Merge tag 'ceph-for-4.19-rc3' of https://github.com/ceph/ceph-client
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->objectid.  This ensures that all special purpose roots
129  * have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                 struct page *page, size_t pg_offset, u64 start, u64 len,
207                 int create)
208 {
209         struct btrfs_fs_info *fs_info = inode->root->fs_info;
210         struct extent_map_tree *em_tree = &inode->extent_tree;
211         struct extent_map *em;
212         int ret;
213
214         read_lock(&em_tree->lock);
215         em = lookup_extent_mapping(em_tree, start, len);
216         if (em) {
217                 em->bdev = fs_info->fs_devices->latest_bdev;
218                 read_unlock(&em_tree->lock);
219                 goto out;
220         }
221         read_unlock(&em_tree->lock);
222
223         em = alloc_extent_map();
224         if (!em) {
225                 em = ERR_PTR(-ENOMEM);
226                 goto out;
227         }
228         em->start = 0;
229         em->len = (u64)-1;
230         em->block_len = (u64)-1;
231         em->block_start = 0;
232         em->bdev = fs_info->fs_devices->latest_bdev;
233
234         write_lock(&em_tree->lock);
235         ret = add_extent_mapping(em_tree, em, 0);
236         if (ret == -EEXIST) {
237                 free_extent_map(em);
238                 em = lookup_extent_mapping(em_tree, start, len);
239                 if (!em)
240                         em = ERR_PTR(-EIO);
241         } else if (ret) {
242                 free_extent_map(em);
243                 em = ERR_PTR(ret);
244         }
245         write_unlock(&em_tree->lock);
246
247 out:
248         return em;
249 }
250
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253         return crc32c(seed, data, len);
254 }
255
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258         put_unaligned_le32(~crc, result);
259 }
260
261 /*
262  * compute the csum for a btree block, and either verify it or write it
263  * into the csum field of the block.
264  */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266                            struct extent_buffer *buf,
267                            int verify)
268 {
269         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270         char result[BTRFS_CSUM_SIZE];
271         unsigned long len;
272         unsigned long cur_len;
273         unsigned long offset = BTRFS_CSUM_SIZE;
274         char *kaddr;
275         unsigned long map_start;
276         unsigned long map_len;
277         int err;
278         u32 crc = ~(u32)0;
279
280         len = buf->len - offset;
281         while (len > 0) {
282                 err = map_private_extent_buffer(buf, offset, 32,
283                                         &kaddr, &map_start, &map_len);
284                 if (err)
285                         return err;
286                 cur_len = min(len, map_len - (offset - map_start));
287                 crc = btrfs_csum_data(kaddr + offset - map_start,
288                                       crc, cur_len);
289                 len -= cur_len;
290                 offset += cur_len;
291         }
292         memset(result, 0, BTRFS_CSUM_SIZE);
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         btrfs_warn_rl(fs_info,
304                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
305                                 fs_info->sb->s_id, buf->start,
306                                 val, found, btrfs_header_level(buf));
307                         return -EUCLEAN;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312
313         return 0;
314 }
315
316 /*
317  * we can't consider a given block up to date unless the transid of the
318  * block matches the transid in the parent node's pointer.  This is how we
319  * detect blocks that either didn't get written at all or got written
320  * in the wrong place.
321  */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323                                  struct extent_buffer *eb, u64 parent_transid,
324                                  int atomic)
325 {
326         struct extent_state *cached_state = NULL;
327         int ret;
328         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         if (need_lock) {
337                 btrfs_tree_read_lock(eb);
338                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339         }
340
341         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
342                          &cached_state);
343         if (extent_buffer_uptodate(eb) &&
344             btrfs_header_generation(eb) == parent_transid) {
345                 ret = 0;
346                 goto out;
347         }
348         btrfs_err_rl(eb->fs_info,
349                 "parent transid verify failed on %llu wanted %llu found %llu",
350                         eb->start,
351                         parent_transid, btrfs_header_generation(eb));
352         ret = 1;
353
354         /*
355          * Things reading via commit roots that don't have normal protection,
356          * like send, can have a really old block in cache that may point at a
357          * block that has been freed and re-allocated.  So don't clear uptodate
358          * if we find an eb that is under IO (dirty/writeback) because we could
359          * end up reading in the stale data and then writing it back out and
360          * making everybody very sad.
361          */
362         if (!extent_buffer_under_io(eb))
363                 clear_extent_buffer_uptodate(eb);
364 out:
365         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
366                              &cached_state);
367         if (need_lock)
368                 btrfs_tree_read_unlock_blocking(eb);
369         return ret;
370 }
371
372 /*
373  * Return 0 if the superblock checksum type matches the checksum value of that
374  * algorithm. Pass the raw disk superblock data.
375  */
376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377                                   char *raw_disk_sb)
378 {
379         struct btrfs_super_block *disk_sb =
380                 (struct btrfs_super_block *)raw_disk_sb;
381         u16 csum_type = btrfs_super_csum_type(disk_sb);
382         int ret = 0;
383
384         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385                 u32 crc = ~(u32)0;
386                 char result[sizeof(crc)];
387
388                 /*
389                  * The super_block structure does not span the whole
390                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391                  * is filled with zeros and is included in the checksum.
392                  */
393                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395                 btrfs_csum_final(crc, result);
396
397                 if (memcmp(raw_disk_sb, result, sizeof(result)))
398                         ret = 1;
399         }
400
401         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
403                                 csum_type);
404                 ret = 1;
405         }
406
407         return ret;
408 }
409
410 static int verify_level_key(struct btrfs_fs_info *fs_info,
411                             struct extent_buffer *eb, int level,
412                             struct btrfs_key *first_key, u64 parent_transid)
413 {
414         int found_level;
415         struct btrfs_key found_key;
416         int ret;
417
418         found_level = btrfs_header_level(eb);
419         if (found_level != level) {
420 #ifdef CONFIG_BTRFS_DEBUG
421                 WARN_ON(1);
422                 btrfs_err(fs_info,
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424                           eb->start, level, found_level);
425 #endif
426                 return -EIO;
427         }
428
429         if (!first_key)
430                 return 0;
431
432         /*
433          * For live tree block (new tree blocks in current transaction),
434          * we need proper lock context to avoid race, which is impossible here.
435          * So we only checks tree blocks which is read from disk, whose
436          * generation <= fs_info->last_trans_committed.
437          */
438         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439                 return 0;
440         if (found_level)
441                 btrfs_node_key_to_cpu(eb, &found_key, 0);
442         else
443                 btrfs_item_key_to_cpu(eb, &found_key, 0);
444         ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446 #ifdef CONFIG_BTRFS_DEBUG
447         if (ret) {
448                 WARN_ON(1);
449                 btrfs_err(fs_info,
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451                           eb->start, parent_transid, first_key->objectid,
452                           first_key->type, first_key->offset,
453                           found_key.objectid, found_key.type,
454                           found_key.offset);
455         }
456 #endif
457         return ret;
458 }
459
460 /*
461  * helper to read a given tree block, doing retries as required when
462  * the checksums don't match and we have alternate mirrors to try.
463  *
464  * @parent_transid:     expected transid, skip check if 0
465  * @level:              expected level, mandatory check
466  * @first_key:          expected key of first slot, skip check if NULL
467  */
468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469                                           struct extent_buffer *eb,
470                                           u64 parent_transid, int level,
471                                           struct btrfs_key *first_key)
472 {
473         struct extent_io_tree *io_tree;
474         int failed = 0;
475         int ret;
476         int num_copies = 0;
477         int mirror_num = 0;
478         int failed_mirror = 0;
479
480         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
481         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
482         while (1) {
483                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
484                                                mirror_num);
485                 if (!ret) {
486                         if (verify_parent_transid(io_tree, eb,
487                                                    parent_transid, 0))
488                                 ret = -EIO;
489                         else if (verify_level_key(fs_info, eb, level,
490                                                   first_key, parent_transid))
491                                 ret = -EUCLEAN;
492                         else
493                                 break;
494                 }
495
496                 /*
497                  * This buffer's crc is fine, but its contents are corrupted, so
498                  * there is no reason to read the other copies, they won't be
499                  * any less wrong.
500                  */
501                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
502                     ret == -EUCLEAN)
503                         break;
504
505                 num_copies = btrfs_num_copies(fs_info,
506                                               eb->start, eb->len);
507                 if (num_copies == 1)
508                         break;
509
510                 if (!failed_mirror) {
511                         failed = 1;
512                         failed_mirror = eb->read_mirror;
513                 }
514
515                 mirror_num++;
516                 if (mirror_num == failed_mirror)
517                         mirror_num++;
518
519                 if (mirror_num > num_copies)
520                         break;
521         }
522
523         if (failed && !ret && failed_mirror)
524                 repair_eb_io_failure(fs_info, eb, failed_mirror);
525
526         return ret;
527 }
528
529 /*
530  * checksum a dirty tree block before IO.  This has extra checks to make sure
531  * we only fill in the checksum field in the first page of a multi-page block
532  */
533
534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
535 {
536         u64 start = page_offset(page);
537         u64 found_start;
538         struct extent_buffer *eb;
539
540         eb = (struct extent_buffer *)page->private;
541         if (page != eb->pages[0])
542                 return 0;
543
544         found_start = btrfs_header_bytenr(eb);
545         /*
546          * Please do not consolidate these warnings into a single if.
547          * It is useful to know what went wrong.
548          */
549         if (WARN_ON(found_start != start))
550                 return -EUCLEAN;
551         if (WARN_ON(!PageUptodate(page)))
552                 return -EUCLEAN;
553
554         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
555                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
556
557         return csum_tree_block(fs_info, eb, 0);
558 }
559
560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
561                                  struct extent_buffer *eb)
562 {
563         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564         u8 fsid[BTRFS_FSID_SIZE];
565         int ret = 1;
566
567         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568         while (fs_devices) {
569                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
570                         ret = 0;
571                         break;
572                 }
573                 fs_devices = fs_devices->seed;
574         }
575         return ret;
576 }
577
578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579                                       u64 phy_offset, struct page *page,
580                                       u64 start, u64 end, int mirror)
581 {
582         u64 found_start;
583         int found_level;
584         struct extent_buffer *eb;
585         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586         struct btrfs_fs_info *fs_info = root->fs_info;
587         int ret = 0;
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         eb = (struct extent_buffer *)page->private;
594
595         /* the pending IO might have been the only thing that kept this buffer
596          * in memory.  Make sure we have a ref for all this other checks
597          */
598         extent_buffer_get(eb);
599
600         reads_done = atomic_dec_and_test(&eb->io_pages);
601         if (!reads_done)
602                 goto err;
603
604         eb->read_mirror = mirror;
605         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606                 ret = -EIO;
607                 goto err;
608         }
609
610         found_start = btrfs_header_bytenr(eb);
611         if (found_start != eb->start) {
612                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
613                              eb->start, found_start);
614                 ret = -EIO;
615                 goto err;
616         }
617         if (check_tree_block_fsid(fs_info, eb)) {
618                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
619                              eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         found_level = btrfs_header_level(eb);
624         if (found_level >= BTRFS_MAX_LEVEL) {
625                 btrfs_err(fs_info, "bad tree block level %d on %llu",
626                           (int)btrfs_header_level(eb), eb->start);
627                 ret = -EIO;
628                 goto err;
629         }
630
631         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632                                        eb, found_level);
633
634         ret = csum_tree_block(fs_info, eb, 1);
635         if (ret)
636                 goto err;
637
638         /*
639          * If this is a leaf block and it is corrupt, set the corrupt bit so
640          * that we don't try and read the other copies of this block, just
641          * return -EIO.
642          */
643         if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
644                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645                 ret = -EIO;
646         }
647
648         if (found_level > 0 && btrfs_check_node(fs_info, eb))
649                 ret = -EIO;
650
651         if (!ret)
652                 set_extent_buffer_uptodate(eb);
653 err:
654         if (reads_done &&
655             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
656                 btree_readahead_hook(eb, ret);
657
658         if (ret) {
659                 /*
660                  * our io error hook is going to dec the io pages
661                  * again, we have to make sure it has something
662                  * to decrement
663                  */
664                 atomic_inc(&eb->io_pages);
665                 clear_extent_buffer_uptodate(eb);
666         }
667         free_extent_buffer(eb);
668 out:
669         return ret;
670 }
671
672 static int btree_io_failed_hook(struct page *page, int failed_mirror)
673 {
674         struct extent_buffer *eb;
675
676         eb = (struct extent_buffer *)page->private;
677         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
678         eb->read_mirror = failed_mirror;
679         atomic_dec(&eb->io_pages);
680         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681                 btree_readahead_hook(eb, -EIO);
682         return -EIO;    /* we fixed nothing */
683 }
684
685 static void end_workqueue_bio(struct bio *bio)
686 {
687         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
688         struct btrfs_fs_info *fs_info;
689         struct btrfs_workqueue *wq;
690         btrfs_work_func_t func;
691
692         fs_info = end_io_wq->info;
693         end_io_wq->status = bio->bi_status;
694
695         if (bio_op(bio) == REQ_OP_WRITE) {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
697                         wq = fs_info->endio_meta_write_workers;
698                         func = btrfs_endio_meta_write_helper;
699                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
700                         wq = fs_info->endio_freespace_worker;
701                         func = btrfs_freespace_write_helper;
702                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
703                         wq = fs_info->endio_raid56_workers;
704                         func = btrfs_endio_raid56_helper;
705                 } else {
706                         wq = fs_info->endio_write_workers;
707                         func = btrfs_endio_write_helper;
708                 }
709         } else {
710                 if (unlikely(end_io_wq->metadata ==
711                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
712                         wq = fs_info->endio_repair_workers;
713                         func = btrfs_endio_repair_helper;
714                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
715                         wq = fs_info->endio_raid56_workers;
716                         func = btrfs_endio_raid56_helper;
717                 } else if (end_io_wq->metadata) {
718                         wq = fs_info->endio_meta_workers;
719                         func = btrfs_endio_meta_helper;
720                 } else {
721                         wq = fs_info->endio_workers;
722                         func = btrfs_endio_helper;
723                 }
724         }
725
726         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
727         btrfs_queue_work(wq, &end_io_wq->work);
728 }
729
730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
731                         enum btrfs_wq_endio_type metadata)
732 {
733         struct btrfs_end_io_wq *end_io_wq;
734
735         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
736         if (!end_io_wq)
737                 return BLK_STS_RESOURCE;
738
739         end_io_wq->private = bio->bi_private;
740         end_io_wq->end_io = bio->bi_end_io;
741         end_io_wq->info = info;
742         end_io_wq->status = 0;
743         end_io_wq->bio = bio;
744         end_io_wq->metadata = metadata;
745
746         bio->bi_private = end_io_wq;
747         bio->bi_end_io = end_workqueue_bio;
748         return 0;
749 }
750
751 static void run_one_async_start(struct btrfs_work *work)
752 {
753         struct async_submit_bio *async;
754         blk_status_t ret;
755
756         async = container_of(work, struct  async_submit_bio, work);
757         ret = async->submit_bio_start(async->private_data, async->bio,
758                                       async->bio_offset);
759         if (ret)
760                 async->status = ret;
761 }
762
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766
767         async = container_of(work, struct  async_submit_bio, work);
768
769         /* If an error occurred we just want to clean up the bio and move on */
770         if (async->status) {
771                 async->bio->bi_status = async->status;
772                 bio_endio(async->bio);
773                 return;
774         }
775
776         btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
777 }
778
779 static void run_one_async_free(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782
783         async = container_of(work, struct  async_submit_bio, work);
784         kfree(async);
785 }
786
787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
788                                  int mirror_num, unsigned long bio_flags,
789                                  u64 bio_offset, void *private_data,
790                                  extent_submit_bio_start_t *submit_bio_start)
791 {
792         struct async_submit_bio *async;
793
794         async = kmalloc(sizeof(*async), GFP_NOFS);
795         if (!async)
796                 return BLK_STS_RESOURCE;
797
798         async->private_data = private_data;
799         async->bio = bio;
800         async->mirror_num = mirror_num;
801         async->submit_bio_start = submit_bio_start;
802
803         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
804                         run_one_async_done, run_one_async_free);
805
806         async->bio_offset = bio_offset;
807
808         async->status = 0;
809
810         if (op_is_sync(bio->bi_opf))
811                 btrfs_set_work_high_priority(&async->work);
812
813         btrfs_queue_work(fs_info->workers, &async->work);
814         return 0;
815 }
816
817 static blk_status_t btree_csum_one_bio(struct bio *bio)
818 {
819         struct bio_vec *bvec;
820         struct btrfs_root *root;
821         int i, ret = 0;
822
823         ASSERT(!bio_flagged(bio, BIO_CLONED));
824         bio_for_each_segment_all(bvec, bio, i) {
825                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
826                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
827                 if (ret)
828                         break;
829         }
830
831         return errno_to_blk_status(ret);
832 }
833
834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
835                                              u64 bio_offset)
836 {
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         return btree_csum_one_bio(bio);
842 }
843
844 static int check_async_write(struct btrfs_inode *bi)
845 {
846         if (atomic_read(&bi->sync_writers))
847                 return 0;
848 #ifdef CONFIG_X86
849         if (static_cpu_has(X86_FEATURE_XMM4_2))
850                 return 0;
851 #endif
852         return 1;
853 }
854
855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
856                                           int mirror_num, unsigned long bio_flags,
857                                           u64 bio_offset)
858 {
859         struct inode *inode = private_data;
860         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
861         int async = check_async_write(BTRFS_I(inode));
862         blk_status_t ret;
863
864         if (bio_op(bio) != REQ_OP_WRITE) {
865                 /*
866                  * called for a read, do the setup so that checksum validation
867                  * can happen in the async kernel threads
868                  */
869                 ret = btrfs_bio_wq_end_io(fs_info, bio,
870                                           BTRFS_WQ_ENDIO_METADATA);
871                 if (ret)
872                         goto out_w_error;
873                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
874         } else if (!async) {
875                 ret = btree_csum_one_bio(bio);
876                 if (ret)
877                         goto out_w_error;
878                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879         } else {
880                 /*
881                  * kthread helpers are used to submit writes so that
882                  * checksumming can happen in parallel across all CPUs
883                  */
884                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
885                                           bio_offset, private_data,
886                                           btree_submit_bio_start);
887         }
888
889         if (ret)
890                 goto out_w_error;
891         return 0;
892
893 out_w_error:
894         bio->bi_status = ret;
895         bio_endio(bio);
896         return ret;
897 }
898
899 #ifdef CONFIG_MIGRATION
900 static int btree_migratepage(struct address_space *mapping,
901                         struct page *newpage, struct page *page,
902                         enum migrate_mode mode)
903 {
904         /*
905          * we can't safely write a btree page from here,
906          * we haven't done the locking hook
907          */
908         if (PageDirty(page))
909                 return -EAGAIN;
910         /*
911          * Buffers may be managed in a filesystem specific way.
