Add btrfs_end_transaction_throttle to force writers to wait for pending commits
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34 #include "async-thread.h"
35 #include "locking.h"
36
37 #if 0
38 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
39 {
40         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
41                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
42                        (unsigned long long)extent_buffer_blocknr(buf),
43                        (unsigned long long)btrfs_header_blocknr(buf));
44                 return 1;
45         }
46         return 0;
47 }
48 #endif
49
50 static struct extent_io_ops btree_extent_io_ops;
51 static void end_workqueue_fn(struct btrfs_work *work);
52
53 struct end_io_wq {
54         struct bio *bio;
55         bio_end_io_t *end_io;
56         void *private;
57         struct btrfs_fs_info *info;
58         int error;
59         int metadata;
60         struct list_head list;
61         struct btrfs_work work;
62 };
63
64 struct async_submit_bio {
65         struct inode *inode;
66         struct bio *bio;
67         struct list_head list;
68         extent_submit_bio_hook_t *submit_bio_hook;
69         int rw;
70         int mirror_num;
71         struct btrfs_work work;
72 };
73
74 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
75                                     size_t page_offset, u64 start, u64 len,
76                                     int create)
77 {
78         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
79         struct extent_map *em;
80         int ret;
81
82         spin_lock(&em_tree->lock);
83         em = lookup_extent_mapping(em_tree, start, len);
84         if (em) {
85                 em->bdev =
86                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
87                 spin_unlock(&em_tree->lock);
88                 goto out;
89         }
90         spin_unlock(&em_tree->lock);
91
92         em = alloc_extent_map(GFP_NOFS);
93         if (!em) {
94                 em = ERR_PTR(-ENOMEM);
95                 goto out;
96         }
97         em->start = 0;
98         em->len = (u64)-1;
99         em->block_start = 0;
100         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
101
102         spin_lock(&em_tree->lock);
103         ret = add_extent_mapping(em_tree, em);
104         if (ret == -EEXIST) {
105                 u64 failed_start = em->start;
106                 u64 failed_len = em->len;
107
108                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
109                        em->start, em->len, em->block_start);
110                 free_extent_map(em);
111                 em = lookup_extent_mapping(em_tree, start, len);
112                 if (em) {
113                         printk("after failing, found %Lu %Lu %Lu\n",
114                                em->start, em->len, em->block_start);
115                         ret = 0;
116                 } else {
117                         em = lookup_extent_mapping(em_tree, failed_start,
118                                                    failed_len);
119                         if (em) {
120                                 printk("double failure lookup gives us "
121                                        "%Lu %Lu -> %Lu\n", em->start,
122                                        em->len, em->block_start);
123                                 free_extent_map(em);
124                         }
125                         ret = -EIO;
126                 }
127         } else if (ret) {
128                 free_extent_map(em);
129                 em = NULL;
130         }
131         spin_unlock(&em_tree->lock);
132
133         if (ret)
134                 em = ERR_PTR(ret);
135 out:
136         return em;
137 }
138
139 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
140 {
141         return btrfs_crc32c(seed, data, len);
142 }
143
144 void btrfs_csum_final(u32 crc, char *result)
145 {
146         *(__le32 *)result = ~cpu_to_le32(crc);
147 }
148
149 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
150                            int verify)
151 {
152         char result[BTRFS_CRC32_SIZE];
153         unsigned long len;
154         unsigned long cur_len;
155         unsigned long offset = BTRFS_CSUM_SIZE;
156         char *map_token = NULL;
157         char *kaddr;
158         unsigned long map_start;
159         unsigned long map_len;
160         int err;
161         u32 crc = ~(u32)0;
162
163         len = buf->len - offset;
164         while(len > 0) {
165                 err = map_private_extent_buffer(buf, offset, 32,
166                                         &map_token, &kaddr,
167                                         &map_start, &map_len, KM_USER0);
168                 if (err) {
169                         printk("failed to map extent buffer! %lu\n",
170                                offset);
171                         return 1;
172                 }
173                 cur_len = min(len, map_len - (offset - map_start));
174                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
175                                       crc, cur_len);
176                 len -= cur_len;
177                 offset += cur_len;
178                 unmap_extent_buffer(buf, map_token, KM_USER0);
179         }
180         btrfs_csum_final(crc, result);
181
182         if (verify) {
183                 int from_this_trans = 0;
184
185                 if (root->fs_info->running_transaction &&
186                     btrfs_header_generation(buf) ==
187                     root->fs_info->running_transaction->transid)
188                         from_this_trans = 1;
189
190                 /* FIXME, this is not good */
191                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
192                         u32 val;
193                         u32 found = 0;
194                         memcpy(&found, result, BTRFS_CRC32_SIZE);
195
196                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
197                         printk("btrfs: %s checksum verify failed on %llu "
198                                "wanted %X found %X from_this_trans %d "
199                                "level %d\n",
200                                root->fs_info->sb->s_id,
201                                buf->start, val, found, from_this_trans,
202                                btrfs_header_level(buf));
203                         return 1;
204                 }
205         } else {
206                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
207         }
208         return 0;
209 }
210
211 static int verify_parent_transid(struct extent_io_tree *io_tree,
212                                  struct extent_buffer *eb, u64 parent_transid)
213 {
214         int ret;
215
216         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
217                 return 0;
218
219         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
220         if (extent_buffer_uptodate(io_tree, eb) &&
221             btrfs_header_generation(eb) == parent_transid) {
222                 ret = 0;
223                 goto out;
224         }
225         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
226                (unsigned long long)eb->start,
227                (unsigned long long)parent_transid,
228                (unsigned long long)btrfs_header_generation(eb));
229         ret = 1;
230 out:
231         clear_extent_buffer_uptodate(io_tree, eb);
232         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
233                       GFP_NOFS);
234         return ret;
235
236 }
237
238 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
239                                           struct extent_buffer *eb,
240                                           u64 start, u64 parent_transid)
241 {
242         struct extent_io_tree *io_tree;
243         int ret;
244         int num_copies = 0;
245         int mirror_num = 0;
246
247         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
248         while (1) {
249                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
250                                                btree_get_extent, mirror_num);
251                 if (!ret &&
252                     !verify_parent_transid(io_tree, eb, parent_transid))
253                         return ret;
254
255                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
