Merge tag 'spi-fix-v4.20-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                 struct page *page, size_t pg_offset, u64 start, u64 len,
207                 int create)
208 {
209         struct btrfs_fs_info *fs_info = inode->root->fs_info;
210         struct extent_map_tree *em_tree = &inode->extent_tree;
211         struct extent_map *em;
212         int ret;
213
214         read_lock(&em_tree->lock);
215         em = lookup_extent_mapping(em_tree, start, len);
216         if (em) {
217                 em->bdev = fs_info->fs_devices->latest_bdev;
218                 read_unlock(&em_tree->lock);
219                 goto out;
220         }
221         read_unlock(&em_tree->lock);
222
223         em = alloc_extent_map();
224         if (!em) {
225                 em = ERR_PTR(-ENOMEM);
226                 goto out;
227         }
228         em->start = 0;
229         em->len = (u64)-1;
230         em->block_len = (u64)-1;
231         em->block_start = 0;
232         em->bdev = fs_info->fs_devices->latest_bdev;
233
234         write_lock(&em_tree->lock);
235         ret = add_extent_mapping(em_tree, em, 0);
236         if (ret == -EEXIST) {
237                 free_extent_map(em);
238                 em = lookup_extent_mapping(em_tree, start, len);
239                 if (!em)
240                         em = ERR_PTR(-EIO);
241         } else if (ret) {
242                 free_extent_map(em);
243                 em = ERR_PTR(ret);
244         }
245         write_unlock(&em_tree->lock);
246
247 out:
248         return em;
249 }
250
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253         return crc32c(seed, data, len);
254 }
255
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258         put_unaligned_le32(~crc, result);
259 }
260
261 /*
262  * compute the csum for a btree block, and either verify it or write it
263  * into the csum field of the block.
264  */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266                            struct extent_buffer *buf,
267                            int verify)
268 {
269         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270         char result[BTRFS_CSUM_SIZE];
271         unsigned long len;
272         unsigned long cur_len;
273         unsigned long offset = BTRFS_CSUM_SIZE;
274         char *kaddr;
275         unsigned long map_start;
276         unsigned long map_len;
277         int err;
278         u32 crc = ~(u32)0;
279
280         len = buf->len - offset;
281         while (len > 0) {
282                 err = map_private_extent_buffer(buf, offset, 32,
283                                         &kaddr, &map_start, &map_len);
284                 if (err)
285                         return err;
286                 cur_len = min(len, map_len - (offset - map_start));
287                 crc = btrfs_csum_data(kaddr + offset - map_start,
288                                       crc, cur_len);
289                 len -= cur_len;
290                 offset += cur_len;
291         }
292         memset(result, 0, BTRFS_CSUM_SIZE);
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         btrfs_warn_rl(fs_info,
304                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
305                                 fs_info->sb->s_id, buf->start,
306                                 val, found, btrfs_header_level(buf));
307                         return -EUCLEAN;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312
313         return 0;
314 }
315
316 /*
317  * we can't consider a given block up to date unless the transid of the
318  * block matches the transid in the parent node's pointer.  This is how we
319  * detect blocks that either didn't get written at all or got written
320  * in the wrong place.
321  */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323                                  struct extent_buffer *eb, u64 parent_transid,
324                                  int atomic)
325 {
326         struct extent_state *cached_state = NULL;
327         int ret;
328         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         if (need_lock) {
337                 btrfs_tree_read_lock(eb);
338                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339         }
340
341         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
342                          &cached_state);
343         if (extent_buffer_uptodate(eb) &&
344             btrfs_header_generation(eb) == parent_transid) {
345                 ret = 0;
346                 goto out;
347         }
348         btrfs_err_rl(eb->fs_info,
349                 "parent transid verify failed on %llu wanted %llu found %llu",
350                         eb->start,
351                         parent_transid, btrfs_header_generation(eb));
352         ret = 1;
353
354         /*
355          * Things reading via commit roots that don't have normal protection,
356          * like send, can have a really old block in cache that may point at a
357          * block that has been freed and re-allocated.  So don't clear uptodate
358          * if we find an eb that is under IO (dirty/writeback) because we could
359          * end up reading in the stale data and then writing it back out and
360          * making everybody very sad.
361          */
362         if (!extent_buffer_under_io(eb))
363                 clear_extent_buffer_uptodate(eb);
364 out:
365         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
366                              &cached_state);
367         if (need_lock)
368                 btrfs_tree_read_unlock_blocking(eb);
369         return ret;
370 }
371
372 /*
373  * Return 0 if the superblock checksum type matches the checksum value of that
374  * algorithm. Pass the raw disk superblock data.
375  */
376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377                                   char *raw_disk_sb)
378 {
379         struct btrfs_super_block *disk_sb =
380                 (struct btrfs_super_block *)raw_disk_sb;
381         u16 csum_type = btrfs_super_csum_type(disk_sb);
382         int ret = 0;
383
384         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385                 u32 crc = ~(u32)0;
386                 char result[sizeof(crc)];
387
388                 /*
389                  * The super_block structure does not span the whole
390                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391                  * is filled with zeros and is included in the checksum.
392                  */
393                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395                 btrfs_csum_final(crc, result);
396
397                 if (memcmp(raw_disk_sb, result, sizeof(result)))
398                         ret = 1;
399         }
400
401         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
403                                 csum_type);
404                 ret = 1;
405         }
406
407         return ret;
408 }
409
410 static int verify_level_key(struct btrfs_fs_info *fs_info,
411                             struct extent_buffer *eb, int level,
412                             struct btrfs_key *first_key, u64 parent_transid)
413 {
414         int found_level;
415         struct btrfs_key found_key;
416         int ret;
417
418         found_level = btrfs_header_level(eb);
419         if (found_level != level) {
420 #ifdef CONFIG_BTRFS_DEBUG
421                 WARN_ON(1);
422                 btrfs_err(fs_info,
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424                           eb->start, level, found_level);
425 #endif
426                 return -EIO;
427         }
428
429         if (!first_key)
430                 return 0;
431
432         /*
433          * For live tree block (new tree blocks in current transaction),
434          * we need proper lock context to avoid race, which is impossible here.
435          * So we only checks tree blocks which is read from disk, whose
436          * generation <= fs_info->last_trans_committed.
437          */
438         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439                 return 0;
440         if (found_level)
441                 btrfs_node_key_to_cpu(eb, &found_key, 0);
442         else
443                 btrfs_item_key_to_cpu(eb, &found_key, 0);
444         ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446 #ifdef CONFIG_BTRFS_DEBUG
447         if (ret) {
448                 WARN_ON(1);
449                 btrfs_err(fs_info,
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451                           eb->start, parent_transid, first_key->objectid,
452                           first_key->type, first_key->offset,
453                           found_key.objectid, found_key.type,
454                           found_key.offset);
455         }
456 #endif
457         return ret;
458 }
459
460 /*
461  * helper to read a given tree block, doing retries as required when
462  * the checksums don't match and we have alternate mirrors to try.
463  *
464  * @parent_transid:     expected transid, skip check if 0
465  * @level:              expected level, mandatory check
466  * @first_key:          expected key of first slot, skip check if NULL
467  */
468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469                                           struct extent_buffer *eb,
470                                           u64 parent_transid, int level,
471                                           struct btrfs_key *first_key)
472 {
473         struct extent_io_tree *io_tree;
474         int failed = 0;
475         int ret;
476         int num_copies = 0;
477         int mirror_num = 0;
478         int failed_mirror = 0;
479
480         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
481         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
482         while (1) {
483                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
484                                                mirror_num);
485                 if (!ret) {
486                         if (verify_parent_transid(io_tree, eb,
487                                                    parent_transid, 0))
488                                 ret = -EIO;
489                         else if (verify_level_key(fs_info, eb, level,
490                                                   first_key, parent_transid))
491                                 ret = -EUCLEAN;
492                         else
493                                 break;
494                 }
495
496                 /*
497                  * This buffer's crc is fine, but its contents are corrupted, so
498                  * there is no reason to read the other copies, they won't be
499                  * any less wrong.
500                  */
501                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
502                     ret == -EUCLEAN)
503                         break;
504
505                 num_copies = btrfs_num_copies(fs_info,
506                                               eb->start, eb->len);
507                 if (num_copies == 1)
508                         break;
509
510                 if (!failed_mirror) {
511                         failed = 1;
512                         failed_mirror = eb->read_mirror;
513                 }
514
515                 mirror_num++;
516                 if (mirror_num == failed_mirror)
517                         mirror_num++;
518
519                 if (mirror_num > num_copies)
520                         break;
521         }
522
523         if (failed && !ret && failed_mirror)
524                 repair_eb_io_failure(fs_info, eb, failed_mirror);
525
526         return ret;
527 }
528
529 /*
530  * checksum a dirty tree block before IO.  This has extra checks to make sure
531  * we only fill in the checksum field in the first page of a multi-page block
532  */
533
534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
535 {
536         u64 start = page_offset(page);
537         u64 found_start;
538         struct extent_buffer *eb;
539
540         eb = (struct extent_buffer *)page->private;
541         if (page != eb->pages[0])
542                 return 0;
543
544         found_start = btrfs_header_bytenr(eb);
545         /*
546          * Please do not consolidate these warnings into a single if.
547          * It is useful to know what went wrong.
548          */
549         if (WARN_ON(found_start != start))
550                 return -EUCLEAN;
551         if (WARN_ON(!PageUptodate(page)))
552                 return -EUCLEAN;
553
554         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
555                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
556
557         return csum_tree_block(fs_info, eb, 0);
558 }
559
560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
561                                  struct extent_buffer *eb)
562 {
563         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564         u8 fsid[BTRFS_FSID_SIZE];
565         int ret = 1;
566
567         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568         while (fs_devices) {
569                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
570                         ret = 0;
571                         break;
572                 }
573                 fs_devices = fs_devices->seed;
574         }
575         return ret;
576 }
577
578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579                                       u64 phy_offset, struct page *page,
580                                       u64 start, u64 end, int mirror)
581 {
582         u64 found_start;
583         int found_level;
584         struct extent_buffer *eb;
585         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586         struct btrfs_fs_info *fs_info = root->fs_info;
587         int ret = 0;
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         eb = (struct extent_buffer *)page->private;
594
595         /* the pending IO might have been the only thing that kept this buffer
596          * in memory.  Make sure we have a ref for all this other checks
597          */
598         extent_buffer_get(eb);
599
600         reads_done = atomic_dec_and_test(&eb->io_pages);
601         if (!reads_done)
602                 goto err;
603
604         eb->read_mirror = mirror;
605         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606                 ret = -EIO;
607                 goto err;
608         }
609
610         found_start = btrfs_header_bytenr(eb);
611         if (found_start != eb->start) {
612                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
613                              eb->start, found_start);
614                 ret = -EIO;
615                 goto err;
616         }
617         if (check_tree_block_fsid(fs_info, eb)) {
618                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
619                              eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         found_level = btrfs_header_level(eb);
624         if (found_level >= BTRFS_MAX_LEVEL) {
625                 btrfs_err(fs_info, "bad tree block level %d on %llu",
626                           (int)btrfs_header_level(eb), eb->start);
627                 ret = -EIO;
628                 goto err;
629         }
630
631         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632                                        eb, found_level);
633
634         ret = csum_tree_block(fs_info, eb, 1);
635         if (ret)
636                 goto err;
637
638         /*
639          * If this is a leaf block and it is corrupt, set the corrupt bit so
640          * that we don't try and read the other copies of this block, just
641          * return -EIO.
642          */
643         if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
644                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645                 ret = -EIO;
646         }
647
648         if (found_level > 0 && btrfs_check_node(fs_info, eb))
649                 ret = -EIO;
650
651         if (!ret)
652                 set_extent_buffer_uptodate(eb);
653 err:
654         if (reads_done &&
655             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
656                 btree_readahead_hook(eb, ret);
657
658         if (ret) {
659                 /*
660                  * our io error hook is going to dec the io pages
661                  * again, we have to make sure it has something
662                  * to decrement
663                  */
664                 atomic_inc(&eb->io_pages);
665                 clear_extent_buffer_uptodate(eb);
666         }
667         free_extent_buffer(eb);
668 out:
669         return ret;
670 }
671
672 static int btree_io_failed_hook(struct page *page, int failed_mirror)
673 {
674         struct extent_buffer *eb;
675
676         eb = (struct extent_buffer *)page->private;
677         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
678         eb->read_mirror = failed_mirror;
679         atomic_dec(&eb->io_pages);
680         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681                 btree_readahead_hook(eb, -EIO);
682         return -EIO;    /* we fixed nothing */
683 }
684
685 static void end_workqueue_bio(struct bio *bio)
686 {
687         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
688         struct btrfs_fs_info *fs_info;
689         struct btrfs_workqueue *wq;
690         btrfs_work_func_t func;
691
692         fs_info = end_io_wq->info;
693         end_io_wq->status = bio->bi_status;
694
695         if (bio_op(bio) == REQ_OP_WRITE) {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
697                         wq = fs_info->endio_meta_write_workers;
698                         func = btrfs_endio_meta_write_helper;
699                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
700                         wq = fs_info->endio_freespace_worker;
701                         func = btrfs_freespace_write_helper;
702                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
703                         wq = fs_info->endio_raid56_workers;
704                         func = btrfs_endio_raid56_helper;
705                 } else {
706                         wq = fs_info->endio_write_workers;
707                         func = btrfs_endio_write_helper;
708                 }
709         } else {
710                 if (unlikely(end_io_wq->metadata ==
711                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
712                         wq = fs_info->endio_repair_workers;
713                         func = btrfs_endio_repair_helper;
714                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
715                         wq = fs_info->endio_raid56_workers;
716                         func = btrfs_endio_raid56_helper;
717                 } else if (end_io_wq->metadata) {
718                         wq = fs_info->endio_meta_workers;
719                         func = btrfs_endio_meta_helper;
720                 } else {
721                         wq = fs_info->endio_workers;
722                         func = btrfs_endio_helper;
723                 }
724         }
725
726         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
727         btrfs_queue_work(wq, &end_io_wq->work);
728 }
729
730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
731                         enum btrfs_wq_endio_type metadata)
732 {
733         struct btrfs_end_io_wq *end_io_wq;
734
735         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
736         if (!end_io_wq)
737                 return BLK_STS_RESOURCE;
738
739         end_io_wq->private = bio->bi_private;
740         end_io_wq->end_io = bio->bi_end_io;
741         end_io_wq->info = info;
742         end_io_wq->status = 0;
743         end_io_wq->bio = bio;
744         end_io_wq->metadata = metadata;
745
746         bio->bi_private = end_io_wq;
747         bio->bi_end_io = end_workqueue_bio;
748         return 0;
749 }
750
751 static void run_one_async_start(struct btrfs_work *work)
752 {
753         struct async_submit_bio *async;
754         blk_status_t ret;
755
756         async = container_of(work, struct  async_submit_bio, work);
757         ret = async->submit_bio_start(async->private_data, async->bio,
758                                       async->bio_offset);
759         if (ret)
760                 async->status = ret;
761 }
762
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766
767         async = container_of(work, struct  async_submit_bio, work);
768
769         /* If an error occurred we just want to clean up the bio and move on */
770         if (async->status) {
771                 async->bio->bi_status = async->status;
772                 bio_endio(async->bio);
773                 return;
774         }
775
776         btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
777 }
778
779 static void run_one_async_free(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782
783         async = container_of(work, struct  async_submit_bio, work);
784         kfree(async);
785 }
786
787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
788                                  int mirror_num, unsigned long bio_flags,
789                                  u64 bio_offset, void *private_data,
790                                  extent_submit_bio_start_t *submit_bio_start)
791 {
792         struct async_submit_bio *async;
793
794         async = kmalloc(sizeof(*async), GFP_NOFS);
795         if (!async)
796                 return BLK_STS_RESOURCE;
797
798         async->private_data = private_data;
799         async->bio = bio;
800         async->mirror_num = mirror_num;
801         async->submit_bio_start = submit_bio_start;
802
803         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
804                         run_one_async_done, run_one_async_free);
805
806         async->bio_offset = bio_offset;
807
808         async->status = 0;
809
810         if (op_is_sync(bio->bi_opf))
811                 btrfs_set_work_high_priority(&async->work);
812
813         btrfs_queue_work(fs_info->workers, &async->work);
814         return 0;
815 }
816
817 static blk_status_t btree_csum_one_bio(struct bio *bio)
818 {
819         struct bio_vec *bvec;
820         struct btrfs_root *root;
821         int i, ret = 0;
822
823         ASSERT(!bio_flagged(bio, BIO_CLONED));
824         bio_for_each_segment_all(bvec, bio, i) {
825                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
826                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
827                 if (ret)
828                         break;
829         }
830
831         return errno_to_blk_status(ret);
832 }
833
834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
835                                              u64 bio_offset)
836 {
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         return btree_csum_one_bio(bio);
842 }
843
844 static int check_async_write(struct btrfs_inode *bi)
845 {
846         if (atomic_read(&bi->sync_writers))
847                 return 0;
848 #ifdef CONFIG_X86
849         if (static_cpu_has(X86_FEATURE_XMM4_2))
850                 return 0;
851 #endif
852         return 1;
853 }
854
855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
856                                           int mirror_num, unsigned long bio_flags,
857                                           u64 bio_offset)
858 {
859         struct inode *inode = private_data;
860         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
861         int async = check_async_write(BTRFS_I(inode));
862         blk_status_t ret;
863
864         if (bio_op(bio) != REQ_OP_WRITE) {
865                 /*
866                  * called for a read, do the setup so that checksum validation
867                  * can happen in the async kernel threads
868                  */
869                 ret = btrfs_bio_wq_end_io(fs_info, bio,
870                                           BTRFS_WQ_ENDIO_METADATA);
871                 if (ret)
872                         goto out_w_error;
873                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
874         } else if (!async) {
875                 ret = btree_csum_one_bio(bio);
876                 if (ret)
877                         goto out_w_error;
878                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879         } else {
880                 /*
881                  * kthread helpers are used to submit writes so that
882                  * checksumming can happen in parallel across all CPUs
883                  */
884                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
885                                           bio_offset, private_data,
886                                           btree_submit_bio_start);
887         }
888
889         if (ret)
890                 goto out_w_error;
891         return 0;
892
893 out_w_error:
894         bio->bi_status = ret;
895         bio_endio(bio);
896         return ret;
897 }
898
899 #ifdef CONFIG_MIGRATION
900 static int btree_migratepage(struct address_space *mapping,
901                         struct page *newpage, struct page *page,
902                         enum migrate_mode mode)
903 {
904         /*
905          * we can't safely write a btree page from here,
906          * we haven't done the locking hook
907          */
908         if (PageDirty(page))
909                 return -EAGAIN;
910         /*
911          * Buffers may be managed in a filesystem specific way.
