2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54 #include "ref-verify.h"
57 #include <asm/cpufeature.h>
60 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
61 BTRFS_HEADER_FLAG_RELOC |\
62 BTRFS_SUPER_FLAG_ERROR |\
63 BTRFS_SUPER_FLAG_SEEDING |\
64 BTRFS_SUPER_FLAG_METADUMP)
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72 struct btrfs_fs_info *fs_info);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75 struct extent_io_tree *dirty_pages,
77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78 struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
83 * btrfs_end_io_wq structs are used to do processing in task context when an IO
84 * is complete. This is used during reads to verify checksums, and it is used
85 * by writes to insert metadata for new file extents after IO is complete.
87 struct btrfs_end_io_wq {
91 struct btrfs_fs_info *info;
93 enum btrfs_wq_endio_type metadata;
94 struct btrfs_work work;
97 static struct kmem_cache *btrfs_end_io_wq_cache;
99 int __init btrfs_end_io_wq_init(void)
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
106 if (!btrfs_end_io_wq_cache)
111 void btrfs_end_io_wq_exit(void)
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
121 struct async_submit_bio {
123 struct btrfs_fs_info *fs_info;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
128 unsigned long bio_flags;
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
134 struct btrfs_work work;
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
187 void __init btrfs_init_lockdep(void)
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204 struct btrfs_lockdep_keyset *ks;
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
223 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228 struct extent_map_tree *em_tree = &inode->extent_tree;
229 struct extent_map *em;
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
235 em->bdev = fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
239 read_unlock(&em_tree->lock);
241 em = alloc_extent_map();
243 em = ERR_PTR(-ENOMEM);
248 em->block_len = (u64)-1;
250 em->bdev = fs_info->fs_devices->latest_bdev;
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
256 em = lookup_extent_mapping(em_tree, start, len);
263 write_unlock(&em_tree->lock);
269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
271 return btrfs_crc32c(seed, data, len);
274 void btrfs_csum_final(u32 crc, u8 *result)
276 put_unaligned_le32(~crc, result);
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
293 unsigned long map_start;
294 unsigned long map_len;
297 unsigned long inline_result;
299 len = buf->len - offset;
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
316 result = (char *)&inline_result;
319 btrfs_csum_final(crc, result);
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325 memcpy(&found, result, csum_size);
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
337 write_extent_buffer(buf, result, 0, csum_size);
339 if (result != (char *)&inline_result)
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
354 struct extent_state *cached_state = NULL;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
379 parent_transid, btrfs_header_generation(eb));
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
396 btrfs_tree_read_unlock_blocking(eb);
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
426 if (memcmp(raw_disk_sb, result, csum_size))
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444 struct extent_buffer *eb,
447 struct extent_io_tree *io_tree;
452 int failed_mirror = 0;
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
460 if (!verify_parent_transid(io_tree, eb,
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 num_copies = btrfs_num_copies(fs_info,
480 if (!failed_mirror) {
482 failed_mirror = eb->read_mirror;
486 if (mirror_num == failed_mirror)
489 if (mirror_num > num_copies)
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(fs_info, eb, failed_mirror);
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 u64 start = page_offset(page);
508 struct extent_buffer *eb;
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
514 found_start = btrfs_header_bytenr(eb);
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
519 if (WARN_ON(found_start != start))
521 if (WARN_ON(!PageUptodate(page)))
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 return csum_tree_block(fs_info, eb, 0);
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *eb)
533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 u8 fsid[BTRFS_FSID_SIZE];
537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
543 fs_devices = fs_devices->seed;
548 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
549 u64 phy_offset, struct page *page,
550 u64 start, u64 end, int mirror)
554 struct extent_buffer *eb;
555 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
556 struct btrfs_fs_info *fs_info = root->fs_info;
563 eb = (struct extent_buffer *)page->private;
565 /* the pending IO might have been the only thing that kept this buffer
566 * in memory. Make sure we have a ref for all this other checks
568 extent_buffer_get(eb);
570 reads_done = atomic_dec_and_test(&eb->io_pages);
574 eb->read_mirror = mirror;
575 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
580 found_start = btrfs_header_bytenr(eb);
581 if (found_start != eb->start) {
582 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
583 found_start, eb->start);
587 if (check_tree_block_fsid(fs_info, eb)) {
588 btrfs_err_rl(fs_info, "bad fsid on block %llu",
593 found_level = btrfs_header_level(eb);
594 if (found_level >= BTRFS_MAX_LEVEL) {
595 btrfs_err(fs_info, "bad tree block level %d",
596 (int)btrfs_header_level(eb));
601 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
604 ret = csum_tree_block(fs_info, eb, 1);
609 * If this is a leaf block and it is corrupt, set the corrupt bit so
610 * that we don't try and read the other copies of this block, just
613 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
614 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
618 if (found_level > 0 && btrfs_check_node(root, eb))
622 set_extent_buffer_uptodate(eb);
625 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
626 btree_readahead_hook(eb, ret);
630 * our io error hook is going to dec the io pages
631 * again, we have to make sure it has something
634 atomic_inc(&eb->io_pages);
635 clear_extent_buffer_uptodate(eb);
637 free_extent_buffer(eb);
642 static int btree_io_failed_hook(struct page *page, int failed_mirror)
644 struct extent_buffer *eb;
646 eb = (struct extent_buffer *)page->private;
647 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
648 eb->read_mirror = failed_mirror;
649 atomic_dec(&eb->io_pages);
650 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
651 btree_readahead_hook(eb, -EIO);
652 return -EIO; /* we fixed nothing */
655 static void end_workqueue_bio(struct bio *bio)
657 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
658 struct btrfs_fs_info *fs_info;
659 struct btrfs_workqueue *wq;
660 btrfs_work_func_t func;
662 fs_info = end_io_wq->info;
663 end_io_wq->status = bio->bi_status;
665 if (bio_op(bio) == REQ_OP_WRITE) {
666 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
667 wq = fs_info->endio_meta_write_workers;
668 func = btrfs_endio_meta_write_helper;
669 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
670 wq = fs_info->endio_freespace_worker;
671 func = btrfs_freespace_write_helper;
672 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
673 wq = fs_info->endio_raid56_workers;
674 func = btrfs_endio_raid56_helper;
676 wq = fs_info->endio_write_workers;
677 func = btrfs_endio_write_helper;
680 if (unlikely(end_io_wq->metadata ==
681 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
682 wq = fs_info->endio_repair_workers;
683 func = btrfs_endio_repair_helper;
684 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
685 wq = fs_info->endio_raid56_workers;
686 func = btrfs_endio_raid56_helper;
687 } else if (end_io_wq->metadata) {
688 wq = fs_info->endio_meta_workers;
689 func = btrfs_endio_meta_helper;
691 wq = fs_info->endio_workers;
692 func = btrfs_endio_helper;
696 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
697 btrfs_queue_work(wq, &end_io_wq->work);
700 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
701 enum btrfs_wq_endio_type metadata)
703 struct btrfs_end_io_wq *end_io_wq;
705 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
707 return BLK_STS_RESOURCE;
709 end_io_wq->private = bio->bi_private;
710 end_io_wq->end_io = bio->bi_end_io;
711 end_io_wq->info = info;
712 end_io_wq->status = 0;
713 end_io_wq->bio = bio;
714 end_io_wq->metadata = metadata;
716 bio->bi_private = end_io_wq;
717 bio->bi_end_io = end_workqueue_bio;
721 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
723 unsigned long limit = min_t(unsigned long,
724 info->thread_pool_size,
725 info->fs_devices->open_devices);
729 static void run_one_async_start(struct btrfs_work *work)
731 struct async_submit_bio *async;
734 async = container_of(work, struct async_submit_bio, work);
735 ret = async->submit_bio_start(async->private_data, async->bio,
736 async->mirror_num, async->bio_flags,
742 static void run_one_async_done(struct btrfs_work *work)
744 struct async_submit_bio *async;
746 async = container_of(work, struct async_submit_bio, work);
748 /* If an error occurred we just want to clean up the bio and move on */
750 async->bio->bi_status = async->status;
751 bio_endio(async->bio);
755 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
756 async->bio_flags, async->bio_offset);
759 static void run_one_async_free(struct btrfs_work *work)
761 struct async_submit_bio *async;
763 async = container_of(work, struct async_submit_bio, work);
767 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
768 int mirror_num, unsigned long bio_flags,
769 u64 bio_offset, void *private_data,
770 extent_submit_bio_hook_t *submit_bio_start,
771 extent_submit_bio_hook_t *submit_bio_done)
773 struct async_submit_bio *async;
