Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43
44 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
45                                  BTRFS_HEADER_FLAG_RELOC |\
46                                  BTRFS_SUPER_FLAG_ERROR |\
47                                  BTRFS_SUPER_FLAG_SEEDING |\
48                                  BTRFS_SUPER_FLAG_METADUMP |\
49                                  BTRFS_SUPER_FLAG_METADUMP_V2)
50
51 static const struct extent_io_ops btree_extent_io_ops;
52 static void end_workqueue_fn(struct btrfs_work *work);
53 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55                                       struct btrfs_fs_info *fs_info);
56 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
57 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
58                                         struct extent_io_tree *dirty_pages,
59                                         int mark);
60 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
61                                        struct extent_io_tree *pinned_extents);
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64
65 /*
66  * btrfs_end_io_wq structs are used to do processing in task context when an IO
67  * is complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct btrfs_end_io_wq {
71         struct bio *bio;
72         bio_end_io_t *end_io;
73         void *private;
74         struct btrfs_fs_info *info;
75         blk_status_t status;
76         enum btrfs_wq_endio_type metadata;
77         struct btrfs_work work;
78 };
79
80 static struct kmem_cache *btrfs_end_io_wq_cache;
81
82 int __init btrfs_end_io_wq_init(void)
83 {
84         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
85                                         sizeof(struct btrfs_end_io_wq),
86                                         0,
87                                         SLAB_MEM_SPREAD,
88                                         NULL);
89         if (!btrfs_end_io_wq_cache)
90                 return -ENOMEM;
91         return 0;
92 }
93
94 void __cold btrfs_end_io_wq_exit(void)
95 {
96         kmem_cache_destroy(btrfs_end_io_wq_cache);
97 }
98
99 /*
100  * async submit bios are used to offload expensive checksumming
101  * onto the worker threads.  They checksum file and metadata bios
102  * just before they are sent down the IO stack.
103  */
104 struct async_submit_bio {
105         void *private_data;
106         struct bio *bio;
107         extent_submit_bio_start_t *submit_bio_start;
108         int mirror_num;
109         /*
110          * bio_offset is optional, can be used if the pages in the bio
111          * can't tell us where in the file the bio should go
112          */
113         u64 bio_offset;
114         struct btrfs_work work;
115         blk_status_t status;
116 };
117
118 /*
119  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
120  * eb, the lockdep key is determined by the btrfs_root it belongs to and
121  * the level the eb occupies in the tree.
122  *
123  * Different roots are used for different purposes and may nest inside each
124  * other and they require separate keysets.  As lockdep keys should be
125  * static, assign keysets according to the purpose of the root as indicated
126  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
127  * roots have separate keysets.
128  *
129  * Lock-nesting across peer nodes is always done with the immediate parent
130  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
131  * subclass to avoid triggering lockdep warning in such cases.
132  *
133  * The key is set by the readpage_end_io_hook after the buffer has passed
134  * csum validation but before the pages are unlocked.  It is also set by
135  * btrfs_init_new_buffer on freshly allocated blocks.
136  *
137  * We also add a check to make sure the highest level of the tree is the
138  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
139  * needs update as well.
140  */
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 # if BTRFS_MAX_LEVEL != 8
143 #  error
144 # endif
145
146 static struct btrfs_lockdep_keyset {
147         u64                     id;             /* root objectid */
148         const char              *name_stem;     /* lock name stem */
149         char                    names[BTRFS_MAX_LEVEL + 1][20];
150         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
151 } btrfs_lockdep_keysets[] = {
152         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
153         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
154         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
155         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
156         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
157         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
158         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
159         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
160         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
161         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
162         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
163         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
164         { .id = 0,                              .name_stem = "tree"     },
165 };
166
167 void __init btrfs_init_lockdep(void)
168 {
169         int i, j;
170
171         /* initialize lockdep class names */
172         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
173                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
174
175                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
176                         snprintf(ks->names[j], sizeof(ks->names[j]),
177                                  "btrfs-%s-%02d", ks->name_stem, j);
178         }
179 }
180
181 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
182                                     int level)
183 {
184         struct btrfs_lockdep_keyset *ks;
185
186         BUG_ON(level >= ARRAY_SIZE(ks->keys));
187
188         /* find the matching keyset, id 0 is the default entry */
189         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
190                 if (ks->id == objectid)
191                         break;
192
193         lockdep_set_class_and_name(&eb->lock,
194                                    &ks->keys[level], ks->names[level]);
195 }
196
197 #endif
198
199 /*
200  * extents on the btree inode are pretty simple, there's one extent
201  * that covers the entire device
202  */
203 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
204                 struct page *page, size_t pg_offset, u64 start, u64 len,
205                 int create)
206 {
207         struct btrfs_fs_info *fs_info = inode->root->fs_info;
208         struct extent_map_tree *em_tree = &inode->extent_tree;
209         struct extent_map *em;
210         int ret;
211
212         read_lock(&em_tree->lock);
213         em = lookup_extent_mapping(em_tree, start, len);
214         if (em) {
215                 em->bdev = fs_info->fs_devices->latest_bdev;
216                 read_unlock(&em_tree->lock);
217                 goto out;
218         }
219         read_unlock(&em_tree->lock);
220
221         em = alloc_extent_map();
222         if (!em) {
223                 em = ERR_PTR(-ENOMEM);
224                 goto out;
225         }
226         em->start = 0;
227         em->len = (u64)-1;
228         em->block_len = (u64)-1;
229         em->block_start = 0;
230         em->bdev = fs_info->fs_devices->latest_bdev;
231
232         write_lock(&em_tree->lock);
233         ret = add_extent_mapping(em_tree, em, 0);
234         if (ret == -EEXIST) {
235                 free_extent_map(em);
236                 em = lookup_extent_mapping(em_tree, start, len);
237                 if (!em)
238                         em = ERR_PTR(-EIO);
239         } else if (ret) {
240                 free_extent_map(em);
241                 em = ERR_PTR(ret);
242         }
243         write_unlock(&em_tree->lock);
244
245 out:
246         return em;
247 }
248
249 /*
250  * Compute the csum of a btree block and store the result to provided buffer.
251  *
252  * Returns error if the extent buffer cannot be mapped.
253  */
254 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
255 {
256         struct btrfs_fs_info *fs_info = buf->fs_info;
257         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
258         unsigned long len;
259         unsigned long cur_len;
260         unsigned long offset = BTRFS_CSUM_SIZE;
261         char *kaddr;
262         unsigned long map_start;
263         unsigned long map_len;
264         int err;
265
266         shash->tfm = fs_info->csum_shash;
267         crypto_shash_init(shash);
268
269         len = buf->len - offset;
270
271         while (len > 0) {
272                 /*
273                  * Note: we don't need to check for the err == 1 case here, as
274                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
275                  * and 'min_len = 32' and the currently implemented mapping
276                  * algorithm we cannot cross a page boundary.
277                  */
278                 err = map_private_extent_buffer(buf, offset, 32,
279                                         &kaddr, &map_start, &map_len);
280                 if (WARN_ON(err))
281                         return err;
282                 cur_len = min(len, map_len - (offset - map_start));
283                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         memset(result, 0, BTRFS_CSUM_SIZE);
288
289         crypto_shash_final(shash, result);
290
291         return 0;
292 }
293
294 /*
295  * we can't consider a given block up to date unless the transid of the
296  * block matches the transid in the parent node's pointer.  This is how we
297  * detect blocks that either didn't get written at all or got written
298  * in the wrong place.
299  */
300 static int verify_parent_transid(struct extent_io_tree *io_tree,
301                                  struct extent_buffer *eb, u64 parent_transid,
302                                  int atomic)
303 {
304         struct extent_state *cached_state = NULL;
305         int ret;
306         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
307
308         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
309                 return 0;
310
311         if (atomic)
312                 return -EAGAIN;
313
314         if (need_lock) {
315                 btrfs_tree_read_lock(eb);
316                 btrfs_set_lock_blocking_read(eb);
317         }
318
319         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
320                          &cached_state);
321         if (extent_buffer_uptodate(eb) &&
322             btrfs_header_generation(eb) == parent_transid) {
323                 ret = 0;
324                 goto out;
325         }
326         btrfs_err_rl(eb->fs_info,
327                 "parent transid verify failed on %llu wanted %llu found %llu",
328                         eb->start,
329                         parent_transid, btrfs_header_generation(eb));
330         ret = 1;
331
332         /*
333          * Things reading via commit roots that don't have normal protection,
334          * like send, can have a really old block in cache that may point at a
335          * block that has been freed and re-allocated.  So don't clear uptodate
336          * if we find an eb that is under IO (dirty/writeback) because we could
337          * end up reading in the stale data and then writing it back out and
338          * making everybody very sad.