256                                               eb->start, eb->len);
257                 if (num_copies == 1)
258                         return ret;
259
260                 mirror_num++;
261                 if (mirror_num > num_copies)
262                         return ret;
263         }
264         return -EIO;
265 }
266
267 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
268 {
269         struct extent_io_tree *tree;
270         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
271         u64 found_start;
272         int found_level;
273         unsigned long len;
274         struct extent_buffer *eb;
275         int ret;
276
277         tree = &BTRFS_I(page->mapping->host)->io_tree;
278
279         if (page->private == EXTENT_PAGE_PRIVATE)
280                 goto out;
281         if (!page->private)
282                 goto out;
283         len = page->private >> 2;
284         if (len == 0) {
285                 WARN_ON(1);
286         }
287         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
288         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
289                                              btrfs_header_generation(eb));
290         BUG_ON(ret);
291         btrfs_clear_buffer_defrag(eb);
292         found_start = btrfs_header_bytenr(eb);
293         if (found_start != start) {
294                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
295                        start, found_start, len);
296                 WARN_ON(1);
297                 goto err;
298         }
299         if (eb->first_page != page) {
300                 printk("bad first page %lu %lu\n", eb->first_page->index,
301                        page->index);
302                 WARN_ON(1);
303                 goto err;
304         }
305         if (!PageUptodate(page)) {
306                 printk("csum not up to date page %lu\n", page->index);
307                 WARN_ON(1);
308                 goto err;
309         }
310         found_level = btrfs_header_level(eb);
311         spin_lock(&root->fs_info->hash_lock);
312         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
313         spin_unlock(&root->fs_info->hash_lock);
314         csum_tree_block(root, eb, 0);
315 err:
316         free_extent_buffer(eb);
317 out:
318         return 0;
319 }
320
321 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
322 {
323         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
324
325         csum_dirty_buffer(root, page);
326         return 0;
327 }
328
329 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
330                                struct extent_state *state)
331 {
332         struct extent_io_tree *tree;
333         u64 found_start;
334         int found_level;
335         unsigned long len;
336         struct extent_buffer *eb;
337         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
338         int ret = 0;
339
340         tree = &BTRFS_I(page->mapping->host)->io_tree;
341         if (page->private == EXTENT_PAGE_PRIVATE)
342                 goto out;
343         if (!page->private)
344                 goto out;
345         len = page->private >> 2;
346         if (len == 0) {
347                 WARN_ON(1);
348         }
349         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350
351         btrfs_clear_buffer_defrag(eb);
352         found_start = btrfs_header_bytenr(eb);
353         if (found_start != start) {
354                 ret = -EIO;
355                 goto err;
356         }
357         if (eb->first_page != page) {
358                 printk("bad first page %lu %lu\n", eb->first_page->index,
359                        page->index);
360                 WARN_ON(1);
361                 ret = -EIO;
362                 goto err;
363         }
364         if (memcmp_extent_buffer(eb, root->fs_info->fsid,
365                                  (unsigned long)btrfs_header_fsid(eb),
366                                  BTRFS_FSID_SIZE)) {
367                 printk("bad fsid on block %Lu\n", eb->start);
368                 ret = -EIO;
369                 goto err;
370         }
371         found_level = btrfs_header_level(eb);
372
373         ret = csum_tree_block(root, eb, 1);
374         if (ret)
375                 ret = -EIO;
376
377         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
378         end = eb->start + end - 1;
379         release_extent_buffer_tail_pages(eb);
380 err:
381         free_extent_buffer(eb);
382 out:
383         return ret;
384 }
385
386 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
387 static void end_workqueue_bio(struct bio *bio, int err)
388 #else
389 static int end_workqueue_bio(struct bio *bio,
390                                    unsigned int bytes_done, int err)
391 #endif
392 {
393         struct end_io_wq *end_io_wq = bio->bi_private;
394         struct btrfs_fs_info *fs_info;
395
396 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
397         if (bio->bi_size)
398                 return 1;
399 #endif
400
401         fs_info = end_io_wq->info;
402         end_io_wq->error = err;
403         end_io_wq->work.func = end_workqueue_fn;
404         end_io_wq->work.flags = 0;
405         btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
406
407 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
408         return 0;
409 #endif
410 }
411
412 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
413                         int metadata)
414 {
415         struct end_io_wq *end_io_wq;
416         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
417         if (!end_io_wq)
418                 return -ENOMEM;
419
420         end_io_wq->private = bio->bi_private;
421         end_io_wq->end_io = bio->bi_end_io;
422         end_io_wq->info = info;
423         end_io_wq->error = 0;
424         end_io_wq->bio = bio;
425         end_io_wq->metadata = metadata;
426
427         bio->bi_private = end_io_wq;
428         bio->bi_end_io = end_workqueue_bio;
429         return 0;
430 }
431
432 static void run_one_async_submit(struct btrfs_work *work)
433 {
434         struct btrfs_fs_info *fs_info;
435         struct async_submit_bio *async;
436
437         async = container_of(work, struct  async_submit_bio, work);
438         fs_info = BTRFS_I(async->inode)->root->fs_info;
439         atomic_dec(&fs_info->nr_async_submits);
440         async->submit_bio_hook(async->inode, async->rw, async->bio,
441                                async->mirror_num);
442         kfree(async);
443 }
444
445 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
446                         int rw, struct bio *bio, int mirror_num,
447                         extent_submit_bio_hook_t *submit_bio_hook)
448 {
449         struct async_submit_bio *async;
450
451         async = kmalloc(sizeof(*async), GFP_NOFS);
452         if (!async)
453                 return -ENOMEM;
454
455         async->inode = inode;
456         async->rw = rw;
457         async->bio = bio;
458         async->mirror_num = mirror_num;
459         async->submit_bio_hook = submit_bio_hook;
460         async->work.func = run_one_async_submit;
461         async->work.flags = 0;
462         atomic_inc(&fs_info->nr_async_submits);
463         btrfs_queue_worker(&fs_info->workers, &async->work);
464         return 0;
465 }
466
467 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
468                                  int mirror_num)
469 {
470         struct btrfs_root *root = BTRFS_I(inode)->root;
471         u64 offset;
472         int ret;
473
474         offset = bio->bi_sector << 9;
475
476         /*
477          * when we're called for a write, we're already in the async
478          * submission context.  Just jump ingo btrfs_map_bio
479          */
480         if (rw & (1 << BIO_RW)) {
481                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
482                                      mirror_num, 0);
483         }
484
485         /*
486          * called for a read, do the setup so that checksum validation
487          * can happen in the async kernel threads
488          */
489         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
490         BUG_ON(ret);
491
492         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
493 }
494
495 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
496                                  int mirror_num)
497 {
498         /*
