Merge tag 'drm-for-v4.16-part2-fixes' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <linux/error-injection.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 #include "compression.h"
54 #include "tree-checker.h"
55 #include "ref-verify.h"
56
57 #ifdef CONFIG_X86
58 #include <asm/cpufeature.h>
59 #endif
60
61 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
62                                  BTRFS_HEADER_FLAG_RELOC |\
63                                  BTRFS_SUPER_FLAG_ERROR |\
64                                  BTRFS_SUPER_FLAG_SEEDING |\
65                                  BTRFS_SUPER_FLAG_METADUMP |\
66                                  BTRFS_SUPER_FLAG_METADUMP_V2)
67
68 static const struct extent_io_ops btree_extent_io_ops;
69 static void end_workqueue_fn(struct btrfs_work *work);
70 static void free_fs_root(struct btrfs_root *root);
71 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
72 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
73 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
74                                       struct btrfs_fs_info *fs_info);
75 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
76 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
77                                         struct extent_io_tree *dirty_pages,
78                                         int mark);
79 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
80                                        struct extent_io_tree *pinned_extents);
81 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
82 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
83
84 /*
85  * btrfs_end_io_wq structs are used to do processing in task context when an IO
86  * is complete.  This is used during reads to verify checksums, and it is used
87  * by writes to insert metadata for new file extents after IO is complete.
88  */
89 struct btrfs_end_io_wq {
90         struct bio *bio;
91         bio_end_io_t *end_io;
92         void *private;
93         struct btrfs_fs_info *info;
94         blk_status_t status;
95         enum btrfs_wq_endio_type metadata;
96         struct btrfs_work work;
97 };
98
99 static struct kmem_cache *btrfs_end_io_wq_cache;
100
101 int __init btrfs_end_io_wq_init(void)
102 {
103         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
104                                         sizeof(struct btrfs_end_io_wq),
105                                         0,
106                                         SLAB_MEM_SPREAD,
107                                         NULL);
108         if (!btrfs_end_io_wq_cache)
109                 return -ENOMEM;
110         return 0;
111 }
112
113 void btrfs_end_io_wq_exit(void)
114 {
115         kmem_cache_destroy(btrfs_end_io_wq_cache);
116 }
117
118 /*
119  * async submit bios are used to offload expensive checksumming
120  * onto the worker threads.  They checksum file and metadata bios
121  * just before they are sent down the IO stack.
122  */
123 struct async_submit_bio {
124         void *private_data;
125         struct btrfs_fs_info *fs_info;
126         struct bio *bio;
127         extent_submit_bio_hook_t *submit_bio_start;
128         extent_submit_bio_hook_t *submit_bio_done;
129         int mirror_num;
130         unsigned long bio_flags;
131         /*
132          * bio_offset is optional, can be used if the pages in the bio
133          * can't tell us where in the file the bio should go
134          */
135         u64 bio_offset;
136         struct btrfs_work work;
137         blk_status_t status;
138 };
139
140 /*
141  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
142  * eb, the lockdep key is determined by the btrfs_root it belongs to and
143  * the level the eb occupies in the tree.
144  *
145  * Different roots are used for different purposes and may nest inside each
146  * other and they require separate keysets.  As lockdep keys should be
147  * static, assign keysets according to the purpose of the root as indicated
148  * by btrfs_root->objectid.  This ensures that all special purpose roots
149  * have separate keysets.
150  *
151  * Lock-nesting across peer nodes is always done with the immediate parent
152  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
153  * subclass to avoid triggering lockdep warning in such cases.
154  *
155  * The key is set by the readpage_end_io_hook after the buffer has passed
156  * csum validation but before the pages are unlocked.  It is also set by
157  * btrfs_init_new_buffer on freshly allocated blocks.
158  *
159  * We also add a check to make sure the highest level of the tree is the
160  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
161  * needs update as well.
162  */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 #  error
166 # endif
167
168 static struct btrfs_lockdep_keyset {
169         u64                     id;             /* root objectid */
170         const char              *name_stem;     /* lock name stem */
171         char                    names[BTRFS_MAX_LEVEL + 1][20];
172         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
175         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
176         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
177         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
178         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
179         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
180         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
181         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
182         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
183         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
184         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
185         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186         { .id = 0,                              .name_stem = "tree"     },
187 };
188
189 void __init btrfs_init_lockdep(void)
190 {
191         int i, j;
192
193         /* initialize lockdep class names */
194         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196
197                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198                         snprintf(ks->names[j], sizeof(ks->names[j]),
199                                  "btrfs-%s-%02d", ks->name_stem, j);
200         }
201 }
202
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204                                     int level)
205 {
206         struct btrfs_lockdep_keyset *ks;
207
208         BUG_ON(level >= ARRAY_SIZE(ks->keys));
209
210         /* find the matching keyset, id 0 is the default entry */
211         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212                 if (ks->id == objectid)
213                         break;
214
215         lockdep_set_class_and_name(&eb->lock,
216                                    &ks->keys[level], ks->names[level]);
217 }
218
219 #endif
220
221 /*
222  * extents on the btree inode are pretty simple, there's one extent
223  * that covers the entire device
224  */
225 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
226                 struct page *page, size_t pg_offset, u64 start, u64 len,
227                 int create)
228 {
229         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
230         struct extent_map_tree *em_tree = &inode->extent_tree;
231         struct extent_map *em;
232         int ret;
233
234         read_lock(&em_tree->lock);
235         em = lookup_extent_mapping(em_tree, start, len);
236         if (em) {
237                 em->bdev = fs_info->fs_devices->latest_bdev;
238                 read_unlock(&em_tree->lock);
239                 goto out;
240         }
241         read_unlock(&em_tree->lock);
242
243         em = alloc_extent_map();
244         if (!em) {
245                 em = ERR_PTR(-ENOMEM);
246                 goto out;
247         }
248         em->start = 0;
249         em->len = (u64)-1;
250         em->block_len = (u64)-1;
251         em->block_start = 0;
252         em->bdev = fs_info->fs_devices->latest_bdev;
253
254         write_lock(&em_tree->lock);
255         ret = add_extent_mapping(em_tree, em, 0);
256         if (ret == -EEXIST) {
257                 free_extent_map(em);
258                 em = lookup_extent_mapping(em_tree, start, len);
259                 if (!em)
260                         em = ERR_PTR(-EIO);
261         } else if (ret) {
262                 free_extent_map(em);
263                 em = ERR_PTR(ret);
264         }
265         write_unlock(&em_tree->lock);
266
267 out:
268         return em;
269 }
270
271 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
272 {
273         return btrfs_crc32c(seed, data, len);
274 }
275
276 void btrfs_csum_final(u32 crc, u8 *result)
277 {
278         put_unaligned_le32(~crc, result);
279 }
280
281 /*
282  * compute the csum for a btree block, and either verify it or write it
283  * into the csum field of the block.
284  */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286                            struct extent_buffer *buf,
287                            int verify)
288 {
289         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290         char result[BTRFS_CSUM_SIZE];
291         unsigned long len;
292         unsigned long cur_len;
293         unsigned long offset = BTRFS_CSUM_SIZE;
294         char *kaddr;
295         unsigned long map_start;
296         unsigned long map_len;
297         int err;
298         u32 crc = ~(u32)0;
299
300         len = buf->len - offset;
301         while (len > 0) {
302                 err = map_private_extent_buffer(buf, offset, 32,
303                                         &kaddr, &map_start, &map_len);
304                 if (err)
305                         return err;
306                 cur_len = min(len, map_len - (offset - map_start));
307                 crc = btrfs_csum_data(kaddr + offset - map_start,
308                                       crc, cur_len);
309                 len -= cur_len;
310                 offset += cur_len;
311         }
312         memset(result, 0, BTRFS_CSUM_SIZE);
313
314         btrfs_csum_final(crc, result);
315
316         if (verify) {
317                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
318                         u32 val;
319                         u32 found = 0;
320                         memcpy(&found, result, csum_size);
321
322                         read_extent_buffer(buf, &val, 0, csum_size);
323                         btrfs_warn_rl(fs_info,
324                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
325                                 fs_info->sb->s_id, buf->start,
326                                 val, found, btrfs_header_level(buf));
327                         return -EUCLEAN;
328                 }
329         } else {
330                 write_extent_buffer(buf, result, 0, csum_size);
331         }
332
333         return 0;
334 }
335
336 /*
337  * we can't consider a given block up to date unless the transid of the
338  * block matches the transid in the parent node's pointer.  This is how we
339  * detect blocks that either didn't get written at all or got written
340  * in the wrong place.
341  */
342 static int verify_parent_transid(struct extent_io_tree *io_tree,
343                                  struct extent_buffer *eb, u64 parent_transid,
344                                  int atomic)
345 {
346         struct extent_state *cached_state = NULL;
347         int ret;
348         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
349
350         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
351                 return 0;
352
353         if (atomic)
354                 return -EAGAIN;
355
356         if (need_lock) {
357                 btrfs_tree_read_lock(eb);
358                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
359         }
360
361         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
362                          &cached_state);
363         if (extent_buffer_uptodate(eb) &&
364             btrfs_header_generation(eb) == parent_transid) {
365                 ret = 0;
366                 goto out;
367         }
368         btrfs_err_rl(eb->fs_info,
369                 "parent transid verify failed on %llu wanted %llu found %llu",
370                         eb->start,
371                         parent_transid, btrfs_header_generation(eb));
372         ret = 1;
373
374         /*
375          * Things reading via commit roots that don't have normal protection,
376          * like send, can have a really old block in cache that may point at a
377          * block that has been freed and re-allocated.  So don't clear uptodate
378          * if we find an eb that is under IO (dirty/writeback) because we could
379          * end up reading in the stale data and then writing it back out and
380          * making everybody very sad.
381          */
382         if (!extent_buffer_under_io(eb))
383                 clear_extent_buffer_uptodate(eb);
384 out:
385         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
386                              &cached_state);
387         if (need_lock)
388                 btrfs_tree_read_unlock_blocking(eb);
389         return ret;
390 }
391
392 /*
393  * Return 0 if the superblock checksum type matches the checksum value of that
394  * algorithm. Pass the raw disk superblock data.
395  */
396 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
397                                   char *raw_disk_sb)
398 {
399         struct btrfs_super_block *disk_sb =
400                 (struct btrfs_super_block *)raw_disk_sb;
401         u16 csum_type = btrfs_super_csum_type(disk_sb);
402         int ret = 0;
403
404         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
405                 u32 crc = ~(u32)0;
406                 const int csum_size = sizeof(crc);
407                 char result[csum_size];
408
409                 /*
410                  * The super_block structure does not span the whole
411                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
412                  * is filled with zeros and is included in the checksum.
413                  */
414                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
415                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
416                 btrfs_csum_final(crc, result);
417
418                 if (memcmp(raw_disk_sb, result, csum_size))
419                         ret = 1;
420         }
421
422         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
423                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
424                                 csum_type);
425                 ret = 1;
426         }
427
428         return ret;
429 }
430
431 /*
432  * helper to read a given tree block, doing retries as required when
433  * the checksums don't match and we have alternate mirrors to try.
434  */
435 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
436                                           struct extent_buffer *eb,
437                                           u64 parent_transid)
438 {
439         struct extent_io_tree *io_tree;
440         int failed = 0;
441         int ret;
442         int num_copies = 0;
443         int mirror_num = 0;
444         int failed_mirror = 0;
445
446         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
447         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
448         while (1) {
449                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
450                                                mirror_num);
451                 if (!ret) {
452                         if (!verify_parent_transid(io_tree, eb,
453                                                    parent_transid, 0))
454                                 break;
455                         else
456                                 ret = -EIO;
457                 }
458
459                 /*
460                  * This buffer's crc is fine, but its contents are corrupted, so
461                  * there is no reason to read the other copies, they won't be
462                  * any less wrong.
463                  */
464                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
465                         break;
466
467                 num_copies = btrfs_num_copies(fs_info,
468                                               eb->start, eb->len);
469                 if (num_copies == 1)
470                         break;
471
472                 if (!failed_mirror) {
473                         failed = 1;
474                         failed_mirror = eb->read_mirror;
475                 }
476
477                 mirror_num++;
478                 if (mirror_num == failed_mirror)
479                         mirror_num++;
480
481                 if (mirror_num > num_copies)
482                         break;
483         }
484
485         if (failed && !ret && failed_mirror)
486                 repair_eb_io_failure(fs_info, eb, failed_mirror);
487
488         return ret;
489 }
490
491 /*
492  * checksum a dirty tree block before IO.  This has extra checks to make sure
493  * we only fill in the checksum field in the first page of a multi-page block
494  */
495
496 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
497 {
498         u64 start = page_offset(page);
499         u64 found_start;
500         struct extent_buffer *eb;
501
502         eb = (struct extent_buffer *)page->private;
503         if (page != eb->pages[0])
504                 return 0;
505
506         found_start = btrfs_header_bytenr(eb);
507         /*
508          * Please do not consolidate these warnings into a single if.
509          * It is useful to know what went wrong.
510          */
511         if (WARN_ON(found_start != start))
512                 return -EUCLEAN;
513         if (WARN_ON(!PageUptodate(page)))
514                 return -EUCLEAN;
515
516         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
517                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
518
519         return csum_tree_block(fs_info, eb, 0);
520 }
521
522 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
523                                  struct extent_buffer *eb)
524 {
525         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
526         u8 fsid[BTRFS_FSID_SIZE];
527         int ret = 1;
528
529         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
530         while (fs_devices) {
531                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
532                         ret = 0;
533                         break;
534                 }
535                 fs_devices = fs_devices->seed;
536         }
537         return ret;
538 }
539
540 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
541                                       u64 phy_offset, struct page *page,
542                                       u64 start, u64 end, int mirror)
543 {
544         u64 found_start;
545         int found_level;
546         struct extent_buffer *eb;
547         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548         struct btrfs_fs_info *fs_info = root->fs_info;
549         int ret = 0;
550         int reads_done;
551
552         if (!page->private)
553                 goto out;
554
555         eb = (struct extent_buffer *)page->private;
556
557         /* the pending IO might have been the only thing that kept this buffer
558          * in memory.  Make sure we have a ref for all this other checks
559          */
560         extent_buffer_get(eb);
561
562         reads_done = atomic_dec_and_test(&eb->io_pages);
563         if (!reads_done)
564                 goto err;
565
566         eb->read_mirror = mirror;
567         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
568                 ret = -EIO;
569                 goto err;
570         }
571
572         found_start = btrfs_header_bytenr(eb);
573         if (found_start != eb->start) {
574                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
575                              found_start, eb->start);
576                 ret = -EIO;
577                 goto err;
578         }
579         if (check_tree_block_fsid(fs_info, eb)) {
580                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
581                              eb->start);
582                 ret = -EIO;
583                 goto err;
584         }
585         found_level = btrfs_header_level(eb);
586         if (found_level >= BTRFS_MAX_LEVEL) {
587                 btrfs_err(fs_info, "bad tree block level %d",
588                           (int)btrfs_header_level(eb));
589                 ret = -EIO;
590                 goto err;
591         }
592
593         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
594                                        eb, found_level);
595
596         ret = csum_tree_block(fs_info, eb, 1);
597         if (ret)
598                 goto err;
599
600         /*
601          * If this is a leaf block and it is corrupt, set the corrupt bit so
602          * that we don't try and read the other copies of this block, just
603          * return -EIO.