339          */
340         if (!extent_buffer_under_io(eb))
341                 clear_extent_buffer_uptodate(eb);
342 out:
343         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
344                              &cached_state);
345         if (need_lock)
346                 btrfs_tree_read_unlock_blocking(eb);
347         return ret;
348 }
349
350 static bool btrfs_supported_super_csum(u16 csum_type)
351 {
352         switch (csum_type) {
353         case BTRFS_CSUM_TYPE_CRC32:
354                 return true;
355         default:
356                 return false;
357         }
358 }
359
360 /*
361  * Return 0 if the superblock checksum type matches the checksum value of that
362  * algorithm. Pass the raw disk superblock data.
363  */
364 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
365                                   char *raw_disk_sb)
366 {
367         struct btrfs_super_block *disk_sb =
368                 (struct btrfs_super_block *)raw_disk_sb;
369         char result[BTRFS_CSUM_SIZE];
370         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
371
372         shash->tfm = fs_info->csum_shash;
373         crypto_shash_init(shash);
374
375         /*
376          * The super_block structure does not span the whole
377          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
378          * filled with zeros and is included in the checksum.
379          */
380         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
381                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382         crypto_shash_final(shash, result);
383
384         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
385                 return 1;
386
387         return 0;
388 }
389
390 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
391                            struct btrfs_key *first_key, u64 parent_transid)
392 {
393         struct btrfs_fs_info *fs_info = eb->fs_info;
394         int found_level;
395         struct btrfs_key found_key;
396         int ret;
397
398         found_level = btrfs_header_level(eb);
399         if (found_level != level) {
400                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
401                      KERN_ERR "BTRFS: tree level check failed\n");
402                 btrfs_err(fs_info,
403 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
404                           eb->start, level, found_level);
405                 return -EIO;
406         }
407
408         if (!first_key)
409                 return 0;
410
411         /*
412          * For live tree block (new tree blocks in current transaction),
413          * we need proper lock context to avoid race, which is impossible here.
414          * So we only checks tree blocks which is read from disk, whose
415          * generation <= fs_info->last_trans_committed.
416          */
417         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
418                 return 0;
419         if (found_level)
420                 btrfs_node_key_to_cpu(eb, &found_key, 0);
421         else
422                 btrfs_item_key_to_cpu(eb, &found_key, 0);
423         ret = btrfs_comp_cpu_keys(first_key, &found_key);
424
425         if (ret) {
426                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
427                      KERN_ERR "BTRFS: tree first key check failed\n");
428                 btrfs_err(fs_info,
429 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
430                           eb->start, parent_transid, first_key->objectid,
431                           first_key->type, first_key->offset,
432                           found_key.objectid, found_key.type,
433                           found_key.offset);
434         }
435         return ret;
436 }
437
438 /*
439  * helper to read a given tree block, doing retries as required when
440  * the checksums don't match and we have alternate mirrors to try.
441  *
442  * @parent_transid:     expected transid, skip check if 0
443  * @level:              expected level, mandatory check
444  * @first_key:          expected key of first slot, skip check if NULL
445  */
446 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
447                                           u64 parent_transid, int level,
448                                           struct btrfs_key *first_key)
449 {
450         struct btrfs_fs_info *fs_info = eb->fs_info;
451         struct extent_io_tree *io_tree;
452         int failed = 0;
453         int ret;
454         int num_copies = 0;
455         int mirror_num = 0;
456         int failed_mirror = 0;
457
458         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
459         while (1) {
460                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
461                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
462                 if (!ret) {
463                         if (verify_parent_transid(io_tree, eb,
464                                                    parent_transid, 0))
465                                 ret = -EIO;
466                         else if (btrfs_verify_level_key(eb, level,
467                                                 first_key, parent_transid))
468                                 ret = -EUCLEAN;
469                         else
470                                 break;
471                 }
472
473                 num_copies = btrfs_num_copies(fs_info,
474                                               eb->start, eb->len);
475                 if (num_copies == 1)
476                         break;
477
478                 if (!failed_mirror) {
479                         failed = 1;
480                         failed_mirror = eb->read_mirror;
481                 }
482
483                 mirror_num++;
484                 if (mirror_num == failed_mirror)
485                         mirror_num++;
486
487                 if (mirror_num > num_copies)
488                         break;
489         }
490
491         if (failed && !ret && failed_mirror)
492                 btrfs_repair_eb_io_failure(eb, failed_mirror);
493
494         return ret;
495 }
496
497 /*
498  * checksum a dirty tree block before IO.  This has extra checks to make sure
499  * we only fill in the checksum field in the first page of a multi-page block
500  */
501
502 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
503 {
504         u64 start = page_offset(page);
505         u64 found_start;
506         u8 result[BTRFS_CSUM_SIZE];
507         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
508         struct extent_buffer *eb;
509         int ret;
510
511         eb = (struct extent_buffer *)page->private;
512         if (page != eb->pages[0])
513                 return 0;
514
515         found_start = btrfs_header_bytenr(eb);
516         /*
517          * Please do not consolidate these warnings into a single if.
518          * It is useful to know what went wrong.
519          */
520         if (WARN_ON(found_start != start))
521                 return -EUCLEAN;
522         if (WARN_ON(!PageUptodate(page)))
523                 return -EUCLEAN;
524
525         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
526                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
528         if (csum_tree_block(eb, result))
529                 return -EINVAL;
530
531         if (btrfs_header_level(eb))
532                 ret = btrfs_check_node(eb);
533         else
534                 ret = btrfs_check_leaf_full(eb);
535
536         if (ret < 0) {
537                 btrfs_err(fs_info,
538                 "block=%llu write time tree block corruption detected",
539                           eb->start);
540                 return ret;
541         }
542         write_extent_buffer(eb, result, 0, csum_size);
543
544         return 0;
545 }
546
547 static int check_tree_block_fsid(struct extent_buffer *eb)
548 {
549         struct btrfs_fs_info *fs_info = eb->fs_info;
550         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
551         u8 fsid[BTRFS_FSID_SIZE];
552         int ret = 1;
553
554         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
555         while (fs_devices) {
556                 u8 *metadata_uuid;
557
558                 /*
559                  * Checking the incompat flag is only valid for the current
560                  * fs. For seed devices it's forbidden to have their uuid
561                  * changed so reading ->fsid in this case is fine
562                  */
563                 if (fs_devices == fs_info->fs_devices &&
564                     btrfs_fs_incompat(fs_info, METADATA_UUID))
565                         metadata_uuid = fs_devices->metadata_uuid;
566                 else
567                         metadata_uuid = fs_devices->fsid;
568
569                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
570                         ret = 0;
571                         break;
572                 }
573                 fs_devices = fs_devices->seed;
574         }
575         return ret;
576 }
577
578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579                                       u64 phy_offset, struct page *page,
580                                       u64 start, u64 end, int mirror)
581 {
582         u64 found_start;
583         int found_level;
584         struct extent_buffer *eb;
585         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586         struct btrfs_fs_info *fs_info = root->fs_info;
587         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
588         int ret = 0;
589         u8 result[BTRFS_CSUM_SIZE];
590         int reads_done;
591
592         if (!page->private)
593                 goto out;
594
595         eb = (struct extent_buffer *)page->private;
596
597         /* the pending IO might have been the only thing that kept this buffer
598          * in memory.  Make sure we have a ref for all this other checks
599          */
600         extent_buffer_get(eb);
601
602         reads_done = atomic_dec_and_test(&eb->io_pages);
603         if (!reads_done)
604                 goto err;
605
606         eb->read_mirror = mirror;
607         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608                 ret = -EIO;
609                 goto err;
610         }
611
612         found_start = btrfs_header_bytenr(eb);
613         if (found_start != eb->start) {
614                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615                              eb->start, found_start);
616                 ret = -EIO;
617                 goto err;
618         }
619         if (check_tree_block_fsid(eb)) {
620                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621                              eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         found_level = btrfs_header_level(eb);
626         if (found_level >= BTRFS_MAX_LEVEL) {
627                 btrfs_err(fs_info, "bad tree block level %d on %llu",
628                           (int)btrfs_header_level(eb), eb->start);
629                 ret = -EIO;
630                 goto err;
631         }
632
633         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634                                        eb, found_level);
635
636         ret = csum_tree_block(eb, result);
637         if (ret)
638                 goto err;
639
640         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641                 u32 val;
642                 u32 found = 0;
643
644                 memcpy(&found, result, csum_size);
645
646                 read_extent_buffer(eb, &val, 0, csum_size);
647                 btrfs_warn_rl(fs_info,
648                 "%s checksum verify failed on %llu wanted %x found %x level %d",
649                               fs_info->sb->s_id, eb->start,
650                               val, found, btrfs_header_level(eb));
651                 ret = -EUCLEAN;
652                 goto err;
653         }
654
655         /*
656          * If this is a leaf block and it is corrupt, set the corrupt bit so
657          * that we don't try and read the other copies of this block, just
658          * return -EIO.
