block: allow bio_for_each_segment_all() to iterate over multi-page bvec
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                 struct page *page, size_t pg_offset, u64 start, u64 len,
207                 int create)
208 {
209         struct btrfs_fs_info *fs_info = inode->root->fs_info;
210         struct extent_map_tree *em_tree = &inode->extent_tree;
211         struct extent_map *em;
212         int ret;
213
214         read_lock(&em_tree->lock);
215         em = lookup_extent_mapping(em_tree, start, len);
216         if (em) {
217                 em->bdev = fs_info->fs_devices->latest_bdev;
218                 read_unlock(&em_tree->lock);
219                 goto out;
220         }
221         read_unlock(&em_tree->lock);
222
223         em = alloc_extent_map();
224         if (!em) {
225                 em = ERR_PTR(-ENOMEM);
226                 goto out;
227         }
228         em->start = 0;
229         em->len = (u64)-1;
230         em->block_len = (u64)-1;
231         em->block_start = 0;
232         em->bdev = fs_info->fs_devices->latest_bdev;
233
234         write_lock(&em_tree->lock);
235         ret = add_extent_mapping(em_tree, em, 0);
236         if (ret == -EEXIST) {
237                 free_extent_map(em);
238                 em = lookup_extent_mapping(em_tree, start, len);
239                 if (!em)
240                         em = ERR_PTR(-EIO);
241         } else if (ret) {
242                 free_extent_map(em);
243                 em = ERR_PTR(ret);
244         }
245         write_unlock(&em_tree->lock);
246
247 out:
248         return em;
249 }
250
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253         return crc32c(seed, data, len);
254 }
255
256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258         put_unaligned_le32(~crc, result);
259 }
260
261 /*
262  * compute the csum for a btree block, and either verify it or write it
263  * into the csum field of the block.
264  */
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266                            struct extent_buffer *buf,
267                            int verify)
268 {
269         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270         char result[BTRFS_CSUM_SIZE];
271         unsigned long len;
272         unsigned long cur_len;
273         unsigned long offset = BTRFS_CSUM_SIZE;
274         char *kaddr;
275         unsigned long map_start;
276         unsigned long map_len;
277         int err;
278         u32 crc = ~(u32)0;
279
280         len = buf->len - offset;
281         while (len > 0) {
282                 /*
283                  * Note: we don't need to check for the err == 1 case here, as
284                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
285                  * and 'min_len = 32' and the currently implemented mapping
286                  * algorithm we cannot cross a page boundary.
287                  */
288                 err = map_private_extent_buffer(buf, offset, 32,
289                                         &kaddr, &map_start, &map_len);
290                 if (err)
291                         return err;
292                 cur_len = min(len, map_len - (offset - map_start));
293                 crc = btrfs_csum_data(kaddr + offset - map_start,
294                                       crc, cur_len);
295                 len -= cur_len;
296                 offset += cur_len;
297         }
298         memset(result, 0, BTRFS_CSUM_SIZE);
299
300         btrfs_csum_final(crc, result);
301
302         if (verify) {
303                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304                         u32 val;
305                         u32 found = 0;
306                         memcpy(&found, result, csum_size);
307
308                         read_extent_buffer(buf, &val, 0, csum_size);
309                         btrfs_warn_rl(fs_info,
310                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
311                                 fs_info->sb->s_id, buf->start,
312                                 val, found, btrfs_header_level(buf));
313                         return -EUCLEAN;
314                 }
315         } else {
316                 write_extent_buffer(buf, result, 0, csum_size);
317         }
318
319         return 0;
320 }
321
322 /*
323  * we can't consider a given block up to date unless the transid of the
324  * block matches the transid in the parent node's pointer.  This is how we
325  * detect blocks that either didn't get written at all or got written
326  * in the wrong place.
327  */
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329                                  struct extent_buffer *eb, u64 parent_transid,
330                                  int atomic)
331 {
332         struct extent_state *cached_state = NULL;
333         int ret;
334         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
335
336         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337                 return 0;
338
339         if (atomic)
340                 return -EAGAIN;
341
342         if (need_lock) {
343                 btrfs_tree_read_lock(eb);
344                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345         }
346
347         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348                          &cached_state);
349         if (extent_buffer_uptodate(eb) &&
350             btrfs_header_generation(eb) == parent_transid) {
351                 ret = 0;
352                 goto out;
353         }
354         btrfs_err_rl(eb->fs_info,
355                 "parent transid verify failed on %llu wanted %llu found %llu",
356                         eb->start,
357                         parent_transid, btrfs_header_generation(eb));
358         ret = 1;
359
360         /*
361          * Things reading via commit roots that don't have normal protection,
362          * like send, can have a really old block in cache that may point at a
363          * block that has been freed and re-allocated.  So don't clear uptodate
364          * if we find an eb that is under IO (dirty/writeback) because we could
365          * end up reading in the stale data and then writing it back out and
366          * making everybody very sad.
367          */
368         if (!extent_buffer_under_io(eb))
369                 clear_extent_buffer_uptodate(eb);
370 out:
371         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372                              &cached_state);
373         if (need_lock)
374                 btrfs_tree_read_unlock_blocking(eb);
375         return ret;
376 }
377
378 /*
379  * Return 0 if the superblock checksum type matches the checksum value of that
380  * algorithm. Pass the raw disk superblock data.
381  */
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383                                   char *raw_disk_sb)
384 {
385         struct btrfs_super_block *disk_sb =
386                 (struct btrfs_super_block *)raw_disk_sb;
387         u16 csum_type = btrfs_super_csum_type(disk_sb);
388         int ret = 0;
389
390         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391                 u32 crc = ~(u32)0;
392                 char result[sizeof(crc)];
393
394                 /*
395                  * The super_block structure does not span the whole
396                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397                  * is filled with zeros and is included in the checksum.
398                  */
399                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401                 btrfs_csum_final(crc, result);
402
403                 if (memcmp(raw_disk_sb, result, sizeof(result)))
404                         ret = 1;
405         }
406
407         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
409                                 csum_type);
410                 ret = 1;
411         }
412
413         return ret;
414 }
415
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417                             struct extent_buffer *eb, int level,
418                             struct btrfs_key *first_key, u64 parent_transid)
419 {
420         int found_level;
421         struct btrfs_key found_key;
422         int ret;
423
424         found_level = btrfs_header_level(eb);
425         if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
427                 WARN_ON(1);
428                 btrfs_err(fs_info,
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430                           eb->start, level, found_level);
431 #endif
432                 return -EIO;
433         }
434
435         if (!first_key)
436                 return 0;
437
438         /*
439          * For live tree block (new tree blocks in current transaction),
440          * we need proper lock context to avoid race, which is impossible here.
441          * So we only checks tree blocks which is read from disk, whose
442          * generation <= fs_info->last_trans_committed.
443          */
444         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445                 return 0;
446         if (found_level)
447                 btrfs_node_key_to_cpu(eb, &found_key, 0);
448         else
449                 btrfs_item_key_to_cpu(eb, &found_key, 0);
450         ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452 #ifdef CONFIG_BTRFS_DEBUG
453         if (ret) {
454                 WARN_ON(1);
455                 btrfs_err(fs_info,
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457                           eb->start, parent_transid, first_key->objectid,
458                           first_key->type, first_key->offset,
459                           found_key.objectid, found_key.type,
460                           found_key.offset);
461         }
462 #endif
463         return ret;
464 }
465
466 /*
467  * helper to read a given tree block, doing retries as required when
468  * the checksums don't match and we have alternate mirrors to try.
469  *
470  * @parent_transid:     expected transid, skip check if 0
471  * @level:              expected level, mandatory check
472  * @first_key:          expected key of first slot, skip check if NULL
473  */
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475                                           struct extent_buffer *eb,
476                                           u64 parent_transid, int level,
477                                           struct btrfs_key *first_key)
478 {
479         struct extent_io_tree *io_tree;
480         int failed = 0;
481         int ret;
482         int num_copies = 0;
483         int mirror_num = 0;
484         int failed_mirror = 0;
485
486         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
487         while (1) {
488                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
489                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490                                                mirror_num);
491                 if (!ret) {
492                         if (verify_parent_transid(io_tree, eb,
493                                                    parent_transid, 0))
494                                 ret = -EIO;
495                         else if (verify_level_key(fs_info, eb, level,
496                                                   first_key, parent_transid))
497                                 ret = -EUCLEAN;
498                         else
499                                 break;
500                 }
501
502                 num_copies = btrfs_num_copies(fs_info,
503                                               eb->start, eb->len);
504                 if (num_copies == 1)
505                         break;
506
507                 if (!failed_mirror) {
508                         failed = 1;
509                         failed_mirror = eb->read_mirror;
510                 }
511
512                 mirror_num++;
513                 if (mirror_num == failed_mirror)
514                         mirror_num++;
515
516                 if (mirror_num > num_copies)
517                         break;
518         }
519
520         if (failed && !ret && failed_mirror)
521                 repair_eb_io_failure(fs_info, eb, failed_mirror);
522
523         return ret;
524 }
525
526 /*
527  * checksum a dirty tree block before IO.  This has extra checks to make sure
528  * we only fill in the checksum field in the first page of a multi-page block
529  */
530
531 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
532 {
533         u64 start = page_offset(page);
534         u64 found_start;
535         struct extent_buffer *eb;
536
537         eb = (struct extent_buffer *)page->private;
538         if (page != eb->pages[0])
539                 return 0;
540
541         found_start = btrfs_header_bytenr(eb);
542         /*
543          * Please do not consolidate these warnings into a single if.
544          * It is useful to know what went wrong.
545          */
546         if (WARN_ON(found_start != start))
547                 return -EUCLEAN;
548         if (WARN_ON(!PageUptodate(page)))
549                 return -EUCLEAN;
550
551         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
552                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
553
554         return csum_tree_block(fs_info, eb, 0);
555 }
556
557 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
558                                  struct extent_buffer *eb)
559 {
560         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
561         u8 fsid[BTRFS_FSID_SIZE];
562         int ret = 1;
563
564         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
565         while (fs_devices) {
566                 u8 *metadata_uuid;
567
568                 /*
569                  * Checking the incompat flag is only valid for the current
570                  * fs. For seed devices it's forbidden to have their uuid
571                  * changed so reading ->fsid in this case is fine
572                  */
573                 if (fs_devices == fs_info->fs_devices &&
574                     btrfs_fs_incompat(fs_info, METADATA_UUID))
575                         metadata_uuid = fs_devices->metadata_uuid;
576                 else
577                         metadata_uuid = fs_devices->fsid;
578
579                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
580                         ret = 0;
581                         break;
582                 }
583                 fs_devices = fs_devices->seed;
584         }
585         return ret;
586 }
587
588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
589                                       u64 phy_offset, struct page *page,
590                                       u64 start, u64 end, int mirror)
591 {
592         u64 found_start;
593         int found_level;
594         struct extent_buffer *eb;
595         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
596         struct btrfs_fs_info *fs_info = root->fs_info;
597         int ret = 0;
598         int reads_done;
599
600         if (!page->private)
601                 goto out;
602
603         eb = (struct extent_buffer *)page->private;
604
605         /* the pending IO might have been the only thing that kept this buffer
606          * in memory.  Make sure we have a ref for all this other checks
607          */
608         extent_buffer_get(eb);
609
610         reads_done = atomic_dec_and_test(&eb->io_pages);
611         if (!reads_done)
612                 goto err;
613
614         eb->read_mirror = mirror;
615         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
616                 ret = -EIO;
617                 goto err;
618         }
619
620         found_start = btrfs_header_bytenr(eb);
621         if (found_start != eb->start) {
622                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
623                              eb->start, found_start);
624                 ret = -EIO;
625                 goto err;
626         }
627         if (check_tree_block_fsid(fs_info, eb)) {
628                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
629                              eb->start);
630                 ret = -EIO;
631                 goto err;
632         }
633         found_level = btrfs_header_level(eb);
634         if (found_level >= BTRFS_MAX_LEVEL) {
635                 btrfs_err(fs_info, "bad tree block level %d on %llu",
636                           (int)btrfs_header_level(eb), eb->start);
637                 ret = -EIO;
638                 goto err;
639         }
640
641         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
642                                        eb, found_level);
643
644         ret = csum_tree_block(fs_info, eb, 1);
645         if (ret)
646                 goto err;
647
648         /*
649          * If this is a leaf block and it is corrupt, set the corrupt bit so
650          * that we don't try and read the other copies of this block, just
651          * return -EIO.
652          */
653         if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
654                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655                 ret = -EIO;
656         }
657
658         if (found_level > 0 && btrfs_check_node(fs_info, eb))
659                 ret = -EIO;
660
661         if (!ret)
662                 set_extent_buffer_uptodate(eb);
663 err:
664         if (reads_done &&
665             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
666                 btree_readahead_hook(eb, ret);
667
668         if (ret) {
669                 /*
670                  * our io error hook is going to dec the io pages
671                  * again, we have to make sure it has something
672                  * to decrement
673                  */
674                 atomic_inc(&eb->io_pages);
675                 clear_extent_buffer_uptodate(eb);
676         }
677         free_extent_buffer(eb);
678 out:
679         return ret;
680 }
681
682 static void end_workqueue_bio(struct bio *bio)
683 {
684         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
685         struct btrfs_fs_info *fs_info;
686         struct btrfs_workqueue *wq;
687         btrfs_work_func_t func;
688
689         fs_info = end_io_wq->info;
690         end_io_wq->status = bio->bi_status;
691
692         if (bio_op(bio) == REQ_OP_WRITE) {
693                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
694                         wq = fs_info->endio_meta_write_workers;
695                         func = btrfs_endio_meta_write_helper;
696                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
697                         wq = fs_info->endio_freespace_worker;
698                         func = btrfs_freespace_write_helper;
699                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
700                         wq = fs_info->endio_raid56_workers;
701                         func = btrfs_endio_raid56_helper;
702                 } else {
703                         wq = fs_info->endio_write_workers;
704                         func = btrfs_endio_write_helper;
705                 }
706         } else {
707                 if (unlikely(end_io_wq->metadata ==
708                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
709                         wq = fs_info->endio_repair_workers;
710                         func = btrfs_endio_repair_helper;
711                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
712                         wq = fs_info->endio_raid56_workers;
713                         func = btrfs_endio_raid56_helper;
714                 } else if (end_io_wq->metadata) {
715                         wq = fs_info->endio_meta_workers;
716                         func = btrfs_endio_meta_helper;
717                 } else {
718                         wq = fs_info->endio_workers;
719                         func = btrfs_endio_helper;
720                 }
721         }
722
723         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
724         btrfs_queue_work(wq, &end_io_wq->work);
725 }
726
727 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
728                         enum btrfs_wq_endio_type metadata)
729 {
730         struct btrfs_end_io_wq *end_io_wq;
731
732         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
733         if (!end_io_wq)
734                 return BLK_STS_RESOURCE;
735
736         end_io_wq->private = bio->bi_private;
737         end_io_wq->end_io = bio->bi_end_io;
738         end_io_wq->info = info;
739         end_io_wq->status = 0;
740         end_io_wq->bio = bio;
741         end_io_wq->metadata = metadata;
742
743         bio->bi_private = end_io_wq;
744         bio->bi_end_io = end_workqueue_bio;
745         return 0;
746 }
747
748 static void run_one_async_start(struct btrfs_work *work)
749 {
750         struct async_submit_bio *async;
751         blk_status_t ret;
752
753         async = container_of(work, struct  async_submit_bio, work);
754         ret = async->submit_bio_start(async->private_data, async->bio,
755                                       async->bio_offset);
756         if (ret)
757                 async->status = ret;
758 }
759
760 /*
761  * In order to insert checksums into the metadata in large chunks, we wait
762  * until bio submission time.   All the pages in the bio are checksummed and
763  * sums are attached onto the ordered extent record.
764  *
765  * At IO completion time the csums attached on the ordered extent record are
766  * inserted into the tree.