912          * We must have no buffers or drop them.
913          */
914         if (page_has_private(page) &&
915             !try_to_release_page(page, GFP_KERNEL))
916                 return -EAGAIN;
917         return migrate_page(mapping, newpage, page, mode);
918 }
919 #endif
920
921
922 static int btree_writepages(struct address_space *mapping,
923                             struct writeback_control *wbc)
924 {
925         struct btrfs_fs_info *fs_info;
926         int ret;
927
928         if (wbc->sync_mode == WB_SYNC_NONE) {
929
930                 if (wbc->for_kupdate)
931                         return 0;
932
933                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
934                 /* this is a bit racy, but that's ok */
935                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
936                                              BTRFS_DIRTY_METADATA_THRESH,
937                                              fs_info->dirty_metadata_batch);
938                 if (ret < 0)
939                         return 0;
940         }
941         return btree_write_cache_pages(mapping, wbc);
942 }
943
944 static int btree_readpage(struct file *file, struct page *page)
945 {
946         struct extent_io_tree *tree;
947         tree = &BTRFS_I(page->mapping->host)->io_tree;
948         return extent_read_full_page(tree, page, btree_get_extent, 0);
949 }
950
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953         if (PageWriteback(page) || PageDirty(page))
954                 return 0;
955
956         return try_release_extent_buffer(page);
957 }
958
959 static void btree_invalidatepage(struct page *page, unsigned int offset,
960                                  unsigned int length)
961 {
962         struct extent_io_tree *tree;
963         tree = &BTRFS_I(page->mapping->host)->io_tree;
964         extent_invalidatepage(tree, page, offset);
965         btree_releasepage(page, GFP_NOFS);
966         if (PagePrivate(page)) {
967                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968                            "page private not zero on page %llu",
969                            (unsigned long long)page_offset(page));
970                 ClearPagePrivate(page);
971                 set_page_private(page, 0);
972                 put_page(page);
973         }
974 }
975
976 static int btree_set_page_dirty(struct page *page)
977 {
978 #ifdef DEBUG
979         struct extent_buffer *eb;
980
981         BUG_ON(!PagePrivate(page));
982         eb = (struct extent_buffer *)page->private;
983         BUG_ON(!eb);
984         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
985         BUG_ON(!atomic_read(&eb->refs));
986         btrfs_assert_tree_locked(eb);
987 #endif
988         return __set_page_dirty_nobuffers(page);
989 }
990
991 static const struct address_space_operations btree_aops = {
992         .readpage       = btree_readpage,
993         .writepages     = btree_writepages,
994         .releasepage    = btree_releasepage,
995         .invalidatepage = btree_invalidatepage,
996 #ifdef CONFIG_MIGRATION
997         .migratepage    = btree_migratepage,
998 #endif
999         .set_page_dirty = btree_set_page_dirty,
1000 };
1001
1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1003 {
1004         struct extent_buffer *buf = NULL;
1005         struct inode *btree_inode = fs_info->btree_inode;
1006
1007         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1008         if (IS_ERR(buf))
1009                 return;
1010         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1011                                  buf, WAIT_NONE, 0);
1012         free_extent_buffer(buf);
1013 }
1014
1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1016                          int mirror_num, struct extent_buffer **eb)
1017 {
1018         struct extent_buffer *buf = NULL;
1019         struct inode *btree_inode = fs_info->btree_inode;
1020         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021         int ret;
1022
1023         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1024         if (IS_ERR(buf))
1025                 return 0;
1026
1027         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028
1029         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1030                                        mirror_num);
1031         if (ret) {
1032                 free_extent_buffer(buf);
1033                 return ret;
1034         }
1035
1036         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037                 free_extent_buffer(buf);
1038                 return -EIO;
1039         } else if (extent_buffer_uptodate(buf)) {
1040                 *eb = buf;
1041         } else {
1042                 free_extent_buffer(buf);
1043         }
1044         return 0;
1045 }
1046
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048                                                 struct btrfs_fs_info *fs_info,
1049                                                 u64 bytenr)
1050 {
1051         if (btrfs_is_testing(fs_info))
1052                 return alloc_test_extent_buffer(fs_info, bytenr);
1053         return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056
1057 int btrfs_write_tree_block(struct extent_buffer *buf)
1058 {
1059         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1060                                         buf->start + buf->len - 1);
1061 }
1062
1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1064 {
1065         filemap_fdatawait_range(buf->pages[0]->mapping,
1066                                 buf->start, buf->start + buf->len - 1);
1067 }
1068
1069 /*
1070  * Read tree block at logical address @bytenr and do variant basic but critical
1071  * verification.
1072  *
1073  * @parent_transid:     expected transid of this tree block, skip check if 0
1074  * @level:              expected level, mandatory check
1075  * @first_key:          expected key in slot 0, skip check if NULL
1076  */
1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1078                                       u64 parent_transid, int level,
1079                                       struct btrfs_key *first_key)
1080 {
1081         struct extent_buffer *buf = NULL;
1082         int ret;
1083
1084         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1085         if (IS_ERR(buf))
1086                 return buf;
1087
1088         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1089                                              level, first_key);
1090         if (ret) {
1091                 free_extent_buffer(buf);
1092                 return ERR_PTR(ret);
1093         }
1094         return buf;
1095
1096 }
1097
1098 void clean_tree_block(struct btrfs_fs_info *fs_info,
1099                       struct extent_buffer *buf)
1100 {
1101         if (btrfs_header_generation(buf) ==
1102             fs_info->running_transaction->transid) {
1103                 btrfs_assert_tree_locked(buf);
1104
1105                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1106                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1107                                                  -buf->len,
1108                                                  fs_info->dirty_metadata_batch);
1109                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1110                         btrfs_set_lock_blocking(buf);
1111                         clear_extent_buffer_dirty(buf);
1112                 }
1113         }
1114 }
1115
1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1117 {
1118         struct btrfs_subvolume_writers *writers;
1119         int ret;
1120
1121         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1122         if (!writers)
1123                 return ERR_PTR(-ENOMEM);
1124
1125         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1126         if (ret < 0) {
1127                 kfree(writers);
1128                 return ERR_PTR(ret);
1129         }
1130
1131         init_waitqueue_head(&writers->wait);
1132         return writers;
1133 }
1134
1135 static void
1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1137 {
1138         percpu_counter_destroy(&writers->counter);
1139         kfree(writers);
1140 }
1141
1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1143                          u64 objectid)
1144 {
1145         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1146         root->node = NULL;
1147         root->commit_root = NULL;
1148         root->state = 0;
1149         root->orphan_cleanup_state = 0;
1150
1151         root->last_trans = 0;
1152         root->highest_objectid = 0;
1153         root->nr_delalloc_inodes = 0;
1154         root->nr_ordered_extents = 0;
1155         root->inode_tree = RB_ROOT;
1156         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1157         root->block_rsv = NULL;
1158
1159         INIT_LIST_HEAD(&root->dirty_list);
1160         INIT_LIST_HEAD(&root->root_list);
1161         INIT_LIST_HEAD(&root->delalloc_inodes);
1162         INIT_LIST_HEAD(&root->delalloc_root);
1163         INIT_LIST_HEAD(&root->ordered_extents);
1164         INIT_LIST_HEAD(&root->ordered_root);
1165         INIT_LIST_HEAD(&root->logged_list[0]);
1166         INIT_LIST_HEAD(&root->logged_list[1]);
1167         spin_lock_init(&root->inode_lock);
1168         spin_lock_init(&root->delalloc_lock);
1169         spin_lock_init(&root->ordered_extent_lock);
1170         spin_lock_init(&root->accounting_lock);
1171         spin_lock_init(&root->log_extents_lock[0]);
1172         spin_lock_init(&root->log_extents_lock[1]);
1173         spin_lock_init(&root->qgroup_meta_rsv_lock);
1174         mutex_init(&root->objectid_mutex);
1175         mutex_init(&root->log_mutex);
1176         mutex_init(&root->ordered_extent_mutex);
1177         mutex_init(&root->delalloc_mutex);
1178         init_waitqueue_head(&root->log_writer_wait);
1179         init_waitqueue_head(&root->log_commit_wait[0]);
1180         init_waitqueue_head(&root->log_commit_wait[1]);
1181         INIT_LIST_HEAD(&root->log_ctxs[0]);
1182         INIT_LIST_HEAD(&root->log_ctxs[1]);
1183         atomic_set(&root->log_commit[0], 0);
1184         atomic_set(&root->log_commit[1], 0);
1185         atomic_set(&root->log_writers, 0);
1186         atomic_set(&root->log_batch, 0);
1187         refcount_set(&root->refs, 1);
1188         atomic_set(&root->will_be_snapshotted, 0);
1189         atomic_set(&root->snapshot_force_cow, 0);
1190         root->log_transid = 0;
1191         root->log_transid_committed = -1;
1192         root->last_log_commit = 0;
1193         if (!dummy)
1194                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1195
1196         memset(&root->root_key, 0, sizeof(root->root_key));
1197         memset(&root->root_item, 0, sizeof(root->root_item));
1198         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1199         if (!dummy)
1200                 root->defrag_trans_start = fs_info->generation;
1201         else
1202                 root->defrag_trans_start = 0;
1203         root->root_key.objectid = objectid;
1204         root->anon_dev = 0;
1205
1206         spin_lock_init(&root->root_item_lock);
1207 }
1208
1209 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1210                 gfp_t flags)
1211 {
1212         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1213         if (root)
1214                 root->fs_info = fs_info;
1215         return root;
1216 }
1217
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 /* Should only be used by the testing infrastructure */
1220 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1221 {
1222         struct btrfs_root *root;
1223
1224         if (!fs_info)
1225                 return ERR_PTR(-EINVAL);
1226
1227         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1228         if (!root)
1229                 return ERR_PTR(-ENOMEM);
1230
1231         /* We don't use the stripesize in selftest, set it as sectorsize */
1232         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1233         root->alloc_bytenr = 0;
1234
1235         return root;
1236 }
1237 #endif
1238
1239 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1240                                      struct btrfs_fs_info *fs_info,
1241                                      u64 objectid)
1242 {
1243         struct extent_buffer *leaf;
1244         struct btrfs_root *tree_root = fs_info->tree_root;
1245         struct btrfs_root *root;
1246         struct btrfs_key key;
1247         int ret = 0;
1248         uuid_le uuid = NULL_UUID_LE;
1249
1250         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1251         if (!root)
1252                 return ERR_PTR(-ENOMEM);
1253
1254         __setup_root(root, fs_info, objectid);
1255         root->root_key.objectid = objectid;
1256         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257         root->root_key.offset = 0;
1258
1259         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1260         if (IS_ERR(leaf)) {
1261                 ret = PTR_ERR(leaf);
1262                 leaf = NULL;
1263                 goto fail;
1264         }
1265
1266         root->node = leaf;
1267         btrfs_mark_buffer_dirty(leaf);
1268
1269         root->commit_root = btrfs_root_node(root);
1270         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1271
1272         root->root_item.flags = 0;
1273         root->root_item.byte_limit = 0;
1274         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1275         btrfs_set_root_generation(&root->root_item, trans->transid);
1276         btrfs_set_root_level(&root->root_item, 0);
1277         btrfs_set_root_refs(&root->root_item, 1);
1278         btrfs_set_root_used(&root->root_item, leaf->len);
1279         btrfs_set_root_last_snapshot(&root->root_item, 0);
1280         btrfs_set_root_dirid(&root->root_item, 0);
1281         if (is_fstree(objectid))
1282                 uuid_le_gen(&uuid);
1283         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1284         root->root_item.drop_level = 0;
1285
1286         key.objectid = objectid;
1287         key.type = BTRFS_ROOT_ITEM_KEY;
1288         key.offset = 0;
1289         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1290         if (ret)
1291                 goto fail;
1292
1293         btrfs_tree_unlock(leaf);
1294
1295         return root;
1296
1297 fail:
1298         if (leaf) {
1299                 btrfs_tree_unlock(leaf);
1300                 free_extent_buffer(root->commit_root);
1301                 free_extent_buffer(leaf);
1302         }
1303         kfree(root);
1304
1305         return ERR_PTR(ret);
1306 }
1307
1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309                                          struct btrfs_fs_info *fs_info)
1310 {
1311         struct btrfs_root *root;
1312         struct extent_buffer *leaf;
1313
1314         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1315         if (!root)
1316                 return ERR_PTR(-ENOMEM);
1317
1318         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1319
1320         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1321         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1323
1324         /*
1325          * DON'T set REF_COWS for log trees
1326          *
1327          * log trees do not get reference counted because they go away
1328          * before a real commit is actually done.  They do store pointers
1329          * to file data extents, and those reference counts still get
1330          * updated (along with back refs to the log tree).