604          */
605         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
606                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607                 ret = -EIO;
608         }
609
610         if (found_level > 0 && btrfs_check_node(root, eb))
611                 ret = -EIO;
612
613         if (!ret)
614                 set_extent_buffer_uptodate(eb);
615 err:
616         if (reads_done &&
617             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
618                 btree_readahead_hook(eb, ret);
619
620         if (ret) {
621                 /*
622                  * our io error hook is going to dec the io pages
623                  * again, we have to make sure it has something
624                  * to decrement
625                  */
626                 atomic_inc(&eb->io_pages);
627                 clear_extent_buffer_uptodate(eb);
628         }
629         free_extent_buffer(eb);
630 out:
631         return ret;
632 }
633
634 static int btree_io_failed_hook(struct page *page, int failed_mirror)
635 {
636         struct extent_buffer *eb;
637
638         eb = (struct extent_buffer *)page->private;
639         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
640         eb->read_mirror = failed_mirror;
641         atomic_dec(&eb->io_pages);
642         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643                 btree_readahead_hook(eb, -EIO);
644         return -EIO;    /* we fixed nothing */
645 }
646
647 static void end_workqueue_bio(struct bio *bio)
648 {
649         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
650         struct btrfs_fs_info *fs_info;
651         struct btrfs_workqueue *wq;
652         btrfs_work_func_t func;
653
654         fs_info = end_io_wq->info;
655         end_io_wq->status = bio->bi_status;
656
657         if (bio_op(bio) == REQ_OP_WRITE) {
658                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
659                         wq = fs_info->endio_meta_write_workers;
660                         func = btrfs_endio_meta_write_helper;
661                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
662                         wq = fs_info->endio_freespace_worker;
663                         func = btrfs_freespace_write_helper;
664                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665                         wq = fs_info->endio_raid56_workers;
666                         func = btrfs_endio_raid56_helper;
667                 } else {
668                         wq = fs_info->endio_write_workers;
669                         func = btrfs_endio_write_helper;
670                 }
671         } else {
672                 if (unlikely(end_io_wq->metadata ==
673                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
674                         wq = fs_info->endio_repair_workers;
675                         func = btrfs_endio_repair_helper;
676                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
677                         wq = fs_info->endio_raid56_workers;
678                         func = btrfs_endio_raid56_helper;
679                 } else if (end_io_wq->metadata) {
680                         wq = fs_info->endio_meta_workers;
681                         func = btrfs_endio_meta_helper;
682                 } else {
683                         wq = fs_info->endio_workers;
684                         func = btrfs_endio_helper;
685                 }
686         }
687
688         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
689         btrfs_queue_work(wq, &end_io_wq->work);
690 }
691
692 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693                         enum btrfs_wq_endio_type metadata)
694 {
695         struct btrfs_end_io_wq *end_io_wq;
696
697         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698         if (!end_io_wq)
699                 return BLK_STS_RESOURCE;
700
701         end_io_wq->private = bio->bi_private;
702         end_io_wq->end_io = bio->bi_end_io;
703         end_io_wq->info = info;
704         end_io_wq->status = 0;
705         end_io_wq->bio = bio;
706         end_io_wq->metadata = metadata;
707
708         bio->bi_private = end_io_wq;
709         bio->bi_end_io = end_workqueue_bio;
710         return 0;
711 }
712
713 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
714 {
715         unsigned long limit = min_t(unsigned long,
716                                     info->thread_pool_size,
717                                     info->fs_devices->open_devices);
718         return 256 * limit;
719 }
720
721 static void run_one_async_start(struct btrfs_work *work)
722 {
723         struct async_submit_bio *async;
724         blk_status_t ret;
725
726         async = container_of(work, struct  async_submit_bio, work);
727         ret = async->submit_bio_start(async->private_data, async->bio,
728                                       async->mirror_num, async->bio_flags,
729                                       async->bio_offset);
730         if (ret)
731                 async->status = ret;
732 }
733
734 static void run_one_async_done(struct btrfs_work *work)
735 {
736         struct async_submit_bio *async;
737
738         async = container_of(work, struct  async_submit_bio, work);
739
740         /* If an error occurred we just want to clean up the bio and move on */
741         if (async->status) {
742                 async->bio->bi_status = async->status;
743                 bio_endio(async->bio);
744                 return;
745         }
746
747         async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
748                                async->bio_flags, async->bio_offset);
749 }
750
751 static void run_one_async_free(struct btrfs_work *work)
752 {
753         struct async_submit_bio *async;
754
755         async = container_of(work, struct  async_submit_bio, work);
756         kfree(async);
757 }
758
759 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
760                                  int mirror_num, unsigned long bio_flags,
761                                  u64 bio_offset, void *private_data,
762                                  extent_submit_bio_hook_t *submit_bio_start,
763                                  extent_submit_bio_hook_t *submit_bio_done)
764 {
765         struct async_submit_bio *async;
766
767         async = kmalloc(sizeof(*async), GFP_NOFS);
768         if (!async)
769                 return BLK_STS_RESOURCE;
770
771         async->private_data = private_data;
772         async->fs_info = fs_info;
773         async->bio = bio;
774         async->mirror_num = mirror_num;
775         async->submit_bio_start = submit_bio_start;
776         async->submit_bio_done = submit_bio_done;
777
778         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
779                         run_one_async_done, run_one_async_free);
780
781         async->bio_flags = bio_flags;
782         async->bio_offset = bio_offset;
783
784         async->status = 0;
785
786         if (op_is_sync(bio->bi_opf))
787                 btrfs_set_work_high_priority(&async->work);
788
789         btrfs_queue_work(fs_info->workers, &async->work);
790         return 0;
791 }
792
793 static blk_status_t btree_csum_one_bio(struct bio *bio)
794 {
795         struct bio_vec *bvec;
796         struct btrfs_root *root;
797         int i, ret = 0;
798
799         ASSERT(!bio_flagged(bio, BIO_CLONED));
800         bio_for_each_segment_all(bvec, bio, i) {
801                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
802                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
803                 if (ret)
804                         break;
805         }
806
807         return errno_to_blk_status(ret);
808 }
809
810 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
811                                              int mirror_num, unsigned long bio_flags,
812                                              u64 bio_offset)
813 {
814         /*
815          * when we're called for a write, we're already in the async
816          * submission context.  Just jump into btrfs_map_bio
817          */
818         return btree_csum_one_bio(bio);
819 }
820
821 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
822                                             int mirror_num, unsigned long bio_flags,
823                                             u64 bio_offset)
824 {
825         struct inode *inode = private_data;
826         blk_status_t ret;
827
828         /*
829          * when we're called for a write, we're already in the async
830          * submission context.  Just jump into btrfs_map_bio
831          */
832         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
833         if (ret) {
834                 bio->bi_status = ret;
835                 bio_endio(bio);
836         }
837         return ret;
838 }
839
840 static int check_async_write(struct btrfs_inode *bi)
841 {
842         if (atomic_read(&bi->sync_writers))
843                 return 0;
844 #ifdef CONFIG_X86
845         if (static_cpu_has(X86_FEATURE_XMM4_2))
846                 return 0;
847 #endif
848         return 1;
849 }
850
851 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
852                                           int mirror_num, unsigned long bio_flags,
853                                           u64 bio_offset)
854 {
855         struct inode *inode = private_data;
856         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
857         int async = check_async_write(BTRFS_I(inode));
858         blk_status_t ret;
859
860         if (bio_op(bio) != REQ_OP_WRITE) {
861                 /*
862                  * called for a read, do the setup so that checksum validation
863                  * can happen in the async kernel threads
864                  */
865                 ret = btrfs_bio_wq_end_io(fs_info, bio,
866                                           BTRFS_WQ_ENDIO_METADATA);
867                 if (ret)
868                         goto out_w_error;
869                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
870         } else if (!async) {
871                 ret = btree_csum_one_bio(bio);
872                 if (ret)
873                         goto out_w_error;
874                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
875         } else {
876                 /*
877                  * kthread helpers are used to submit writes so that
878                  * checksumming can happen in parallel across all CPUs
879                  */
880                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
881                                           bio_offset, private_data,
882                                           __btree_submit_bio_start,
883                                           __btree_submit_bio_done);
884         }
885
886         if (ret)
887                 goto out_w_error;
888         return 0;
889
890 out_w_error:
891         bio->bi_status = ret;
892         bio_endio(bio);
893         return ret;
894 }
895
896 #ifdef CONFIG_MIGRATION
897 static int btree_migratepage(struct address_space *mapping,
898                         struct page *newpage, struct page *page,
899                         enum migrate_mode mode)
900 {
901         /*
902          * we can't safely write a btree page from here,
903          * we haven't done the locking hook
904          */
905         if (PageDirty(page))
906                 return -EAGAIN;
907         /*
908          * Buffers may be managed in a filesystem specific way.
909          * We must have no buffers or drop them.
910          */
911         if (page_has_private(page) &&
912             !try_to_release_page(page, GFP_KERNEL))
913                 return -EAGAIN;
914         return migrate_page(mapping, newpage, page, mode);
915 }
916 #endif
917
918
919 static int btree_writepages(struct address_space *mapping,
920                             struct writeback_control *wbc)
921 {
922         struct btrfs_fs_info *fs_info;
923         int ret;
924
925         if (wbc->sync_mode == WB_SYNC_NONE) {
926
927                 if (wbc->for_kupdate)
928                         return 0;
929
930                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
931                 /* this is a bit racy, but that's ok */
932                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
933                                              BTRFS_DIRTY_METADATA_THRESH);
934                 if (ret < 0)
935                         return 0;
936         }
937         return btree_write_cache_pages(mapping, wbc);
938 }
939
940 static int btree_readpage(struct file *file, struct page *page)
941 {
942         struct extent_io_tree *tree;
943         tree = &BTRFS_I(page->mapping->host)->io_tree;
944         return extent_read_full_page(tree, page, btree_get_extent, 0);
945 }
946
947 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
948 {
949         if (PageWriteback(page) || PageDirty(page))
950                 return 0;
951
952         return try_release_extent_buffer(page);
953 }
954
955 static void btree_invalidatepage(struct page *page, unsigned int offset,
956                                  unsigned int length)
957 {
958         struct extent_io_tree *tree;
959         tree = &BTRFS_I(page->mapping->host)->io_tree;
960         extent_invalidatepage(tree, page, offset);
961         btree_releasepage(page, GFP_NOFS);
962         if (PagePrivate(page)) {
963                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
964                            "page private not zero on page %llu",
965                            (unsigned long long)page_offset(page));
966                 ClearPagePrivate(page);
967                 set_page_private(page, 0);
968                 put_page(page);
969         }
970 }
971
972 static int btree_set_page_dirty(struct page *page)
973 {
974 #ifdef DEBUG
975         struct extent_buffer *eb;
976
977         BUG_ON(!PagePrivate(page));
978         eb = (struct extent_buffer *)page->private;
979         BUG_ON(!eb);
980         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
981         BUG_ON(!atomic_read(&eb->refs));
982         btrfs_assert_tree_locked(eb);
983 #endif
984         return __set_page_dirty_nobuffers(page);
985 }
986
987 static const struct address_space_operations btree_aops = {
988         .readpage       = btree_readpage,
989         .writepages     = btree_writepages,
990         .releasepage    = btree_releasepage,
991         .invalidatepage = btree_invalidatepage,
992 #ifdef CONFIG_MIGRATION
993         .migratepage    = btree_migratepage,
994 #endif
995         .set_page_dirty = btree_set_page_dirty,
996 };
997
998 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
999 {
1000         struct extent_buffer *buf = NULL;
1001         struct inode *btree_inode = fs_info->btree_inode;
1002
1003         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1004         if (IS_ERR(buf))
1005                 return;
1006         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1007                                  buf, WAIT_NONE, 0);
1008         free_extent_buffer(buf);
1009 }
1010
1011 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1012                          int mirror_num, struct extent_buffer **eb)
1013 {
1014         struct extent_buffer *buf = NULL;
1015         struct inode *btree_inode = fs_info->btree_inode;
1016         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1017         int ret;
1018
1019         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1020         if (IS_ERR(buf))
1021                 return 0;
1022
1023         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1024
1025         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1026                                        mirror_num);
1027         if (ret) {
1028                 free_extent_buffer(buf);
1029                 return ret;
1030         }
1031
1032         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1033                 free_extent_buffer(buf);
1034                 return -EIO;
1035         } else if (extent_buffer_uptodate(buf)) {
1036                 *eb = buf;
1037         } else {
1038                 free_extent_buffer(buf);
1039         }
1040         return 0;
1041 }
1042
1043 struct extent_buffer *btrfs_find_create_tree_block(
1044                                                 struct btrfs_fs_info *fs_info,
1045                                                 u64 bytenr)
1046 {
1047         if (btrfs_is_testing(fs_info))
1048                 return alloc_test_extent_buffer(fs_info, bytenr);
1049         return alloc_extent_buffer(fs_info, bytenr);
1050 }
1051
1052
1053 int btrfs_write_tree_block(struct extent_buffer *buf)
1054 {
1055         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1056                                         buf->start + buf->len - 1);
1057 }
1058
1059 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1060 {
1061         filemap_fdatawait_range(buf->pages[0]->mapping,
1062                                 buf->start, buf->start + buf->len - 1);
1063 }
1064
1065 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1066                                       u64 parent_transid)
1067 {
1068         struct extent_buffer *buf = NULL;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1072         if (IS_ERR(buf))
1073                 return buf;
1074
1075         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1076         if (ret) {
1077                 free_extent_buffer(buf);
1078                 return ERR_PTR(ret);
1079         }
1080         return buf;
1081
1082 }
1083
1084 void clean_tree_block(struct btrfs_fs_info *fs_info,
1085                       struct extent_buffer *buf)
1086 {
1087         if (btrfs_header_generation(buf) ==
1088             fs_info->running_transaction->transid) {
1089                 btrfs_assert_tree_locked(buf);
1090
1091                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1092                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1093                                                  -buf->len,
1094                                                  fs_info->dirty_metadata_batch);
1095                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1096                         btrfs_set_lock_blocking(buf);
1097                         clear_extent_buffer_dirty(buf);
1098                 }
1099         }
1100 }
1101
1102 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1103 {
1104         struct btrfs_subvolume_writers *writers;
1105         int ret;
1106
1107         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1108         if (!writers)
1109                 return ERR_PTR(-ENOMEM);
1110
1111         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1112         if (ret < 0) {
1113                 kfree(writers);
1114                 return ERR_PTR(ret);
1115         }
1116
1117         init_waitqueue_head(&writers->wait);
1118         return writers;
1119 }
1120
1121 static void
1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1123 {
1124         percpu_counter_destroy(&writers->counter);
1125         kfree(writers);
1126 }
1127
1128 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1129                          u64 objectid)
1130 {
1131         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1132         root->node = NULL;
1133         root->commit_root = NULL;
1134         root->state = 0;
1135         root->orphan_cleanup_state = 0;
1136
1137         root->objectid = objectid;
1138         root->last_trans = 0;
1139         root->highest_objectid = 0;
1140         root->nr_delalloc_inodes = 0;
1141         root->nr_ordered_extents = 0;
1142         root->name = NULL;
1143         root->inode_tree = RB_ROOT;
1144         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1145         root->block_rsv = NULL;
1146         root->orphan_block_rsv = NULL;
1147
1148         INIT_LIST_HEAD(&root->dirty_list);
1149         INIT_LIST_HEAD(&root->root_list);
1150         INIT_LIST_HEAD(&root->delalloc_inodes);
1151         INIT_LIST_HEAD(&root->delalloc_root);
1152         INIT_LIST_HEAD(&root->ordered_extents);
1153         INIT_LIST_HEAD(&root->ordered_root);
1154         INIT_LIST_HEAD(&root->logged_list[0]);
1155         INIT_LIST_HEAD(&root->logged_list[1]);
1156         spin_lock_init(&root->orphan_lock);
1157         spin_lock_init(&root->inode_lock);
1158         spin_lock_init(&root->delalloc_lock);
1159         spin_lock_init(&root->ordered_extent_lock);
1160         spin_lock_init(&root->accounting_lock);
1161         spin_lock_init(&root->log_extents_lock[0]);
1162         spin_lock_init(&root->log_extents_lock[1]);
1163         mutex_init(&root->objectid_mutex);
1164         mutex_init(&root->log_mutex);
1165         mutex_init(&root->ordered_extent_mutex);
1166         mutex_init(&root->delalloc_mutex);
1167         init_waitqueue_head(&root->log_writer_wait);
1168         init_waitqueue_head(&root->log_commit_wait[0]);
1169         init_waitqueue_head(&root->log_commit_wait[1]);
1170         INIT_LIST_HEAD(&root->log_ctxs[0]);
1171         INIT_LIST_HEAD(&root->log_ctxs[1]);
1172         atomic_set(&root->log_commit[0], 0);
1173         atomic_set(&root->log_commit[1], 0);
1174         atomic_set(&root->log_writers, 0);
1175         atomic_set(&root->log_batch, 0);
1176         atomic_set(&root->orphan_inodes, 0);
1177         refcount_set(&root->refs, 1);
1178         atomic_set(&root->will_be_snapshotted, 0);
1179         atomic64_set(&root->qgroup_meta_rsv, 0);
1180         root->log_transid = 0;
1181         root->log_transid_committed = -1;
1182         root->last_log_commit = 0;
1183         if (!dummy)
1184                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1185
1186         memset(&root->root_key, 0, sizeof(root->root_key));
1187         memset(&root->root_item, 0, sizeof(root->root_item));
1188         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189         if (!dummy)
1190                 root->defrag_trans_start = fs_info->generation;
1191         else
1192                 root->defrag_trans_start = 0;
1193         root->root_key.objectid = objectid;
1194         root->anon_dev = 0;
1195
1196         spin_lock_init(&root->root_item_lock);
1197 }
1198
1199 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1200                 gfp_t flags)
1201 {
1202         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1203         if (root)
1204                 root->fs_info = fs_info;
1205         return root;
1206 }
1207
1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209 /* Should only be used by the testing infrastructure */
1210 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1211 {
1212         struct btrfs_root *root;
1213
1214         if (!fs_info)
1215                 return ERR_PTR(-EINVAL);
1216
1217         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1218         if (!root)
1219                 return ERR_PTR(-ENOMEM);
1220
1221         /* We don't use the stripesize in selftest, set it as sectorsize */
1222         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1223         root->alloc_bytenr = 0;
1224
1225         return root;
1226 }
1227 #endif
1228
1229 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1230                                      struct btrfs_fs_info *fs_info,
1231                                      u64 objectid)
1232 {
1233         struct extent_buffer *leaf;
1234         struct btrfs_root *tree_root = fs_info->tree_root;
1235         struct btrfs_root *root;
1236         struct btrfs_key key;
1237         int ret = 0;
1238         uuid_le uuid = NULL_UUID_LE;
1239
1240         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241         if (!root)
1242                 return ERR_PTR(-ENOMEM);
1243
1244         __setup_root(root, fs_info, objectid);
1245         root->root_key.objectid = objectid;
1246         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247         root->root_key.offset = 0;
1248
1249         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250         if (IS_ERR(leaf)) {
1251                 ret = PTR_ERR(leaf);
1252                 leaf = NULL;
1253                 goto fail;
1254         }
1255
1256         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1257         btrfs_set_header_bytenr(leaf, leaf->start);
1258         btrfs_set_header_generation(leaf, trans->transid);
1259         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1260         btrfs_set_header_owner(leaf, objectid);
1261         root->node = leaf;
1262
1263         write_extent_buffer_fsid(leaf, fs_info->fsid);
1264         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1265         btrfs_mark_buffer_dirty(leaf);
1266
1267         root->commit_root = btrfs_root_node(root);
1268         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1269
1270         root->root_item.flags = 0;
1271         root->root_item.byte_limit = 0;
1272         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1273         btrfs_set_root_generation(&root->root_item, trans->transid);
1274         btrfs_set_root_level(&root->root_item, 0);
1275         btrfs_set_root_refs(&root->root_item, 1);
1276         btrfs_set_root_used(&root->root_item, leaf->len);
1277         btrfs_set_root_last_snapshot(&root->root_item, 0);
1278         btrfs_set_root_dirid(&root->root_item, 0);
1279         if (is_fstree(objectid))
1280                 uuid_le_gen(&uuid);
1281         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1282         root->root_item.drop_level = 0;
1283
1284         key.objectid = objectid;
1285         key.type = BTRFS_ROOT_ITEM_KEY;
1286         key.offset = 0;
1287         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1288         if (ret)
1289                 goto fail;
1290
1291         btrfs_tree_unlock(leaf);
1292
1293         return root;
1294
1295 fail:
1296         if (leaf) {
1297                 btrfs_tree_unlock(leaf);
1298                 free_extent_buffer(root->commit_root);
1299                 free_extent_buffer(leaf);
1300         }
1301         kfree(root);
1302
1303         return ERR_PTR(ret);
1304 }
1305
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307                                          struct btrfs_fs_info *fs_info)
1308 {
1309         struct btrfs_root *root;
1310         struct extent_buffer *leaf;
1311
1312         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1313         if (!root)
1314                 return ERR_PTR(-ENOMEM);
1315
1316         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1317
1318         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1319         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1321
1322         /*
1323          * DON'T set REF_COWS for log trees
1324          *
1325          * log trees do not get reference counted because they go away
1326          * before a real commit is actually done.  They do store pointers
1327          * to file data extents, and those reference counts still get
1328          * updated (along with back refs to the log tree).