912          * We must have no buffers or drop them.
913          */
914         if (page_has_private(page) &&
915             !try_to_release_page(page, GFP_KERNEL))
916                 return -EAGAIN;
917         return migrate_page(mapping, newpage, page, mode);
918 }
919 #endif
920
921
922 static int btree_writepages(struct address_space *mapping,
923                             struct writeback_control *wbc)
924 {
925         struct btrfs_fs_info *fs_info;
926         int ret;
927
928         if (wbc->sync_mode == WB_SYNC_NONE) {
929
930                 if (wbc->for_kupdate)
931                         return 0;
932
933                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
934                 /* this is a bit racy, but that's ok */
935                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
936                                              BTRFS_DIRTY_METADATA_THRESH,
937                                              fs_info->dirty_metadata_batch);
938                 if (ret < 0)
939                         return 0;
940         }
941         return btree_write_cache_pages(mapping, wbc);
942 }
943
944 static int btree_readpage(struct file *file, struct page *page)
945 {
946         struct extent_io_tree *tree;
947         tree = &BTRFS_I(page->mapping->host)->io_tree;
948         return extent_read_full_page(tree, page, btree_get_extent, 0);
949 }
950
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953         if (PageWriteback(page) || PageDirty(page))
954                 return 0;
955
956         return try_release_extent_buffer(page);
957 }
958
959 static void btree_invalidatepage(struct page *page, unsigned int offset,
960                                  unsigned int length)
961 {
962         struct extent_io_tree *tree;
963         tree = &BTRFS_I(page->mapping->host)->io_tree;
964         extent_invalidatepage(tree, page, offset);
965         btree_releasepage(page, GFP_NOFS);
966         if (PagePrivate(page)) {
967                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968                            "page private not zero on page %llu",
969                            (unsigned long long)page_offset(page));
970                 ClearPagePrivate(page);
971                 set_page_private(page, 0);
972                 put_page(page);
973         }
974 }
975
976 static int btree_set_page_dirty(struct page *page)
977 {
978 #ifdef DEBUG
979         struct extent_buffer *eb;
980
981         BUG_ON(!PagePrivate(page));
982         eb = (struct extent_buffer *)page->private;
983         BUG_ON(!eb);
984         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
985         BUG_ON(!atomic_read(&eb->refs));
986         btrfs_assert_tree_locked(eb);
987 #endif
988         return __set_page_dirty_nobuffers(page);
989 }
990
991 static const struct address_space_operations btree_aops = {
992         .readpage       = btree_readpage,
993         .writepages     = btree_writepages,
994         .releasepage    = btree_releasepage,
995         .invalidatepage = btree_invalidatepage,
996 #ifdef CONFIG_MIGRATION
997         .migratepage    = btree_migratepage,
998 #endif
999         .set_page_dirty = btree_set_page_dirty,
1000 };
1001
1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1003 {
1004         struct extent_buffer *buf = NULL;
1005         struct inode *btree_inode = fs_info->btree_inode;
1006
1007         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1008         if (IS_ERR(buf))
1009                 return;
1010         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1011                                  buf, WAIT_NONE, 0);
1012         free_extent_buffer(buf);
1013 }
1014
1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1016                          int mirror_num, struct extent_buffer **eb)
1017 {
1018         struct extent_buffer *buf = NULL;
1019         struct inode *btree_inode = fs_info->btree_inode;
1020         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021         int ret;
1022
1023         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1024         if (IS_ERR(buf))
1025                 return 0;
1026
1027         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028
1029         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1030                                        mirror_num);
1031         if (ret) {
1032                 free_extent_buffer(buf);
1033                 return ret;
1034         }
1035
1036         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037                 free_extent_buffer(buf);
1038                 return -EIO;
1039         } else if (extent_buffer_uptodate(buf)) {
1040                 *eb = buf;
1041         } else {
1042                 free_extent_buffer(buf);
1043         }
1044         return 0;
1045 }
1046
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048                                                 struct btrfs_fs_info *fs_info,
1049                                                 u64 bytenr)
1050 {
1051         if (btrfs_is_testing(fs_info))
1052                 return alloc_test_extent_buffer(fs_info, bytenr);
1053         return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056
1057 int btrfs_write_tree_block(struct extent_buffer *buf)
1058 {
1059         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1060                                         buf->start + buf->len - 1);
1061 }
1062
1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1064 {
1065         filemap_fdatawait_range(buf->pages[0]->mapping,
1066                                 buf->start, buf->start + buf->len - 1);
1067 }
1068
1069 /*
1070  * Read tree block at logical address @bytenr and do variant basic but critical
1071  * verification.
1072  *
1073  * @parent_transid:     expected transid of this tree block, skip check if 0
1074  * @level:              expected level, mandatory check
1075  * @first_key:          expected key in slot 0, skip check if NULL
1076  */
1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1078                                       u64 parent_transid, int level,
1079                                       struct btrfs_key *first_key)
1080 {
1081         struct extent_buffer *buf = NULL;
1082         int ret;
1083
1084         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1085         if (IS_ERR(buf))
1086                 return buf;
1087
1088         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1089                                              level, first_key);
1090         if (ret) {
1091                 free_extent_buffer(buf);
1092                 return ERR_PTR(ret);
1093         }
1094         return buf;
1095
1096 }
1097
1098 void clean_tree_block(struct btrfs_fs_info *fs_info,
1099                       struct extent_buffer *buf)
1100 {
1101         if (btrfs_header_generation(buf) ==
1102             fs_info->running_transaction->transid) {
1103                 btrfs_assert_tree_locked(buf);
1104
1105                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1106                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1107                                                  -buf->len,
1108                                                  fs_info->dirty_metadata_batch);
1109                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1110                         btrfs_set_lock_blocking(buf);
1111                         clear_extent_buffer_dirty(buf);
1112                 }
1113         }
1114 }
1115
1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1117 {
1118         struct btrfs_subvolume_writers *writers;
1119         int ret;
1120
1121         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1122         if (!writers)
1123                 return ERR_PTR(-ENOMEM);
1124
1125         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1126         if (ret < 0) {
1127                 kfree(writers);
1128                 return ERR_PTR(ret);
1129         }
1130
1131         init_waitqueue_head(&writers->wait);
1132         return writers;
1133 }
1134
1135 static void
1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1137 {
1138         percpu_counter_destroy(&writers->counter);
1139         kfree(writers);
1140 }
1141
1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1143                          u64 objectid)
1144 {
1145         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1146         root->node = NULL;
1147         root->commit_root = NULL;
1148         root->state = 0;
1149         root->orphan_cleanup_state = 0;
1150
1151         root->objectid = objectid;
1152         root->last_trans = 0;
1153         root->highest_objectid = 0;
1154         root->nr_delalloc_inodes = 0;
1155         root->nr_ordered_extents = 0;
1156         root->inode_tree = RB_ROOT;
1157         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1158         root->block_rsv = NULL;
1159
1160         INIT_LIST_HEAD(&root->dirty_list);
1161         INIT_LIST_HEAD(&root->root_list);
1162         INIT_LIST_HEAD(&root->delalloc_inodes);
1163         INIT_LIST_HEAD(&root->delalloc_root);
1164         INIT_LIST_HEAD(&root->ordered_extents);
1165         INIT_LIST_HEAD(&root->ordered_root);
1166         INIT_LIST_HEAD(&root->logged_list[0]);
1167         INIT_LIST_HEAD(&root->logged_list[1]);
1168         spin_lock_init(&root->inode_lock);
1169         spin_lock_init(&root->delalloc_lock);
1170         spin_lock_init(&root->ordered_extent_lock);
1171         spin_lock_init(&root->accounting_lock);
1172         spin_lock_init(&root->log_extents_lock[0]);
1173         spin_lock_init(&root->log_extents_lock[1]);
1174         spin_lock_init(&root->qgroup_meta_rsv_lock);
1175         mutex_init(&root->objectid_mutex);
1176         mutex_init(&root->log_mutex);
1177         mutex_init(&root->ordered_extent_mutex);
1178         mutex_init(&root->delalloc_mutex);
1179         init_waitqueue_head(&root->log_writer_wait);
1180         init_waitqueue_head(&root->log_commit_wait[0]);
1181         init_waitqueue_head(&root->log_commit_wait[1]);
1182         INIT_LIST_HEAD(&root->log_ctxs[0]);
1183         INIT_LIST_HEAD(&root->log_ctxs[1]);
1184         atomic_set(&root->log_commit[0], 0);
1185         atomic_set(&root->log_commit[1], 0);
1186         atomic_set(&root->log_writers, 0);
1187         atomic_set(&root->log_batch, 0);
1188         refcount_set(&root->refs, 1);
1189         atomic_set(&root->will_be_snapshotted, 0);
1190         atomic_set(&root->snapshot_force_cow, 0);
1191         root->log_transid = 0;
1192         root->log_transid_committed = -1;
1193         root->last_log_commit = 0;
1194         if (!dummy)
1195                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1196
1197         memset(&root->root_key, 0, sizeof(root->root_key));
1198         memset(&root->root_item, 0, sizeof(root->root_item));
1199         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1200         if (!dummy)
1201                 root->defrag_trans_start = fs_info->generation;
1202         else
1203                 root->defrag_trans_start = 0;
1204         root->root_key.objectid = objectid;
1205         root->anon_dev = 0;
1206
1207         spin_lock_init(&root->root_item_lock);
1208 }
1209
1210 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1211                 gfp_t flags)
1212 {
1213         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1214         if (root)
1215                 root->fs_info = fs_info;
1216         return root;
1217 }
1218
1219 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220 /* Should only be used by the testing infrastructure */
1221 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1222 {
1223         struct btrfs_root *root;
1224
1225         if (!fs_info)
1226                 return ERR_PTR(-EINVAL);
1227
1228         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1229         if (!root)
1230                 return ERR_PTR(-ENOMEM);
1231
1232         /* We don't use the stripesize in selftest, set it as sectorsize */
1233         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1234         root->alloc_bytenr = 0;
1235
1236         return root;
1237 }
1238 #endif
1239
1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1241                                      struct btrfs_fs_info *fs_info,
1242                                      u64 objectid)
1243 {
1244         struct extent_buffer *leaf;
1245         struct btrfs_root *tree_root = fs_info->tree_root;
1246         struct btrfs_root *root;
1247         struct btrfs_key key;
1248         int ret = 0;
1249         uuid_le uuid = NULL_UUID_LE;
1250
1251         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252         if (!root)
1253                 return ERR_PTR(-ENOMEM);
1254
1255         __setup_root(root, fs_info, objectid);
1256         root->root_key.objectid = objectid;
1257         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1258         root->root_key.offset = 0;
1259
1260         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1261         if (IS_ERR(leaf)) {
1262                 ret = PTR_ERR(leaf);
1263                 leaf = NULL;
1264                 goto fail;
1265         }
1266
1267         root->node = leaf;
1268         btrfs_mark_buffer_dirty(leaf);
1269
1270         root->commit_root = btrfs_root_node(root);
1271         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1272
1273         root->root_item.flags = 0;
1274         root->root_item.byte_limit = 0;
1275         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1276         btrfs_set_root_generation(&root->root_item, trans->transid);
1277         btrfs_set_root_level(&root->root_item, 0);
1278         btrfs_set_root_refs(&root->root_item, 1);
1279         btrfs_set_root_used(&root->root_item, leaf->len);
1280         btrfs_set_root_last_snapshot(&root->root_item, 0);
1281         btrfs_set_root_dirid(&root->root_item, 0);
1282         if (is_fstree(objectid))
1283                 uuid_le_gen(&uuid);
1284         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1285         root->root_item.drop_level = 0;
1286
1287         key.objectid = objectid;
1288         key.type = BTRFS_ROOT_ITEM_KEY;
1289         key.offset = 0;
1290         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1291         if (ret)
1292                 goto fail;
1293
1294         btrfs_tree_unlock(leaf);
1295
1296         return root;
1297
1298 fail:
1299         if (leaf) {
1300                 btrfs_tree_unlock(leaf);
1301                 free_extent_buffer(root->commit_root);
1302                 free_extent_buffer(leaf);
1303         }
1304         kfree(root);
1305
1306         return ERR_PTR(ret);
1307 }
1308
1309 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1310                                          struct btrfs_fs_info *fs_info)
1311 {
1312         struct btrfs_root *root;
1313         struct extent_buffer *leaf;
1314
1315         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1316         if (!root)
1317                 return ERR_PTR(-ENOMEM);
1318
1319         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320
1321         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1322         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1324
1325         /*
1326          * DON'T set REF_COWS for log trees
1327          *
1328          * log trees do not get reference counted because they go away
1329          * before a real commit is actually done.  They do store pointers
1330          * to file data extents, and those reference counts still get
1331          * updated (along with back refs to the log tree).