1331          */
1332
1333         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1334                         NULL, 0, 0, 0);
1335         if (IS_ERR(leaf)) {
1336                 kfree(root);
1337                 return ERR_CAST(leaf);
1338         }
1339
1340         root->node = leaf;
1341
1342         btrfs_mark_buffer_dirty(root->node);
1343         btrfs_tree_unlock(root->node);
1344         return root;
1345 }
1346
1347 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348                              struct btrfs_fs_info *fs_info)
1349 {
1350         struct btrfs_root *log_root;
1351
1352         log_root = alloc_log_tree(trans, fs_info);
1353         if (IS_ERR(log_root))
1354                 return PTR_ERR(log_root);
1355         WARN_ON(fs_info->log_root_tree);
1356         fs_info->log_root_tree = log_root;
1357         return 0;
1358 }
1359
1360 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361                        struct btrfs_root *root)
1362 {
1363         struct btrfs_fs_info *fs_info = root->fs_info;
1364         struct btrfs_root *log_root;
1365         struct btrfs_inode_item *inode_item;
1366
1367         log_root = alloc_log_tree(trans, fs_info);
1368         if (IS_ERR(log_root))
1369                 return PTR_ERR(log_root);
1370
1371         log_root->last_trans = trans->transid;
1372         log_root->root_key.offset = root->root_key.objectid;
1373
1374         inode_item = &log_root->root_item.inode;
1375         btrfs_set_stack_inode_generation(inode_item, 1);
1376         btrfs_set_stack_inode_size(inode_item, 3);
1377         btrfs_set_stack_inode_nlink(inode_item, 1);
1378         btrfs_set_stack_inode_nbytes(inode_item,
1379                                      fs_info->nodesize);
1380         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1381
1382         btrfs_set_root_node(&log_root->root_item, log_root->node);
1383
1384         WARN_ON(root->log_root);
1385         root->log_root = log_root;
1386         root->log_transid = 0;
1387         root->log_transid_committed = -1;
1388         root->last_log_commit = 0;
1389         return 0;
1390 }
1391
1392 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1393                                                struct btrfs_key *key)
1394 {
1395         struct btrfs_root *root;
1396         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1397         struct btrfs_path *path;
1398         u64 generation;
1399         int ret;
1400         int level;
1401
1402         path = btrfs_alloc_path();
1403         if (!path)
1404                 return ERR_PTR(-ENOMEM);
1405
1406         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1407         if (!root) {
1408                 ret = -ENOMEM;
1409                 goto alloc_fail;
1410         }
1411
1412         __setup_root(root, fs_info, key->objectid);
1413
1414         ret = btrfs_find_root(tree_root, key, path,
1415                               &root->root_item, &root->root_key);
1416         if (ret) {
1417                 if (ret > 0)
1418                         ret = -ENOENT;
1419                 goto find_fail;
1420         }
1421
1422         generation = btrfs_root_generation(&root->root_item);
1423         level = btrfs_root_level(&root->root_item);
1424         root->node = read_tree_block(fs_info,
1425                                      btrfs_root_bytenr(&root->root_item),
1426                                      generation, level, NULL);
1427         if (IS_ERR(root->node)) {
1428                 ret = PTR_ERR(root->node);
1429                 goto find_fail;
1430         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1431                 ret = -EIO;
1432                 free_extent_buffer(root->node);
1433                 goto find_fail;
1434         }
1435         root->commit_root = btrfs_root_node(root);
1436 out:
1437         btrfs_free_path(path);
1438         return root;
1439
1440 find_fail:
1441         kfree(root);
1442 alloc_fail:
1443         root = ERR_PTR(ret);
1444         goto out;
1445 }
1446
1447 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448                                       struct btrfs_key *location)
1449 {
1450         struct btrfs_root *root;
1451
1452         root = btrfs_read_tree_root(tree_root, location);
1453         if (IS_ERR(root))
1454                 return root;
1455
1456         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1457                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1458                 btrfs_check_and_init_root_item(&root->root_item);
1459         }
1460
1461         return root;
1462 }
1463
1464 int btrfs_init_fs_root(struct btrfs_root *root)
1465 {
1466         int ret;
1467         struct btrfs_subvolume_writers *writers;
1468
1469         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1471                                         GFP_NOFS);
1472         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1473                 ret = -ENOMEM;
1474                 goto fail;
1475         }
1476
1477         writers = btrfs_alloc_subvolume_writers();
1478         if (IS_ERR(writers)) {
1479                 ret = PTR_ERR(writers);
1480                 goto fail;
1481         }
1482         root->subv_writers = writers;
1483
1484         btrfs_init_free_ino_ctl(root);
1485         spin_lock_init(&root->ino_cache_lock);
1486         init_waitqueue_head(&root->ino_cache_wait);
1487
1488         ret = get_anon_bdev(&root->anon_dev);
1489         if (ret)
1490                 goto fail;
1491
1492         mutex_lock(&root->objectid_mutex);
1493         ret = btrfs_find_highest_objectid(root,
1494                                         &root->highest_objectid);
1495         if (ret) {
1496                 mutex_unlock(&root->objectid_mutex);
1497                 goto fail;
1498         }
1499
1500         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1501
1502         mutex_unlock(&root->objectid_mutex);
1503
1504         return 0;
1505 fail:
1506         /* The caller is responsible to call btrfs_free_fs_root */
1507         return ret;
1508 }
1509
1510 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1511                                         u64 root_id)
1512 {
1513         struct btrfs_root *root;
1514
1515         spin_lock(&fs_info->fs_roots_radix_lock);
1516         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517                                  (unsigned long)root_id);
1518         spin_unlock(&fs_info->fs_roots_radix_lock);
1519         return root;
1520 }
1521
1522 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523                          struct btrfs_root *root)
1524 {
1525         int ret;
1526
1527         ret = radix_tree_preload(GFP_NOFS);
1528         if (ret)
1529                 return ret;
1530
1531         spin_lock(&fs_info->fs_roots_radix_lock);
1532         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533                                 (unsigned long)root->root_key.objectid,
1534                                 root);
1535         if (ret == 0)
1536                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1537         spin_unlock(&fs_info->fs_roots_radix_lock);
1538         radix_tree_preload_end();
1539
1540         return ret;
1541 }
1542
1543 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544                                      struct btrfs_key *location,
1545                                      bool check_ref)
1546 {
1547         struct btrfs_root *root;
1548         struct btrfs_path *path;
1549         struct btrfs_key key;
1550         int ret;
1551
1552         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553                 return fs_info->tree_root;
1554         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555                 return fs_info->extent_root;
1556         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557                 return fs_info->chunk_root;
1558         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559                 return fs_info->dev_root;
1560         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561                 return fs_info->csum_root;
1562         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563                 return fs_info->quota_root ? fs_info->quota_root :
1564                                              ERR_PTR(-ENOENT);
1565         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566                 return fs_info->uuid_root ? fs_info->uuid_root :
1567                                             ERR_PTR(-ENOENT);
1568         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569                 return fs_info->free_space_root ? fs_info->free_space_root :
1570                                                   ERR_PTR(-ENOENT);
1571 again:
1572         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1573         if (root) {
1574                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1575                         return ERR_PTR(-ENOENT);
1576                 return root;
1577         }
1578
1579         root = btrfs_read_fs_root(fs_info->tree_root, location);
1580         if (IS_ERR(root))
1581                 return root;
1582
1583         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1584                 ret = -ENOENT;
1585                 goto fail;
1586         }
1587
1588         ret = btrfs_init_fs_root(root);
1589         if (ret)
1590                 goto fail;
1591
1592         path = btrfs_alloc_path();
1593         if (!path) {
1594                 ret = -ENOMEM;
1595                 goto fail;
1596         }
1597         key.objectid = BTRFS_ORPHAN_OBJECTID;
1598         key.type = BTRFS_ORPHAN_ITEM_KEY;
1599         key.offset = location->objectid;
1600
1601         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1602         btrfs_free_path(path);
1603         if (ret < 0)
1604                 goto fail;
1605         if (ret == 0)
1606                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1607
1608         ret = btrfs_insert_fs_root(fs_info, root);
1609         if (ret) {
1610                 if (ret == -EEXIST) {
1611                         btrfs_free_fs_root(root);
1612                         goto again;
1613                 }
1614                 goto fail;
1615         }
1616         return root;
1617 fail:
1618         btrfs_free_fs_root(root);
1619         return ERR_PTR(ret);
1620 }
1621
1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623 {
1624         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625         int ret = 0;
1626         struct btrfs_device *device;
1627         struct backing_dev_info *bdi;
1628
1629         rcu_read_lock();
1630         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1631                 if (!device->bdev)
1632                         continue;
1633                 bdi = device->bdev->bd_bdi;
1634                 if (bdi_congested(bdi, bdi_bits)) {
1635                         ret = 1;
1636                         break;
1637                 }
1638         }
1639         rcu_read_unlock();
1640         return ret;
1641 }
1642
1643 /*
1644  * called by the kthread helper functions to finally call the bio end_io
1645  * functions.  This is where read checksum verification actually happens
1646  */
1647 static void end_workqueue_fn(struct btrfs_work *work)
1648 {
1649         struct bio *bio;
1650         struct btrfs_end_io_wq *end_io_wq;
1651
1652         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1653         bio = end_io_wq->bio;
1654
1655         bio->bi_status = end_io_wq->status;
1656         bio->bi_private = end_io_wq->private;
1657         bio->bi_end_io = end_io_wq->end_io;
1658         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1659         bio_endio(bio);
1660 }
1661
1662 static int cleaner_kthread(void *arg)
1663 {
1664         struct btrfs_root *root = arg;
1665         struct btrfs_fs_info *fs_info = root->fs_info;
1666         int again;
1667
1668         while (1) {
1669                 again = 0;
1670
1671                 /* Make the cleaner go to sleep early. */
1672                 if (btrfs_need_cleaner_sleep(fs_info))
1673                         goto sleep;
1674
1675                 /*
1676                  * Do not do anything if we might cause open_ctree() to block
1677                  * before we have finished mounting the filesystem.
1678                  */
1679                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1680                         goto sleep;
1681
1682                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1683                         goto sleep;
1684
1685                 /*
1686                  * Avoid the problem that we change the status of the fs
1687                  * during the above check and trylock.
1688                  */
1689                 if (btrfs_need_cleaner_sleep(fs_info)) {
1690                         mutex_unlock(&fs_info->cleaner_mutex);
1691                         goto sleep;
1692                 }
1693
1694                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1695                 btrfs_run_delayed_iputs(fs_info);
1696                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1697
1698                 again = btrfs_clean_one_deleted_snapshot(root);
1699                 mutex_unlock(&fs_info->cleaner_mutex);
1700
1701                 /*
1702                  * The defragger has dealt with the R/O remount and umount,
1703                  * needn't do anything special here.
1704                  */
1705                 btrfs_run_defrag_inodes(fs_info);
1706
1707                 /*
1708                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1709                  * with relocation (btrfs_relocate_chunk) and relocation
1710                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1711                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1712                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1713                  * unused block groups.
1714                  */
1715                 btrfs_delete_unused_bgs(fs_info);
1716 sleep:
1717                 if (kthread_should_park())
1718                         kthread_parkme();
1719                 if (kthread_should_stop())
1720                         return 0;
1721                 if (!again) {
1722                         set_current_state(TASK_INTERRUPTIBLE);
1723                         schedule();
1724                         __set_current_state(TASK_RUNNING);
1725                 }
1726         }
1727 }
1728
1729 static int transaction_kthread(void *arg)
1730 {
1731         struct btrfs_root *root = arg;
1732         struct btrfs_fs_info *fs_info = root->fs_info;
1733         struct btrfs_trans_handle *trans;
1734         struct btrfs_transaction *cur;
1735         u64 transid;
1736         time64_t now;
1737         unsigned long delay;
1738         bool cannot_commit;
1739
1740         do {
1741                 cannot_commit = false;
1742                 delay = HZ * fs_info->commit_interval;
1743                 mutex_lock(&fs_info->transaction_kthread_mutex);
1744
1745                 spin_lock(&fs_info->trans_lock);
1746                 cur = fs_info->running_transaction;
1747                 if (!cur) {
1748                         spin_unlock(&fs_info->trans_lock);
1749                         goto sleep;
1750                 }
1751
1752                 now = ktime_get_seconds();
1753                 if (cur->state < TRANS_STATE_BLOCKED &&
1754                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1755                     (now < cur->start_time ||
1756                      now - cur->start_time < fs_info->commit_interval)) {
1757                         spin_unlock(&fs_info->trans_lock);
1758                         delay = HZ * 5;
1759                         goto sleep;
1760                 }
1761                 transid = cur->transid;
1762                 spin_unlock(&fs_info->trans_lock);
1763
1764                 /* If the file system is aborted, this will always fail. */
1765                 trans = btrfs_attach_transaction(root);
1766                 if (IS_ERR(trans)) {
1767                         if (PTR_ERR(trans) != -ENOENT)
1768                                 cannot_commit = true;
1769                         goto sleep;
1770                 }
1771                 if (transid == trans->transid) {
1772                         btrfs_commit_transaction(trans);
1773                 } else {
1774                         btrfs_end_transaction(trans);
1775                 }
1776 sleep:
1777                 wake_up_process(fs_info->cleaner_kthread);
1778                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1779
1780                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1781                                       &fs_info->fs_state)))
1782                         btrfs_cleanup_transaction(fs_info);
1783                 if (!kthread_should_stop() &&
1784                                 (!btrfs_transaction_blocked(fs_info) ||
1785                                  cannot_commit))
1786                         schedule_timeout_interruptible(delay);
1787         } while (!kthread_should_stop());
1788         return 0;
1789 }
1790
1791 /*
1792  * this will find the highest generation in the array of
1793  * root backups.  The index of the highest array is returned,
1794  * or -1 if we can't find anything.
1795  *
1796  * We check to make sure the array is valid by comparing the
1797  * generation of the latest  root in the array with the generation
1798  * in the super block.  If they don't match we pitch it.
1799  */
1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801 {
1802         u64 cur;
1803         int newest_index = -1;
1804         struct btrfs_root_backup *root_backup;
1805         int i;
1806
1807         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808                 root_backup = info->super_copy->super_roots + i;
1809                 cur = btrfs_backup_tree_root_gen(root_backup);
1810                 if (cur == newest_gen)
1811                         newest_index = i;
1812         }
1813
1814         /* check to see if we actually wrapped around */
1815         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816                 root_backup = info->super_copy->super_roots;
1817                 cur = btrfs_backup_tree_root_gen(root_backup);
1818                 if (cur == newest_gen)
1819                         newest_index = 0;
1820         }
1821         return newest_index;
1822 }
1823
1824
1825 /*
1826  * find the oldest backup so we know where to store new entries
1827  * in the backup array.  This will set the backup_root_index
1828  * field in the fs_info struct
1829  */
1830 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831                                      u64 newest_gen)
1832 {
1833         int newest_index = -1;
1834
1835         newest_index = find_newest_super_backup(info, newest_gen);
1836         /* if there was garbage in there, just move along */
1837         if (newest_index == -1) {
1838                 info->backup_root_index = 0;
1839         } else {
1840                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841         }
1842 }
1843
1844 /*
1845  * copy all the root pointers into the super backup array.
1846  * this will bump the backup pointer by one when it is
1847  * done
1848  */
1849 static void backup_super_roots(struct btrfs_fs_info *info)
1850 {
1851         int next_backup;
1852         struct btrfs_root_backup *root_backup;
1853         int last_backup;
1854
1855         next_backup = info->backup_root_index;
1856         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857                 BTRFS_NUM_BACKUP_ROOTS;
1858
1859         /*
1860          * just overwrite the last backup if we're at the same generation
1861          * this happens only at umount
1862          */
1863         root_backup = info->super_for_commit->super_roots + last_backup;
1864         if (btrfs_backup_tree_root_gen(root_backup) ==
1865             btrfs_header_generation(info->tree_root->node))
1866                 next_backup = last_backup;
1867
1868         root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870         /*
1871          * make sure all of our padding and empty slots get zero filled
1872          * regardless of which ones we use today
1873          */
1874         memset(root_backup, 0, sizeof(*root_backup));
1875
1876         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879         btrfs_set_backup_tree_root_gen(root_backup,
1880                                btrfs_header_generation(info->tree_root->node));
1881
1882         btrfs_set_backup_tree_root_level(root_backup,
1883                                btrfs_header_level(info->tree_root->node));
1884
1885         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886         btrfs_set_backup_chunk_root_gen(root_backup,
1887                                btrfs_header_generation(info->chunk_root->node));
1888         btrfs_set_backup_chunk_root_level(root_backup,
1889                                btrfs_header_level(info->chunk_root->node));
1890
1891         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892         btrfs_set_backup_extent_root_gen(root_backup,
1893                                btrfs_header_generation(info->extent_root->node));
1894         btrfs_set_backup_extent_root_level(root_backup,
1895                                btrfs_header_level(info->extent_root->node));
1896
1897         /*
1898          * we might commit during log recovery, which happens before we set
1899          * the fs_root.  Make sure it is valid before we fill it in.