499          * kthread helpers are used to submit writes so that checksumming
500          * can happen in parallel across all CPUs
501          */
502         if (!(rw & (1 << BIO_RW))) {
503                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
504         }
505         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
506                                    inode, rw, bio, mirror_num,
507                                    __btree_submit_bio_hook);
508 }
509
510 static int btree_writepage(struct page *page, struct writeback_control *wbc)
511 {
512         struct extent_io_tree *tree;
513         tree = &BTRFS_I(page->mapping->host)->io_tree;
514         return extent_write_full_page(tree, page, btree_get_extent, wbc);
515 }
516
517 static int btree_writepages(struct address_space *mapping,
518                             struct writeback_control *wbc)
519 {
520         struct extent_io_tree *tree;
521         tree = &BTRFS_I(mapping->host)->io_tree;
522         if (wbc->sync_mode == WB_SYNC_NONE) {
523                 u64 num_dirty;
524                 u64 start = 0;
525                 unsigned long thresh = 96 * 1024 * 1024;
526
527                 if (wbc->for_kupdate)
528                         return 0;
529
530                 if (current_is_pdflush()) {
531                         thresh = 96 * 1024 * 1024;
532                 } else {
533                         thresh = 8 * 1024 * 1024;
534                 }
535                 num_dirty = count_range_bits(tree, &start, (u64)-1,
536                                              thresh, EXTENT_DIRTY);
537                 if (num_dirty < thresh) {
538                         return 0;
539                 }
540         }
541         return extent_writepages(tree, mapping, btree_get_extent, wbc);
542 }
543
544 int btree_readpage(struct file *file, struct page *page)
545 {
546         struct extent_io_tree *tree;
547         tree = &BTRFS_I(page->mapping->host)->io_tree;
548         return extent_read_full_page(tree, page, btree_get_extent);
549 }
550
551 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
552 {
553         struct extent_io_tree *tree;
554         struct extent_map_tree *map;
555         int ret;
556
557         if (page_count(page) > 3) {
558                 /* once for page->private, once for the caller, once
559                  * once for the page cache
560                  */
561                 return 0;
562         }
563         tree = &BTRFS_I(page->mapping->host)->io_tree;
564         map = &BTRFS_I(page->mapping->host)->extent_tree;
565         ret = try_release_extent_state(map, tree, page, gfp_flags);
566         if (ret == 1) {
567                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
568                 ClearPagePrivate(page);
569                 set_page_private(page, 0);
570                 page_cache_release(page);
571         }
572         return ret;
573 }
574
575 static void btree_invalidatepage(struct page *page, unsigned long offset)
576 {
577         struct extent_io_tree *tree;
578         tree = &BTRFS_I(page->mapping->host)->io_tree;
579         extent_invalidatepage(tree, page, offset);
580         btree_releasepage(page, GFP_NOFS);
581         if (PagePrivate(page)) {
582                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
583                 ClearPagePrivate(page);
584                 set_page_private(page, 0);
585                 page_cache_release(page);
586         }
587 }
588
589 #if 0
590 static int btree_writepage(struct page *page, struct writeback_control *wbc)
591 {
592         struct buffer_head *bh;
593         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
594         struct buffer_head *head;
595         if (!page_has_buffers(page)) {
596                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
597                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
598         }
599         head = page_buffers(page);
600         bh = head;
601         do {
602                 if (buffer_dirty(bh))
603                         csum_tree_block(root, bh, 0);
604                 bh = bh->b_this_page;
605         } while (bh != head);
606         return block_write_full_page(page, btree_get_block, wbc);
607 }
608 #endif
609
610 static struct address_space_operations btree_aops = {
611         .readpage       = btree_readpage,
612         .writepage      = btree_writepage,
613         .writepages     = btree_writepages,
614         .releasepage    = btree_releasepage,
615         .invalidatepage = btree_invalidatepage,
616         .sync_page      = block_sync_page,
617 };
618
619 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
620                          u64 parent_transid)
621 {
622         struct extent_buffer *buf = NULL;
623         struct inode *btree_inode = root->fs_info->btree_inode;
624         int ret = 0;
625
626         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
627         if (!buf)
628                 return 0;
629         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
630                                  buf, 0, 0, btree_get_extent, 0);
631         free_extent_buffer(buf);
632         return ret;
633 }
634
635 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
636                                             u64 bytenr, u32 blocksize)
637 {
638         struct inode *btree_inode = root->fs_info->btree_inode;
639         struct extent_buffer *eb;
640         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
641                                 bytenr, blocksize, GFP_NOFS);
642         return eb;
643 }
644
645 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
646                                                  u64 bytenr, u32 blocksize)
647 {
648         struct inode *btree_inode = root->fs_info->btree_inode;
649         struct extent_buffer *eb;
650
651         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
652                                  bytenr, blocksize, NULL, GFP_NOFS);
653         return eb;
654 }
655
656
657 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
658                                       u32 blocksize, u64 parent_transid)
659 {
660         struct extent_buffer *buf = NULL;
661         struct inode *btree_inode = root->fs_info->btree_inode;
662         struct extent_io_tree *io_tree;
663         int ret;
664
665         io_tree = &BTRFS_I(btree_inode)->io_tree;
666
667         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
668         if (!buf)
669                 return NULL;
670
671         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
672
673         if (ret == 0) {
674                 buf->flags |= EXTENT_UPTODATE;
675         }
676         return buf;
677
678 }
679
680 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
681                      struct extent_buffer *buf)
682 {
683         struct inode *btree_inode = root->fs_info->btree_inode;
684         if (btrfs_header_generation(buf) ==
685             root->fs_info->running_transaction->transid) {
686                 WARN_ON(!btrfs_tree_locked(buf));
687                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
688                                           buf);
689         }
690         return 0;
691 }
692
693 int wait_on_tree_block_writeback(struct btrfs_root *root,
694                                  struct extent_buffer *buf)
695 {
696         struct inode *btree_inode = root->fs_info->btree_inode;
697         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
698                                         buf);
699         return 0;
700 }
701
702 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
703                         u32 stripesize, struct btrfs_root *root,
704                         struct btrfs_fs_info *fs_info,
705                         u64 objectid)
706 {
707         root->node = NULL;
708         root->inode = NULL;
709         root->commit_root = NULL;
710         root->sectorsize = sectorsize;
711         root->nodesize = nodesize;
712         root->leafsize = leafsize;
713         root->stripesize = stripesize;
714         root->ref_cows = 0;
715         root->track_dirty = 0;
716
717         root->fs_info = fs_info;
718         root->objectid = objectid;
719         root->last_trans = 0;
720         root->highest_inode = 0;
721         root->last_inode_alloc = 0;
722         root->name = NULL;
723         root->in_sysfs = 0;
