps in the tree mod seq, and
2695 * we need to merge them to prevent adding an inline extent
2696 * backref before dropping it (triggering a BUG_ON at
2697 * insert_inline_extent_backref()).
2699 spin_lock(&locked_ref->lock);
2700 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2702 ref = select_delayed_ref(locked_ref);
2704 if (ref && ref->seq &&
2705 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2706 spin_unlock(&locked_ref->lock);
2707 unselect_delayed_ref_head(delayed_refs, locked_ref);
2715 * We're done processing refs in this ref_head, clean everything
2716 * up and move on to the next ref_head.
2719 ret = cleanup_ref_head(trans, locked_ref);
2721 /* We dropped our lock, we need to loop. */
2734 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2735 RB_CLEAR_NODE(&ref->ref_node);
2736 if (!list_empty(&ref->add_list))
2737 list_del(&ref->add_list);
2739 * When we play the delayed ref, also correct the ref_mod on
2742 switch (ref->action) {
2743 case BTRFS_ADD_DELAYED_REF:
2744 case BTRFS_ADD_DELAYED_EXTENT:
2745 locked_ref->ref_mod -= ref->ref_mod;
2747 case BTRFS_DROP_DELAYED_REF:
2748 locked_ref->ref_mod += ref->ref_mod;
2753 atomic_dec(&delayed_refs->num_entries);
2756 * Record the must-insert_reserved flag before we drop the spin
2759 must_insert_reserved = locked_ref->must_insert_reserved;
2760 locked_ref->must_insert_reserved = 0;
2762 extent_op = locked_ref->extent_op;
2763 locked_ref->extent_op = NULL;
2764 spin_unlock(&locked_ref->lock);
2766 ret = run_one_delayed_ref(trans, ref, extent_op,
2767 must_insert_reserved);
2769 btrfs_free_delayed_extent_op(extent_op);
2771 unselect_delayed_ref_head(delayed_refs, locked_ref);
2772 btrfs_put_delayed_ref(ref);
2773 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2778 btrfs_put_delayed_ref(ref);
2784 * We don't want to include ref heads since we can have empty ref heads
2785 * and those will drastically skew our runtime down since we just do
2786 * accounting, no actual extent tree updates.
2788 if (actual_count > 0) {
2789 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2793 * We weigh the current average higher than our current runtime
2794 * to avoid large swings in the average.
2796 spin_lock(&delayed_refs->lock);
2797 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2798 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2799 spin_unlock(&delayed_refs->lock);
2804 #ifdef SCRAMBLE_DELAYED_REFS
2806 * Normally delayed refs get processed in ascending bytenr order. This
2807 * correlates in most cases to the order added. To expose dependencies on this
2808 * order, we start to process the tree in the middle instead of the beginning
2810 static u64 find_middle(struct rb_root *root)
2812 struct rb_node *n = root->rb_node;
2813 struct btrfs_delayed_ref_node *entry;
2816 u64 first = 0, last = 0;
2820 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2821 first = entry->bytenr;
2825 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2826 last = entry->bytenr;
2831 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2832 WARN_ON(!entry->in_tree);
2834 middle = entry->bytenr;
2847 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2851 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2852 sizeof(struct btrfs_extent_inline_ref));
2853 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2854 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2857 * We don't ever fill up leaves all the way so multiply by 2 just to be
2858 * closer to what we're really going to want to use.
2860 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2864 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2865 * would require to store the csums for that many bytes.
2867 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2870 u64 num_csums_per_leaf;
2873 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2874 num_csums_per_leaf = div64_u64(csum_size,
2875 (u64)btrfs_super_csum_size(fs_info->super_copy));
2876 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2877 num_csums += num_csums_per_leaf - 1;
2878 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2882 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2883 struct btrfs_fs_info *fs_info)
2885 struct btrfs_block_rsv *global_rsv;
2886 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2887 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2888 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2889 u64 num_bytes, num_dirty_bgs_bytes;
2892 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2893 num_heads = heads_to_leaves(fs_info, num_heads);
2895 num_bytes += (num_heads - 1) * fs_info->nodesize;
2897 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2899 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2901 global_rsv = &fs_info->global_block_rsv;
2904 * If we can't allocate any more chunks lets make sure we have _lots_ of
2905 * wiggle room since running delayed refs can create more delayed refs.