767  */
768 static void run_one_async_done(struct btrfs_work *work)
769 {
770         struct async_submit_bio *async;
771         struct inode *inode;
772         blk_status_t ret;
773
774         async = container_of(work, struct  async_submit_bio, work);
775         inode = async->private_data;
776
777         /* If an error occurred we just want to clean up the bio and move on */
778         if (async->status) {
779                 async->bio->bi_status = async->status;
780                 bio_endio(async->bio);
781                 return;
782         }
783
784         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
785                         async->mirror_num, 1);
786         if (ret) {
787                 async->bio->bi_status = ret;
788                 bio_endio(async->bio);
789         }
790 }
791
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794         struct async_submit_bio *async;
795
796         async = container_of(work, struct  async_submit_bio, work);
797         kfree(async);
798 }
799
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801                                  int mirror_num, unsigned long bio_flags,
802                                  u64 bio_offset, void *private_data,
803                                  extent_submit_bio_start_t *submit_bio_start)
804 {
805         struct async_submit_bio *async;
806
807         async = kmalloc(sizeof(*async), GFP_NOFS);
808         if (!async)
809                 return BLK_STS_RESOURCE;
810
811         async->private_data = private_data;
812         async->bio = bio;
813         async->mirror_num = mirror_num;
814         async->submit_bio_start = submit_bio_start;
815
816         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
817                         run_one_async_done, run_one_async_free);
818
819         async->bio_offset = bio_offset;
820
821         async->status = 0;
822
823         if (op_is_sync(bio->bi_opf))
824                 btrfs_set_work_high_priority(&async->work);
825
826         btrfs_queue_work(fs_info->workers, &async->work);
827         return 0;
828 }
829
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832         struct bio_vec *bvec;
833         struct btrfs_root *root;
834         int i, ret = 0;
835         struct bvec_iter_all iter_all;
836
837         ASSERT(!bio_flagged(bio, BIO_CLONED));
838         bio_for_each_segment_all(bvec, bio, i, iter_all) {
839                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841                 if (ret)
842                         break;
843         }
844
845         return errno_to_blk_status(ret);
846 }
847
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849                                              u64 bio_offset)
850 {
851         /*
852          * when we're called for a write, we're already in the async
853          * submission context.  Just jump into btrfs_map_bio
854          */
855         return btree_csum_one_bio(bio);
856 }
857
858 static int check_async_write(struct btrfs_inode *bi)
859 {
860         if (atomic_read(&bi->sync_writers))
861                 return 0;
862 #ifdef CONFIG_X86
863         if (static_cpu_has(X86_FEATURE_XMM4_2))
864                 return 0;
865 #endif
866         return 1;
867 }
868
869 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
870                                           int mirror_num, unsigned long bio_flags,
871                                           u64 bio_offset)
872 {
873         struct inode *inode = private_data;
874         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
875         int async = check_async_write(BTRFS_I(inode));
876         blk_status_t ret;
877
878         if (bio_op(bio) != REQ_OP_WRITE) {
879                 /*
880                  * called for a read, do the setup so that checksum validation
881                  * can happen in the async kernel threads
882                  */
883                 ret = btrfs_bio_wq_end_io(fs_info, bio,
884                                           BTRFS_WQ_ENDIO_METADATA);
885                 if (ret)
886                         goto out_w_error;
887                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
888         } else if (!async) {
889                 ret = btree_csum_one_bio(bio);
890                 if (ret)
891                         goto out_w_error;
892                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
893         } else {
894                 /*
895                  * kthread helpers are used to submit writes so that
896                  * checksumming can happen in parallel across all CPUs
897                  */
898                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
899                                           bio_offset, private_data,
900                                           btree_submit_bio_start);
901         }
902
903         if (ret)
904                 goto out_w_error;
905         return 0;
906
907 out_w_error:
908         bio->bi_status = ret;
909         bio_endio(bio);
910         return ret;
911 }
912
913 #ifdef CONFIG_MIGRATION
914 static int btree_migratepage(struct address_space *mapping,
915                         struct page *newpage, struct page *page,
916                         enum migrate_mode mode)
917 {
918         /*
919          * we can't safely write a btree page from here,
920          * we haven't done the locking hook
921          */
922         if (PageDirty(page))
923                 return -EAGAIN;
924         /*
925          * Buffers may be managed in a filesystem specific way.
926          * We must have no buffers or drop them.
927          */
928         if (page_has_private(page) &&
929             !try_to_release_page(page, GFP_KERNEL))
930                 return -EAGAIN;
931         return migrate_page(mapping, newpage, page, mode);
932 }
933 #endif
934
935
936 static int btree_writepages(struct address_space *mapping,
937                             struct writeback_control *wbc)
938 {
939         struct btrfs_fs_info *fs_info;
940         int ret;
941
942         if (wbc->sync_mode == WB_SYNC_NONE) {
943
944                 if (wbc->for_kupdate)
945                         return 0;
946
947                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
948                 /* this is a bit racy, but that's ok */
949                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
950                                              BTRFS_DIRTY_METADATA_THRESH,
951                                              fs_info->dirty_metadata_batch);
952                 if (ret < 0)
953                         return 0;
954         }
955         return btree_write_cache_pages(mapping, wbc);
956 }
957
958 static int btree_readpage(struct file *file, struct page *page)
959 {
960         struct extent_io_tree *tree;
961         tree = &BTRFS_I(page->mapping->host)->io_tree;
962         return extent_read_full_page(tree, page, btree_get_extent, 0);
963 }
964
965 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
966 {
967         if (PageWriteback(page) || PageDirty(page))
968                 return 0;
969
970         return try_release_extent_buffer(page);
971 }
972
973 static void btree_invalidatepage(struct page *page, unsigned int offset,
974                                  unsigned int length)
975 {
976         struct extent_io_tree *tree;
977         tree = &BTRFS_I(page->mapping->host)->io_tree;
978         extent_invalidatepage(tree, page, offset);
979         btree_releasepage(page, GFP_NOFS);
980         if (PagePrivate(page)) {
981                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
982                            "page private not zero on page %llu",
983                            (unsigned long long)page_offset(page));
984                 ClearPagePrivate(page);
985                 set_page_private(page, 0);
986                 put_page(page);
987         }
988 }
989
990 static int btree_set_page_dirty(struct page *page)
991 {
992 #ifdef DEBUG
993         struct extent_buffer *eb;
994
995         BUG_ON(!PagePrivate(page));
996         eb = (struct extent_buffer *)page->private;
997         BUG_ON(!eb);
998         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999         BUG_ON(!atomic_read(&eb->refs));
1000         btrfs_assert_tree_locked(eb);
1001 #endif
1002         return __set_page_dirty_nobuffers(page);
1003 }
1004
1005 static const struct address_space_operations btree_aops = {
1006         .readpage       = btree_readpage,
1007         .writepages     = btree_writepages,
1008         .releasepage    = btree_releasepage,
1009         .invalidatepage = btree_invalidatepage,
1010 #ifdef CONFIG_MIGRATION
1011         .migratepage    = btree_migratepage,
1012 #endif
1013         .set_page_dirty = btree_set_page_dirty,
1014 };
1015
1016 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1017 {
1018         struct extent_buffer *buf = NULL;
1019         struct inode *btree_inode = fs_info->btree_inode;
1020
1021         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1022         if (IS_ERR(buf))
1023                 return;
1024         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1025                                  buf, WAIT_NONE, 0);
1026         free_extent_buffer(buf);
1027 }
1028
1029 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1030                          int mirror_num, struct extent_buffer **eb)
1031 {
1032         struct extent_buffer *buf = NULL;
1033         struct inode *btree_inode = fs_info->btree_inode;
1034         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1035         int ret;
1036
1037         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1038         if (IS_ERR(buf))
1039                 return 0;
1040
1041         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1042
1043         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1044                                        mirror_num);
1045         if (ret) {
1046                 free_extent_buffer(buf);
1047                 return ret;
1048         }
1049
1050         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1051                 free_extent_buffer(buf);
1052                 return -EIO;
1053         } else if (extent_buffer_uptodate(buf)) {
1054                 *eb = buf;
1055         } else {
1056                 free_extent_buffer(buf);
1057         }
1058         return 0;
1059 }
1060
1061 struct extent_buffer *btrfs_find_create_tree_block(
1062                                                 struct btrfs_fs_info *fs_info,
1063                                                 u64 bytenr)
1064 {
1065         if (btrfs_is_testing(fs_info))
1066                 return alloc_test_extent_buffer(fs_info, bytenr);
1067         return alloc_extent_buffer(fs_info, bytenr);
1068 }
1069
1070
1071 int btrfs_write_tree_block(struct extent_buffer *buf)
1072 {
1073         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1074                                         buf->start + buf->len - 1);
1075 }
1076
1077 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1078 {
1079         filemap_fdatawait_range(buf->pages[0]->mapping,
1080                                 buf->start, buf->start + buf->len - 1);
1081 }
1082
1083 /*
1084  * Read tree block at logical address @bytenr and do variant basic but critical
1085  * verification.
1086  *
1087  * @parent_transid:     expected transid of this tree block, skip check if 0
1088  * @level:              expected level, mandatory check
1089  * @first_key:          expected key in slot 0, skip check if NULL
1090  */
1091 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1092                                       u64 parent_transid, int level,
1093                                       struct btrfs_key *first_key)
1094 {
1095         struct extent_buffer *buf = NULL;
1096         int ret;
1097
1098         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1099         if (IS_ERR(buf))
1100                 return buf;
1101
1102         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1103                                              level, first_key);
1104         if (ret) {
1105                 free_extent_buffer(buf);
1106                 return ERR_PTR(ret);
1107         }
1108         return buf;
1109
1110 }
1111
1112 void clean_tree_block(struct btrfs_fs_info *fs_info,
1113                       struct extent_buffer *buf)
1114 {
1115         if (btrfs_header_generation(buf) ==
1116             fs_info->running_transaction->transid) {
1117                 btrfs_assert_tree_locked(buf);
1118
1119                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1121                                                  -buf->len,
1122                                                  fs_info->dirty_metadata_batch);
1123                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1124                         btrfs_set_lock_blocking(buf);
1125                         clear_extent_buffer_dirty(buf);
1126                 }
1127         }
1128 }
1129
1130 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1131 {
1132         struct btrfs_subvolume_writers *writers;
1133         int ret;
1134
1135         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1136         if (!writers)
1137                 return ERR_PTR(-ENOMEM);
1138
1139         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1140         if (ret < 0) {
1141                 kfree(writers);
1142                 return ERR_PTR(ret);
1143         }
1144
1145         init_waitqueue_head(&writers->wait);
1146         return writers;
1147 }
1148
1149 static void
1150 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1151 {
1152         percpu_counter_destroy(&writers->counter);
1153         kfree(writers);
1154 }
1155
1156 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1157                          u64 objectid)
1158 {
1159         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1160         root->node = NULL;
1161         root->commit_root = NULL;
1162         root->state = 0;
1163         root->orphan_cleanup_state = 0;
1164
1165         root->last_trans = 0;
1166         root->highest_objectid = 0;
1167         root->nr_delalloc_inodes = 0;
1168         root->nr_ordered_extents = 0;
1169         root->inode_tree = RB_ROOT;
1170         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1171         root->block_rsv = NULL;
1172
1173         INIT_LIST_HEAD(&root->dirty_list);
1174         INIT_LIST_HEAD(&root->root_list);
1175         INIT_LIST_HEAD(&root->delalloc_inodes);
1176         INIT_LIST_HEAD(&root->delalloc_root);
1177         INIT_LIST_HEAD(&root->ordered_extents);
1178         INIT_LIST_HEAD(&root->ordered_root);
1179         INIT_LIST_HEAD(&root->logged_list[0]);
1180         INIT_LIST_HEAD(&root->logged_list[1]);
1181         spin_lock_init(&root->inode_lock);
1182         spin_lock_init(&root->delalloc_lock);
1183         spin_lock_init(&root->ordered_extent_lock);
1184         spin_lock_init(&root->accounting_lock);
1185         spin_lock_init(&root->log_extents_lock[0]);
1186         spin_lock_init(&root->log_extents_lock[1]);
1187         spin_lock_init(&root->qgroup_meta_rsv_lock);
1188         mutex_init(&root->objectid_mutex);
1189         mutex_init(&root->log_mutex);
1190         mutex_init(&root->ordered_extent_mutex);
1191         mutex_init(&root->delalloc_mutex);
1192         init_waitqueue_head(&root->log_writer_wait);
1193         init_waitqueue_head(&root->log_commit_wait[0]);
1194         init_waitqueue_head(&root->log_commit_wait[1]);
1195         INIT_LIST_HEAD(&root->log_ctxs[0]);
1196         INIT_LIST_HEAD(&root->log_ctxs[1]);
1197         atomic_set(&root->log_commit[0], 0);
1198         atomic_set(&root->log_commit[1], 0);
1199         atomic_set(&root->log_writers, 0);
1200         atomic_set(&root->log_batch, 0);
1201         refcount_set(&root->refs, 1);
1202         atomic_set(&root->will_be_snapshotted, 0);
1203         atomic_set(&root->snapshot_force_cow, 0);
1204         atomic_set(&root->nr_swapfiles, 0);
1205         root->log_transid = 0;
1206         root->log_transid_committed = -1;
1207         root->last_log_commit = 0;
1208         if (!dummy)
1209                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1210
1211         memset(&root->root_key, 0, sizeof(root->root_key));
1212         memset(&root->root_item, 0, sizeof(root->root_item));
1213         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1214         if (!dummy)
1215                 root->defrag_trans_start = fs_info->generation;
1216         else
1217                 root->defrag_trans_start = 0;
1218         root->root_key.objectid = objectid;
1219         root->anon_dev = 0;
1220
1221         spin_lock_init(&root->root_item_lock);
1222 }
1223
1224 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1225                 gfp_t flags)
1226 {
1227         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1228         if (root)
1229                 root->fs_info = fs_info;
1230         return root;
1231 }
1232
1233 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1234 /* Should only be used by the testing infrastructure */
1235 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1236 {
1237         struct btrfs_root *root;
1238
1239         if (!fs_info)
1240                 return ERR_PTR(-EINVAL);
1241
1242         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1243         if (!root)
1244                 return ERR_PTR(-ENOMEM);
1245
1246         /* We don't use the stripesize in selftest, set it as sectorsize */
1247         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1248         root->alloc_bytenr = 0;
1249
1250         return root;
1251 }
1252 #endif
1253
1254 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1255                                      struct btrfs_fs_info *fs_info,
1256                                      u64 objectid)
1257 {
1258         struct extent_buffer *leaf;
1259         struct btrfs_root *tree_root = fs_info->tree_root;
1260         struct btrfs_root *root;
1261         struct btrfs_key key;
1262         int ret = 0;
1263         uuid_le uuid = NULL_UUID_LE;
1264
1265         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1266         if (!root)
1267                 return ERR_PTR(-ENOMEM);
1268
1269         __setup_root(root, fs_info, objectid);
1270         root->root_key.objectid = objectid;
1271         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272         root->root_key.offset = 0;
1273
1274         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1275         if (IS_ERR(leaf)) {
1276                 ret = PTR_ERR(leaf);
1277                 leaf = NULL;
1278                 goto fail;
1279         }
1280
1281         root->node = leaf;
1282         btrfs_mark_buffer_dirty(leaf);
1283
1284         root->commit_root = btrfs_root_node(root);
1285         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1286
1287         root->root_item.flags = 0;
1288         root->root_item.byte_limit = 0;
1289         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1290         btrfs_set_root_generation(&root->root_item, trans->transid);
1291         btrfs_set_root_level(&root->root_item, 0);
1292         btrfs_set_root_refs(&root->root_item, 1);
1293         btrfs_set_root_used(&root->root_item, leaf->len);
1294         btrfs_set_root_last_snapshot(&root->root_item, 0);
1295         btrfs_set_root_dirid(&root->root_item, 0);
1296         if (is_fstree(objectid))
1297                 uuid_le_gen(&uuid);
1298         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1299         root->root_item.drop_level = 0;
1300
1301         key.objectid = objectid;
1302         key.type = BTRFS_ROOT_ITEM_KEY;
1303         key.offset = 0;
1304         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305         if (ret)
1306                 goto fail;
1307
1308         btrfs_tree_unlock(leaf);
1309
1310         return root;
1311
1312 fail:
1313         if (leaf) {
1314                 btrfs_tree_unlock(leaf);
1315                 free_extent_buffer(root->commit_root);
1316                 free_extent_buffer(leaf);
1317         }
1318         kfree(root);
1319
1320         return ERR_PTR(ret);
1321 }
1322
1323 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1324                                          struct btrfs_fs_info *fs_info)
1325 {
1326         struct btrfs_root *root;
1327         struct extent_buffer *leaf;
1328
1329         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1330         if (!root)
1331                 return ERR_PTR(-ENOMEM);
1332
1333         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334
1335         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1338
1339         /*
1340          * DON'T set REF_COWS for log trees
1341          *
1342          * log trees do not get reference counted because they go away
1343          * before a real commit is actually done.  They do store pointers
1344          * to file data extents, and those reference counts still get
1345          * updated (along with back refs to the log tree).