724
725         INIT_LIST_HEAD(&root->dirty_list);
726         spin_lock_init(&root->node_lock);
727         mutex_init(&root->objectid_mutex);
728         memset(&root->root_key, 0, sizeof(root->root_key));
729         memset(&root->root_item, 0, sizeof(root->root_item));
730         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
731         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
732         init_completion(&root->kobj_unregister);
733         root->defrag_running = 0;
734         root->defrag_level = 0;
735         root->root_key.objectid = objectid;
736         return 0;
737 }
738
739 static int find_and_setup_root(struct btrfs_root *tree_root,
740                                struct btrfs_fs_info *fs_info,
741                                u64 objectid,
742                                struct btrfs_root *root)
743 {
744         int ret;
745         u32 blocksize;
746
747         __setup_root(tree_root->nodesize, tree_root->leafsize,
748                      tree_root->sectorsize, tree_root->stripesize,
749                      root, fs_info, objectid);
750         ret = btrfs_find_last_root(tree_root, objectid,
751                                    &root->root_item, &root->root_key);
752         BUG_ON(ret);
753
754         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
755         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
756                                      blocksize, 0);
757         BUG_ON(!root->node);
758         return 0;
759 }
760
761 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
762                                                struct btrfs_key *location)
763 {
764         struct btrfs_root *root;
765         struct btrfs_root *tree_root = fs_info->tree_root;
766         struct btrfs_path *path;
767         struct extent_buffer *l;
768         u64 highest_inode;
769         u32 blocksize;
770         int ret = 0;
771
772         root = kzalloc(sizeof(*root), GFP_NOFS);
773         if (!root)
774                 return ERR_PTR(-ENOMEM);
775         if (location->offset == (u64)-1) {
776                 ret = find_and_setup_root(tree_root, fs_info,
777                                           location->objectid, root);
778                 if (ret) {
779                         kfree(root);
780                         return ERR_PTR(ret);
781                 }
782                 goto insert;
783         }
784
785         __setup_root(tree_root->nodesize, tree_root->leafsize,
786                      tree_root->sectorsize, tree_root->stripesize,
787                      root, fs_info, location->objectid);
788
789         path = btrfs_alloc_path();
790         BUG_ON(!path);
791         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
792         if (ret != 0) {
793                 if (ret > 0)
794                         ret = -ENOENT;
795                 goto out;
796         }
797         l = path->nodes[0];
798         read_extent_buffer(l, &root->root_item,
799                btrfs_item_ptr_offset(l, path->slots[0]),
800                sizeof(root->root_item));
801         memcpy(&root->root_key, location, sizeof(*location));
802         ret = 0;
803 out:
804         btrfs_release_path(root, path);
805         btrfs_free_path(path);
806         if (ret) {
807                 kfree(root);
808                 return ERR_PTR(ret);
809         }
810         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
811         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
812                                      blocksize, 0);
813         BUG_ON(!root->node);
814 insert:
815         root->ref_cows = 1;
816         ret = btrfs_find_highest_inode(root, &highest_inode);
817         if (ret == 0) {
818                 root->highest_inode = highest_inode;
819                 root->last_inode_alloc = highest_inode;
820         }
821         return root;
822 }
823
824 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
825                                         u64 root_objectid)
826 {
827         struct btrfs_root *root;
828
829         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
830                 return fs_info->tree_root;
831         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
832                 return fs_info->extent_root;
833
834         root = radix_tree_lookup(&fs_info->fs_roots_radix,
835                                  (unsigned long)root_objectid);
836         return root;
837 }
838
839 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
840                                               struct btrfs_key *location)
841 {
842         struct btrfs_root *root;
843         int ret;
844
845         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
846                 return fs_info->tree_root;
847         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
848                 return fs_info->extent_root;
849         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
850                 return fs_info->chunk_root;
851         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
852                 return fs_info->dev_root;
853
854         root = radix_tree_lookup(&fs_info->fs_roots_radix,
855                                  (unsigned long)location->objectid);
856         if (root)
857                 return root;
858
859         root = btrfs_read_fs_root_no_radix(fs_info, location);
860         if (IS_ERR(root))
861                 return root;
862         ret = radix_tree_insert(&fs_info->fs_roots_radix,
863                                 (unsigned long)root->root_key.objectid,
864                                 root);
865         if (ret) {
866                 free_extent_buffer(root->node);
867                 kfree(root);
868                 return ERR_PTR(ret);
869         }
870         ret = btrfs_find_dead_roots(fs_info->tree_root,
871                                     root->root_key.objectid, root);
872         BUG_ON(ret);
873
874         return root;
875 }
876
877 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
878                                       struct btrfs_key *location,
879                                       const char *name, int namelen)
880 {
881         struct btrfs_root *root;
882         int ret;
883
884         root = btrfs_read_fs_root_no_name(fs_info, location);
885         if (!root)
886                 return NULL;
887
888         if (root->in_sysfs)
889                 return root;
890
891         ret = btrfs_set_root_name(root, name, namelen);
892         if (ret) {
893                 free_extent_buffer(root->node);
894                 kfree(root);
895                 return ERR_PTR(ret);
896         }
897
898         ret = btrfs_sysfs_add_root(root);
899         if (ret) {
900                 free_extent_buffer(root->node);
901                 kfree(root->name);
902                 kfree(root);
903                 return ERR_PTR(ret);
904         }
905         root->in_sysfs = 1;
906         return root;
907 }
908 #if 0
909 static int add_hasher(struct btrfs_fs_info *info, char *type) {
910         struct btrfs_hasher *hasher;
911
912         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
913         if (!hasher)
914                 return -ENOMEM;
915         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
916         if (!hasher->hash_tfm) {
917                 kfree(hasher);
918                 return -EINVAL;
919         }
920         spin_lock(&info->hash_lock);
921         list_add(&hasher->list, &info->hashers);
922         spin_unlock(&info->hash_lock);
923         return 0;
924 }
925 #endif
926
927 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
928 {
929         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
930         int ret = 0;
931         int limit = 256 * info->fs_devices->open_devices;
932         struct list_head *cur;
933         struct btrfs_device *device;
934         struct backing_dev_info *bdi;
935
936         if ((bdi_bits & (1 << BDI_write_congested)) &&
937             atomic_read(&info->nr_async_submits) > limit) {
938                 return 1;
939         }
940
941         list_for_each(cur, &info->fs_devices->devices) {
942                 device = list_entry(cur, struct btrfs_device, dev_list);
943                 if (!device->bdev)
944                         continue;
945                 bdi = blk_get_backing_dev_info(device->bdev);