659          */
660         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
661                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662                 ret = -EIO;
663         }
664
665         if (found_level > 0 && btrfs_check_node(eb))
666                 ret = -EIO;
667
668         if (!ret)
669                 set_extent_buffer_uptodate(eb);
670         else
671                 btrfs_err(fs_info,
672                           "block=%llu read time tree block corruption detected",
673                           eb->start);
674 err:
675         if (reads_done &&
676             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677                 btree_readahead_hook(eb, ret);
678
679         if (ret) {
680                 /*
681                  * our io error hook is going to dec the io pages
682                  * again, we have to make sure it has something
683                  * to decrement
684                  */
685                 atomic_inc(&eb->io_pages);
686                 clear_extent_buffer_uptodate(eb);
687         }
688         free_extent_buffer(eb);
689 out:
690         return ret;
691 }
692
693 static void end_workqueue_bio(struct bio *bio)
694 {
695         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
696         struct btrfs_fs_info *fs_info;
697         struct btrfs_workqueue *wq;
698         btrfs_work_func_t func;
699
700         fs_info = end_io_wq->info;
701         end_io_wq->status = bio->bi_status;
702
703         if (bio_op(bio) == REQ_OP_WRITE) {
704                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
705                         wq = fs_info->endio_meta_write_workers;
706                         func = btrfs_endio_meta_write_helper;
707                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
708                         wq = fs_info->endio_freespace_worker;
709                         func = btrfs_freespace_write_helper;
710                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
711                         wq = fs_info->endio_raid56_workers;
712                         func = btrfs_endio_raid56_helper;
713                 } else {
714                         wq = fs_info->endio_write_workers;
715                         func = btrfs_endio_write_helper;
716                 }
717         } else {
718                 if (unlikely(end_io_wq->metadata ==
719                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
720                         wq = fs_info->endio_repair_workers;
721                         func = btrfs_endio_repair_helper;
722                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723                         wq = fs_info->endio_raid56_workers;
724                         func = btrfs_endio_raid56_helper;
725                 } else if (end_io_wq->metadata) {
726                         wq = fs_info->endio_meta_workers;
727                         func = btrfs_endio_meta_helper;
728                 } else {
729                         wq = fs_info->endio_workers;
730                         func = btrfs_endio_helper;
731                 }
732         }
733
734         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
735         btrfs_queue_work(wq, &end_io_wq->work);
736 }
737
738 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
739                         enum btrfs_wq_endio_type metadata)
740 {
741         struct btrfs_end_io_wq *end_io_wq;
742
743         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
744         if (!end_io_wq)
745                 return BLK_STS_RESOURCE;
746
747         end_io_wq->private = bio->bi_private;
748         end_io_wq->end_io = bio->bi_end_io;
749         end_io_wq->info = info;
750         end_io_wq->status = 0;
751         end_io_wq->bio = bio;
752         end_io_wq->metadata = metadata;
753
754         bio->bi_private = end_io_wq;
755         bio->bi_end_io = end_workqueue_bio;
756         return 0;
757 }
758
759 static void run_one_async_start(struct btrfs_work *work)
760 {
761         struct async_submit_bio *async;
762         blk_status_t ret;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         ret = async->submit_bio_start(async->private_data, async->bio,
766                                       async->bio_offset);
767         if (ret)
768                 async->status = ret;
769 }
770
771 /*
772  * In order to insert checksums into the metadata in large chunks, we wait
773  * until bio submission time.   All the pages in the bio are checksummed and
774  * sums are attached onto the ordered extent record.
775  *
776  * At IO completion time the csums attached on the ordered extent record are
777  * inserted into the tree.
778  */
779 static void run_one_async_done(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782         struct inode *inode;
783         blk_status_t ret;
784
785         async = container_of(work, struct  async_submit_bio, work);
786         inode = async->private_data;
787
788         /* If an error occurred we just want to clean up the bio and move on */
789         if (async->status) {
790                 async->bio->bi_status = async->status;
791                 bio_endio(async->bio);
792                 return;
793         }
794
795         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
796                         async->mirror_num, 1);
797         if (ret) {
798                 async->bio->bi_status = ret;
799                 bio_endio(async->bio);
800         }
801 }
802
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805         struct async_submit_bio *async;
806
807         async = container_of(work, struct  async_submit_bio, work);
808         kfree(async);
809 }
810
811 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
812                                  int mirror_num, unsigned long bio_flags,
813                                  u64 bio_offset, void *private_data,
814                                  extent_submit_bio_start_t *submit_bio_start)
815 {
816         struct async_submit_bio *async;
817
818         async = kmalloc(sizeof(*async), GFP_NOFS);
819         if (!async)
820                 return BLK_STS_RESOURCE;
821
822         async->private_data = private_data;
823         async->bio = bio;
824         async->mirror_num = mirror_num;
825         async->submit_bio_start = submit_bio_start;
826
827         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
828                         run_one_async_done, run_one_async_free);
829
830         async->bio_offset = bio_offset;
831
832         async->status = 0;
833
834         if (op_is_sync(bio->bi_opf))
835                 btrfs_set_work_high_priority(&async->work);
836
837         btrfs_queue_work(fs_info->workers, &async->work);
838         return 0;
839 }
840
841 static blk_status_t btree_csum_one_bio(struct bio *bio)
842 {
843         struct bio_vec *bvec;
844         struct btrfs_root *root;
845         int ret = 0;
846         struct bvec_iter_all iter_all;
847
848         ASSERT(!bio_flagged(bio, BIO_CLONED));
849         bio_for_each_segment_all(bvec, bio, iter_all) {
850                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
851                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
852                 if (ret)
853                         break;
854         }
855
856         return errno_to_blk_status(ret);
857 }
858
859 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
860                                              u64 bio_offset)
861 {
862         /*
863          * when we're called for a write, we're already in the async
864          * submission context.  Just jump into btrfs_map_bio
865          */
866         return btree_csum_one_bio(bio);
867 }
868
869 static int check_async_write(struct btrfs_fs_info *fs_info,
870                              struct btrfs_inode *bi)
871 {
872         if (atomic_read(&bi->sync_writers))
873                 return 0;
874         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
875                 return 0;
876         return 1;
877 }
878
879 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
880                                           int mirror_num,
881                                           unsigned long bio_flags)
882 {
883         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
884         int async = check_async_write(fs_info, BTRFS_I(inode));
885         blk_status_t ret;
886
887         if (bio_op(bio) != REQ_OP_WRITE) {
888                 /*
889                  * called for a read, do the setup so that checksum validation
890                  * can happen in the async kernel threads
891                  */
892                 ret = btrfs_bio_wq_end_io(fs_info, bio,
893                                           BTRFS_WQ_ENDIO_METADATA);
894                 if (ret)
895                         goto out_w_error;
896                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897         } else if (!async) {
898                 ret = btree_csum_one_bio(bio);
899                 if (ret)
900                         goto out_w_error;
901                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
902         } else {
903                 /*
904                  * kthread helpers are used to submit writes so that
905                  * checksumming can happen in parallel across all CPUs
906                  */
907                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
908                                           0, inode, btree_submit_bio_start);
909         }
910
911         if (ret)
912                 goto out_w_error;
913         return 0;
914
915 out_w_error:
916         bio->bi_status = ret;
917         bio_endio(bio);
918         return ret;
919 }
920
921 #ifdef CONFIG_MIGRATION
922 static int btree_migratepage(struct address_space *mapping,
923                         struct page *newpage, struct page *page,
924                         enum migrate_mode mode)
925 {
926         /*
927          * we can't safely write a btree page from here,
928          * we haven't done the locking hook
929          */
930         if (PageDirty(page))
931                 return -EAGAIN;
932         /*
933          * Buffers may be managed in a filesystem specific way.