775 async = kmalloc(sizeof(*async), GFP_NOFS);
777 return BLK_STS_RESOURCE;
779 async->private_data = private_data;
780 async->fs_info = fs_info;
782 async->mirror_num = mirror_num;
783 async->submit_bio_start = submit_bio_start;
784 async->submit_bio_done = submit_bio_done;
786 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
787 run_one_async_done, run_one_async_free);
789 async->bio_flags = bio_flags;
790 async->bio_offset = bio_offset;
794 if (op_is_sync(bio->bi_opf))
795 btrfs_set_work_high_priority(&async->work);
797 btrfs_queue_work(fs_info->workers, &async->work);
801 static blk_status_t btree_csum_one_bio(struct bio *bio)
803 struct bio_vec *bvec;
804 struct btrfs_root *root;
807 ASSERT(!bio_flagged(bio, BIO_CLONED));
808 bio_for_each_segment_all(bvec, bio, i) {
809 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
810 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
815 return errno_to_blk_status(ret);
818 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
823 * when we're called for a write, we're already in the async
824 * submission context. Just jump into btrfs_map_bio
826 return btree_csum_one_bio(bio);
829 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
830 int mirror_num, unsigned long bio_flags,
833 struct inode *inode = private_data;
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
840 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
842 bio->bi_status = ret;
848 static int check_async_write(struct btrfs_inode *bi)
850 if (atomic_read(&bi->sync_writers))
853 if (static_cpu_has(X86_FEATURE_XMM4_2))
859 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
863 struct inode *inode = private_data;
864 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
865 int async = check_async_write(BTRFS_I(inode));
868 if (bio_op(bio) != REQ_OP_WRITE) {
870 * called for a read, do the setup so that checksum validation
871 * can happen in the async kernel threads
873 ret = btrfs_bio_wq_end_io(fs_info, bio,
874 BTRFS_WQ_ENDIO_METADATA);
877 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879 ret = btree_csum_one_bio(bio);
882 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
885 * kthread helpers are used to submit writes so that
886 * checksumming can happen in parallel across all CPUs
888 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
889 bio_offset, private_data,
890 __btree_submit_bio_start,
891 __btree_submit_bio_done);
899 bio->bi_status = ret;
904 #ifdef CONFIG_MIGRATION
905 static int btree_migratepage(struct address_space *mapping,
906 struct page *newpage, struct page *page,
907 enum migrate_mode mode)
910 * we can't safely write a btree page from here,
911 * we haven't done the locking hook
916 * Buffers may be managed in a filesystem specific way.
917 * We must have no buffers or drop them.
919 if (page_has_private(page) &&
920 !try_to_release_page(page, GFP_KERNEL))
922 return migrate_page(mapping, newpage, page, mode);
927 static int btree_writepages(struct address_space *mapping,
928 struct writeback_control *wbc)
930 struct btrfs_fs_info *fs_info;
933 if (wbc->sync_mode == WB_SYNC_NONE) {
935 if (wbc->for_kupdate)
938 fs_info = BTRFS_I(mapping->host)->root->fs_info;
939 /* this is a bit racy, but that's ok */
940 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
941 BTRFS_DIRTY_METADATA_THRESH);
945 return btree_write_cache_pages(mapping, wbc);
948 static int btree_readpage(struct file *file, struct page *page)
950 struct extent_io_tree *tree;
951 tree = &BTRFS_I(page->mapping->host)->io_tree;
952 return extent_read_full_page(tree, page, btree_get_extent, 0);
955 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
957 if (PageWriteback(page) || PageDirty(page))
960 return try_release_extent_buffer(page);
963 static void btree_invalidatepage(struct page *page, unsigned int offset,
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
968 extent_invalidatepage(tree, page, offset);
969 btree_releasepage(page, GFP_NOFS);
970 if (PagePrivate(page)) {
971 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
972 "page private not zero on page %llu",
973 (unsigned long long)page_offset(page));
974 ClearPagePrivate(page);
975 set_page_private(page, 0);
980 static int btree_set_page_dirty(struct page *page)
983 struct extent_buffer *eb;
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
992 return __set_page_dirty_nobuffers(page);
995 static const struct address_space_operations btree_aops = {
996 .readpage = btree_readpage,
997 .writepages = btree_writepages,
998 .releasepage = btree_releasepage,
999 .invalidatepage = btree_invalidatepage,
1000 #ifdef CONFIG_MIGRATION
1001 .migratepage = btree_migratepage,
1003 .set_page_dirty = btree_set_page_dirty,
1006 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = fs_info->btree_inode;
1011 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 free_extent_buffer(buf);
1019 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1020 int mirror_num, struct extent_buffer **eb)
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = fs_info->btree_inode;
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1036 free_extent_buffer(buf);
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1043 } else if (extent_buffer_uptodate(buf)) {
1046 free_extent_buffer(buf);
1051 struct extent_buffer *btrfs_find_create_tree_block(
1052 struct btrfs_fs_info *fs_info,
1055 if (btrfs_is_testing(fs_info))
1056 return alloc_test_extent_buffer(fs_info, bytenr);
1057 return alloc_extent_buffer(fs_info, bytenr);
1061 int btrfs_write_tree_block(struct extent_buffer *buf)
1063 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1064 buf->start + buf->len - 1);
1067 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1069 filemap_fdatawait_range(buf->pages[0]->mapping,
1070 buf->start, buf->start + buf->len - 1);
1073 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1076 struct extent_buffer *buf = NULL;
1079 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1083 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1085 free_extent_buffer(buf);
1086 return ERR_PTR(ret);
1092 void clean_tree_block(struct btrfs_fs_info *fs_info,
1093 struct extent_buffer *buf)
1095 if (btrfs_header_generation(buf) ==
1096 fs_info->running_transaction->transid) {
1097 btrfs_assert_tree_locked(buf);
1099 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1100 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1102 fs_info->dirty_metadata_batch);
1103 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1104 btrfs_set_lock_blocking(buf);
1105 clear_extent_buffer_dirty(buf);
1110 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1112 struct btrfs_subvolume_writers *writers;
1115 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1117 return ERR_PTR(-ENOMEM);
1119 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1122 return ERR_PTR(ret);
1125 init_waitqueue_head(&writers->wait);
1130 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1132 percpu_counter_destroy(&writers->counter);
1136 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1139 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1141 root->commit_root = NULL;
1143 root->orphan_cleanup_state = 0;
1145 root->objectid = objectid;
1146 root->last_trans = 0;
1147 root->highest_objectid = 0;
1148 root->nr_delalloc_inodes = 0;
1149 root->nr_ordered_extents = 0;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 INIT_LIST_HEAD(&root->delalloc_inodes);
1159 INIT_LIST_HEAD(&root->delalloc_root);
1160 INIT_LIST_HEAD(&root->ordered_extents);
1161 INIT_LIST_HEAD(&root->ordered_root);
1162 INIT_LIST_HEAD(&root->logged_list[0]);
1163 INIT_LIST_HEAD(&root->logged_list[1]);
1164 spin_lock_init(&root->orphan_lock);
1165 spin_lock_init(&root->inode_lock);
1166 spin_lock_init(&root->delalloc_lock);
1167 spin_lock_init(&root->ordered_extent_lock);
1168 spin_lock_init(&root->accounting_lock);
1169 spin_lock_init(&root->log_extents_lock[0]);
1170 spin_lock_init(&root->log_extents_lock[1]);
1171 mutex_init(&root->objectid_mutex);
1172 mutex_init(&root->log_mutex);
1173 mutex_init(&root->ordered_extent_mutex);
1174 mutex_init(&root->delalloc_mutex);
1175 init_waitqueue_head(&root->log_writer_wait);
1176 init_waitqueue_head(&root->log_commit_wait[0]);
1177 init_waitqueue_head(&root->log_commit_wait[1]);
1178 INIT_LIST_HEAD(&root->log_ctxs[0]);
1179 INIT_LIST_HEAD(&root->log_ctxs[1]);
1180 atomic_set(&root->log_commit[0], 0);
1181 atomic_set(&root->log_commit[1], 0);
1182 atomic_set(&root->log_writers, 0);
1183 atomic_set(&root->log_batch, 0);
1184 atomic_set(&root->orphan_inodes, 0);
1185 refcount_set(&root->refs, 1);
1186 atomic_set(&root->will_be_snapshotted, 0);
1187 atomic64_set(&root->qgroup_meta_rsv, 0);
1188 root->log_transid = 0;
1189 root->log_transid_committed = -1;
1190 root->last_log_commit = 0;
1192 extent_io_tree_init(&root->dirty_log_pages, NULL);
1194 memset(&root->root_key, 0, sizeof(root->root_key));
1195 memset(&root->root_item, 0, sizeof(root->root_item));
1196 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1198 root->defrag_trans_start = fs_info->generation;
1200 root->defrag_trans_start = 0;
1201 root->root_key.objectid = objectid;
1204 spin_lock_init(&root->root_item_lock);
1207 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1210 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1212 root->fs_info = fs_info;
1216 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1217 /* Should only be used by the testing infrastructure */
1218 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1220 struct btrfs_root *root;
1223 return ERR_PTR(-EINVAL);
1225 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1227 return ERR_PTR(-ENOMEM);
1229 /* We don't use the stripesize in selftest, set it as sectorsize */
1230 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1231 root->alloc_bytenr = 0;
1237 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1238 struct btrfs_fs_info *fs_info,
1241 struct extent_buffer *leaf;