1346          */
1347
1348         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1349                         NULL, 0, 0, 0);
1350         if (IS_ERR(leaf)) {
1351                 kfree(root);
1352                 return ERR_CAST(leaf);
1353         }
1354
1355         root->node = leaf;
1356
1357         btrfs_mark_buffer_dirty(root->node);
1358         btrfs_tree_unlock(root->node);
1359         return root;
1360 }
1361
1362 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1363                              struct btrfs_fs_info *fs_info)
1364 {
1365         struct btrfs_root *log_root;
1366
1367         log_root = alloc_log_tree(trans, fs_info);
1368         if (IS_ERR(log_root))
1369                 return PTR_ERR(log_root);
1370         WARN_ON(fs_info->log_root_tree);
1371         fs_info->log_root_tree = log_root;
1372         return 0;
1373 }
1374
1375 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1376                        struct btrfs_root *root)
1377 {
1378         struct btrfs_fs_info *fs_info = root->fs_info;
1379         struct btrfs_root *log_root;
1380         struct btrfs_inode_item *inode_item;
1381
1382         log_root = alloc_log_tree(trans, fs_info);
1383         if (IS_ERR(log_root))
1384                 return PTR_ERR(log_root);
1385
1386         log_root->last_trans = trans->transid;
1387         log_root->root_key.offset = root->root_key.objectid;
1388
1389         inode_item = &log_root->root_item.inode;
1390         btrfs_set_stack_inode_generation(inode_item, 1);
1391         btrfs_set_stack_inode_size(inode_item, 3);
1392         btrfs_set_stack_inode_nlink(inode_item, 1);
1393         btrfs_set_stack_inode_nbytes(inode_item,
1394                                      fs_info->nodesize);
1395         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1396
1397         btrfs_set_root_node(&log_root->root_item, log_root->node);
1398
1399         WARN_ON(root->log_root);
1400         root->log_root = log_root;
1401         root->log_transid = 0;
1402         root->log_transid_committed = -1;
1403         root->last_log_commit = 0;
1404         return 0;
1405 }
1406
1407 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408                                                struct btrfs_key *key)
1409 {
1410         struct btrfs_root *root;
1411         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412         struct btrfs_path *path;
1413         u64 generation;
1414         int ret;
1415         int level;
1416
1417         path = btrfs_alloc_path();
1418         if (!path)
1419                 return ERR_PTR(-ENOMEM);
1420
1421         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1422         if (!root) {
1423                 ret = -ENOMEM;
1424                 goto alloc_fail;
1425         }
1426
1427         __setup_root(root, fs_info, key->objectid);
1428
1429         ret = btrfs_find_root(tree_root, key, path,
1430                               &root->root_item, &root->root_key);
1431         if (ret) {
1432                 if (ret > 0)
1433                         ret = -ENOENT;
1434                 goto find_fail;
1435         }
1436
1437         generation = btrfs_root_generation(&root->root_item);
1438         level = btrfs_root_level(&root->root_item);
1439         root->node = read_tree_block(fs_info,
1440                                      btrfs_root_bytenr(&root->root_item),
1441                                      generation, level, NULL);
1442         if (IS_ERR(root->node)) {
1443                 ret = PTR_ERR(root->node);
1444                 goto find_fail;
1445         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1446                 ret = -EIO;
1447                 free_extent_buffer(root->node);
1448                 goto find_fail;
1449         }
1450         root->commit_root = btrfs_root_node(root);
1451 out:
1452         btrfs_free_path(path);
1453         return root;
1454
1455 find_fail:
1456         kfree(root);
1457 alloc_fail:
1458         root = ERR_PTR(ret);
1459         goto out;
1460 }
1461
1462 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1463                                       struct btrfs_key *location)
1464 {
1465         struct btrfs_root *root;
1466
1467         root = btrfs_read_tree_root(tree_root, location);
1468         if (IS_ERR(root))
1469                 return root;
1470
1471         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1472                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1473                 btrfs_check_and_init_root_item(&root->root_item);
1474         }
1475
1476         return root;
1477 }
1478
1479 int btrfs_init_fs_root(struct btrfs_root *root)
1480 {
1481         int ret;
1482         struct btrfs_subvolume_writers *writers;
1483
1484         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486                                         GFP_NOFS);
1487         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488                 ret = -ENOMEM;
1489                 goto fail;
1490         }
1491
1492         writers = btrfs_alloc_subvolume_writers();
1493         if (IS_ERR(writers)) {
1494                 ret = PTR_ERR(writers);
1495                 goto fail;
1496         }
1497         root->subv_writers = writers;
1498
1499         btrfs_init_free_ino_ctl(root);
1500         spin_lock_init(&root->ino_cache_lock);
1501         init_waitqueue_head(&root->ino_cache_wait);
1502
1503         ret = get_anon_bdev(&root->anon_dev);
1504         if (ret)
1505                 goto fail;
1506
1507         mutex_lock(&root->objectid_mutex);
1508         ret = btrfs_find_highest_objectid(root,
1509                                         &root->highest_objectid);
1510         if (ret) {
1511                 mutex_unlock(&root->objectid_mutex);
1512                 goto fail;
1513         }
1514
1515         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1516
1517         mutex_unlock(&root->objectid_mutex);
1518
1519         return 0;
1520 fail:
1521         /* The caller is responsible to call btrfs_free_fs_root */
1522         return ret;
1523 }
1524
1525 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1526                                         u64 root_id)
1527 {
1528         struct btrfs_root *root;
1529
1530         spin_lock(&fs_info->fs_roots_radix_lock);
1531         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1532                                  (unsigned long)root_id);
1533         spin_unlock(&fs_info->fs_roots_radix_lock);
1534         return root;
1535 }
1536
1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538                          struct btrfs_root *root)
1539 {
1540         int ret;
1541
1542         ret = radix_tree_preload(GFP_NOFS);
1543         if (ret)
1544                 return ret;
1545
1546         spin_lock(&fs_info->fs_roots_radix_lock);
1547         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548                                 (unsigned long)root->root_key.objectid,
1549                                 root);
1550         if (ret == 0)
1551                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1552         spin_unlock(&fs_info->fs_roots_radix_lock);
1553         radix_tree_preload_end();
1554
1555         return ret;
1556 }
1557
1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1559                                      struct btrfs_key *location,
1560                                      bool check_ref)
1561 {
1562         struct btrfs_root *root;
1563         struct btrfs_path *path;
1564         struct btrfs_key key;
1565         int ret;
1566
1567         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1568                 return fs_info->tree_root;
1569         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1570                 return fs_info->extent_root;
1571         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1572                 return fs_info->chunk_root;
1573         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1574                 return fs_info->dev_root;
1575         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1576                 return fs_info->csum_root;
1577         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1578                 return fs_info->quota_root ? fs_info->quota_root :
1579                                              ERR_PTR(-ENOENT);
1580         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1581                 return fs_info->uuid_root ? fs_info->uuid_root :
1582                                             ERR_PTR(-ENOENT);
1583         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1584                 return fs_info->free_space_root ? fs_info->free_space_root :
1585                                                   ERR_PTR(-ENOENT);
1586 again:
1587         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588         if (root) {
1589                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1590                         return ERR_PTR(-ENOENT);
1591                 return root;
1592         }
1593
1594         root = btrfs_read_fs_root(fs_info->tree_root, location);
1595         if (IS_ERR(root))
1596                 return root;
1597
1598         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1599                 ret = -ENOENT;
1600                 goto fail;
1601         }
1602
1603         ret = btrfs_init_fs_root(root);
1604         if (ret)
1605                 goto fail;
1606
1607         path = btrfs_alloc_path();
1608         if (!path) {
1609                 ret = -ENOMEM;
1610                 goto fail;
1611         }
1612         key.objectid = BTRFS_ORPHAN_OBJECTID;
1613         key.type = BTRFS_ORPHAN_ITEM_KEY;
1614         key.offset = location->objectid;
1615
1616         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1617         btrfs_free_path(path);
1618         if (ret < 0)
1619                 goto fail;
1620         if (ret == 0)
1621                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1622
1623         ret = btrfs_insert_fs_root(fs_info, root);
1624         if (ret) {
1625                 if (ret == -EEXIST) {
1626                         btrfs_free_fs_root(root);
1627                         goto again;
1628                 }
1629                 goto fail;
1630         }
1631         return root;
1632 fail:
1633         btrfs_free_fs_root(root);
1634         return ERR_PTR(ret);
1635 }
1636
1637 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1638 {
1639         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1640         int ret = 0;
1641         struct btrfs_device *device;
1642         struct backing_dev_info *bdi;
1643
1644         rcu_read_lock();
1645         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1646                 if (!device->bdev)
1647                         continue;
1648                 bdi = device->bdev->bd_bdi;
1649                 if (bdi_congested(bdi, bdi_bits)) {
1650                         ret = 1;
1651                         break;
1652                 }
1653         }
1654         rcu_read_unlock();
1655         return ret;
1656 }
1657
1658 /*
1659  * called by the kthread helper functions to finally call the bio end_io
1660  * functions.  This is where read checksum verification actually happens
1661  */
1662 static void end_workqueue_fn(struct btrfs_work *work)
1663 {
1664         struct bio *bio;
1665         struct btrfs_end_io_wq *end_io_wq;
1666
1667         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668         bio = end_io_wq->bio;
1669
1670         bio->bi_status = end_io_wq->status;
1671         bio->bi_private = end_io_wq->private;
1672         bio->bi_end_io = end_io_wq->end_io;
1673         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1674         bio_endio(bio);
1675 }
1676
1677 static int cleaner_kthread(void *arg)
1678 {
1679         struct btrfs_root *root = arg;
1680         struct btrfs_fs_info *fs_info = root->fs_info;
1681         int again;
1682
1683         while (1) {
1684                 again = 0;
1685
1686                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687
1688                 /* Make the cleaner go to sleep early. */
1689                 if (btrfs_need_cleaner_sleep(fs_info))
1690                         goto sleep;
1691
1692                 /*
1693                  * Do not do anything if we might cause open_ctree() to block
1694                  * before we have finished mounting the filesystem.
1695                  */
1696                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1697                         goto sleep;
1698
1699                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1700                         goto sleep;
1701
1702                 /*
1703                  * Avoid the problem that we change the status of the fs
1704                  * during the above check and trylock.
1705                  */
1706                 if (btrfs_need_cleaner_sleep(fs_info)) {
1707                         mutex_unlock(&fs_info->cleaner_mutex);
1708                         goto sleep;
1709                 }
1710
1711                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1712                 btrfs_run_delayed_iputs(fs_info);
1713                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1714
1715                 again = btrfs_clean_one_deleted_snapshot(root);
1716                 mutex_unlock(&fs_info->cleaner_mutex);
1717
1718                 /*
1719                  * The defragger has dealt with the R/O remount and umount,
1720                  * needn't do anything special here.
1721                  */
1722                 btrfs_run_defrag_inodes(fs_info);
1723
1724                 /*
1725                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1726                  * with relocation (btrfs_relocate_chunk) and relocation
1727                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1728                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1729                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1730                  * unused block groups.
1731                  */
1732                 btrfs_delete_unused_bgs(fs_info);
1733 sleep:
1734                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1735                 if (kthread_should_park())
1736                         kthread_parkme();
1737                 if (kthread_should_stop())
1738                         return 0;
1739                 if (!again) {
1740                         set_current_state(TASK_INTERRUPTIBLE);
1741                         schedule();
1742                         __set_current_state(TASK_RUNNING);
1743                 }
1744         }
1745 }
1746
1747 static int transaction_kthread(void *arg)
1748 {
1749         struct btrfs_root *root = arg;
1750         struct btrfs_fs_info *fs_info = root->fs_info;
1751         struct btrfs_trans_handle *trans;
1752         struct btrfs_transaction *cur;
1753         u64 transid;
1754         time64_t now;
1755         unsigned long delay;
1756         bool cannot_commit;
1757
1758         do {
1759                 cannot_commit = false;
1760                 delay = HZ * fs_info->commit_interval;
1761                 mutex_lock(&fs_info->transaction_kthread_mutex);
1762
1763                 spin_lock(&fs_info->trans_lock);
1764                 cur = fs_info->running_transaction;
1765                 if (!cur) {
1766                         spin_unlock(&fs_info->trans_lock);
1767                         goto sleep;
1768                 }
1769
1770                 now = ktime_get_seconds();
1771                 if (cur->state < TRANS_STATE_BLOCKED &&
1772                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1773                     (now < cur->start_time ||
1774                      now - cur->start_time < fs_info->commit_interval)) {
1775                         spin_unlock(&fs_info->trans_lock);
1776                         delay = HZ * 5;
1777                         goto sleep;
1778                 }
1779                 transid = cur->transid;
1780                 spin_unlock(&fs_info->trans_lock);
1781
1782                 /* If the file system is aborted, this will always fail. */
1783                 trans = btrfs_attach_transaction(root);
1784                 if (IS_ERR(trans)) {
1785                         if (PTR_ERR(trans) != -ENOENT)
1786                                 cannot_commit = true;
1787                         goto sleep;
1788                 }
1789                 if (transid == trans->transid) {
1790                         btrfs_commit_transaction(trans);
1791                 } else {
1792                         btrfs_end_transaction(trans);
1793                 }
1794 sleep:
1795                 wake_up_process(fs_info->cleaner_kthread);
1796                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1797
1798                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1799                                       &fs_info->fs_state)))
1800                         btrfs_cleanup_transaction(fs_info);
1801                 if (!kthread_should_stop() &&
1802                                 (!btrfs_transaction_blocked(fs_info) ||
1803                                  cannot_commit))
1804                         schedule_timeout_interruptible(delay);
1805         } while (!kthread_should_stop());
1806         return 0;
1807 }
1808
1809 /*
1810  * this will find the highest generation in the array of
1811  * root backups.  The index of the highest array is returned,
1812  * or -1 if we can't find anything.
1813  *
1814  * We check to make sure the array is valid by comparing the
1815  * generation of the latest  root in the array with the generation
1816  * in the super block.  If they don't match we pitch it.
1817  */
1818 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1819 {
1820         u64 cur;
1821         int newest_index = -1;
1822         struct btrfs_root_backup *root_backup;
1823         int i;
1824
1825         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1826                 root_backup = info->super_copy->super_roots + i;
1827                 cur = btrfs_backup_tree_root_gen(root_backup);
1828                 if (cur == newest_gen)
1829                         newest_index = i;
1830         }
1831
1832         /* check to see if we actually wrapped around */
1833         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1834                 root_backup = info->super_copy->super_roots;
1835                 cur = btrfs_backup_tree_root_gen(root_backup);
1836                 if (cur == newest_gen)
1837                         newest_index = 0;
1838         }
1839         return newest_index;
1840 }
1841
1842
1843 /*
1844  * find the oldest backup so we know where to store new entries
1845  * in the backup array.  This will set the backup_root_index
1846  * field in the fs_info struct
1847  */
1848 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1849                                      u64 newest_gen)
1850 {
1851         int newest_index = -1;
1852
1853         newest_index = find_newest_super_backup(info, newest_gen);
1854         /* if there was garbage in there, just move along */
1855         if (newest_index == -1) {
1856                 info->backup_root_index = 0;
1857         } else {
1858                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1859         }
1860 }
1861
1862 /*
1863  * copy all the root pointers into the super backup array.
1864  * this will bump the backup pointer by one when it is
1865  * done
1866  */
1867 static void backup_super_roots(struct btrfs_fs_info *info)
1868 {
1869         int next_backup;
1870         struct btrfs_root_backup *root_backup;
1871         int last_backup;
1872
1873         next_backup = info->backup_root_index;
1874         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1875                 BTRFS_NUM_BACKUP_ROOTS;
1876
1877         /*
1878          * just overwrite the last backup if we're at the same generation
1879          * this happens only at umount
1880          */
1881         root_backup = info->super_for_commit->super_roots + last_backup;
1882         if (btrfs_backup_tree_root_gen(root_backup) ==
1883             btrfs_header_generation(info->tree_root->node))
1884                 next_backup = last_backup;
1885
1886         root_backup = info->super_for_commit->super_roots + next_backup;
1887
1888         /*
1889          * make sure all of our padding and empty slots get zero filled
1890          * regardless of which ones we use today
1891          */
1892         memset(root_backup, 0, sizeof(*root_backup));
1893
1894         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1895
1896         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1897         btrfs_set_backup_tree_root_gen(root_backup,
1898                                btrfs_header_generation(info->tree_root->node));
1899
1900         btrfs_set_backup_tree_root_level(root_backup,
1901                                btrfs_header_level(info->tree_root->node));
1902
1903         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1904         btrfs_set_backup_chunk_root_gen(root_backup,
1905                                btrfs_header_generation(info->chunk_root->node));
1906         btrfs_set_backup_chunk_root_level(root_backup,
1907                                btrfs_header_level(info->chunk_root->node));
1908
1909         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1910         btrfs_set_backup_extent_root_gen(root_backup,
1911                                btrfs_header_generation(info->extent_root->node));
1912         btrfs_set_backup_extent_root_level(root_backup,
1913                                btrfs_header_level(info->extent_root->node));
1914
1915         /*
1916          * we might commit during log recovery, which happens before we set
1917          * the fs_root.  Make sure it is valid before we fill it in.