934          * We must have no buffers or drop them.
935          */
936         if (page_has_private(page) &&
937             !try_to_release_page(page, GFP_KERNEL))
938                 return -EAGAIN;
939         return migrate_page(mapping, newpage, page, mode);
940 }
941 #endif
942
943
944 static int btree_writepages(struct address_space *mapping,
945                             struct writeback_control *wbc)
946 {
947         struct btrfs_fs_info *fs_info;
948         int ret;
949
950         if (wbc->sync_mode == WB_SYNC_NONE) {
951
952                 if (wbc->for_kupdate)
953                         return 0;
954
955                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
956                 /* this is a bit racy, but that's ok */
957                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
958                                              BTRFS_DIRTY_METADATA_THRESH,
959                                              fs_info->dirty_metadata_batch);
960                 if (ret < 0)
961                         return 0;
962         }
963         return btree_write_cache_pages(mapping, wbc);
964 }
965
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968         struct extent_io_tree *tree;
969         tree = &BTRFS_I(page->mapping->host)->io_tree;
970         return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975         if (PageWriteback(page) || PageDirty(page))
976                 return 0;
977
978         return try_release_extent_buffer(page);
979 }
980
981 static void btree_invalidatepage(struct page *page, unsigned int offset,
982                                  unsigned int length)
983 {
984         struct extent_io_tree *tree;
985         tree = &BTRFS_I(page->mapping->host)->io_tree;
986         extent_invalidatepage(tree, page, offset);
987         btree_releasepage(page, GFP_NOFS);
988         if (PagePrivate(page)) {
989                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
990                            "page private not zero on page %llu",
991                            (unsigned long long)page_offset(page));
992                 ClearPagePrivate(page);
993                 set_page_private(page, 0);
994                 put_page(page);
995         }
996 }
997
998 static int btree_set_page_dirty(struct page *page)
999 {
1000 #ifdef DEBUG
1001         struct extent_buffer *eb;
1002
1003         BUG_ON(!PagePrivate(page));
1004         eb = (struct extent_buffer *)page->private;
1005         BUG_ON(!eb);
1006         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1007         BUG_ON(!atomic_read(&eb->refs));
1008         btrfs_assert_tree_locked(eb);
1009 #endif
1010         return __set_page_dirty_nobuffers(page);
1011 }
1012
1013 static const struct address_space_operations btree_aops = {
1014         .readpage       = btree_readpage,
1015         .writepages     = btree_writepages,
1016         .releasepage    = btree_releasepage,
1017         .invalidatepage = btree_invalidatepage,
1018 #ifdef CONFIG_MIGRATION
1019         .migratepage    = btree_migratepage,
1020 #endif
1021         .set_page_dirty = btree_set_page_dirty,
1022 };
1023
1024 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1025 {
1026         struct extent_buffer *buf = NULL;
1027         int ret;
1028
1029         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1030         if (IS_ERR(buf))
1031                 return;
1032
1033         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1034         if (ret < 0)
1035                 free_extent_buffer_stale(buf);
1036         else
1037                 free_extent_buffer(buf);
1038 }
1039
1040 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1041                          int mirror_num, struct extent_buffer **eb)
1042 {
1043         struct extent_buffer *buf = NULL;
1044         int ret;
1045
1046         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1047         if (IS_ERR(buf))
1048                 return 0;
1049
1050         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1051
1052         ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
1053         if (ret) {
1054                 free_extent_buffer_stale(buf);
1055                 return ret;
1056         }
1057
1058         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1059                 free_extent_buffer_stale(buf);
1060                 return -EIO;
1061         } else if (extent_buffer_uptodate(buf)) {
1062                 *eb = buf;
1063         } else {
1064                 free_extent_buffer(buf);
1065         }
1066         return 0;
1067 }
1068
1069 struct extent_buffer *btrfs_find_create_tree_block(
1070                                                 struct btrfs_fs_info *fs_info,
1071                                                 u64 bytenr)
1072 {
1073         if (btrfs_is_testing(fs_info))
1074                 return alloc_test_extent_buffer(fs_info, bytenr);
1075         return alloc_extent_buffer(fs_info, bytenr);
1076 }
1077
1078 /*
1079  * Read tree block at logical address @bytenr and do variant basic but critical
1080  * verification.
1081  *
1082  * @parent_transid:     expected transid of this tree block, skip check if 0
1083  * @level:              expected level, mandatory check
1084  * @first_key:          expected key in slot 0, skip check if NULL
1085  */
1086 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1087                                       u64 parent_transid, int level,
1088                                       struct btrfs_key *first_key)
1089 {
1090         struct extent_buffer *buf = NULL;
1091         int ret;
1092
1093         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1094         if (IS_ERR(buf))
1095                 return buf;
1096
1097         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1098                                              level, first_key);
1099         if (ret) {
1100                 free_extent_buffer_stale(buf);
1101                 return ERR_PTR(ret);
1102         }
1103         return buf;
1104
1105 }
1106
1107 void btrfs_clean_tree_block(struct extent_buffer *buf)
1108 {
1109         struct btrfs_fs_info *fs_info = buf->fs_info;
1110         if (btrfs_header_generation(buf) ==
1111             fs_info->running_transaction->transid) {
1112                 btrfs_assert_tree_locked(buf);
1113
1114                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116                                                  -buf->len,
1117                                                  fs_info->dirty_metadata_batch);
1118                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119                         btrfs_set_lock_blocking_write(buf);
1120                         clear_extent_buffer_dirty(buf);
1121                 }
1122         }
1123 }
1124
1125 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126 {
1127         struct btrfs_subvolume_writers *writers;
1128         int ret;
1129
1130         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131         if (!writers)
1132                 return ERR_PTR(-ENOMEM);
1133
1134         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135         if (ret < 0) {
1136                 kfree(writers);
1137                 return ERR_PTR(ret);
1138         }
1139
1140         init_waitqueue_head(&writers->wait);
1141         return writers;
1142 }
1143
1144 static void
1145 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146 {
1147         percpu_counter_destroy(&writers->counter);
1148         kfree(writers);
1149 }
1150
1151 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152                          u64 objectid)