1242 struct btrfs_root *tree_root = fs_info->tree_root;
1243 struct btrfs_root *root;
1244 struct btrfs_key key;
1246 uuid_le uuid = NULL_UUID_LE;
1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1250 return ERR_PTR(-ENOMEM);
1252 __setup_root(root, fs_info, objectid);
1253 root->root_key.objectid = objectid;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = 0;
1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1259 ret = PTR_ERR(leaf);
1264 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1265 btrfs_set_header_bytenr(leaf, leaf->start);
1266 btrfs_set_header_generation(leaf, trans->transid);
1267 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1268 btrfs_set_header_owner(leaf, objectid);
1271 write_extent_buffer_fsid(leaf, fs_info->fsid);
1272 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1273 btrfs_mark_buffer_dirty(leaf);
1275 root->commit_root = btrfs_root_node(root);
1276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1278 root->root_item.flags = 0;
1279 root->root_item.byte_limit = 0;
1280 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1281 btrfs_set_root_generation(&root->root_item, trans->transid);
1282 btrfs_set_root_level(&root->root_item, 0);
1283 btrfs_set_root_refs(&root->root_item, 1);
1284 btrfs_set_root_used(&root->root_item, leaf->len);
1285 btrfs_set_root_last_snapshot(&root->root_item, 0);
1286 btrfs_set_root_dirid(&root->root_item, 0);
1287 if (is_fstree(objectid))
1289 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1290 root->root_item.drop_level = 0;
1292 key.objectid = objectid;
1293 key.type = BTRFS_ROOT_ITEM_KEY;
1295 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1299 btrfs_tree_unlock(leaf);
1305 btrfs_tree_unlock(leaf);
1306 free_extent_buffer(root->commit_root);
1307 free_extent_buffer(leaf);
1311 return ERR_PTR(ret);
1314 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1315 struct btrfs_fs_info *fs_info)
1317 struct btrfs_root *root;
1318 struct extent_buffer *leaf;
1320 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1322 return ERR_PTR(-ENOMEM);
1324 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1326 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1327 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1328 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331 * DON'T set REF_COWS for log trees
1333 * log trees do not get reference counted because they go away
1334 * before a real commit is actually done. They do store pointers
1335 * to file data extents, and those reference counts still get
1336 * updated (along with back refs to the log tree).
1339 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1343 return ERR_CAST(leaf);
1346 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1347 btrfs_set_header_bytenr(leaf, leaf->start);
1348 btrfs_set_header_generation(leaf, trans->transid);
1349 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1350 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1353 write_extent_buffer_fsid(root->node, fs_info->fsid);
1354 btrfs_mark_buffer_dirty(root->node);
1355 btrfs_tree_unlock(root->node);
1359 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1360 struct btrfs_fs_info *fs_info)
1362 struct btrfs_root *log_root;
1364 log_root = alloc_log_tree(trans, fs_info);
1365 if (IS_ERR(log_root))
1366 return PTR_ERR(log_root);
1367 WARN_ON(fs_info->log_root_tree);
1368 fs_info->log_root_tree = log_root;
1372 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1373 struct btrfs_root *root)
1375 struct btrfs_fs_info *fs_info = root->fs_info;
1376 struct btrfs_root *log_root;
1377 struct btrfs_inode_item *inode_item;
1379 log_root = alloc_log_tree(trans, fs_info);
1380 if (IS_ERR(log_root))
1381 return PTR_ERR(log_root);
1383 log_root->last_trans = trans->transid;
1384 log_root->root_key.offset = root->root_key.objectid;
1386 inode_item = &log_root->root_item.inode;
1387 btrfs_set_stack_inode_generation(inode_item, 1);
1388 btrfs_set_stack_inode_size(inode_item, 3);
1389 btrfs_set_stack_inode_nlink(inode_item, 1);
1390 btrfs_set_stack_inode_nbytes(inode_item,
1392 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1394 btrfs_set_root_node(&log_root->root_item, log_root->node);
1396 WARN_ON(root->log_root);
1397 root->log_root = log_root;
1398 root->log_transid = 0;
1399 root->log_transid_committed = -1;
1400 root->last_log_commit = 0;
1404 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1405 struct btrfs_key *key)
1407 struct btrfs_root *root;
1408 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1409 struct btrfs_path *path;
1413 path = btrfs_alloc_path();
1415 return ERR_PTR(-ENOMEM);
1417 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1423 __setup_root(root, fs_info, key->objectid);
1425 ret = btrfs_find_root(tree_root, key, path,
1426 &root->root_item, &root->root_key);
1433 generation = btrfs_root_generation(&root->root_item);
1434 root->node = read_tree_block(fs_info,
1435 btrfs_root_bytenr(&root->root_item),
1437 if (IS_ERR(root->node)) {
1438 ret = PTR_ERR(root->node);
1440 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1442 free_extent_buffer(root->node);
1445 root->commit_root = btrfs_root_node(root);
1447 btrfs_free_path(path);
1453 root = ERR_PTR(ret);
1457 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1458 struct btrfs_key *location)
1460 struct btrfs_root *root;
1462 root = btrfs_read_tree_root(tree_root, location);
1466 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1467 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1468 btrfs_check_and_init_root_item(&root->root_item);
1474 int btrfs_init_fs_root(struct btrfs_root *root)
1477 struct btrfs_subvolume_writers *writers;
1479 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1480 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1482 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1487 writers = btrfs_alloc_subvolume_writers();
1488 if (IS_ERR(writers)) {
1489 ret = PTR_ERR(writers);
1492 root->subv_writers = writers;
1494 btrfs_init_free_ino_ctl(root);
1495 spin_lock_init(&root->ino_cache_lock);
1496 init_waitqueue_head(&root->ino_cache_wait);
1498 ret = get_anon_bdev(&root->anon_dev);
1502 mutex_lock(&root->objectid_mutex);
1503 ret = btrfs_find_highest_objectid(root,
1504 &root->highest_objectid);
1506 mutex_unlock(&root->objectid_mutex);
1510 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1512 mutex_unlock(&root->objectid_mutex);
1516 /* the caller is responsible to call free_fs_root */
1520 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1523 struct btrfs_root *root;
1525 spin_lock(&fs_info->fs_roots_radix_lock);
1526 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527 (unsigned long)root_id);
1528 spin_unlock(&fs_info->fs_roots_radix_lock);
1532 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1533 struct btrfs_root *root)
1537 ret = radix_tree_preload(GFP_NOFS);
1541 spin_lock(&fs_info->fs_roots_radix_lock);
1542 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1543 (unsigned long)root->root_key.objectid,
1546 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1547 spin_unlock(&fs_info->fs_roots_radix_lock);
1548 radix_tree_preload_end();
1553 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1554 struct btrfs_key *location,
1557 struct btrfs_root *root;
1558 struct btrfs_path *path;
1559 struct btrfs_key key;
1562 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1563 return fs_info->tree_root;
1564 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1565 return fs_info->extent_root;
1566 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1567 return fs_info->chunk_root;
1568 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1569 return fs_info->dev_root;
1570 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1571 return fs_info->csum_root;
1572 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1573 return fs_info->quota_root ? fs_info->quota_root :
1575 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1576 return fs_info->uuid_root ? fs_info->uuid_root :
1578 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1579 return fs_info->free_space_root ? fs_info->free_space_root :
1582 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1585 return ERR_PTR(-ENOENT);
1589 root = btrfs_read_fs_root(fs_info->tree_root, location);
1593 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1598 ret = btrfs_init_fs_root(root);
1602 path = btrfs_alloc_path();
1607 key.objectid = BTRFS_ORPHAN_OBJECTID;
1608 key.type = BTRFS_ORPHAN_ITEM_KEY;
1609 key.offset = location->objectid;
1611 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1612 btrfs_free_path(path);
1616 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1618 ret = btrfs_insert_fs_root(fs_info, root);
1620 if (ret == -EEXIST) {
1629 return ERR_PTR(ret);
1632 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1634 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1636 struct btrfs_device *device;
1637 struct backing_dev_info *bdi;
1640 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1643 bdi = device->bdev->bd_bdi;
1644 if (bdi_congested(bdi, bdi_bits)) {
1654 * called by the kthread helper functions to finally call the bio end_io
1655 * functions. This is where read checksum verification actually happens
1657 static void end_workqueue_fn(struct btrfs_work *work)
1660 struct btrfs_end_io_wq *end_io_wq;
1662 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1663 bio = end_io_wq->bio;
1665 bio->bi_status = end_io_wq->status;
1666 bio->bi_private = end_io_wq->private;
1667 bio->bi_end_io = end_io_wq->end_io;
1668 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1672 static int cleaner_kthread(void *arg)
1674 struct btrfs_root *root = arg;
1675 struct btrfs_fs_info *fs_info = root->fs_info;
1677 struct btrfs_trans_handle *trans;
1682 /* Make the cleaner go to sleep early. */
1683 if (btrfs_need_cleaner_sleep(fs_info))
1687 * Do not do anything if we might cause open_ctree() to block
1688 * before we have finished mounting the filesystem.