1332          */
1333
1334         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1335                         NULL, 0, 0, 0);
1336         if (IS_ERR(leaf)) {
1337                 kfree(root);
1338                 return ERR_CAST(leaf);
1339         }
1340
1341         root->node = leaf;
1342
1343         btrfs_mark_buffer_dirty(root->node);
1344         btrfs_tree_unlock(root->node);
1345         return root;
1346 }
1347
1348 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1349                              struct btrfs_fs_info *fs_info)
1350 {
1351         struct btrfs_root *log_root;
1352
1353         log_root = alloc_log_tree(trans, fs_info);
1354         if (IS_ERR(log_root))
1355                 return PTR_ERR(log_root);
1356         WARN_ON(fs_info->log_root_tree);
1357         fs_info->log_root_tree = log_root;
1358         return 0;
1359 }
1360
1361 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1362                        struct btrfs_root *root)
1363 {
1364         struct btrfs_fs_info *fs_info = root->fs_info;
1365         struct btrfs_root *log_root;
1366         struct btrfs_inode_item *inode_item;
1367
1368         log_root = alloc_log_tree(trans, fs_info);
1369         if (IS_ERR(log_root))
1370                 return PTR_ERR(log_root);
1371
1372         log_root->last_trans = trans->transid;
1373         log_root->root_key.offset = root->root_key.objectid;
1374
1375         inode_item = &log_root->root_item.inode;
1376         btrfs_set_stack_inode_generation(inode_item, 1);
1377         btrfs_set_stack_inode_size(inode_item, 3);
1378         btrfs_set_stack_inode_nlink(inode_item, 1);
1379         btrfs_set_stack_inode_nbytes(inode_item,
1380                                      fs_info->nodesize);
1381         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1382
1383         btrfs_set_root_node(&log_root->root_item, log_root->node);
1384
1385         WARN_ON(root->log_root);
1386         root->log_root = log_root;
1387         root->log_transid = 0;
1388         root->log_transid_committed = -1;
1389         root->last_log_commit = 0;
1390         return 0;
1391 }
1392
1393 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1394                                                struct btrfs_key *key)
1395 {
1396         struct btrfs_root *root;
1397         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1398         struct btrfs_path *path;
1399         u64 generation;
1400         int ret;
1401         int level;
1402
1403         path = btrfs_alloc_path();
1404         if (!path)
1405                 return ERR_PTR(-ENOMEM);
1406
1407         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1408         if (!root) {
1409                 ret = -ENOMEM;
1410                 goto alloc_fail;
1411         }
1412
1413         __setup_root(root, fs_info, key->objectid);
1414
1415         ret = btrfs_find_root(tree_root, key, path,
1416                               &root->root_item, &root->root_key);
1417         if (ret) {
1418                 if (ret > 0)
1419                         ret = -ENOENT;
1420                 goto find_fail;
1421         }
1422
1423         generation = btrfs_root_generation(&root->root_item);
1424         level = btrfs_root_level(&root->root_item);
1425         root->node = read_tree_block(fs_info,
1426                                      btrfs_root_bytenr(&root->root_item),
1427                                      generation, level, NULL);
1428         if (IS_ERR(root->node)) {
1429                 ret = PTR_ERR(root->node);
1430                 goto find_fail;
1431         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1432                 ret = -EIO;
1433                 free_extent_buffer(root->node);
1434                 goto find_fail;
1435         }
1436         root->commit_root = btrfs_root_node(root);
1437 out:
1438         btrfs_free_path(path);
1439         return root;
1440
1441 find_fail:
1442         kfree(root);
1443 alloc_fail:
1444         root = ERR_PTR(ret);
1445         goto out;
1446 }
1447
1448 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1449                                       struct btrfs_key *location)
1450 {
1451         struct btrfs_root *root;
1452
1453         root = btrfs_read_tree_root(tree_root, location);
1454         if (IS_ERR(root))
1455                 return root;
1456
1457         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1458                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1459                 btrfs_check_and_init_root_item(&root->root_item);
1460         }
1461
1462         return root;
1463 }
1464
1465 int btrfs_init_fs_root(struct btrfs_root *root)
1466 {
1467         int ret;
1468         struct btrfs_subvolume_writers *writers;
1469
1470         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1471         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1472                                         GFP_NOFS);
1473         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1474                 ret = -ENOMEM;
1475                 goto fail;
1476         }
1477
1478         writers = btrfs_alloc_subvolume_writers();
1479         if (IS_ERR(writers)) {
1480                 ret = PTR_ERR(writers);
1481                 goto fail;
1482         }
1483         root->subv_writers = writers;
1484
1485         btrfs_init_free_ino_ctl(root);
1486         spin_lock_init(&root->ino_cache_lock);
1487         init_waitqueue_head(&root->ino_cache_wait);
1488
1489         ret = get_anon_bdev(&root->anon_dev);
1490         if (ret)
1491                 goto fail;
1492
1493         mutex_lock(&root->objectid_mutex);
1494         ret = btrfs_find_highest_objectid(root,
1495                                         &root->highest_objectid);
1496         if (ret) {
1497                 mutex_unlock(&root->objectid_mutex);
1498                 goto fail;
1499         }
1500
1501         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1502
1503         mutex_unlock(&root->objectid_mutex);
1504
1505         return 0;
1506 fail:
1507         /* The caller is responsible to call btrfs_free_fs_root */
1508         return ret;
1509 }
1510
1511 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1512                                         u64 root_id)
1513 {
1514         struct btrfs_root *root;
1515
1516         spin_lock(&fs_info->fs_roots_radix_lock);
1517         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1518                                  (unsigned long)root_id);
1519         spin_unlock(&fs_info->fs_roots_radix_lock);
1520         return root;
1521 }
1522
1523 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1524                          struct btrfs_root *root)
1525 {
1526         int ret;
1527
1528         ret = radix_tree_preload(GFP_NOFS);
1529         if (ret)
1530                 return ret;
1531
1532         spin_lock(&fs_info->fs_roots_radix_lock);
1533         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1534                                 (unsigned long)root->root_key.objectid,
1535                                 root);
1536         if (ret == 0)
1537                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1538         spin_unlock(&fs_info->fs_roots_radix_lock);
1539         radix_tree_preload_end();
1540
1541         return ret;
1542 }
1543
1544 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1545                                      struct btrfs_key *location,
1546                                      bool check_ref)
1547 {
1548         struct btrfs_root *root;
1549         struct btrfs_path *path;
1550         struct btrfs_key key;
1551         int ret;
1552
1553         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1554                 return fs_info->tree_root;
1555         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1556                 return fs_info->extent_root;
1557         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1558                 return fs_info->chunk_root;
1559         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1560                 return fs_info->dev_root;
1561         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1562                 return fs_info->csum_root;
1563         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1564                 return fs_info->quota_root ? fs_info->quota_root :
1565                                              ERR_PTR(-ENOENT);
1566         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1567                 return fs_info->uuid_root ? fs_info->uuid_root :
1568                                             ERR_PTR(-ENOENT);
1569         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1570                 return fs_info->free_space_root ? fs_info->free_space_root :
1571                                                   ERR_PTR(-ENOENT);
1572 again:
1573         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1574         if (root) {
1575                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1576                         return ERR_PTR(-ENOENT);
1577                 return root;
1578         }
1579
1580         root = btrfs_read_fs_root(fs_info->tree_root, location);
1581         if (IS_ERR(root))
1582                 return root;
1583
1584         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1585                 ret = -ENOENT;
1586                 goto fail;
1587         }
1588
1589         ret = btrfs_init_fs_root(root);
1590         if (ret)
1591                 goto fail;
1592
1593         path = btrfs_alloc_path();
1594         if (!path) {
1595                 ret = -ENOMEM;
1596                 goto fail;
1597         }
1598         key.objectid = BTRFS_ORPHAN_OBJECTID;
1599         key.type = BTRFS_ORPHAN_ITEM_KEY;
1600         key.offset = location->objectid;
1601
1602         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1603         btrfs_free_path(path);
1604         if (ret < 0)
1605                 goto fail;
1606         if (ret == 0)
1607                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1608
1609         ret = btrfs_insert_fs_root(fs_info, root);
1610         if (ret) {
1611                 if (ret == -EEXIST) {
1612                         btrfs_free_fs_root(root);
1613                         goto again;
1614                 }
1615                 goto fail;
1616         }
1617         return root;
1618 fail:
1619         btrfs_free_fs_root(root);
1620         return ERR_PTR(ret);
1621 }
1622
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626         int ret = 0;
1627         struct btrfs_device *device;
1628         struct backing_dev_info *bdi;
1629
1630         rcu_read_lock();
1631         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632                 if (!device->bdev)
1633                         continue;
1634                 bdi = device->bdev->bd_bdi;
1635                 if (bdi_congested(bdi, bdi_bits)) {
1636                         ret = 1;
1637                         break;
1638                 }
1639         }
1640         rcu_read_unlock();
1641         return ret;
1642 }
1643
1644 /*
1645  * called by the kthread helper functions to finally call the bio end_io
1646  * functions.  This is where read checksum verification actually happens
1647  */
1648 static void end_workqueue_fn(struct btrfs_work *work)
1649 {
1650         struct bio *bio;
1651         struct btrfs_end_io_wq *end_io_wq;
1652
1653         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1654         bio = end_io_wq->bio;
1655
1656         bio->bi_status = end_io_wq->status;
1657         bio->bi_private = end_io_wq->private;
1658         bio->bi_end_io = end_io_wq->end_io;
1659         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1660         bio_endio(bio);
1661 }
1662
1663 static int cleaner_kthread(void *arg)
1664 {
1665         struct btrfs_root *root = arg;
1666         struct btrfs_fs_info *fs_info = root->fs_info;
1667         int again;
1668         struct btrfs_trans_handle *trans;
1669
1670         do {
1671                 again = 0;
1672
1673                 /* Make the cleaner go to sleep early. */
1674                 if (btrfs_need_cleaner_sleep(fs_info))
1675                         goto sleep;
1676
1677                 /*
1678                  * Do not do anything if we might cause open_ctree() to block
1679                  * before we have finished mounting the filesystem.
1680                  */
1681                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1682                         goto sleep;
1683
1684                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1685                         goto sleep;
1686
1687                 /*
1688                  * Avoid the problem that we change the status of the fs
1689                  * during the above check and trylock.
1690                  */
1691                 if (btrfs_need_cleaner_sleep(fs_info)) {
1692                         mutex_unlock(&fs_info->cleaner_mutex);
1693                         goto sleep;
1694                 }
1695
1696                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1697                 btrfs_run_delayed_iputs(fs_info);
1698                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1699
1700                 again = btrfs_clean_one_deleted_snapshot(root);
1701                 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703                 /*
1704                  * The defragger has dealt with the R/O remount and umount,
1705                  * needn't do anything special here.
1706                  */
1707                 btrfs_run_defrag_inodes(fs_info);
1708
1709                 /*
1710                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711                  * with relocation (btrfs_relocate_chunk) and relocation
1712                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715                  * unused block groups.
1716                  */
1717                 btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719                 if (!again) {
1720                         set_current_state(TASK_INTERRUPTIBLE);
1721                         if (!kthread_should_stop())
1722                                 schedule();
1723                         __set_current_state(TASK_RUNNING);
1724                 }
1725         } while (!kthread_should_stop());
1726
1727         /*
1728          * Transaction kthread is stopped before us and wakes us up.
1729          * However we might have started a new transaction and COWed some
1730          * tree blocks when deleting unused block groups for example. So
1731          * make sure we commit the transaction we started to have a clean
1732          * shutdown when evicting the btree inode - if it has dirty pages
1733          * when we do the final iput() on it, eviction will trigger a
1734          * writeback for it which will fail with null pointer dereferences
1735          * since work queues and other resources were already released and
1736          * destroyed by the time the iput/eviction/writeback is made.
1737          */
1738         trans = btrfs_attach_transaction(root);
1739         if (IS_ERR(trans)) {
1740                 if (PTR_ERR(trans) != -ENOENT)
1741                         btrfs_err(fs_info,
1742                                   "cleaner transaction attach returned %ld",
1743                                   PTR_ERR(trans));
1744         } else {
1745                 int ret;
1746
1747                 ret = btrfs_commit_transaction(trans);
1748                 if (ret)
1749                         btrfs_err(fs_info,
1750                                   "cleaner open transaction commit returned %d",
1751                                   ret);
1752         }
1753
1754         return 0;
1755 }
1756
1757 static int transaction_kthread(void *arg)
1758 {
1759         struct btrfs_root *root = arg;
1760         struct btrfs_fs_info *fs_info = root->fs_info;
1761         struct btrfs_trans_handle *trans;
1762         struct btrfs_transaction *cur;
1763         u64 transid;
1764         time64_t now;
1765         unsigned long delay;
1766         bool cannot_commit;
1767
1768         do {
1769                 cannot_commit = false;
1770                 delay = HZ * fs_info->commit_interval;
1771                 mutex_lock(&fs_info->transaction_kthread_mutex);
1772
1773                 spin_lock(&fs_info->trans_lock);
1774                 cur = fs_info->running_transaction;
1775                 if (!cur) {
1776                         spin_unlock(&fs_info->trans_lock);
1777                         goto sleep;
1778                 }
1779
1780                 now = ktime_get_seconds();
1781                 if (cur->state < TRANS_STATE_BLOCKED &&
1782                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1783                     (now < cur->start_time ||
1784                      now - cur->start_time < fs_info->commit_interval)) {
1785                         spin_unlock(&fs_info->trans_lock);
1786                         delay = HZ * 5;
1787                         goto sleep;
1788                 }
1789                 transid = cur->transid;
1790                 spin_unlock(&fs_info->trans_lock);
1791
1792                 /* If the file system is aborted, this will always fail. */
1793                 trans = btrfs_attach_transaction(root);
1794                 if (IS_ERR(trans)) {
1795                         if (PTR_ERR(trans) != -ENOENT)
1796                                 cannot_commit = true;
1797                         goto sleep;
1798                 }
1799                 if (transid == trans->transid) {
1800                         btrfs_commit_transaction(trans);
1801                 } else {
1802                         btrfs_end_transaction(trans);
1803                 }
1804 sleep:
1805                 wake_up_process(fs_info->cleaner_kthread);
1806                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1807
1808                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1809                                       &fs_info->fs_state)))
1810                         btrfs_cleanup_transaction(fs_info);
1811                 if (!kthread_should_stop() &&
1812                                 (!btrfs_transaction_blocked(fs_info) ||
1813                                  cannot_commit))
1814                         schedule_timeout_interruptible(delay);
1815         } while (!kthread_should_stop());
1816         return 0;
1817 }
1818
1819 /*
1820  * this will find the highest generation in the array of
1821  * root backups.  The index of the highest array is returned,
1822  * or -1 if we can't find anything.
1823  *
1824  * We check to make sure the array is valid by comparing the
1825  * generation of the latest  root in the array with the generation
1826  * in the super block.  If they don't match we pitch it.
1827  */
1828 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1829 {
1830         u64 cur;
1831         int newest_index = -1;
1832         struct btrfs_root_backup *root_backup;
1833         int i;
1834
1835         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1836                 root_backup = info->super_copy->super_roots + i;
1837                 cur = btrfs_backup_tree_root_gen(root_backup);
1838                 if (cur == newest_gen)
1839                         newest_index = i;
1840         }
1841
1842         /* check to see if we actually wrapped around */
1843         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1844                 root_backup = info->super_copy->super_roots;
1845                 cur = btrfs_backup_tree_root_gen(root_backup);
1846                 if (cur == newest_gen)
1847                         newest_index = 0;
1848         }
1849         return newest_index;
1850 }
1851
1852
1853 /*
1854  * find the oldest backup so we know where to store new entries
1855  * in the backup array.  This will set the backup_root_index
1856  * field in the fs_info struct
1857  */
1858 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1859                                      u64 newest_gen)
1860 {
1861         int newest_index = -1;
1862
1863         newest_index = find_newest_super_backup(info, newest_gen);
1864         /* if there was garbage in there, just move along */
1865         if (newest_index == -1) {
1866                 info->backup_root_index = 0;
1867         } else {
1868                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869         }
1870 }
1871
1872 /*
1873  * copy all the root pointers into the super backup array.
1874  * this will bump the backup pointer by one when it is
1875  * done
1876  */
1877 static void backup_super_roots(struct btrfs_fs_info *info)
1878 {
1879         int next_backup;
1880         struct btrfs_root_backup *root_backup;
1881         int last_backup;
1882
1883         next_backup = info->backup_root_index;
1884         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1885                 BTRFS_NUM_BACKUP_ROOTS;
1886
1887         /*
1888          * just overwrite the last backup if we're at the same generation
1889          * this happens only at umount
1890          */
1891         root_backup = info->super_for_commit->super_roots + last_backup;
1892         if (btrfs_backup_tree_root_gen(root_backup) ==
1893             btrfs_header_generation(info->tree_root->node))
1894                 next_backup = last_backup;
1895
1896         root_backup = info->super_for_commit->super_roots + next_backup;
1897
1898         /*
1899          * make sure all of our padding and empty slots get zero filled
1900          * regardless of which ones we use today
1901          */
1902         memset(root_backup, 0, sizeof(*root_backup));
1903
1904         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905
1906         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1907         btrfs_set_backup_tree_root_gen(root_backup,
1908                                btrfs_header_generation(info->tree_root->node));
1909
1910         btrfs_set_backup_tree_root_level(root_backup,
1911                                btrfs_header_level(info->tree_root->node));
1912
1913         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1914         btrfs_set_backup_chunk_root_gen(root_backup,
1915                                btrfs_header_generation(info->chunk_root->node));
1916         btrfs_set_backup_chunk_root_level(root_backup,
1917                                btrfs_header_level(info->chunk_root->node));
1918
1919         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1920         btrfs_set_backup_extent_root_gen(root_backup,
1921                                btrfs_header_generation(info->extent_root->node));
1922         btrfs_set_backup_extent_root_level(root_backup,
1923                                btrfs_header_level(info->extent_root->node));
1924
1925         /*
1926          * we might commit during log recovery, which happens before we set
1927          * the fs_root.  Make sure it is valid before we fill it in.