1153 {
1154         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155         root->node = NULL;
1156         root->commit_root = NULL;
1157         root->state = 0;
1158         root->orphan_cleanup_state = 0;
1159
1160         root->last_trans = 0;
1161         root->highest_objectid = 0;
1162         root->nr_delalloc_inodes = 0;
1163         root->nr_ordered_extents = 0;
1164         root->inode_tree = RB_ROOT;
1165         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1166         root->block_rsv = NULL;
1167
1168         INIT_LIST_HEAD(&root->dirty_list);
1169         INIT_LIST_HEAD(&root->root_list);
1170         INIT_LIST_HEAD(&root->delalloc_inodes);
1171         INIT_LIST_HEAD(&root->delalloc_root);
1172         INIT_LIST_HEAD(&root->ordered_extents);
1173         INIT_LIST_HEAD(&root->ordered_root);
1174         INIT_LIST_HEAD(&root->reloc_dirty_list);
1175         INIT_LIST_HEAD(&root->logged_list[0]);
1176         INIT_LIST_HEAD(&root->logged_list[1]);
1177         spin_lock_init(&root->inode_lock);
1178         spin_lock_init(&root->delalloc_lock);
1179         spin_lock_init(&root->ordered_extent_lock);
1180         spin_lock_init(&root->accounting_lock);
1181         spin_lock_init(&root->log_extents_lock[0]);
1182         spin_lock_init(&root->log_extents_lock[1]);
1183         spin_lock_init(&root->qgroup_meta_rsv_lock);
1184         mutex_init(&root->objectid_mutex);
1185         mutex_init(&root->log_mutex);
1186         mutex_init(&root->ordered_extent_mutex);
1187         mutex_init(&root->delalloc_mutex);
1188         init_waitqueue_head(&root->log_writer_wait);
1189         init_waitqueue_head(&root->log_commit_wait[0]);
1190         init_waitqueue_head(&root->log_commit_wait[1]);
1191         INIT_LIST_HEAD(&root->log_ctxs[0]);
1192         INIT_LIST_HEAD(&root->log_ctxs[1]);
1193         atomic_set(&root->log_commit[0], 0);
1194         atomic_set(&root->log_commit[1], 0);
1195         atomic_set(&root->log_writers, 0);
1196         atomic_set(&root->log_batch, 0);
1197         refcount_set(&root->refs, 1);
1198         atomic_set(&root->will_be_snapshotted, 0);
1199         atomic_set(&root->snapshot_force_cow, 0);
1200         atomic_set(&root->nr_swapfiles, 0);
1201         root->log_transid = 0;
1202         root->log_transid_committed = -1;
1203         root->last_log_commit = 0;
1204         if (!dummy)
1205                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1206                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1207
1208         memset(&root->root_key, 0, sizeof(root->root_key));
1209         memset(&root->root_item, 0, sizeof(root->root_item));
1210         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1211         if (!dummy)
1212                 root->defrag_trans_start = fs_info->generation;
1213         else
1214                 root->defrag_trans_start = 0;
1215         root->root_key.objectid = objectid;
1216         root->anon_dev = 0;
1217
1218         spin_lock_init(&root->root_item_lock);
1219         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1220 }
1221
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223                 gfp_t flags)
1224 {
1225         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1226         if (root)
1227                 root->fs_info = fs_info;
1228         return root;
1229 }
1230
1231 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232 /* Should only be used by the testing infrastructure */
1233 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1234 {
1235         struct btrfs_root *root;
1236
1237         if (!fs_info)
1238                 return ERR_PTR(-EINVAL);
1239
1240         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241         if (!root)
1242                 return ERR_PTR(-ENOMEM);
1243
1244         /* We don't use the stripesize in selftest, set it as sectorsize */
1245         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1246         root->alloc_bytenr = 0;
1247
1248         return root;
1249 }
1250 #endif
1251
1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253                                      u64 objectid)
1254 {
1255         struct btrfs_fs_info *fs_info = trans->fs_info;
1256         struct extent_buffer *leaf;
1257         struct btrfs_root *tree_root = fs_info->tree_root;
1258         struct btrfs_root *root;
1259         struct btrfs_key key;
1260         unsigned int nofs_flag;
1261         int ret = 0;
1262         uuid_le uuid = NULL_UUID_LE;
1263
1264         /*
1265          * We're holding a transaction handle, so use a NOFS memory allocation
1266          * context to avoid deadlock if reclaim happens.
1267          */
1268         nofs_flag = memalloc_nofs_save();
1269         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1270         memalloc_nofs_restore(nofs_flag);
1271         if (!root)
1272                 return ERR_PTR(-ENOMEM);
1273
1274         __setup_root(root, fs_info, objectid);
1275         root->root_key.objectid = objectid;
1276         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277         root->root_key.offset = 0;
1278
1279         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1280         if (IS_ERR(leaf)) {
1281                 ret = PTR_ERR(leaf);
1282                 leaf = NULL;
1283                 goto fail;
1284         }
1285
1286         root->node = leaf;
1287         btrfs_mark_buffer_dirty(leaf);
1288
1289         root->commit_root = btrfs_root_node(root);
1290         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1291
1292         root->root_item.flags = 0;
1293         root->root_item.byte_limit = 0;
1294         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295         btrfs_set_root_generation(&root->root_item, trans->transid);
1296         btrfs_set_root_level(&root->root_item, 0);
1297         btrfs_set_root_refs(&root->root_item, 1);
1298         btrfs_set_root_used(&root->root_item, leaf->len);
1299         btrfs_set_root_last_snapshot(&root->root_item, 0);
1300         btrfs_set_root_dirid(&root->root_item, 0);
1301         if (is_fstree(objectid))
1302                 uuid_le_gen(&uuid);
1303         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1304         root->root_item.drop_level = 0;
1305
1306         key.objectid = objectid;
1307         key.type = BTRFS_ROOT_ITEM_KEY;
1308         key.offset = 0;
1309         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310         if (ret)
1311                 goto fail;
1312
1313         btrfs_tree_unlock(leaf);
1314
1315         return root;
1316
1317 fail:
1318         if (leaf) {
1319                 btrfs_tree_unlock(leaf);
1320                 free_extent_buffer(root->commit_root);
1321                 free_extent_buffer(leaf);
1322         }
1323         kfree(root);
1324
1325         return ERR_PTR(ret);
1326 }
1327
1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329                                          struct btrfs_fs_info *fs_info)
1330 {
1331         struct btrfs_root *root;
1332         struct extent_buffer *leaf;
1333
1334         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1335         if (!root)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1339
1340         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1343
1344         /*
1345          * DON'T set REF_COWS for log trees
1346          *
1347          * log trees do not get reference counted because they go away
1348          * before a real commit is actually done.  They do store pointers
1349          * to file data extents, and those reference counts still get
1350          * updated (along with back refs to the log tree).