1918          */
1919         if (info->fs_root && info->fs_root->node) {
1920                 btrfs_set_backup_fs_root(root_backup,
1921                                          info->fs_root->node->start);
1922                 btrfs_set_backup_fs_root_gen(root_backup,
1923                                btrfs_header_generation(info->fs_root->node));
1924                 btrfs_set_backup_fs_root_level(root_backup,
1925                                btrfs_header_level(info->fs_root->node));
1926         }
1927
1928         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1929         btrfs_set_backup_dev_root_gen(root_backup,
1930                                btrfs_header_generation(info->dev_root->node));
1931         btrfs_set_backup_dev_root_level(root_backup,
1932                                        btrfs_header_level(info->dev_root->node));
1933
1934         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1935         btrfs_set_backup_csum_root_gen(root_backup,
1936                                btrfs_header_generation(info->csum_root->node));
1937         btrfs_set_backup_csum_root_level(root_backup,
1938                                btrfs_header_level(info->csum_root->node));
1939
1940         btrfs_set_backup_total_bytes(root_backup,
1941                              btrfs_super_total_bytes(info->super_copy));
1942         btrfs_set_backup_bytes_used(root_backup,
1943                              btrfs_super_bytes_used(info->super_copy));
1944         btrfs_set_backup_num_devices(root_backup,
1945                              btrfs_super_num_devices(info->super_copy));
1946
1947         /*
1948          * if we don't copy this out to the super_copy, it won't get remembered
1949          * for the next commit
1950          */
1951         memcpy(&info->super_copy->super_roots,
1952                &info->super_for_commit->super_roots,
1953                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1954 }
1955
1956 /*
1957  * this copies info out of the root backup array and back into
1958  * the in-memory super block.  It is meant to help iterate through
1959  * the array, so you send it the number of backups you've already
1960  * tried and the last backup index you used.
1961  *
1962  * this returns -1 when it has tried all the backups
1963  */
1964 static noinline int next_root_backup(struct btrfs_fs_info *info,
1965                                      struct btrfs_super_block *super,
1966                                      int *num_backups_tried, int *backup_index)
1967 {
1968         struct btrfs_root_backup *root_backup;
1969         int newest = *backup_index;
1970
1971         if (*num_backups_tried == 0) {
1972                 u64 gen = btrfs_super_generation(super);
1973
1974                 newest = find_newest_super_backup(info, gen);
1975                 if (newest == -1)
1976                         return -1;
1977
1978                 *backup_index = newest;
1979                 *num_backups_tried = 1;
1980         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1981                 /* we've tried all the backups, all done */
1982                 return -1;
1983         } else {
1984                 /* jump to the next oldest backup */
1985                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1986                         BTRFS_NUM_BACKUP_ROOTS;
1987                 *backup_index = newest;
1988                 *num_backups_tried += 1;
1989         }
1990         root_backup = super->super_roots + newest;
1991
1992         btrfs_set_super_generation(super,
1993                                    btrfs_backup_tree_root_gen(root_backup));
1994         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1995         btrfs_set_super_root_level(super,
1996                                    btrfs_backup_tree_root_level(root_backup));
1997         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1998
1999         /*
2000          * fixme: the total bytes and num_devices need to match or we should
2001          * need a fsck
2002          */
2003         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2004         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2005         return 0;
2006 }
2007
2008 /* helper to cleanup workers */
2009 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2010 {
2011         btrfs_destroy_workqueue(fs_info->fixup_workers);
2012         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2013         btrfs_destroy_workqueue(fs_info->workers);
2014         btrfs_destroy_workqueue(fs_info->endio_workers);
2015         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2016         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2017         btrfs_destroy_workqueue(fs_info->rmw_workers);
2018         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2019         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2020         btrfs_destroy_workqueue(fs_info->submit_workers);
2021         btrfs_destroy_workqueue(fs_info->delayed_workers);
2022         btrfs_destroy_workqueue(fs_info->caching_workers);
2023         btrfs_destroy_workqueue(fs_info->readahead_workers);
2024         btrfs_destroy_workqueue(fs_info->flush_workers);
2025         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2026         btrfs_destroy_workqueue(fs_info->extent_workers);
2027         /*
2028          * Now that all other work queues are destroyed, we can safely destroy
2029          * the queues used for metadata I/O, since tasks from those other work
2030          * queues can do metadata I/O operations.
2031          */
2032         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2033         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2034 }
2035
2036 static void free_root_extent_buffers(struct btrfs_root *root)
2037 {
2038         if (root) {
2039                 free_extent_buffer(root->node);
2040                 free_extent_buffer(root->commit_root);
2041                 root->node = NULL;
2042                 root->commit_root = NULL;
2043         }
2044 }
2045
2046 /* helper to cleanup tree roots */
2047 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2048 {
2049         free_root_extent_buffers(info->tree_root);
2050
2051         free_root_extent_buffers(info->dev_root);
2052         free_root_extent_buffers(info->extent_root);
2053         free_root_extent_buffers(info->csum_root);
2054         free_root_extent_buffers(info->quota_root);
2055         free_root_extent_buffers(info->uuid_root);
2056         if (chunk_root)
2057                 free_root_extent_buffers(info->chunk_root);
2058         free_root_extent_buffers(info->free_space_root);
2059 }
2060
2061 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2062 {
2063         int ret;
2064         struct btrfs_root *gang[8];
2065         int i;
2066
2067         while (!list_empty(&fs_info->dead_roots)) {
2068                 gang[0] = list_entry(fs_info->dead_roots.next,
2069                                      struct btrfs_root, root_list);
2070                 list_del(&gang[0]->root_list);
2071
2072                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2073                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2074                 } else {
2075                         free_extent_buffer(gang[0]->node);
2076                         free_extent_buffer(gang[0]->commit_root);
2077                         btrfs_put_fs_root(gang[0]);
2078                 }
2079         }
2080
2081         while (1) {
2082                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2083                                              (void **)gang, 0,
2084                                              ARRAY_SIZE(gang));
2085                 if (!ret)
2086                         break;
2087                 for (i = 0; i < ret; i++)
2088                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2089         }
2090
2091         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2092                 btrfs_free_log_root_tree(NULL, fs_info);
2093                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2094         }
2095 }
2096
2097 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2098 {
2099         mutex_init(&fs_info->scrub_lock);
2100         atomic_set(&fs_info->scrubs_running, 0);
2101         atomic_set(&fs_info->scrub_pause_req, 0);
2102         atomic_set(&fs_info->scrubs_paused, 0);
2103         atomic_set(&fs_info->scrub_cancel_req, 0);
2104         init_waitqueue_head(&fs_info->scrub_pause_wait);
2105         fs_info->scrub_workers_refcnt = 0;
2106 }
2107
2108 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2109 {
2110         spin_lock_init(&fs_info->balance_lock);
2111         mutex_init(&fs_info->balance_mutex);
2112         atomic_set(&fs_info->balance_pause_req, 0);
2113         atomic_set(&fs_info->balance_cancel_req, 0);
2114         fs_info->balance_ctl = NULL;
2115         init_waitqueue_head(&fs_info->balance_wait_q);
2116 }
2117
2118 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2119 {
2120         struct inode *inode = fs_info->btree_inode;
2121
2122         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2123         set_nlink(inode, 1);
2124         /*
2125          * we set the i_size on the btree inode to the max possible int.
2126          * the real end of the address space is determined by all of
2127          * the devices in the system
2128          */
2129         inode->i_size = OFFSET_MAX;
2130         inode->i_mapping->a_ops = &btree_aops;
2131
2132         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2133         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2134         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2135         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2136
2137         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2138
2139         BTRFS_I(inode)->root = fs_info->tree_root;
2140         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2141         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2142         btrfs_insert_inode_hash(inode);
2143 }
2144
2145 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2146 {
2147         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2148         init_rwsem(&fs_info->dev_replace.rwsem);
2149         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2150 }
2151
2152 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2153 {
2154         spin_lock_init(&fs_info->qgroup_lock);
2155         mutex_init(&fs_info->qgroup_ioctl_lock);
2156         fs_info->qgroup_tree = RB_ROOT;
2157         fs_info->qgroup_op_tree = RB_ROOT;
2158         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2159         fs_info->qgroup_seq = 1;
2160         fs_info->qgroup_ulist = NULL;
2161         fs_info->qgroup_rescan_running = false;
2162         mutex_init(&fs_info->qgroup_rescan_lock);
2163 }
2164
2165 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2166                 struct btrfs_fs_devices *fs_devices)
2167 {
2168         u32 max_active = fs_info->thread_pool_size;
2169         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2170
2171         fs_info->workers =
2172                 btrfs_alloc_workqueue(fs_info, "worker",
2173                                       flags | WQ_HIGHPRI, max_active, 16);
2174
2175         fs_info->delalloc_workers =
2176                 btrfs_alloc_workqueue(fs_info, "delalloc",
2177                                       flags, max_active, 2);
2178
2179         fs_info->flush_workers =
2180                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2181                                       flags, max_active, 0);
2182
2183         fs_info->caching_workers =
2184                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2185
2186         /*
2187          * a higher idle thresh on the submit workers makes it much more
2188          * likely that bios will be send down in a sane order to the
2189          * devices
2190          */
2191         fs_info->submit_workers =
2192                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2193                                       min_t(u64, fs_devices->num_devices,
2194                                             max_active), 64);
2195
2196         fs_info->fixup_workers =
2197                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2198
2199         /*
2200          * endios are largely parallel and should have a very
2201          * low idle thresh
2202          */
2203         fs_info->endio_workers =
2204                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2205         fs_info->endio_meta_workers =
2206                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2207                                       max_active, 4);
2208         fs_info->endio_meta_write_workers =
2209                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2210                                       max_active, 2);
2211         fs_info->endio_raid56_workers =
2212                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2213                                       max_active, 4);
2214         fs_info->endio_repair_workers =
2215                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2216         fs_info->rmw_workers =
2217                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2218         fs_info->endio_write_workers =
2219                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2220                                       max_active, 2);
2221         fs_info->endio_freespace_worker =
2222                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2223                                       max_active, 0);
2224         fs_info->delayed_workers =
2225                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2226                                       max_active, 0);
2227         fs_info->readahead_workers =
2228                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2229                                       max_active, 2);
2230         fs_info->qgroup_rescan_workers =
2231                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2232         fs_info->extent_workers =
2233                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2234                                       min_t(u64, fs_devices->num_devices,
2235                                             max_active), 8);
2236
2237         if (!(fs_info->workers && fs_info->delalloc_workers &&
2238               fs_info->submit_workers && fs_info->flush_workers &&
2239               fs_info->endio_workers && fs_info->endio_meta_workers &&
2240               fs_info->endio_meta_write_workers &&
2241               fs_info->endio_repair_workers &&
2242               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2243               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2244               fs_info->caching_workers && fs_info->readahead_workers &&
2245               fs_info->fixup_workers && fs_info->delayed_workers &&
2246               fs_info->extent_workers &&
2247               fs_info->qgroup_rescan_workers)) {
2248                 return -ENOMEM;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2255                             struct btrfs_fs_devices *fs_devices)
2256 {
2257         int ret;
2258         struct btrfs_root *log_tree_root;
2259         struct btrfs_super_block *disk_super = fs_info->super_copy;
2260         u64 bytenr = btrfs_super_log_root(disk_super);
2261         int level = btrfs_super_log_root_level(disk_super);
2262
2263         if (fs_devices->rw_devices == 0) {
2264                 btrfs_warn(fs_info, "log replay required on RO media");
2265                 return -EIO;
2266         }
2267
2268         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2269         if (!log_tree_root)
2270                 return -ENOMEM;
2271
2272         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2273
2274         log_tree_root->node = read_tree_block(fs_info, bytenr,
2275                                               fs_info->generation + 1,
2276                                               level, NULL);
2277         if (IS_ERR(log_tree_root->node)) {
2278                 btrfs_warn(fs_info, "failed to read log tree");
2279                 ret = PTR_ERR(log_tree_root->node);
2280                 kfree(log_tree_root);
2281                 return ret;
2282         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2283                 btrfs_err(fs_info, "failed to read log tree");
2284                 free_extent_buffer(log_tree_root->node);
2285                 kfree(log_tree_root);
2286                 return -EIO;
2287         }
2288         /* returns with log_tree_root freed on success */
2289         ret = btrfs_recover_log_trees(log_tree_root);
2290         if (ret) {
2291                 btrfs_handle_fs_error(fs_info, ret,
2292                                       "Failed to recover log tree");
2293                 free_extent_buffer(log_tree_root->node);
2294                 kfree(log_tree_root);
2295                 return ret;
2296         }
2297
2298         if (sb_rdonly(fs_info->sb)) {
2299                 ret = btrfs_commit_super(fs_info);
2300                 if (ret)
2301                         return ret;
2302         }
2303
2304         return 0;
2305 }
2306
2307 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2308 {
2309         struct btrfs_root *tree_root = fs_info->tree_root;
2310         struct btrfs_root *root;
2311         struct btrfs_key location;
2312         int ret;
2313
2314         BUG_ON(!fs_info->tree_root);
2315
2316         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2317         location.type = BTRFS_ROOT_ITEM_KEY;
2318         location.offset = 0;
2319
2320         root = btrfs_read_tree_root(tree_root, &location);
2321         if (IS_ERR(root)) {
2322                 ret = PTR_ERR(root);
2323                 goto out;
2324         }
2325         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326         fs_info->extent_root = root;
2327
2328         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2329         root = btrfs_read_tree_root(tree_root, &location);
2330         if (IS_ERR(root)) {
2331                 ret = PTR_ERR(root);
2332                 goto out;
2333         }
2334         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335         fs_info->dev_root = root;
2336         btrfs_init_devices_late(fs_info);
2337
2338         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2339         root = btrfs_read_tree_root(tree_root, &location);
2340         if (IS_ERR(root)) {
2341                 ret = PTR_ERR(root);
2342                 goto out;
2343         }
2344         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345         fs_info->csum_root = root;
2346
2347         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348         root = btrfs_read_tree_root(tree_root, &location);
2349         if (!IS_ERR(root)) {
2350                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352                 fs_info->quota_root = root;
2353         }
2354
2355         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356         root = btrfs_read_tree_root(tree_root, &location);
2357         if (IS_ERR(root)) {
2358                 ret = PTR_ERR(root);
2359                 if (ret != -ENOENT)
2360                         goto out;
2361         } else {
2362                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363                 fs_info->uuid_root = root;
2364         }
2365
2366         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368                 root = btrfs_read_tree_root(tree_root, &location);
2369                 if (IS_ERR(root)) {
2370                         ret = PTR_ERR(root);
2371                         goto out;
2372                 }
2373                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374                 fs_info->free_space_root = root;
2375         }
2376
2377         return 0;
2378 out:
2379         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380                    location.objectid, ret);
2381         return ret;
2382 }
2383
2384 /*
2385  * Real super block validation
2386  * NOTE: super csum type and incompat features will not be checked here.
2387  *
2388  * @sb:         super block to check
2389  * @mirror_num: the super block number to check its bytenr:
2390  *              0       the primary (1st) sb
2391  *              1, 2    2nd and 3rd backup copy
2392  *             -1       skip bytenr check
2393  */
2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395                             struct btrfs_super_block *sb, int mirror_num)
2396 {
2397         u64 nodesize = btrfs_super_nodesize(sb);
2398         u64 sectorsize = btrfs_super_sectorsize(sb);
2399         int ret = 0;
2400
2401         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402                 btrfs_err(fs_info, "no valid FS found");
2403                 ret = -EINVAL;
2404         }
2405         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408                 ret = -EINVAL;
2409         }
2410         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413                 ret = -EINVAL;
2414         }
2415         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418                 ret = -EINVAL;
2419         }
2420         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423                 ret = -EINVAL;
2424         }
2425
2426         /*
2427          * Check sectorsize and nodesize first, other check will need it.