946                 if (bdi && bdi_congested(bdi, bdi_bits)) {
947                         ret = 1;
948                         break;
949                 }
950         }
951         return ret;
952 }
953
954 /*
955  * this unplugs every device on the box, and it is only used when page
956  * is null
957  */
958 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
959 {
960         struct list_head *cur;
961         struct btrfs_device *device;
962         struct btrfs_fs_info *info;
963
964         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
965         list_for_each(cur, &info->fs_devices->devices) {
966                 device = list_entry(cur, struct btrfs_device, dev_list);
967                 bdi = blk_get_backing_dev_info(device->bdev);
968                 if (bdi->unplug_io_fn) {
969                         bdi->unplug_io_fn(bdi, page);
970                 }
971         }
972 }
973
974 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
975 {
976         struct inode *inode;
977         struct extent_map_tree *em_tree;
978         struct extent_map *em;
979         struct address_space *mapping;
980         u64 offset;
981
982         /* the generic O_DIRECT read code does this */
983         if (!page) {
984                 __unplug_io_fn(bdi, page);
985                 return;
986         }
987
988         /*
989          * page->mapping may change at any time.  Get a consistent copy
990          * and use that for everything below
991          */
992         smp_mb();
993         mapping = page->mapping;
994         if (!mapping)
995                 return;
996
997         inode = mapping->host;
998         offset = page_offset(page);
999
1000         em_tree = &BTRFS_I(inode)->extent_tree;
1001         spin_lock(&em_tree->lock);
1002         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1003         spin_unlock(&em_tree->lock);
1004         if (!em)
1005                 return;
1006
1007         offset = offset - em->start;
1008         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1009                           em->block_start + offset, page);
1010         free_extent_map(em);
1011 }
1012
1013 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1014 {
1015 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1016         bdi_init(bdi);
1017 #endif
1018         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1019         bdi->state              = 0;
1020         bdi->capabilities       = default_backing_dev_info.capabilities;
1021         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1022         bdi->unplug_io_data     = info;
1023         bdi->congested_fn       = btrfs_congested_fn;
1024         bdi->congested_data     = info;
1025         return 0;
1026 }
1027
1028 static int bio_ready_for_csum(struct bio *bio)
1029 {
1030         u64 length = 0;
1031         u64 buf_len = 0;
1032         u64 start = 0;
1033         struct page *page;
1034         struct extent_io_tree *io_tree = NULL;
1035         struct btrfs_fs_info *info = NULL;
1036         struct bio_vec *bvec;
1037         int i;
1038         int ret;
1039
1040         bio_for_each_segment(bvec, bio, i) {
1041                 page = bvec->bv_page;
1042                 if (page->private == EXTENT_PAGE_PRIVATE) {
1043                         length += bvec->bv_len;
1044                         continue;
1045                 }
1046                 if (!page->private) {
1047                         length += bvec->bv_len;
1048                         continue;
1049                 }
1050                 length = bvec->bv_len;
1051                 buf_len = page->private >> 2;
1052                 start = page_offset(page) + bvec->bv_offset;
1053                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1054                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1055         }
1056         /* are we fully contained in this bio? */
1057         if (buf_len <= length)
1058                 return 1;
1059
1060         ret = extent_range_uptodate(io_tree, start + length,
1061                                     start + buf_len - 1);
1062         if (ret == 1)
1063                 return ret;
1064         return ret;
1065 }
1066
1067 /*
1068  * called by the kthread helper functions to finally call the bio end_io
1069  * functions.  This is where read checksum verification actually happens
1070  */
1071 static void end_workqueue_fn(struct btrfs_work *work)
1072 {
1073         struct bio *bio;
1074         struct end_io_wq *end_io_wq;
1075         struct btrfs_fs_info *fs_info;
1076         int error;
1077
1078         end_io_wq = container_of(work, struct end_io_wq, work);
1079         bio = end_io_wq->bio;
1080         fs_info = end_io_wq->info;
1081
1082         /* metadata bios are special because the whole tree block must
1083          * be checksummed at once.  This makes sure the entire block is in
1084          * ram and up to date before trying to verify things.  For
1085          * blocksize <= pagesize, it is basically a noop
1086          */
1087         if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1088                 btrfs_queue_worker(&fs_info->endio_workers,
1089                                    &end_io_wq->work);
1090                 return;
1091         }
1092         error = end_io_wq->error;
1093         bio->bi_private = end_io_wq->private;
1094         bio->bi_end_io = end_io_wq->end_io;
1095         kfree(end_io_wq);
1096 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1097         bio_endio(bio, bio->bi_size, error);
1098 #else
1099         bio_endio(bio, error);
1100 #endif
1101 }
1102
1103 struct btrfs_root *open_ctree(struct super_block *sb,
1104                               struct btrfs_fs_devices *fs_devices,
1105                               char *options)
1106 {
1107         u32 sectorsize;
1108         u32 nodesize;
1109         u32 leafsize;
1110         u32 blocksize;
1111         u32 stripesize;
1112         struct buffer_head *bh;
1113         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1114                                                  GFP_NOFS);
1115         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1116                                                GFP_NOFS);
1117         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1118                                                 GFP_NOFS);
1119         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1120                                                 GFP_NOFS);
1121         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1122                                               GFP_NOFS);
1123         int ret;
1124         int err = -EINVAL;
1125
1126         struct btrfs_super_block *disk_super;
1127
1128         if (!extent_root || !tree_root || !fs_info) {
1129                 err = -ENOMEM;
1130                 goto fail;
1131         }
1132         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1133         INIT_LIST_HEAD(&fs_info->trans_list);
1134         INIT_LIST_HEAD(&fs_info->dead_roots);
1135         INIT_LIST_HEAD(&fs_info->hashers);
1136         spin_lock_init(&fs_info->hash_lock);
1137         spin_lock_init(&fs_info->delalloc_lock);
1138         spin_lock_init(&fs_info->new_trans_lock);
1139
1140         init_completion(&fs_info->kobj_unregister);
1141         fs_info->tree_root = tree_root;
1142         fs_info->extent_root = extent_root;
1143         fs_info->chunk_root = chunk_root;
1144         fs_info->dev_root = dev_root;
1145         fs_info->fs_devices = fs_devices;
1146         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1147         INIT_LIST_HEAD(&fs_info->space_info);
1148         btrfs_mapping_init(&fs_info->mapping_tree);
1149         atomic_set(&fs_info->nr_async_submits, 0);
1150         atomic_set(&fs_info->throttles, 0);
1151         fs_info->sb = sb;
1152         fs_info->max_extent = (u64)-1;
1153         fs_info->max_inline = 8192 * 1024;
1154         setup_bdi(fs_info, &fs_info->bdi);
1155         fs_info->btree_inode = new_inode(sb);
1156         fs_info->btree_inode->i_ino = 1;
1157         fs_info->btree_inode->i_nlink = 1;
1158         fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1159
1160         sb->s_blocksize = 4096;
1161         sb->s_blocksize_bits = blksize_bits(4096);
1162
1163         /*
1164          * we set the i_size on the btree inode to the max possible int.