1928          */
1929         if (info->fs_root && info->fs_root->node) {
1930                 btrfs_set_backup_fs_root(root_backup,
1931                                          info->fs_root->node->start);
1932                 btrfs_set_backup_fs_root_gen(root_backup,
1933                                btrfs_header_generation(info->fs_root->node));
1934                 btrfs_set_backup_fs_root_level(root_backup,
1935                                btrfs_header_level(info->fs_root->node));
1936         }
1937
1938         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1939         btrfs_set_backup_dev_root_gen(root_backup,
1940                                btrfs_header_generation(info->dev_root->node));
1941         btrfs_set_backup_dev_root_level(root_backup,
1942                                        btrfs_header_level(info->dev_root->node));
1943
1944         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1945         btrfs_set_backup_csum_root_gen(root_backup,
1946                                btrfs_header_generation(info->csum_root->node));
1947         btrfs_set_backup_csum_root_level(root_backup,
1948                                btrfs_header_level(info->csum_root->node));
1949
1950         btrfs_set_backup_total_bytes(root_backup,
1951                              btrfs_super_total_bytes(info->super_copy));
1952         btrfs_set_backup_bytes_used(root_backup,
1953                              btrfs_super_bytes_used(info->super_copy));
1954         btrfs_set_backup_num_devices(root_backup,
1955                              btrfs_super_num_devices(info->super_copy));
1956
1957         /*
1958          * if we don't copy this out to the super_copy, it won't get remembered
1959          * for the next commit
1960          */
1961         memcpy(&info->super_copy->super_roots,
1962                &info->super_for_commit->super_roots,
1963                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1964 }
1965
1966 /*
1967  * this copies info out of the root backup array and back into
1968  * the in-memory super block.  It is meant to help iterate through
1969  * the array, so you send it the number of backups you've already
1970  * tried and the last backup index you used.
1971  *
1972  * this returns -1 when it has tried all the backups
1973  */
1974 static noinline int next_root_backup(struct btrfs_fs_info *info,
1975                                      struct btrfs_super_block *super,
1976                                      int *num_backups_tried, int *backup_index)
1977 {
1978         struct btrfs_root_backup *root_backup;
1979         int newest = *backup_index;
1980
1981         if (*num_backups_tried == 0) {
1982                 u64 gen = btrfs_super_generation(super);
1983
1984                 newest = find_newest_super_backup(info, gen);
1985                 if (newest == -1)
1986                         return -1;
1987
1988                 *backup_index = newest;
1989                 *num_backups_tried = 1;
1990         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1991                 /* we've tried all the backups, all done */
1992                 return -1;
1993         } else {
1994                 /* jump to the next oldest backup */
1995                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1996                         BTRFS_NUM_BACKUP_ROOTS;
1997                 *backup_index = newest;
1998                 *num_backups_tried += 1;
1999         }
2000         root_backup = super->super_roots + newest;
2001
2002         btrfs_set_super_generation(super,
2003                                    btrfs_backup_tree_root_gen(root_backup));
2004         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2005         btrfs_set_super_root_level(super,
2006                                    btrfs_backup_tree_root_level(root_backup));
2007         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2008
2009         /*
2010          * fixme: the total bytes and num_devices need to match or we should
2011          * need a fsck
2012          */
2013         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2014         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2015         return 0;
2016 }
2017
2018 /* helper to cleanup workers */
2019 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2020 {
2021         btrfs_destroy_workqueue(fs_info->fixup_workers);
2022         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2023         btrfs_destroy_workqueue(fs_info->workers);
2024         btrfs_destroy_workqueue(fs_info->endio_workers);
2025         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2026         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2027         btrfs_destroy_workqueue(fs_info->rmw_workers);
2028         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2029         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2030         btrfs_destroy_workqueue(fs_info->submit_workers);
2031         btrfs_destroy_workqueue(fs_info->delayed_workers);
2032         btrfs_destroy_workqueue(fs_info->caching_workers);
2033         btrfs_destroy_workqueue(fs_info->readahead_workers);
2034         btrfs_destroy_workqueue(fs_info->flush_workers);
2035         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2036         btrfs_destroy_workqueue(fs_info->extent_workers);
2037         /*
2038          * Now that all other work queues are destroyed, we can safely destroy
2039          * the queues used for metadata I/O, since tasks from those other work
2040          * queues can do metadata I/O operations.
2041          */
2042         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2043         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2044 }
2045
2046 static void free_root_extent_buffers(struct btrfs_root *root)
2047 {
2048         if (root) {
2049                 free_extent_buffer(root->node);
2050                 free_extent_buffer(root->commit_root);
2051                 root->node = NULL;
2052                 root->commit_root = NULL;
2053         }
2054 }
2055
2056 /* helper to cleanup tree roots */
2057 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2058 {
2059         free_root_extent_buffers(info->tree_root);
2060
2061         free_root_extent_buffers(info->dev_root);
2062         free_root_extent_buffers(info->extent_root);
2063         free_root_extent_buffers(info->csum_root);
2064         free_root_extent_buffers(info->quota_root);
2065         free_root_extent_buffers(info->uuid_root);
2066         if (chunk_root)
2067                 free_root_extent_buffers(info->chunk_root);
2068         free_root_extent_buffers(info->free_space_root);
2069 }
2070
2071 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2072 {
2073         int ret;
2074         struct btrfs_root *gang[8];
2075         int i;
2076
2077         while (!list_empty(&fs_info->dead_roots)) {
2078                 gang[0] = list_entry(fs_info->dead_roots.next,
2079                                      struct btrfs_root, root_list);
2080                 list_del(&gang[0]->root_list);
2081
2082                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2083                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2084                 } else {
2085                         free_extent_buffer(gang[0]->node);
2086                         free_extent_buffer(gang[0]->commit_root);
2087                         btrfs_put_fs_root(gang[0]);
2088                 }
2089         }
2090
2091         while (1) {
2092                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2093                                              (void **)gang, 0,
2094                                              ARRAY_SIZE(gang));
2095                 if (!ret)
2096                         break;
2097                 for (i = 0; i < ret; i++)
2098                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2099         }
2100
2101         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2102                 btrfs_free_log_root_tree(NULL, fs_info);
2103                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2104         }
2105 }
2106
2107 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2108 {
2109         mutex_init(&fs_info->scrub_lock);
2110         atomic_set(&fs_info->scrubs_running, 0);
2111         atomic_set(&fs_info->scrub_pause_req, 0);
2112         atomic_set(&fs_info->scrubs_paused, 0);
2113         atomic_set(&fs_info->scrub_cancel_req, 0);
2114         init_waitqueue_head(&fs_info->scrub_pause_wait);
2115         fs_info->scrub_workers_refcnt = 0;
2116 }
2117
2118 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2119 {
2120         spin_lock_init(&fs_info->balance_lock);
2121         mutex_init(&fs_info->balance_mutex);
2122         atomic_set(&fs_info->balance_pause_req, 0);
2123         atomic_set(&fs_info->balance_cancel_req, 0);
2124         fs_info->balance_ctl = NULL;
2125         init_waitqueue_head(&fs_info->balance_wait_q);
2126 }
2127
2128 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2129 {
2130         struct inode *inode = fs_info->btree_inode;
2131
2132         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2133         set_nlink(inode, 1);
2134         /*
2135          * we set the i_size on the btree inode to the max possible int.
2136          * the real end of the address space is determined by all of
2137          * the devices in the system
2138          */
2139         inode->i_size = OFFSET_MAX;
2140         inode->i_mapping->a_ops = &btree_aops;
2141
2142         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2143         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2144         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2145         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2146
2147         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2148
2149         BTRFS_I(inode)->root = fs_info->tree_root;
2150         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2151         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2152         btrfs_insert_inode_hash(inode);
2153 }
2154
2155 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2156 {
2157         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2158         rwlock_init(&fs_info->dev_replace.lock);
2159         atomic_set(&fs_info->dev_replace.read_locks, 0);
2160         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2161         init_waitqueue_head(&fs_info->replace_wait);
2162         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2163 }
2164
2165 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2166 {
2167         spin_lock_init(&fs_info->qgroup_lock);
2168         mutex_init(&fs_info->qgroup_ioctl_lock);
2169         fs_info->qgroup_tree = RB_ROOT;
2170         fs_info->qgroup_op_tree = RB_ROOT;
2171         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2172         fs_info->qgroup_seq = 1;
2173         fs_info->qgroup_ulist = NULL;
2174         fs_info->qgroup_rescan_running = false;
2175         mutex_init(&fs_info->qgroup_rescan_lock);
2176 }
2177
2178 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2179                 struct btrfs_fs_devices *fs_devices)
2180 {
2181         u32 max_active = fs_info->thread_pool_size;
2182         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2183
2184         fs_info->workers =
2185                 btrfs_alloc_workqueue(fs_info, "worker",
2186                                       flags | WQ_HIGHPRI, max_active, 16);
2187
2188         fs_info->delalloc_workers =
2189                 btrfs_alloc_workqueue(fs_info, "delalloc",
2190                                       flags, max_active, 2);
2191
2192         fs_info->flush_workers =
2193                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2194                                       flags, max_active, 0);
2195
2196         fs_info->caching_workers =
2197                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2198
2199         /*
2200          * a higher idle thresh on the submit workers makes it much more
2201          * likely that bios will be send down in a sane order to the
2202          * devices
2203          */
2204         fs_info->submit_workers =
2205                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2206                                       min_t(u64, fs_devices->num_devices,
2207                                             max_active), 64);
2208
2209         fs_info->fixup_workers =
2210                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2211
2212         /*
2213          * endios are largely parallel and should have a very
2214          * low idle thresh
2215          */
2216         fs_info->endio_workers =
2217                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2218         fs_info->endio_meta_workers =
2219                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2220                                       max_active, 4);
2221         fs_info->endio_meta_write_workers =
2222                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2223                                       max_active, 2);
2224         fs_info->endio_raid56_workers =
2225                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2226                                       max_active, 4);
2227         fs_info->endio_repair_workers =
2228                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2229         fs_info->rmw_workers =
2230                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2231         fs_info->endio_write_workers =
2232                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2233                                       max_active, 2);
2234         fs_info->endio_freespace_worker =
2235                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2236                                       max_active, 0);
2237         fs_info->delayed_workers =
2238                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2239                                       max_active, 0);
2240         fs_info->readahead_workers =
2241                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2242                                       max_active, 2);
2243         fs_info->qgroup_rescan_workers =
2244                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2245         fs_info->extent_workers =
2246                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2247                                       min_t(u64, fs_devices->num_devices,
2248                                             max_active), 8);
2249
2250         if (!(fs_info->workers && fs_info->delalloc_workers &&
2251               fs_info->submit_workers && fs_info->flush_workers &&
2252               fs_info->endio_workers && fs_info->endio_meta_workers &&
2253               fs_info->endio_meta_write_workers &&
2254               fs_info->endio_repair_workers &&
2255               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2256               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2257               fs_info->caching_workers && fs_info->readahead_workers &&
2258               fs_info->fixup_workers && fs_info->delayed_workers &&
2259               fs_info->extent_workers &&
2260               fs_info->qgroup_rescan_workers)) {
2261                 return -ENOMEM;
2262         }
2263
2264         return 0;
2265 }
2266
2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2268                             struct btrfs_fs_devices *fs_devices)
2269 {
2270         int ret;
2271         struct btrfs_root *log_tree_root;
2272         struct btrfs_super_block *disk_super = fs_info->super_copy;
2273         u64 bytenr = btrfs_super_log_root(disk_super);
2274         int level = btrfs_super_log_root_level(disk_super);
2275
2276         if (fs_devices->rw_devices == 0) {
2277                 btrfs_warn(fs_info, "log replay required on RO media");
2278                 return -EIO;
2279         }
2280
2281         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2282         if (!log_tree_root)
2283                 return -ENOMEM;
2284
2285         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2286
2287         log_tree_root->node = read_tree_block(fs_info, bytenr,
2288                                               fs_info->generation + 1,
2289                                               level, NULL);
2290         if (IS_ERR(log_tree_root->node)) {
2291                 btrfs_warn(fs_info, "failed to read log tree");
2292                 ret = PTR_ERR(log_tree_root->node);
2293                 kfree(log_tree_root);
2294                 return ret;
2295         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2296                 btrfs_err(fs_info, "failed to read log tree");
2297                 free_extent_buffer(log_tree_root->node);
2298                 kfree(log_tree_root);
2299                 return -EIO;
2300         }
2301         /* returns with log_tree_root freed on success */
2302         ret = btrfs_recover_log_trees(log_tree_root);
2303         if (ret) {
2304                 btrfs_handle_fs_error(fs_info, ret,
2305                                       "Failed to recover log tree");
2306                 free_extent_buffer(log_tree_root->node);
2307                 kfree(log_tree_root);
2308                 return ret;
2309         }
2310
2311         if (sb_rdonly(fs_info->sb)) {
2312                 ret = btrfs_commit_super(fs_info);
2313                 if (ret)
2314                         return ret;
2315         }
2316
2317         return 0;
2318 }
2319
2320 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2321 {
2322         struct btrfs_root *tree_root = fs_info->tree_root;
2323         struct btrfs_root *root;
2324         struct btrfs_key location;
2325         int ret;
2326
2327         BUG_ON(!fs_info->tree_root);
2328
2329         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2330         location.type = BTRFS_ROOT_ITEM_KEY;
2331         location.offset = 0;
2332
2333         root = btrfs_read_tree_root(tree_root, &location);
2334         if (IS_ERR(root)) {
2335                 ret = PTR_ERR(root);
2336                 goto out;
2337         }
2338         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339         fs_info->extent_root = root;
2340
2341         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2342         root = btrfs_read_tree_root(tree_root, &location);
2343         if (IS_ERR(root)) {
2344                 ret = PTR_ERR(root);
2345                 goto out;
2346         }
2347         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348         fs_info->dev_root = root;
2349         btrfs_init_devices_late(fs_info);
2350
2351         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2352         root = btrfs_read_tree_root(tree_root, &location);
2353         if (IS_ERR(root)) {
2354                 ret = PTR_ERR(root);
2355                 goto out;
2356         }
2357         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358         fs_info->csum_root = root;
2359
2360         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2361         root = btrfs_read_tree_root(tree_root, &location);
2362         if (!IS_ERR(root)) {
2363                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2365                 fs_info->quota_root = root;
2366         }
2367
2368         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2369         root = btrfs_read_tree_root(tree_root, &location);
2370         if (IS_ERR(root)) {
2371                 ret = PTR_ERR(root);
2372                 if (ret != -ENOENT)
2373                         goto out;
2374         } else {
2375                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376                 fs_info->uuid_root = root;
2377         }
2378
2379         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2380                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2381                 root = btrfs_read_tree_root(tree_root, &location);
2382                 if (IS_ERR(root)) {
2383                         ret = PTR_ERR(root);
2384                         goto out;
2385                 }
2386                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387                 fs_info->free_space_root = root;
2388         }
2389
2390         return 0;
2391 out:
2392         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2393                    location.objectid, ret);
2394         return ret;
2395 }
2396
2397 /*
2398  * Real super block validation
2399  * NOTE: super csum type and incompat features will not be checked here.
2400  *
2401  * @sb:         super block to check
2402  * @mirror_num: the super block number to check its bytenr:
2403  *              0       the primary (1st) sb
2404  *              1, 2    2nd and 3rd backup copy
2405  *             -1       skip bytenr check
2406  */
2407 static int validate_super(struct btrfs_fs_info *fs_info,
2408                             struct btrfs_super_block *sb, int mirror_num)
2409 {
2410         u64 nodesize = btrfs_super_nodesize(sb);
2411         u64 sectorsize = btrfs_super_sectorsize(sb);
2412         int ret = 0;
2413
2414         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2415                 btrfs_err(fs_info, "no valid FS found");
2416                 ret = -EINVAL;
2417         }
2418         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2419                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2420                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2421                 ret = -EINVAL;
2422         }
2423         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2425                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2426                 ret = -EINVAL;
2427         }
2428         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2430                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2431                 ret = -EINVAL;
2432         }
2433         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2435                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2436                 ret = -EINVAL;
2437         }
2438
2439         /*
2440          * Check sectorsize and nodesize first, other check will need it.