2428          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429          */
2430         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433                 ret = -EINVAL;
2434         }
2435         /* Only PAGE SIZE is supported yet */
2436         if (sectorsize != PAGE_SIZE) {
2437                 btrfs_err(fs_info,
2438                         "sectorsize %llu not supported yet, only support %lu",
2439                         sectorsize, PAGE_SIZE);
2440                 ret = -EINVAL;
2441         }
2442         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445                 ret = -EINVAL;
2446         }
2447         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2450                 ret = -EINVAL;
2451         }
2452
2453         /* Root alignment check */
2454         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456                            btrfs_super_root(sb));
2457                 ret = -EINVAL;
2458         }
2459         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461                            btrfs_super_chunk_root(sb));
2462                 ret = -EINVAL;
2463         }
2464         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466                            btrfs_super_log_root(sb));
2467                 ret = -EINVAL;
2468         }
2469
2470         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2471                    BTRFS_FSID_SIZE) != 0) {
2472                 btrfs_err(fs_info,
2473                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2474                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2475                 ret = -EINVAL;
2476         }
2477
2478         /*
2479          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2480          * done later
2481          */
2482         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2483                 btrfs_err(fs_info, "bytes_used is too small %llu",
2484                           btrfs_super_bytes_used(sb));
2485                 ret = -EINVAL;
2486         }
2487         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2488                 btrfs_err(fs_info, "invalid stripesize %u",
2489                           btrfs_super_stripesize(sb));
2490                 ret = -EINVAL;
2491         }
2492         if (btrfs_super_num_devices(sb) > (1UL << 31))
2493                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2494                            btrfs_super_num_devices(sb));
2495         if (btrfs_super_num_devices(sb) == 0) {
2496                 btrfs_err(fs_info, "number of devices is 0");
2497                 ret = -EINVAL;
2498         }
2499
2500         if (mirror_num >= 0 &&
2501             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2502                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2503                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2504                 ret = -EINVAL;
2505         }
2506
2507         /*
2508          * Obvious sys_chunk_array corruptions, it must hold at least one key
2509          * and one chunk
2510          */
2511         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2512                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2513                           btrfs_super_sys_array_size(sb),
2514                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2515                 ret = -EINVAL;
2516         }
2517         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2518                         + sizeof(struct btrfs_chunk)) {
2519                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2520                           btrfs_super_sys_array_size(sb),
2521                           sizeof(struct btrfs_disk_key)
2522                           + sizeof(struct btrfs_chunk));
2523                 ret = -EINVAL;
2524         }
2525
2526         /*
2527          * The generation is a global counter, we'll trust it more than the others
2528          * but it's still possible that it's the one that's wrong.
2529          */
2530         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2531                 btrfs_warn(fs_info,
2532                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2533                         btrfs_super_generation(sb),
2534                         btrfs_super_chunk_root_generation(sb));
2535         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2536             && btrfs_super_cache_generation(sb) != (u64)-1)
2537                 btrfs_warn(fs_info,
2538                         "suspicious: generation < cache_generation: %llu < %llu",
2539                         btrfs_super_generation(sb),
2540                         btrfs_super_cache_generation(sb));
2541
2542         return ret;
2543 }
2544
2545 /*
2546  * Validation of super block at mount time.
2547  * Some checks already done early at mount time, like csum type and incompat
2548  * flags will be skipped.
2549  */
2550 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2551 {
2552         return validate_super(fs_info, fs_info->super_copy, 0);
2553 }
2554
2555 /*
2556  * Validation of super block at write time.
2557  * Some checks like bytenr check will be skipped as their values will be
2558  * overwritten soon.
2559  * Extra checks like csum type and incompat flags will be done here.
2560  */
2561 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2562                                       struct btrfs_super_block *sb)
2563 {
2564         int ret;
2565
2566         ret = validate_super(fs_info, sb, -1);
2567         if (ret < 0)
2568                 goto out;
2569         if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2570                 ret = -EUCLEAN;
2571                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2572                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2573                 goto out;
2574         }
2575         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2576                 ret = -EUCLEAN;
2577                 btrfs_err(fs_info,
2578                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2579                           btrfs_super_incompat_flags(sb),
2580                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2581                 goto out;
2582         }
2583 out:
2584         if (ret < 0)
2585                 btrfs_err(fs_info,
2586                 "super block corruption detected before writing it to disk");
2587         return ret;
2588 }
2589
2590 int open_ctree(struct super_block *sb,
2591                struct btrfs_fs_devices *fs_devices,
2592                char *options)
2593 {
2594         u32 sectorsize;
2595         u32 nodesize;
2596         u32 stripesize;
2597         u64 generation;
2598         u64 features;
2599         struct btrfs_key location;
2600         struct buffer_head *bh;
2601         struct btrfs_super_block *disk_super;
2602         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2603         struct btrfs_root *tree_root;
2604         struct btrfs_root *chunk_root;
2605         int ret;
2606         int err = -EINVAL;
2607         int num_backups_tried = 0;
2608         int backup_index = 0;
2609         int clear_free_space_tree = 0;
2610         int level;
2611
2612         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2613         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2614         if (!tree_root || !chunk_root) {
2615                 err = -ENOMEM;
2616                 goto fail;
2617         }
2618
2619         ret = init_srcu_struct(&fs_info->subvol_srcu);
2620         if (ret) {
2621                 err = ret;
2622                 goto fail;
2623         }
2624
2625         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2626         if (ret) {
2627                 err = ret;
2628                 goto fail_srcu;
2629         }
2630         fs_info->dirty_metadata_batch = PAGE_SIZE *
2631                                         (1 + ilog2(nr_cpu_ids));
2632
2633         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2634         if (ret) {
2635                 err = ret;
2636                 goto fail_dirty_metadata_bytes;
2637         }
2638
2639         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2640                         GFP_KERNEL);
2641         if (ret) {
2642                 err = ret;
2643                 goto fail_delalloc_bytes;
2644         }
2645
2646         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2647         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2648         INIT_LIST_HEAD(&fs_info->trans_list);
2649         INIT_LIST_HEAD(&fs_info->dead_roots);
2650         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2651         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2652         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2653         INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2654         spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2655         spin_lock_init(&fs_info->delalloc_root_lock);
2656         spin_lock_init(&fs_info->trans_lock);
2657         spin_lock_init(&fs_info->fs_roots_radix_lock);
2658         spin_lock_init(&fs_info->delayed_iput_lock);
2659         spin_lock_init(&fs_info->defrag_inodes_lock);
2660         spin_lock_init(&fs_info->tree_mod_seq_lock);
2661         spin_lock_init(&fs_info->super_lock);
2662         spin_lock_init(&fs_info->qgroup_op_lock);
2663         spin_lock_init(&fs_info->buffer_lock);
2664         spin_lock_init(&fs_info->unused_bgs_lock);
2665         rwlock_init(&fs_info->tree_mod_log_lock);
2666         mutex_init(&fs_info->unused_bg_unpin_mutex);
2667         mutex_init(&fs_info->delete_unused_bgs_mutex);
2668         mutex_init(&fs_info->reloc_mutex);
2669         mutex_init(&fs_info->delalloc_root_mutex);
2670         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2671         seqlock_init(&fs_info->profiles_lock);
2672
2673         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2674         INIT_LIST_HEAD(&fs_info->space_info);
2675         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2676         INIT_LIST_HEAD(&fs_info->unused_bgs);
2677         btrfs_mapping_init(&fs_info->mapping_tree);
2678         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2679                              BTRFS_BLOCK_RSV_GLOBAL);
2680         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2681         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2682         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2683         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2684                              BTRFS_BLOCK_RSV_DELOPS);
2685         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2686                              BTRFS_BLOCK_RSV_DELREFS);
2687
2688         atomic_set(&fs_info->async_delalloc_pages, 0);
2689         atomic_set(&fs_info->defrag_running, 0);
2690         atomic_set(&fs_info->qgroup_op_seq, 0);
2691         atomic_set(&fs_info->reada_works_cnt, 0);
2692         atomic64_set(&fs_info->tree_mod_seq, 0);
2693         fs_info->sb = sb;
2694         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2695         fs_info->metadata_ratio = 0;
2696         fs_info->defrag_inodes = RB_ROOT;
2697         atomic64_set(&fs_info->free_chunk_space, 0);
2698         fs_info->tree_mod_log = RB_ROOT;
2699         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2700         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2701         /* readahead state */
2702         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2703         spin_lock_init(&fs_info->reada_lock);
2704         btrfs_init_ref_verify(fs_info);
2705
2706         fs_info->thread_pool_size = min_t(unsigned long,
2707                                           num_online_cpus() + 2, 8);
2708
2709         INIT_LIST_HEAD(&fs_info->ordered_roots);
2710         spin_lock_init(&fs_info->ordered_root_lock);
2711
2712         fs_info->btree_inode = new_inode(sb);
2713         if (!fs_info->btree_inode) {
2714                 err = -ENOMEM;
2715                 goto fail_bio_counter;
2716         }
2717         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2718
2719         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2720                                         GFP_KERNEL);
2721         if (!fs_info->delayed_root) {
2722                 err = -ENOMEM;
2723                 goto fail_iput;
2724         }
2725         btrfs_init_delayed_root(fs_info->delayed_root);
2726
2727         btrfs_init_scrub(fs_info);
2728 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2729         fs_info->check_integrity_print_mask = 0;
2730 #endif
2731         btrfs_init_balance(fs_info);
2732         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2733
2734         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2735         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2736
2737         btrfs_init_btree_inode(fs_info);
2738
2739         spin_lock_init(&fs_info->block_group_cache_lock);
2740         fs_info->block_group_cache_tree = RB_ROOT;
2741         fs_info->first_logical_byte = (u64)-1;
2742
2743         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2744         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2745         fs_info->pinned_extents = &fs_info->freed_extents[0];
2746         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2747
2748         mutex_init(&fs_info->ordered_operations_mutex);
2749         mutex_init(&fs_info->tree_log_mutex);
2750         mutex_init(&fs_info->chunk_mutex);
2751         mutex_init(&fs_info->transaction_kthread_mutex);
2752         mutex_init(&fs_info->cleaner_mutex);
2753         mutex_init(&fs_info->ro_block_group_mutex);
2754         init_rwsem(&fs_info->commit_root_sem);
2755         init_rwsem(&fs_info->cleanup_work_sem);
2756         init_rwsem(&fs_info->subvol_sem);
2757         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2758
2759         btrfs_init_dev_replace_locks(fs_info);
2760         btrfs_init_qgroup(fs_info);
2761
2762         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2763         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2764
2765         init_waitqueue_head(&fs_info->transaction_throttle);
2766         init_waitqueue_head(&fs_info->transaction_wait);
2767         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2768         init_waitqueue_head(&fs_info->async_submit_wait);
2769
2770         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2771
2772         /* Usable values until the real ones are cached from the superblock */
2773         fs_info->nodesize = 4096;
2774         fs_info->sectorsize = 4096;
2775         fs_info->stripesize = 4096;
2776
2777         spin_lock_init(&fs_info->swapfile_pins_lock);
2778         fs_info->swapfile_pins = RB_ROOT;
2779
2780         ret = btrfs_alloc_stripe_hash_table(fs_info);
2781         if (ret) {
2782                 err = ret;
2783                 goto fail_alloc;
2784         }
2785
2786         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2787
2788         invalidate_bdev(fs_devices->latest_bdev);
2789
2790         /*
2791          * Read super block and check the signature bytes only
2792          */
2793         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2794         if (IS_ERR(bh)) {
2795                 err = PTR_ERR(bh);
2796                 goto fail_alloc;
2797         }
2798
2799         /*
2800          * We want to check superblock checksum, the type is stored inside.
2801          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2802          */
2803         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2804                 btrfs_err(fs_info, "superblock checksum mismatch");
2805                 err = -EINVAL;
2806                 brelse(bh);
2807                 goto fail_alloc;
2808         }
2809
2810         /*
2811          * super_copy is zeroed at allocation time and we never touch the
2812          * following bytes up to INFO_SIZE, the checksum is calculated from
2813          * the whole block of INFO_SIZE
2814          */
2815         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2816         brelse(bh);
2817
2818         disk_super = fs_info->super_copy;
2819
2820         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2821                        BTRFS_FSID_SIZE));
2822
2823         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2824                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2825                                 fs_info->super_copy->metadata_uuid,
2826                                 BTRFS_FSID_SIZE));
2827         }
2828
2829         features = btrfs_super_flags(disk_super);
2830         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2831                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2832                 btrfs_set_super_flags(disk_super, features);
2833                 btrfs_info(fs_info,
2834                         "found metadata UUID change in progress flag, clearing");
2835         }
2836
2837         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2838                sizeof(*fs_info->super_for_commit));
2839
2840         ret = btrfs_validate_mount_super(fs_info);
2841         if (ret) {
2842                 btrfs_err(fs_info, "superblock contains fatal errors");
2843                 err = -EINVAL;
2844                 goto fail_alloc;
2845         }
2846
2847         if (!btrfs_super_root(disk_super))
2848                 goto fail_alloc;
2849
2850         /* check FS state, whether FS is broken. */
2851         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2852                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2853
2854         /*
2855          * run through our array of backup supers and setup
2856          * our ring pointer to the oldest one
2857          */
2858         generation = btrfs_super_generation(disk_super);
2859         find_oldest_super_backup(fs_info, generation);
2860
2861         /*
2862          * In the long term, we'll store the compression type in the super
2863          * block, and it'll be used for per file compression control.
2864          */
2865         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2866
2867         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2868         if (ret) {
2869                 err = ret;
2870                 goto fail_alloc;
2871         }
2872
2873         features = btrfs_super_incompat_flags(disk_super) &
2874                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2875         if (features) {
2876                 btrfs_err(fs_info,
2877                     "cannot mount because of unsupported optional features (%llx)",
2878                     features);
2879                 err = -EINVAL;
2880                 goto fail_alloc;
2881         }
2882
2883         features = btrfs_super_incompat_flags(disk_super);
2884         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2885         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2886                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2887         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2888                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2889
2890         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2891                 btrfs_info(fs_info, "has skinny extents");
2892
2893         /*
2894          * flag our filesystem as having big metadata blocks if
2895          * they are bigger than the page size
2896          */
2897         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2898                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2899                         btrfs_info(fs_info,
2900                                 "flagging fs with big metadata feature");
2901                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2902         }
2903
2904         nodesize = btrfs_super_nodesize(disk_super);
2905         sectorsize = btrfs_super_sectorsize(disk_super);
2906         stripesize = sectorsize;
2907         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2908         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2909
2910         /* Cache block sizes */
2911         fs_info->nodesize = nodesize;
2912         fs_info->sectorsize = sectorsize;
2913         fs_info->stripesize = stripesize;
2914
2915         /*
2916          * mixed block groups end up with duplicate but slightly offset
2917          * extent buffers for the same range.  It leads to corruptions
2918          */
2919         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2920             (sectorsize != nodesize)) {
2921                 btrfs_err(fs_info,
2922 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2923                         nodesize, sectorsize);
2924                 goto fail_alloc;
2925         }
2926
2927         /*
2928          * Needn't use the lock because there is no other task which will
2929          * update the flag.