1329          */
1330
1331         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1332                         NULL, 0, 0, 0);
1333         if (IS_ERR(leaf)) {
1334                 kfree(root);
1335                 return ERR_CAST(leaf);
1336         }
1337
1338         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1339         btrfs_set_header_bytenr(leaf, leaf->start);
1340         btrfs_set_header_generation(leaf, trans->transid);
1341         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1343         root->node = leaf;
1344
1345         write_extent_buffer_fsid(root->node, fs_info->fsid);
1346         btrfs_mark_buffer_dirty(root->node);
1347         btrfs_tree_unlock(root->node);
1348         return root;
1349 }
1350
1351 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1352                              struct btrfs_fs_info *fs_info)
1353 {
1354         struct btrfs_root *log_root;
1355
1356         log_root = alloc_log_tree(trans, fs_info);
1357         if (IS_ERR(log_root))
1358                 return PTR_ERR(log_root);
1359         WARN_ON(fs_info->log_root_tree);
1360         fs_info->log_root_tree = log_root;
1361         return 0;
1362 }
1363
1364 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1365                        struct btrfs_root *root)
1366 {
1367         struct btrfs_fs_info *fs_info = root->fs_info;
1368         struct btrfs_root *log_root;
1369         struct btrfs_inode_item *inode_item;
1370
1371         log_root = alloc_log_tree(trans, fs_info);
1372         if (IS_ERR(log_root))
1373                 return PTR_ERR(log_root);
1374
1375         log_root->last_trans = trans->transid;
1376         log_root->root_key.offset = root->root_key.objectid;
1377
1378         inode_item = &log_root->root_item.inode;
1379         btrfs_set_stack_inode_generation(inode_item, 1);
1380         btrfs_set_stack_inode_size(inode_item, 3);
1381         btrfs_set_stack_inode_nlink(inode_item, 1);
1382         btrfs_set_stack_inode_nbytes(inode_item,
1383                                      fs_info->nodesize);
1384         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1385
1386         btrfs_set_root_node(&log_root->root_item, log_root->node);
1387
1388         WARN_ON(root->log_root);
1389         root->log_root = log_root;
1390         root->log_transid = 0;
1391         root->log_transid_committed = -1;
1392         root->last_log_commit = 0;
1393         return 0;
1394 }
1395
1396 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1397                                                struct btrfs_key *key)
1398 {
1399         struct btrfs_root *root;
1400         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1401         struct btrfs_path *path;
1402         u64 generation;
1403         int ret;
1404
1405         path = btrfs_alloc_path();
1406         if (!path)
1407                 return ERR_PTR(-ENOMEM);
1408
1409         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1410         if (!root) {
1411                 ret = -ENOMEM;
1412                 goto alloc_fail;
1413         }
1414
1415         __setup_root(root, fs_info, key->objectid);
1416
1417         ret = btrfs_find_root(tree_root, key, path,
1418                               &root->root_item, &root->root_key);
1419         if (ret) {
1420                 if (ret > 0)
1421                         ret = -ENOENT;
1422                 goto find_fail;
1423         }
1424
1425         generation = btrfs_root_generation(&root->root_item);
1426         root->node = read_tree_block(fs_info,
1427                                      btrfs_root_bytenr(&root->root_item),
1428                                      generation);
1429         if (IS_ERR(root->node)) {
1430                 ret = PTR_ERR(root->node);
1431                 goto find_fail;
1432         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433                 ret = -EIO;
1434                 free_extent_buffer(root->node);
1435                 goto find_fail;
1436         }
1437         root->commit_root = btrfs_root_node(root);
1438 out:
1439         btrfs_free_path(path);
1440         return root;
1441
1442 find_fail:
1443         kfree(root);
1444 alloc_fail:
1445         root = ERR_PTR(ret);
1446         goto out;
1447 }
1448
1449 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450                                       struct btrfs_key *location)
1451 {
1452         struct btrfs_root *root;
1453
1454         root = btrfs_read_tree_root(tree_root, location);
1455         if (IS_ERR(root))
1456                 return root;
1457
1458         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460                 btrfs_check_and_init_root_item(&root->root_item);
1461         }
1462
1463         return root;
1464 }
1465
1466 int btrfs_init_fs_root(struct btrfs_root *root)
1467 {
1468         int ret;
1469         struct btrfs_subvolume_writers *writers;
1470
1471         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473                                         GFP_NOFS);
1474         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475                 ret = -ENOMEM;
1476                 goto fail;
1477         }
1478
1479         writers = btrfs_alloc_subvolume_writers();
1480         if (IS_ERR(writers)) {
1481                 ret = PTR_ERR(writers);
1482                 goto fail;
1483         }
1484         root->subv_writers = writers;
1485
1486         btrfs_init_free_ino_ctl(root);
1487         spin_lock_init(&root->ino_cache_lock);
1488         init_waitqueue_head(&root->ino_cache_wait);
1489
1490         ret = get_anon_bdev(&root->anon_dev);
1491         if (ret)
1492                 goto fail;
1493
1494         mutex_lock(&root->objectid_mutex);
1495         ret = btrfs_find_highest_objectid(root,
1496                                         &root->highest_objectid);
1497         if (ret) {
1498                 mutex_unlock(&root->objectid_mutex);
1499                 goto fail;
1500         }
1501
1502         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504         mutex_unlock(&root->objectid_mutex);
1505
1506         return 0;
1507 fail:
1508         /* the caller is responsible to call free_fs_root */
1509         return ret;
1510 }
1511
1512 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513                                         u64 root_id)
1514 {
1515         struct btrfs_root *root;
1516
1517         spin_lock(&fs_info->fs_roots_radix_lock);
1518         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519                                  (unsigned long)root_id);
1520         spin_unlock(&fs_info->fs_roots_radix_lock);
1521         return root;
1522 }
1523
1524 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525                          struct btrfs_root *root)
1526 {
1527         int ret;
1528
1529         ret = radix_tree_preload(GFP_NOFS);
1530         if (ret)
1531                 return ret;
1532
1533         spin_lock(&fs_info->fs_roots_radix_lock);
1534         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535                                 (unsigned long)root->root_key.objectid,
1536                                 root);
1537         if (ret == 0)
1538                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1539         spin_unlock(&fs_info->fs_roots_radix_lock);
1540         radix_tree_preload_end();
1541
1542         return ret;
1543 }
1544
1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546                                      struct btrfs_key *location,
1547                                      bool check_ref)
1548 {
1549         struct btrfs_root *root;
1550         struct btrfs_path *path;
1551         struct btrfs_key key;
1552         int ret;
1553
1554         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555                 return fs_info->tree_root;
1556         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557                 return fs_info->extent_root;
1558         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559                 return fs_info->chunk_root;
1560         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561                 return fs_info->dev_root;
1562         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563                 return fs_info->csum_root;
1564         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565                 return fs_info->quota_root ? fs_info->quota_root :
1566                                              ERR_PTR(-ENOENT);
1567         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568                 return fs_info->uuid_root ? fs_info->uuid_root :
1569                                             ERR_PTR(-ENOENT);
1570         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571                 return fs_info->free_space_root ? fs_info->free_space_root :
1572                                                   ERR_PTR(-ENOENT);
1573 again:
1574         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575         if (root) {
1576                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577                         return ERR_PTR(-ENOENT);
1578                 return root;
1579         }
1580
1581         root = btrfs_read_fs_root(fs_info->tree_root, location);
1582         if (IS_ERR(root))
1583                 return root;
1584
1585         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586                 ret = -ENOENT;
1587                 goto fail;
1588         }
1589
1590         ret = btrfs_init_fs_root(root);
1591         if (ret)
1592                 goto fail;
1593
1594         path = btrfs_alloc_path();
1595         if (!path) {
1596                 ret = -ENOMEM;
1597                 goto fail;
1598         }
1599         key.objectid = BTRFS_ORPHAN_OBJECTID;
1600         key.type = BTRFS_ORPHAN_ITEM_KEY;
1601         key.offset = location->objectid;
1602
1603         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604         btrfs_free_path(path);
1605         if (ret < 0)
1606                 goto fail;
1607         if (ret == 0)
1608                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610         ret = btrfs_insert_fs_root(fs_info, root);
1611         if (ret) {
1612                 if (ret == -EEXIST) {
1613                         free_fs_root(root);
1614                         goto again;
1615                 }
1616                 goto fail;
1617         }
1618         return root;
1619 fail:
1620         free_fs_root(root);
1621         return ERR_PTR(ret);
1622 }
1623
1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625 {
1626         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627         int ret = 0;
1628         struct btrfs_device *device;
1629         struct backing_dev_info *bdi;
1630
1631         rcu_read_lock();
1632         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633                 if (!device->bdev)
1634                         continue;
1635                 bdi = device->bdev->bd_bdi;
1636                 if (bdi_congested(bdi, bdi_bits)) {
1637                         ret = 1;
1638                         break;
1639                 }
1640         }
1641         rcu_read_unlock();
1642         return ret;
1643 }
1644
1645 /*
1646  * called by the kthread helper functions to finally call the bio end_io
1647  * functions.  This is where read checksum verification actually happens
1648  */
1649 static void end_workqueue_fn(struct btrfs_work *work)
1650 {
1651         struct bio *bio;
1652         struct btrfs_end_io_wq *end_io_wq;
1653
1654         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655         bio = end_io_wq->bio;
1656
1657         bio->bi_status = end_io_wq->status;
1658         bio->bi_private = end_io_wq->private;
1659         bio->bi_end_io = end_io_wq->end_io;
1660         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661         bio_endio(bio);
1662 }
1663
1664 static int cleaner_kthread(void *arg)
1665 {
1666         struct btrfs_root *root = arg;
1667         struct btrfs_fs_info *fs_info = root->fs_info;
1668         int again;
1669         struct btrfs_trans_handle *trans;
1670
1671         do {
1672                 again = 0;
1673
1674                 /* Make the cleaner go to sleep early. */
1675                 if (btrfs_need_cleaner_sleep(fs_info))
1676                         goto sleep;
1677
1678                 /*
1679                  * Do not do anything if we might cause open_ctree() to block
1680                  * before we have finished mounting the filesystem.
1681                  */
1682                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1683                         goto sleep;
1684
1685                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1686                         goto sleep;
1687
1688                 /*
1689                  * Avoid the problem that we change the status of the fs
1690                  * during the above check and trylock.
1691                  */
1692                 if (btrfs_need_cleaner_sleep(fs_info)) {
1693                         mutex_unlock(&fs_info->cleaner_mutex);
1694                         goto sleep;
1695                 }
1696
1697                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1698                 btrfs_run_delayed_iputs(fs_info);
1699                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1700
1701                 again = btrfs_clean_one_deleted_snapshot(root);
1702                 mutex_unlock(&fs_info->cleaner_mutex);
1703
1704                 /*
1705                  * The defragger has dealt with the R/O remount and umount,
1706                  * needn't do anything special here.
1707                  */
1708                 btrfs_run_defrag_inodes(fs_info);
1709
1710                 /*
1711                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1712                  * with relocation (btrfs_relocate_chunk) and relocation
1713                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1714                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1715                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1716                  * unused block groups.
1717                  */
1718                 btrfs_delete_unused_bgs(fs_info);
1719 sleep:
1720                 if (!again) {
1721                         set_current_state(TASK_INTERRUPTIBLE);
1722                         if (!kthread_should_stop())
1723                                 schedule();
1724                         __set_current_state(TASK_RUNNING);
1725                 }
1726         } while (!kthread_should_stop());
1727
1728         /*
1729          * Transaction kthread is stopped before us and wakes us up.
1730          * However we might have started a new transaction and COWed some
1731          * tree blocks when deleting unused block groups for example. So
1732          * make sure we commit the transaction we started to have a clean
1733          * shutdown when evicting the btree inode - if it has dirty pages
1734          * when we do the final iput() on it, eviction will trigger a
1735          * writeback for it which will fail with null pointer dereferences
1736          * since work queues and other resources were already released and
1737          * destroyed by the time the iput/eviction/writeback is made.
1738          */
1739         trans = btrfs_attach_transaction(root);
1740         if (IS_ERR(trans)) {
1741                 if (PTR_ERR(trans) != -ENOENT)
1742                         btrfs_err(fs_info,
1743                                   "cleaner transaction attach returned %ld",
1744                                   PTR_ERR(trans));
1745         } else {
1746                 int ret;
1747
1748                 ret = btrfs_commit_transaction(trans);
1749                 if (ret)
1750                         btrfs_err(fs_info,
1751                                   "cleaner open transaction commit returned %d",
1752                                   ret);
1753         }
1754
1755         return 0;
1756 }
1757
1758 static int transaction_kthread(void *arg)
1759 {
1760         struct btrfs_root *root = arg;
1761         struct btrfs_fs_info *fs_info = root->fs_info;
1762         struct btrfs_trans_handle *trans;
1763         struct btrfs_transaction *cur;
1764         u64 transid;
1765         unsigned long now;
1766         unsigned long delay;
1767         bool cannot_commit;
1768
1769         do {
1770                 cannot_commit = false;
1771                 delay = HZ * fs_info->commit_interval;
1772                 mutex_lock(&fs_info->transaction_kthread_mutex);
1773
1774                 spin_lock(&fs_info->trans_lock);
1775                 cur = fs_info->running_transaction;
1776                 if (!cur) {
1777                         spin_unlock(&fs_info->trans_lock);
1778                         goto sleep;
1779                 }
1780
1781                 now = get_seconds();
1782                 if (cur->state < TRANS_STATE_BLOCKED &&
1783                     (now < cur->start_time ||
1784                      now - cur->start_time < fs_info->commit_interval)) {
1785                         spin_unlock(&fs_info->trans_lock);
1786                         delay = HZ * 5;
1787                         goto sleep;
1788                 }
1789                 transid = cur->transid;
1790                 spin_unlock(&fs_info->trans_lock);
1791
1792                 /* If the file system is aborted, this will always fail. */
1793                 trans = btrfs_attach_transaction(root);
1794                 if (IS_ERR(trans)) {
1795                         if (PTR_ERR(trans) != -ENOENT)
1796                                 cannot_commit = true;
1797                         goto sleep;
1798                 }
1799                 if (transid == trans->transid) {
1800                         btrfs_commit_transaction(trans);
1801                 } else {
1802                         btrfs_end_transaction(trans);
1803                 }
1804 sleep:
1805                 wake_up_process(fs_info->cleaner_kthread);
1806                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1807
1808                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1809                                       &fs_info->fs_state)))
1810                         btrfs_cleanup_transaction(fs_info);
1811                 set_current_state(TASK_INTERRUPTIBLE);
1812                 if (!kthread_should_stop() &&
1813                                 (!btrfs_transaction_blocked(fs_info) ||
1814                                  cannot_commit))
1815                         schedule_timeout(delay);
1816                 __set_current_state(TASK_RUNNING);
1817         } while (!kthread_should_stop());
1818         return 0;
1819 }
1820
1821 /*
1822  * this will find the highest generation in the array of
1823  * root backups.  The index of the highest array is returned,
1824  * or -1 if we can't find anything.