2441          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2442          */
2443         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2444             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2445                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2446                 ret = -EINVAL;
2447         }
2448         /* Only PAGE SIZE is supported yet */
2449         if (sectorsize != PAGE_SIZE) {
2450                 btrfs_err(fs_info,
2451                         "sectorsize %llu not supported yet, only support %lu",
2452                         sectorsize, PAGE_SIZE);
2453                 ret = -EINVAL;
2454         }
2455         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2456             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2457                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2458                 ret = -EINVAL;
2459         }
2460         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2461                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2462                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2463                 ret = -EINVAL;
2464         }
2465
2466         /* Root alignment check */
2467         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2468                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2469                            btrfs_super_root(sb));
2470                 ret = -EINVAL;
2471         }
2472         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2473                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2474                            btrfs_super_chunk_root(sb));
2475                 ret = -EINVAL;
2476         }
2477         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2478                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2479                            btrfs_super_log_root(sb));
2480                 ret = -EINVAL;
2481         }
2482
2483         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2484                 btrfs_err(fs_info,
2485                            "dev_item UUID does not match fsid: %pU != %pU",
2486                            fs_info->fsid, sb->dev_item.fsid);
2487                 ret = -EINVAL;
2488         }
2489
2490         /*
2491          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2492          * done later
2493          */
2494         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2495                 btrfs_err(fs_info, "bytes_used is too small %llu",
2496                           btrfs_super_bytes_used(sb));
2497                 ret = -EINVAL;
2498         }
2499         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2500                 btrfs_err(fs_info, "invalid stripesize %u",
2501                           btrfs_super_stripesize(sb));
2502                 ret = -EINVAL;
2503         }
2504         if (btrfs_super_num_devices(sb) > (1UL << 31))
2505                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2506                            btrfs_super_num_devices(sb));
2507         if (btrfs_super_num_devices(sb) == 0) {
2508                 btrfs_err(fs_info, "number of devices is 0");
2509                 ret = -EINVAL;
2510         }
2511
2512         if (mirror_num >= 0 &&
2513             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2514                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2515                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2516                 ret = -EINVAL;
2517         }
2518
2519         /*
2520          * Obvious sys_chunk_array corruptions, it must hold at least one key
2521          * and one chunk
2522          */
2523         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2524                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2525                           btrfs_super_sys_array_size(sb),
2526                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2527                 ret = -EINVAL;
2528         }
2529         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2530                         + sizeof(struct btrfs_chunk)) {
2531                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2532                           btrfs_super_sys_array_size(sb),
2533                           sizeof(struct btrfs_disk_key)
2534                           + sizeof(struct btrfs_chunk));
2535                 ret = -EINVAL;
2536         }
2537
2538         /*
2539          * The generation is a global counter, we'll trust it more than the others
2540          * but it's still possible that it's the one that's wrong.
2541          */
2542         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2543                 btrfs_warn(fs_info,
2544                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2545                         btrfs_super_generation(sb),
2546                         btrfs_super_chunk_root_generation(sb));
2547         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2548             && btrfs_super_cache_generation(sb) != (u64)-1)
2549                 btrfs_warn(fs_info,
2550                         "suspicious: generation < cache_generation: %llu < %llu",
2551                         btrfs_super_generation(sb),
2552                         btrfs_super_cache_generation(sb));
2553
2554         return ret;
2555 }
2556
2557 /*
2558  * Validation of super block at mount time.
2559  * Some checks already done early at mount time, like csum type and incompat
2560  * flags will be skipped.
2561  */
2562 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2563 {
2564         return validate_super(fs_info, fs_info->super_copy, 0);
2565 }
2566
2567 /*
2568  * Validation of super block at write time.
2569  * Some checks like bytenr check will be skipped as their values will be
2570  * overwritten soon.
2571  * Extra checks like csum type and incompat flags will be done here.
2572  */
2573 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2574                                       struct btrfs_super_block *sb)
2575 {
2576         int ret;
2577
2578         ret = validate_super(fs_info, sb, -1);
2579         if (ret < 0)
2580                 goto out;
2581         if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2582                 ret = -EUCLEAN;
2583                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2584                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2585                 goto out;
2586         }
2587         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2588                 ret = -EUCLEAN;
2589                 btrfs_err(fs_info,
2590                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2591                           btrfs_super_incompat_flags(sb),
2592                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2593                 goto out;
2594         }
2595 out:
2596         if (ret < 0)
2597                 btrfs_err(fs_info,
2598                 "super block corruption detected before writing it to disk");
2599         return ret;
2600 }
2601
2602 int open_ctree(struct super_block *sb,
2603                struct btrfs_fs_devices *fs_devices,
2604                char *options)
2605 {
2606         u32 sectorsize;
2607         u32 nodesize;
2608         u32 stripesize;
2609         u64 generation;
2610         u64 features;
2611         struct btrfs_key location;
2612         struct buffer_head *bh;
2613         struct btrfs_super_block *disk_super;
2614         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2615         struct btrfs_root *tree_root;
2616         struct btrfs_root *chunk_root;
2617         int ret;
2618         int err = -EINVAL;
2619         int num_backups_tried = 0;
2620         int backup_index = 0;
2621         int clear_free_space_tree = 0;
2622         int level;
2623
2624         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2626         if (!tree_root || !chunk_root) {
2627                 err = -ENOMEM;
2628                 goto fail;
2629         }
2630
2631         ret = init_srcu_struct(&fs_info->subvol_srcu);
2632         if (ret) {
2633                 err = ret;
2634                 goto fail;
2635         }
2636
2637         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2638         if (ret) {
2639                 err = ret;
2640                 goto fail_srcu;
2641         }
2642         fs_info->dirty_metadata_batch = PAGE_SIZE *
2643                                         (1 + ilog2(nr_cpu_ids));
2644
2645         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2646         if (ret) {
2647                 err = ret;
2648                 goto fail_dirty_metadata_bytes;
2649         }
2650
2651         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2652         if (ret) {
2653                 err = ret;
2654                 goto fail_delalloc_bytes;
2655         }
2656
2657         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2658         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2659         INIT_LIST_HEAD(&fs_info->trans_list);
2660         INIT_LIST_HEAD(&fs_info->dead_roots);
2661         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2662         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2663         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2664         INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2665         spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2666         spin_lock_init(&fs_info->delalloc_root_lock);
2667         spin_lock_init(&fs_info->trans_lock);
2668         spin_lock_init(&fs_info->fs_roots_radix_lock);
2669         spin_lock_init(&fs_info->delayed_iput_lock);
2670         spin_lock_init(&fs_info->defrag_inodes_lock);
2671         spin_lock_init(&fs_info->tree_mod_seq_lock);
2672         spin_lock_init(&fs_info->super_lock);
2673         spin_lock_init(&fs_info->qgroup_op_lock);
2674         spin_lock_init(&fs_info->buffer_lock);
2675         spin_lock_init(&fs_info->unused_bgs_lock);
2676         rwlock_init(&fs_info->tree_mod_log_lock);
2677         mutex_init(&fs_info->unused_bg_unpin_mutex);
2678         mutex_init(&fs_info->delete_unused_bgs_mutex);
2679         mutex_init(&fs_info->reloc_mutex);
2680         mutex_init(&fs_info->delalloc_root_mutex);
2681         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2682         seqlock_init(&fs_info->profiles_lock);
2683
2684         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2685         INIT_LIST_HEAD(&fs_info->space_info);
2686         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2687         INIT_LIST_HEAD(&fs_info->unused_bgs);
2688         btrfs_mapping_init(&fs_info->mapping_tree);
2689         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2690                              BTRFS_BLOCK_RSV_GLOBAL);
2691         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2692         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2693         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2694         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2695                              BTRFS_BLOCK_RSV_DELOPS);
2696         atomic_set(&fs_info->async_delalloc_pages, 0);
2697         atomic_set(&fs_info->defrag_running, 0);
2698         atomic_set(&fs_info->qgroup_op_seq, 0);
2699         atomic_set(&fs_info->reada_works_cnt, 0);
2700         atomic64_set(&fs_info->tree_mod_seq, 0);
2701         fs_info->sb = sb;
2702         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2703         fs_info->metadata_ratio = 0;
2704         fs_info->defrag_inodes = RB_ROOT;
2705         atomic64_set(&fs_info->free_chunk_space, 0);
2706         fs_info->tree_mod_log = RB_ROOT;
2707         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2708         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2709         /* readahead state */
2710         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2711         spin_lock_init(&fs_info->reada_lock);
2712         btrfs_init_ref_verify(fs_info);
2713
2714         fs_info->thread_pool_size = min_t(unsigned long,
2715                                           num_online_cpus() + 2, 8);
2716
2717         INIT_LIST_HEAD(&fs_info->ordered_roots);
2718         spin_lock_init(&fs_info->ordered_root_lock);
2719
2720         fs_info->btree_inode = new_inode(sb);
2721         if (!fs_info->btree_inode) {
2722                 err = -ENOMEM;
2723                 goto fail_bio_counter;
2724         }
2725         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2726
2727         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2728                                         GFP_KERNEL);
2729         if (!fs_info->delayed_root) {
2730                 err = -ENOMEM;
2731                 goto fail_iput;
2732         }
2733         btrfs_init_delayed_root(fs_info->delayed_root);
2734
2735         btrfs_init_scrub(fs_info);
2736 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2737         fs_info->check_integrity_print_mask = 0;
2738 #endif
2739         btrfs_init_balance(fs_info);
2740         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2741
2742         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2743         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2744
2745         btrfs_init_btree_inode(fs_info);
2746
2747         spin_lock_init(&fs_info->block_group_cache_lock);
2748         fs_info->block_group_cache_tree = RB_ROOT;
2749         fs_info->first_logical_byte = (u64)-1;
2750
2751         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2752         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2753         fs_info->pinned_extents = &fs_info->freed_extents[0];
2754         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2755
2756         mutex_init(&fs_info->ordered_operations_mutex);
2757         mutex_init(&fs_info->tree_log_mutex);
2758         mutex_init(&fs_info->chunk_mutex);
2759         mutex_init(&fs_info->transaction_kthread_mutex);
2760         mutex_init(&fs_info->cleaner_mutex);
2761         mutex_init(&fs_info->ro_block_group_mutex);
2762         init_rwsem(&fs_info->commit_root_sem);
2763         init_rwsem(&fs_info->cleanup_work_sem);
2764         init_rwsem(&fs_info->subvol_sem);
2765         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2766
2767         btrfs_init_dev_replace_locks(fs_info);
2768         btrfs_init_qgroup(fs_info);
2769
2770         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2771         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2772
2773         init_waitqueue_head(&fs_info->transaction_throttle);
2774         init_waitqueue_head(&fs_info->transaction_wait);
2775         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2776         init_waitqueue_head(&fs_info->async_submit_wait);
2777
2778         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2779
2780         /* Usable values until the real ones are cached from the superblock */
2781         fs_info->nodesize = 4096;
2782         fs_info->sectorsize = 4096;
2783         fs_info->stripesize = 4096;
2784
2785         ret = btrfs_alloc_stripe_hash_table(fs_info);
2786         if (ret) {
2787                 err = ret;
2788                 goto fail_alloc;
2789         }
2790
2791         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2792
2793         invalidate_bdev(fs_devices->latest_bdev);
2794
2795         /*
2796          * Read super block and check the signature bytes only
2797          */
2798         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2799         if (IS_ERR(bh)) {
2800                 err = PTR_ERR(bh);
2801                 goto fail_alloc;
2802         }
2803
2804         /*
2805          * We want to check superblock checksum, the type is stored inside.
2806          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2807          */
2808         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2809                 btrfs_err(fs_info, "superblock checksum mismatch");
2810                 err = -EINVAL;
2811                 brelse(bh);
2812                 goto fail_alloc;
2813         }
2814
2815         /*
2816          * super_copy is zeroed at allocation time and we never touch the
2817          * following bytes up to INFO_SIZE, the checksum is calculated from
2818          * the whole block of INFO_SIZE
2819          */
2820         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2821         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2822                sizeof(*fs_info->super_for_commit));
2823         brelse(bh);
2824
2825         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2826
2827         ret = btrfs_validate_mount_super(fs_info);
2828         if (ret) {
2829                 btrfs_err(fs_info, "superblock contains fatal errors");
2830                 err = -EINVAL;
2831                 goto fail_alloc;
2832         }
2833
2834         disk_super = fs_info->super_copy;
2835         if (!btrfs_super_root(disk_super))
2836                 goto fail_alloc;
2837
2838         /* check FS state, whether FS is broken. */
2839         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2840                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2841
2842         /*
2843          * run through our array of backup supers and setup
2844          * our ring pointer to the oldest one
2845          */
2846         generation = btrfs_super_generation(disk_super);
2847         find_oldest_super_backup(fs_info, generation);
2848
2849         /*
2850          * In the long term, we'll store the compression type in the super
2851          * block, and it'll be used for per file compression control.
2852          */
2853         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2854
2855         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2856         if (ret) {
2857                 err = ret;
2858                 goto fail_alloc;
2859         }
2860
2861         features = btrfs_super_incompat_flags(disk_super) &
2862                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2863         if (features) {
2864                 btrfs_err(fs_info,
2865                     "cannot mount because of unsupported optional features (%llx)",
2866                     features);
2867                 err = -EINVAL;
2868                 goto fail_alloc;
2869         }
2870
2871         features = btrfs_super_incompat_flags(disk_super);
2872         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2873         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2874                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2875         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2876                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2877
2878         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2879                 btrfs_info(fs_info, "has skinny extents");
2880
2881         /*
2882          * flag our filesystem as having big metadata blocks if
2883          * they are bigger than the page size
2884          */
2885         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2886                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2887                         btrfs_info(fs_info,
2888                                 "flagging fs with big metadata feature");
2889                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2890         }
2891
2892         nodesize = btrfs_super_nodesize(disk_super);
2893         sectorsize = btrfs_super_sectorsize(disk_super);
2894         stripesize = sectorsize;
2895         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2896         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2897
2898         /* Cache block sizes */
2899         fs_info->nodesize = nodesize;
2900         fs_info->sectorsize = sectorsize;
2901         fs_info->stripesize = stripesize;
2902
2903         /*
2904          * mixed block groups end up with duplicate but slightly offset
2905          * extent buffers for the same range.  It leads to corruptions
2906          */
2907         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2908             (sectorsize != nodesize)) {
2909                 btrfs_err(fs_info,
2910 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2911                         nodesize, sectorsize);
2912                 goto fail_alloc;
2913         }
2914
2915         /*
2916          * Needn't use the lock because there is no other task which will
2917          * update the flag.