2930          */
2931         btrfs_set_super_incompat_flags(disk_super, features);
2932
2933         features = btrfs_super_compat_ro_flags(disk_super) &
2934                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2935         if (!sb_rdonly(sb) && features) {
2936                 btrfs_err(fs_info,
2937         "cannot mount read-write because of unsupported optional features (%llx)",
2938                        features);
2939                 err = -EINVAL;
2940                 goto fail_alloc;
2941         }
2942
2943         ret = btrfs_init_workqueues(fs_info, fs_devices);
2944         if (ret) {
2945                 err = ret;
2946                 goto fail_sb_buffer;
2947         }
2948
2949         sb->s_bdi->congested_fn = btrfs_congested_fn;
2950         sb->s_bdi->congested_data = fs_info;
2951         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2952         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2953         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2954         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2955
2956         sb->s_blocksize = sectorsize;
2957         sb->s_blocksize_bits = blksize_bits(sectorsize);
2958         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2959
2960         mutex_lock(&fs_info->chunk_mutex);
2961         ret = btrfs_read_sys_array(fs_info);
2962         mutex_unlock(&fs_info->chunk_mutex);
2963         if (ret) {
2964                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2965                 goto fail_sb_buffer;
2966         }
2967
2968         generation = btrfs_super_chunk_root_generation(disk_super);
2969         level = btrfs_super_chunk_root_level(disk_super);
2970
2971         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2972
2973         chunk_root->node = read_tree_block(fs_info,
2974                                            btrfs_super_chunk_root(disk_super),
2975                                            generation, level, NULL);
2976         if (IS_ERR(chunk_root->node) ||
2977             !extent_buffer_uptodate(chunk_root->node)) {
2978                 btrfs_err(fs_info, "failed to read chunk root");
2979                 if (!IS_ERR(chunk_root->node))
2980                         free_extent_buffer(chunk_root->node);
2981                 chunk_root->node = NULL;
2982                 goto fail_tree_roots;
2983         }
2984         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2985         chunk_root->commit_root = btrfs_root_node(chunk_root);
2986
2987         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2988            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2989
2990         ret = btrfs_read_chunk_tree(fs_info);
2991         if (ret) {
2992                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2993                 goto fail_tree_roots;
2994         }
2995
2996         /*
2997          * Keep the devid that is marked to be the target device for the
2998          * device replace procedure
2999          */
3000         btrfs_free_extra_devids(fs_devices, 0);
3001
3002         if (!fs_devices->latest_bdev) {
3003                 btrfs_err(fs_info, "failed to read devices");
3004                 goto fail_tree_roots;
3005         }
3006
3007 retry_root_backup:
3008         generation = btrfs_super_generation(disk_super);
3009         level = btrfs_super_root_level(disk_super);
3010
3011         tree_root->node = read_tree_block(fs_info,
3012                                           btrfs_super_root(disk_super),
3013                                           generation, level, NULL);
3014         if (IS_ERR(tree_root->node) ||
3015             !extent_buffer_uptodate(tree_root->node)) {
3016                 btrfs_warn(fs_info, "failed to read tree root");
3017                 if (!IS_ERR(tree_root->node))
3018                         free_extent_buffer(tree_root->node);
3019                 tree_root->node = NULL;
3020                 goto recovery_tree_root;
3021         }
3022
3023         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3024         tree_root->commit_root = btrfs_root_node(tree_root);
3025         btrfs_set_root_refs(&tree_root->root_item, 1);
3026
3027         mutex_lock(&tree_root->objectid_mutex);
3028         ret = btrfs_find_highest_objectid(tree_root,
3029                                         &tree_root->highest_objectid);
3030         if (ret) {
3031                 mutex_unlock(&tree_root->objectid_mutex);
3032                 goto recovery_tree_root;
3033         }
3034
3035         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3036
3037         mutex_unlock(&tree_root->objectid_mutex);
3038
3039         ret = btrfs_read_roots(fs_info);
3040         if (ret)
3041                 goto recovery_tree_root;
3042
3043         fs_info->generation = generation;
3044         fs_info->last_trans_committed = generation;
3045
3046         ret = btrfs_verify_dev_extents(fs_info);
3047         if (ret) {
3048                 btrfs_err(fs_info,
3049                           "failed to verify dev extents against chunks: %d",
3050                           ret);
3051                 goto fail_block_groups;
3052         }
3053         ret = btrfs_recover_balance(fs_info);
3054         if (ret) {
3055                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3056                 goto fail_block_groups;
3057         }
3058
3059         ret = btrfs_init_dev_stats(fs_info);
3060         if (ret) {
3061                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3062                 goto fail_block_groups;
3063         }
3064
3065         ret = btrfs_init_dev_replace(fs_info);
3066         if (ret) {
3067                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3068                 goto fail_block_groups;
3069         }
3070
3071         btrfs_free_extra_devids(fs_devices, 1);
3072
3073         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3074         if (ret) {
3075                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3076                                 ret);
3077                 goto fail_block_groups;
3078         }
3079
3080         ret = btrfs_sysfs_add_device(fs_devices);
3081         if (ret) {
3082                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3083                                 ret);
3084                 goto fail_fsdev_sysfs;
3085         }
3086
3087         ret = btrfs_sysfs_add_mounted(fs_info);
3088         if (ret) {
3089                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3090                 goto fail_fsdev_sysfs;
3091         }
3092
3093         ret = btrfs_init_space_info(fs_info);
3094         if (ret) {
3095                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3096                 goto fail_sysfs;
3097         }
3098
3099         ret = btrfs_read_block_groups(fs_info);
3100         if (ret) {
3101                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3102                 goto fail_sysfs;
3103         }
3104
3105         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3106                 btrfs_warn(fs_info,
3107                 "writable mount is not allowed due to too many missing devices");
3108                 goto fail_sysfs;
3109         }
3110
3111         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3112                                                "btrfs-cleaner");
3113         if (IS_ERR(fs_info->cleaner_kthread))
3114                 goto fail_sysfs;
3115
3116         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3117                                                    tree_root,
3118                                                    "btrfs-transaction");
3119         if (IS_ERR(fs_info->transaction_kthread))
3120                 goto fail_cleaner;
3121
3122         if (!btrfs_test_opt(fs_info, NOSSD) &&
3123             !fs_info->fs_devices->rotating) {
3124                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3125         }
3126
3127         /*
3128          * Mount does not set all options immediately, we can do it now and do
3129          * not have to wait for transaction commit
3130          */
3131         btrfs_apply_pending_changes(fs_info);
3132
3133 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3134         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3135                 ret = btrfsic_mount(fs_info, fs_devices,
3136                                     btrfs_test_opt(fs_info,
3137                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3138                                     1 : 0,
3139                                     fs_info->check_integrity_print_mask);
3140                 if (ret)
3141                         btrfs_warn(fs_info,
3142                                 "failed to initialize integrity check module: %d",
3143                                 ret);
3144         }
3145 #endif
3146         ret = btrfs_read_qgroup_config(fs_info);
3147         if (ret)
3148                 goto fail_trans_kthread;
3149
3150         if (btrfs_build_ref_tree(fs_info))
3151                 btrfs_err(fs_info, "couldn't build ref tree");
3152
3153         /* do not make disk changes in broken FS or nologreplay is given */
3154         if (btrfs_super_log_root(disk_super) != 0 &&
3155             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156                 ret = btrfs_replay_log(fs_info, fs_devices);
3157                 if (ret) {
3158                         err = ret;
3159                         goto fail_qgroup;
3160                 }
3161         }
3162
3163         ret = btrfs_find_orphan_roots(fs_info);
3164         if (ret)
3165                 goto fail_qgroup;
3166
3167         if (!sb_rdonly(sb)) {
3168                 ret = btrfs_cleanup_fs_roots(fs_info);
3169                 if (ret)
3170                         goto fail_qgroup;
3171
3172                 mutex_lock(&fs_info->cleaner_mutex);
3173                 ret = btrfs_recover_relocation(tree_root);
3174                 mutex_unlock(&fs_info->cleaner_mutex);
3175                 if (ret < 0) {
3176                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3177                                         ret);
3178                         err = -EINVAL;
3179                         goto fail_qgroup;
3180                 }
3181         }
3182
3183         location.objectid = BTRFS_FS_TREE_OBJECTID;
3184         location.type = BTRFS_ROOT_ITEM_KEY;
3185         location.offset = 0;
3186
3187         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3188         if (IS_ERR(fs_info->fs_root)) {
3189                 err = PTR_ERR(fs_info->fs_root);
3190                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3191                 goto fail_qgroup;
3192         }
3193
3194         if (sb_rdonly(sb))
3195                 return 0;
3196
3197         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3198             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3199                 clear_free_space_tree = 1;
3200         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3201                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3202                 btrfs_warn(fs_info, "free space tree is invalid");
3203                 clear_free_space_tree = 1;
3204         }
3205
3206         if (clear_free_space_tree) {
3207                 btrfs_info(fs_info, "clearing free space tree");
3208                 ret = btrfs_clear_free_space_tree(fs_info);
3209                 if (ret) {
3210                         btrfs_warn(fs_info,
3211                                    "failed to clear free space tree: %d", ret);
3212                         close_ctree(fs_info);
3213                         return ret;
3214                 }
3215         }
3216
3217         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3218             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3219                 btrfs_info(fs_info, "creating free space tree");
3220                 ret = btrfs_create_free_space_tree(fs_info);
3221                 if (ret) {
3222                         btrfs_warn(fs_info,
3223                                 "failed to create free space tree: %d", ret);
3224                         close_ctree(fs_info);
3225                         return ret;
3226                 }
3227         }
3228
3229         down_read(&fs_info->cleanup_work_sem);
3230         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3231             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3232                 up_read(&fs_info->cleanup_work_sem);
3233                 close_ctree(fs_info);
3234                 return ret;
3235         }
3236         up_read(&fs_info->cleanup_work_sem);
3237
3238         ret = btrfs_resume_balance_async(fs_info);
3239         if (ret) {
3240                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3241                 close_ctree(fs_info);
3242                 return ret;
3243         }
3244
3245         ret = btrfs_resume_dev_replace_async(fs_info);
3246         if (ret) {
3247                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3248                 close_ctree(fs_info);
3249                 return ret;
3250         }
3251
3252         btrfs_qgroup_rescan_resume(fs_info);
3253
3254         if (!fs_info->uuid_root) {
3255                 btrfs_info(fs_info, "creating UUID tree");
3256                 ret = btrfs_create_uuid_tree(fs_info);
3257                 if (ret) {
3258                         btrfs_warn(fs_info,
3259                                 "failed to create the UUID tree: %d", ret);
3260                         close_ctree(fs_info);
3261                         return ret;
3262                 }
3263         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3264                    fs_info->generation !=
3265                                 btrfs_super_uuid_tree_generation(disk_super)) {
3266                 btrfs_info(fs_info, "checking UUID tree");
3267                 ret = btrfs_check_uuid_tree(fs_info);
3268                 if (ret) {
3269                         btrfs_warn(fs_info,
3270                                 "failed to check the UUID tree: %d", ret);
3271                         close_ctree(fs_info);
3272                         return ret;
3273                 }
3274         } else {
3275                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3276         }
3277         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3278
3279         /*
3280          * backuproot only affect mount behavior, and if open_ctree succeeded,
3281          * no need to keep the flag
3282          */
3283         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3284
3285         return 0;
3286
3287 fail_qgroup:
3288         btrfs_free_qgroup_config(fs_info);
3289 fail_trans_kthread:
3290         kthread_stop(fs_info->transaction_kthread);
3291         btrfs_cleanup_transaction(fs_info);
3292         btrfs_free_fs_roots(fs_info);
3293 fail_cleaner:
3294         kthread_stop(fs_info->cleaner_kthread);
3295
3296         /*
3297          * make sure we're done with the btree inode before we stop our
3298          * kthreads
3299          */
3300         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3301
3302 fail_sysfs:
3303         btrfs_sysfs_remove_mounted(fs_info);
3304
3305 fail_fsdev_sysfs:
3306         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3307
3308 fail_block_groups:
3309         btrfs_put_block_group_cache(fs_info);
3310
3311 fail_tree_roots:
3312         free_root_pointers(fs_info, 1);
3313         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3314
3315 fail_sb_buffer:
3316         btrfs_stop_all_workers(fs_info);
3317         btrfs_free_block_groups(fs_info);
3318 fail_alloc:
3319 fail_iput:
3320         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3321
3322         iput(fs_info->btree_inode);
3323 fail_bio_counter:
3324         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3325 fail_delalloc_bytes:
3326         percpu_counter_destroy(&fs_info->delalloc_bytes);
3327 fail_dirty_metadata_bytes:
3328         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3329 fail_srcu:
3330         cleanup_srcu_struct(&fs_info->subvol_srcu);
3331 fail:
3332         btrfs_free_stripe_hash_table(fs_info);
3333         btrfs_close_devices(fs_info->fs_devices);
3334         return err;
3335
3336 recovery_tree_root:
3337         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3338                 goto fail_tree_roots;
3339
3340         free_root_pointers(fs_info, 0);
3341
3342         /* don't use the log in recovery mode, it won't be valid */
3343         btrfs_set_super_log_root(disk_super, 0);
3344
3345         /* we can't trust the free space cache either */
3346         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3347
3348         ret = next_root_backup(fs_info, fs_info->super_copy,
3349                                &num_backups_tried, &backup_index);
3350         if (ret == -1)
3351                 goto fail_block_groups;
3352         goto retry_root_backup;
3353 }
3354 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3355
3356 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3357 {
3358         if (uptodate) {
3359                 set_buffer_uptodate(bh);
3360         } else {
3361                 struct btrfs_device *device = (struct btrfs_device *)
3362                         bh->b_private;
3363
3364                 btrfs_warn_rl_in_rcu(device->fs_info,
3365                                 "lost page write due to IO error on %s",
3366                                           rcu_str_deref(device->name));
3367                 /* note, we don't set_buffer_write_io_error because we have
3368                  * our own ways of dealing with the IO errors
3369                  */
3370                 clear_buffer_uptodate(bh);
3371                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3372         }
3373         unlock_buffer(bh);
3374         put_bh(bh);
3375 }
3376
3377 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3378                         struct buffer_head **bh_ret)
3379 {
3380         struct buffer_head *bh;
3381         struct btrfs_super_block *super;
3382         u64 bytenr;
3383
3384         bytenr = btrfs_sb_offset(copy_num);
3385         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3386                 return -EINVAL;
3387
3388         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3389         /*
3390          * If we fail to read from the underlying devices, as of now
3391          * the best option we have is to mark it EIO.
3392          */
3393         if (!bh)
3394                 return -EIO;
3395
3396         super = (struct btrfs_super_block *)bh->b_data;
3397         if (btrfs_super_bytenr(super) != bytenr ||
3398                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3399                 brelse(bh);
3400                 return -EINVAL;
3401         }
3402
3403         *bh_ret = bh;
3404         return 0;
3405 }
3406
3407
3408 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3409 {
3410         struct buffer_head *bh;
3411         struct buffer_head *latest = NULL;
3412         struct btrfs_super_block *super;
3413         int i;
3414         u64 transid = 0;
3415         int ret = -EINVAL;
3416
3417         /* we would like to check all the supers, but that would make
3418          * a btrfs mount succeed after a mkfs from a different FS.
3419          * So, we need to add a special mount option to scan for
3420          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3421          */
3422         for (i = 0; i < 1; i++) {
3423                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3424                 if (ret)
3425                         continue;
3426
3427                 super = (struct btrfs_super_block *)bh->b_data;
3428
3429                 if (!latest || btrfs_super_generation(super) > transid) {
3430                         brelse(latest);
3431                         latest = bh;
3432                         transid = btrfs_super_generation(super);
3433                 } else {
3434                         brelse(bh);
3435                 }
3436         }
3437
3438         if (!latest)
3439                 return ERR_PTR(ret);
3440
3441         return latest;
3442 }
3443
3444 /*
3445  * Write superblock @sb to the @device. Do not wait for completion, all the
3446  * buffer heads we write are pinned.
3447  *
3448  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3449  * the expected device size at commit time. Note that max_mirrors must be
3450  * same for write and wait phases.
3451  *
3452  * Return number of errors when buffer head is not found or submission fails.
3453  */
3454 static int write_dev_supers(struct btrfs_device *device,
3455                             struct btrfs_super_block *sb, int max_mirrors)
3456 {
3457         struct buffer_head *bh;
3458         int i;
3459         int ret;
3460         int errors = 0;
3461         u32 crc;
3462         u64 bytenr;
3463         int op_flags;
3464
3465         if (max_mirrors == 0)
3466                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3467
3468         for (i = 0; i < max_mirrors; i++) {
3469                 bytenr = btrfs_sb_offset(i);
3470                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3471                     device->commit_total_bytes)
3472                         break;
3473
3474                 btrfs_set_super_bytenr(sb, bytenr);
3475
3476                 crc = ~(u32)0;
3477                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3478                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3479                 btrfs_csum_final(crc, sb->csum);
3480
3481                 /* One reference for us, and we leave it for the caller */
3482                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3483                               BTRFS_SUPER_INFO_SIZE);
3484                 if (!bh) {
3485                         btrfs_err(device->fs_info,
3486                             "couldn't get super buffer head for bytenr %llu",
3487                             bytenr);
3488                         errors++;
3489                         continue;
3490                 }
3491
3492                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3493
3494                 /* one reference for submit_bh */
3495                 get_bh(bh);
3496
3497                 set_buffer_uptodate(bh);
3498                 lock_buffer(bh);
3499                 bh->b_end_io = btrfs_end_buffer_write_sync;
3500                 bh->b_private = device;
3501
3502                 /*
3503                  * we fua the first super.  The others we allow
3504                  * to go down lazy.
3505                  */
3506                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3507                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3508                         op_flags |= REQ_FUA;
3509                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3510                 if (ret)
3511                         errors++;
3512         }
3513         return errors < i ? 0 : -1;
3514 }
3515
3516 /*
3517  * Wait for write completion of superblocks done by write_dev_supers,
3518  * @max_mirrors same for write and wait phases.