1351          */
1352
1353         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354                         NULL, 0, 0, 0);
1355         if (IS_ERR(leaf)) {
1356                 kfree(root);
1357                 return ERR_CAST(leaf);
1358         }
1359
1360         root->node = leaf;
1361
1362         btrfs_mark_buffer_dirty(root->node);
1363         btrfs_tree_unlock(root->node);
1364         return root;
1365 }
1366
1367 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1368                              struct btrfs_fs_info *fs_info)
1369 {
1370         struct btrfs_root *log_root;
1371
1372         log_root = alloc_log_tree(trans, fs_info);
1373         if (IS_ERR(log_root))
1374                 return PTR_ERR(log_root);
1375         WARN_ON(fs_info->log_root_tree);
1376         fs_info->log_root_tree = log_root;
1377         return 0;
1378 }
1379
1380 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1381                        struct btrfs_root *root)
1382 {
1383         struct btrfs_fs_info *fs_info = root->fs_info;
1384         struct btrfs_root *log_root;
1385         struct btrfs_inode_item *inode_item;
1386
1387         log_root = alloc_log_tree(trans, fs_info);
1388         if (IS_ERR(log_root))
1389                 return PTR_ERR(log_root);
1390
1391         log_root->last_trans = trans->transid;
1392         log_root->root_key.offset = root->root_key.objectid;
1393
1394         inode_item = &log_root->root_item.inode;
1395         btrfs_set_stack_inode_generation(inode_item, 1);
1396         btrfs_set_stack_inode_size(inode_item, 3);
1397         btrfs_set_stack_inode_nlink(inode_item, 1);
1398         btrfs_set_stack_inode_nbytes(inode_item,
1399                                      fs_info->nodesize);
1400         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1401
1402         btrfs_set_root_node(&log_root->root_item, log_root->node);
1403
1404         WARN_ON(root->log_root);
1405         root->log_root = log_root;
1406         root->log_transid = 0;
1407         root->log_transid_committed = -1;
1408         root->last_log_commit = 0;
1409         return 0;
1410 }
1411
1412 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413                                                struct btrfs_key *key)
1414 {
1415         struct btrfs_root *root;
1416         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1417         struct btrfs_path *path;
1418         u64 generation;
1419         int ret;
1420         int level;
1421
1422         path = btrfs_alloc_path();
1423         if (!path)
1424                 return ERR_PTR(-ENOMEM);
1425
1426         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1427         if (!root) {
1428                 ret = -ENOMEM;
1429                 goto alloc_fail;
1430         }
1431
1432         __setup_root(root, fs_info, key->objectid);
1433
1434         ret = btrfs_find_root(tree_root, key, path,
1435                               &root->root_item, &root->root_key);
1436         if (ret) {
1437                 if (ret > 0)
1438                         ret = -ENOENT;
1439                 goto find_fail;
1440         }
1441
1442         generation = btrfs_root_generation(&root->root_item);
1443         level = btrfs_root_level(&root->root_item);
1444         root->node = read_tree_block(fs_info,
1445                                      btrfs_root_bytenr(&root->root_item),
1446                                      generation, level, NULL);
1447         if (IS_ERR(root->node)) {
1448                 ret = PTR_ERR(root->node);
1449                 goto find_fail;
1450         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1451                 ret = -EIO;
1452                 free_extent_buffer(root->node);
1453                 goto find_fail;
1454         }
1455         root->commit_root = btrfs_root_node(root);
1456 out:
1457         btrfs_free_path(path);
1458         return root;
1459
1460 find_fail:
1461         kfree(root);
1462 alloc_fail:
1463         root = ERR_PTR(ret);
1464         goto out;
1465 }
1466
1467 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1468                                       struct btrfs_key *location)
1469 {
1470         struct btrfs_root *root;
1471
1472         root = btrfs_read_tree_root(tree_root, location);
1473         if (IS_ERR(root))
1474                 return root;
1475
1476         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1477                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1478                 btrfs_check_and_init_root_item(&root->root_item);
1479         }
1480
1481         return root;
1482 }
1483
1484 int btrfs_init_fs_root(struct btrfs_root *root)
1485 {
1486         int ret;
1487         struct btrfs_subvolume_writers *writers;
1488
1489         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1490         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1491                                         GFP_NOFS);
1492         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1493                 ret = -ENOMEM;
1494                 goto fail;
1495         }
1496
1497         writers = btrfs_alloc_subvolume_writers();
1498         if (IS_ERR(writers)) {
1499                 ret = PTR_ERR(writers);
1500                 goto fail;
1501         }
1502         root->subv_writers = writers;
1503
1504         btrfs_init_free_ino_ctl(root);
1505         spin_lock_init(&root->ino_cache_lock);
1506         init_waitqueue_head(&root->ino_cache_wait);
1507
1508         ret = get_anon_bdev(&root->anon_dev);
1509         if (ret)
1510                 goto fail;
1511
1512         mutex_lock(&root->objectid_mutex);
1513         ret = btrfs_find_highest_objectid(root,
1514                                         &root->highest_objectid);
1515         if (ret) {
1516                 mutex_unlock(&root->objectid_mutex);
1517                 goto fail;
1518         }
1519
1520         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1521
1522         mutex_unlock(&root->objectid_mutex);
1523
1524         return 0;
1525 fail:
1526         /* The caller is responsible to call btrfs_free_fs_root */
1527         return ret;
1528 }
1529
1530 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531                                         u64 root_id)
1532 {
1533         struct btrfs_root *root;
1534
1535         spin_lock(&fs_info->fs_roots_radix_lock);
1536         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537                                  (unsigned long)root_id);
1538         spin_unlock(&fs_info->fs_roots_radix_lock);
1539         return root;
1540 }
1541
1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543                          struct btrfs_root *root)
1544 {
1545         int ret;
1546
1547         ret = radix_tree_preload(GFP_NOFS);
1548         if (ret)
1549                 return ret;
1550
1551         spin_lock(&fs_info->fs_roots_radix_lock);
1552         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553                                 (unsigned long)root->root_key.objectid,
1554                                 root);
1555         if (ret == 0)
1556                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1557         spin_unlock(&fs_info->fs_roots_radix_lock);
1558         radix_tree_preload_end();
1559
1560         return ret;
1561 }
1562
1563 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564                                      struct btrfs_key *location,
1565                                      bool check_ref)
1566 {
1567         struct btrfs_root *root;
1568         struct btrfs_path *path;
1569         struct btrfs_key key;
1570         int ret;
1571
1572         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573                 return fs_info->tree_root;
1574         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575                 return fs_info->extent_root;
1576         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577                 return fs_info->chunk_root;
1578         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579                 return fs_info->dev_root;
1580         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581                 return fs_info->csum_root;
1582         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583                 return fs_info->quota_root ? fs_info->quota_root :
1584                                              ERR_PTR(-ENOENT);
1585         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1586                 return fs_info->uuid_root ? fs_info->uuid_root :
1587                                             ERR_PTR(-ENOENT);
1588         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1589                 return fs_info->free_space_root ? fs_info->free_space_root :
1590                                                   ERR_PTR(-ENOENT);
1591 again:
1592         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1593         if (root) {
1594                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1595                         return ERR_PTR(-ENOENT);
1596                 return root;
1597         }
1598
1599         root = btrfs_read_fs_root(fs_info->tree_root, location);
1600         if (IS_ERR(root))
1601                 return root;
1602
1603         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1604                 ret = -ENOENT;
1605                 goto fail;
1606         }
1607
1608         ret = btrfs_init_fs_root(root);
1609         if (ret)
1610                 goto fail;
1611
1612         path = btrfs_alloc_path();
1613         if (!path) {
1614                 ret = -ENOMEM;
1615                 goto fail;
1616         }
1617         key.objectid = BTRFS_ORPHAN_OBJECTID;
1618         key.type = BTRFS_ORPHAN_ITEM_KEY;
1619         key.offset = location->objectid;
1620
1621         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1622         btrfs_free_path(path);
1623         if (ret < 0)
1624                 goto fail;
1625         if (ret == 0)
1626                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1627
1628         ret = btrfs_insert_fs_root(fs_info, root);
1629         if (ret) {
1630                 if (ret == -EEXIST) {
1631                         btrfs_free_fs_root(root);
1632                         goto again;
1633                 }
1634                 goto fail;
1635         }
1636         return root;
1637 fail:
1638         btrfs_free_fs_root(root);
1639         return ERR_PTR(ret);
1640 }
1641
1642 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1643 {
1644         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1645         int ret = 0;
1646         struct btrfs_device *device;
1647         struct backing_dev_info *bdi;
1648
1649         rcu_read_lock();
1650         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1651                 if (!device->bdev)
1652                         continue;
1653                 bdi = device->bdev->bd_bdi;
1654                 if (bdi_congested(bdi, bdi_bits)) {
1655                         ret = 1;
1656                         break;
1657                 }
1658         }
1659         rcu_read_unlock();
1660         return ret;
1661 }
1662
1663 /*
1664  * called by the kthread helper functions to finally call the bio end_io
1665  * functions.  This is where read checksum verification actually happens
1666  */
1667 static void end_workqueue_fn(struct btrfs_work *work)
1668 {
1669         struct bio *bio;
1670         struct btrfs_end_io_wq *end_io_wq;
1671
1672         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1673         bio = end_io_wq->bio;
1674
1675         bio->bi_status = end_io_wq->status;
1676         bio->bi_private = end_io_wq->private;
1677         bio->bi_end_io = end_io_wq->end_io;
1678         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1679         bio_endio(bio);
1680 }
1681
1682 static int cleaner_kthread(void *arg)
1683 {
1684         struct btrfs_root *root = arg;
1685         struct btrfs_fs_info *fs_info = root->fs_info;
1686         int again;
1687
1688         while (1) {
1689                 again = 0;
1690
1691                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1692
1693                 /* Make the cleaner go to sleep early. */
1694                 if (btrfs_need_cleaner_sleep(fs_info))
1695                         goto sleep;
1696
1697                 /*
1698                  * Do not do anything if we might cause open_ctree() to block
1699                  * before we have finished mounting the filesystem.
1700                  */
1701                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1702                         goto sleep;
1703
1704                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1705                         goto sleep;
1706
1707                 /*
1708                  * Avoid the problem that we change the status of the fs
1709                  * during the above check and trylock.