2918          */
2919         btrfs_set_super_incompat_flags(disk_super, features);
2920
2921         features = btrfs_super_compat_ro_flags(disk_super) &
2922                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2923         if (!sb_rdonly(sb) && features) {
2924                 btrfs_err(fs_info,
2925         "cannot mount read-write because of unsupported optional features (%llx)",
2926                        features);
2927                 err = -EINVAL;
2928                 goto fail_alloc;
2929         }
2930
2931         ret = btrfs_init_workqueues(fs_info, fs_devices);
2932         if (ret) {
2933                 err = ret;
2934                 goto fail_sb_buffer;
2935         }
2936
2937         sb->s_bdi->congested_fn = btrfs_congested_fn;
2938         sb->s_bdi->congested_data = fs_info;
2939         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2940         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2941         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2942         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2943
2944         sb->s_blocksize = sectorsize;
2945         sb->s_blocksize_bits = blksize_bits(sectorsize);
2946         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2947
2948         mutex_lock(&fs_info->chunk_mutex);
2949         ret = btrfs_read_sys_array(fs_info);
2950         mutex_unlock(&fs_info->chunk_mutex);
2951         if (ret) {
2952                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2953                 goto fail_sb_buffer;
2954         }
2955
2956         generation = btrfs_super_chunk_root_generation(disk_super);
2957         level = btrfs_super_chunk_root_level(disk_super);
2958
2959         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2960
2961         chunk_root->node = read_tree_block(fs_info,
2962                                            btrfs_super_chunk_root(disk_super),
2963                                            generation, level, NULL);
2964         if (IS_ERR(chunk_root->node) ||
2965             !extent_buffer_uptodate(chunk_root->node)) {
2966                 btrfs_err(fs_info, "failed to read chunk root");
2967                 if (!IS_ERR(chunk_root->node))
2968                         free_extent_buffer(chunk_root->node);
2969                 chunk_root->node = NULL;
2970                 goto fail_tree_roots;
2971         }
2972         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2973         chunk_root->commit_root = btrfs_root_node(chunk_root);
2974
2975         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2976            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2977
2978         ret = btrfs_read_chunk_tree(fs_info);
2979         if (ret) {
2980                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2981                 goto fail_tree_roots;
2982         }
2983
2984         /*
2985          * Keep the devid that is marked to be the target device for the
2986          * device replace procedure
2987          */
2988         btrfs_free_extra_devids(fs_devices, 0);
2989
2990         if (!fs_devices->latest_bdev) {
2991                 btrfs_err(fs_info, "failed to read devices");
2992                 goto fail_tree_roots;
2993         }
2994
2995 retry_root_backup:
2996         generation = btrfs_super_generation(disk_super);
2997         level = btrfs_super_root_level(disk_super);
2998
2999         tree_root->node = read_tree_block(fs_info,
3000                                           btrfs_super_root(disk_super),
3001                                           generation, level, NULL);
3002         if (IS_ERR(tree_root->node) ||
3003             !extent_buffer_uptodate(tree_root->node)) {
3004                 btrfs_warn(fs_info, "failed to read tree root");
3005                 if (!IS_ERR(tree_root->node))
3006                         free_extent_buffer(tree_root->node);
3007                 tree_root->node = NULL;
3008                 goto recovery_tree_root;
3009         }
3010
3011         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3012         tree_root->commit_root = btrfs_root_node(tree_root);
3013         btrfs_set_root_refs(&tree_root->root_item, 1);
3014
3015         mutex_lock(&tree_root->objectid_mutex);
3016         ret = btrfs_find_highest_objectid(tree_root,
3017                                         &tree_root->highest_objectid);
3018         if (ret) {
3019                 mutex_unlock(&tree_root->objectid_mutex);
3020                 goto recovery_tree_root;
3021         }
3022
3023         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3024
3025         mutex_unlock(&tree_root->objectid_mutex);
3026
3027         ret = btrfs_read_roots(fs_info);
3028         if (ret)
3029                 goto recovery_tree_root;
3030
3031         fs_info->generation = generation;
3032         fs_info->last_trans_committed = generation;
3033
3034         ret = btrfs_verify_dev_extents(fs_info);
3035         if (ret) {
3036                 btrfs_err(fs_info,
3037                           "failed to verify dev extents against chunks: %d",
3038                           ret);
3039                 goto fail_block_groups;
3040         }
3041         ret = btrfs_recover_balance(fs_info);
3042         if (ret) {
3043                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3044                 goto fail_block_groups;
3045         }
3046
3047         ret = btrfs_init_dev_stats(fs_info);
3048         if (ret) {
3049                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3050                 goto fail_block_groups;
3051         }
3052
3053         ret = btrfs_init_dev_replace(fs_info);
3054         if (ret) {
3055                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3056                 goto fail_block_groups;
3057         }
3058
3059         btrfs_free_extra_devids(fs_devices, 1);
3060
3061         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3062         if (ret) {
3063                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3064                                 ret);
3065                 goto fail_block_groups;
3066         }
3067
3068         ret = btrfs_sysfs_add_device(fs_devices);
3069         if (ret) {
3070                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3071                                 ret);
3072                 goto fail_fsdev_sysfs;
3073         }
3074
3075         ret = btrfs_sysfs_add_mounted(fs_info);
3076         if (ret) {
3077                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3078                 goto fail_fsdev_sysfs;
3079         }
3080
3081         ret = btrfs_init_space_info(fs_info);
3082         if (ret) {
3083                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3084                 goto fail_sysfs;
3085         }
3086
3087         ret = btrfs_read_block_groups(fs_info);
3088         if (ret) {
3089                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3090                 goto fail_sysfs;
3091         }
3092
3093         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3094                 btrfs_warn(fs_info,
3095                 "writeable mount is not allowed due to too many missing devices");
3096                 goto fail_sysfs;
3097         }
3098
3099         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3100                                                "btrfs-cleaner");
3101         if (IS_ERR(fs_info->cleaner_kthread))
3102                 goto fail_sysfs;
3103
3104         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3105                                                    tree_root,
3106                                                    "btrfs-transaction");
3107         if (IS_ERR(fs_info->transaction_kthread))
3108                 goto fail_cleaner;
3109
3110         if (!btrfs_test_opt(fs_info, NOSSD) &&
3111             !fs_info->fs_devices->rotating) {
3112                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3113         }
3114
3115         /*
3116          * Mount does not set all options immediately, we can do it now and do
3117          * not have to wait for transaction commit
3118          */
3119         btrfs_apply_pending_changes(fs_info);
3120
3121 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3122         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3123                 ret = btrfsic_mount(fs_info, fs_devices,
3124                                     btrfs_test_opt(fs_info,
3125                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3126                                     1 : 0,
3127                                     fs_info->check_integrity_print_mask);
3128                 if (ret)
3129                         btrfs_warn(fs_info,
3130                                 "failed to initialize integrity check module: %d",
3131                                 ret);
3132         }
3133 #endif
3134         ret = btrfs_read_qgroup_config(fs_info);
3135         if (ret)
3136                 goto fail_trans_kthread;
3137
3138         if (btrfs_build_ref_tree(fs_info))
3139                 btrfs_err(fs_info, "couldn't build ref tree");
3140
3141         /* do not make disk changes in broken FS or nologreplay is given */
3142         if (btrfs_super_log_root(disk_super) != 0 &&
3143             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3144                 ret = btrfs_replay_log(fs_info, fs_devices);
3145                 if (ret) {
3146                         err = ret;
3147                         goto fail_qgroup;
3148                 }
3149         }
3150
3151         ret = btrfs_find_orphan_roots(fs_info);
3152         if (ret)
3153                 goto fail_qgroup;
3154
3155         if (!sb_rdonly(sb)) {
3156                 ret = btrfs_cleanup_fs_roots(fs_info);
3157                 if (ret)
3158                         goto fail_qgroup;
3159
3160                 mutex_lock(&fs_info->cleaner_mutex);
3161                 ret = btrfs_recover_relocation(tree_root);
3162                 mutex_unlock(&fs_info->cleaner_mutex);
3163                 if (ret < 0) {
3164                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3165                                         ret);
3166                         err = -EINVAL;
3167                         goto fail_qgroup;
3168                 }
3169         }
3170
3171         location.objectid = BTRFS_FS_TREE_OBJECTID;
3172         location.type = BTRFS_ROOT_ITEM_KEY;
3173         location.offset = 0;
3174
3175         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3176         if (IS_ERR(fs_info->fs_root)) {
3177                 err = PTR_ERR(fs_info->fs_root);
3178                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3179                 goto fail_qgroup;
3180         }
3181
3182         if (sb_rdonly(sb))
3183                 return 0;
3184
3185         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3186             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3187                 clear_free_space_tree = 1;
3188         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3189                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3190                 btrfs_warn(fs_info, "free space tree is invalid");
3191                 clear_free_space_tree = 1;
3192         }
3193
3194         if (clear_free_space_tree) {
3195                 btrfs_info(fs_info, "clearing free space tree");
3196                 ret = btrfs_clear_free_space_tree(fs_info);
3197                 if (ret) {
3198                         btrfs_warn(fs_info,
3199                                    "failed to clear free space tree: %d", ret);
3200                         close_ctree(fs_info);
3201                         return ret;
3202                 }
3203         }
3204
3205         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3206             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3207                 btrfs_info(fs_info, "creating free space tree");
3208                 ret = btrfs_create_free_space_tree(fs_info);
3209                 if (ret) {
3210                         btrfs_warn(fs_info,
3211                                 "failed to create free space tree: %d", ret);
3212                         close_ctree(fs_info);
3213                         return ret;
3214                 }
3215         }
3216
3217         down_read(&fs_info->cleanup_work_sem);
3218         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3219             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3220                 up_read(&fs_info->cleanup_work_sem);
3221                 close_ctree(fs_info);
3222                 return ret;
3223         }
3224         up_read(&fs_info->cleanup_work_sem);
3225
3226         ret = btrfs_resume_balance_async(fs_info);
3227         if (ret) {
3228                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3229                 close_ctree(fs_info);
3230                 return ret;
3231         }
3232
3233         ret = btrfs_resume_dev_replace_async(fs_info);
3234         if (ret) {
3235                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3236                 close_ctree(fs_info);
3237                 return ret;
3238         }
3239
3240         btrfs_qgroup_rescan_resume(fs_info);
3241
3242         if (!fs_info->uuid_root) {
3243                 btrfs_info(fs_info, "creating UUID tree");
3244                 ret = btrfs_create_uuid_tree(fs_info);
3245                 if (ret) {
3246                         btrfs_warn(fs_info,
3247                                 "failed to create the UUID tree: %d", ret);
3248                         close_ctree(fs_info);
3249                         return ret;
3250                 }
3251         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3252                    fs_info->generation !=
3253                                 btrfs_super_uuid_tree_generation(disk_super)) {
3254                 btrfs_info(fs_info, "checking UUID tree");
3255                 ret = btrfs_check_uuid_tree(fs_info);
3256                 if (ret) {
3257                         btrfs_warn(fs_info,
3258                                 "failed to check the UUID tree: %d", ret);
3259                         close_ctree(fs_info);
3260                         return ret;
3261                 }
3262         } else {
3263                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3264         }
3265         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3266
3267         /*
3268          * backuproot only affect mount behavior, and if open_ctree succeeded,
3269          * no need to keep the flag
3270          */
3271         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3272
3273         return 0;
3274
3275 fail_qgroup:
3276         btrfs_free_qgroup_config(fs_info);
3277 fail_trans_kthread:
3278         kthread_stop(fs_info->transaction_kthread);
3279         btrfs_cleanup_transaction(fs_info);
3280         btrfs_free_fs_roots(fs_info);
3281 fail_cleaner:
3282         kthread_stop(fs_info->cleaner_kthread);
3283
3284         /*
3285          * make sure we're done with the btree inode before we stop our
3286          * kthreads
3287          */
3288         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3289
3290 fail_sysfs:
3291         btrfs_sysfs_remove_mounted(fs_info);
3292
3293 fail_fsdev_sysfs:
3294         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3295
3296 fail_block_groups:
3297         btrfs_put_block_group_cache(fs_info);
3298
3299 fail_tree_roots:
3300         free_root_pointers(fs_info, 1);
3301         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3302
3303 fail_sb_buffer:
3304         btrfs_stop_all_workers(fs_info);
3305         btrfs_free_block_groups(fs_info);
3306 fail_alloc:
3307 fail_iput:
3308         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3309
3310         iput(fs_info->btree_inode);
3311 fail_bio_counter:
3312         percpu_counter_destroy(&fs_info->bio_counter);
3313 fail_delalloc_bytes:
3314         percpu_counter_destroy(&fs_info->delalloc_bytes);
3315 fail_dirty_metadata_bytes:
3316         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3317 fail_srcu:
3318         cleanup_srcu_struct(&fs_info->subvol_srcu);
3319 fail:
3320         btrfs_free_stripe_hash_table(fs_info);
3321         btrfs_close_devices(fs_info->fs_devices);
3322         return err;
3323
3324 recovery_tree_root:
3325         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3326                 goto fail_tree_roots;
3327
3328         free_root_pointers(fs_info, 0);
3329
3330         /* don't use the log in recovery mode, it won't be valid */
3331         btrfs_set_super_log_root(disk_super, 0);
3332
3333         /* we can't trust the free space cache either */
3334         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3335
3336         ret = next_root_backup(fs_info, fs_info->super_copy,
3337                                &num_backups_tried, &backup_index);
3338         if (ret == -1)
3339                 goto fail_block_groups;
3340         goto retry_root_backup;
3341 }
3342 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3343
3344 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3345 {
3346         if (uptodate) {
3347                 set_buffer_uptodate(bh);
3348         } else {
3349                 struct btrfs_device *device = (struct btrfs_device *)
3350                         bh->b_private;
3351
3352                 btrfs_warn_rl_in_rcu(device->fs_info,
3353                                 "lost page write due to IO error on %s",
3354                                           rcu_str_deref(device->name));
3355                 /* note, we don't set_buffer_write_io_error because we have
3356                  * our own ways of dealing with the IO errors
3357                  */
3358                 clear_buffer_uptodate(bh);
3359                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3360         }
3361         unlock_buffer(bh);
3362         put_bh(bh);
3363 }
3364
3365 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3366                         struct buffer_head **bh_ret)
3367 {
3368         struct buffer_head *bh;
3369         struct btrfs_super_block *super;
3370         u64 bytenr;
3371
3372         bytenr = btrfs_sb_offset(copy_num);
3373         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3374                 return -EINVAL;
3375
3376         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3377         /*
3378          * If we fail to read from the underlying devices, as of now
3379          * the best option we have is to mark it EIO.
3380          */
3381         if (!bh)
3382                 return -EIO;
3383
3384         super = (struct btrfs_super_block *)bh->b_data;
3385         if (btrfs_super_bytenr(super) != bytenr ||
3386                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3387                 brelse(bh);
3388                 return -EINVAL;
3389         }
3390
3391         *bh_ret = bh;
3392         return 0;
3393 }
3394
3395
3396 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3397 {
3398         struct buffer_head *bh;
3399         struct buffer_head *latest = NULL;
3400         struct btrfs_super_block *super;
3401         int i;
3402         u64 transid = 0;
3403         int ret = -EINVAL;
3404
3405         /* we would like to check all the supers, but that would make
3406          * a btrfs mount succeed after a mkfs from a different FS.
3407          * So, we need to add a special mount option to scan for
3408          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3409          */
3410         for (i = 0; i < 1; i++) {
3411                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3412                 if (ret)
3413                         continue;
3414
3415                 super = (struct btrfs_super_block *)bh->b_data;
3416
3417                 if (!latest || btrfs_super_generation(super) > transid) {
3418                         brelse(latest);
3419                         latest = bh;
3420                         transid = btrfs_super_generation(super);
3421                 } else {
3422                         brelse(bh);
3423                 }
3424         }
3425
3426         if (!latest)
3427                 return ERR_PTR(ret);
3428
3429         return latest;
3430 }
3431
3432 /*
3433  * Write superblock @sb to the @device. Do not wait for completion, all the
3434  * buffer heads we write are pinned.
3435  *
3436  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3437  * the expected device size at commit time. Note that max_mirrors must be
3438  * same for write and wait phases.
3439  *
3440  * Return number of errors when buffer head is not found or submission fails.
3441  */
3442 static int write_dev_supers(struct btrfs_device *device,
3443                             struct btrfs_super_block *sb, int max_mirrors)
3444 {
3445         struct buffer_head *bh;
3446         int i;
3447         int ret;
3448         int errors = 0;
3449         u32 crc;
3450         u64 bytenr;
3451         int op_flags;
3452
3453         if (max_mirrors == 0)
3454                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3455
3456         for (i = 0; i < max_mirrors; i++) {
3457                 bytenr = btrfs_sb_offset(i);
3458                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3459                     device->commit_total_bytes)
3460                         break;
3461
3462                 btrfs_set_super_bytenr(sb, bytenr);
3463
3464                 crc = ~(u32)0;
3465                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3466                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3467                 btrfs_csum_final(crc, sb->csum);
3468
3469                 /* One reference for us, and we leave it for the caller */
3470                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3471                               BTRFS_SUPER_INFO_SIZE);
3472                 if (!bh) {
3473                         btrfs_err(device->fs_info,
3474                             "couldn't get super buffer head for bytenr %llu",
3475                             bytenr);
3476                         errors++;
3477                         continue;
3478                 }
3479
3480                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3481
3482                 /* one reference for submit_bh */
3483                 get_bh(bh);
3484
3485                 set_buffer_uptodate(bh);
3486                 lock_buffer(bh);
3487                 bh->b_end_io = btrfs_end_buffer_write_sync;
3488                 bh->b_private = device;
3489
3490                 /*
3491                  * we fua the first super.  The others we allow
3492                  * to go down lazy.