2907 if (global_rsv->space_info->full) {
2908 num_dirty_bgs_bytes <<= 1;
2912 spin_lock(&global_rsv->lock);
2913 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2915 spin_unlock(&global_rsv->lock);
2919 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2920 struct btrfs_fs_info *fs_info)
2923 atomic_read(&trans->transaction->delayed_refs.num_entries);
2928 avg_runtime = fs_info->avg_delayed_ref_runtime;
2929 val = num_entries * avg_runtime;
2930 if (val >= NSEC_PER_SEC)
2932 if (val >= NSEC_PER_SEC / 2)
2935 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2938 struct async_delayed_refs {
2939 struct btrfs_root *root;
2944 struct completion wait;
2945 struct btrfs_work work;
2948 static inline struct async_delayed_refs *
2949 to_async_delayed_refs(struct btrfs_work *work)
2951 return container_of(work, struct async_delayed_refs, work);
2954 static void delayed_ref_async_start(struct btrfs_work *work)
2956 struct async_delayed_refs *async = to_async_delayed_refs(work);
2957 struct btrfs_trans_handle *trans;
2958 struct btrfs_fs_info *fs_info = async->root->fs_info;
2961 /* if the commit is already started, we don't need to wait here */
2962 if (btrfs_transaction_blocked(fs_info))
2965 trans = btrfs_join_transaction(async->root);
2966 if (IS_ERR(trans)) {
2967 async->error = PTR_ERR(trans);
2972 * trans->sync means that when we call end_transaction, we won't
2973 * wait on delayed refs
2977 /* Don't bother flushing if we got into a different transaction */
2978 if (trans->transid > async->transid)
2981 ret = btrfs_run_delayed_refs(trans, async->count);
2985 ret = btrfs_end_transaction(trans);
2986 if (ret && !async->error)
2990 complete(&async->wait);
2995 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2996 unsigned long count, u64 transid, int wait)
2998 struct async_delayed_refs *async;
3001 async = kmalloc(sizeof(*async), GFP_NOFS);
3005 async->root = fs_info->tree_root;
3006 async->count = count;
3008 async->transid = transid;
3013 init_completion(&async->wait);
3015 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3016 delayed_ref_async_start, NULL, NULL);
3018 btrfs_queue_work(fs_info->extent_workers, &async->work);
3021 wait_for_completion(&async->wait);
3030 * this starts processing the delayed reference count updates and
3031 * extent insertions we have queued up so far. count can be
3032 * 0, which means to process everything in the tree at the start
3033 * of the run (but not newly added entries), or it can be some target
3034 * number you'd like to process.
3036 * Returns 0 on success or if called with an aborted transaction
3037 * Returns <0 on error and aborts the transaction
3039 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3040 unsigned long count)
3042 struct btrfs_fs_info *fs_info = trans->fs_info;
3043 struct rb_node *node;
3044 struct btrfs_delayed_ref_root *delayed_refs;
3045 struct btrfs_delayed_ref_head *head;
3047 int run_all = count == (unsigned long)-1;
3048 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3050 /* We'll clean this up in btrfs_cleanup_transaction */
3054 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3057 delayed_refs = &trans->transaction->delayed_refs;
3059 count = atomic_read(&delayed_refs->num_entries) * 2;
3062 #ifdef SCRAMBLE_DELAYED_REFS
3063 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3065 trans->can_flush_pending_bgs = false;
3066 ret = __btrfs_run_delayed_refs(trans, count);
3068 btrfs_abort_transaction(trans, ret);
3073 if (!list_empty(&trans->new_bgs))
3074 btrfs_create_pending_block_groups(trans);
3076 spin_lock(&delayed_refs->lock);
3077 node = rb_first(&delayed_refs->href_root);
3079 spin_unlock(&delayed_refs->lock);
3082 head = rb_entry(node, struct btrfs_delayed_ref_head,
3084 refcount_inc(&head->refs);
3085 spin_unlock(&delayed_refs->lock);
3087 /* Mutex was contended, block until it's released and retry. */
3088 mutex_lock(&head->mutex);
3089 mutex_unlock(&head->mutex);
3091 btrfs_put_delayed_ref_head(head);
3096 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3100 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3101 struct btrfs_fs_info *fs_info,
3102 u64 bytenr, u64 num_bytes, u64 flags,
3103 int level, int is_data)
3105 struct btrfs_delayed_extent_op *extent_op;
3108 extent_op = btrfs_alloc_delayed_extent_op();
3112 extent_op->flags_to_set = flags;
3113 extent_op->update_flags = true;
3114 extent_op->update_key = false;
3115 extent_op->is_data = is_data ? true : false;
3116 extent_op->level = level;
3118 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3119 num_bytes, extent_op);
3121 btrfs_free_delayed_extent_op(extent_op);
3125 static noinline int check_delayed_ref(struct btrfs_root *root,
3126 struct btrfs_path *path,