1690 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1693 if (!mutex_trylock(&fs_info->cleaner_mutex))
1697 * Avoid the problem that we change the status of the fs
1698 * during the above check and trylock.
1700 if (btrfs_need_cleaner_sleep(fs_info)) {
1701 mutex_unlock(&fs_info->cleaner_mutex);
1705 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1706 btrfs_run_delayed_iputs(fs_info);
1707 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1709 again = btrfs_clean_one_deleted_snapshot(root);
1710 mutex_unlock(&fs_info->cleaner_mutex);
1713 * The defragger has dealt with the R/O remount and umount,
1714 * needn't do anything special here.
1716 btrfs_run_defrag_inodes(fs_info);
1719 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1720 * with relocation (btrfs_relocate_chunk) and relocation
1721 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1722 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1723 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1724 * unused block groups.
1726 btrfs_delete_unused_bgs(fs_info);
1729 set_current_state(TASK_INTERRUPTIBLE);
1730 if (!kthread_should_stop())
1732 __set_current_state(TASK_RUNNING);
1734 } while (!kthread_should_stop());
1737 * Transaction kthread is stopped before us and wakes us up.
1738 * However we might have started a new transaction and COWed some
1739 * tree blocks when deleting unused block groups for example. So
1740 * make sure we commit the transaction we started to have a clean
1741 * shutdown when evicting the btree inode - if it has dirty pages
1742 * when we do the final iput() on it, eviction will trigger a
1743 * writeback for it which will fail with null pointer dereferences
1744 * since work queues and other resources were already released and
1745 * destroyed by the time the iput/eviction/writeback is made.
1747 trans = btrfs_attach_transaction(root);
1748 if (IS_ERR(trans)) {
1749 if (PTR_ERR(trans) != -ENOENT)
1751 "cleaner transaction attach returned %ld",
1756 ret = btrfs_commit_transaction(trans);
1759 "cleaner open transaction commit returned %d",
1766 static int transaction_kthread(void *arg)
1768 struct btrfs_root *root = arg;
1769 struct btrfs_fs_info *fs_info = root->fs_info;
1770 struct btrfs_trans_handle *trans;
1771 struct btrfs_transaction *cur;
1774 unsigned long delay;
1778 cannot_commit = false;
1779 delay = HZ * fs_info->commit_interval;
1780 mutex_lock(&fs_info->transaction_kthread_mutex);
1782 spin_lock(&fs_info->trans_lock);
1783 cur = fs_info->running_transaction;
1785 spin_unlock(&fs_info->trans_lock);
1789 now = get_seconds();
1790 if (cur->state < TRANS_STATE_BLOCKED &&
1791 (now < cur->start_time ||
1792 now - cur->start_time < fs_info->commit_interval)) {
1793 spin_unlock(&fs_info->trans_lock);
1797 transid = cur->transid;
1798 spin_unlock(&fs_info->trans_lock);
1800 /* If the file system is aborted, this will always fail. */
1801 trans = btrfs_attach_transaction(root);
1802 if (IS_ERR(trans)) {
1803 if (PTR_ERR(trans) != -ENOENT)
1804 cannot_commit = true;
1807 if (transid == trans->transid) {
1808 btrfs_commit_transaction(trans);
1810 btrfs_end_transaction(trans);
1813 wake_up_process(fs_info->cleaner_kthread);
1814 mutex_unlock(&fs_info->transaction_kthread_mutex);
1816 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817 &fs_info->fs_state)))
1818 btrfs_cleanup_transaction(fs_info);
1819 set_current_state(TASK_INTERRUPTIBLE);
1820 if (!kthread_should_stop() &&
1821 (!btrfs_transaction_blocked(fs_info) ||
1823 schedule_timeout(delay);
1824 __set_current_state(TASK_RUNNING);
1825 } while (!kthread_should_stop());
1830 * this will find the highest generation in the array of
1831 * root backups. The index of the highest array is returned,
1832 * or -1 if we can't find anything.
1834 * We check to make sure the array is valid by comparing the
1835 * generation of the latest root in the array with the generation
1836 * in the super block. If they don't match we pitch it.
1838 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1841 int newest_index = -1;
1842 struct btrfs_root_backup *root_backup;
1845 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1846 root_backup = info->super_copy->super_roots + i;
1847 cur = btrfs_backup_tree_root_gen(root_backup);
1848 if (cur == newest_gen)
1852 /* check to see if we actually wrapped around */
1853 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1854 root_backup = info->super_copy->super_roots;
1855 cur = btrfs_backup_tree_root_gen(root_backup);
1856 if (cur == newest_gen)
1859 return newest_index;
1864 * find the oldest backup so we know where to store new entries
1865 * in the backup array. This will set the backup_root_index
1866 * field in the fs_info struct
1868 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1871 int newest_index = -1;
1873 newest_index = find_newest_super_backup(info, newest_gen);
1874 /* if there was garbage in there, just move along */
1875 if (newest_index == -1) {
1876 info->backup_root_index = 0;
1878 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1883 * copy all the root pointers into the super backup array.
1884 * this will bump the backup pointer by one when it is
1887 static void backup_super_roots(struct btrfs_fs_info *info)
1890 struct btrfs_root_backup *root_backup;
1893 next_backup = info->backup_root_index;
1894 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1895 BTRFS_NUM_BACKUP_ROOTS;
1898 * just overwrite the last backup if we're at the same generation
1899 * this happens only at umount
1901 root_backup = info->super_for_commit->super_roots + last_backup;
1902 if (btrfs_backup_tree_root_gen(root_backup) ==
1903 btrfs_header_generation(info->tree_root->node))
1904 next_backup = last_backup;
1906 root_backup = info->super_for_commit->super_roots + next_backup;
1909 * make sure all of our padding and empty slots get zero filled
1910 * regardless of which ones we use today
1912 memset(root_backup, 0, sizeof(*root_backup));
1914 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1916 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1917 btrfs_set_backup_tree_root_gen(root_backup,
1918 btrfs_header_generation(info->tree_root->node));
1920 btrfs_set_backup_tree_root_level(root_backup,
1921 btrfs_header_level(info->tree_root->node));
1923 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1924 btrfs_set_backup_chunk_root_gen(root_backup,
1925 btrfs_header_generation(info->chunk_root->node));
1926 btrfs_set_backup_chunk_root_level(root_backup,
1927 btrfs_header_level(info->chunk_root->node));
1929 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1930 btrfs_set_backup_extent_root_gen(root_backup,
1931 btrfs_header_generation(info->extent_root->node));
1932 btrfs_set_backup_extent_root_level(root_backup,
1933 btrfs_header_level(info->extent_root->node));
1936 * we might commit during log recovery, which happens before we set
1937 * the fs_root. Make sure it is valid before we fill it in.