3493                  */
3494                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3495                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3496                         op_flags |= REQ_FUA;
3497                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3498                 if (ret)
3499                         errors++;
3500         }
3501         return errors < i ? 0 : -1;
3502 }
3503
3504 /*
3505  * Wait for write completion of superblocks done by write_dev_supers,
3506  * @max_mirrors same for write and wait phases.
3507  *
3508  * Return number of errors when buffer head is not found or not marked up to
3509  * date.
3510  */
3511 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3512 {
3513         struct buffer_head *bh;
3514         int i;
3515         int errors = 0;
3516         bool primary_failed = false;
3517         u64 bytenr;
3518
3519         if (max_mirrors == 0)
3520                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3521
3522         for (i = 0; i < max_mirrors; i++) {
3523                 bytenr = btrfs_sb_offset(i);
3524                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3525                     device->commit_total_bytes)
3526                         break;
3527
3528                 bh = __find_get_block(device->bdev,
3529                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3530                                       BTRFS_SUPER_INFO_SIZE);
3531                 if (!bh) {
3532                         errors++;
3533                         if (i == 0)
3534                                 primary_failed = true;
3535                         continue;
3536                 }
3537                 wait_on_buffer(bh);
3538                 if (!buffer_uptodate(bh)) {
3539                         errors++;
3540                         if (i == 0)
3541                                 primary_failed = true;
3542                 }
3543
3544                 /* drop our reference */
3545                 brelse(bh);
3546
3547                 /* drop the reference from the writing run */
3548                 brelse(bh);
3549         }
3550
3551         /* log error, force error return */
3552         if (primary_failed) {
3553                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3554                           device->devid);
3555                 return -1;
3556         }
3557
3558         return errors < i ? 0 : -1;
3559 }
3560
3561 /*
3562  * endio for the write_dev_flush, this will wake anyone waiting
3563  * for the barrier when it is done
3564  */
3565 static void btrfs_end_empty_barrier(struct bio *bio)
3566 {
3567         complete(bio->bi_private);
3568 }
3569
3570 /*
3571  * Submit a flush request to the device if it supports it. Error handling is
3572  * done in the waiting counterpart.
3573  */
3574 static void write_dev_flush(struct btrfs_device *device)
3575 {
3576         struct request_queue *q = bdev_get_queue(device->bdev);
3577         struct bio *bio = device->flush_bio;
3578
3579         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3580                 return;
3581
3582         bio_reset(bio);
3583         bio->bi_end_io = btrfs_end_empty_barrier;
3584         bio_set_dev(bio, device->bdev);
3585         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3586         init_completion(&device->flush_wait);
3587         bio->bi_private = &device->flush_wait;
3588
3589         btrfsic_submit_bio(bio);
3590         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3591 }
3592
3593 /*
3594  * If the flush bio has been submitted by write_dev_flush, wait for it.
3595  */
3596 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3597 {
3598         struct bio *bio = device->flush_bio;
3599
3600         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3601                 return BLK_STS_OK;
3602
3603         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3604         wait_for_completion_io(&device->flush_wait);
3605
3606         return bio->bi_status;
3607 }
3608
3609 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3610 {
3611         if (!btrfs_check_rw_degradable(fs_info, NULL))
3612                 return -EIO;
3613         return 0;
3614 }
3615
3616 /*
3617  * send an empty flush down to each device in parallel,
3618  * then wait for them
3619  */
3620 static int barrier_all_devices(struct btrfs_fs_info *info)
3621 {
3622         struct list_head *head;
3623         struct btrfs_device *dev;
3624         int errors_wait = 0;
3625         blk_status_t ret;
3626
3627         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3628         /* send down all the barriers */
3629         head = &info->fs_devices->devices;
3630         list_for_each_entry(dev, head, dev_list) {
3631                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3632                         continue;
3633                 if (!dev->bdev)
3634                         continue;
3635                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3636                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3637                         continue;
3638
3639                 write_dev_flush(dev);
3640                 dev->last_flush_error = BLK_STS_OK;
3641         }
3642
3643         /* wait for all the barriers */
3644         list_for_each_entry(dev, head, dev_list) {
3645                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3646                         continue;
3647                 if (!dev->bdev) {
3648                         errors_wait++;
3649                         continue;
3650                 }
3651                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3652                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3653                         continue;
3654
3655                 ret = wait_dev_flush(dev);
3656                 if (ret) {
3657                         dev->last_flush_error = ret;
3658                         btrfs_dev_stat_inc_and_print(dev,
3659                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3660                         errors_wait++;
3661                 }
3662         }
3663
3664         if (errors_wait) {
3665                 /*
3666                  * At some point we need the status of all disks
3667                  * to arrive at the volume status. So error checking
3668                  * is being pushed to a separate loop.
3669                  */
3670                 return check_barrier_error(info);
3671         }
3672         return 0;
3673 }
3674
3675 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3676 {
3677         int raid_type;
3678         int min_tolerated = INT_MAX;
3679
3680         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3681             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3682                 min_tolerated = min(min_tolerated,
3683                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3684                                     tolerated_failures);
3685
3686         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3687                 if (raid_type == BTRFS_RAID_SINGLE)
3688                         continue;
3689                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3690                         continue;
3691                 min_tolerated = min(min_tolerated,
3692                                     btrfs_raid_array[raid_type].
3693                                     tolerated_failures);
3694         }
3695
3696         if (min_tolerated == INT_MAX) {
3697                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3698                 min_tolerated = 0;
3699         }
3700
3701         return min_tolerated;
3702 }
3703
3704 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3705 {
3706         struct list_head *head;
3707         struct btrfs_device *dev;
3708         struct btrfs_super_block *sb;
3709         struct btrfs_dev_item *dev_item;
3710         int ret;
3711         int do_barriers;
3712         int max_errors;
3713         int total_errors = 0;
3714         u64 flags;
3715
3716         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3717
3718         /*
3719          * max_mirrors == 0 indicates we're from commit_transaction,
3720          * not from fsync where the tree roots in fs_info have not
3721          * been consistent on disk.
3722          */
3723         if (max_mirrors == 0)
3724                 backup_super_roots(fs_info);
3725
3726         sb = fs_info->super_for_commit;
3727         dev_item = &sb->dev_item;
3728
3729         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3730         head = &fs_info->fs_devices->devices;
3731         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3732
3733         if (do_barriers) {
3734                 ret = barrier_all_devices(fs_info);
3735                 if (ret) {
3736                         mutex_unlock(
3737                                 &fs_info->fs_devices->device_list_mutex);
3738                         btrfs_handle_fs_error(fs_info, ret,
3739                                               "errors while submitting device barriers.");
3740                         return ret;
3741                 }
3742         }
3743
3744         list_for_each_entry(dev, head, dev_list) {
3745                 if (!dev->bdev) {
3746                         total_errors++;
3747                         continue;
3748                 }
3749                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3750                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3751                         continue;
3752
3753                 btrfs_set_stack_device_generation(dev_item, 0);
3754                 btrfs_set_stack_device_type(dev_item, dev->type);
3755                 btrfs_set_stack_device_id(dev_item, dev->devid);
3756                 btrfs_set_stack_device_total_bytes(dev_item,
3757                                                    dev->commit_total_bytes);
3758                 btrfs_set_stack_device_bytes_used(dev_item,
3759                                                   dev->commit_bytes_used);
3760                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3761                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3762                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3763                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3764                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3765
3766                 flags = btrfs_super_flags(sb);
3767                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3768
3769                 ret = btrfs_validate_write_super(fs_info, sb);
3770                 if (ret < 0) {
3771                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3772                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3773                                 "unexpected superblock corruption detected");
3774                         return -EUCLEAN;
3775                 }
3776
3777                 ret = write_dev_supers(dev, sb, max_mirrors);
3778                 if (ret)
3779                         total_errors++;
3780         }
3781         if (total_errors > max_errors) {
3782                 btrfs_err(fs_info, "%d errors while writing supers",
3783                           total_errors);
3784                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3785
3786                 /* FUA is masked off if unsupported and can't be the reason */
3787                 btrfs_handle_fs_error(fs_info, -EIO,
3788                                       "%d errors while writing supers",
3789                                       total_errors);
3790                 return -EIO;
3791         }
3792
3793         total_errors = 0;
3794         list_for_each_entry(dev, head, dev_list) {
3795                 if (!dev->bdev)
3796                         continue;
3797                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3798                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3799                         continue;
3800
3801                 ret = wait_dev_supers(dev, max_mirrors);
3802                 if (ret)
3803                         total_errors++;
3804         }
3805         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3806         if (total_errors > max_errors) {
3807                 btrfs_handle_fs_error(fs_info, -EIO,
3808                                       "%d errors while writing supers",
3809                                       total_errors);
3810                 return -EIO;
3811         }
3812         return 0;
3813 }
3814
3815 /* Drop a fs root from the radix tree and free it. */
3816 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3817                                   struct btrfs_root *root)
3818 {
3819         spin_lock(&fs_info->fs_roots_radix_lock);
3820         radix_tree_delete(&fs_info->fs_roots_radix,
3821                           (unsigned long)root->root_key.objectid);
3822         spin_unlock(&fs_info->fs_roots_radix_lock);
3823
3824         if (btrfs_root_refs(&root->root_item) == 0)
3825                 synchronize_srcu(&fs_info->subvol_srcu);
3826
3827         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3828                 btrfs_free_log(NULL, root);
3829                 if (root->reloc_root) {
3830                         free_extent_buffer(root->reloc_root->node);
3831                         free_extent_buffer(root->reloc_root->commit_root);
3832                         btrfs_put_fs_root(root->reloc_root);
3833                         root->reloc_root = NULL;
3834                 }
3835         }
3836
3837         if (root->free_ino_pinned)
3838                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3839         if (root->free_ino_ctl)
3840                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3841         btrfs_free_fs_root(root);
3842 }
3843
3844 void btrfs_free_fs_root(struct btrfs_root *root)
3845 {
3846         iput(root->ino_cache_inode);
3847         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3848         if (root->anon_dev)
3849                 free_anon_bdev(root->anon_dev);
3850         if (root->subv_writers)
3851                 btrfs_free_subvolume_writers(root->subv_writers);
3852         free_extent_buffer(root->node);
3853         free_extent_buffer(root->commit_root);
3854         kfree(root->free_ino_ctl);
3855         kfree(root->free_ino_pinned);
3856         btrfs_put_fs_root(root);
3857 }
3858
3859 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3860 {
3861         u64 root_objectid = 0;
3862         struct btrfs_root *gang[8];
3863         int i = 0;
3864         int err = 0;
3865         unsigned int ret = 0;
3866         int index;
3867
3868         while (1) {
3869                 index = srcu_read_lock(&fs_info->subvol_srcu);
3870                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3871                                              (void **)gang, root_objectid,
3872                                              ARRAY_SIZE(gang));
3873                 if (!ret) {
3874                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3875                         break;
3876                 }
3877                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3878
3879                 for (i = 0; i < ret; i++) {
3880                         /* Avoid to grab roots in dead_roots */
3881                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3882                                 gang[i] = NULL;
3883                                 continue;
3884                         }
3885                         /* grab all the search result for later use */
3886                         gang[i] = btrfs_grab_fs_root(gang[i]);
3887                 }
3888                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3889
3890                 for (i = 0; i < ret; i++) {
3891                         if (!gang[i])
3892                                 continue;
3893                         root_objectid = gang[i]->root_key.objectid;
3894                         err = btrfs_orphan_cleanup(gang[i]);
3895                         if (err)
3896                                 break;
3897                         btrfs_put_fs_root(gang[i]);
3898                 }
3899                 root_objectid++;
3900         }
3901
3902         /* release the uncleaned roots due to error */
3903         for (; i < ret; i++) {
3904                 if (gang[i])
3905                         btrfs_put_fs_root(gang[i]);
3906         }
3907         return err;
3908 }
3909
3910 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3911 {
3912         struct btrfs_root *root = fs_info->tree_root;
3913         struct btrfs_trans_handle *trans;
3914
3915         mutex_lock(&fs_info->cleaner_mutex);
3916         btrfs_run_delayed_iputs(fs_info);
3917         mutex_unlock(&fs_info->cleaner_mutex);
3918         wake_up_process(fs_info->cleaner_kthread);
3919
3920         /* wait until ongoing cleanup work done */
3921         down_write(&fs_info->cleanup_work_sem);
3922         up_write(&fs_info->cleanup_work_sem);
3923
3924         trans = btrfs_join_transaction(root);
3925         if (IS_ERR(trans))
3926                 return PTR_ERR(trans);
3927         return btrfs_commit_transaction(trans);
3928 }
3929
3930 void close_ctree(struct btrfs_fs_info *fs_info)
3931 {
3932         int ret;
3933
3934         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3935
3936         /* wait for the qgroup rescan worker to stop */
3937         btrfs_qgroup_wait_for_completion(fs_info, false);
3938
3939         /* wait for the uuid_scan task to finish */
3940         down(&fs_info->uuid_tree_rescan_sem);
3941         /* avoid complains from lockdep et al., set sem back to initial state */
3942         up(&fs_info->uuid_tree_rescan_sem);
3943
3944         /* pause restriper - we want to resume on mount */
3945         btrfs_pause_balance(fs_info);
3946
3947         btrfs_dev_replace_suspend_for_unmount(fs_info);
3948
3949         btrfs_scrub_cancel(fs_info);
3950
3951         /* wait for any defraggers to finish */
3952         wait_event(fs_info->transaction_wait,
3953                    (atomic_read(&fs_info->defrag_running) == 0));
3954
3955         /* clear out the rbtree of defraggable inodes */
3956         btrfs_cleanup_defrag_inodes(fs_info);
3957
3958         cancel_work_sync(&fs_info->async_reclaim_work);
3959
3960         if (!sb_rdonly(fs_info->sb)) {
3961                 /*
3962                  * If the cleaner thread is stopped and there are
3963                  * block groups queued for removal, the deletion will be
3964                  * skipped when we quit the cleaner thread.
3965                  */
3966                 btrfs_delete_unused_bgs(fs_info);
3967
3968                 ret = btrfs_commit_super(fs_info);
3969                 if (ret)
3970                         btrfs_err(fs_info, "commit super ret %d", ret);
3971         }
3972
3973         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3974             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3975                 btrfs_error_commit_super(fs_info);
3976
3977         kthread_stop(fs_info->transaction_kthread);
3978         kthread_stop(fs_info->cleaner_kthread);
3979
3980         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3981
3982         btrfs_free_qgroup_config(fs_info);
3983         ASSERT(list_empty(&fs_info->delalloc_roots));
3984
3985         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3986                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3987                        percpu_counter_sum(&fs_info->delalloc_bytes));
3988         }
3989
3990         btrfs_sysfs_remove_mounted(fs_info);
3991         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3992
3993         btrfs_free_fs_roots(fs_info);
3994
3995         btrfs_put_block_group_cache(fs_info);
3996
3997         /*
3998          * we must make sure there is not any read request to
3999          * submit after we stopping all workers.
4000          */
4001         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4002         btrfs_stop_all_workers(fs_info);
4003
4004         btrfs_free_block_groups(fs_info);
4005
4006         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4007         free_root_pointers(fs_info, 1);
4008
4009         iput(fs_info->btree_inode);
4010
4011 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4012         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4013                 btrfsic_unmount(fs_info->fs_devices);
4014 #endif
4015
4016         btrfs_close_devices(fs_info->fs_devices);
4017         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4018
4019         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4020         percpu_counter_destroy(&fs_info->delalloc_bytes);
4021         percpu_counter_destroy(&fs_info->bio_counter);
4022         cleanup_srcu_struct(&fs_info->subvol_srcu);
4023
4024         btrfs_free_stripe_hash_table(fs_info);
4025         btrfs_free_ref_cache(fs_info);
4026
4027         while (!list_empty(&fs_info->pinned_chunks)) {
4028                 struct extent_map *em;
4029
4030                 em = list_first_entry(&fs_info->pinned_chunks,
4031                                       struct extent_map, list);
4032                 list_del_init(&em->list);
4033                 free_extent_map(em);
4034         }
4035 }
4036
4037 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4038                           int atomic)
4039 {
4040         int ret;
4041         struct inode *btree_inode = buf->pages[0]->mapping->host;
4042
4043         ret = extent_buffer_uptodate(buf);
4044         if (!ret)
4045                 return ret;
4046
4047         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4048                                     parent_transid, atomic);
4049         if (ret == -EAGAIN)
4050                 return ret;
4051         return !ret;
4052 }
4053
4054 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4055 {
4056         struct btrfs_fs_info *fs_info;
4057         struct btrfs_root *root;
4058         u64 transid = btrfs_header_generation(buf);
4059         int was_dirty;
4060
4061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4062         /*
4063          * This is a fast path so only do this check if we have sanity tests
4064          * enabled.  Normal people shouldn't be using umapped buffers as dirty
4065          * outside of the sanity tests.