3519  *
3520  * Return number of errors when buffer head is not found or not marked up to
3521  * date.
3522  */
3523 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3524 {
3525         struct buffer_head *bh;
3526         int i;
3527         int errors = 0;
3528         bool primary_failed = false;
3529         u64 bytenr;
3530
3531         if (max_mirrors == 0)
3532                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3533
3534         for (i = 0; i < max_mirrors; i++) {
3535                 bytenr = btrfs_sb_offset(i);
3536                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3537                     device->commit_total_bytes)
3538                         break;
3539
3540                 bh = __find_get_block(device->bdev,
3541                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3542                                       BTRFS_SUPER_INFO_SIZE);
3543                 if (!bh) {
3544                         errors++;
3545                         if (i == 0)
3546                                 primary_failed = true;
3547                         continue;
3548                 }
3549                 wait_on_buffer(bh);
3550                 if (!buffer_uptodate(bh)) {
3551                         errors++;
3552                         if (i == 0)
3553                                 primary_failed = true;
3554                 }
3555
3556                 /* drop our reference */
3557                 brelse(bh);
3558
3559                 /* drop the reference from the writing run */
3560                 brelse(bh);
3561         }
3562
3563         /* log error, force error return */
3564         if (primary_failed) {
3565                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3566                           device->devid);
3567                 return -1;
3568         }
3569
3570         return errors < i ? 0 : -1;
3571 }
3572
3573 /*
3574  * endio for the write_dev_flush, this will wake anyone waiting
3575  * for the barrier when it is done
3576  */
3577 static void btrfs_end_empty_barrier(struct bio *bio)
3578 {
3579         complete(bio->bi_private);
3580 }
3581
3582 /*
3583  * Submit a flush request to the device if it supports it. Error handling is
3584  * done in the waiting counterpart.
3585  */
3586 static void write_dev_flush(struct btrfs_device *device)
3587 {
3588         struct request_queue *q = bdev_get_queue(device->bdev);
3589         struct bio *bio = device->flush_bio;
3590
3591         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3592                 return;
3593
3594         bio_reset(bio);
3595         bio->bi_end_io = btrfs_end_empty_barrier;
3596         bio_set_dev(bio, device->bdev);
3597         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3598         init_completion(&device->flush_wait);
3599         bio->bi_private = &device->flush_wait;
3600
3601         btrfsic_submit_bio(bio);
3602         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3603 }
3604
3605 /*
3606  * If the flush bio has been submitted by write_dev_flush, wait for it.
3607  */
3608 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3609 {
3610         struct bio *bio = device->flush_bio;
3611
3612         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3613                 return BLK_STS_OK;
3614
3615         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3616         wait_for_completion_io(&device->flush_wait);
3617
3618         return bio->bi_status;
3619 }
3620
3621 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3622 {
3623         if (!btrfs_check_rw_degradable(fs_info, NULL))
3624                 return -EIO;
3625         return 0;
3626 }
3627
3628 /*
3629  * send an empty flush down to each device in parallel,
3630  * then wait for them
3631  */
3632 static int barrier_all_devices(struct btrfs_fs_info *info)
3633 {
3634         struct list_head *head;
3635         struct btrfs_device *dev;
3636         int errors_wait = 0;
3637         blk_status_t ret;
3638
3639         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3640         /* send down all the barriers */
3641         head = &info->fs_devices->devices;
3642         list_for_each_entry(dev, head, dev_list) {
3643                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3644                         continue;
3645                 if (!dev->bdev)
3646                         continue;
3647                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3648                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3649                         continue;
3650
3651                 write_dev_flush(dev);
3652                 dev->last_flush_error = BLK_STS_OK;
3653         }
3654
3655         /* wait for all the barriers */
3656         list_for_each_entry(dev, head, dev_list) {
3657                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3658                         continue;
3659                 if (!dev->bdev) {
3660                         errors_wait++;
3661                         continue;
3662                 }
3663                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3664                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3665                         continue;
3666
3667                 ret = wait_dev_flush(dev);
3668                 if (ret) {
3669                         dev->last_flush_error = ret;
3670                         btrfs_dev_stat_inc_and_print(dev,
3671                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3672                         errors_wait++;
3673                 }
3674         }
3675
3676         if (errors_wait) {
3677                 /*
3678                  * At some point we need the status of all disks
3679                  * to arrive at the volume status. So error checking
3680                  * is being pushed to a separate loop.
3681                  */
3682                 return check_barrier_error(info);
3683         }
3684         return 0;
3685 }
3686
3687 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3688 {
3689         int raid_type;
3690         int min_tolerated = INT_MAX;
3691
3692         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3693             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3694                 min_tolerated = min(min_tolerated,
3695                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3696                                     tolerated_failures);
3697
3698         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3699                 if (raid_type == BTRFS_RAID_SINGLE)
3700                         continue;
3701                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3702                         continue;
3703                 min_tolerated = min(min_tolerated,
3704                                     btrfs_raid_array[raid_type].
3705                                     tolerated_failures);
3706         }
3707
3708         if (min_tolerated == INT_MAX) {
3709                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3710                 min_tolerated = 0;
3711         }
3712
3713         return min_tolerated;
3714 }
3715
3716 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3717 {
3718         struct list_head *head;
3719         struct btrfs_device *dev;
3720         struct btrfs_super_block *sb;
3721         struct btrfs_dev_item *dev_item;
3722         int ret;
3723         int do_barriers;
3724         int max_errors;
3725         int total_errors = 0;
3726         u64 flags;
3727
3728         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3729
3730         /*
3731          * max_mirrors == 0 indicates we're from commit_transaction,
3732          * not from fsync where the tree roots in fs_info have not
3733          * been consistent on disk.
3734          */
3735         if (max_mirrors == 0)
3736                 backup_super_roots(fs_info);
3737
3738         sb = fs_info->super_for_commit;
3739         dev_item = &sb->dev_item;
3740
3741         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3742         head = &fs_info->fs_devices->devices;
3743         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3744
3745         if (do_barriers) {
3746                 ret = barrier_all_devices(fs_info);
3747                 if (ret) {
3748                         mutex_unlock(
3749                                 &fs_info->fs_devices->device_list_mutex);
3750                         btrfs_handle_fs_error(fs_info, ret,
3751                                               "errors while submitting device barriers.");
3752                         return ret;
3753                 }
3754         }
3755
3756         list_for_each_entry(dev, head, dev_list) {
3757                 if (!dev->bdev) {
3758                         total_errors++;
3759                         continue;
3760                 }
3761                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3762                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3763                         continue;
3764
3765                 btrfs_set_stack_device_generation(dev_item, 0);
3766                 btrfs_set_stack_device_type(dev_item, dev->type);
3767                 btrfs_set_stack_device_id(dev_item, dev->devid);
3768                 btrfs_set_stack_device_total_bytes(dev_item,
3769                                                    dev->commit_total_bytes);
3770                 btrfs_set_stack_device_bytes_used(dev_item,
3771                                                   dev->commit_bytes_used);
3772                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3773                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3774                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3775                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3776                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3777                        BTRFS_FSID_SIZE);
3778
3779                 flags = btrfs_super_flags(sb);
3780                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3781
3782                 ret = btrfs_validate_write_super(fs_info, sb);
3783                 if (ret < 0) {
3784                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3785                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3786                                 "unexpected superblock corruption detected");
3787                         return -EUCLEAN;
3788                 }
3789
3790                 ret = write_dev_supers(dev, sb, max_mirrors);
3791                 if (ret)
3792                         total_errors++;
3793         }
3794         if (total_errors > max_errors) {
3795                 btrfs_err(fs_info, "%d errors while writing supers",
3796                           total_errors);
3797                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3798
3799                 /* FUA is masked off if unsupported and can't be the reason */
3800                 btrfs_handle_fs_error(fs_info, -EIO,
3801                                       "%d errors while writing supers",
3802                                       total_errors);
3803                 return -EIO;
3804         }
3805
3806         total_errors = 0;
3807         list_for_each_entry(dev, head, dev_list) {
3808                 if (!dev->bdev)
3809                         continue;
3810                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3811                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3812                         continue;
3813
3814                 ret = wait_dev_supers(dev, max_mirrors);
3815                 if (ret)
3816                         total_errors++;
3817         }
3818         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819         if (total_errors > max_errors) {
3820                 btrfs_handle_fs_error(fs_info, -EIO,
3821                                       "%d errors while writing supers",
3822                                       total_errors);
3823                 return -EIO;
3824         }
3825         return 0;
3826 }
3827
3828 /* Drop a fs root from the radix tree and free it. */
3829 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3830                                   struct btrfs_root *root)
3831 {
3832         spin_lock(&fs_info->fs_roots_radix_lock);
3833         radix_tree_delete(&fs_info->fs_roots_radix,
3834                           (unsigned long)root->root_key.objectid);
3835         spin_unlock(&fs_info->fs_roots_radix_lock);
3836
3837         if (btrfs_root_refs(&root->root_item) == 0)
3838                 synchronize_srcu(&fs_info->subvol_srcu);
3839
3840         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3841                 btrfs_free_log(NULL, root);
3842                 if (root->reloc_root) {
3843                         free_extent_buffer(root->reloc_root->node);
3844                         free_extent_buffer(root->reloc_root->commit_root);
3845                         btrfs_put_fs_root(root->reloc_root);
3846                         root->reloc_root = NULL;
3847                 }
3848         }
3849
3850         if (root->free_ino_pinned)
3851                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3852         if (root->free_ino_ctl)
3853                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3854         btrfs_free_fs_root(root);
3855 }
3856
3857 void btrfs_free_fs_root(struct btrfs_root *root)
3858 {
3859         iput(root->ino_cache_inode);
3860         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3861         if (root->anon_dev)
3862                 free_anon_bdev(root->anon_dev);
3863         if (root->subv_writers)
3864                 btrfs_free_subvolume_writers(root->subv_writers);
3865         free_extent_buffer(root->node);
3866         free_extent_buffer(root->commit_root);
3867         kfree(root->free_ino_ctl);
3868         kfree(root->free_ino_pinned);
3869         btrfs_put_fs_root(root);
3870 }
3871
3872 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3873 {
3874         u64 root_objectid = 0;
3875         struct btrfs_root *gang[8];
3876         int i = 0;
3877         int err = 0;
3878         unsigned int ret = 0;
3879         int index;
3880
3881         while (1) {
3882                 index = srcu_read_lock(&fs_info->subvol_srcu);
3883                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3884                                              (void **)gang, root_objectid,
3885                                              ARRAY_SIZE(gang));
3886                 if (!ret) {
3887                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3888                         break;
3889                 }
3890                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3891
3892                 for (i = 0; i < ret; i++) {
3893                         /* Avoid to grab roots in dead_roots */
3894                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3895                                 gang[i] = NULL;
3896                                 continue;
3897                         }
3898                         /* grab all the search result for later use */
3899                         gang[i] = btrfs_grab_fs_root(gang[i]);
3900                 }
3901                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3902
3903                 for (i = 0; i < ret; i++) {
3904                         if (!gang[i])
3905                                 continue;
3906                         root_objectid = gang[i]->root_key.objectid;
3907                         err = btrfs_orphan_cleanup(gang[i]);
3908                         if (err)
3909                                 break;
3910                         btrfs_put_fs_root(gang[i]);
3911                 }
3912                 root_objectid++;
3913         }
3914
3915         /* release the uncleaned roots due to error */
3916         for (; i < ret; i++) {
3917                 if (gang[i])
3918                         btrfs_put_fs_root(gang[i]);
3919         }
3920         return err;
3921 }
3922
3923 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3924 {
3925         struct btrfs_root *root = fs_info->tree_root;
3926         struct btrfs_trans_handle *trans;
3927
3928         mutex_lock(&fs_info->cleaner_mutex);
3929         btrfs_run_delayed_iputs(fs_info);
3930         mutex_unlock(&fs_info->cleaner_mutex);
3931         wake_up_process(fs_info->cleaner_kthread);
3932
3933         /* wait until ongoing cleanup work done */
3934         down_write(&fs_info->cleanup_work_sem);
3935         up_write(&fs_info->cleanup_work_sem);
3936
3937         trans = btrfs_join_transaction(root);
3938         if (IS_ERR(trans))
3939                 return PTR_ERR(trans);
3940         return btrfs_commit_transaction(trans);
3941 }
3942
3943 void close_ctree(struct btrfs_fs_info *fs_info)
3944 {
3945         int ret;
3946
3947         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3948         /*
3949          * We don't want the cleaner to start new transactions, add more delayed
3950          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3951          * because that frees the task_struct, and the transaction kthread might
3952          * still try to wake up the cleaner.
3953          */
3954         kthread_park(fs_info->cleaner_kthread);
3955
3956         /* wait for the qgroup rescan worker to stop */
3957         btrfs_qgroup_wait_for_completion(fs_info, false);
3958
3959         /* wait for the uuid_scan task to finish */
3960         down(&fs_info->uuid_tree_rescan_sem);
3961         /* avoid complains from lockdep et al., set sem back to initial state */
3962         up(&fs_info->uuid_tree_rescan_sem);
3963
3964         /* pause restriper - we want to resume on mount */
3965         btrfs_pause_balance(fs_info);
3966
3967         btrfs_dev_replace_suspend_for_unmount(fs_info);
3968
3969         btrfs_scrub_cancel(fs_info);
3970
3971         /* wait for any defraggers to finish */
3972         wait_event(fs_info->transaction_wait,
3973                    (atomic_read(&fs_info->defrag_running) == 0));
3974
3975         /* clear out the rbtree of defraggable inodes */
3976         btrfs_cleanup_defrag_inodes(fs_info);
3977
3978         cancel_work_sync(&fs_info->async_reclaim_work);
3979
3980         if (!sb_rdonly(fs_info->sb)) {
3981                 /*
3982                  * The cleaner kthread is stopped, so do one final pass over
3983                  * unused block groups.
3984                  */
3985                 btrfs_delete_unused_bgs(fs_info);
3986
3987                 ret = btrfs_commit_super(fs_info);
3988                 if (ret)
3989                         btrfs_err(fs_info, "commit super ret %d", ret);
3990         }
3991
3992         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3993             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3994                 btrfs_error_commit_super(fs_info);
3995
3996         kthread_stop(fs_info->transaction_kthread);
3997         kthread_stop(fs_info->cleaner_kthread);
3998
3999         ASSERT(list_empty(&fs_info->delayed_iputs));
4000         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4001
4002         btrfs_free_qgroup_config(fs_info);
4003         ASSERT(list_empty(&fs_info->delalloc_roots));
4004
4005         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4006                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4007                        percpu_counter_sum(&fs_info->delalloc_bytes));
4008         }
4009
4010         btrfs_sysfs_remove_mounted(fs_info);
4011         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4012
4013         btrfs_free_fs_roots(fs_info);
4014
4015         btrfs_put_block_group_cache(fs_info);
4016
4017         /*
4018          * we must make sure there is not any read request to
4019          * submit after we stopping all workers.
4020          */
4021         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4022         btrfs_stop_all_workers(fs_info);
4023
4024         btrfs_free_block_groups(fs_info);
4025
4026         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4027         free_root_pointers(fs_info, 1);
4028
4029         iput(fs_info->btree_inode);
4030
4031 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4032         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4033                 btrfsic_unmount(fs_info->fs_devices);
4034 #endif
4035
4036         btrfs_close_devices(fs_info->fs_devices);
4037         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4038
4039         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4040         percpu_counter_destroy(&fs_info->delalloc_bytes);
4041         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4042         cleanup_srcu_struct(&fs_info->subvol_srcu);
4043
4044         btrfs_free_stripe_hash_table(fs_info);
4045         btrfs_free_ref_cache(fs_info);
4046
4047         while (!list_empty(&fs_info->pinned_chunks)) {
4048                 struct extent_map *em;
4049
4050                 em = list_first_entry(&fs_info->pinned_chunks,
4051                                       struct extent_map, list);
4052                 list_del_init(&em->list);
4053                 free_extent_map(em);
4054         }
4055 }
4056
4057 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4058                           int atomic)
4059 {
4060         int ret;
4061         struct inode *btree_inode = buf->pages[0]->mapping->host;
4062
4063         ret = extent_buffer_uptodate(buf);
4064         if (!ret)
4065                 return ret;
4066
4067         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4068                                     parent_transid, atomic);
4069         if (ret == -EAGAIN)
4070                 return ret;
4071         return !ret;
4072 }
4073
4074 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4075 {
4076         struct btrfs_fs_info *fs_info;
4077         struct btrfs_root *root;
4078         u64 transid = btrfs_header_generation(buf);
4079         int was_dirty;
4080
4081 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4082         /*
4083          * This is a fast path so only do this check if we have sanity tests
4084          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4085          * outside of the sanity tests.