1939 if (info->fs_root && info->fs_root->node) {
1940 btrfs_set_backup_fs_root(root_backup,
1941 info->fs_root->node->start);
1942 btrfs_set_backup_fs_root_gen(root_backup,
1943 btrfs_header_generation(info->fs_root->node));
1944 btrfs_set_backup_fs_root_level(root_backup,
1945 btrfs_header_level(info->fs_root->node));
1948 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1949 btrfs_set_backup_dev_root_gen(root_backup,
1950 btrfs_header_generation(info->dev_root->node));
1951 btrfs_set_backup_dev_root_level(root_backup,
1952 btrfs_header_level(info->dev_root->node));
1954 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1955 btrfs_set_backup_csum_root_gen(root_backup,
1956 btrfs_header_generation(info->csum_root->node));
1957 btrfs_set_backup_csum_root_level(root_backup,
1958 btrfs_header_level(info->csum_root->node));
1960 btrfs_set_backup_total_bytes(root_backup,
1961 btrfs_super_total_bytes(info->super_copy));
1962 btrfs_set_backup_bytes_used(root_backup,
1963 btrfs_super_bytes_used(info->super_copy));
1964 btrfs_set_backup_num_devices(root_backup,
1965 btrfs_super_num_devices(info->super_copy));
1968 * if we don't copy this out to the super_copy, it won't get remembered
1969 * for the next commit
1971 memcpy(&info->super_copy->super_roots,
1972 &info->super_for_commit->super_roots,
1973 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1977 * this copies info out of the root backup array and back into
1978 * the in-memory super block. It is meant to help iterate through
1979 * the array, so you send it the number of backups you've already
1980 * tried and the last backup index you used.
1982 * this returns -1 when it has tried all the backups
1984 static noinline int next_root_backup(struct btrfs_fs_info *info,
1985 struct btrfs_super_block *super,
1986 int *num_backups_tried, int *backup_index)
1988 struct btrfs_root_backup *root_backup;
1989 int newest = *backup_index;
1991 if (*num_backups_tried == 0) {
1992 u64 gen = btrfs_super_generation(super);
1994 newest = find_newest_super_backup(info, gen);
1998 *backup_index = newest;
1999 *num_backups_tried = 1;
2000 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2001 /* we've tried all the backups, all done */
2004 /* jump to the next oldest backup */
2005 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2006 BTRFS_NUM_BACKUP_ROOTS;
2007 *backup_index = newest;
2008 *num_backups_tried += 1;
2010 root_backup = super->super_roots + newest;
2012 btrfs_set_super_generation(super,
2013 btrfs_backup_tree_root_gen(root_backup));
2014 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2015 btrfs_set_super_root_level(super,
2016 btrfs_backup_tree_root_level(root_backup));
2017 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2020 * fixme: the total bytes and num_devices need to match or we should
2023 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2024 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2028 /* helper to cleanup workers */
2029 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2031 btrfs_destroy_workqueue(fs_info->fixup_workers);
2032 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2033 btrfs_destroy_workqueue(fs_info->workers);
2034 btrfs_destroy_workqueue(fs_info->endio_workers);
2035 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2036 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2037 btrfs_destroy_workqueue(fs_info->rmw_workers);
2038 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2039 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2040 btrfs_destroy_workqueue(fs_info->submit_workers);
2041 btrfs_destroy_workqueue(fs_info->delayed_workers);
2042 btrfs_destroy_workqueue(fs_info->caching_workers);
2043 btrfs_destroy_workqueue(fs_info->readahead_workers);
2044 btrfs_destroy_workqueue(fs_info->flush_workers);
2045 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2046 btrfs_destroy_workqueue(fs_info->extent_workers);
2048 * Now that all other work queues are destroyed, we can safely destroy
2049 * the queues used for metadata I/O, since tasks from those other work
2050 * queues can do metadata I/O operations.
2052 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2053 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2056 static void free_root_extent_buffers(struct btrfs_root *root)
2059 free_extent_buffer(root->node);
2060 free_extent_buffer(root->commit_root);
2062 root->commit_root = NULL;
2066 /* helper to cleanup tree roots */
2067 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2069 free_root_extent_buffers(info->tree_root);
2071 free_root_extent_buffers(info->dev_root);
2072 free_root_extent_buffers(info->extent_root);
2073 free_root_extent_buffers(info->csum_root);
2074 free_root_extent_buffers(info->quota_root);
2075 free_root_extent_buffers(info->uuid_root);
2077 free_root_extent_buffers(info->chunk_root);
2078 free_root_extent_buffers(info->free_space_root);
2081 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2084 struct btrfs_root *gang[8];
2087 while (!list_empty(&fs_info->dead_roots)) {
2088 gang[0] = list_entry(fs_info->dead_roots.next,
2089 struct btrfs_root, root_list);
2090 list_del(&gang[0]->root_list);
2092 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2093 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2095 free_extent_buffer(gang[0]->node);
2096 free_extent_buffer(gang[0]->commit_root);
2097 btrfs_put_fs_root(gang[0]);
2102 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2107 for (i = 0; i < ret; i++)
2108 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2111 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2112 btrfs_free_log_root_tree(NULL, fs_info);
2113 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2117 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2119 mutex_init(&fs_info->scrub_lock);
2120 atomic_set(&fs_info->scrubs_running, 0);
2121 atomic_set(&fs_info->scrub_pause_req, 0);
2122 atomic_set(&fs_info->scrubs_paused, 0);
2123 atomic_set(&fs_info->scrub_cancel_req, 0);
2124 init_waitqueue_head(&fs_info->scrub_pause_wait);
2125 fs_info->scrub_workers_refcnt = 0;
2128 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2130 spin_lock_init(&fs_info->balance_lock);
2131 mutex_init(&fs_info->balance_mutex);
2132 atomic_set(&fs_info->balance_running, 0);
2133 atomic_set(&fs_info->balance_pause_req, 0);
2134 atomic_set(&fs_info->balance_cancel_req, 0);
2135 fs_info->balance_ctl = NULL;
2136 init_waitqueue_head(&fs_info->balance_wait_q);
2139 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2141 struct inode *inode = fs_info->btree_inode;
2143 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2144 set_nlink(inode, 1);
2146 * we set the i_size on the btree inode to the max possible int.