1825  *
1826  * We check to make sure the array is valid by comparing the
1827  * generation of the latest  root in the array with the generation
1828  * in the super block.  If they don't match we pitch it.
1829  */
1830 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1831 {
1832         u64 cur;
1833         int newest_index = -1;
1834         struct btrfs_root_backup *root_backup;
1835         int i;
1836
1837         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1838                 root_backup = info->super_copy->super_roots + i;
1839                 cur = btrfs_backup_tree_root_gen(root_backup);
1840                 if (cur == newest_gen)
1841                         newest_index = i;
1842         }
1843
1844         /* check to see if we actually wrapped around */
1845         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1846                 root_backup = info->super_copy->super_roots;
1847                 cur = btrfs_backup_tree_root_gen(root_backup);
1848                 if (cur == newest_gen)
1849                         newest_index = 0;
1850         }
1851         return newest_index;
1852 }
1853
1854
1855 /*
1856  * find the oldest backup so we know where to store new entries
1857  * in the backup array.  This will set the backup_root_index
1858  * field in the fs_info struct
1859  */
1860 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1861                                      u64 newest_gen)
1862 {
1863         int newest_index = -1;
1864
1865         newest_index = find_newest_super_backup(info, newest_gen);
1866         /* if there was garbage in there, just move along */
1867         if (newest_index == -1) {
1868                 info->backup_root_index = 0;
1869         } else {
1870                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1871         }
1872 }
1873
1874 /*
1875  * copy all the root pointers into the super backup array.
1876  * this will bump the backup pointer by one when it is
1877  * done
1878  */
1879 static void backup_super_roots(struct btrfs_fs_info *info)
1880 {
1881         int next_backup;
1882         struct btrfs_root_backup *root_backup;
1883         int last_backup;
1884
1885         next_backup = info->backup_root_index;
1886         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1887                 BTRFS_NUM_BACKUP_ROOTS;
1888
1889         /*
1890          * just overwrite the last backup if we're at the same generation
1891          * this happens only at umount
1892          */
1893         root_backup = info->super_for_commit->super_roots + last_backup;
1894         if (btrfs_backup_tree_root_gen(root_backup) ==
1895             btrfs_header_generation(info->tree_root->node))
1896                 next_backup = last_backup;
1897
1898         root_backup = info->super_for_commit->super_roots + next_backup;
1899
1900         /*
1901          * make sure all of our padding and empty slots get zero filled
1902          * regardless of which ones we use today
1903          */
1904         memset(root_backup, 0, sizeof(*root_backup));
1905
1906         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1907
1908         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1909         btrfs_set_backup_tree_root_gen(root_backup,
1910                                btrfs_header_generation(info->tree_root->node));
1911
1912         btrfs_set_backup_tree_root_level(root_backup,
1913                                btrfs_header_level(info->tree_root->node));
1914
1915         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1916         btrfs_set_backup_chunk_root_gen(root_backup,
1917                                btrfs_header_generation(info->chunk_root->node));
1918         btrfs_set_backup_chunk_root_level(root_backup,
1919                                btrfs_header_level(info->chunk_root->node));
1920
1921         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1922         btrfs_set_backup_extent_root_gen(root_backup,
1923                                btrfs_header_generation(info->extent_root->node));
1924         btrfs_set_backup_extent_root_level(root_backup,
1925                                btrfs_header_level(info->extent_root->node));
1926
1927         /*
1928          * we might commit during log recovery, which happens before we set
1929          * the fs_root.  Make sure it is valid before we fill it in.
1930          */
1931         if (info->fs_root && info->fs_root->node) {
1932                 btrfs_set_backup_fs_root(root_backup,
1933                                          info->fs_root->node->start);
1934                 btrfs_set_backup_fs_root_gen(root_backup,
1935                                btrfs_header_generation(info->fs_root->node));
1936                 btrfs_set_backup_fs_root_level(root_backup,
1937                                btrfs_header_level(info->fs_root->node));
1938         }
1939
1940         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1941         btrfs_set_backup_dev_root_gen(root_backup,
1942                                btrfs_header_generation(info->dev_root->node));
1943         btrfs_set_backup_dev_root_level(root_backup,
1944                                        btrfs_header_level(info->dev_root->node));
1945
1946         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1947         btrfs_set_backup_csum_root_gen(root_backup,
1948                                btrfs_header_generation(info->csum_root->node));
1949         btrfs_set_backup_csum_root_level(root_backup,
1950                                btrfs_header_level(info->csum_root->node));
1951
1952         btrfs_set_backup_total_bytes(root_backup,
1953                              btrfs_super_total_bytes(info->super_copy));
1954         btrfs_set_backup_bytes_used(root_backup,
1955                              btrfs_super_bytes_used(info->super_copy));
1956         btrfs_set_backup_num_devices(root_backup,
1957                              btrfs_super_num_devices(info->super_copy));
1958
1959         /*
1960          * if we don't copy this out to the super_copy, it won't get remembered
1961          * for the next commit
1962          */
1963         memcpy(&info->super_copy->super_roots,
1964                &info->super_for_commit->super_roots,
1965                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1966 }
1967
1968 /*
1969  * this copies info out of the root backup array and back into
1970  * the in-memory super block.  It is meant to help iterate through
1971  * the array, so you send it the number of backups you've already
1972  * tried and the last backup index you used.
1973  *
1974  * this returns -1 when it has tried all the backups
1975  */
1976 static noinline int next_root_backup(struct btrfs_fs_info *info,
1977                                      struct btrfs_super_block *super,
1978                                      int *num_backups_tried, int *backup_index)
1979 {
1980         struct btrfs_root_backup *root_backup;
1981         int newest = *backup_index;
1982
1983         if (*num_backups_tried == 0) {
1984                 u64 gen = btrfs_super_generation(super);
1985
1986                 newest = find_newest_super_backup(info, gen);
1987                 if (newest == -1)
1988                         return -1;
1989
1990                 *backup_index = newest;
1991                 *num_backups_tried = 1;
1992         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1993                 /* we've tried all the backups, all done */
1994                 return -1;
1995         } else {
1996                 /* jump to the next oldest backup */
1997                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1998                         BTRFS_NUM_BACKUP_ROOTS;
1999                 *backup_index = newest;
2000                 *num_backups_tried += 1;
2001         }
2002         root_backup = super->super_roots + newest;
2003
2004         btrfs_set_super_generation(super,
2005                                    btrfs_backup_tree_root_gen(root_backup));
2006         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2007         btrfs_set_super_root_level(super,
2008                                    btrfs_backup_tree_root_level(root_backup));
2009         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2010
2011         /*
2012          * fixme: the total bytes and num_devices need to match or we should
2013          * need a fsck
2014          */
2015         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2016         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2017         return 0;
2018 }
2019
2020 /* helper to cleanup workers */
2021 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2022 {
2023         btrfs_destroy_workqueue(fs_info->fixup_workers);
2024         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2025         btrfs_destroy_workqueue(fs_info->workers);
2026         btrfs_destroy_workqueue(fs_info->endio_workers);
2027         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2028         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2029         btrfs_destroy_workqueue(fs_info->rmw_workers);
2030         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2031         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2032         btrfs_destroy_workqueue(fs_info->submit_workers);
2033         btrfs_destroy_workqueue(fs_info->delayed_workers);
2034         btrfs_destroy_workqueue(fs_info->caching_workers);
2035         btrfs_destroy_workqueue(fs_info->readahead_workers);
2036         btrfs_destroy_workqueue(fs_info->flush_workers);
2037         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2038         btrfs_destroy_workqueue(fs_info->extent_workers);
2039         /*
2040          * Now that all other work queues are destroyed, we can safely destroy
2041          * the queues used for metadata I/O, since tasks from those other work
2042          * queues can do metadata I/O operations.
2043          */
2044         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2045         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2046 }
2047
2048 static void free_root_extent_buffers(struct btrfs_root *root)
2049 {
2050         if (root) {
2051                 free_extent_buffer(root->node);
2052                 free_extent_buffer(root->commit_root);
2053                 root->node = NULL;
2054                 root->commit_root = NULL;
2055         }
2056 }
2057
2058 /* helper to cleanup tree roots */
2059 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2060 {
2061         free_root_extent_buffers(info->tree_root);
2062
2063         free_root_extent_buffers(info->dev_root);
2064         free_root_extent_buffers(info->extent_root);
2065         free_root_extent_buffers(info->csum_root);
2066         free_root_extent_buffers(info->quota_root);
2067         free_root_extent_buffers(info->uuid_root);
2068         if (chunk_root)
2069                 free_root_extent_buffers(info->chunk_root);
2070         free_root_extent_buffers(info->free_space_root);
2071 }
2072
2073 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2074 {
2075         int ret;
2076         struct btrfs_root *gang[8];
2077         int i;
2078
2079         while (!list_empty(&fs_info->dead_roots)) {
2080                 gang[0] = list_entry(fs_info->dead_roots.next,
2081                                      struct btrfs_root, root_list);
2082                 list_del(&gang[0]->root_list);
2083
2084                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2085                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2086                 } else {
2087                         free_extent_buffer(gang[0]->node);
2088                         free_extent_buffer(gang[0]->commit_root);
2089                         btrfs_put_fs_root(gang[0]);
2090                 }
2091         }
2092
2093         while (1) {
2094                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2095                                              (void **)gang, 0,
2096                                              ARRAY_SIZE(gang));
2097                 if (!ret)
2098                         break;
2099                 for (i = 0; i < ret; i++)
2100                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2101         }
2102
2103         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2104                 btrfs_free_log_root_tree(NULL, fs_info);
2105                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2106         }
2107 }
2108
2109 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2110 {
2111         mutex_init(&fs_info->scrub_lock);
2112         atomic_set(&fs_info->scrubs_running, 0);
2113         atomic_set(&fs_info->scrub_pause_req, 0);
2114         atomic_set(&fs_info->scrubs_paused, 0);
2115         atomic_set(&fs_info->scrub_cancel_req, 0);
2116         init_waitqueue_head(&fs_info->scrub_pause_wait);
2117         fs_info->scrub_workers_refcnt = 0;
2118 }
2119
2120 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2121 {
2122         spin_lock_init(&fs_info->balance_lock);
2123         mutex_init(&fs_info->balance_mutex);
2124         atomic_set(&fs_info->balance_running, 0);
2125         atomic_set(&fs_info->balance_pause_req, 0);
2126         atomic_set(&fs_info->balance_cancel_req, 0);
2127         fs_info->balance_ctl = NULL;
2128         init_waitqueue_head(&fs_info->balance_wait_q);
2129 }
2130
2131 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2132 {
2133         struct inode *inode = fs_info->btree_inode;
2134
2135         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2136         set_nlink(inode, 1);
2137         /*
2138          * we set the i_size on the btree inode to the max possible int.