1165          * the real end of the address space is determined by all of
1166          * the devices in the system
1167          */
1168         fs_info->btree_inode->i_size = OFFSET_MAX;
1169         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1170         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1171
1172         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1173                              fs_info->btree_inode->i_mapping,
1174                              GFP_NOFS);
1175         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1176                              GFP_NOFS);
1177
1178         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1179
1180         extent_io_tree_init(&fs_info->free_space_cache,
1181                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1182         extent_io_tree_init(&fs_info->block_group_cache,
1183                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1184         extent_io_tree_init(&fs_info->pinned_extents,
1185                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1186         extent_io_tree_init(&fs_info->pending_del,
1187                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1188         extent_io_tree_init(&fs_info->extent_ins,
1189                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1190         fs_info->do_barriers = 1;
1191
1192 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1193         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1194 #else
1195         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1196 #endif
1197         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1198         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1199                sizeof(struct btrfs_key));
1200         insert_inode_hash(fs_info->btree_inode);
1201         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1202
1203         mutex_init(&fs_info->trans_mutex);
1204         mutex_init(&fs_info->drop_mutex);
1205         mutex_init(&fs_info->alloc_mutex);
1206         mutex_init(&fs_info->chunk_mutex);
1207
1208 #if 0
1209         ret = add_hasher(fs_info, "crc32c");
1210         if (ret) {
1211                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1212                 err = -ENOMEM;
1213                 goto fail_iput;
1214         }
1215 #endif
1216         __setup_root(4096, 4096, 4096, 4096, tree_root,
1217                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1218
1219
1220         bh = __bread(fs_devices->latest_bdev,
1221                      BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1222         if (!bh)
1223                 goto fail_iput;
1224
1225         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1226         brelse(bh);
1227
1228         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1229
1230         disk_super = &fs_info->super_copy;
1231         if (!btrfs_super_root(disk_super))
1232                 goto fail_sb_buffer;
1233
1234         err = btrfs_parse_options(tree_root, options);
1235         if (err)
1236                 goto fail_sb_buffer;
1237
1238         /*
1239          * we need to start all the end_io workers up front because the
1240          * queue work function gets called at interrupt time, and so it
1241          * cannot dynamically grow.
1242          */
1243         btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
1244         btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
1245         btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1246         btrfs_start_workers(&fs_info->workers, 1);
1247         btrfs_start_workers(&fs_info->submit_workers, 1);
1248         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1249
1250
1251         err = -EINVAL;
1252         if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1253                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1254                        (unsigned long long)btrfs_super_num_devices(disk_super),
1255                        (unsigned long long)fs_devices->open_devices);
1256                 if (btrfs_test_opt(tree_root, DEGRADED))
1257                         printk("continuing in degraded mode\n");
1258                 else {
1259                         goto fail_sb_buffer;
1260                 }
1261         }
1262
1263         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1264
1265         nodesize = btrfs_super_nodesize(disk_super);
1266         leafsize = btrfs_super_leafsize(disk_super);
1267         sectorsize = btrfs_super_sectorsize(disk_super);
1268         stripesize = btrfs_super_stripesize(disk_super);
1269         tree_root->nodesize = nodesize;
1270         tree_root->leafsize = leafsize;
1271         tree_root->sectorsize = sectorsize;
1272         tree_root->stripesize = stripesize;
1273
1274         sb->s_blocksize = sectorsize;
1275         sb->s_blocksize_bits = blksize_bits(sectorsize);
1276
1277         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1278                     sizeof(disk_super->magic))) {
1279                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1280                 goto fail_sb_buffer;
1281         }
1282
1283         mutex_lock(&fs_info->chunk_mutex);
1284         ret = btrfs_read_sys_array(tree_root);
1285         mutex_unlock(&fs_info->chunk_mutex);
1286         if (ret) {
1287                 printk("btrfs: failed to read the system array on %s\n",
1288                        sb->s_id);
1289                 goto fail_sys_array;
1290         }
1291
1292         blocksize = btrfs_level_size(tree_root,
1293                                      btrfs_super_chunk_root_level(disk_super));
1294
1295         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1296                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1297
1298         chunk_root->node = read_tree_block(chunk_root,
1299                                            btrfs_super_chunk_root(disk_super),
1300                                            blocksize, 0);
1301         BUG_ON(!chunk_root->node);
1302
1303         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1304                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1305                  BTRFS_UUID_SIZE);
1306
1307         mutex_lock(&fs_info->chunk_mutex);
1308         ret = btrfs_read_chunk_tree(chunk_root);
1309         mutex_unlock(&fs_info->chunk_mutex);
1310         BUG_ON(ret);
1311
1312         btrfs_close_extra_devices(fs_devices);
1313
1314         blocksize = btrfs_level_size(tree_root,
1315                                      btrfs_super_root_level(disk_super));
1316
1317
1318         tree_root->node = read_tree_block(tree_root,
1319                                           btrfs_super_root(disk_super),
1320                                           blocksize, 0);
1321         if (!tree_root->node)
1322                 goto fail_sb_buffer;
1323
1324
1325         ret = find_and_setup_root(tree_root, fs_info,
1326                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1327         if (ret)
1328                 goto fail_tree_root;
1329         extent_root->track_dirty = 1;
1330
1331         ret = find_and_setup_root(tree_root, fs_info,
1332                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1333         dev_root->track_dirty = 1;
1334
1335         if (ret)
1336                 goto fail_extent_root;
1337
1338         btrfs_read_block_groups(extent_root);
1339
1340         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1341         fs_info->data_alloc_profile = (u64)-1;
1342         fs_info->metadata_alloc_profile = (u64)-1;
1343         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1344
1345         return tree_root;
1346
1347 fail_extent_root:
1348         free_extent_buffer(extent_root->node);
1349 fail_tree_root:
1350         free_extent_buffer(tree_root->node);
1351 fail_sys_array:
1352 fail_sb_buffer:
1353         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1354         btrfs_stop_workers(&fs_info->workers);
1355         btrfs_stop_workers(&fs_info->endio_workers);
1356         btrfs_stop_workers(&fs_info->submit_workers);