1900          */
1901         if (info->fs_root && info->fs_root->node) {
1902                 btrfs_set_backup_fs_root(root_backup,
1903                                          info->fs_root->node->start);
1904                 btrfs_set_backup_fs_root_gen(root_backup,
1905                                btrfs_header_generation(info->fs_root->node));
1906                 btrfs_set_backup_fs_root_level(root_backup,
1907                                btrfs_header_level(info->fs_root->node));
1908         }
1909
1910         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911         btrfs_set_backup_dev_root_gen(root_backup,
1912                                btrfs_header_generation(info->dev_root->node));
1913         btrfs_set_backup_dev_root_level(root_backup,
1914                                        btrfs_header_level(info->dev_root->node));
1915
1916         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917         btrfs_set_backup_csum_root_gen(root_backup,
1918                                btrfs_header_generation(info->csum_root->node));
1919         btrfs_set_backup_csum_root_level(root_backup,
1920                                btrfs_header_level(info->csum_root->node));
1921
1922         btrfs_set_backup_total_bytes(root_backup,
1923                              btrfs_super_total_bytes(info->super_copy));
1924         btrfs_set_backup_bytes_used(root_backup,
1925                              btrfs_super_bytes_used(info->super_copy));
1926         btrfs_set_backup_num_devices(root_backup,
1927                              btrfs_super_num_devices(info->super_copy));
1928
1929         /*
1930          * if we don't copy this out to the super_copy, it won't get remembered
1931          * for the next commit
1932          */
1933         memcpy(&info->super_copy->super_roots,
1934                &info->super_for_commit->super_roots,
1935                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936 }
1937
1938 /*
1939  * this copies info out of the root backup array and back into
1940  * the in-memory super block.  It is meant to help iterate through
1941  * the array, so you send it the number of backups you've already
1942  * tried and the last backup index you used.
1943  *
1944  * this returns -1 when it has tried all the backups
1945  */
1946 static noinline int next_root_backup(struct btrfs_fs_info *info,
1947                                      struct btrfs_super_block *super,
1948                                      int *num_backups_tried, int *backup_index)
1949 {
1950         struct btrfs_root_backup *root_backup;
1951         int newest = *backup_index;
1952
1953         if (*num_backups_tried == 0) {
1954                 u64 gen = btrfs_super_generation(super);
1955
1956                 newest = find_newest_super_backup(info, gen);
1957                 if (newest == -1)
1958                         return -1;
1959
1960                 *backup_index = newest;
1961                 *num_backups_tried = 1;
1962         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963                 /* we've tried all the backups, all done */
1964                 return -1;
1965         } else {
1966                 /* jump to the next oldest backup */
1967                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968                         BTRFS_NUM_BACKUP_ROOTS;
1969                 *backup_index = newest;
1970                 *num_backups_tried += 1;
1971         }
1972         root_backup = super->super_roots + newest;
1973
1974         btrfs_set_super_generation(super,
1975                                    btrfs_backup_tree_root_gen(root_backup));
1976         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977         btrfs_set_super_root_level(super,
1978                                    btrfs_backup_tree_root_level(root_backup));
1979         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981         /*
1982          * fixme: the total bytes and num_devices need to match or we should
1983          * need a fsck
1984          */
1985         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987         return 0;
1988 }
1989
1990 /* helper to cleanup workers */
1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992 {
1993         btrfs_destroy_workqueue(fs_info->fixup_workers);
1994         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1995         btrfs_destroy_workqueue(fs_info->workers);
1996         btrfs_destroy_workqueue(fs_info->endio_workers);
1997         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1998         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1999         btrfs_destroy_workqueue(fs_info->rmw_workers);
2000         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2001         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2002         btrfs_destroy_workqueue(fs_info->submit_workers);
2003         btrfs_destroy_workqueue(fs_info->delayed_workers);
2004         btrfs_destroy_workqueue(fs_info->caching_workers);
2005         btrfs_destroy_workqueue(fs_info->readahead_workers);
2006         btrfs_destroy_workqueue(fs_info->flush_workers);
2007         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2008         btrfs_destroy_workqueue(fs_info->extent_workers);
2009         /*
2010          * Now that all other work queues are destroyed, we can safely destroy
2011          * the queues used for metadata I/O, since tasks from those other work
2012          * queues can do metadata I/O operations.
2013          */
2014         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2015         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2016 }
2017
2018 static void free_root_extent_buffers(struct btrfs_root *root)
2019 {
2020         if (root) {
2021                 free_extent_buffer(root->node);
2022                 free_extent_buffer(root->commit_root);
2023                 root->node = NULL;
2024                 root->commit_root = NULL;
2025         }
2026 }
2027
2028 /* helper to cleanup tree roots */
2029 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2030 {
2031         free_root_extent_buffers(info->tree_root);
2032
2033         free_root_extent_buffers(info->dev_root);
2034         free_root_extent_buffers(info->extent_root);
2035         free_root_extent_buffers(info->csum_root);
2036         free_root_extent_buffers(info->quota_root);
2037         free_root_extent_buffers(info->uuid_root);
2038         if (chunk_root)
2039                 free_root_extent_buffers(info->chunk_root);
2040         free_root_extent_buffers(info->free_space_root);
2041 }
2042
2043 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2044 {
2045         int ret;
2046         struct btrfs_root *gang[8];
2047         int i;
2048
2049         while (!list_empty(&fs_info->dead_roots)) {
2050                 gang[0] = list_entry(fs_info->dead_roots.next,
2051                                      struct btrfs_root, root_list);
2052                 list_del(&gang[0]->root_list);
2053
2054                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2055                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2056                 } else {
2057                         free_extent_buffer(gang[0]->node);
2058                         free_extent_buffer(gang[0]->commit_root);
2059                         btrfs_put_fs_root(gang[0]);
2060                 }
2061         }
2062
2063         while (1) {
2064                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2065                                              (void **)gang, 0,
2066                                              ARRAY_SIZE(gang));
2067                 if (!ret)
2068                         break;
2069                 for (i = 0; i < ret; i++)
2070                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2071         }
2072
2073         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2074                 btrfs_free_log_root_tree(NULL, fs_info);
2075                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2076         }
2077 }
2078
2079 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2080 {
2081         mutex_init(&fs_info->scrub_lock);
2082         atomic_set(&fs_info->scrubs_running, 0);
2083         atomic_set(&fs_info->scrub_pause_req, 0);
2084         atomic_set(&fs_info->scrubs_paused, 0);
2085         atomic_set(&fs_info->scrub_cancel_req, 0);
2086         init_waitqueue_head(&fs_info->scrub_pause_wait);
2087         fs_info->scrub_workers_refcnt = 0;
2088 }
2089
2090 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2091 {
2092         spin_lock_init(&fs_info->balance_lock);
2093         mutex_init(&fs_info->balance_mutex);
2094         atomic_set(&fs_info->balance_pause_req, 0);
2095         atomic_set(&fs_info->balance_cancel_req, 0);
2096         fs_info->balance_ctl = NULL;
2097         init_waitqueue_head(&fs_info->balance_wait_q);
2098 }
2099
2100 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2101 {
2102         struct inode *inode = fs_info->btree_inode;
2103
2104         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2105         set_nlink(inode, 1);
2106         /*
2107          * we set the i_size on the btree inode to the max possible int.
2108          * the real end of the address space is determined by all of
2109          * the devices in the system
2110          */
2111         inode->i_size = OFFSET_MAX;
2112         inode->i_mapping->a_ops = &btree_aops;
2113
2114         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2115         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2116         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2117         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2118
2119         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2120
2121         BTRFS_I(inode)->root = fs_info->tree_root;
2122         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2123         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2124         btrfs_insert_inode_hash(inode);
2125 }
2126
2127 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2128 {
2129         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2130         rwlock_init(&fs_info->dev_replace.lock);
2131         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2132         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2133         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2134 }
2135
2136 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2137 {
2138         spin_lock_init(&fs_info->qgroup_lock);
2139         mutex_init(&fs_info->qgroup_ioctl_lock);
2140         fs_info->qgroup_tree = RB_ROOT;
2141         fs_info->qgroup_op_tree = RB_ROOT;
2142         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143         fs_info->qgroup_seq = 1;
2144         fs_info->qgroup_ulist = NULL;
2145         fs_info->qgroup_rescan_running = false;
2146         mutex_init(&fs_info->qgroup_rescan_lock);
2147 }
2148
2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150                 struct btrfs_fs_devices *fs_devices)
2151 {
2152         u32 max_active = fs_info->thread_pool_size;
2153         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155         fs_info->workers =
2156                 btrfs_alloc_workqueue(fs_info, "worker",
2157                                       flags | WQ_HIGHPRI, max_active, 16);
2158
2159         fs_info->delalloc_workers =
2160                 btrfs_alloc_workqueue(fs_info, "delalloc",
2161                                       flags, max_active, 2);
2162
2163         fs_info->flush_workers =
2164                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165                                       flags, max_active, 0);
2166
2167         fs_info->caching_workers =
2168                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170         /*
2171          * a higher idle thresh on the submit workers makes it much more
2172          * likely that bios will be send down in a sane order to the
2173          * devices
2174          */
2175         fs_info->submit_workers =
2176                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2177                                       min_t(u64, fs_devices->num_devices,
2178                                             max_active), 64);
2179
2180         fs_info->fixup_workers =
2181                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183         /*
2184          * endios are largely parallel and should have a very
2185          * low idle thresh
2186          */
2187         fs_info->endio_workers =
2188                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189         fs_info->endio_meta_workers =
2190                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191                                       max_active, 4);
2192         fs_info->endio_meta_write_workers =
2193                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194                                       max_active, 2);
2195         fs_info->endio_raid56_workers =
2196                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197                                       max_active, 4);
2198         fs_info->endio_repair_workers =
2199                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2200         fs_info->rmw_workers =
2201                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2202         fs_info->endio_write_workers =
2203                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204                                       max_active, 2);
2205         fs_info->endio_freespace_worker =
2206                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207                                       max_active, 0);
2208         fs_info->delayed_workers =
2209                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210                                       max_active, 0);
2211         fs_info->readahead_workers =
2212                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213                                       max_active, 2);
2214         fs_info->qgroup_rescan_workers =
2215                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2216         fs_info->extent_workers =
2217                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2218                                       min_t(u64, fs_devices->num_devices,
2219                                             max_active), 8);
2220
2221         if (!(fs_info->workers && fs_info->delalloc_workers &&
2222               fs_info->submit_workers && fs_info->flush_workers &&
2223               fs_info->endio_workers && fs_info->endio_meta_workers &&
2224               fs_info->endio_meta_write_workers &&
2225               fs_info->endio_repair_workers &&
2226               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2227               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2228               fs_info->caching_workers && fs_info->readahead_workers &&
2229               fs_info->fixup_workers && fs_info->delayed_workers &&
2230               fs_info->extent_workers &&
2231               fs_info->qgroup_rescan_workers)) {
2232                 return -ENOMEM;
2233         }
2234
2235         return 0;
2236 }
2237
2238 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2239                             struct btrfs_fs_devices *fs_devices)
2240 {
2241         int ret;
2242         struct btrfs_root *log_tree_root;
2243         struct btrfs_super_block *disk_super = fs_info->super_copy;
2244         u64 bytenr = btrfs_super_log_root(disk_super);
2245         int level = btrfs_super_log_root_level(disk_super);
2246
2247         if (fs_devices->rw_devices == 0) {
2248                 btrfs_warn(fs_info, "log replay required on RO media");
2249                 return -EIO;
2250         }
2251
2252         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2253         if (!log_tree_root)
2254                 return -ENOMEM;
2255
2256         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2257
2258         log_tree_root->node = read_tree_block(fs_info, bytenr,
2259                                               fs_info->generation + 1,
2260                                               level, NULL);
2261         if (IS_ERR(log_tree_root->node)) {
2262                 btrfs_warn(fs_info, "failed to read log tree");
2263                 ret = PTR_ERR(log_tree_root->node);
2264                 kfree(log_tree_root);
2265                 return ret;
2266         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2267                 btrfs_err(fs_info, "failed to read log tree");
2268                 free_extent_buffer(log_tree_root->node);
2269                 kfree(log_tree_root);
2270                 return -EIO;
2271         }
2272         /* returns with log_tree_root freed on success */
2273         ret = btrfs_recover_log_trees(log_tree_root);
2274         if (ret) {
2275                 btrfs_handle_fs_error(fs_info, ret,
2276                                       "Failed to recover log tree");
2277                 free_extent_buffer(log_tree_root->node);
2278                 kfree(log_tree_root);
2279                 return ret;
2280         }
2281
2282         if (sb_rdonly(fs_info->sb)) {
2283                 ret = btrfs_commit_super(fs_info);
2284                 if (ret)
2285                         return ret;
2286         }
2287
2288         return 0;
2289 }
2290
2291 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2292 {
2293         struct btrfs_root *tree_root = fs_info->tree_root;
2294         struct btrfs_root *root;
2295         struct btrfs_key location;
2296         int ret;
2297
2298         BUG_ON(!fs_info->tree_root);
2299
2300         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2301         location.type = BTRFS_ROOT_ITEM_KEY;
2302         location.offset = 0;
2303
2304         root = btrfs_read_tree_root(tree_root, &location);
2305         if (IS_ERR(root)) {
2306                 ret = PTR_ERR(root);
2307                 goto out;
2308         }
2309         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2310         fs_info->extent_root = root;
2311
2312         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2313         root = btrfs_read_tree_root(tree_root, &location);
2314         if (IS_ERR(root)) {
2315                 ret = PTR_ERR(root);
2316                 goto out;
2317         }
2318         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319         fs_info->dev_root = root;
2320         btrfs_init_devices_late(fs_info);
2321
2322         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2323         root = btrfs_read_tree_root(tree_root, &location);
2324         if (IS_ERR(root)) {
2325                 ret = PTR_ERR(root);
2326                 goto out;
2327         }
2328         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2329         fs_info->csum_root = root;
2330
2331         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2332         root = btrfs_read_tree_root(tree_root, &location);
2333         if (!IS_ERR(root)) {
2334                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2336                 fs_info->quota_root = root;
2337         }
2338
2339         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2340         root = btrfs_read_tree_root(tree_root, &location);
2341         if (IS_ERR(root)) {
2342                 ret = PTR_ERR(root);
2343                 if (ret != -ENOENT)
2344                         goto out;
2345         } else {
2346                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347                 fs_info->uuid_root = root;
2348         }
2349
2350         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2351                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2352                 root = btrfs_read_tree_root(tree_root, &location);
2353                 if (IS_ERR(root)) {
2354                         ret = PTR_ERR(root);
2355                         goto out;
2356                 }
2357                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358                 fs_info->free_space_root = root;
2359         }
2360
2361         return 0;
2362 out:
2363         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2364                    location.objectid, ret);
2365         return ret;
2366 }
2367
2368 /*
2369  * Real super block validation
2370  * NOTE: super csum type and incompat features will not be checked here.
2371  *
2372  * @sb:         super block to check
2373  * @mirror_num: the super block number to check its bytenr:
2374  *              0       the primary (1st) sb
2375  *              1, 2    2nd and 3rd backup copy
2376  *             -1       skip bytenr check
2377  */
2378 static int validate_super(struct btrfs_fs_info *fs_info,
2379                             struct btrfs_super_block *sb, int mirror_num)
2380 {
2381         u64 nodesize = btrfs_super_nodesize(sb);
2382         u64 sectorsize = btrfs_super_sectorsize(sb);
2383         int ret = 0;
2384
2385         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2386                 btrfs_err(fs_info, "no valid FS found");
2387                 ret = -EINVAL;
2388         }
2389         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2390                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2391                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2392                 ret = -EINVAL;
2393         }
2394         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2395                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2396                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2397                 ret = -EINVAL;
2398         }
2399         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2400                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2401                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2402                 ret = -EINVAL;
2403         }
2404         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2405                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2406                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2407                 ret = -EINVAL;
2408         }
2409
2410         /*
2411          * Check sectorsize and nodesize first, other check will need it.