2139          * the real end of the address space is determined by all of
2140          * the devices in the system
2141          */
2142         inode->i_size = OFFSET_MAX;
2143         inode->i_mapping->a_ops = &btree_aops;
2144
2145         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2146         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2147         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2148         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2149
2150         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2151
2152         BTRFS_I(inode)->root = fs_info->tree_root;
2153         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2154         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2155         btrfs_insert_inode_hash(inode);
2156 }
2157
2158 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2159 {
2160         fs_info->dev_replace.lock_owner = 0;
2161         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2162         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2163         rwlock_init(&fs_info->dev_replace.lock);
2164         atomic_set(&fs_info->dev_replace.read_locks, 0);
2165         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2166         init_waitqueue_head(&fs_info->replace_wait);
2167         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2168 }
2169
2170 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2171 {
2172         spin_lock_init(&fs_info->qgroup_lock);
2173         mutex_init(&fs_info->qgroup_ioctl_lock);
2174         fs_info->qgroup_tree = RB_ROOT;
2175         fs_info->qgroup_op_tree = RB_ROOT;
2176         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2177         fs_info->qgroup_seq = 1;
2178         fs_info->qgroup_ulist = NULL;
2179         fs_info->qgroup_rescan_running = false;
2180         mutex_init(&fs_info->qgroup_rescan_lock);
2181 }
2182
2183 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2184                 struct btrfs_fs_devices *fs_devices)
2185 {
2186         int max_active = fs_info->thread_pool_size;
2187         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2188
2189         fs_info->workers =
2190                 btrfs_alloc_workqueue(fs_info, "worker",
2191                                       flags | WQ_HIGHPRI, max_active, 16);
2192
2193         fs_info->delalloc_workers =
2194                 btrfs_alloc_workqueue(fs_info, "delalloc",
2195                                       flags, max_active, 2);
2196
2197         fs_info->flush_workers =
2198                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2199                                       flags, max_active, 0);
2200
2201         fs_info->caching_workers =
2202                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2203
2204         /*
2205          * a higher idle thresh on the submit workers makes it much more
2206          * likely that bios will be send down in a sane order to the
2207          * devices
2208          */
2209         fs_info->submit_workers =
2210                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2211                                       min_t(u64, fs_devices->num_devices,
2212                                             max_active), 64);
2213
2214         fs_info->fixup_workers =
2215                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2216
2217         /*
2218          * endios are largely parallel and should have a very
2219          * low idle thresh
2220          */
2221         fs_info->endio_workers =
2222                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2223         fs_info->endio_meta_workers =
2224                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2225                                       max_active, 4);
2226         fs_info->endio_meta_write_workers =
2227                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2228                                       max_active, 2);
2229         fs_info->endio_raid56_workers =
2230                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2231                                       max_active, 4);
2232         fs_info->endio_repair_workers =
2233                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2234         fs_info->rmw_workers =
2235                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2236         fs_info->endio_write_workers =
2237                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2238                                       max_active, 2);
2239         fs_info->endio_freespace_worker =
2240                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2241                                       max_active, 0);
2242         fs_info->delayed_workers =
2243                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2244                                       max_active, 0);
2245         fs_info->readahead_workers =
2246                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2247                                       max_active, 2);
2248         fs_info->qgroup_rescan_workers =
2249                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2250         fs_info->extent_workers =
2251                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2252                                       min_t(u64, fs_devices->num_devices,
2253                                             max_active), 8);
2254
2255         if (!(fs_info->workers && fs_info->delalloc_workers &&
2256               fs_info->submit_workers && fs_info->flush_workers &&
2257               fs_info->endio_workers && fs_info->endio_meta_workers &&
2258               fs_info->endio_meta_write_workers &&
2259               fs_info->endio_repair_workers &&
2260               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2261               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2262               fs_info->caching_workers && fs_info->readahead_workers &&
2263               fs_info->fixup_workers && fs_info->delayed_workers &&
2264               fs_info->extent_workers &&
2265               fs_info->qgroup_rescan_workers)) {
2266                 return -ENOMEM;
2267         }
2268
2269         return 0;
2270 }
2271
2272 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2273                             struct btrfs_fs_devices *fs_devices)
2274 {
2275         int ret;
2276         struct btrfs_root *log_tree_root;
2277         struct btrfs_super_block *disk_super = fs_info->super_copy;
2278         u64 bytenr = btrfs_super_log_root(disk_super);
2279
2280         if (fs_devices->rw_devices == 0) {
2281                 btrfs_warn(fs_info, "log replay required on RO media");
2282                 return -EIO;
2283         }
2284
2285         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2286         if (!log_tree_root)
2287                 return -ENOMEM;
2288
2289         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2290
2291         log_tree_root->node = read_tree_block(fs_info, bytenr,
2292                                               fs_info->generation + 1);
2293         if (IS_ERR(log_tree_root->node)) {
2294                 btrfs_warn(fs_info, "failed to read log tree");
2295                 ret = PTR_ERR(log_tree_root->node);
2296                 kfree(log_tree_root);
2297                 return ret;
2298         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2299                 btrfs_err(fs_info, "failed to read log tree");
2300                 free_extent_buffer(log_tree_root->node);
2301                 kfree(log_tree_root);
2302                 return -EIO;
2303         }
2304         /* returns with log_tree_root freed on success */
2305         ret = btrfs_recover_log_trees(log_tree_root);
2306         if (ret) {
2307                 btrfs_handle_fs_error(fs_info, ret,
2308                                       "Failed to recover log tree");
2309                 free_extent_buffer(log_tree_root->node);
2310                 kfree(log_tree_root);
2311                 return ret;
2312         }
2313
2314         if (sb_rdonly(fs_info->sb)) {
2315                 ret = btrfs_commit_super(fs_info);
2316                 if (ret)
2317                         return ret;
2318         }
2319
2320         return 0;
2321 }
2322
2323 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2324 {
2325         struct btrfs_root *tree_root = fs_info->tree_root;
2326         struct btrfs_root *root;
2327         struct btrfs_key location;
2328         int ret;
2329
2330         BUG_ON(!fs_info->tree_root);
2331
2332         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2333         location.type = BTRFS_ROOT_ITEM_KEY;
2334         location.offset = 0;
2335
2336         root = btrfs_read_tree_root(tree_root, &location);
2337         if (IS_ERR(root))
2338                 return PTR_ERR(root);
2339         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340         fs_info->extent_root = root;
2341
2342         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2343         root = btrfs_read_tree_root(tree_root, &location);
2344         if (IS_ERR(root))
2345                 return PTR_ERR(root);
2346         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347         fs_info->dev_root = root;
2348         btrfs_init_devices_late(fs_info);
2349
2350         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2351         root = btrfs_read_tree_root(tree_root, &location);
2352         if (IS_ERR(root))
2353                 return PTR_ERR(root);
2354         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355         fs_info->csum_root = root;
2356
2357         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2358         root = btrfs_read_tree_root(tree_root, &location);
2359         if (!IS_ERR(root)) {
2360                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2362                 fs_info->quota_root = root;
2363         }
2364
2365         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2366         root = btrfs_read_tree_root(tree_root, &location);
2367         if (IS_ERR(root)) {
2368                 ret = PTR_ERR(root);
2369                 if (ret != -ENOENT)
2370                         return ret;
2371         } else {
2372                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2373                 fs_info->uuid_root = root;
2374         }
2375
2376         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2377                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2378                 root = btrfs_read_tree_root(tree_root, &location);
2379                 if (IS_ERR(root))
2380                         return PTR_ERR(root);
2381                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382                 fs_info->free_space_root = root;
2383         }
2384
2385         return 0;
2386 }
2387
2388 int open_ctree(struct super_block *sb,
2389                struct btrfs_fs_devices *fs_devices,
2390                char *options)
2391 {
2392         u32 sectorsize;
2393         u32 nodesize;
2394         u32 stripesize;
2395         u64 generation;
2396         u64 features;
2397         struct btrfs_key location;
2398         struct buffer_head *bh;
2399         struct btrfs_super_block *disk_super;
2400         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2401         struct btrfs_root *tree_root;
2402         struct btrfs_root *chunk_root;
2403         int ret;
2404         int err = -EINVAL;
2405         int num_backups_tried = 0;
2406         int backup_index = 0;
2407         int max_active;
2408         int clear_free_space_tree = 0;
2409
2410         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2411         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2412         if (!tree_root || !chunk_root) {
2413                 err = -ENOMEM;
2414                 goto fail;
2415         }
2416
2417         ret = init_srcu_struct(&fs_info->subvol_srcu);
2418         if (ret) {
2419                 err = ret;
2420                 goto fail;
2421         }
2422
2423         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2424         if (ret) {
2425                 err = ret;
2426                 goto fail_srcu;
2427         }
2428         fs_info->dirty_metadata_batch = PAGE_SIZE *
2429                                         (1 + ilog2(nr_cpu_ids));
2430
2431         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2432         if (ret) {
2433                 err = ret;
2434                 goto fail_dirty_metadata_bytes;
2435         }
2436
2437         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2438         if (ret) {
2439                 err = ret;
2440                 goto fail_delalloc_bytes;
2441         }
2442
2443         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2444         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2445         INIT_LIST_HEAD(&fs_info->trans_list);
2446         INIT_LIST_HEAD(&fs_info->dead_roots);
2447         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2448         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2449         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2450         spin_lock_init(&fs_info->delalloc_root_lock);
2451         spin_lock_init(&fs_info->trans_lock);
2452         spin_lock_init(&fs_info->fs_roots_radix_lock);
2453         spin_lock_init(&fs_info->delayed_iput_lock);
2454         spin_lock_init(&fs_info->defrag_inodes_lock);
2455         spin_lock_init(&fs_info->tree_mod_seq_lock);
2456         spin_lock_init(&fs_info->super_lock);
2457         spin_lock_init(&fs_info->qgroup_op_lock);
2458         spin_lock_init(&fs_info->buffer_lock);
2459         spin_lock_init(&fs_info->unused_bgs_lock);
2460         rwlock_init(&fs_info->tree_mod_log_lock);
2461         mutex_init(&fs_info->unused_bg_unpin_mutex);
2462         mutex_init(&fs_info->delete_unused_bgs_mutex);
2463         mutex_init(&fs_info->reloc_mutex);
2464         mutex_init(&fs_info->delalloc_root_mutex);
2465         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2466         seqlock_init(&fs_info->profiles_lock);
2467
2468         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2469         INIT_LIST_HEAD(&fs_info->space_info);
2470         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2471         INIT_LIST_HEAD(&fs_info->unused_bgs);
2472         btrfs_mapping_init(&fs_info->mapping_tree);
2473         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2474                              BTRFS_BLOCK_RSV_GLOBAL);
2475         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2476         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2477         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2478         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2479                              BTRFS_BLOCK_RSV_DELOPS);
2480         atomic_set(&fs_info->async_delalloc_pages, 0);
2481         atomic_set(&fs_info->defrag_running, 0);
2482         atomic_set(&fs_info->qgroup_op_seq, 0);
2483         atomic_set(&fs_info->reada_works_cnt, 0);
2484         atomic64_set(&fs_info->tree_mod_seq, 0);
2485         fs_info->sb = sb;
2486         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2487         fs_info->metadata_ratio = 0;
2488         fs_info->defrag_inodes = RB_ROOT;
2489         atomic64_set(&fs_info->free_chunk_space, 0);
2490         fs_info->tree_mod_log = RB_ROOT;
2491         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2492         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2493         /* readahead state */
2494         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2495         spin_lock_init(&fs_info->reada_lock);
2496         btrfs_init_ref_verify(fs_info);
2497
2498         fs_info->thread_pool_size = min_t(unsigned long,
2499                                           num_online_cpus() + 2, 8);
2500
2501         INIT_LIST_HEAD(&fs_info->ordered_roots);
2502         spin_lock_init(&fs_info->ordered_root_lock);
2503
2504         fs_info->btree_inode = new_inode(sb);
2505         if (!fs_info->btree_inode) {
2506                 err = -ENOMEM;
2507                 goto fail_bio_counter;
2508         }
2509         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2510
2511         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2512                                         GFP_KERNEL);
2513         if (!fs_info->delayed_root) {
2514                 err = -ENOMEM;
2515                 goto fail_iput;
2516         }
2517         btrfs_init_delayed_root(fs_info->delayed_root);
2518
2519         btrfs_init_scrub(fs_info);
2520 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2521         fs_info->check_integrity_print_mask = 0;
2522 #endif
2523         btrfs_init_balance(fs_info);
2524         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2525
2526         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2527         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2528
2529         btrfs_init_btree_inode(fs_info);
2530
2531         spin_lock_init(&fs_info->block_group_cache_lock);
2532         fs_info->block_group_cache_tree = RB_ROOT;
2533         fs_info->first_logical_byte = (u64)-1;
2534
2535         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2536         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2537         fs_info->pinned_extents = &fs_info->freed_extents[0];
2538         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2539
2540         mutex_init(&fs_info->ordered_operations_mutex);
2541         mutex_init(&fs_info->tree_log_mutex);
2542         mutex_init(&fs_info->chunk_mutex);
2543         mutex_init(&fs_info->transaction_kthread_mutex);
2544         mutex_init(&fs_info->cleaner_mutex);
2545         mutex_init(&fs_info->volume_mutex);
2546         mutex_init(&fs_info->ro_block_group_mutex);
2547         init_rwsem(&fs_info->commit_root_sem);
2548         init_rwsem(&fs_info->cleanup_work_sem);
2549         init_rwsem(&fs_info->subvol_sem);
2550         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2551
2552         btrfs_init_dev_replace_locks(fs_info);
2553         btrfs_init_qgroup(fs_info);
2554
2555         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2556         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2557
2558         init_waitqueue_head(&fs_info->transaction_throttle);
2559         init_waitqueue_head(&fs_info->transaction_wait);
2560         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2561         init_waitqueue_head(&fs_info->async_submit_wait);
2562
2563         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2564
2565         /* Usable values until the real ones are cached from the superblock */
2566         fs_info->nodesize = 4096;
2567         fs_info->sectorsize = 4096;
2568         fs_info->stripesize = 4096;
2569
2570         ret = btrfs_alloc_stripe_hash_table(fs_info);
2571         if (ret) {
2572                 err = ret;
2573                 goto fail_alloc;
2574         }
2575
2576         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2577
2578         invalidate_bdev(fs_devices->latest_bdev);
2579
2580         /*
2581          * Read super block and check the signature bytes only
2582          */
2583         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2584         if (IS_ERR(bh)) {
2585                 err = PTR_ERR(bh);
2586                 goto fail_alloc;
2587         }
2588
2589         /*
2590          * We want to check superblock checksum, the type is stored inside.
2591          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2592          */
2593         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2594                 btrfs_err(fs_info, "superblock checksum mismatch");
2595                 err = -EINVAL;
2596                 brelse(bh);
2597                 goto fail_alloc;
2598         }
2599
2600         /*
2601          * super_copy is zeroed at allocation time and we never touch the
2602          * following bytes up to INFO_SIZE, the checksum is calculated from
2603          * the whole block of INFO_SIZE
2604          */
2605         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2606         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2607                sizeof(*fs_info->super_for_commit));
2608         brelse(bh);
2609
2610         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2611
2612         ret = btrfs_check_super_valid(fs_info);
2613         if (ret) {
2614                 btrfs_err(fs_info, "superblock contains fatal errors");
2615                 err = -EINVAL;
2616                 goto fail_alloc;
2617         }
2618
2619         disk_super = fs_info->super_copy;
2620         if (!btrfs_super_root(disk_super))
2621                 goto fail_alloc;
2622
2623         /* check FS state, whether FS is broken. */
2624         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2625                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2626
2627         /*
2628          * run through our array of backup supers and setup
2629          * our ring pointer to the oldest one
2630          */
2631         generation = btrfs_super_generation(disk_super);
2632         find_oldest_super_backup(fs_info, generation);
2633
2634         /*
2635          * In the long term, we'll store the compression type in the super
2636          * block, and it'll be used for per file compression control.
2637          */
2638         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2639
2640         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2641         if (ret) {
2642                 err = ret;
2643                 goto fail_alloc;
2644         }
2645
2646         features = btrfs_super_incompat_flags(disk_super) &
2647                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2648         if (features) {
2649                 btrfs_err(fs_info,
2650                     "cannot mount because of unsupported optional features (%llx)",
2651                     features);
2652                 err = -EINVAL;
2653                 goto fail_alloc;
2654         }
2655
2656         features = btrfs_super_incompat_flags(disk_super);
2657         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2658         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2659                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2660         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2661                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2662
2663         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2664                 btrfs_info(fs_info, "has skinny extents");
2665
2666         /*
2667          * flag our filesystem as having big metadata blocks if
2668          * they are bigger than the page size
2669          */
2670         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2671                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2672                         btrfs_info(fs_info,
2673                                 "flagging fs with big metadata feature");
2674                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2675         }
2676
2677         nodesize = btrfs_super_nodesize(disk_super);
2678         sectorsize = btrfs_super_sectorsize(disk_super);
2679         stripesize = sectorsize;
2680         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2681         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2682
2683         /* Cache block sizes */
2684         fs_info->nodesize = nodesize;
2685         fs_info->sectorsize = sectorsize;
2686         fs_info->stripesize = stripesize;
2687
2688         /*
2689          * mixed block groups end up with duplicate but slightly offset
2690          * extent buffers for the same range.  It leads to corruptions
2691          */
2692         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2693             (sectorsize != nodesize)) {
2694                 btrfs_err(fs_info,
2695 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2696                         nodesize, sectorsize);
2697                 goto fail_alloc;
2698         }
2699
2700         /*
2701          * Needn't use the lock because there is no other task which will
2702          * update the flag.