1710                  */
1711                 if (btrfs_need_cleaner_sleep(fs_info)) {
1712                         mutex_unlock(&fs_info->cleaner_mutex);
1713                         goto sleep;
1714                 }
1715
1716                 btrfs_run_delayed_iputs(fs_info);
1717
1718                 again = btrfs_clean_one_deleted_snapshot(root);
1719                 mutex_unlock(&fs_info->cleaner_mutex);
1720
1721                 /*
1722                  * The defragger has dealt with the R/O remount and umount,
1723                  * needn't do anything special here.
1724                  */
1725                 btrfs_run_defrag_inodes(fs_info);
1726
1727                 /*
1728                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1729                  * with relocation (btrfs_relocate_chunk) and relocation
1730                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1731                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1732                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1733                  * unused block groups.
1734                  */
1735                 btrfs_delete_unused_bgs(fs_info);
1736 sleep:
1737                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1738                 if (kthread_should_park())
1739                         kthread_parkme();
1740                 if (kthread_should_stop())
1741                         return 0;
1742                 if (!again) {
1743                         set_current_state(TASK_INTERRUPTIBLE);
1744                         schedule();
1745                         __set_current_state(TASK_RUNNING);
1746                 }
1747         }
1748 }
1749
1750 static int transaction_kthread(void *arg)
1751 {
1752         struct btrfs_root *root = arg;
1753         struct btrfs_fs_info *fs_info = root->fs_info;
1754         struct btrfs_trans_handle *trans;
1755         struct btrfs_transaction *cur;
1756         u64 transid;
1757         time64_t now;
1758         unsigned long delay;
1759         bool cannot_commit;
1760
1761         do {
1762                 cannot_commit = false;
1763                 delay = HZ * fs_info->commit_interval;
1764                 mutex_lock(&fs_info->transaction_kthread_mutex);
1765
1766                 spin_lock(&fs_info->trans_lock);
1767                 cur = fs_info->running_transaction;
1768                 if (!cur) {
1769                         spin_unlock(&fs_info->trans_lock);
1770                         goto sleep;
1771                 }
1772
1773                 now = ktime_get_seconds();
1774                 if (cur->state < TRANS_STATE_BLOCKED &&
1775                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1776                     (now < cur->start_time ||
1777                      now - cur->start_time < fs_info->commit_interval)) {
1778                         spin_unlock(&fs_info->trans_lock);
1779                         delay = HZ * 5;
1780                         goto sleep;
1781                 }
1782                 transid = cur->transid;
1783                 spin_unlock(&fs_info->trans_lock);
1784
1785                 /* If the file system is aborted, this will always fail. */
1786                 trans = btrfs_attach_transaction(root);
1787                 if (IS_ERR(trans)) {
1788                         if (PTR_ERR(trans) != -ENOENT)
1789                                 cannot_commit = true;
1790                         goto sleep;
1791                 }
1792                 if (transid == trans->transid) {
1793                         btrfs_commit_transaction(trans);
1794                 } else {
1795                         btrfs_end_transaction(trans);
1796                 }
1797 sleep:
1798                 wake_up_process(fs_info->cleaner_kthread);
1799                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1800
1801                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1802                                       &fs_info->fs_state)))
1803                         btrfs_cleanup_transaction(fs_info);
1804                 if (!kthread_should_stop() &&
1805                                 (!btrfs_transaction_blocked(fs_info) ||
1806                                  cannot_commit))
1807                         schedule_timeout_interruptible(delay);
1808         } while (!kthread_should_stop());
1809         return 0;
1810 }
1811
1812 /*
1813  * this will find the highest generation in the array of
1814  * root backups.  The index of the highest array is returned,
1815  * or -1 if we can't find anything.
1816  *
1817  * We check to make sure the array is valid by comparing the
1818  * generation of the latest  root in the array with the generation
1819  * in the super block.  If they don't match we pitch it.
1820  */
1821 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1822 {
1823         u64 cur;
1824         int newest_index = -1;
1825         struct btrfs_root_backup *root_backup;
1826         int i;
1827
1828         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1829                 root_backup = info->super_copy->super_roots + i;
1830                 cur = btrfs_backup_tree_root_gen(root_backup);
1831                 if (cur == newest_gen)
1832                         newest_index = i;
1833         }
1834
1835         /* check to see if we actually wrapped around */
1836         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1837                 root_backup = info->super_copy->super_roots;
1838                 cur = btrfs_backup_tree_root_gen(root_backup);
1839                 if (cur == newest_gen)
1840                         newest_index = 0;
1841         }
1842         return newest_index;
1843 }
1844
1845
1846 /*
1847  * find the oldest backup so we know where to store new entries
1848  * in the backup array.  This will set the backup_root_index
1849  * field in the fs_info struct
1850  */
1851 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1852                                      u64 newest_gen)
1853 {
1854         int newest_index = -1;
1855
1856         newest_index = find_newest_super_backup(info, newest_gen);
1857         /* if there was garbage in there, just move along */
1858         if (newest_index == -1) {
1859                 info->backup_root_index = 0;
1860         } else {
1861                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1862         }
1863 }
1864
1865 /*
1866  * copy all the root pointers into the super backup array.
1867  * this will bump the backup pointer by one when it is
1868  * done
1869  */
1870 static void backup_super_roots(struct btrfs_fs_info *info)
1871 {
1872         int next_backup;
1873         struct btrfs_root_backup *root_backup;
1874         int last_backup;
1875
1876         next_backup = info->backup_root_index;
1877         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1878                 BTRFS_NUM_BACKUP_ROOTS;
1879
1880         /*
1881          * just overwrite the last backup if we're at the same generation
1882          * this happens only at umount
1883          */
1884         root_backup = info->super_for_commit->super_roots + last_backup;
1885         if (btrfs_backup_tree_root_gen(root_backup) ==
1886             btrfs_header_generation(info->tree_root->node))
1887                 next_backup = last_backup;
1888
1889         root_backup = info->super_for_commit->super_roots + next_backup;
1890
1891         /*
1892          * make sure all of our padding and empty slots get zero filled
1893          * regardless of which ones we use today
1894          */
1895         memset(root_backup, 0, sizeof(*root_backup));
1896
1897         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898
1899         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1900         btrfs_set_backup_tree_root_gen(root_backup,
1901                                btrfs_header_generation(info->tree_root->node));
1902
1903         btrfs_set_backup_tree_root_level(root_backup,
1904                                btrfs_header_level(info->tree_root->node));
1905
1906         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1907         btrfs_set_backup_chunk_root_gen(root_backup,
1908                                btrfs_header_generation(info->chunk_root->node));
1909         btrfs_set_backup_chunk_root_level(root_backup,
1910                                btrfs_header_level(info->chunk_root->node));
1911
1912         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1913         btrfs_set_backup_extent_root_gen(root_backup,
1914                                btrfs_header_generation(info->extent_root->node));
1915         btrfs_set_backup_extent_root_level(root_backup,
1916                                btrfs_header_level(info->extent_root->node));
1917
1918         /*
1919          * we might commit during log recovery, which happens before we set
1920          * the fs_root.  Make sure it is valid before we fill it in.
1921          */
1922         if (info->fs_root && info->fs_root->node) {
1923                 btrfs_set_backup_fs_root(root_backup,
1924                                          info->fs_root->node->start);
1925                 btrfs_set_backup_fs_root_gen(root_backup,
1926                                btrfs_header_generation(info->fs_root->node));
1927                 btrfs_set_backup_fs_root_level(root_backup,
1928                                btrfs_header_level(info->fs_root->node));
1929         }
1930
1931         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1932         btrfs_set_backup_dev_root_gen(root_backup,
1933                                btrfs_header_generation(info->dev_root->node));
1934         btrfs_set_backup_dev_root_level(root_backup,
1935                                        btrfs_header_level(info->dev_root->node));
1936
1937         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1938         btrfs_set_backup_csum_root_gen(root_backup,
1939                                btrfs_header_generation(info->csum_root->node));
1940         btrfs_set_backup_csum_root_level(root_backup,
1941                                btrfs_header_level(info->csum_root->node));
1942
1943         btrfs_set_backup_total_bytes(root_backup,
1944                              btrfs_super_total_bytes(info->super_copy));
1945         btrfs_set_backup_bytes_used(root_backup,
1946                              btrfs_super_bytes_used(info->super_copy));
1947         btrfs_set_backup_num_devices(root_backup,
1948                              btrfs_super_num_devices(info->super_copy));
1949
1950         /*
1951          * if we don't copy this out to the super_copy, it won't get remembered
1952          * for the next commit
1953          */
1954         memcpy(&info->super_copy->super_roots,
1955                &info->super_for_commit->super_roots,
1956                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1957 }
1958
1959 /*
1960  * this copies info out of the root backup array and back into
1961  * the in-memory super block.  It is meant to help iterate through
1962  * the array, so you send it the number of backups you've already
1963  * tried and the last backup index you used.