2147 * the real end of the address space is determined by all of
2148 * the devices in the system
2150 inode->i_size = OFFSET_MAX;
2151 inode->i_mapping->a_ops = &btree_aops;
2153 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2154 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2155 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2156 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2158 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2160 BTRFS_I(inode)->root = fs_info->tree_root;
2161 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2162 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2163 btrfs_insert_inode_hash(inode);
2166 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2168 fs_info->dev_replace.lock_owner = 0;
2169 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2170 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2171 rwlock_init(&fs_info->dev_replace.lock);
2172 atomic_set(&fs_info->dev_replace.read_locks, 0);
2173 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2174 init_waitqueue_head(&fs_info->replace_wait);
2175 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2178 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2180 spin_lock_init(&fs_info->qgroup_lock);
2181 mutex_init(&fs_info->qgroup_ioctl_lock);
2182 fs_info->qgroup_tree = RB_ROOT;
2183 fs_info->qgroup_op_tree = RB_ROOT;
2184 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2185 fs_info->qgroup_seq = 1;
2186 fs_info->qgroup_ulist = NULL;
2187 fs_info->qgroup_rescan_running = false;
2188 mutex_init(&fs_info->qgroup_rescan_lock);
2191 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2192 struct btrfs_fs_devices *fs_devices)
2194 int max_active = fs_info->thread_pool_size;
2195 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2198 btrfs_alloc_workqueue(fs_info, "worker",
2199 flags | WQ_HIGHPRI, max_active, 16);
2201 fs_info->delalloc_workers =
2202 btrfs_alloc_workqueue(fs_info, "delalloc",
2203 flags, max_active, 2);
2205 fs_info->flush_workers =
2206 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2207 flags, max_active, 0);
2209 fs_info->caching_workers =
2210 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2213 * a higher idle thresh on the submit workers makes it much more
2214 * likely that bios will be send down in a sane order to the
2217 fs_info->submit_workers =
2218 btrfs_alloc_workqueue(fs_info, "submit", flags,
2219 min_t(u64, fs_devices->num_devices,
2222 fs_info->fixup_workers =
2223 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2226 * endios are largely parallel and should have a very
2229 fs_info->endio_workers =
2230 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2231 fs_info->endio_meta_workers =
2232 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2234 fs_info->endio_meta_write_workers =
2235 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2237 fs_info->endio_raid56_workers =
2238 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2240 fs_info->endio_repair_workers =
2241 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2242 fs_info->rmw_workers =
2243 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2244 fs_info->endio_write_workers =
2245 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2247 fs_info->endio_freespace_worker =
2248 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2250 fs_info->delayed_workers =
2251 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2253 fs_info->readahead_workers =
2254 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2256 fs_info->qgroup_rescan_workers =
2257 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2258 fs_info->extent_workers =
2259 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2260 min_t(u64, fs_devices->num_devices,
2263 if (!(fs_info->workers && fs_info->delalloc_workers &&
2264 fs_info->submit_workers && fs_info->flush_workers &&
2265 fs_info->endio_workers && fs_info->endio_meta_workers &&
2266 fs_info->endio_meta_write_workers &&
2267 fs_info->endio_repair_workers &&
2268 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2269 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2270 fs_info->caching_workers && fs_info->readahead_workers &&
2271 fs_info->fixup_workers && fs_info->delayed_workers &&
2272 fs_info->extent_workers &&
2273 fs_info->qgroup_rescan_workers)) {
2280 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281 struct btrfs_fs_devices *fs_devices)
2284 struct btrfs_root *log_tree_root;
2285 struct btrfs_super_block *disk_super = fs_info->super_copy;
2286 u64 bytenr = btrfs_super_log_root(disk_super);
2288 if (fs_devices->rw_devices == 0) {
2289 btrfs_warn(fs_info, "log replay required on RO media");
2293 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2297 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2299 log_tree_root->node = read_tree_block(fs_info, bytenr,
2300 fs_info->generation + 1);
2301 if (IS_ERR(log_tree_root->node)) {
2302 btrfs_warn(fs_info, "failed to read log tree");
2303 ret = PTR_ERR(log_tree_root->node);
2304 kfree(log_tree_root);
2306 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2307 btrfs_err(fs_info, "failed to read log tree");
2308 free_extent_buffer(log_tree_root->node);
2309 kfree(log_tree_root);
2312 /* returns with log_tree_root freed on success */
2313 ret = btrfs_recover_log_trees(log_tree_root);
2315 btrfs_handle_fs_error(fs_info, ret,
2316 "Failed to recover log tree");
2317 free_extent_buffer(log_tree_root->node);
2318 kfree(log_tree_root);
2322 if (sb_rdonly(fs_info->sb)) {
2323 ret = btrfs_commit_super(fs_info);
2331 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2333 struct btrfs_root *tree_root = fs_info->tree_root;
2334 struct btrfs_root *root;
2335 struct btrfs_key location;
2338 BUG_ON(!fs_info->tree_root);
2340 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2341 location.type = BTRFS_ROOT_ITEM_KEY;
2342 location.offset = 0;
2344 root = btrfs_read_tree_root(tree_root, &location);
2346 return PTR_ERR(root);
2347 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348 fs_info->extent_root = root;
2350 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2351 root = btrfs_read_tree_root(tree_root, &location);
2353 return PTR_ERR(root);
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 fs_info->dev_root = root;
2356 btrfs_init_devices_late(fs_info);
2358 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2359 root = btrfs_read_tree_root(tree_root, &location);
2361 return PTR_ERR(root);
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->csum_root = root;
2365 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2366 root = btrfs_read_tree_root(tree_root, &location);
2367 if (!IS_ERR(root)) {
2368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2370 fs_info->quota_root = root;
2373 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2374 root = btrfs_read_tree_root(tree_root, &location);
2376 ret = PTR_ERR(root);
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->uuid_root = root;
2384 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2385 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2386 root = btrfs_read_tree_root(tree_root, &location);
2388 return PTR_ERR(root);
2389 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2390 fs_info->free_space_root = root;
2396 int open_ctree(struct super_block *sb,
2397 struct btrfs_fs_devices *fs_devices,
2405 struct btrfs_key location;
2406 struct buffer_head *bh;
2407 struct btrfs_super_block *disk_super;
2408 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2409 struct btrfs_root *tree_root;
2410 struct btrfs_root *chunk_root;
2413 int num_backups_tried = 0;
2414 int backup_index = 0;
2416 int clear_free_space_tree = 0;
2418 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2419 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2420 if (!tree_root || !chunk_root) {
2425 ret = init_srcu_struct(&fs_info->subvol_srcu);
2431 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2436 fs_info->dirty_metadata_batch = PAGE_SIZE *
2437 (1 + ilog2(nr_cpu_ids));
2439 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2442 goto fail_dirty_metadata_bytes;
2445 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2448 goto fail_delalloc_bytes;
2451 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2452 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2453 INIT_LIST_HEAD(&fs_info->trans_list);
2454 INIT_LIST_HEAD(&fs_info->dead_roots);
2455 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2456 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2457 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2458 spin_lock_init(&fs_info->delalloc_root_lock);
2459 spin_lock_init(&fs_info->trans_lock);
2460 spin_lock_init(&fs_info->fs_roots_radix_lock);
2461 spin_lock_init(&fs_info->delayed_iput_lock);
2462 spin_lock_init(&fs_info->defrag_inodes_lock);
2463 spin_lock_init(&fs_info->tree_mod_seq_lock);
2464 spin_lock_init(&fs_info->super_lock);
2465 spin_lock_init(&fs_info->qgroup_op_lock);
2466 spin_lock_init(&fs_info->buffer_lock);
2467 spin_lock_init(&fs_info->unused_bgs_lock);
2468 rwlock_init(&fs_info->tree_mod_log_lock);
2469 mutex_init(&fs_info->unused_bg_unpin_mutex);
2470 mutex_init(&fs_info->delete_unused_bgs_mutex);
2471 mutex_init(&fs_info->reloc_mutex);
2472 mutex_init(&fs_info->delalloc_root_mutex);
2473 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2474 seqlock_init(&fs_info->profiles_lock);
2476 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2477 INIT_LIST_HEAD(&fs_info->space_info);
2478 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2479 INIT_LIST_HEAD(&fs_info->unused_bgs);
2480 btrfs_mapping_init(&fs_info->mapping_tree);
2481 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2482 BTRFS_BLOCK_RSV_GLOBAL);
2483 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2484 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2485 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2486 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2487 BTRFS_BLOCK_RSV_DELOPS);
2488 atomic_set(&fs_info->async_delalloc_pages, 0);
2489 atomic_set(&fs_info->defrag_running, 0);
2490 atomic_set(&fs_info->qgroup_op_seq, 0);
2491 atomic_set(&fs_info->reada_works_cnt, 0);
2492 atomic64_set(&fs_info->tree_mod_seq, 0);
2494 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2495 fs_info->metadata_ratio = 0;
2496 fs_info->defrag_inodes = RB_ROOT;
2497 atomic64_set(&fs_info->free_chunk_space, 0);
2498 fs_info->tree_mod_log = RB_ROOT;
2499 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2500 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2501 /* readahead state */
2502 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2503 spin_lock_init(&fs_info->reada_lock);
2504 btrfs_init_ref_verify(fs_info);
2506 fs_info->thread_pool_size = min_t(unsigned long,
2507 num_online_cpus() + 2, 8);
2509 INIT_LIST_HEAD(&fs_info->ordered_roots);
2510 spin_lock_init(&fs_info->ordered_root_lock);
2512 fs_info->btree_inode = new_inode(sb);
2513 if (!fs_info->btree_inode) {
2515 goto fail_bio_counter;
2517 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2519 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2521 if (!fs_info->delayed_root) {
2525 btrfs_init_delayed_root(fs_info->delayed_root);
2527 btrfs_init_scrub(fs_info);
2528 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2529 fs_info->check_integrity_print_mask = 0;
2531 btrfs_init_balance(fs_info);
2532 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2534 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2535 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2537 btrfs_init_btree_inode(fs_info);
2539 spin_lock_init(&fs_info->block_group_cache_lock);
2540 fs_info->block_group_cache_tree = RB_ROOT;
2541 fs_info->first_logical_byte = (u64)-1;
2543 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2544 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2545 fs_info->pinned_extents = &fs_info->freed_extents[0];
2546 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2548 mutex_init(&fs_info->ordered_operations_mutex);
2549 mutex_init(&fs_info->tree_log_mutex);
2550 mutex_init(&fs_info->chunk_mutex);
2551 mutex_init(&fs_info->transaction_kthread_mutex);
2552 mutex_init(&fs_info->cleaner_mutex);
2553 mutex_init(&fs_info->volume_mutex);
2554 mutex_init(&fs_info->ro_block_group_mutex);
2555 init_rwsem(&fs_info->commit_root_sem);
2556 init_rwsem(&fs_info->cleanup_work_sem);
2557 init_rwsem(&fs_info->subvol_sem);
2558 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2560 btrfs_init_dev_replace_locks(fs_info);
2561 btrfs_init_qgroup(fs_info);
2563 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2564 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2566 init_waitqueue_head(&fs_info->transaction_throttle);
2567 init_waitqueue_head(&fs_info->transaction_wait);
2568 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2569 init_waitqueue_head(&fs_info->async_submit_wait);
2571 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2573 /* Usable values until the real ones are cached from the superblock */
2574 fs_info->nodesize = 4096;
2575 fs_info->sectorsize = 4096;
2576 fs_info->stripesize = 4096;
2578 ret = btrfs_alloc_stripe_hash_table(fs_info);
2584 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2586 invalidate_bdev(fs_devices->latest_bdev);
2589 * Read super block and check the signature bytes only
2591 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2598 * We want to check superblock checksum, the type is stored inside.