2703          */
2704         btrfs_set_super_incompat_flags(disk_super, features);
2705
2706         features = btrfs_super_compat_ro_flags(disk_super) &
2707                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2708         if (!sb_rdonly(sb) && features) {
2709                 btrfs_err(fs_info,
2710         "cannot mount read-write because of unsupported optional features (%llx)",
2711                        features);
2712                 err = -EINVAL;
2713                 goto fail_alloc;
2714         }
2715
2716         max_active = fs_info->thread_pool_size;
2717
2718         ret = btrfs_init_workqueues(fs_info, fs_devices);
2719         if (ret) {
2720                 err = ret;
2721                 goto fail_sb_buffer;
2722         }
2723
2724         sb->s_bdi->congested_fn = btrfs_congested_fn;
2725         sb->s_bdi->congested_data = fs_info;
2726         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2727         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2728         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2729         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2730
2731         sb->s_blocksize = sectorsize;
2732         sb->s_blocksize_bits = blksize_bits(sectorsize);
2733         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2734
2735         mutex_lock(&fs_info->chunk_mutex);
2736         ret = btrfs_read_sys_array(fs_info);
2737         mutex_unlock(&fs_info->chunk_mutex);
2738         if (ret) {
2739                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2740                 goto fail_sb_buffer;
2741         }
2742
2743         generation = btrfs_super_chunk_root_generation(disk_super);
2744
2745         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2746
2747         chunk_root->node = read_tree_block(fs_info,
2748                                            btrfs_super_chunk_root(disk_super),
2749                                            generation);
2750         if (IS_ERR(chunk_root->node) ||
2751             !extent_buffer_uptodate(chunk_root->node)) {
2752                 btrfs_err(fs_info, "failed to read chunk root");
2753                 if (!IS_ERR(chunk_root->node))
2754                         free_extent_buffer(chunk_root->node);
2755                 chunk_root->node = NULL;
2756                 goto fail_tree_roots;
2757         }
2758         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2759         chunk_root->commit_root = btrfs_root_node(chunk_root);
2760
2761         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2762            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2763
2764         ret = btrfs_read_chunk_tree(fs_info);
2765         if (ret) {
2766                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2767                 goto fail_tree_roots;
2768         }
2769
2770         /*
2771          * keep the device that is marked to be the target device for the
2772          * dev_replace procedure
2773          */
2774         btrfs_close_extra_devices(fs_devices, 0);
2775
2776         if (!fs_devices->latest_bdev) {
2777                 btrfs_err(fs_info, "failed to read devices");
2778                 goto fail_tree_roots;
2779         }
2780
2781 retry_root_backup:
2782         generation = btrfs_super_generation(disk_super);
2783
2784         tree_root->node = read_tree_block(fs_info,
2785                                           btrfs_super_root(disk_super),
2786                                           generation);
2787         if (IS_ERR(tree_root->node) ||
2788             !extent_buffer_uptodate(tree_root->node)) {
2789                 btrfs_warn(fs_info, "failed to read tree root");
2790                 if (!IS_ERR(tree_root->node))
2791                         free_extent_buffer(tree_root->node);
2792                 tree_root->node = NULL;
2793                 goto recovery_tree_root;
2794         }
2795
2796         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2797         tree_root->commit_root = btrfs_root_node(tree_root);
2798         btrfs_set_root_refs(&tree_root->root_item, 1);
2799
2800         mutex_lock(&tree_root->objectid_mutex);
2801         ret = btrfs_find_highest_objectid(tree_root,
2802                                         &tree_root->highest_objectid);
2803         if (ret) {
2804                 mutex_unlock(&tree_root->objectid_mutex);
2805                 goto recovery_tree_root;
2806         }
2807
2808         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2809
2810         mutex_unlock(&tree_root->objectid_mutex);
2811
2812         ret = btrfs_read_roots(fs_info);
2813         if (ret)
2814                 goto recovery_tree_root;
2815
2816         fs_info->generation = generation;
2817         fs_info->last_trans_committed = generation;
2818
2819         ret = btrfs_recover_balance(fs_info);
2820         if (ret) {
2821                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2822                 goto fail_block_groups;
2823         }
2824
2825         ret = btrfs_init_dev_stats(fs_info);
2826         if (ret) {
2827                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2828                 goto fail_block_groups;
2829         }
2830
2831         ret = btrfs_init_dev_replace(fs_info);
2832         if (ret) {
2833                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2834                 goto fail_block_groups;
2835         }
2836
2837         btrfs_close_extra_devices(fs_devices, 1);
2838
2839         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2840         if (ret) {
2841                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2842                                 ret);
2843                 goto fail_block_groups;
2844         }
2845
2846         ret = btrfs_sysfs_add_device(fs_devices);
2847         if (ret) {
2848                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2849                                 ret);
2850                 goto fail_fsdev_sysfs;
2851         }
2852
2853         ret = btrfs_sysfs_add_mounted(fs_info);
2854         if (ret) {
2855                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2856                 goto fail_fsdev_sysfs;
2857         }
2858
2859         ret = btrfs_init_space_info(fs_info);
2860         if (ret) {
2861                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2862                 goto fail_sysfs;
2863         }
2864
2865         ret = btrfs_read_block_groups(fs_info);
2866         if (ret) {
2867                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2868                 goto fail_sysfs;
2869         }
2870
2871         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2872                 btrfs_warn(fs_info,
2873                 "writeable mount is not allowed due to too many missing devices");
2874                 goto fail_sysfs;
2875         }
2876
2877         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2878                                                "btrfs-cleaner");
2879         if (IS_ERR(fs_info->cleaner_kthread))
2880                 goto fail_sysfs;
2881
2882         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2883                                                    tree_root,
2884                                                    "btrfs-transaction");
2885         if (IS_ERR(fs_info->transaction_kthread))
2886                 goto fail_cleaner;
2887
2888         if (!btrfs_test_opt(fs_info, NOSSD) &&
2889             !fs_info->fs_devices->rotating) {
2890                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2891         }
2892
2893         /*
2894          * Mount does not set all options immediately, we can do it now and do
2895          * not have to wait for transaction commit
2896          */
2897         btrfs_apply_pending_changes(fs_info);
2898
2899 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2900         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2901                 ret = btrfsic_mount(fs_info, fs_devices,
2902                                     btrfs_test_opt(fs_info,
2903                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2904                                     1 : 0,
2905                                     fs_info->check_integrity_print_mask);
2906                 if (ret)
2907                         btrfs_warn(fs_info,
2908                                 "failed to initialize integrity check module: %d",
2909                                 ret);
2910         }
2911 #endif
2912         ret = btrfs_read_qgroup_config(fs_info);
2913         if (ret)
2914                 goto fail_trans_kthread;
2915
2916         if (btrfs_build_ref_tree(fs_info))
2917                 btrfs_err(fs_info, "couldn't build ref tree");
2918
2919         /* do not make disk changes in broken FS or nologreplay is given */
2920         if (btrfs_super_log_root(disk_super) != 0 &&
2921             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2922                 ret = btrfs_replay_log(fs_info, fs_devices);
2923                 if (ret) {
2924                         err = ret;
2925                         goto fail_qgroup;
2926                 }
2927         }
2928
2929         ret = btrfs_find_orphan_roots(fs_info);
2930         if (ret)
2931                 goto fail_qgroup;
2932
2933         if (!sb_rdonly(sb)) {
2934                 ret = btrfs_cleanup_fs_roots(fs_info);
2935                 if (ret)
2936                         goto fail_qgroup;
2937
2938                 mutex_lock(&fs_info->cleaner_mutex);
2939                 ret = btrfs_recover_relocation(tree_root);
2940                 mutex_unlock(&fs_info->cleaner_mutex);
2941                 if (ret < 0) {
2942                         btrfs_warn(fs_info, "failed to recover relocation: %d",
2943                                         ret);
2944                         err = -EINVAL;
2945                         goto fail_qgroup;
2946                 }
2947         }
2948
2949         location.objectid = BTRFS_FS_TREE_OBJECTID;
2950         location.type = BTRFS_ROOT_ITEM_KEY;
2951         location.offset = 0;
2952
2953         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2954         if (IS_ERR(fs_info->fs_root)) {
2955                 err = PTR_ERR(fs_info->fs_root);
2956                 goto fail_qgroup;
2957         }
2958
2959         if (sb_rdonly(sb))
2960                 return 0;
2961
2962         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2963             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2964                 clear_free_space_tree = 1;
2965         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2966                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2967                 btrfs_warn(fs_info, "free space tree is invalid");
2968                 clear_free_space_tree = 1;
2969         }
2970
2971         if (clear_free_space_tree) {
2972                 btrfs_info(fs_info, "clearing free space tree");
2973                 ret = btrfs_clear_free_space_tree(fs_info);
2974                 if (ret) {
2975                         btrfs_warn(fs_info,
2976                                    "failed to clear free space tree: %d", ret);
2977                         close_ctree(fs_info);
2978                         return ret;
2979                 }
2980         }
2981
2982         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2983             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2984                 btrfs_info(fs_info, "creating free space tree");
2985                 ret = btrfs_create_free_space_tree(fs_info);
2986                 if (ret) {
2987                         btrfs_warn(fs_info,
2988                                 "failed to create free space tree: %d", ret);
2989                         close_ctree(fs_info);
2990                         return ret;
2991                 }
2992         }
2993
2994         down_read(&fs_info->cleanup_work_sem);
2995         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2996             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2997                 up_read(&fs_info->cleanup_work_sem);
2998                 close_ctree(fs_info);
2999                 return ret;
3000         }
3001         up_read(&fs_info->cleanup_work_sem);
3002
3003         ret = btrfs_resume_balance_async(fs_info);
3004         if (ret) {
3005                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3006                 close_ctree(fs_info);
3007                 return ret;
3008         }
3009
3010         ret = btrfs_resume_dev_replace_async(fs_info);
3011         if (ret) {
3012                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3013                 close_ctree(fs_info);
3014                 return ret;
3015         }
3016
3017         btrfs_qgroup_rescan_resume(fs_info);
3018
3019         if (!fs_info->uuid_root) {
3020                 btrfs_info(fs_info, "creating UUID tree");
3021                 ret = btrfs_create_uuid_tree(fs_info);
3022                 if (ret) {
3023                         btrfs_warn(fs_info,
3024                                 "failed to create the UUID tree: %d", ret);
3025                         close_ctree(fs_info);
3026                         return ret;
3027                 }
3028         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3029                    fs_info->generation !=
3030                                 btrfs_super_uuid_tree_generation(disk_super)) {
3031                 btrfs_info(fs_info, "checking UUID tree");
3032                 ret = btrfs_check_uuid_tree(fs_info);
3033                 if (ret) {
3034                         btrfs_warn(fs_info,
3035                                 "failed to check the UUID tree: %d", ret);
3036                         close_ctree(fs_info);
3037                         return ret;
3038                 }
3039         } else {
3040                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3041         }
3042         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3043
3044         /*
3045          * backuproot only affect mount behavior, and if open_ctree succeeded,
3046          * no need to keep the flag
3047          */
3048         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3049
3050         return 0;
3051
3052 fail_qgroup:
3053         btrfs_free_qgroup_config(fs_info);
3054 fail_trans_kthread:
3055         kthread_stop(fs_info->transaction_kthread);
3056         btrfs_cleanup_transaction(fs_info);
3057         btrfs_free_fs_roots(fs_info);
3058 fail_cleaner:
3059         kthread_stop(fs_info->cleaner_kthread);
3060
3061         /*
3062          * make sure we're done with the btree inode before we stop our
3063          * kthreads
3064          */
3065         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3066
3067 fail_sysfs:
3068         btrfs_sysfs_remove_mounted(fs_info);
3069
3070 fail_fsdev_sysfs:
3071         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3072
3073 fail_block_groups:
3074         btrfs_put_block_group_cache(fs_info);
3075
3076 fail_tree_roots:
3077         free_root_pointers(fs_info, 1);
3078         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3079
3080 fail_sb_buffer:
3081         btrfs_stop_all_workers(fs_info);
3082         btrfs_free_block_groups(fs_info);
3083 fail_alloc:
3084 fail_iput:
3085         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3086
3087         iput(fs_info->btree_inode);
3088 fail_bio_counter:
3089         percpu_counter_destroy(&fs_info->bio_counter);
3090 fail_delalloc_bytes:
3091         percpu_counter_destroy(&fs_info->delalloc_bytes);
3092 fail_dirty_metadata_bytes:
3093         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3094 fail_srcu:
3095         cleanup_srcu_struct(&fs_info->subvol_srcu);
3096 fail:
3097         btrfs_free_stripe_hash_table(fs_info);
3098         btrfs_close_devices(fs_info->fs_devices);
3099         return err;
3100
3101 recovery_tree_root:
3102         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3103                 goto fail_tree_roots;
3104
3105         free_root_pointers(fs_info, 0);
3106
3107         /* don't use the log in recovery mode, it won't be valid */
3108         btrfs_set_super_log_root(disk_super, 0);
3109
3110         /* we can't trust the free space cache either */
3111         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3112
3113         ret = next_root_backup(fs_info, fs_info->super_copy,
3114                                &num_backups_tried, &backup_index);
3115         if (ret == -1)
3116                 goto fail_block_groups;
3117         goto retry_root_backup;
3118 }
3119 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3120
3121 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3122 {
3123         if (uptodate) {
3124                 set_buffer_uptodate(bh);
3125         } else {
3126                 struct btrfs_device *device = (struct btrfs_device *)
3127                         bh->b_private;
3128
3129                 btrfs_warn_rl_in_rcu(device->fs_info,
3130                                 "lost page write due to IO error on %s",
3131                                           rcu_str_deref(device->name));
3132                 /* note, we don't set_buffer_write_io_error because we have
3133                  * our own ways of dealing with the IO errors
3134                  */
3135                 clear_buffer_uptodate(bh);
3136                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3137         }
3138         unlock_buffer(bh);
3139         put_bh(bh);
3140 }
3141
3142 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3143                         struct buffer_head **bh_ret)
3144 {
3145         struct buffer_head *bh;
3146         struct btrfs_super_block *super;
3147         u64 bytenr;
3148
3149         bytenr = btrfs_sb_offset(copy_num);
3150         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3151                 return -EINVAL;
3152
3153         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3154         /*
3155          * If we fail to read from the underlying devices, as of now
3156          * the best option we have is to mark it EIO.
3157          */
3158         if (!bh)
3159                 return -EIO;
3160
3161         super = (struct btrfs_super_block *)bh->b_data;
3162         if (btrfs_super_bytenr(super) != bytenr ||
3163                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3164                 brelse(bh);
3165                 return -EINVAL;
3166         }
3167
3168         *bh_ret = bh;
3169         return 0;
3170 }
3171
3172
3173 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3174 {
3175         struct buffer_head *bh;
3176         struct buffer_head *latest = NULL;
3177         struct btrfs_super_block *super;
3178         int i;
3179         u64 transid = 0;
3180         int ret = -EINVAL;
3181
3182         /* we would like to check all the supers, but that would make
3183          * a btrfs mount succeed after a mkfs from a different FS.
3184          * So, we need to add a special mount option to scan for
3185          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3186          */
3187         for (i = 0; i < 1; i++) {
3188                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3189                 if (ret)
3190                         continue;
3191
3192                 super = (struct btrfs_super_block *)bh->b_data;
3193
3194                 if (!latest || btrfs_super_generation(super) > transid) {
3195                         brelse(latest);
3196                         latest = bh;
3197                         transid = btrfs_super_generation(super);
3198                 } else {
3199                         brelse(bh);
3200                 }
3201         }
3202
3203         if (!latest)
3204                 return ERR_PTR(ret);
3205
3206         return latest;
3207 }
3208
3209 /*
3210  * Write superblock @sb to the @device. Do not wait for completion, all the
3211  * buffer heads we write are pinned.
3212  *
3213  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3214  * the expected device size at commit time. Note that max_mirrors must be
3215  * same for write and wait phases.
3216  *
3217  * Return number of errors when buffer head is not found or submission fails.
3218  */
3219 static int write_dev_supers(struct btrfs_device *device,
3220                             struct btrfs_super_block *sb, int max_mirrors)
3221 {
3222         struct buffer_head *bh;
3223         int i;
3224         int ret;
3225         int errors = 0;
3226         u32 crc;
3227         u64 bytenr;
3228         int op_flags;
3229
3230         if (max_mirrors == 0)
3231                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3232
3233         for (i = 0; i < max_mirrors; i++) {
3234                 bytenr = btrfs_sb_offset(i);
3235                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3236                     device->commit_total_bytes)
3237                         break;
3238
3239                 btrfs_set_super_bytenr(sb, bytenr);
3240
3241                 crc = ~(u32)0;
3242                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3243                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3244                 btrfs_csum_final(crc, sb->csum);
3245
3246                 /* One reference for us, and we leave it for the caller */
3247                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3248                               BTRFS_SUPER_INFO_SIZE);
3249                 if (!bh) {
3250                         btrfs_err(device->fs_info,
3251                             "couldn't get super buffer head for bytenr %llu",
3252                             bytenr);
3253                         errors++;
3254                         continue;
3255                 }
3256
3257                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3258
3259                 /* one reference for submit_bh */
3260                 get_bh(bh);
3261
3262                 set_buffer_uptodate(bh);
3263                 lock_buffer(bh);
3264                 bh->b_end_io = btrfs_end_buffer_write_sync;
3265                 bh->b_private = device;
3266
3267                 /*
3268                  * we fua the first super.  The others we allow
3269                  * to go down lazy.
3270                  */
3271                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3272                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3273                         op_flags |= REQ_FUA;
3274                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3275                 if (ret)
3276                         errors++;
3277         }
3278         return errors < i ? 0 : -1;
3279 }
3280
3281 /*
3282  * Wait for write completion of superblocks done by write_dev_supers,
3283  * @max_mirrors same for write and wait phases.
3284  *
3285  * Return number of errors when buffer head is not found or not marked up to
3286  * date.
3287  */
3288 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3289 {
3290         struct buffer_head *bh;
3291         int i;
3292         int errors = 0;
3293         u64 bytenr;
3294
3295         if (max_mirrors == 0)
3296                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3297
3298         for (i = 0; i < max_mirrors; i++) {
3299                 bytenr = btrfs_sb_offset(i);
3300                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3301                     device->commit_total_bytes)
3302                         break;
3303
3304                 bh = __find_get_block(device->bdev,
3305                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3306                                       BTRFS_SUPER_INFO_SIZE);
3307                 if (!bh) {
3308                         errors++;
3309                         continue;
3310                 }
3311                 wait_on_buffer(bh);
3312                 if (!buffer_uptodate(bh))
3313                         errors++;
3314
3315                 /* drop our reference */
3316                 brelse(bh);
3317
3318                 /* drop the reference from the writing run */
3319                 brelse(bh);
3320         }
3321
3322         return errors < i ? 0 : -1;
3323 }
3324
3325 /*
3326  * endio for the write_dev_flush, this will wake anyone waiting
3327  * for the barrier when it is done
3328  */
3329 static void btrfs_end_empty_barrier(struct bio *bio)
3330 {
3331         complete(bio->bi_private);
3332 }
3333
3334 /*
3335  * Submit a flush request to the device if it supports it. Error handling is
3336  * done in the waiting counterpart.
3337  */
3338 static void write_dev_flush(struct btrfs_device *device)
3339 {
3340         struct request_queue *q = bdev_get_queue(device->bdev);
3341         struct bio *bio = device->flush_bio;
3342
3343         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3344                 return;
3345
3346         bio_reset(bio);
3347         bio->bi_end_io = btrfs_end_empty_barrier;
3348         bio_set_dev(bio, device->bdev);
3349         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3350         init_completion(&device->flush_wait);
3351         bio->bi_private = &device->flush_wait;
3352
3353         btrfsic_submit_bio(bio);
3354         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3355 }
3356
3357 /*
3358  * If the flush bio has been submitted by write_dev_flush, wait for it.