4066          */
4067         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4068                 return;
4069 #endif
4070         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4071         fs_info = root->fs_info;
4072         btrfs_assert_tree_locked(buf);
4073         if (transid != fs_info->generation)
4074                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4075                         buf->start, transid, fs_info->generation);
4076         was_dirty = set_extent_buffer_dirty(buf);
4077         if (!was_dirty)
4078                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4079                                          buf->len,
4080                                          fs_info->dirty_metadata_batch);
4081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4082         /*
4083          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4084          * but item data not updated.
4085          * So here we should only check item pointers, not item data.
4086          */
4087         if (btrfs_header_level(buf) == 0 &&
4088             btrfs_check_leaf_relaxed(fs_info, buf)) {
4089                 btrfs_print_leaf(buf);
4090                 ASSERT(0);
4091         }
4092 #endif
4093 }
4094
4095 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4096                                         int flush_delayed)
4097 {
4098         /*
4099          * looks as though older kernels can get into trouble with
4100          * this code, they end up stuck in balance_dirty_pages forever
4101          */
4102         int ret;
4103
4104         if (current->flags & PF_MEMALLOC)
4105                 return;
4106
4107         if (flush_delayed)
4108                 btrfs_balance_delayed_items(fs_info);
4109
4110         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4111                                      BTRFS_DIRTY_METADATA_THRESH,
4112                                      fs_info->dirty_metadata_batch);
4113         if (ret > 0) {
4114                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4115         }
4116 }
4117
4118 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4119 {
4120         __btrfs_btree_balance_dirty(fs_info, 1);
4121 }
4122
4123 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4124 {
4125         __btrfs_btree_balance_dirty(fs_info, 0);
4126 }
4127
4128 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4129                       struct btrfs_key *first_key)
4130 {
4131         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4132         struct btrfs_fs_info *fs_info = root->fs_info;
4133
4134         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4135                                               level, first_key);
4136 }
4137
4138 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4139 {
4140         /* cleanup FS via transaction */
4141         btrfs_cleanup_transaction(fs_info);
4142
4143         mutex_lock(&fs_info->cleaner_mutex);
4144         btrfs_run_delayed_iputs(fs_info);
4145         mutex_unlock(&fs_info->cleaner_mutex);
4146
4147         down_write(&fs_info->cleanup_work_sem);
4148         up_write(&fs_info->cleanup_work_sem);
4149 }
4150
4151 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4152 {
4153         struct btrfs_ordered_extent *ordered;
4154
4155         spin_lock(&root->ordered_extent_lock);
4156         /*
4157          * This will just short circuit the ordered completion stuff which will
4158          * make sure the ordered extent gets properly cleaned up.
4159          */
4160         list_for_each_entry(ordered, &root->ordered_extents,
4161                             root_extent_list)
4162                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4163         spin_unlock(&root->ordered_extent_lock);
4164 }
4165
4166 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4167 {
4168         struct btrfs_root *root;
4169         struct list_head splice;
4170
4171         INIT_LIST_HEAD(&splice);
4172
4173         spin_lock(&fs_info->ordered_root_lock);
4174         list_splice_init(&fs_info->ordered_roots, &splice);
4175         while (!list_empty(&splice)) {
4176                 root = list_first_entry(&splice, struct btrfs_root,
4177                                         ordered_root);
4178                 list_move_tail(&root->ordered_root,
4179                                &fs_info->ordered_roots);
4180
4181                 spin_unlock(&fs_info->ordered_root_lock);
4182                 btrfs_destroy_ordered_extents(root);
4183
4184                 cond_resched();
4185                 spin_lock(&fs_info->ordered_root_lock);
4186         }
4187         spin_unlock(&fs_info->ordered_root_lock);
4188 }
4189
4190 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4191                                       struct btrfs_fs_info *fs_info)
4192 {
4193         struct rb_node *node;
4194         struct btrfs_delayed_ref_root *delayed_refs;
4195         struct btrfs_delayed_ref_node *ref;
4196         int ret = 0;
4197
4198         delayed_refs = &trans->delayed_refs;
4199
4200         spin_lock(&delayed_refs->lock);
4201         if (atomic_read(&delayed_refs->num_entries) == 0) {
4202                 spin_unlock(&delayed_refs->lock);
4203                 btrfs_info(fs_info, "delayed_refs has NO entry");
4204                 return ret;
4205         }
4206
4207         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4208                 struct btrfs_delayed_ref_head *head;
4209                 struct rb_node *n;
4210                 bool pin_bytes = false;
4211
4212                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4213                                 href_node);
4214                 if (!mutex_trylock(&head->mutex)) {
4215                         refcount_inc(&head->refs);
4216                         spin_unlock(&delayed_refs->lock);
4217
4218                         mutex_lock(&head->mutex);
4219                         mutex_unlock(&head->mutex);
4220                         btrfs_put_delayed_ref_head(head);
4221                         spin_lock(&delayed_refs->lock);
4222                         continue;
4223                 }
4224                 spin_lock(&head->lock);
4225                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4226                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4227                                        ref_node);
4228                         ref->in_tree = 0;
4229                         rb_erase(&ref->ref_node, &head->ref_tree);
4230                         RB_CLEAR_NODE(&ref->ref_node);
4231                         if (!list_empty(&ref->add_list))
4232                                 list_del(&ref->add_list);
4233                         atomic_dec(&delayed_refs->num_entries);
4234                         btrfs_put_delayed_ref(ref);
4235                 }
4236                 if (head->must_insert_reserved)
4237                         pin_bytes = true;
4238                 btrfs_free_delayed_extent_op(head->extent_op);
4239                 delayed_refs->num_heads--;
4240                 if (head->processing == 0)
4241                         delayed_refs->num_heads_ready--;
4242                 atomic_dec(&delayed_refs->num_entries);
4243                 rb_erase(&head->href_node, &delayed_refs->href_root);
4244                 RB_CLEAR_NODE(&head->href_node);
4245                 spin_unlock(&head->lock);
4246                 spin_unlock(&delayed_refs->lock);
4247                 mutex_unlock(&head->mutex);
4248
4249                 if (pin_bytes)
4250                         btrfs_pin_extent(fs_info, head->bytenr,
4251                                          head->num_bytes, 1);
4252                 btrfs_put_delayed_ref_head(head);
4253                 cond_resched();
4254                 spin_lock(&delayed_refs->lock);
4255         }
4256
4257         spin_unlock(&delayed_refs->lock);
4258
4259         return ret;
4260 }
4261
4262 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4263 {
4264         struct btrfs_inode *btrfs_inode;
4265         struct list_head splice;
4266
4267         INIT_LIST_HEAD(&splice);
4268
4269         spin_lock(&root->delalloc_lock);
4270         list_splice_init(&root->delalloc_inodes, &splice);
4271
4272         while (!list_empty(&splice)) {
4273                 struct inode *inode = NULL;
4274                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4275                                                delalloc_inodes);
4276                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4277                 spin_unlock(&root->delalloc_lock);
4278
4279                 /*
4280                  * Make sure we get a live inode and that it'll not disappear
4281                  * meanwhile.
4282                  */
4283                 inode = igrab(&btrfs_inode->vfs_inode);
4284                 if (inode) {
4285                         invalidate_inode_pages2(inode->i_mapping);
4286                         iput(inode);
4287                 }
4288                 spin_lock(&root->delalloc_lock);
4289         }
4290         spin_unlock(&root->delalloc_lock);
4291 }
4292
4293 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4294 {
4295         struct btrfs_root *root;
4296         struct list_head splice;
4297
4298         INIT_LIST_HEAD(&splice);
4299
4300         spin_lock(&fs_info->delalloc_root_lock);
4301         list_splice_init(&fs_info->delalloc_roots, &splice);
4302         while (!list_empty(&splice)) {
4303                 root = list_first_entry(&splice, struct btrfs_root,
4304                                          delalloc_root);
4305                 root = btrfs_grab_fs_root(root);
4306                 BUG_ON(!root);
4307                 spin_unlock(&fs_info->delalloc_root_lock);
4308
4309                 btrfs_destroy_delalloc_inodes(root);
4310                 btrfs_put_fs_root(root);
4311
4312                 spin_lock(&fs_info->delalloc_root_lock);
4313         }
4314         spin_unlock(&fs_info->delalloc_root_lock);
4315 }
4316
4317 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4318                                         struct extent_io_tree *dirty_pages,
4319                                         int mark)
4320 {
4321         int ret;
4322         struct extent_buffer *eb;
4323         u64 start = 0;
4324         u64 end;
4325
4326         while (1) {
4327                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4328                                             mark, NULL);
4329                 if (ret)
4330                         break;
4331
4332                 clear_extent_bits(dirty_pages, start, end, mark);
4333                 while (start <= end) {
4334                         eb = find_extent_buffer(fs_info, start);
4335                         start += fs_info->nodesize;
4336                         if (!eb)
4337                                 continue;
4338                         wait_on_extent_buffer_writeback(eb);
4339
4340                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4341                                                &eb->bflags))
4342                                 clear_extent_buffer_dirty(eb);
4343                         free_extent_buffer_stale(eb);
4344                 }
4345         }
4346
4347         return ret;
4348 }
4349
4350 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4351                                        struct extent_io_tree *pinned_extents)
4352 {
4353         struct extent_io_tree *unpin;
4354         u64 start;
4355         u64 end;
4356         int ret;
4357         bool loop = true;
4358
4359         unpin = pinned_extents;
4360 again:
4361         while (1) {
4362                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4363                                             EXTENT_DIRTY, NULL);
4364                 if (ret)
4365                         break;
4366
4367                 clear_extent_dirty(unpin, start, end);
4368                 btrfs_error_unpin_extent_range(fs_info, start, end);
4369                 cond_resched();
4370         }
4371
4372         if (loop) {
4373                 if (unpin == &fs_info->freed_extents[0])
4374                         unpin = &fs_info->freed_extents[1];
4375                 else
4376                         unpin = &fs_info->freed_extents[0];
4377                 loop = false;
4378                 goto again;
4379         }
4380
4381         return 0;
4382 }
4383
4384 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4385 {
4386         struct inode *inode;
4387
4388         inode = cache->io_ctl.inode;
4389         if (inode) {
4390                 invalidate_inode_pages2(inode->i_mapping);
4391                 BTRFS_I(inode)->generation = 0;
4392                 cache->io_ctl.inode = NULL;
4393                 iput(inode);
4394         }
4395         btrfs_put_block_group(cache);
4396 }
4397
4398 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4399                              struct btrfs_fs_info *fs_info)
4400 {
4401         struct btrfs_block_group_cache *cache;
4402
4403         spin_lock(&cur_trans->dirty_bgs_lock);
4404         while (!list_empty(&cur_trans->dirty_bgs)) {
4405                 cache = list_first_entry(&cur_trans->dirty_bgs,
4406                                          struct btrfs_block_group_cache,
4407                                          dirty_list);
4408
4409                 if (!list_empty(&cache->io_list)) {
4410                         spin_unlock(&cur_trans->dirty_bgs_lock);
4411                         list_del_init(&cache->io_list);
4412                         btrfs_cleanup_bg_io(cache);
4413                         spin_lock(&cur_trans->dirty_bgs_lock);
4414                 }
4415
4416                 list_del_init(&cache->dirty_list);
4417                 spin_lock(&cache->lock);
4418                 cache->disk_cache_state = BTRFS_DC_ERROR;
4419                 spin_unlock(&cache->lock);
4420
4421                 spin_unlock(&cur_trans->dirty_bgs_lock);
4422                 btrfs_put_block_group(cache);
4423                 spin_lock(&cur_trans->dirty_bgs_lock);
4424         }
4425         spin_unlock(&cur_trans->dirty_bgs_lock);
4426
4427         /*
4428          * Refer to the definition of io_bgs member for details why it's safe
4429          * to use it without any locking
4430          */
4431         while (!list_empty(&cur_trans->io_bgs)) {
4432                 cache = list_first_entry(&cur_trans->io_bgs,
4433                                          struct btrfs_block_group_cache,
4434                                          io_list);
4435
4436                 list_del_init(&cache->io_list);
4437                 spin_lock(&cache->lock);
4438                 cache->disk_cache_state = BTRFS_DC_ERROR;
4439                 spin_unlock(&cache->lock);
4440                 btrfs_cleanup_bg_io(cache);
4441         }
4442 }
4443
4444 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4445                                    struct btrfs_fs_info *fs_info)
4446 {
4447         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4448         ASSERT(list_empty(&cur_trans->dirty_bgs));
4449         ASSERT(list_empty(&cur_trans->io_bgs));
4450
4451         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4452
4453         cur_trans->state = TRANS_STATE_COMMIT_START;
4454         wake_up(&fs_info->transaction_blocked_wait);
4455
4456         cur_trans->state = TRANS_STATE_UNBLOCKED;
4457         wake_up(&fs_info->transaction_wait);
4458
4459         btrfs_destroy_delayed_inodes(fs_info);
4460         btrfs_assert_delayed_root_empty(fs_info);
4461
4462         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4463                                      EXTENT_DIRTY);
4464         btrfs_destroy_pinned_extent(fs_info,
4465                                     fs_info->pinned_extents);
4466
4467         cur_trans->state =TRANS_STATE_COMPLETED;
4468         wake_up(&cur_trans->commit_wait);
4469 }
4470
4471 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4472 {
4473         struct btrfs_transaction *t;
4474
4475         mutex_lock(&fs_info->transaction_kthread_mutex);
4476
4477         spin_lock(&fs_info->trans_lock);
4478         while (!list_empty(&fs_info->trans_list)) {
4479                 t = list_first_entry(&fs_info->trans_list,
4480                                      struct btrfs_transaction, list);
4481                 if (t->state >= TRANS_STATE_COMMIT_START) {
4482                         refcount_inc(&t->use_count);
4483                         spin_unlock(&fs_info->trans_lock);
4484                         btrfs_wait_for_commit(fs_info, t->transid);
4485                         btrfs_put_transaction(t);
4486                         spin_lock(&fs_info->trans_lock);
4487                         continue;
4488                 }
4489                 if (t == fs_info->running_transaction) {
4490                         t->state = TRANS_STATE_COMMIT_DOING;
4491                         spin_unlock(&fs_info->trans_lock);
4492                         /*
4493                          * We wait for 0 num_writers since we don't hold a trans
4494                          * handle open currently for this transaction.
4495                          */
4496                         wait_event(t->writer_wait,
4497                                    atomic_read(&t->num_writers) == 0);
4498                 } else {
4499                         spin_unlock(&fs_info->trans_lock);
4500                 }
4501                 btrfs_cleanup_one_transaction(t, fs_info);
4502
4503                 spin_lock(&fs_info->trans_lock);
4504                 if (t == fs_info->running_transaction)
4505                         fs_info->running_transaction = NULL;
4506                 list_del_init(&t->list);
4507                 spin_unlock(&fs_info->trans_lock);
4508
4509                 btrfs_put_transaction(t);
4510                 trace_btrfs_transaction_commit(fs_info->tree_root);
4511                 spin_lock(&fs_info->trans_lock);
4512         }
4513         spin_unlock(&fs_info->trans_lock);
4514         btrfs_destroy_all_ordered_extents(fs_info);
4515         btrfs_destroy_delayed_inodes(fs_info);
4516         btrfs_assert_delayed_root_empty(fs_info);
4517         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4518         btrfs_destroy_all_delalloc_inodes(fs_info);
4519         mutex_unlock(&fs_info->transaction_kthread_mutex);
4520
4521         return 0;
4522 }
4523
4524 static const struct extent_io_ops btree_extent_io_ops = {
4525         /* mandatory callbacks */
4526         .submit_bio_hook = btree_submit_bio_hook,
4527         .readpage_end_io_hook = btree_readpage_end_io_hook,
4528         .readpage_io_failed_hook = btree_io_failed_hook,
4529
4530         /* optional callbacks */
4531 };