2412          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2413          */
2414         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2415             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2416                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2417                 ret = -EINVAL;
2418         }
2419         /* Only PAGE SIZE is supported yet */
2420         if (sectorsize != PAGE_SIZE) {
2421                 btrfs_err(fs_info,
2422                         "sectorsize %llu not supported yet, only support %lu",
2423                         sectorsize, PAGE_SIZE);
2424                 ret = -EINVAL;
2425         }
2426         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2427             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2428                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2429                 ret = -EINVAL;
2430         }
2431         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2432                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2433                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2434                 ret = -EINVAL;
2435         }
2436
2437         /* Root alignment check */
2438         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2439                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2440                            btrfs_super_root(sb));
2441                 ret = -EINVAL;
2442         }
2443         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2444                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2445                            btrfs_super_chunk_root(sb));
2446                 ret = -EINVAL;
2447         }
2448         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2449                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2450                            btrfs_super_log_root(sb));
2451                 ret = -EINVAL;
2452         }
2453
2454         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2455                 btrfs_err(fs_info,
2456                            "dev_item UUID does not match fsid: %pU != %pU",
2457                            fs_info->fsid, sb->dev_item.fsid);
2458                 ret = -EINVAL;
2459         }
2460
2461         /*
2462          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2463          * done later
2464          */
2465         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2466                 btrfs_err(fs_info, "bytes_used is too small %llu",
2467                           btrfs_super_bytes_used(sb));
2468                 ret = -EINVAL;
2469         }
2470         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2471                 btrfs_err(fs_info, "invalid stripesize %u",
2472                           btrfs_super_stripesize(sb));
2473                 ret = -EINVAL;
2474         }
2475         if (btrfs_super_num_devices(sb) > (1UL << 31))
2476                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2477                            btrfs_super_num_devices(sb));
2478         if (btrfs_super_num_devices(sb) == 0) {
2479                 btrfs_err(fs_info, "number of devices is 0");
2480                 ret = -EINVAL;
2481         }
2482
2483         if (mirror_num >= 0 &&
2484             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2485                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2486                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2487                 ret = -EINVAL;
2488         }
2489
2490         /*
2491          * Obvious sys_chunk_array corruptions, it must hold at least one key
2492          * and one chunk
2493          */
2494         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2495                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2496                           btrfs_super_sys_array_size(sb),
2497                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2498                 ret = -EINVAL;
2499         }
2500         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2501                         + sizeof(struct btrfs_chunk)) {
2502                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2503                           btrfs_super_sys_array_size(sb),
2504                           sizeof(struct btrfs_disk_key)
2505                           + sizeof(struct btrfs_chunk));
2506                 ret = -EINVAL;
2507         }
2508
2509         /*
2510          * The generation is a global counter, we'll trust it more than the others
2511          * but it's still possible that it's the one that's wrong.
2512          */
2513         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2514                 btrfs_warn(fs_info,
2515                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2516                         btrfs_super_generation(sb),
2517                         btrfs_super_chunk_root_generation(sb));
2518         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2519             && btrfs_super_cache_generation(sb) != (u64)-1)
2520                 btrfs_warn(fs_info,
2521                         "suspicious: generation < cache_generation: %llu < %llu",
2522                         btrfs_super_generation(sb),
2523                         btrfs_super_cache_generation(sb));
2524
2525         return ret;
2526 }
2527
2528 /*
2529  * Validation of super block at mount time.
2530  * Some checks already done early at mount time, like csum type and incompat
2531  * flags will be skipped.
2532  */
2533 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2534 {
2535         return validate_super(fs_info, fs_info->super_copy, 0);
2536 }
2537
2538 /*
2539  * Validation of super block at write time.
2540  * Some checks like bytenr check will be skipped as their values will be
2541  * overwritten soon.
2542  * Extra checks like csum type and incompat flags will be done here.
2543  */
2544 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2545                                       struct btrfs_super_block *sb)
2546 {
2547         int ret;
2548
2549         ret = validate_super(fs_info, sb, -1);
2550         if (ret < 0)
2551                 goto out;
2552         if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2553                 ret = -EUCLEAN;
2554                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2555                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2556                 goto out;
2557         }
2558         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2559                 ret = -EUCLEAN;
2560                 btrfs_err(fs_info,
2561                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2562                           btrfs_super_incompat_flags(sb),
2563                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2564                 goto out;
2565         }
2566 out:
2567         if (ret < 0)
2568                 btrfs_err(fs_info,
2569                 "super block corruption detected before writing it to disk");
2570         return ret;
2571 }
2572
2573 int open_ctree(struct super_block *sb,
2574                struct btrfs_fs_devices *fs_devices,
2575                char *options)
2576 {
2577         u32 sectorsize;
2578         u32 nodesize;
2579         u32 stripesize;
2580         u64 generation;
2581         u64 features;
2582         struct btrfs_key location;
2583         struct buffer_head *bh;
2584         struct btrfs_super_block *disk_super;
2585         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2586         struct btrfs_root *tree_root;
2587         struct btrfs_root *chunk_root;
2588         int ret;
2589         int err = -EINVAL;
2590         int num_backups_tried = 0;
2591         int backup_index = 0;
2592         int clear_free_space_tree = 0;
2593         int level;
2594
2595         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2596         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2597         if (!tree_root || !chunk_root) {
2598                 err = -ENOMEM;
2599                 goto fail;
2600         }
2601
2602         ret = init_srcu_struct(&fs_info->subvol_srcu);
2603         if (ret) {
2604                 err = ret;
2605                 goto fail;
2606         }
2607
2608         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2609         if (ret) {
2610                 err = ret;
2611                 goto fail_srcu;
2612         }
2613         fs_info->dirty_metadata_batch = PAGE_SIZE *
2614                                         (1 + ilog2(nr_cpu_ids));
2615
2616         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2617         if (ret) {
2618                 err = ret;
2619                 goto fail_dirty_metadata_bytes;
2620         }
2621
2622         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2623                         GFP_KERNEL);
2624         if (ret) {
2625                 err = ret;
2626                 goto fail_delalloc_bytes;
2627         }
2628
2629         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2630         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2631         INIT_LIST_HEAD(&fs_info->trans_list);
2632         INIT_LIST_HEAD(&fs_info->dead_roots);
2633         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2634         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2635         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2636         INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2637         spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2638         spin_lock_init(&fs_info->delalloc_root_lock);
2639         spin_lock_init(&fs_info->trans_lock);
2640         spin_lock_init(&fs_info->fs_roots_radix_lock);
2641         spin_lock_init(&fs_info->delayed_iput_lock);
2642         spin_lock_init(&fs_info->defrag_inodes_lock);
2643         spin_lock_init(&fs_info->tree_mod_seq_lock);
2644         spin_lock_init(&fs_info->super_lock);
2645         spin_lock_init(&fs_info->qgroup_op_lock);
2646         spin_lock_init(&fs_info->buffer_lock);
2647         spin_lock_init(&fs_info->unused_bgs_lock);
2648         rwlock_init(&fs_info->tree_mod_log_lock);
2649         mutex_init(&fs_info->unused_bg_unpin_mutex);
2650         mutex_init(&fs_info->delete_unused_bgs_mutex);
2651         mutex_init(&fs_info->reloc_mutex);
2652         mutex_init(&fs_info->delalloc_root_mutex);
2653         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2654         seqlock_init(&fs_info->profiles_lock);
2655
2656         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2657         INIT_LIST_HEAD(&fs_info->space_info);
2658         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2659         INIT_LIST_HEAD(&fs_info->unused_bgs);
2660         btrfs_mapping_init(&fs_info->mapping_tree);
2661         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2662                              BTRFS_BLOCK_RSV_GLOBAL);
2663         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2664         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2665         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2666         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2667                              BTRFS_BLOCK_RSV_DELOPS);
2668         atomic_set(&fs_info->async_delalloc_pages, 0);
2669         atomic_set(&fs_info->defrag_running, 0);
2670         atomic_set(&fs_info->qgroup_op_seq, 0);
2671         atomic_set(&fs_info->reada_works_cnt, 0);
2672         atomic64_set(&fs_info->tree_mod_seq, 0);
2673         fs_info->sb = sb;
2674         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2675         fs_info->metadata_ratio = 0;
2676         fs_info->defrag_inodes = RB_ROOT;
2677         atomic64_set(&fs_info->free_chunk_space, 0);
2678         fs_info->tree_mod_log = RB_ROOT;
2679         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2680         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2681         /* readahead state */
2682         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2683         spin_lock_init(&fs_info->reada_lock);
2684         btrfs_init_ref_verify(fs_info);
2685
2686         fs_info->thread_pool_size = min_t(unsigned long,
2687                                           num_online_cpus() + 2, 8);
2688
2689         INIT_LIST_HEAD(&fs_info->ordered_roots);
2690         spin_lock_init(&fs_info->ordered_root_lock);
2691
2692         fs_info->btree_inode = new_inode(sb);
2693         if (!fs_info->btree_inode) {
2694                 err = -ENOMEM;
2695                 goto fail_bio_counter;
2696         }
2697         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2698
2699         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2700                                         GFP_KERNEL);
2701         if (!fs_info->delayed_root) {
2702                 err = -ENOMEM;
2703                 goto fail_iput;
2704         }
2705         btrfs_init_delayed_root(fs_info->delayed_root);
2706
2707         btrfs_init_scrub(fs_info);
2708 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2709         fs_info->check_integrity_print_mask = 0;
2710 #endif
2711         btrfs_init_balance(fs_info);
2712         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2713
2714         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2715         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2716
2717         btrfs_init_btree_inode(fs_info);
2718
2719         spin_lock_init(&fs_info->block_group_cache_lock);
2720         fs_info->block_group_cache_tree = RB_ROOT;
2721         fs_info->first_logical_byte = (u64)-1;
2722
2723         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2724         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2725         fs_info->pinned_extents = &fs_info->freed_extents[0];
2726         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2727
2728         mutex_init(&fs_info->ordered_operations_mutex);
2729         mutex_init(&fs_info->tree_log_mutex);
2730         mutex_init(&fs_info->chunk_mutex);
2731         mutex_init(&fs_info->transaction_kthread_mutex);
2732         mutex_init(&fs_info->cleaner_mutex);
2733         mutex_init(&fs_info->ro_block_group_mutex);
2734         init_rwsem(&fs_info->commit_root_sem);
2735         init_rwsem(&fs_info->cleanup_work_sem);
2736         init_rwsem(&fs_info->subvol_sem);
2737         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2738
2739         btrfs_init_dev_replace_locks(fs_info);
2740         btrfs_init_qgroup(fs_info);
2741
2742         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2743         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2744
2745         init_waitqueue_head(&fs_info->transaction_throttle);
2746         init_waitqueue_head(&fs_info->transaction_wait);
2747         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2748         init_waitqueue_head(&fs_info->async_submit_wait);
2749
2750         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2751
2752         /* Usable values until the real ones are cached from the superblock */
2753         fs_info->nodesize = 4096;
2754         fs_info->sectorsize = 4096;
2755         fs_info->stripesize = 4096;
2756
2757         ret = btrfs_alloc_stripe_hash_table(fs_info);
2758         if (ret) {
2759                 err = ret;
2760                 goto fail_alloc;
2761         }
2762
2763         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2764
2765         invalidate_bdev(fs_devices->latest_bdev);
2766
2767         /*
2768          * Read super block and check the signature bytes only
2769          */
2770         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2771         if (IS_ERR(bh)) {
2772                 err = PTR_ERR(bh);
2773                 goto fail_alloc;
2774         }
2775
2776         /*
2777          * We want to check superblock checksum, the type is stored inside.
2778          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2779          */
2780         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2781                 btrfs_err(fs_info, "superblock checksum mismatch");
2782                 err = -EINVAL;
2783                 brelse(bh);
2784                 goto fail_alloc;
2785         }
2786
2787         /*
2788          * super_copy is zeroed at allocation time and we never touch the
2789          * following bytes up to INFO_SIZE, the checksum is calculated from
2790          * the whole block of INFO_SIZE
2791          */
2792         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2793         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2794                sizeof(*fs_info->super_for_commit));
2795         brelse(bh);
2796
2797         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2798
2799         ret = btrfs_validate_mount_super(fs_info);
2800         if (ret) {
2801                 btrfs_err(fs_info, "superblock contains fatal errors");
2802                 err = -EINVAL;
2803                 goto fail_alloc;
2804         }
2805
2806         disk_super = fs_info->super_copy;
2807         if (!btrfs_super_root(disk_super))
2808                 goto fail_alloc;
2809
2810         /* check FS state, whether FS is broken. */
2811         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2812                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2813
2814         /*
2815          * run through our array of backup supers and setup
2816          * our ring pointer to the oldest one
2817          */
2818         generation = btrfs_super_generation(disk_super);
2819         find_oldest_super_backup(fs_info, generation);
2820
2821         /*
2822          * In the long term, we'll store the compression type in the super
2823          * block, and it'll be used for per file compression control.
2824          */
2825         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2826
2827         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2828         if (ret) {
2829                 err = ret;
2830                 goto fail_alloc;
2831         }
2832
2833         features = btrfs_super_incompat_flags(disk_super) &
2834                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2835         if (features) {
2836                 btrfs_err(fs_info,
2837                     "cannot mount because of unsupported optional features (%llx)",
2838                     features);
2839                 err = -EINVAL;
2840                 goto fail_alloc;
2841         }
2842
2843         features = btrfs_super_incompat_flags(disk_super);
2844         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2845         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2846                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2847         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2848                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2849
2850         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2851                 btrfs_info(fs_info, "has skinny extents");
2852
2853         /*
2854          * flag our filesystem as having big metadata blocks if
2855          * they are bigger than the page size
2856          */
2857         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2858                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2859                         btrfs_info(fs_info,
2860                                 "flagging fs with big metadata feature");
2861                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2862         }
2863
2864         nodesize = btrfs_super_nodesize(disk_super);
2865         sectorsize = btrfs_super_sectorsize(disk_super);
2866         stripesize = sectorsize;
2867         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2868         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2869
2870         /* Cache block sizes */
2871         fs_info->nodesize = nodesize;
2872         fs_info->sectorsize = sectorsize;
2873         fs_info->stripesize = stripesize;
2874
2875         /*
2876          * mixed block groups end up with duplicate but slightly offset
2877          * extent buffers for the same range.  It leads to corruptions
2878          */
2879         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2880             (sectorsize != nodesize)) {
2881                 btrfs_err(fs_info,
2882 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2883                         nodesize, sectorsize);
2884                 goto fail_alloc;
2885         }
2886
2887         /*
2888          * Needn't use the lock because there is no other task which will
2889          * update the flag.