3359  */
3360 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3361 {
3362         struct bio *bio = device->flush_bio;
3363
3364         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3365                 return BLK_STS_OK;
3366
3367         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3368         wait_for_completion_io(&device->flush_wait);
3369
3370         return bio->bi_status;
3371 }
3372
3373 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3374 {
3375         if (!btrfs_check_rw_degradable(fs_info, NULL))
3376                 return -EIO;
3377         return 0;
3378 }
3379
3380 /*
3381  * send an empty flush down to each device in parallel,
3382  * then wait for them
3383  */
3384 static int barrier_all_devices(struct btrfs_fs_info *info)
3385 {
3386         struct list_head *head;
3387         struct btrfs_device *dev;
3388         int errors_wait = 0;
3389         blk_status_t ret;
3390
3391         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3392         /* send down all the barriers */
3393         head = &info->fs_devices->devices;
3394         list_for_each_entry(dev, head, dev_list) {
3395                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3396                         continue;
3397                 if (!dev->bdev)
3398                         continue;
3399                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3400                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3401                         continue;
3402
3403                 write_dev_flush(dev);
3404                 dev->last_flush_error = BLK_STS_OK;
3405         }
3406
3407         /* wait for all the barriers */
3408         list_for_each_entry(dev, head, dev_list) {
3409                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3410                         continue;
3411                 if (!dev->bdev) {
3412                         errors_wait++;
3413                         continue;
3414                 }
3415                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3416                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3417                         continue;
3418
3419                 ret = wait_dev_flush(dev);
3420                 if (ret) {
3421                         dev->last_flush_error = ret;
3422                         btrfs_dev_stat_inc_and_print(dev,
3423                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3424                         errors_wait++;
3425                 }
3426         }
3427
3428         if (errors_wait) {
3429                 /*
3430                  * At some point we need the status of all disks
3431                  * to arrive at the volume status. So error checking
3432                  * is being pushed to a separate loop.
3433                  */
3434                 return check_barrier_error(info);
3435         }
3436         return 0;
3437 }
3438
3439 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3440 {
3441         int raid_type;
3442         int min_tolerated = INT_MAX;
3443
3444         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3445             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3446                 min_tolerated = min(min_tolerated,
3447                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3448                                     tolerated_failures);
3449
3450         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3451                 if (raid_type == BTRFS_RAID_SINGLE)
3452                         continue;
3453                 if (!(flags & btrfs_raid_group[raid_type]))
3454                         continue;
3455                 min_tolerated = min(min_tolerated,
3456                                     btrfs_raid_array[raid_type].
3457                                     tolerated_failures);
3458         }
3459
3460         if (min_tolerated == INT_MAX) {
3461                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3462                 min_tolerated = 0;
3463         }
3464
3465         return min_tolerated;
3466 }
3467
3468 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3469 {
3470         struct list_head *head;
3471         struct btrfs_device *dev;
3472         struct btrfs_super_block *sb;
3473         struct btrfs_dev_item *dev_item;
3474         int ret;
3475         int do_barriers;
3476         int max_errors;
3477         int total_errors = 0;
3478         u64 flags;
3479
3480         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3481
3482         /*
3483          * max_mirrors == 0 indicates we're from commit_transaction,
3484          * not from fsync where the tree roots in fs_info have not
3485          * been consistent on disk.
3486          */
3487         if (max_mirrors == 0)
3488                 backup_super_roots(fs_info);
3489
3490         sb = fs_info->super_for_commit;
3491         dev_item = &sb->dev_item;
3492
3493         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3494         head = &fs_info->fs_devices->devices;
3495         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3496
3497         if (do_barriers) {
3498                 ret = barrier_all_devices(fs_info);
3499                 if (ret) {
3500                         mutex_unlock(
3501                                 &fs_info->fs_devices->device_list_mutex);
3502                         btrfs_handle_fs_error(fs_info, ret,
3503                                               "errors while submitting device barriers.");
3504                         return ret;
3505                 }
3506         }
3507
3508         list_for_each_entry(dev, head, dev_list) {
3509                 if (!dev->bdev) {
3510                         total_errors++;
3511                         continue;
3512                 }
3513                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3514                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3515                         continue;
3516
3517                 btrfs_set_stack_device_generation(dev_item, 0);
3518                 btrfs_set_stack_device_type(dev_item, dev->type);
3519                 btrfs_set_stack_device_id(dev_item, dev->devid);
3520                 btrfs_set_stack_device_total_bytes(dev_item,
3521                                                    dev->commit_total_bytes);
3522                 btrfs_set_stack_device_bytes_used(dev_item,
3523                                                   dev->commit_bytes_used);
3524                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3525                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3526                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3527                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3528                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3529
3530                 flags = btrfs_super_flags(sb);
3531                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3532
3533                 ret = write_dev_supers(dev, sb, max_mirrors);
3534                 if (ret)
3535                         total_errors++;
3536         }
3537         if (total_errors > max_errors) {
3538                 btrfs_err(fs_info, "%d errors while writing supers",
3539                           total_errors);
3540                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3541
3542                 /* FUA is masked off if unsupported and can't be the reason */
3543                 btrfs_handle_fs_error(fs_info, -EIO,
3544                                       "%d errors while writing supers",
3545                                       total_errors);
3546                 return -EIO;
3547         }
3548
3549         total_errors = 0;
3550         list_for_each_entry(dev, head, dev_list) {
3551                 if (!dev->bdev)
3552                         continue;
3553                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3554                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3555                         continue;
3556
3557                 ret = wait_dev_supers(dev, max_mirrors);
3558                 if (ret)
3559                         total_errors++;
3560         }
3561         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3562         if (total_errors > max_errors) {
3563                 btrfs_handle_fs_error(fs_info, -EIO,
3564                                       "%d errors while writing supers",
3565                                       total_errors);
3566                 return -EIO;
3567         }
3568         return 0;
3569 }
3570
3571 /* Drop a fs root from the radix tree and free it. */
3572 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3573                                   struct btrfs_root *root)
3574 {
3575         spin_lock(&fs_info->fs_roots_radix_lock);
3576         radix_tree_delete(&fs_info->fs_roots_radix,
3577                           (unsigned long)root->root_key.objectid);
3578         spin_unlock(&fs_info->fs_roots_radix_lock);
3579
3580         if (btrfs_root_refs(&root->root_item) == 0)
3581                 synchronize_srcu(&fs_info->subvol_srcu);
3582
3583         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3584                 btrfs_free_log(NULL, root);
3585                 if (root->reloc_root) {
3586                         free_extent_buffer(root->reloc_root->node);
3587                         free_extent_buffer(root->reloc_root->commit_root);
3588                         btrfs_put_fs_root(root->reloc_root);
3589                         root->reloc_root = NULL;
3590                 }
3591         }
3592
3593         if (root->free_ino_pinned)
3594                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3595         if (root->free_ino_ctl)
3596                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3597         free_fs_root(root);
3598 }
3599
3600 static void free_fs_root(struct btrfs_root *root)
3601 {
3602         iput(root->ino_cache_inode);
3603         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3604         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3605         root->orphan_block_rsv = NULL;
3606         if (root->anon_dev)
3607                 free_anon_bdev(root->anon_dev);
3608         if (root->subv_writers)
3609                 btrfs_free_subvolume_writers(root->subv_writers);
3610         free_extent_buffer(root->node);
3611         free_extent_buffer(root->commit_root);
3612         kfree(root->free_ino_ctl);
3613         kfree(root->free_ino_pinned);
3614         kfree(root->name);
3615         btrfs_put_fs_root(root);
3616 }
3617
3618 void btrfs_free_fs_root(struct btrfs_root *root)
3619 {
3620         free_fs_root(root);
3621 }
3622
3623 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3624 {
3625         u64 root_objectid = 0;
3626         struct btrfs_root *gang[8];
3627         int i = 0;
3628         int err = 0;
3629         unsigned int ret = 0;
3630         int index;
3631
3632         while (1) {
3633                 index = srcu_read_lock(&fs_info->subvol_srcu);
3634                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3635                                              (void **)gang, root_objectid,
3636                                              ARRAY_SIZE(gang));
3637                 if (!ret) {
3638                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3639                         break;
3640                 }
3641                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3642
3643                 for (i = 0; i < ret; i++) {
3644                         /* Avoid to grab roots in dead_roots */
3645                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3646                                 gang[i] = NULL;
3647                                 continue;
3648                         }
3649                         /* grab all the search result for later use */
3650                         gang[i] = btrfs_grab_fs_root(gang[i]);
3651                 }
3652                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3653
3654                 for (i = 0; i < ret; i++) {
3655                         if (!gang[i])
3656                                 continue;
3657                         root_objectid = gang[i]->root_key.objectid;
3658                         err = btrfs_orphan_cleanup(gang[i]);
3659                         if (err)
3660                                 break;
3661                         btrfs_put_fs_root(gang[i]);
3662                 }
3663                 root_objectid++;
3664         }
3665
3666         /* release the uncleaned roots due to error */
3667         for (; i < ret; i++) {
3668                 if (gang[i])
3669                         btrfs_put_fs_root(gang[i]);
3670         }
3671         return err;
3672 }
3673
3674 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3675 {
3676         struct btrfs_root *root = fs_info->tree_root;
3677         struct btrfs_trans_handle *trans;
3678
3679         mutex_lock(&fs_info->cleaner_mutex);
3680         btrfs_run_delayed_iputs(fs_info);
3681         mutex_unlock(&fs_info->cleaner_mutex);
3682         wake_up_process(fs_info->cleaner_kthread);
3683
3684         /* wait until ongoing cleanup work done */
3685         down_write(&fs_info->cleanup_work_sem);
3686         up_write(&fs_info->cleanup_work_sem);
3687
3688         trans = btrfs_join_transaction(root);
3689         if (IS_ERR(trans))
3690                 return PTR_ERR(trans);
3691         return btrfs_commit_transaction(trans);
3692 }
3693
3694 void close_ctree(struct btrfs_fs_info *fs_info)
3695 {
3696         struct btrfs_root *root = fs_info->tree_root;
3697         int ret;
3698
3699         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3700
3701         /* wait for the qgroup rescan worker to stop */
3702         btrfs_qgroup_wait_for_completion(fs_info, false);
3703
3704         /* wait for the uuid_scan task to finish */
3705         down(&fs_info->uuid_tree_rescan_sem);
3706         /* avoid complains from lockdep et al., set sem back to initial state */
3707         up(&fs_info->uuid_tree_rescan_sem);
3708
3709         /* pause restriper - we want to resume on mount */
3710         btrfs_pause_balance(fs_info);
3711
3712         btrfs_dev_replace_suspend_for_unmount(fs_info);
3713
3714         btrfs_scrub_cancel(fs_info);
3715
3716         /* wait for any defraggers to finish */
3717         wait_event(fs_info->transaction_wait,
3718                    (atomic_read(&fs_info->defrag_running) == 0));
3719
3720         /* clear out the rbtree of defraggable inodes */
3721         btrfs_cleanup_defrag_inodes(fs_info);
3722
3723         cancel_work_sync(&fs_info->async_reclaim_work);
3724
3725         if (!sb_rdonly(fs_info->sb)) {
3726                 /*
3727                  * If the cleaner thread is stopped and there are
3728                  * block groups queued for removal, the deletion will be
3729                  * skipped when we quit the cleaner thread.
3730                  */
3731                 btrfs_delete_unused_bgs(fs_info);
3732
3733                 ret = btrfs_commit_super(fs_info);
3734                 if (ret)
3735                         btrfs_err(fs_info, "commit super ret %d", ret);
3736         }
3737
3738         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3739                 btrfs_error_commit_super(fs_info);
3740
3741         kthread_stop(fs_info->transaction_kthread);
3742         kthread_stop(fs_info->cleaner_kthread);
3743
3744         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3745
3746         btrfs_free_qgroup_config(fs_info);
3747
3748         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3749                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3750                        percpu_counter_sum(&fs_info->delalloc_bytes));
3751         }
3752
3753         btrfs_sysfs_remove_mounted(fs_info);
3754         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3755
3756         btrfs_free_fs_roots(fs_info);
3757
3758         btrfs_put_block_group_cache(fs_info);
3759
3760         /*
3761          * we must make sure there is not any read request to
3762          * submit after we stopping all workers.
3763          */
3764         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3765         btrfs_stop_all_workers(fs_info);
3766
3767         btrfs_free_block_groups(fs_info);
3768
3769         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3770         free_root_pointers(fs_info, 1);
3771
3772         iput(fs_info->btree_inode);
3773
3774 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3775         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3776                 btrfsic_unmount(fs_info->fs_devices);
3777 #endif
3778
3779         btrfs_close_devices(fs_info->fs_devices);
3780         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3781
3782         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3783         percpu_counter_destroy(&fs_info->delalloc_bytes);
3784         percpu_counter_destroy(&fs_info->bio_counter);
3785         cleanup_srcu_struct(&fs_info->subvol_srcu);
3786
3787         btrfs_free_stripe_hash_table(fs_info);
3788         btrfs_free_ref_cache(fs_info);
3789
3790         __btrfs_free_block_rsv(root->orphan_block_rsv);
3791         root->orphan_block_rsv = NULL;
3792
3793         while (!list_empty(&fs_info->pinned_chunks)) {
3794                 struct extent_map *em;
3795
3796                 em = list_first_entry(&fs_info->pinned_chunks,
3797                                       struct extent_map, list);
3798                 list_del_init(&em->list);
3799                 free_extent_map(em);
3800         }
3801 }
3802
3803 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3804                           int atomic)
3805 {
3806         int ret;
3807         struct inode *btree_inode = buf->pages[0]->mapping->host;
3808
3809         ret = extent_buffer_uptodate(buf);
3810         if (!ret)
3811                 return ret;
3812
3813         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3814                                     parent_transid, atomic);
3815         if (ret == -EAGAIN)
3816                 return ret;
3817         return !ret;
3818 }
3819
3820 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3821 {
3822         struct btrfs_fs_info *fs_info;
3823         struct btrfs_root *root;
3824         u64 transid = btrfs_header_generation(buf);
3825         int was_dirty;
3826
3827 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3828         /*
3829          * This is a fast path so only do this check if we have sanity tests
3830          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3831          * outside of the sanity tests.
3832          */
3833         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3834                 return;
3835 #endif
3836         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3837         fs_info = root->fs_info;
3838         btrfs_assert_tree_locked(buf);
3839         if (transid != fs_info->generation)
3840                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3841                         buf->start, transid, fs_info->generation);
3842         was_dirty = set_extent_buffer_dirty(buf);
3843         if (!was_dirty)
3844                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3845                                          buf->len,
3846                                          fs_info->dirty_metadata_batch);
3847 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3848         /*
3849          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3850          * but item data not updated.
3851          * So here we should only check item pointers, not item data.
3852          */
3853         if (btrfs_header_level(buf) == 0 &&
3854             btrfs_check_leaf_relaxed(root, buf)) {
3855                 btrfs_print_leaf(buf);
3856                 ASSERT(0);
3857         }
3858 #endif
3859 }
3860
3861 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3862                                         int flush_delayed)
3863 {
3864         /*
3865          * looks as though older kernels can get into trouble with
3866          * this code, they end up stuck in balance_dirty_pages forever
3867          */
3868         int ret;
3869
3870         if (current->flags & PF_MEMALLOC)
3871                 return;
3872
3873         if (flush_delayed)
3874                 btrfs_balance_delayed_items(fs_info);
3875
3876         ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3877                                      BTRFS_DIRTY_METADATA_THRESH);
3878         if (ret > 0) {
3879                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3880         }
3881 }
3882
3883 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3884 {
3885         __btrfs_btree_balance_dirty(fs_info, 1);
3886 }
3887
3888 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3889 {
3890         __btrfs_btree_balance_dirty(fs_info, 0);
3891 }
3892
3893 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3894 {
3895         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3896         struct btrfs_fs_info *fs_info = root->fs_info;
3897
3898         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3899 }
3900
3901 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3902 {
3903         struct btrfs_super_block *sb = fs_info->super_copy;
3904         u64 nodesize = btrfs_super_nodesize(sb);
3905         u64 sectorsize = btrfs_super_sectorsize(sb);
3906         int ret = 0;
3907
3908         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3909                 btrfs_err(fs_info, "no valid FS found");
3910                 ret = -EINVAL;
3911         }
3912         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3913                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3914                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3915                 ret = -EINVAL;
3916         }
3917         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3918                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3919                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3920                 ret = -EINVAL;
3921         }
3922         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3923                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3924                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3925                 ret = -EINVAL;
3926         }
3927         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3928                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3929                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3930                 ret = -EINVAL;
3931         }
3932
3933         /*
3934          * Check sectorsize and nodesize first, other check will need it.