3127 u64 objectid, u64 offset, u64 bytenr)
3129 struct btrfs_delayed_ref_head *head;
3130 struct btrfs_delayed_ref_node *ref;
3131 struct btrfs_delayed_data_ref *data_ref;
3132 struct btrfs_delayed_ref_root *delayed_refs;
3133 struct btrfs_transaction *cur_trans;
3134 struct rb_node *node;
3137 spin_lock(&root->fs_info->trans_lock);
3138 cur_trans = root->fs_info->running_transaction;
3140 refcount_inc(&cur_trans->use_count);
3141 spin_unlock(&root->fs_info->trans_lock);
3145 delayed_refs = &cur_trans->delayed_refs;
3146 spin_lock(&delayed_refs->lock);
3147 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3149 spin_unlock(&delayed_refs->lock);
3150 btrfs_put_transaction(cur_trans);
3154 if (!mutex_trylock(&head->mutex)) {
3155 refcount_inc(&head->refs);
3156 spin_unlock(&delayed_refs->lock);
3158 btrfs_release_path(path);
3161 * Mutex was contended, block until it's released and let
3164 mutex_lock(&head->mutex);
3165 mutex_unlock(&head->mutex);
3166 btrfs_put_delayed_ref_head(head);
3167 btrfs_put_transaction(cur_trans);
3170 spin_unlock(&delayed_refs->lock);
3172 spin_lock(&head->lock);
3174 * XXX: We should replace this with a proper search function in the
3177 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3178 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3179 /* If it's a shared ref we know a cross reference exists */
3180 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3185 data_ref = btrfs_delayed_node_to_data_ref(ref);
3188 * If our ref doesn't match the one we're currently looking at
3189 * then we have a cross reference.
3191 if (data_ref->root != root->root_key.objectid ||
3192 data_ref->objectid != objectid ||
3193 data_ref->offset != offset) {
3198 spin_unlock(&head->lock);
3199 mutex_unlock(&head->mutex);
3200 btrfs_put_transaction(cur_trans);
3204 static noinline int check_committed_ref(struct btrfs_root *root,
3205 struct btrfs_path *path,
3206 u64 objectid, u64 offset, u64 bytenr)
3208 struct btrfs_fs_info *fs_info = root->fs_info;
3209 struct btrfs_root *extent_root = fs_info->extent_root;
3210 struct extent_buffer *leaf;
3211 struct btrfs_extent_data_ref *ref;
3212 struct btrfs_extent_inline_ref *iref;
3213 struct btrfs_extent_item *ei;
3214 struct btrfs_key key;
3219 key.objectid = bytenr;
3220 key.offset = (u64)-1;
3221 key.type = BTRFS_EXTENT_ITEM_KEY;
3223 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3226 BUG_ON(ret == 0); /* Corruption */
3229 if (path->slots[0] == 0)
3233 leaf = path->nodes[0];
3234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3236 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3240 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3241 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3242 if (item_size < sizeof(*ei)) {
3243 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3247 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3249 if (item_size != sizeof(*ei) +
3250 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3253 if (btrfs_extent_generation(leaf, ei) <=
3254 btrfs_root_last_snapshot(&root->root_item))
3257 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3259 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3260 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3263 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3264 if (btrfs_extent_refs(leaf, ei) !=
3265 btrfs_extent_data_ref_count(leaf, ref) ||
3266 btrfs_extent_data_ref_root(leaf, ref) !=
3267 root->root_key.objectid ||
3268 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3269 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3277 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3280 struct btrfs_path *path;
3284 path = btrfs_alloc_path();
3289 ret = check_committed_ref(root, path, objectid,
3291 if (ret && ret != -ENOENT)
3294 ret2 = check_delayed_ref(root, path, objectid,
3296 } while (ret2 == -EAGAIN);
3298 if (ret2 && ret2 != -ENOENT) {
3303 if (ret != -ENOENT || ret2 != -ENOENT)
3306 btrfs_free_path(path);
3307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3312 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3313 struct btrfs_root *root,
3314 struct extent_buffer *buf,
3315 int full_backref, int inc)
3317 struct btrfs_fs_info *fs_info = root->fs_info;
3323 struct btrfs_key key;
3324 struct btrfs_file_extent_item *fi;
3328 int (*process_func)(struct btrfs_trans_handle *,
3329 struct btrfs_root *,
3330 u64, u64, u64, u64, u64, u64);
3333 if (btrfs_is_testing(fs_info))
3336 ref_root = btrfs_header_owner(buf);
3337 nritems = btrfs_header_nritems(buf);
3338 level = btrfs_header_level(buf);
3340 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3344 process_func = btrfs_inc_extent_ref;
3346 process_func = btrfs_free_extent;