2599 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2601 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2602 btrfs_err(fs_info, "superblock checksum mismatch");
2609 * super_copy is zeroed at allocation time and we never touch the
2610 * following bytes up to INFO_SIZE, the checksum is calculated from
2611 * the whole block of INFO_SIZE
2613 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2614 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2615 sizeof(*fs_info->super_for_commit));
2618 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2620 ret = btrfs_check_super_valid(fs_info);
2622 btrfs_err(fs_info, "superblock contains fatal errors");
2627 disk_super = fs_info->super_copy;
2628 if (!btrfs_super_root(disk_super))
2631 /* check FS state, whether FS is broken. */
2632 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2633 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2636 * run through our array of backup supers and setup
2637 * our ring pointer to the oldest one
2639 generation = btrfs_super_generation(disk_super);
2640 find_oldest_super_backup(fs_info, generation);
2643 * In the long term, we'll store the compression type in the super
2644 * block, and it'll be used for per file compression control.
2646 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2648 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2654 features = btrfs_super_incompat_flags(disk_super) &
2655 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2658 "cannot mount because of unsupported optional features (%llx)",
2664 features = btrfs_super_incompat_flags(disk_super);
2665 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2666 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2667 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2668 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2669 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2671 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2672 btrfs_info(fs_info, "has skinny extents");
2675 * flag our filesystem as having big metadata blocks if
2676 * they are bigger than the page size
2678 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2679 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2681 "flagging fs with big metadata feature");
2682 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2685 nodesize = btrfs_super_nodesize(disk_super);
2686 sectorsize = btrfs_super_sectorsize(disk_super);
2687 stripesize = sectorsize;
2688 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2689 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2691 /* Cache block sizes */
2692 fs_info->nodesize = nodesize;
2693 fs_info->sectorsize = sectorsize;
2694 fs_info->stripesize = stripesize;
2697 * mixed block groups end up with duplicate but slightly offset
2698 * extent buffers for the same range. It leads to corruptions
2700 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2701 (sectorsize != nodesize)) {
2703 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2704 nodesize, sectorsize);
2709 * Needn't use the lock because there is no other task which will
2712 btrfs_set_super_incompat_flags(disk_super, features);
2714 features = btrfs_super_compat_ro_flags(disk_super) &
2715 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2716 if (!sb_rdonly(sb) && features) {
2718 "cannot mount read-write because of unsupported optional features (%llx)",
2724 max_active = fs_info->thread_pool_size;
2726 ret = btrfs_init_workqueues(fs_info, fs_devices);
2729 goto fail_sb_buffer;
2732 sb->s_bdi->congested_fn = btrfs_congested_fn;
2733 sb->s_bdi->congested_data = fs_info;
2734 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2735 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2736 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2737 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2739 sb->s_blocksize = sectorsize;
2740 sb->s_blocksize_bits = blksize_bits(sectorsize);
2741 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2743 mutex_lock(&fs_info->chunk_mutex);
2744 ret = btrfs_read_sys_array(fs_info);
2745 mutex_unlock(&fs_info->chunk_mutex);
2747 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2748 goto fail_sb_buffer;
2751 generation = btrfs_super_chunk_root_generation(disk_super);
2753 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2755 chunk_root->node = read_tree_block(fs_info,
2756 btrfs_super_chunk_root(disk_super),
2758 if (IS_ERR(chunk_root->node) ||
2759 !extent_buffer_uptodate(chunk_root->node)) {
2760 btrfs_err(fs_info, "failed to read chunk root");
2761 if (!IS_ERR(chunk_root->node))
2762 free_extent_buffer(chunk_root->node);
2763 chunk_root->node = NULL;
2764 goto fail_tree_roots;
2766 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2767 chunk_root->commit_root = btrfs_root_node(chunk_root);
2769 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2770 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2772 ret = btrfs_read_chunk_tree(fs_info);
2774 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2775 goto fail_tree_roots;
2779 * keep the device that is marked to be the target device for the
2780 * dev_replace procedure
2782 btrfs_close_extra_devices(fs_devices, 0);
2784 if (!fs_devices->latest_bdev) {
2785 btrfs_err(fs_info, "failed to read devices");
2786 goto fail_tree_roots;
2790 generation = btrfs_super_generation(disk_super);
2792 tree_root->node = read_tree_block(fs_info,
2793 btrfs_super_root(disk_super),
2795 if (IS_ERR(tree_root->node) ||
2796 !extent_buffer_uptodate(tree_root->node)) {
2797 btrfs_warn(fs_info, "failed to read tree root");
2798 if (!IS_ERR(tree_root->node))
2799 free_extent_buffer(tree_root->node);
2800 tree_root->node = NULL;
2801 goto recovery_tree_root;
2804 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2805 tree_root->commit_root = btrfs_root_node(tree_root);
2806 btrfs_set_root_refs(&tree_root->root_item, 1);
2808 mutex_lock(&tree_root->objectid_mutex);
2809 ret = btrfs_find_highest_objectid(tree_root,
2810 &tree_root->highest_objectid);
2812 mutex_unlock(&tree_root->objectid_mutex);
2813 goto recovery_tree_root;
2816 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2818 mutex_unlock(&tree_root->objectid_mutex);
2820 ret = btrfs_read_roots(fs_info);
2822 goto recovery_tree_root;
2824 fs_info->generation = generation;
2825 fs_info->last_trans_committed = generation;
2827 ret = btrfs_recover_balance(fs_info);
2829 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2830 goto fail_block_groups;
2833 ret = btrfs_init_dev_stats(fs_info);
2835 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2836 goto fail_block_groups;
2839 ret = btrfs_init_dev_replace(fs_info);
2841 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2842 goto fail_block_groups;
2845 btrfs_close_extra_devices(fs_devices, 1);
2847 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2849 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2851 goto fail_block_groups;
2854 ret = btrfs_sysfs_add_device(fs_devices);
2856 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2858 goto fail_fsdev_sysfs;
2861 ret = btrfs_sysfs_add_mounted(fs_info);
2863 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2864 goto fail_fsdev_sysfs;
2867 ret = btrfs_init_space_info(fs_info);
2869 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2873 ret = btrfs_read_block_groups(fs_info);
2875 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2879 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2881 "writeable mount is not allowed due to too many missing devices");
2885 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2887 if (IS_ERR(fs_info->cleaner_kthread))
2890 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2892 "btrfs-transaction");
2893 if (IS_ERR(fs_info->transaction_kthread))
2896 if (!btrfs_test_opt(fs_info, NOSSD) &&
2897 !fs_info->fs_devices->rotating) {
2898 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2902 * Mount does not set all options immediately, we can do it now and do
2903 * not have to wait for transaction commit
2905 btrfs_apply_pending_changes(fs_info);
2907 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2908 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2909 ret = btrfsic_mount(fs_info, fs_devices,