3935          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3936          */
3937         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3938             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3939                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3940                 ret = -EINVAL;
3941         }
3942         /* Only PAGE SIZE is supported yet */
3943         if (sectorsize != PAGE_SIZE) {
3944                 btrfs_err(fs_info,
3945                         "sectorsize %llu not supported yet, only support %lu",
3946                         sectorsize, PAGE_SIZE);
3947                 ret = -EINVAL;
3948         }
3949         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3950             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3951                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3952                 ret = -EINVAL;
3953         }
3954         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3955                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3956                           le32_to_cpu(sb->__unused_leafsize), nodesize);
3957                 ret = -EINVAL;
3958         }
3959
3960         /* Root alignment check */
3961         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3962                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3963                            btrfs_super_root(sb));
3964                 ret = -EINVAL;
3965         }
3966         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3967                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3968                            btrfs_super_chunk_root(sb));
3969                 ret = -EINVAL;
3970         }
3971         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3972                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3973                            btrfs_super_log_root(sb));
3974                 ret = -EINVAL;
3975         }
3976
3977         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3978                 btrfs_err(fs_info,
3979                            "dev_item UUID does not match fsid: %pU != %pU",
3980                            fs_info->fsid, sb->dev_item.fsid);
3981                 ret = -EINVAL;
3982         }
3983
3984         /*
3985          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3986          * done later
3987          */
3988         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3989                 btrfs_err(fs_info, "bytes_used is too small %llu",
3990                           btrfs_super_bytes_used(sb));
3991                 ret = -EINVAL;
3992         }
3993         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3994                 btrfs_err(fs_info, "invalid stripesize %u",
3995                           btrfs_super_stripesize(sb));
3996                 ret = -EINVAL;
3997         }
3998         if (btrfs_super_num_devices(sb) > (1UL << 31))
3999                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4000                            btrfs_super_num_devices(sb));
4001         if (btrfs_super_num_devices(sb) == 0) {
4002                 btrfs_err(fs_info, "number of devices is 0");
4003                 ret = -EINVAL;
4004         }
4005
4006         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4007                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4008                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4009                 ret = -EINVAL;
4010         }
4011
4012         /*
4013          * Obvious sys_chunk_array corruptions, it must hold at least one key
4014          * and one chunk
4015          */
4016         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4017                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4018                           btrfs_super_sys_array_size(sb),
4019                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4020                 ret = -EINVAL;
4021         }
4022         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4023                         + sizeof(struct btrfs_chunk)) {
4024                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4025                           btrfs_super_sys_array_size(sb),
4026                           sizeof(struct btrfs_disk_key)
4027                           + sizeof(struct btrfs_chunk));
4028                 ret = -EINVAL;
4029         }
4030
4031         /*
4032          * The generation is a global counter, we'll trust it more than the others
4033          * but it's still possible that it's the one that's wrong.
4034          */
4035         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4036                 btrfs_warn(fs_info,
4037                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4038                         btrfs_super_generation(sb),
4039                         btrfs_super_chunk_root_generation(sb));
4040         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4041             && btrfs_super_cache_generation(sb) != (u64)-1)
4042                 btrfs_warn(fs_info,
4043                         "suspicious: generation < cache_generation: %llu < %llu",
4044                         btrfs_super_generation(sb),
4045                         btrfs_super_cache_generation(sb));
4046
4047         return ret;
4048 }
4049
4050 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4051 {
4052         mutex_lock(&fs_info->cleaner_mutex);
4053         btrfs_run_delayed_iputs(fs_info);
4054         mutex_unlock(&fs_info->cleaner_mutex);
4055
4056         down_write(&fs_info->cleanup_work_sem);
4057         up_write(&fs_info->cleanup_work_sem);
4058
4059         /* cleanup FS via transaction */
4060         btrfs_cleanup_transaction(fs_info);
4061 }
4062
4063 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4064 {
4065         struct btrfs_ordered_extent *ordered;
4066
4067         spin_lock(&root->ordered_extent_lock);
4068         /*
4069          * This will just short circuit the ordered completion stuff which will
4070          * make sure the ordered extent gets properly cleaned up.
4071          */
4072         list_for_each_entry(ordered, &root->ordered_extents,
4073                             root_extent_list)
4074                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4075         spin_unlock(&root->ordered_extent_lock);
4076 }
4077
4078 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4079 {
4080         struct btrfs_root *root;
4081         struct list_head splice;
4082
4083         INIT_LIST_HEAD(&splice);
4084
4085         spin_lock(&fs_info->ordered_root_lock);
4086         list_splice_init(&fs_info->ordered_roots, &splice);
4087         while (!list_empty(&splice)) {
4088                 root = list_first_entry(&splice, struct btrfs_root,
4089                                         ordered_root);
4090                 list_move_tail(&root->ordered_root,
4091                                &fs_info->ordered_roots);
4092
4093                 spin_unlock(&fs_info->ordered_root_lock);
4094                 btrfs_destroy_ordered_extents(root);
4095
4096                 cond_resched();
4097                 spin_lock(&fs_info->ordered_root_lock);
4098         }
4099         spin_unlock(&fs_info->ordered_root_lock);
4100 }
4101
4102 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4103                                       struct btrfs_fs_info *fs_info)
4104 {
4105         struct rb_node *node;
4106         struct btrfs_delayed_ref_root *delayed_refs;
4107         struct btrfs_delayed_ref_node *ref;
4108         int ret = 0;
4109
4110         delayed_refs = &trans->delayed_refs;
4111
4112         spin_lock(&delayed_refs->lock);
4113         if (atomic_read(&delayed_refs->num_entries) == 0) {
4114                 spin_unlock(&delayed_refs->lock);
4115                 btrfs_info(fs_info, "delayed_refs has NO entry");
4116                 return ret;
4117         }
4118
4119         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4120                 struct btrfs_delayed_ref_head *head;
4121                 struct rb_node *n;
4122                 bool pin_bytes = false;
4123
4124                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4125                                 href_node);
4126                 if (!mutex_trylock(&head->mutex)) {
4127                         refcount_inc(&head->refs);
4128                         spin_unlock(&delayed_refs->lock);
4129
4130                         mutex_lock(&head->mutex);
4131                         mutex_unlock(&head->mutex);
4132                         btrfs_put_delayed_ref_head(head);
4133                         spin_lock(&delayed_refs->lock);
4134                         continue;
4135                 }
4136                 spin_lock(&head->lock);
4137                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4138                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4139                                        ref_node);
4140                         ref->in_tree = 0;
4141                         rb_erase(&ref->ref_node, &head->ref_tree);
4142                         RB_CLEAR_NODE(&ref->ref_node);
4143                         if (!list_empty(&ref->add_list))
4144                                 list_del(&ref->add_list);
4145                         atomic_dec(&delayed_refs->num_entries);
4146                         btrfs_put_delayed_ref(ref);
4147                 }
4148                 if (head->must_insert_reserved)
4149                         pin_bytes = true;
4150                 btrfs_free_delayed_extent_op(head->extent_op);
4151                 delayed_refs->num_heads--;
4152                 if (head->processing == 0)
4153                         delayed_refs->num_heads_ready--;
4154                 atomic_dec(&delayed_refs->num_entries);
4155                 rb_erase(&head->href_node, &delayed_refs->href_root);
4156                 RB_CLEAR_NODE(&head->href_node);
4157                 spin_unlock(&head->lock);
4158                 spin_unlock(&delayed_refs->lock);
4159                 mutex_unlock(&head->mutex);
4160
4161                 if (pin_bytes)
4162                         btrfs_pin_extent(fs_info, head->bytenr,
4163                                          head->num_bytes, 1);
4164                 btrfs_put_delayed_ref_head(head);
4165                 cond_resched();
4166                 spin_lock(&delayed_refs->lock);
4167         }
4168
4169         spin_unlock(&delayed_refs->lock);
4170
4171         return ret;
4172 }
4173
4174 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4175 {
4176         struct btrfs_inode *btrfs_inode;
4177         struct list_head splice;
4178
4179         INIT_LIST_HEAD(&splice);
4180
4181         spin_lock(&root->delalloc_lock);
4182         list_splice_init(&root->delalloc_inodes, &splice);
4183
4184         while (!list_empty(&splice)) {
4185                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4186                                                delalloc_inodes);
4187
4188                 list_del_init(&btrfs_inode->delalloc_inodes);
4189                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4190                           &btrfs_inode->runtime_flags);
4191                 spin_unlock(&root->delalloc_lock);
4192
4193                 btrfs_invalidate_inodes(btrfs_inode->root);
4194
4195                 spin_lock(&root->delalloc_lock);
4196         }
4197
4198         spin_unlock(&root->delalloc_lock);
4199 }
4200
4201 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4202 {
4203         struct btrfs_root *root;
4204         struct list_head splice;
4205
4206         INIT_LIST_HEAD(&splice);
4207
4208         spin_lock(&fs_info->delalloc_root_lock);
4209         list_splice_init(&fs_info->delalloc_roots, &splice);
4210         while (!list_empty(&splice)) {
4211                 root = list_first_entry(&splice, struct btrfs_root,
4212                                          delalloc_root);
4213                 list_del_init(&root->delalloc_root);
4214                 root = btrfs_grab_fs_root(root);
4215                 BUG_ON(!root);
4216                 spin_unlock(&fs_info->delalloc_root_lock);
4217
4218                 btrfs_destroy_delalloc_inodes(root);
4219                 btrfs_put_fs_root(root);
4220
4221                 spin_lock(&fs_info->delalloc_root_lock);
4222         }
4223         spin_unlock(&fs_info->delalloc_root_lock);
4224 }
4225
4226 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4227                                         struct extent_io_tree *dirty_pages,
4228                                         int mark)
4229 {
4230         int ret;
4231         struct extent_buffer *eb;
4232         u64 start = 0;
4233         u64 end;
4234
4235         while (1) {
4236                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4237                                             mark, NULL);
4238                 if (ret)
4239                         break;
4240
4241                 clear_extent_bits(dirty_pages, start, end, mark);
4242                 while (start <= end) {
4243                         eb = find_extent_buffer(fs_info, start);
4244                         start += fs_info->nodesize;
4245                         if (!eb)
4246                                 continue;
4247                         wait_on_extent_buffer_writeback(eb);
4248
4249                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4250                                                &eb->bflags))
4251                                 clear_extent_buffer_dirty(eb);
4252                         free_extent_buffer_stale(eb);
4253                 }
4254         }
4255
4256         return ret;
4257 }
4258
4259 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4260                                        struct extent_io_tree *pinned_extents)
4261 {
4262         struct extent_io_tree *unpin;
4263         u64 start;
4264         u64 end;
4265         int ret;
4266         bool loop = true;
4267
4268         unpin = pinned_extents;
4269 again:
4270         while (1) {
4271                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4272                                             EXTENT_DIRTY, NULL);
4273                 if (ret)
4274                         break;
4275
4276                 clear_extent_dirty(unpin, start, end);
4277                 btrfs_error_unpin_extent_range(fs_info, start, end);
4278                 cond_resched();
4279         }
4280
4281         if (loop) {
4282                 if (unpin == &fs_info->freed_extents[0])
4283                         unpin = &fs_info->freed_extents[1];
4284                 else
4285                         unpin = &fs_info->freed_extents[0];
4286                 loop = false;
4287                 goto again;
4288         }
4289
4290         return 0;
4291 }
4292
4293 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4294 {
4295         struct inode *inode;
4296
4297         inode = cache->io_ctl.inode;
4298         if (inode) {
4299                 invalidate_inode_pages2(inode->i_mapping);
4300                 BTRFS_I(inode)->generation = 0;
4301                 cache->io_ctl.inode = NULL;
4302                 iput(inode);
4303         }
4304         btrfs_put_block_group(cache);
4305 }
4306
4307 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4308                              struct btrfs_fs_info *fs_info)
4309 {
4310         struct btrfs_block_group_cache *cache;
4311
4312         spin_lock(&cur_trans->dirty_bgs_lock);
4313         while (!list_empty(&cur_trans->dirty_bgs)) {
4314                 cache = list_first_entry(&cur_trans->dirty_bgs,
4315                                          struct btrfs_block_group_cache,
4316                                          dirty_list);
4317                 if (!cache) {
4318                         btrfs_err(fs_info, "orphan block group dirty_bgs list");
4319                         spin_unlock(&cur_trans->dirty_bgs_lock);
4320                         return;
4321                 }
4322
4323                 if (!list_empty(&cache->io_list)) {
4324                         spin_unlock(&cur_trans->dirty_bgs_lock);
4325                         list_del_init(&cache->io_list);
4326                         btrfs_cleanup_bg_io(cache);
4327                         spin_lock(&cur_trans->dirty_bgs_lock);
4328                 }
4329
4330                 list_del_init(&cache->dirty_list);
4331                 spin_lock(&cache->lock);
4332                 cache->disk_cache_state = BTRFS_DC_ERROR;
4333                 spin_unlock(&cache->lock);
4334
4335                 spin_unlock(&cur_trans->dirty_bgs_lock);
4336                 btrfs_put_block_group(cache);
4337                 spin_lock(&cur_trans->dirty_bgs_lock);
4338         }
4339         spin_unlock(&cur_trans->dirty_bgs_lock);
4340
4341         while (!list_empty(&cur_trans->io_bgs)) {
4342                 cache = list_first_entry(&cur_trans->io_bgs,
4343                                          struct btrfs_block_group_cache,
4344                                          io_list);
4345                 if (!cache) {
4346                         btrfs_err(fs_info, "orphan block group on io_bgs list");
4347                         return;
4348                 }
4349
4350                 list_del_init(&cache->io_list);
4351                 spin_lock(&cache->lock);
4352                 cache->disk_cache_state = BTRFS_DC_ERROR;
4353                 spin_unlock(&cache->lock);
4354                 btrfs_cleanup_bg_io(cache);
4355         }
4356 }
4357
4358 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4359                                    struct btrfs_fs_info *fs_info)
4360 {
4361         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4362         ASSERT(list_empty(&cur_trans->dirty_bgs));
4363         ASSERT(list_empty(&cur_trans->io_bgs));
4364
4365         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4366
4367         cur_trans->state = TRANS_STATE_COMMIT_START;
4368         wake_up(&fs_info->transaction_blocked_wait);
4369
4370         cur_trans->state = TRANS_STATE_UNBLOCKED;
4371         wake_up(&fs_info->transaction_wait);
4372
4373         btrfs_destroy_delayed_inodes(fs_info);
4374         btrfs_assert_delayed_root_empty(fs_info);
4375
4376         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4377                                      EXTENT_DIRTY);
4378         btrfs_destroy_pinned_extent(fs_info,
4379                                     fs_info->pinned_extents);
4380
4381         cur_trans->state =TRANS_STATE_COMPLETED;
4382         wake_up(&cur_trans->commit_wait);
4383 }
4384
4385 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4386 {
4387         struct btrfs_transaction *t;
4388
4389         mutex_lock(&fs_info->transaction_kthread_mutex);
4390
4391         spin_lock(&fs_info->trans_lock);
4392         while (!list_empty(&fs_info->trans_list)) {
4393                 t = list_first_entry(&fs_info->trans_list,
4394                                      struct btrfs_transaction, list);
4395                 if (t->state >= TRANS_STATE_COMMIT_START) {
4396                         refcount_inc(&t->use_count);
4397                         spin_unlock(&fs_info->trans_lock);
4398                         btrfs_wait_for_commit(fs_info, t->transid);
4399                         btrfs_put_transaction(t);
4400                         spin_lock(&fs_info->trans_lock);
4401                         continue;
4402                 }
4403                 if (t == fs_info->running_transaction) {
4404                         t->state = TRANS_STATE_COMMIT_DOING;
4405                         spin_unlock(&fs_info->trans_lock);
4406                         /*
4407                          * We wait for 0 num_writers since we don't hold a trans
4408                          * handle open currently for this transaction.
4409                          */
4410                         wait_event(t->writer_wait,
4411                                    atomic_read(&t->num_writers) == 0);
4412                 } else {
4413                         spin_unlock(&fs_info->trans_lock);
4414                 }
4415                 btrfs_cleanup_one_transaction(t, fs_info);
4416
4417                 spin_lock(&fs_info->trans_lock);
4418                 if (t == fs_info->running_transaction)
4419                         fs_info->running_transaction = NULL;
4420                 list_del_init(&t->list);
4421                 spin_unlock(&fs_info->trans_lock);
4422
4423                 btrfs_put_transaction(t);
4424                 trace_btrfs_transaction_commit(fs_info->tree_root);
4425                 spin_lock(&fs_info->trans_lock);
4426         }
4427         spin_unlock(&fs_info->trans_lock);
4428         btrfs_destroy_all_ordered_extents(fs_info);
4429         btrfs_destroy_delayed_inodes(fs_info);
4430         btrfs_assert_delayed_root_empty(fs_info);
4431         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4432         btrfs_destroy_all_delalloc_inodes(fs_info);
4433         mutex_unlock(&fs_info->transaction_kthread_mutex);
4434
4435         return 0;
4436 }
4437
4438 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4439 {
4440         struct inode *inode = private_data;
4441         return btrfs_sb(inode->i_sb);
4442 }
4443
4444 static const struct extent_io_ops btree_extent_io_ops = {
4445         /* mandatory callbacks */
4446         .submit_bio_hook = btree_submit_bio_hook,
4447         .readpage_end_io_hook = btree_readpage_end_io_hook,
4448         /* note we're sharing with inode.c for the merge bio hook */
4449         .merge_bio_hook = btrfs_merge_bio_hook,
4450         .readpage_io_failed_hook = btree_io_failed_hook,
4451         .set_range_writeback = btrfs_set_range_writeback,
4452         .tree_fs_info = btree_fs_info,
4453
4454         /* optional callbacks */
4455 };