1357 fail_iput:
1358         iput(fs_info->btree_inode);
1359 fail:
1360         btrfs_close_devices(fs_info->fs_devices);
1361         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1362
1363         kfree(extent_root);
1364         kfree(tree_root);
1365 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1366         bdi_destroy(&fs_info->bdi);
1367 #endif
1368         kfree(fs_info);
1369         return ERR_PTR(err);
1370 }
1371
1372 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1373 {
1374         char b[BDEVNAME_SIZE];
1375
1376         if (uptodate) {
1377                 set_buffer_uptodate(bh);
1378         } else {
1379                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1380                         printk(KERN_WARNING "lost page write due to "
1381                                         "I/O error on %s\n",
1382                                        bdevname(bh->b_bdev, b));
1383                 }
1384                 /* note, we dont' set_buffer_write_io_error because we have
1385                  * our own ways of dealing with the IO errors
1386                  */
1387                 clear_buffer_uptodate(bh);
1388         }
1389         unlock_buffer(bh);
1390         put_bh(bh);
1391 }
1392
1393 int write_all_supers(struct btrfs_root *root)
1394 {
1395         struct list_head *cur;
1396         struct list_head *head = &root->fs_info->fs_devices->devices;
1397         struct btrfs_device *dev;
1398         struct btrfs_super_block *sb;
1399         struct btrfs_dev_item *dev_item;
1400         struct buffer_head *bh;
1401         int ret;
1402         int do_barriers;
1403         int max_errors;
1404         int total_errors = 0;
1405         u32 crc;
1406         u64 flags;
1407
1408         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1409         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1410
1411         sb = &root->fs_info->super_for_commit;
1412         dev_item = &sb->dev_item;
1413         list_for_each(cur, head) {
1414                 dev = list_entry(cur, struct btrfs_device, dev_list);
1415                 if (!dev->bdev) {
1416                         total_errors++;
1417                         continue;
1418                 }
1419                 if (!dev->in_fs_metadata)
1420                         continue;
1421
1422                 btrfs_set_stack_device_type(dev_item, dev->type);
1423                 btrfs_set_stack_device_id(dev_item, dev->devid);
1424                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1425                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1426                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1427                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1428                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1429                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1430                 flags = btrfs_super_flags(sb);
1431                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1432
1433
1434                 crc = ~(u32)0;
1435                 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1436                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1437                 btrfs_csum_final(crc, sb->csum);
1438
1439                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1440                               BTRFS_SUPER_INFO_SIZE);
1441
1442                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1443                 dev->pending_io = bh;
1444
1445                 get_bh(bh);
1446                 set_buffer_uptodate(bh);
1447                 lock_buffer(bh);
1448                 bh->b_end_io = btrfs_end_buffer_write_sync;
1449
1450                 if (do_barriers && dev->barriers) {
1451                         ret = submit_bh(WRITE_BARRIER, bh);
1452                         if (ret == -EOPNOTSUPP) {
1453                                 printk("btrfs: disabling barriers on dev %s\n",
1454                                        dev->name);
1455                                 set_buffer_uptodate(bh);
1456                                 dev->barriers = 0;
1457                                 get_bh(bh);
1458                                 lock_buffer(bh);
1459                                 ret = submit_bh(WRITE, bh);
1460                         }
1461                 } else {
1462                         ret = submit_bh(WRITE, bh);
1463                 }
1464                 if (ret)
1465                         total_errors++;
1466         }
1467         if (total_errors > max_errors) {
1468                 printk("btrfs: %d errors while writing supers\n", total_errors);
1469                 BUG();
1470         }
1471         total_errors = 0;
1472
1473         list_for_each(cur, head) {
1474                 dev = list_entry(cur, struct btrfs_device, dev_list);
1475                 if (!dev->bdev)
1476                         continue;
1477                 if (!dev->in_fs_metadata)
1478                         continue;
1479
1480                 BUG_ON(!dev->pending_io);
1481                 bh = dev->pending_io;
1482                 wait_on_buffer(bh);
1483                 if (!buffer_uptodate(dev->pending_io)) {
1484                         if (do_barriers && dev->barriers) {
1485                                 printk("btrfs: disabling barriers on dev %s\n",
1486                                        dev->name);
1487                                 set_buffer_uptodate(bh);
1488                                 get_bh(bh);
1489                                 lock_buffer(bh);
1490                                 dev->barriers = 0;
1491                                 ret = submit_bh(WRITE, bh);
1492                                 BUG_ON(ret);
1493                                 wait_on_buffer(bh);
1494                                 if (!buffer_uptodate(bh))
1495                                         total_errors++;
1496                         } else {
1497                                 total_errors++;
1498                         }
1499
1500                 }
1501                 dev->pending_io = NULL;
1502                 brelse(bh);
1503         }
1504         if (total_errors > max_errors) {
1505                 printk("btrfs: %d errors while writing supers\n", total_errors);
1506                 BUG();
1507         }
1508         return 0;
1509 }
1510
1511 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1512                       *root)
1513 {
1514         int ret;
1515
1516         ret = write_all_supers(root);
1517         return ret;
1518 }
1519
1520 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1521 {
1522         radix_tree_delete(&fs_info->fs_roots_radix,
1523                           (unsigned long)root->root_key.objectid);
1524         if (root->in_sysfs)
1525                 btrfs_sysfs_del_root(root);
1526         if (root->inode)
1527                 iput(root->inode);
1528         if (root->node)
1529                 free_extent_buffer(root->node);
1530         if (root->commit_root)
1531                 free_extent_buffer(root->commit_root);
1532         if (root->name)
1533                 kfree(root->name);
1534         kfree(root);
1535         return 0;
1536 }
1537
1538 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1539 {
1540         int ret;
1541         struct btrfs_root *gang[8];
1542         int i;
1543
1544         while(1) {
1545                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1546                                              (void **)gang, 0,
1547                                              ARRAY_SIZE(gang));
1548                 if (!ret)
1549                         break;
1550                 for (i = 0; i < ret; i++)
1551                         btrfs_free_fs_root(fs_info, gang[i]);
1552         }
1553         return 0;
1554 }
1555
1556 int close_ctree(struct btrfs_root *root)
1557 {
1558         int ret;
1559         struct btrfs_trans_handle *trans;
1560         struct btrfs_fs_info *fs_info = root->fs_info;
1561
1562         fs_info->closing = 1;
1563         smp_mb();
1564
1565         btrfs_transaction_flush_work(root);