2890          */
2891         btrfs_set_super_incompat_flags(disk_super, features);
2892
2893         features = btrfs_super_compat_ro_flags(disk_super) &
2894                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2895         if (!sb_rdonly(sb) && features) {
2896                 btrfs_err(fs_info,
2897         "cannot mount read-write because of unsupported optional features (%llx)",
2898                        features);
2899                 err = -EINVAL;
2900                 goto fail_alloc;
2901         }
2902
2903         ret = btrfs_init_workqueues(fs_info, fs_devices);
2904         if (ret) {
2905                 err = ret;
2906                 goto fail_sb_buffer;
2907         }
2908
2909         sb->s_bdi->congested_fn = btrfs_congested_fn;
2910         sb->s_bdi->congested_data = fs_info;
2911         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2912         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2913         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2914         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2915
2916         sb->s_blocksize = sectorsize;
2917         sb->s_blocksize_bits = blksize_bits(sectorsize);
2918         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2919
2920         mutex_lock(&fs_info->chunk_mutex);
2921         ret = btrfs_read_sys_array(fs_info);
2922         mutex_unlock(&fs_info->chunk_mutex);
2923         if (ret) {
2924                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2925                 goto fail_sb_buffer;
2926         }
2927
2928         generation = btrfs_super_chunk_root_generation(disk_super);
2929         level = btrfs_super_chunk_root_level(disk_super);
2930
2931         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2932
2933         chunk_root->node = read_tree_block(fs_info,
2934                                            btrfs_super_chunk_root(disk_super),
2935                                            generation, level, NULL);
2936         if (IS_ERR(chunk_root->node) ||
2937             !extent_buffer_uptodate(chunk_root->node)) {
2938                 btrfs_err(fs_info, "failed to read chunk root");
2939                 if (!IS_ERR(chunk_root->node))
2940                         free_extent_buffer(chunk_root->node);
2941                 chunk_root->node = NULL;
2942                 goto fail_tree_roots;
2943         }
2944         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2945         chunk_root->commit_root = btrfs_root_node(chunk_root);
2946
2947         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2948            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2949
2950         ret = btrfs_read_chunk_tree(fs_info);
2951         if (ret) {
2952                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2953                 goto fail_tree_roots;
2954         }
2955
2956         /*
2957          * Keep the devid that is marked to be the target device for the
2958          * device replace procedure
2959          */
2960         btrfs_free_extra_devids(fs_devices, 0);
2961
2962         if (!fs_devices->latest_bdev) {
2963                 btrfs_err(fs_info, "failed to read devices");
2964                 goto fail_tree_roots;
2965         }
2966
2967 retry_root_backup:
2968         generation = btrfs_super_generation(disk_super);
2969         level = btrfs_super_root_level(disk_super);
2970
2971         tree_root->node = read_tree_block(fs_info,
2972                                           btrfs_super_root(disk_super),
2973                                           generation, level, NULL);
2974         if (IS_ERR(tree_root->node) ||
2975             !extent_buffer_uptodate(tree_root->node)) {
2976                 btrfs_warn(fs_info, "failed to read tree root");
2977                 if (!IS_ERR(tree_root->node))
2978                         free_extent_buffer(tree_root->node);
2979                 tree_root->node = NULL;
2980                 goto recovery_tree_root;
2981         }
2982
2983         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984         tree_root->commit_root = btrfs_root_node(tree_root);
2985         btrfs_set_root_refs(&tree_root->root_item, 1);
2986
2987         mutex_lock(&tree_root->objectid_mutex);
2988         ret = btrfs_find_highest_objectid(tree_root,
2989                                         &tree_root->highest_objectid);
2990         if (ret) {
2991                 mutex_unlock(&tree_root->objectid_mutex);
2992                 goto recovery_tree_root;
2993         }
2994
2995         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997         mutex_unlock(&tree_root->objectid_mutex);
2998
2999         ret = btrfs_read_roots(fs_info);
3000         if (ret)
3001                 goto recovery_tree_root;
3002
3003         fs_info->generation = generation;
3004         fs_info->last_trans_committed = generation;
3005
3006         ret = btrfs_verify_dev_extents(fs_info);
3007         if (ret) {
3008                 btrfs_err(fs_info,
3009                           "failed to verify dev extents against chunks: %d",
3010                           ret);
3011                 goto fail_block_groups;
3012         }
3013         ret = btrfs_recover_balance(fs_info);
3014         if (ret) {
3015                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3016                 goto fail_block_groups;
3017         }
3018
3019         ret = btrfs_init_dev_stats(fs_info);
3020         if (ret) {
3021                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3022                 goto fail_block_groups;
3023         }
3024
3025         ret = btrfs_init_dev_replace(fs_info);
3026         if (ret) {
3027                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3028                 goto fail_block_groups;
3029         }
3030
3031         btrfs_free_extra_devids(fs_devices, 1);
3032
3033         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3034         if (ret) {
3035                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3036                                 ret);
3037                 goto fail_block_groups;
3038         }
3039
3040         ret = btrfs_sysfs_add_device(fs_devices);
3041         if (ret) {
3042                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3043                                 ret);
3044                 goto fail_fsdev_sysfs;
3045         }
3046
3047         ret = btrfs_sysfs_add_mounted(fs_info);
3048         if (ret) {
3049                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3050                 goto fail_fsdev_sysfs;
3051         }
3052
3053         ret = btrfs_init_space_info(fs_info);
3054         if (ret) {
3055                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3056                 goto fail_sysfs;
3057         }
3058
3059         ret = btrfs_read_block_groups(fs_info);
3060         if (ret) {
3061                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3062                 goto fail_sysfs;
3063         }
3064
3065         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3066                 btrfs_warn(fs_info,
3067                 "writeable mount is not allowed due to too many missing devices");
3068                 goto fail_sysfs;
3069         }
3070
3071         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3072                                                "btrfs-cleaner");
3073         if (IS_ERR(fs_info->cleaner_kthread))
3074                 goto fail_sysfs;
3075
3076         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3077                                                    tree_root,
3078                                                    "btrfs-transaction");
3079         if (IS_ERR(fs_info->transaction_kthread))
3080                 goto fail_cleaner;
3081
3082         if (!btrfs_test_opt(fs_info, NOSSD) &&
3083             !fs_info->fs_devices->rotating) {
3084                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3085         }
3086
3087         /*
3088          * Mount does not set all options immediately, we can do it now and do
3089          * not have to wait for transaction commit
3090          */
3091         btrfs_apply_pending_changes(fs_info);
3092
3093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095                 ret = btrfsic_mount(fs_info, fs_devices,
3096                                     btrfs_test_opt(fs_info,
3097                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098                                     1 : 0,
3099                                     fs_info->check_integrity_print_mask);
3100                 if (ret)
3101                         btrfs_warn(fs_info,
3102                                 "failed to initialize integrity check module: %d",
3103                                 ret);
3104         }
3105 #endif
3106         ret = btrfs_read_qgroup_config(fs_info);
3107         if (ret)
3108                 goto fail_trans_kthread;
3109
3110         if (btrfs_build_ref_tree(fs_info))
3111                 btrfs_err(fs_info, "couldn't build ref tree");
3112
3113         /* do not make disk changes in broken FS or nologreplay is given */
3114         if (btrfs_super_log_root(disk_super) != 0 &&
3115             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3116                 ret = btrfs_replay_log(fs_info, fs_devices);
3117                 if (ret) {
3118                         err = ret;
3119                         goto fail_qgroup;
3120                 }
3121         }
3122
3123         ret = btrfs_find_orphan_roots(fs_info);
3124         if (ret)
3125                 goto fail_qgroup;
3126
3127         if (!sb_rdonly(sb)) {
3128                 ret = btrfs_cleanup_fs_roots(fs_info);
3129                 if (ret)
3130                         goto fail_qgroup;
3131
3132                 mutex_lock(&fs_info->cleaner_mutex);
3133                 ret = btrfs_recover_relocation(tree_root);
3134                 mutex_unlock(&fs_info->cleaner_mutex);
3135                 if (ret < 0) {
3136                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3137                                         ret);
3138                         err = -EINVAL;
3139                         goto fail_qgroup;
3140                 }
3141         }
3142
3143         location.objectid = BTRFS_FS_TREE_OBJECTID;
3144         location.type = BTRFS_ROOT_ITEM_KEY;
3145         location.offset = 0;
3146
3147         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3148         if (IS_ERR(fs_info->fs_root)) {
3149                 err = PTR_ERR(fs_info->fs_root);
3150                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3151                 goto fail_qgroup;
3152         }
3153
3154         if (sb_rdonly(sb))
3155                 return 0;
3156
3157         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3158             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3159                 clear_free_space_tree = 1;
3160         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3161                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3162                 btrfs_warn(fs_info, "free space tree is invalid");
3163                 clear_free_space_tree = 1;
3164         }
3165
3166         if (clear_free_space_tree) {
3167                 btrfs_info(fs_info, "clearing free space tree");
3168                 ret = btrfs_clear_free_space_tree(fs_info);
3169                 if (ret) {
3170                         btrfs_warn(fs_info,
3171                                    "failed to clear free space tree: %d", ret);
3172                         close_ctree(fs_info);
3173                         return ret;
3174                 }
3175         }
3176
3177         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3178             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3179                 btrfs_info(fs_info, "creating free space tree");
3180                 ret = btrfs_create_free_space_tree(fs_info);
3181                 if (ret) {
3182                         btrfs_warn(fs_info,
3183                                 "failed to create free space tree: %d", ret);
3184                         close_ctree(fs_info);
3185                         return ret;
3186                 }
3187         }
3188
3189         down_read(&fs_info->cleanup_work_sem);
3190         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3191             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3192                 up_read(&fs_info->cleanup_work_sem);
3193                 close_ctree(fs_info);
3194                 return ret;
3195         }
3196         up_read(&fs_info->cleanup_work_sem);
3197
3198         ret = btrfs_resume_balance_async(fs_info);
3199         if (ret) {
3200                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3201                 close_ctree(fs_info);
3202                 return ret;
3203         }
3204
3205         ret = btrfs_resume_dev_replace_async(fs_info);
3206         if (ret) {
3207                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3208                 close_ctree(fs_info);
3209                 return ret;
3210         }
3211
3212         btrfs_qgroup_rescan_resume(fs_info);
3213
3214         if (!fs_info->uuid_root) {
3215                 btrfs_info(fs_info, "creating UUID tree");
3216                 ret = btrfs_create_uuid_tree(fs_info);
3217                 if (ret) {
3218                         btrfs_warn(fs_info,
3219                                 "failed to create the UUID tree: %d", ret);
3220                         close_ctree(fs_info);
3221                         return ret;
3222                 }
3223         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3224                    fs_info->generation !=
3225                                 btrfs_super_uuid_tree_generation(disk_super)) {
3226                 btrfs_info(fs_info, "checking UUID tree");
3227                 ret = btrfs_check_uuid_tree(fs_info);
3228                 if (ret) {
3229                         btrfs_warn(fs_info,
3230                                 "failed to check the UUID tree: %d", ret);
3231                         close_ctree(fs_info);
3232                         return ret;
3233                 }
3234         } else {
3235                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3236         }
3237         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3238
3239         /*
3240          * backuproot only affect mount behavior, and if open_ctree succeeded,
3241          * no need to keep the flag
3242          */
3243         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3244
3245         return 0;
3246
3247 fail_qgroup:
3248         btrfs_free_qgroup_config(fs_info);
3249 fail_trans_kthread:
3250         kthread_stop(fs_info->transaction_kthread);
3251         btrfs_cleanup_transaction(fs_info);
3252         btrfs_free_fs_roots(fs_info);
3253 fail_cleaner:
3254         kthread_stop(fs_info->cleaner_kthread);
3255
3256         /*
3257          * make sure we're done with the btree inode before we stop our
3258          * kthreads
3259          */
3260         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3261
3262 fail_sysfs:
3263         btrfs_sysfs_remove_mounted(fs_info);
3264
3265 fail_fsdev_sysfs:
3266         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3267
3268 fail_block_groups:
3269         btrfs_put_block_group_cache(fs_info);
3270
3271 fail_tree_roots:
3272         free_root_pointers(fs_info, 1);
3273         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3274
3275 fail_sb_buffer:
3276         btrfs_stop_all_workers(fs_info);
3277         btrfs_free_block_groups(fs_info);
3278 fail_alloc:
3279 fail_iput:
3280         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3281
3282         iput(fs_info->btree_inode);
3283 fail_bio_counter:
3284         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3285 fail_delalloc_bytes:
3286         percpu_counter_destroy(&fs_info->delalloc_bytes);
3287 fail_dirty_metadata_bytes:
3288         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3289 fail_srcu:
3290         cleanup_srcu_struct(&fs_info->subvol_srcu);
3291 fail:
3292         btrfs_free_stripe_hash_table(fs_info);
3293         btrfs_close_devices(fs_info->fs_devices);
3294         return err;
3295
3296 recovery_tree_root:
3297         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3298                 goto fail_tree_roots;
3299
3300         free_root_pointers(fs_info, 0);
3301
3302         /* don't use the log in recovery mode, it won't be valid */
3303         btrfs_set_super_log_root(disk_super, 0);
3304
3305         /* we can't trust the free space cache either */
3306         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3307
3308         ret = next_root_backup(fs_info, fs_info->super_copy,
3309                                &num_backups_tried, &backup_index);
3310         if (ret == -1)
3311                 goto fail_block_groups;
3312         goto retry_root_backup;
3313 }
3314 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3315
3316 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3317 {
3318         if (uptodate) {
3319                 set_buffer_uptodate(bh);
3320         } else {
3321                 struct btrfs_device *device = (struct btrfs_device *)
3322                         bh->b_private;
3323
3324                 btrfs_warn_rl_in_rcu(device->fs_info,
3325                                 "lost page write due to IO error on %s",
3326                                           rcu_str_deref(device->name));
3327                 /* note, we don't set_buffer_write_io_error because we have
3328                  * our own ways of dealing with the IO errors
3329                  */
3330                 clear_buffer_uptodate(bh);
3331                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3332         }
3333         unlock_buffer(bh);
3334         put_bh(bh);
3335 }
3336
3337 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3338                         struct buffer_head **bh_ret)
3339 {
3340         struct buffer_head *bh;
3341         struct btrfs_super_block *super;
3342         u64 bytenr;
3343
3344         bytenr = btrfs_sb_offset(copy_num);
3345         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3346                 return -EINVAL;
3347
3348         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3349         /*
3350          * If we fail to read from the underlying devices, as of now
3351          * the best option we have is to mark it EIO.
3352          */
3353         if (!bh)
3354                 return -EIO;
3355
3356         super = (struct btrfs_super_block *)bh->b_data;
3357         if (btrfs_super_bytenr(super) != bytenr ||
3358                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3359                 brelse(bh);
3360                 return -EINVAL;
3361         }
3362
3363         *bh_ret = bh;
3364         return 0;
3365 }
3366
3367
3368 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3369 {
3370         struct buffer_head *bh;
3371         struct buffer_head *latest = NULL;
3372         struct btrfs_super_block *super;
3373         int i;
3374         u64 transid = 0;
3375         int ret = -EINVAL;
3376
3377         /* we would like to check all the supers, but that would make
3378          * a btrfs mount succeed after a mkfs from a different FS.
3379          * So, we need to add a special mount option to scan for
3380          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3381          */
3382         for (i = 0; i < 1; i++) {
3383                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3384                 if (ret)
3385                         continue;
3386
3387                 super = (struct btrfs_super_block *)bh->b_data;
3388
3389                 if (!latest || btrfs_super_generation(super) > transid) {
3390                         brelse(latest);
3391                         latest = bh;
3392                         transid = btrfs_super_generation(super);
3393                 } else {
3394                         brelse(bh);
3395                 }
3396         }
3397
3398         if (!latest)
3399                 return ERR_PTR(ret);
3400
3401         return latest;
3402 }
3403
3404 /*
3405  * Write superblock @sb to the @device. Do not wait for completion, all the
3406  * buffer heads we write are pinned.
3407  *
3408  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3409  * the expected device size at commit time. Note that max_mirrors must be
3410  * same for write and wait phases.
3411  *
3412  * Return number of errors when buffer head is not found or submission fails.
3413  */
3414 static int write_dev_supers(struct btrfs_device *device,
3415                             struct btrfs_super_block *sb, int max_mirrors)
3416 {
3417         struct buffer_head *bh;
3418         int i;
3419         int ret;
3420         int errors = 0;
3421         u32 crc;
3422         u64 bytenr;
3423         int op_flags;
3424
3425         if (max_mirrors == 0)
3426                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3427
3428         for (i = 0; i < max_mirrors; i++) {
3429                 bytenr = btrfs_sb_offset(i);
3430                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3431                     device->commit_total_bytes)
3432                         break;
3433
3434                 btrfs_set_super_bytenr(sb, bytenr);
3435
3436                 crc = ~(u32)0;
3437                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3438                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3439                 btrfs_csum_final(crc, sb->csum);
3440
3441                 /* One reference for us, and we leave it for the caller */
3442                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3443                               BTRFS_SUPER_INFO_SIZE);
3444                 if (!bh) {
3445                         btrfs_err(device->fs_info,
3446                             "couldn't get super buffer head for bytenr %llu",
3447                             bytenr);
3448                         errors++;
3449                         continue;
3450                 }
3451
3452                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3453
3454                 /* one reference for submit_bh */
3455                 get_bh(bh);
3456
3457                 set_buffer_uptodate(bh);
3458                 lock_buffer(bh);
3459                 bh->b_end_io = btrfs_end_buffer_write_sync;
3460                 bh->b_private = device;
3461
3462                 /*
3463                  * we fua the first super.  The others we allow
3464                  * to go down lazy.
3465                  */
3466                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3467                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3468                         op_flags |= REQ_FUA;
3469                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3470                 if (ret)
3471                         errors++;
3472         }
3473         return errors < i ? 0 : -1;
3474 }
3475
3476 /*
3477  * Wait for write completion of superblocks done by write_dev_supers,
3478  * @max_mirrors same for write and wait phases.
3479  *
3480  * Return number of errors when buffer head is not found or not marked up to
3481  * date.