4086          */
4087         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4088                 return;
4089 #endif
4090         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4091         fs_info = root->fs_info;
4092         btrfs_assert_tree_locked(buf);
4093         if (transid != fs_info->generation)
4094                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4095                         buf->start, transid, fs_info->generation);
4096         was_dirty = set_extent_buffer_dirty(buf);
4097         if (!was_dirty)
4098                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4099                                          buf->len,
4100                                          fs_info->dirty_metadata_batch);
4101 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4102         /*
4103          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4104          * but item data not updated.
4105          * So here we should only check item pointers, not item data.
4106          */
4107         if (btrfs_header_level(buf) == 0 &&
4108             btrfs_check_leaf_relaxed(fs_info, buf)) {
4109                 btrfs_print_leaf(buf);
4110                 ASSERT(0);
4111         }
4112 #endif
4113 }
4114
4115 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4116                                         int flush_delayed)
4117 {
4118         /*
4119          * looks as though older kernels can get into trouble with
4120          * this code, they end up stuck in balance_dirty_pages forever
4121          */
4122         int ret;
4123
4124         if (current->flags & PF_MEMALLOC)
4125                 return;
4126
4127         if (flush_delayed)
4128                 btrfs_balance_delayed_items(fs_info);
4129
4130         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4131                                      BTRFS_DIRTY_METADATA_THRESH,
4132                                      fs_info->dirty_metadata_batch);
4133         if (ret > 0) {
4134                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4135         }
4136 }
4137
4138 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4139 {
4140         __btrfs_btree_balance_dirty(fs_info, 1);
4141 }
4142
4143 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4144 {
4145         __btrfs_btree_balance_dirty(fs_info, 0);
4146 }
4147
4148 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4149                       struct btrfs_key *first_key)
4150 {
4151         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4152         struct btrfs_fs_info *fs_info = root->fs_info;
4153
4154         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4155                                               level, first_key);
4156 }
4157
4158 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4159 {
4160         /* cleanup FS via transaction */
4161         btrfs_cleanup_transaction(fs_info);
4162
4163         mutex_lock(&fs_info->cleaner_mutex);
4164         btrfs_run_delayed_iputs(fs_info);
4165         mutex_unlock(&fs_info->cleaner_mutex);
4166
4167         down_write(&fs_info->cleanup_work_sem);
4168         up_write(&fs_info->cleanup_work_sem);
4169 }
4170
4171 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4172 {
4173         struct btrfs_ordered_extent *ordered;
4174
4175         spin_lock(&root->ordered_extent_lock);
4176         /*
4177          * This will just short circuit the ordered completion stuff which will
4178          * make sure the ordered extent gets properly cleaned up.
4179          */
4180         list_for_each_entry(ordered, &root->ordered_extents,
4181                             root_extent_list)
4182                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4183         spin_unlock(&root->ordered_extent_lock);
4184 }
4185
4186 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4187 {
4188         struct btrfs_root *root;
4189         struct list_head splice;
4190
4191         INIT_LIST_HEAD(&splice);
4192
4193         spin_lock(&fs_info->ordered_root_lock);
4194         list_splice_init(&fs_info->ordered_roots, &splice);
4195         while (!list_empty(&splice)) {
4196                 root = list_first_entry(&splice, struct btrfs_root,
4197                                         ordered_root);
4198                 list_move_tail(&root->ordered_root,
4199                                &fs_info->ordered_roots);
4200
4201                 spin_unlock(&fs_info->ordered_root_lock);
4202                 btrfs_destroy_ordered_extents(root);
4203
4204                 cond_resched();
4205                 spin_lock(&fs_info->ordered_root_lock);
4206         }
4207         spin_unlock(&fs_info->ordered_root_lock);
4208
4209         /*
4210          * We need this here because if we've been flipped read-only we won't
4211          * get sync() from the umount, so we need to make sure any ordered
4212          * extents that haven't had their dirty pages IO start writeout yet
4213          * actually get run and error out properly.
4214          */
4215         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4216 }
4217
4218 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4219                                       struct btrfs_fs_info *fs_info)
4220 {
4221         struct rb_node *node;
4222         struct btrfs_delayed_ref_root *delayed_refs;
4223         struct btrfs_delayed_ref_node *ref;
4224         int ret = 0;
4225
4226         delayed_refs = &trans->delayed_refs;
4227
4228         spin_lock(&delayed_refs->lock);
4229         if (atomic_read(&delayed_refs->num_entries) == 0) {
4230                 spin_unlock(&delayed_refs->lock);
4231                 btrfs_info(fs_info, "delayed_refs has NO entry");
4232                 return ret;
4233         }
4234
4235         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4236                 struct btrfs_delayed_ref_head *head;
4237                 struct rb_node *n;
4238                 bool pin_bytes = false;
4239
4240                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4241                                 href_node);
4242                 if (!mutex_trylock(&head->mutex)) {
4243                         refcount_inc(&head->refs);
4244                         spin_unlock(&delayed_refs->lock);
4245
4246                         mutex_lock(&head->mutex);
4247                         mutex_unlock(&head->mutex);
4248                         btrfs_put_delayed_ref_head(head);
4249                         spin_lock(&delayed_refs->lock);
4250                         continue;
4251                 }
4252                 spin_lock(&head->lock);
4253                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4254                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4255                                        ref_node);
4256                         ref->in_tree = 0;
4257                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4258                         RB_CLEAR_NODE(&ref->ref_node);
4259                         if (!list_empty(&ref->add_list))
4260                                 list_del(&ref->add_list);
4261                         atomic_dec(&delayed_refs->num_entries);
4262                         btrfs_put_delayed_ref(ref);
4263                 }
4264                 if (head->must_insert_reserved)
4265                         pin_bytes = true;
4266                 btrfs_free_delayed_extent_op(head->extent_op);
4267                 delayed_refs->num_heads--;
4268                 if (head->processing == 0)
4269                         delayed_refs->num_heads_ready--;
4270                 atomic_dec(&delayed_refs->num_entries);
4271                 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
4272                 RB_CLEAR_NODE(&head->href_node);
4273                 spin_unlock(&head->lock);
4274                 spin_unlock(&delayed_refs->lock);
4275                 mutex_unlock(&head->mutex);
4276
4277                 if (pin_bytes)
4278                         btrfs_pin_extent(fs_info, head->bytenr,
4279                                          head->num_bytes, 1);
4280                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4281                 btrfs_put_delayed_ref_head(head);
4282                 cond_resched();
4283                 spin_lock(&delayed_refs->lock);
4284         }
4285
4286         spin_unlock(&delayed_refs->lock);
4287
4288         return ret;
4289 }
4290
4291 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4292 {
4293         struct btrfs_inode *btrfs_inode;
4294         struct list_head splice;
4295
4296         INIT_LIST_HEAD(&splice);
4297
4298         spin_lock(&root->delalloc_lock);
4299         list_splice_init(&root->delalloc_inodes, &splice);
4300
4301         while (!list_empty(&splice)) {
4302                 struct inode *inode = NULL;
4303                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4304                                                delalloc_inodes);
4305                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4306                 spin_unlock(&root->delalloc_lock);
4307
4308                 /*
4309                  * Make sure we get a live inode and that it'll not disappear
4310                  * meanwhile.
4311                  */
4312                 inode = igrab(&btrfs_inode->vfs_inode);
4313                 if (inode) {
4314                         invalidate_inode_pages2(inode->i_mapping);
4315                         iput(inode);
4316                 }
4317                 spin_lock(&root->delalloc_lock);
4318         }
4319         spin_unlock(&root->delalloc_lock);
4320 }
4321
4322 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323 {
4324         struct btrfs_root *root;
4325         struct list_head splice;
4326
4327         INIT_LIST_HEAD(&splice);
4328
4329         spin_lock(&fs_info->delalloc_root_lock);
4330         list_splice_init(&fs_info->delalloc_roots, &splice);
4331         while (!list_empty(&splice)) {
4332                 root = list_first_entry(&splice, struct btrfs_root,
4333                                          delalloc_root);
4334                 root = btrfs_grab_fs_root(root);
4335                 BUG_ON(!root);
4336                 spin_unlock(&fs_info->delalloc_root_lock);
4337
4338                 btrfs_destroy_delalloc_inodes(root);
4339                 btrfs_put_fs_root(root);
4340
4341                 spin_lock(&fs_info->delalloc_root_lock);
4342         }
4343         spin_unlock(&fs_info->delalloc_root_lock);
4344 }
4345
4346 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4347                                         struct extent_io_tree *dirty_pages,
4348                                         int mark)
4349 {
4350         int ret;
4351         struct extent_buffer *eb;
4352         u64 start = 0;
4353         u64 end;
4354
4355         while (1) {
4356                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4357                                             mark, NULL);
4358                 if (ret)
4359                         break;
4360
4361                 clear_extent_bits(dirty_pages, start, end, mark);
4362                 while (start <= end) {
4363                         eb = find_extent_buffer(fs_info, start);
4364                         start += fs_info->nodesize;
4365                         if (!eb)
4366                                 continue;
4367                         wait_on_extent_buffer_writeback(eb);
4368
4369                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4370                                                &eb->bflags))
4371                                 clear_extent_buffer_dirty(eb);
4372                         free_extent_buffer_stale(eb);
4373                 }
4374         }
4375
4376         return ret;
4377 }
4378
4379 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4380                                        struct extent_io_tree *pinned_extents)
4381 {
4382         struct extent_io_tree *unpin;
4383         u64 start;
4384         u64 end;
4385         int ret;
4386         bool loop = true;
4387
4388         unpin = pinned_extents;
4389 again:
4390         while (1) {
4391                 struct extent_state *cached_state = NULL;
4392
4393                 /*
4394                  * The btrfs_finish_extent_commit() may get the same range as
4395                  * ours between find_first_extent_bit and clear_extent_dirty.
4396                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4397                  * the same extent range.
4398                  */
4399                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4400                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4401                                             EXTENT_DIRTY, &cached_state);
4402                 if (ret) {
4403                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4404                         break;
4405                 }
4406
4407                 clear_extent_dirty(unpin, start, end, &cached_state);
4408                 free_extent_state(cached_state);
4409                 btrfs_error_unpin_extent_range(fs_info, start, end);
4410                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4411                 cond_resched();
4412         }
4413
4414         if (loop) {
4415                 if (unpin == &fs_info->freed_extents[0])
4416                         unpin = &fs_info->freed_extents[1];
4417                 else
4418                         unpin = &fs_info->freed_extents[0];
4419                 loop = false;
4420                 goto again;
4421         }
4422
4423         return 0;
4424 }
4425
4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4427 {
4428         struct inode *inode;
4429
4430         inode = cache->io_ctl.inode;
4431         if (inode) {
4432                 invalidate_inode_pages2(inode->i_mapping);
4433                 BTRFS_I(inode)->generation = 0;
4434                 cache->io_ctl.inode = NULL;
4435                 iput(inode);
4436         }
4437         btrfs_put_block_group(cache);
4438 }
4439
4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4441                              struct btrfs_fs_info *fs_info)
4442 {
4443         struct btrfs_block_group_cache *cache;
4444
4445         spin_lock(&cur_trans->dirty_bgs_lock);
4446         while (!list_empty(&cur_trans->dirty_bgs)) {
4447                 cache = list_first_entry(&cur_trans->dirty_bgs,
4448                                          struct btrfs_block_group_cache,
4449                                          dirty_list);
4450
4451                 if (!list_empty(&cache->io_list)) {
4452                         spin_unlock(&cur_trans->dirty_bgs_lock);
4453                         list_del_init(&cache->io_list);
4454                         btrfs_cleanup_bg_io(cache);
4455                         spin_lock(&cur_trans->dirty_bgs_lock);
4456                 }
4457
4458                 list_del_init(&cache->dirty_list);
4459                 spin_lock(&cache->lock);
4460                 cache->disk_cache_state = BTRFS_DC_ERROR;
4461                 spin_unlock(&cache->lock);
4462
4463                 spin_unlock(&cur_trans->dirty_bgs_lock);
4464                 btrfs_put_block_group(cache);
4465                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4466                 spin_lock(&cur_trans->dirty_bgs_lock);
4467         }
4468         spin_unlock(&cur_trans->dirty_bgs_lock);
4469
4470         /*
4471          * Refer to the definition of io_bgs member for details why it's safe
4472          * to use it without any locking
4473          */
4474         while (!list_empty(&cur_trans->io_bgs)) {
4475                 cache = list_first_entry(&cur_trans->io_bgs,
4476                                          struct btrfs_block_group_cache,
4477                                          io_list);
4478
4479                 list_del_init(&cache->io_list);
4480                 spin_lock(&cache->lock);
4481                 cache->disk_cache_state = BTRFS_DC_ERROR;
4482                 spin_unlock(&cache->lock);
4483                 btrfs_cleanup_bg_io(cache);
4484         }
4485 }
4486
4487 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4488                                    struct btrfs_fs_info *fs_info)
4489 {
4490         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4491         ASSERT(list_empty(&cur_trans->dirty_bgs));
4492         ASSERT(list_empty(&cur_trans->io_bgs));
4493
4494         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4495
4496         cur_trans->state = TRANS_STATE_COMMIT_START;
4497         wake_up(&fs_info->transaction_blocked_wait);
4498
4499         cur_trans->state = TRANS_STATE_UNBLOCKED;
4500         wake_up(&fs_info->transaction_wait);
4501
4502         btrfs_destroy_delayed_inodes(fs_info);
4503         btrfs_assert_delayed_root_empty(fs_info);
4504
4505         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4506                                      EXTENT_DIRTY);
4507         btrfs_destroy_pinned_extent(fs_info,
4508                                     fs_info->pinned_extents);
4509
4510         cur_trans->state =TRANS_STATE_COMPLETED;
4511         wake_up(&cur_trans->commit_wait);
4512 }
4513
4514 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4515 {
4516         struct btrfs_transaction *t;
4517
4518         mutex_lock(&fs_info->transaction_kthread_mutex);
4519
4520         spin_lock(&fs_info->trans_lock);
4521         while (!list_empty(&fs_info->trans_list)) {
4522                 t = list_first_entry(&fs_info->trans_list,
4523                                      struct btrfs_transaction, list);
4524                 if (t->state >= TRANS_STATE_COMMIT_START) {
4525                         refcount_inc(&t->use_count);
4526                         spin_unlock(&fs_info->trans_lock);
4527                         btrfs_wait_for_commit(fs_info, t->transid);
4528                         btrfs_put_transaction(t);
4529                         spin_lock(&fs_info->trans_lock);
4530                         continue;
4531                 }
4532                 if (t == fs_info->running_transaction) {
4533                         t->state = TRANS_STATE_COMMIT_DOING;
4534                         spin_unlock(&fs_info->trans_lock);
4535                         /*
4536                          * We wait for 0 num_writers since we don't hold a trans
4537                          * handle open currently for this transaction.
4538                          */
4539                         wait_event(t->writer_wait,
4540                                    atomic_read(&t->num_writers) == 0);
4541                 } else {
4542                         spin_unlock(&fs_info->trans_lock);
4543                 }
4544                 btrfs_cleanup_one_transaction(t, fs_info);
4545
4546                 spin_lock(&fs_info->trans_lock);
4547                 if (t == fs_info->running_transaction)
4548                         fs_info->running_transaction = NULL;
4549                 list_del_init(&t->list);
4550                 spin_unlock(&fs_info->trans_lock);
4551
4552                 btrfs_put_transaction(t);
4553                 trace_btrfs_transaction_commit(fs_info->tree_root);
4554                 spin_lock(&fs_info->trans_lock);
4555         }
4556         spin_unlock(&fs_info->trans_lock);
4557         btrfs_destroy_all_ordered_extents(fs_info);
4558         btrfs_destroy_delayed_inodes(fs_info);
4559         btrfs_assert_delayed_root_empty(fs_info);
4560         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4561         btrfs_destroy_all_delalloc_inodes(fs_info);
4562         mutex_unlock(&fs_info->transaction_kthread_mutex);
4563
4564         return 0;
4565 }
4566
4567 static const struct extent_io_ops btree_extent_io_ops = {
4568         /* mandatory callbacks */
4569         .submit_bio_hook = btree_submit_bio_hook,
4570         .readpage_end_io_hook = btree_readpage_end_io_hook,
4571 };