2910 btrfs_test_opt(fs_info,
2911 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2913 fs_info->check_integrity_print_mask);
2916 "failed to initialize integrity check module: %d",
2920 ret = btrfs_read_qgroup_config(fs_info);
2922 goto fail_trans_kthread;
2924 if (btrfs_build_ref_tree(fs_info))
2925 btrfs_err(fs_info, "couldn't build ref tree");
2927 /* do not make disk changes in broken FS or nologreplay is given */
2928 if (btrfs_super_log_root(disk_super) != 0 &&
2929 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2930 ret = btrfs_replay_log(fs_info, fs_devices);
2937 ret = btrfs_find_orphan_roots(fs_info);
2941 if (!sb_rdonly(sb)) {
2942 ret = btrfs_cleanup_fs_roots(fs_info);
2946 mutex_lock(&fs_info->cleaner_mutex);
2947 ret = btrfs_recover_relocation(tree_root);
2948 mutex_unlock(&fs_info->cleaner_mutex);
2950 btrfs_warn(fs_info, "failed to recover relocation: %d",
2957 location.objectid = BTRFS_FS_TREE_OBJECTID;
2958 location.type = BTRFS_ROOT_ITEM_KEY;
2959 location.offset = 0;
2961 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2962 if (IS_ERR(fs_info->fs_root)) {
2963 err = PTR_ERR(fs_info->fs_root);
2970 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2971 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2972 clear_free_space_tree = 1;
2973 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2974 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2975 btrfs_warn(fs_info, "free space tree is invalid");
2976 clear_free_space_tree = 1;
2979 if (clear_free_space_tree) {
2980 btrfs_info(fs_info, "clearing free space tree");
2981 ret = btrfs_clear_free_space_tree(fs_info);
2984 "failed to clear free space tree: %d", ret);
2985 close_ctree(fs_info);
2990 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2991 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2992 btrfs_info(fs_info, "creating free space tree");
2993 ret = btrfs_create_free_space_tree(fs_info);
2996 "failed to create free space tree: %d", ret);
2997 close_ctree(fs_info);
3002 down_read(&fs_info->cleanup_work_sem);
3003 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3004 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3005 up_read(&fs_info->cleanup_work_sem);
3006 close_ctree(fs_info);
3009 up_read(&fs_info->cleanup_work_sem);
3011 ret = btrfs_resume_balance_async(fs_info);
3013 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3014 close_ctree(fs_info);
3018 ret = btrfs_resume_dev_replace_async(fs_info);
3020 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3021 close_ctree(fs_info);
3025 btrfs_qgroup_rescan_resume(fs_info);
3027 if (!fs_info->uuid_root) {
3028 btrfs_info(fs_info, "creating UUID tree");
3029 ret = btrfs_create_uuid_tree(fs_info);
3032 "failed to create the UUID tree: %d", ret);
3033 close_ctree(fs_info);
3036 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3037 fs_info->generation !=
3038 btrfs_super_uuid_tree_generation(disk_super)) {
3039 btrfs_info(fs_info, "checking UUID tree");
3040 ret = btrfs_check_uuid_tree(fs_info);
3043 "failed to check the UUID tree: %d", ret);
3044 close_ctree(fs_info);
3048 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3050 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3053 * backuproot only affect mount behavior, and if open_ctree succeeded,
3054 * no need to keep the flag
3056 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3061 btrfs_free_qgroup_config(fs_info);
3063 kthread_stop(fs_info->transaction_kthread);
3064 btrfs_cleanup_transaction(fs_info);
3065 btrfs_free_fs_roots(fs_info);
3067 kthread_stop(fs_info->cleaner_kthread);
3070 * make sure we're done with the btree inode before we stop our
3073 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3076 btrfs_sysfs_remove_mounted(fs_info);
3079 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3082 btrfs_put_block_group_cache(fs_info);
3085 free_root_pointers(fs_info, 1);
3086 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3089 btrfs_stop_all_workers(fs_info);
3090 btrfs_free_block_groups(fs_info);
3093 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3095 iput(fs_info->btree_inode);
3097 percpu_counter_destroy(&fs_info->bio_counter);
3098 fail_delalloc_bytes:
3099 percpu_counter_destroy(&fs_info->delalloc_bytes);
3100 fail_dirty_metadata_bytes:
3101 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3103 cleanup_srcu_struct(&fs_info->subvol_srcu);
3105 btrfs_free_stripe_hash_table(fs_info);
3106 btrfs_close_devices(fs_info->fs_devices);
3110 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3111 goto fail_tree_roots;
3113 free_root_pointers(fs_info, 0);
3115 /* don't use the log in recovery mode, it won't be valid */
3116 btrfs_set_super_log_root(disk_super, 0);
3118 /* we can't trust the free space cache either */
3119 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3121 ret = next_root_backup(fs_info, fs_info->super_copy,
3122 &num_backups_tried, &backup_index);
3124 goto fail_block_groups;
3125 goto retry_root_backup;
3128 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3131 set_buffer_uptodate(bh);
3133 struct btrfs_device *device = (struct btrfs_device *)
3136 btrfs_warn_rl_in_rcu(device->fs_info,
3137 "lost page write due to IO error on %s",
3138 rcu_str_deref(device->name));
3139 /* note, we don't set_buffer_write_io_error because we have
3140 * our own ways of dealing with the IO errors
3142 clear_buffer_uptodate(bh);
3143 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3149 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3150 struct buffer_head **bh_ret)
3152 struct buffer_head *bh;
3153 struct btrfs_super_block *super;
3156 bytenr = btrfs_sb_offset(copy_num);
3157 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3160 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3162 * If we fail to read from the underlying devices, as of now
3163 * the best option we have is to mark it EIO.
3168 super = (struct btrfs_super_block *)bh->b_data;
3169 if (btrfs_super_bytenr(super) != bytenr ||
3170 btrfs_super_magic(super) != BTRFS_MAGIC) {
3180 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3182 struct buffer_head *bh;
3183 struct buffer_head *latest = NULL;
3184 struct btrfs_super_block *super;
3189 /* we would like to check all the supers, but that would make
3190 * a btrfs mount succeed after a mkfs from a different FS.
3191 * So, we need to add a special mount option to scan for
3192 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3194 for (i = 0; i < 1; i++) {
3195 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3199 super = (struct btrfs_super_block *)bh->b_data;
3201 if (!latest || btrfs_super_generation(super) > transid) {
3204 transid = btrfs_super_generation(super);
3211 return ERR_PTR(ret);
3217 * Write superblock @sb to the @device. Do not wait for completion, all the
3218 * buffer heads we write are pinned.
3220 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3221 * the expected device size at commit time. Note that max_mirrors must be
3222 * same for write and wait phases.
3224 * Return number of errors when buffer head is not found or submission fails.
3226 static int write_dev_supers(struct btrfs_device *device,
3227 struct btrfs_super_block *sb, int max_mirrors)
3229 struct buffer_head *bh;
3237 if (max_mirrors == 0)
3238 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3240 for (i = 0; i < max_mirrors; i++) {
3241 bytenr = btrfs_sb_offset(i);
3242 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3243 device->commit_total_bytes)
3246 btrfs_set_super_bytenr(sb, bytenr);
3249 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3250 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3251 btrfs_csum_final(crc, sb->csum);
3253 /* One reference for us, and we leave it for the caller */
3254 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3255 BTRFS_SUPER_INFO_SIZE);
3257 btrfs_err(device->fs_info,
3258 "couldn't get super buffer head for bytenr %llu",
3264 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3266 /* one reference for submit_bh */
3269 set_buffer_uptodate(bh);
3271 bh->b_end_io = btrfs_end_buffer_write_sync;
3272 bh->b_private = device;
3275 * we fua the first super. The others we allow