3482  */
3483 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3484 {
3485         struct buffer_head *bh;
3486         int i;
3487         int errors = 0;
3488         bool primary_failed = false;
3489         u64 bytenr;
3490
3491         if (max_mirrors == 0)
3492                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3493
3494         for (i = 0; i < max_mirrors; i++) {
3495                 bytenr = btrfs_sb_offset(i);
3496                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3497                     device->commit_total_bytes)
3498                         break;
3499
3500                 bh = __find_get_block(device->bdev,
3501                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3502                                       BTRFS_SUPER_INFO_SIZE);
3503                 if (!bh) {
3504                         errors++;
3505                         if (i == 0)
3506                                 primary_failed = true;
3507                         continue;
3508                 }
3509                 wait_on_buffer(bh);
3510                 if (!buffer_uptodate(bh)) {
3511                         errors++;
3512                         if (i == 0)
3513                                 primary_failed = true;
3514                 }
3515
3516                 /* drop our reference */
3517                 brelse(bh);
3518
3519                 /* drop the reference from the writing run */
3520                 brelse(bh);
3521         }
3522
3523         /* log error, force error return */
3524         if (primary_failed) {
3525                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3526                           device->devid);
3527                 return -1;
3528         }
3529
3530         return errors < i ? 0 : -1;
3531 }
3532
3533 /*
3534  * endio for the write_dev_flush, this will wake anyone waiting
3535  * for the barrier when it is done
3536  */
3537 static void btrfs_end_empty_barrier(struct bio *bio)
3538 {
3539         complete(bio->bi_private);
3540 }
3541
3542 /*
3543  * Submit a flush request to the device if it supports it. Error handling is
3544  * done in the waiting counterpart.
3545  */
3546 static void write_dev_flush(struct btrfs_device *device)
3547 {
3548         struct request_queue *q = bdev_get_queue(device->bdev);
3549         struct bio *bio = device->flush_bio;
3550
3551         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3552                 return;
3553
3554         bio_reset(bio);
3555         bio->bi_end_io = btrfs_end_empty_barrier;
3556         bio_set_dev(bio, device->bdev);
3557         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3558         init_completion(&device->flush_wait);
3559         bio->bi_private = &device->flush_wait;
3560
3561         btrfsic_submit_bio(bio);
3562         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3563 }
3564
3565 /*
3566  * If the flush bio has been submitted by write_dev_flush, wait for it.
3567  */
3568 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3569 {
3570         struct bio *bio = device->flush_bio;
3571
3572         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3573                 return BLK_STS_OK;
3574
3575         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3576         wait_for_completion_io(&device->flush_wait);
3577
3578         return bio->bi_status;
3579 }
3580
3581 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3582 {
3583         if (!btrfs_check_rw_degradable(fs_info, NULL))
3584                 return -EIO;
3585         return 0;
3586 }
3587
3588 /*
3589  * send an empty flush down to each device in parallel,
3590  * then wait for them
3591  */
3592 static int barrier_all_devices(struct btrfs_fs_info *info)
3593 {
3594         struct list_head *head;
3595         struct btrfs_device *dev;
3596         int errors_wait = 0;
3597         blk_status_t ret;
3598
3599         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3600         /* send down all the barriers */
3601         head = &info->fs_devices->devices;
3602         list_for_each_entry(dev, head, dev_list) {
3603                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3604                         continue;
3605                 if (!dev->bdev)
3606                         continue;
3607                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3608                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3609                         continue;
3610
3611                 write_dev_flush(dev);
3612                 dev->last_flush_error = BLK_STS_OK;
3613         }
3614
3615         /* wait for all the barriers */
3616         list_for_each_entry(dev, head, dev_list) {
3617                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3618                         continue;
3619                 if (!dev->bdev) {
3620                         errors_wait++;
3621                         continue;
3622                 }
3623                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3624                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3625                         continue;
3626
3627                 ret = wait_dev_flush(dev);
3628                 if (ret) {
3629                         dev->last_flush_error = ret;
3630                         btrfs_dev_stat_inc_and_print(dev,
3631                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3632                         errors_wait++;
3633                 }
3634         }
3635
3636         if (errors_wait) {
3637                 /*
3638                  * At some point we need the status of all disks
3639                  * to arrive at the volume status. So error checking
3640                  * is being pushed to a separate loop.
3641                  */
3642                 return check_barrier_error(info);
3643         }
3644         return 0;
3645 }
3646
3647 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3648 {
3649         int raid_type;
3650         int min_tolerated = INT_MAX;
3651
3652         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3653             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3654                 min_tolerated = min(min_tolerated,
3655                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3656                                     tolerated_failures);
3657
3658         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3659                 if (raid_type == BTRFS_RAID_SINGLE)
3660                         continue;
3661                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3662                         continue;
3663                 min_tolerated = min(min_tolerated,
3664                                     btrfs_raid_array[raid_type].
3665                                     tolerated_failures);
3666         }
3667
3668         if (min_tolerated == INT_MAX) {
3669                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3670                 min_tolerated = 0;
3671         }
3672
3673         return min_tolerated;
3674 }
3675
3676 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3677 {
3678         struct list_head *head;
3679         struct btrfs_device *dev;
3680         struct btrfs_super_block *sb;
3681         struct btrfs_dev_item *dev_item;
3682         int ret;
3683         int do_barriers;
3684         int max_errors;
3685         int total_errors = 0;
3686         u64 flags;
3687
3688         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3689
3690         /*
3691          * max_mirrors == 0 indicates we're from commit_transaction,
3692          * not from fsync where the tree roots in fs_info have not
3693          * been consistent on disk.
3694          */
3695         if (max_mirrors == 0)
3696                 backup_super_roots(fs_info);
3697
3698         sb = fs_info->super_for_commit;
3699         dev_item = &sb->dev_item;
3700
3701         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3702         head = &fs_info->fs_devices->devices;
3703         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3704
3705         if (do_barriers) {
3706                 ret = barrier_all_devices(fs_info);
3707                 if (ret) {
3708                         mutex_unlock(
3709                                 &fs_info->fs_devices->device_list_mutex);
3710                         btrfs_handle_fs_error(fs_info, ret,
3711                                               "errors while submitting device barriers.");
3712                         return ret;
3713                 }
3714         }
3715
3716         list_for_each_entry(dev, head, dev_list) {
3717                 if (!dev->bdev) {
3718                         total_errors++;
3719                         continue;
3720                 }
3721                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3722                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3723                         continue;
3724
3725                 btrfs_set_stack_device_generation(dev_item, 0);
3726                 btrfs_set_stack_device_type(dev_item, dev->type);
3727                 btrfs_set_stack_device_id(dev_item, dev->devid);
3728                 btrfs_set_stack_device_total_bytes(dev_item,
3729                                                    dev->commit_total_bytes);
3730                 btrfs_set_stack_device_bytes_used(dev_item,
3731                                                   dev->commit_bytes_used);
3732                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3733                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3734                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3735                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3736                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3737
3738                 flags = btrfs_super_flags(sb);
3739                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3740
3741                 ret = btrfs_validate_write_super(fs_info, sb);
3742                 if (ret < 0) {
3743                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3744                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3745                                 "unexpected superblock corruption detected");
3746                         return -EUCLEAN;
3747                 }
3748
3749                 ret = write_dev_supers(dev, sb, max_mirrors);
3750                 if (ret)
3751                         total_errors++;
3752         }
3753         if (total_errors > max_errors) {
3754                 btrfs_err(fs_info, "%d errors while writing supers",
3755                           total_errors);
3756                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3757
3758                 /* FUA is masked off if unsupported and can't be the reason */
3759                 btrfs_handle_fs_error(fs_info, -EIO,
3760                                       "%d errors while writing supers",
3761                                       total_errors);
3762                 return -EIO;
3763         }
3764
3765         total_errors = 0;
3766         list_for_each_entry(dev, head, dev_list) {
3767                 if (!dev->bdev)
3768                         continue;
3769                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3770                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3771                         continue;
3772
3773                 ret = wait_dev_supers(dev, max_mirrors);
3774                 if (ret)
3775                         total_errors++;
3776         }
3777         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3778         if (total_errors > max_errors) {
3779                 btrfs_handle_fs_error(fs_info, -EIO,
3780                                       "%d errors while writing supers",
3781                                       total_errors);
3782                 return -EIO;
3783         }
3784         return 0;
3785 }
3786
3787 /* Drop a fs root from the radix tree and free it. */
3788 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3789                                   struct btrfs_root *root)
3790 {
3791         spin_lock(&fs_info->fs_roots_radix_lock);
3792         radix_tree_delete(&fs_info->fs_roots_radix,
3793                           (unsigned long)root->root_key.objectid);
3794         spin_unlock(&fs_info->fs_roots_radix_lock);
3795
3796         if (btrfs_root_refs(&root->root_item) == 0)
3797                 synchronize_srcu(&fs_info->subvol_srcu);
3798
3799         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3800                 btrfs_free_log(NULL, root);
3801                 if (root->reloc_root) {
3802                         free_extent_buffer(root->reloc_root->node);
3803                         free_extent_buffer(root->reloc_root->commit_root);
3804                         btrfs_put_fs_root(root->reloc_root);
3805                         root->reloc_root = NULL;
3806                 }
3807         }
3808
3809         if (root->free_ino_pinned)
3810                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3811         if (root->free_ino_ctl)
3812                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3813         btrfs_free_fs_root(root);
3814 }
3815
3816 void btrfs_free_fs_root(struct btrfs_root *root)
3817 {
3818         iput(root->ino_cache_inode);
3819         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3820         if (root->anon_dev)
3821                 free_anon_bdev(root->anon_dev);
3822         if (root->subv_writers)
3823                 btrfs_free_subvolume_writers(root->subv_writers);
3824         free_extent_buffer(root->node);
3825         free_extent_buffer(root->commit_root);
3826         kfree(root->free_ino_ctl);
3827         kfree(root->free_ino_pinned);
3828         btrfs_put_fs_root(root);
3829 }
3830
3831 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3832 {
3833         u64 root_objectid = 0;
3834         struct btrfs_root *gang[8];
3835         int i = 0;
3836         int err = 0;
3837         unsigned int ret = 0;
3838         int index;
3839
3840         while (1) {
3841                 index = srcu_read_lock(&fs_info->subvol_srcu);
3842                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3843                                              (void **)gang, root_objectid,
3844                                              ARRAY_SIZE(gang));
3845                 if (!ret) {
3846                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3847                         break;
3848                 }
3849                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3850
3851                 for (i = 0; i < ret; i++) {
3852                         /* Avoid to grab roots in dead_roots */
3853                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3854                                 gang[i] = NULL;
3855                                 continue;
3856                         }
3857                         /* grab all the search result for later use */
3858                         gang[i] = btrfs_grab_fs_root(gang[i]);
3859                 }
3860                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3861
3862                 for (i = 0; i < ret; i++) {
3863                         if (!gang[i])
3864                                 continue;
3865                         root_objectid = gang[i]->root_key.objectid;
3866                         err = btrfs_orphan_cleanup(gang[i]);
3867                         if (err)
3868                                 break;
3869                         btrfs_put_fs_root(gang[i]);
3870                 }
3871                 root_objectid++;
3872         }
3873
3874         /* release the uncleaned roots due to error */
3875         for (; i < ret; i++) {
3876                 if (gang[i])
3877                         btrfs_put_fs_root(gang[i]);
3878         }
3879         return err;
3880 }
3881
3882 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3883 {
3884         struct btrfs_root *root = fs_info->tree_root;
3885         struct btrfs_trans_handle *trans;
3886
3887         mutex_lock(&fs_info->cleaner_mutex);
3888         btrfs_run_delayed_iputs(fs_info);
3889         mutex_unlock(&fs_info->cleaner_mutex);
3890         wake_up_process(fs_info->cleaner_kthread);
3891
3892         /* wait until ongoing cleanup work done */
3893         down_write(&fs_info->cleanup_work_sem);
3894         up_write(&fs_info->cleanup_work_sem);
3895
3896         trans = btrfs_join_transaction(root);
3897         if (IS_ERR(trans))
3898                 return PTR_ERR(trans);
3899         return btrfs_commit_transaction(trans);
3900 }
3901
3902 void close_ctree(struct btrfs_fs_info *fs_info)
3903 {
3904         int ret;
3905
3906         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3907         /*
3908          * We don't want the cleaner to start new transactions, add more delayed
3909          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3910          * because that frees the task_struct, and the transaction kthread might
3911          * still try to wake up the cleaner.
3912          */
3913         kthread_park(fs_info->cleaner_kthread);
3914
3915         /* wait for the qgroup rescan worker to stop */
3916         btrfs_qgroup_wait_for_completion(fs_info, false);
3917
3918         /* wait for the uuid_scan task to finish */
3919         down(&fs_info->uuid_tree_rescan_sem);
3920         /* avoid complains from lockdep et al., set sem back to initial state */
3921         up(&fs_info->uuid_tree_rescan_sem);
3922
3923         /* pause restriper - we want to resume on mount */
3924         btrfs_pause_balance(fs_info);
3925
3926         btrfs_dev_replace_suspend_for_unmount(fs_info);
3927
3928         btrfs_scrub_cancel(fs_info);
3929
3930         /* wait for any defraggers to finish */
3931         wait_event(fs_info->transaction_wait,
3932                    (atomic_read(&fs_info->defrag_running) == 0));
3933
3934         /* clear out the rbtree of defraggable inodes */
3935         btrfs_cleanup_defrag_inodes(fs_info);
3936
3937         cancel_work_sync(&fs_info->async_reclaim_work);
3938
3939         if (!sb_rdonly(fs_info->sb)) {
3940                 /*
3941                  * The cleaner kthread is stopped, so do one final pass over
3942                  * unused block groups.
3943                  */
3944                 btrfs_delete_unused_bgs(fs_info);
3945
3946                 ret = btrfs_commit_super(fs_info);
3947                 if (ret)
3948                         btrfs_err(fs_info, "commit super ret %d", ret);
3949         }
3950
3951         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3952             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3953                 btrfs_error_commit_super(fs_info);
3954
3955         kthread_stop(fs_info->transaction_kthread);
3956         kthread_stop(fs_info->cleaner_kthread);
3957
3958         ASSERT(list_empty(&fs_info->delayed_iputs));
3959         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3960
3961         btrfs_free_qgroup_config(fs_info);
3962         ASSERT(list_empty(&fs_info->delalloc_roots));
3963
3964         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3965                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3966                        percpu_counter_sum(&fs_info->delalloc_bytes));
3967         }
3968
3969         btrfs_sysfs_remove_mounted(fs_info);
3970         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3971
3972         btrfs_free_fs_roots(fs_info);
3973
3974         btrfs_put_block_group_cache(fs_info);
3975
3976         /*
3977          * we must make sure there is not any read request to
3978          * submit after we stopping all workers.
3979          */
3980         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3981         btrfs_stop_all_workers(fs_info);
3982
3983         btrfs_free_block_groups(fs_info);
3984
3985         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3986         free_root_pointers(fs_info, 1);
3987
3988         iput(fs_info->btree_inode);
3989
3990 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3991         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3992                 btrfsic_unmount(fs_info->fs_devices);
3993 #endif
3994
3995         btrfs_close_devices(fs_info->fs_devices);
3996         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3997
3998         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3999         percpu_counter_destroy(&fs_info->delalloc_bytes);
4000         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4001         cleanup_srcu_struct(&fs_info->subvol_srcu);
4002
4003         btrfs_free_stripe_hash_table(fs_info);
4004         btrfs_free_ref_cache(fs_info);
4005
4006         while (!list_empty(&fs_info->pinned_chunks)) {
4007                 struct extent_map *em;
4008
4009                 em = list_first_entry(&fs_info->pinned_chunks,
4010                                       struct extent_map, list);
4011                 list_del_init(&em->list);
4012                 free_extent_map(em);
4013         }
4014 }
4015
4016 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4017                           int atomic)
4018 {
4019         int ret;
4020         struct inode *btree_inode = buf->pages[0]->mapping->host;
4021
4022         ret = extent_buffer_uptodate(buf);
4023         if (!ret)
4024                 return ret;
4025
4026         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4027                                     parent_transid, atomic);
4028         if (ret == -EAGAIN)
4029                 return ret;
4030         return !ret;
4031 }
4032
4033 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4034 {
4035         struct btrfs_fs_info *fs_info;
4036         struct btrfs_root *root;
4037         u64 transid = btrfs_header_generation(buf);
4038         int was_dirty;
4039
4040 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4041         /*
4042          * This is a fast path so only do this check if we have sanity tests
4043          * enabled.  Normal people shouldn't be using umapped buffers as dirty
4044          * outside of the sanity tests.