1566         btrfs_defrag_dirty_roots(root->fs_info);
1567         trans = btrfs_start_transaction(root, 1);
1568         ret = btrfs_commit_transaction(trans, root);
1569         /* run commit again to  drop the original snapshot */
1570         trans = btrfs_start_transaction(root, 1);
1571         btrfs_commit_transaction(trans, root);
1572         ret = btrfs_write_and_wait_transaction(NULL, root);
1573         BUG_ON(ret);
1574
1575         write_ctree_super(NULL, root);
1576
1577         btrfs_transaction_flush_work(root);
1578
1579         if (fs_info->delalloc_bytes) {
1580                 printk("btrfs: at unmount delalloc count %Lu\n",
1581                        fs_info->delalloc_bytes);
1582         }
1583         if (fs_info->extent_root->node)
1584                 free_extent_buffer(fs_info->extent_root->node);
1585
1586         if (fs_info->tree_root->node)
1587                 free_extent_buffer(fs_info->tree_root->node);
1588
1589         if (root->fs_info->chunk_root->node);
1590                 free_extent_buffer(root->fs_info->chunk_root->node);
1591
1592         if (root->fs_info->dev_root->node);
1593                 free_extent_buffer(root->fs_info->dev_root->node);
1594
1595         btrfs_free_block_groups(root->fs_info);
1596         del_fs_roots(fs_info);
1597
1598         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1599
1600         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1601         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1602         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1603         extent_io_tree_empty_lru(&fs_info->pending_del);
1604         extent_io_tree_empty_lru(&fs_info->extent_ins);
1605         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1606
1607         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1608
1609         btrfs_stop_workers(&fs_info->workers);
1610         btrfs_stop_workers(&fs_info->endio_workers);
1611         btrfs_stop_workers(&fs_info->submit_workers);
1612
1613         iput(fs_info->btree_inode);
1614 #if 0
1615         while(!list_empty(&fs_info->hashers)) {
1616                 struct btrfs_hasher *hasher;
1617                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1618                                     hashers);
1619                 list_del(&hasher->hashers);
1620                 crypto_free_hash(&fs_info->hash_tfm);
1621                 kfree(hasher);
1622         }
1623 #endif
1624         btrfs_close_devices(fs_info->fs_devices);
1625         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1626
1627 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1628         bdi_destroy(&fs_info->bdi);
1629 #endif
1630
1631         kfree(fs_info->extent_root);
1632         kfree(fs_info->tree_root);
1633         kfree(fs_info->chunk_root);
1634         kfree(fs_info->dev_root);
1635         return 0;
1636 }
1637
1638 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1639 {
1640         int ret;
1641         struct inode *btree_inode = buf->first_page->mapping->host;
1642
1643         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1644         if (!ret)
1645                 return ret;
1646
1647         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1648                                     parent_transid);
1649         return !ret;
1650 }
1651
1652 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1653 {
1654         struct inode *btree_inode = buf->first_page->mapping->host;
1655         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1656                                           buf);
1657 }
1658
1659 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1660 {
1661         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1662         u64 transid = btrfs_header_generation(buf);
1663         struct inode *btree_inode = root->fs_info->btree_inode;
1664
1665         WARN_ON(!btrfs_tree_locked(buf));
1666         if (transid != root->fs_info->generation) {
1667                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1668                         (unsigned long long)buf->start,
1669                         transid, root->fs_info->generation);
1670                 WARN_ON(1);
1671         }
1672         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1673 }
1674
1675 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1676 {
1677         /*
1678          * looks as though older kernels can get into trouble with
1679          * this code, they end up stuck in balance_dirty_pages forever
1680          */
1681         struct extent_io_tree *tree;
1682         u64 num_dirty;
1683         u64 start = 0;
1684         unsigned long thresh = 16 * 1024 * 1024;
1685         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1686
1687         if (current_is_pdflush())
1688                 return;
1689
1690         num_dirty = count_range_bits(tree, &start, (u64)-1,
1691                                      thresh, EXTENT_DIRTY);
1692         if (num_dirty > thresh) {
1693                 balance_dirty_pages_ratelimited_nr(
1694                                    root->fs_info->btree_inode->i_mapping, 1);
1695         }
1696         return;
1697 }
1698
1699 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1700 {
1701         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1702         struct inode *btree_inode = root->fs_info->btree_inode;
1703         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1704                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1705 }
1706
1707 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1708 {
1709         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1710         struct inode *btree_inode = root->fs_info->btree_inode;
1711         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1712                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1713                         GFP_NOFS);
1714 }
1715
1716 int btrfs_buffer_defrag(struct extent_buffer *buf)
1717 {
1718         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1719         struct inode *btree_inode = root->fs_info->btree_inode;
1720         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1721                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1722 }
1723
1724 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1725 {
1726         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1727         struct inode *btree_inode = root->fs_info->btree_inode;
1728         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1729                      buf->start, buf->start + buf->len - 1,
1730                      EXTENT_DEFRAG_DONE, 0);
1731 }
1732
1733 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1734 {
1735         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1736         struct inode *btree_inode = root->fs_info->btree_inode;
1737         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1738                      buf->start, buf->start + buf->len - 1,
1739                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1740 }
1741
1742 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1743 {
1744         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1745         struct inode *btree_inode = root->fs_info->btree_inode;
1746         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1747                      buf->start, buf->start + buf->len - 1,
1748                      EXTENT_DEFRAG, GFP_NOFS);
1749 }
1750
1751 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1752 {
1753         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1754         int ret;
1755         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1756         if (ret == 0) {
1757                 buf->flags |= EXTENT_UPTODATE;
1758         }
1759         return ret;
1760 }
1761
1762 static struct extent_io_ops btree_extent_io_ops = {
1763         .writepage_io_hook = btree_writepage_io_hook,
1764         .readpage_end_io_hook = btree_readpage_end_io_hook,
1765         .submit_bio_hook = btree_submit_bio_hook,
1766         /* note we're sharing with inode.c for the merge bio hook */
1767         .merge_bio_hook = btrfs_merge_bio_hook,
1768 };