3349 parent = buf->start;
3353 for (i = 0; i < nritems; i++) {
3355 btrfs_item_key_to_cpu(buf, &key, i);
3356 if (key.type != BTRFS_EXTENT_DATA_KEY)
3358 fi = btrfs_item_ptr(buf, i,
3359 struct btrfs_file_extent_item);
3360 if (btrfs_file_extent_type(buf, fi) ==
3361 BTRFS_FILE_EXTENT_INLINE)
3363 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3367 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3368 key.offset -= btrfs_file_extent_offset(buf, fi);
3369 ret = process_func(trans, root, bytenr, num_bytes,
3370 parent, ref_root, key.objectid,
3375 bytenr = btrfs_node_blockptr(buf, i);
3376 num_bytes = fs_info->nodesize;
3377 ret = process_func(trans, root, bytenr, num_bytes,
3378 parent, ref_root, level - 1, 0);
3388 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3389 struct extent_buffer *buf, int full_backref)
3391 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3394 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3395 struct extent_buffer *buf, int full_backref)
3397 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3400 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3401 struct btrfs_fs_info *fs_info,
3402 struct btrfs_path *path,
3403 struct btrfs_block_group_cache *cache)
3406 struct btrfs_root *extent_root = fs_info->extent_root;
3408 struct extent_buffer *leaf;
3410 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3417 leaf = path->nodes[0];
3418 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3419 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3420 btrfs_mark_buffer_dirty(leaf);
3422 btrfs_release_path(path);
3427 static struct btrfs_block_group_cache *
3428 next_block_group(struct btrfs_fs_info *fs_info,
3429 struct btrfs_block_group_cache *cache)
3431 struct rb_node *node;
3433 spin_lock(&fs_info->block_group_cache_lock);
3435 /* If our block group was removed, we need a full search. */
3436 if (RB_EMPTY_NODE(&cache->cache_node)) {
3437 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439 spin_unlock(&fs_info->block_group_cache_lock);
3440 btrfs_put_block_group(cache);
3441 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3443 node = rb_next(&cache->cache_node);
3444 btrfs_put_block_group(cache);
3446 cache = rb_entry(node, struct btrfs_block_group_cache,
3448 btrfs_get_block_group(cache);
3451 spin_unlock(&fs_info->block_group_cache_lock);
3455 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3456 struct btrfs_trans_handle *trans,
3457 struct btrfs_path *path)
3459 struct btrfs_fs_info *fs_info = block_group->fs_info;
3460 struct btrfs_root *root = fs_info->tree_root;
3461 struct inode *inode = NULL;
3462 struct extent_changeset *data_reserved = NULL;
3464 int dcs = BTRFS_DC_ERROR;
3470 * If this block group is smaller than 100 megs don't bother caching the
3473 if (block_group->key.offset < (100 * SZ_1M)) {
3474 spin_lock(&block_group->lock);
3475 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3476 spin_unlock(&block_group->lock);
3483 inode = lookup_free_space_inode(fs_info, block_group, path);
3484 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3485 ret = PTR_ERR(inode);
3486 btrfs_release_path(path);
3490 if (IS_ERR(inode)) {
3494 if (block_group->ro)
3497 ret = create_free_space_inode(fs_info, trans, block_group,
3505 * We want to set the generation to 0, that way if anything goes wrong
3506 * from here on out we know not to trust this cache when we load up next
3509 BTRFS_I(inode)->generation = 0;
3510 ret = btrfs_update_inode(trans, root, inode);
3513 * So theoretically we could recover from this, simply set the
3514 * super cache generation to 0 so we know to invalidate the
3515 * cache, but then we'd have to keep track of the block groups
3516 * that fail this way so we know we _have_ to reset this cache
3517 * before the next commit or risk reading stale cache. So to
3518 * limit our exposure to horrible edge cases lets just abort the
3519 * transaction, this only happens in really bad situations
3522 btrfs_abort_transaction(trans, ret);
3527 /* We've already setup this transaction, go ahead and exit */
3528 if (block_group->cache_generation == trans->transid &&
3529 i_size_read(inode)) {
3530 dcs = BTRFS_DC_SETUP;
3534 if (i_size_read(inode) > 0) {
3535 ret = btrfs_check_trunc_cache_free_space(fs_info,
3536 &fs_info->global_block_rsv);
3540 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3545 spin_lock(&block_group->lock);
3546 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3547 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3549 * don't bother trying to write stuff out _if_
3550 * a) we're not cached,
3551 * b) we're with nospace_cache mount option,
3552 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3554 dcs = BTRFS_DC_WRITTEN;