4045          */
4046         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4047                 return;
4048 #endif
4049         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4050         fs_info = root->fs_info;
4051         btrfs_assert_tree_locked(buf);
4052         if (transid != fs_info->generation)
4053                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4054                         buf->start, transid, fs_info->generation);
4055         was_dirty = set_extent_buffer_dirty(buf);
4056         if (!was_dirty)
4057                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4058                                          buf->len,
4059                                          fs_info->dirty_metadata_batch);
4060 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4061         /*
4062          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4063          * but item data not updated.
4064          * So here we should only check item pointers, not item data.
4065          */
4066         if (btrfs_header_level(buf) == 0 &&
4067             btrfs_check_leaf_relaxed(fs_info, buf)) {
4068                 btrfs_print_leaf(buf);
4069                 ASSERT(0);
4070         }
4071 #endif
4072 }
4073
4074 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4075                                         int flush_delayed)
4076 {
4077         /*
4078          * looks as though older kernels can get into trouble with
4079          * this code, they end up stuck in balance_dirty_pages forever
4080          */
4081         int ret;
4082
4083         if (current->flags & PF_MEMALLOC)
4084                 return;
4085
4086         if (flush_delayed)
4087                 btrfs_balance_delayed_items(fs_info);
4088
4089         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4090                                      BTRFS_DIRTY_METADATA_THRESH,
4091                                      fs_info->dirty_metadata_batch);
4092         if (ret > 0) {
4093                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4094         }
4095 }
4096
4097 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4098 {
4099         __btrfs_btree_balance_dirty(fs_info, 1);
4100 }
4101
4102 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4103 {
4104         __btrfs_btree_balance_dirty(fs_info, 0);
4105 }
4106
4107 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4108                       struct btrfs_key *first_key)
4109 {
4110         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4111         struct btrfs_fs_info *fs_info = root->fs_info;
4112
4113         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4114                                               level, first_key);
4115 }
4116
4117 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4118 {
4119         /* cleanup FS via transaction */
4120         btrfs_cleanup_transaction(fs_info);
4121
4122         mutex_lock(&fs_info->cleaner_mutex);
4123         btrfs_run_delayed_iputs(fs_info);
4124         mutex_unlock(&fs_info->cleaner_mutex);
4125
4126         down_write(&fs_info->cleanup_work_sem);
4127         up_write(&fs_info->cleanup_work_sem);
4128 }
4129
4130 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4131 {
4132         struct btrfs_ordered_extent *ordered;
4133
4134         spin_lock(&root->ordered_extent_lock);
4135         /*
4136          * This will just short circuit the ordered completion stuff which will
4137          * make sure the ordered extent gets properly cleaned up.
4138          */
4139         list_for_each_entry(ordered, &root->ordered_extents,
4140                             root_extent_list)
4141                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4142         spin_unlock(&root->ordered_extent_lock);
4143 }
4144
4145 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4146 {
4147         struct btrfs_root *root;
4148         struct list_head splice;
4149
4150         INIT_LIST_HEAD(&splice);
4151
4152         spin_lock(&fs_info->ordered_root_lock);
4153         list_splice_init(&fs_info->ordered_roots, &splice);
4154         while (!list_empty(&splice)) {
4155                 root = list_first_entry(&splice, struct btrfs_root,
4156                                         ordered_root);
4157                 list_move_tail(&root->ordered_root,
4158                                &fs_info->ordered_roots);
4159
4160                 spin_unlock(&fs_info->ordered_root_lock);
4161                 btrfs_destroy_ordered_extents(root);
4162
4163                 cond_resched();
4164                 spin_lock(&fs_info->ordered_root_lock);
4165         }
4166         spin_unlock(&fs_info->ordered_root_lock);
4167 }
4168
4169 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4170                                       struct btrfs_fs_info *fs_info)
4171 {
4172         struct rb_node *node;
4173         struct btrfs_delayed_ref_root *delayed_refs;
4174         struct btrfs_delayed_ref_node *ref;
4175         int ret = 0;
4176
4177         delayed_refs = &trans->delayed_refs;
4178
4179         spin_lock(&delayed_refs->lock);
4180         if (atomic_read(&delayed_refs->num_entries) == 0) {
4181                 spin_unlock(&delayed_refs->lock);
4182                 btrfs_info(fs_info, "delayed_refs has NO entry");
4183                 return ret;
4184         }
4185
4186         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4187                 struct btrfs_delayed_ref_head *head;
4188                 struct rb_node *n;
4189                 bool pin_bytes = false;
4190
4191                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4192                                 href_node);
4193                 if (!mutex_trylock(&head->mutex)) {
4194                         refcount_inc(&head->refs);
4195                         spin_unlock(&delayed_refs->lock);
4196
4197                         mutex_lock(&head->mutex);
4198                         mutex_unlock(&head->mutex);
4199                         btrfs_put_delayed_ref_head(head);
4200                         spin_lock(&delayed_refs->lock);
4201                         continue;
4202                 }
4203                 spin_lock(&head->lock);
4204                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4205                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4206                                        ref_node);
4207                         ref->in_tree = 0;
4208                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4209                         RB_CLEAR_NODE(&ref->ref_node);
4210                         if (!list_empty(&ref->add_list))
4211                                 list_del(&ref->add_list);
4212                         atomic_dec(&delayed_refs->num_entries);
4213                         btrfs_put_delayed_ref(ref);
4214                 }
4215                 if (head->must_insert_reserved)
4216                         pin_bytes = true;
4217                 btrfs_free_delayed_extent_op(head->extent_op);
4218                 delayed_refs->num_heads--;
4219                 if (head->processing == 0)
4220                         delayed_refs->num_heads_ready--;
4221                 atomic_dec(&delayed_refs->num_entries);
4222                 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
4223                 RB_CLEAR_NODE(&head->href_node);
4224                 spin_unlock(&head->lock);
4225                 spin_unlock(&delayed_refs->lock);
4226                 mutex_unlock(&head->mutex);
4227
4228                 if (pin_bytes)
4229                         btrfs_pin_extent(fs_info, head->bytenr,
4230                                          head->num_bytes, 1);
4231                 btrfs_put_delayed_ref_head(head);
4232                 cond_resched();
4233                 spin_lock(&delayed_refs->lock);
4234         }
4235
4236         spin_unlock(&delayed_refs->lock);
4237
4238         return ret;
4239 }
4240
4241 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4242 {
4243         struct btrfs_inode *btrfs_inode;
4244         struct list_head splice;
4245
4246         INIT_LIST_HEAD(&splice);
4247
4248         spin_lock(&root->delalloc_lock);
4249         list_splice_init(&root->delalloc_inodes, &splice);
4250
4251         while (!list_empty(&splice)) {
4252                 struct inode *inode = NULL;
4253                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4254                                                delalloc_inodes);
4255                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4256                 spin_unlock(&root->delalloc_lock);
4257
4258                 /*
4259                  * Make sure we get a live inode and that it'll not disappear
4260                  * meanwhile.
4261                  */
4262                 inode = igrab(&btrfs_inode->vfs_inode);
4263                 if (inode) {
4264                         invalidate_inode_pages2(inode->i_mapping);
4265                         iput(inode);
4266                 }
4267                 spin_lock(&root->delalloc_lock);
4268         }
4269         spin_unlock(&root->delalloc_lock);
4270 }
4271
4272 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4273 {
4274         struct btrfs_root *root;
4275         struct list_head splice;
4276
4277         INIT_LIST_HEAD(&splice);
4278
4279         spin_lock(&fs_info->delalloc_root_lock);
4280         list_splice_init(&fs_info->delalloc_roots, &splice);
4281         while (!list_empty(&splice)) {
4282                 root = list_first_entry(&splice, struct btrfs_root,
4283                                          delalloc_root);
4284                 root = btrfs_grab_fs_root(root);
4285                 BUG_ON(!root);
4286                 spin_unlock(&fs_info->delalloc_root_lock);
4287
4288                 btrfs_destroy_delalloc_inodes(root);
4289                 btrfs_put_fs_root(root);
4290
4291                 spin_lock(&fs_info->delalloc_root_lock);
4292         }
4293         spin_unlock(&fs_info->delalloc_root_lock);
4294 }
4295
4296 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4297                                         struct extent_io_tree *dirty_pages,
4298                                         int mark)
4299 {
4300         int ret;
4301         struct extent_buffer *eb;
4302         u64 start = 0;
4303         u64 end;
4304
4305         while (1) {
4306                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4307                                             mark, NULL);
4308                 if (ret)
4309                         break;
4310
4311                 clear_extent_bits(dirty_pages, start, end, mark);
4312                 while (start <= end) {
4313                         eb = find_extent_buffer(fs_info, start);
4314                         start += fs_info->nodesize;
4315                         if (!eb)
4316                                 continue;
4317                         wait_on_extent_buffer_writeback(eb);
4318
4319                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4320                                                &eb->bflags))
4321                                 clear_extent_buffer_dirty(eb);
4322                         free_extent_buffer_stale(eb);
4323                 }
4324         }
4325
4326         return ret;
4327 }
4328
4329 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4330                                        struct extent_io_tree *pinned_extents)
4331 {
4332         struct extent_io_tree *unpin;
4333         u64 start;
4334         u64 end;
4335         int ret;
4336         bool loop = true;
4337
4338         unpin = pinned_extents;
4339 again:
4340         while (1) {
4341                 /*
4342                  * The btrfs_finish_extent_commit() may get the same range as
4343                  * ours between find_first_extent_bit and clear_extent_dirty.
4344                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4345                  * the same extent range.
4346                  */
4347                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4348                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4349                                             EXTENT_DIRTY, NULL);
4350                 if (ret) {
4351                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4352                         break;
4353                 }
4354
4355                 clear_extent_dirty(unpin, start, end);
4356                 btrfs_error_unpin_extent_range(fs_info, start, end);
4357                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4358                 cond_resched();
4359         }
4360
4361         if (loop) {
4362                 if (unpin == &fs_info->freed_extents[0])
4363                         unpin = &fs_info->freed_extents[1];
4364                 else
4365                         unpin = &fs_info->freed_extents[0];
4366                 loop = false;
4367                 goto again;
4368         }
4369
4370         return 0;
4371 }
4372
4373 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4374 {
4375         struct inode *inode;
4376
4377         inode = cache->io_ctl.inode;
4378         if (inode) {
4379                 invalidate_inode_pages2(inode->i_mapping);
4380                 BTRFS_I(inode)->generation = 0;
4381                 cache->io_ctl.inode = NULL;
4382                 iput(inode);
4383         }
4384         btrfs_put_block_group(cache);
4385 }
4386
4387 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4388                              struct btrfs_fs_info *fs_info)
4389 {
4390         struct btrfs_block_group_cache *cache;
4391
4392         spin_lock(&cur_trans->dirty_bgs_lock);
4393         while (!list_empty(&cur_trans->dirty_bgs)) {
4394                 cache = list_first_entry(&cur_trans->dirty_bgs,
4395                                          struct btrfs_block_group_cache,
4396                                          dirty_list);
4397
4398                 if (!list_empty(&cache->io_list)) {
4399                         spin_unlock(&cur_trans->dirty_bgs_lock);
4400                         list_del_init(&cache->io_list);
4401                         btrfs_cleanup_bg_io(cache);
4402                         spin_lock(&cur_trans->dirty_bgs_lock);
4403                 }
4404
4405                 list_del_init(&cache->dirty_list);
4406                 spin_lock(&cache->lock);
4407                 cache->disk_cache_state = BTRFS_DC_ERROR;
4408                 spin_unlock(&cache->lock);
4409
4410                 spin_unlock(&cur_trans->dirty_bgs_lock);
4411                 btrfs_put_block_group(cache);
4412                 spin_lock(&cur_trans->dirty_bgs_lock);
4413         }
4414         spin_unlock(&cur_trans->dirty_bgs_lock);
4415
4416         /*
4417          * Refer to the definition of io_bgs member for details why it's safe
4418          * to use it without any locking
4419          */
4420         while (!list_empty(&cur_trans->io_bgs)) {
4421                 cache = list_first_entry(&cur_trans->io_bgs,
4422                                          struct btrfs_block_group_cache,
4423                                          io_list);
4424
4425                 list_del_init(&cache->io_list);
4426                 spin_lock(&cache->lock);
4427                 cache->disk_cache_state = BTRFS_DC_ERROR;
4428                 spin_unlock(&cache->lock);
4429                 btrfs_cleanup_bg_io(cache);
4430         }
4431 }
4432
4433 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4434                                    struct btrfs_fs_info *fs_info)
4435 {
4436         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4437         ASSERT(list_empty(&cur_trans->dirty_bgs));
4438         ASSERT(list_empty(&cur_trans->io_bgs));
4439
4440         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4441
4442         cur_trans->state = TRANS_STATE_COMMIT_START;
4443         wake_up(&fs_info->transaction_blocked_wait);
4444
4445         cur_trans->state = TRANS_STATE_UNBLOCKED;
4446         wake_up(&fs_info->transaction_wait);
4447
4448         btrfs_destroy_delayed_inodes(fs_info);
4449         btrfs_assert_delayed_root_empty(fs_info);
4450
4451         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4452                                      EXTENT_DIRTY);
4453         btrfs_destroy_pinned_extent(fs_info,
4454                                     fs_info->pinned_extents);
4455
4456         cur_trans->state =TRANS_STATE_COMPLETED;
4457         wake_up(&cur_trans->commit_wait);
4458 }
4459
4460 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4461 {
4462         struct btrfs_transaction *t;
4463
4464         mutex_lock(&fs_info->transaction_kthread_mutex);
4465
4466         spin_lock(&fs_info->trans_lock);
4467         while (!list_empty(&fs_info->trans_list)) {
4468                 t = list_first_entry(&fs_info->trans_list,
4469                                      struct btrfs_transaction, list);
4470                 if (t->state >= TRANS_STATE_COMMIT_START) {
4471                         refcount_inc(&t->use_count);
4472                         spin_unlock(&fs_info->trans_lock);
4473                         btrfs_wait_for_commit(fs_info, t->transid);
4474                         btrfs_put_transaction(t);
4475                         spin_lock(&fs_info->trans_lock);
4476                         continue;
4477                 }
4478                 if (t == fs_info->running_transaction) {
4479                         t->state = TRANS_STATE_COMMIT_DOING;
4480                         spin_unlock(&fs_info->trans_lock);
4481                         /*
4482                          * We wait for 0 num_writers since we don't hold a trans
4483                          * handle open currently for this transaction.
4484                          */
4485                         wait_event(t->writer_wait,
4486                                    atomic_read(&t->num_writers) == 0);
4487                 } else {
4488                         spin_unlock(&fs_info->trans_lock);
4489                 }
4490                 btrfs_cleanup_one_transaction(t, fs_info);
4491
4492                 spin_lock(&fs_info->trans_lock);
4493                 if (t == fs_info->running_transaction)
4494                         fs_info->running_transaction = NULL;
4495                 list_del_init(&t->list);
4496                 spin_unlock(&fs_info->trans_lock);
4497
4498                 btrfs_put_transaction(t);
4499                 trace_btrfs_transaction_commit(fs_info->tree_root);
4500                 spin_lock(&fs_info->trans_lock);
4501         }
4502         spin_unlock(&fs_info->trans_lock);
4503         btrfs_destroy_all_ordered_extents(fs_info);
4504         btrfs_destroy_delayed_inodes(fs_info);
4505         btrfs_assert_delayed_root_empty(fs_info);
4506         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4507         btrfs_destroy_all_delalloc_inodes(fs_info);
4508         mutex_unlock(&fs_info->transaction_kthread_mutex);
4509
4510         return 0;
4511 }
4512
4513 static const struct extent_io_ops btree_extent_io_ops = {
4514         /* mandatory callbacks */
4515         .submit_bio_hook = btree_submit_bio_hook,
4516         .readpage_end_io_hook = btree_readpage_end_io_hook,
4517         .readpage_io_failed_hook = btree_io_failed_hook,
4518
4519         /* optional callbacks */
4520 };