1964  *
1965  * this returns -1 when it has tried all the backups
1966  */
1967 static noinline int next_root_backup(struct btrfs_fs_info *info,
1968                                      struct btrfs_super_block *super,
1969                                      int *num_backups_tried, int *backup_index)
1970 {
1971         struct btrfs_root_backup *root_backup;
1972         int newest = *backup_index;
1973
1974         if (*num_backups_tried == 0) {
1975                 u64 gen = btrfs_super_generation(super);
1976
1977                 newest = find_newest_super_backup(info, gen);
1978                 if (newest == -1)
1979                         return -1;
1980
1981                 *backup_index = newest;
1982                 *num_backups_tried = 1;
1983         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1984                 /* we've tried all the backups, all done */
1985                 return -1;
1986         } else {
1987                 /* jump to the next oldest backup */
1988                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1989                         BTRFS_NUM_BACKUP_ROOTS;
1990                 *backup_index = newest;
1991                 *num_backups_tried += 1;
1992         }
1993         root_backup = super->super_roots + newest;
1994
1995         btrfs_set_super_generation(super,
1996                                    btrfs_backup_tree_root_gen(root_backup));
1997         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1998         btrfs_set_super_root_level(super,
1999                                    btrfs_backup_tree_root_level(root_backup));
2000         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2001
2002         /*
2003          * fixme: the total bytes and num_devices need to match or we should
2004          * need a fsck
2005          */
2006         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2007         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2008         return 0;
2009 }
2010
2011 /* helper to cleanup workers */
2012 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2013 {
2014         btrfs_destroy_workqueue(fs_info->fixup_workers);
2015         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2016         btrfs_destroy_workqueue(fs_info->workers);
2017         btrfs_destroy_workqueue(fs_info->endio_workers);
2018         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2019         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2020         btrfs_destroy_workqueue(fs_info->rmw_workers);
2021         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2022         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2023         btrfs_destroy_workqueue(fs_info->submit_workers);
2024         btrfs_destroy_workqueue(fs_info->delayed_workers);
2025         btrfs_destroy_workqueue(fs_info->caching_workers);
2026         btrfs_destroy_workqueue(fs_info->readahead_workers);
2027         btrfs_destroy_workqueue(fs_info->flush_workers);
2028         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2029         btrfs_destroy_workqueue(fs_info->extent_workers);
2030         /*
2031          * Now that all other work queues are destroyed, we can safely destroy
2032          * the queues used for metadata I/O, since tasks from those other work
2033          * queues can do metadata I/O operations.
2034          */
2035         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2036         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2037 }
2038
2039 static void free_root_extent_buffers(struct btrfs_root *root)
2040 {
2041         if (root) {
2042                 free_extent_buffer(root->node);
2043                 free_extent_buffer(root->commit_root);
2044                 root->node = NULL;
2045                 root->commit_root = NULL;
2046         }
2047 }
2048
2049 /* helper to cleanup tree roots */
2050 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2051 {
2052         free_root_extent_buffers(info->tree_root);
2053
2054         free_root_extent_buffers(info->dev_root);
2055         free_root_extent_buffers(info->extent_root);
2056         free_root_extent_buffers(info->csum_root);
2057         free_root_extent_buffers(info->quota_root);
2058         free_root_extent_buffers(info->uuid_root);
2059         if (chunk_root)
2060                 free_root_extent_buffers(info->chunk_root);
2061         free_root_extent_buffers(info->free_space_root);
2062 }
2063
2064 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2065 {
2066         int ret;
2067         struct btrfs_root *gang[8];
2068         int i;
2069
2070         while (!list_empty(&fs_info->dead_roots)) {
2071                 gang[0] = list_entry(fs_info->dead_roots.next,
2072                                      struct btrfs_root, root_list);
2073                 list_del(&gang[0]->root_list);
2074
2075                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2076                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2077                 } else {
2078                         free_extent_buffer(gang[0]->node);
2079                         free_extent_buffer(gang[0]->commit_root);
2080                         btrfs_put_fs_root(gang[0]);
2081                 }
2082         }
2083
2084         while (1) {
2085                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2086                                              (void **)gang, 0,
2087                                              ARRAY_SIZE(gang));
2088                 if (!ret)
2089                         break;
2090                 for (i = 0; i < ret; i++)
2091                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2092         }
2093
2094         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2095                 btrfs_free_log_root_tree(NULL, fs_info);
2096                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2097         }
2098 }
2099
2100 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2101 {
2102         mutex_init(&fs_info->scrub_lock);
2103         atomic_set(&fs_info->scrubs_running, 0);
2104         atomic_set(&fs_info->scrub_pause_req, 0);
2105         atomic_set(&fs_info->scrubs_paused, 0);
2106         atomic_set(&fs_info->scrub_cancel_req, 0);
2107         init_waitqueue_head(&fs_info->scrub_pause_wait);
2108         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2109 }
2110
2111 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2112 {
2113         spin_lock_init(&fs_info->balance_lock);
2114         mutex_init(&fs_info->balance_mutex);
2115         atomic_set(&fs_info->balance_pause_req, 0);
2116         atomic_set(&fs_info->balance_cancel_req, 0);
2117         fs_info->balance_ctl = NULL;
2118         init_waitqueue_head(&fs_info->balance_wait_q);
2119 }
2120
2121 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2122 {
2123         struct inode *inode = fs_info->btree_inode;
2124
2125         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2126         set_nlink(inode, 1);
2127         /*
2128          * we set the i_size on the btree inode to the max possible int.
2129          * the real end of the address space is determined by all of
2130          * the devices in the system
2131          */
2132         inode->i_size = OFFSET_MAX;
2133         inode->i_mapping->a_ops = &btree_aops;
2134
2135         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2136         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2137                             IO_TREE_INODE_IO, inode);
2138         BTRFS_I(inode)->io_tree.track_uptodate = false;
2139         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2140
2141         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2142
2143         BTRFS_I(inode)->root = fs_info->tree_root;
2144         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146         btrfs_insert_inode_hash(inode);
2147 }
2148
2149 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150 {
2151         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2152         init_rwsem(&fs_info->dev_replace.rwsem);
2153         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2154 }
2155
2156 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2157 {
2158         spin_lock_init(&fs_info->qgroup_lock);
2159         mutex_init(&fs_info->qgroup_ioctl_lock);
2160         fs_info->qgroup_tree = RB_ROOT;
2161         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2162         fs_info->qgroup_seq = 1;
2163         fs_info->qgroup_ulist = NULL;
2164         fs_info->qgroup_rescan_running = false;
2165         mutex_init(&fs_info->qgroup_rescan_lock);
2166 }
2167
2168 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2169                 struct btrfs_fs_devices *fs_devices)
2170 {
2171         u32 max_active = fs_info->thread_pool_size;
2172         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2173
2174         fs_info->workers =
2175                 btrfs_alloc_workqueue(fs_info, "worker",
2176                                       flags | WQ_HIGHPRI, max_active, 16);
2177
2178         fs_info->delalloc_workers =
2179                 btrfs_alloc_workqueue(fs_info, "delalloc",
2180                                       flags, max_active, 2);
2181
2182         fs_info->flush_workers =
2183                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2184                                       flags, max_active, 0);
2185
2186         fs_info->caching_workers =
2187                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2188
2189         /*
2190          * a higher idle thresh on the submit workers makes it much more
2191          * likely that bios will be send down in a sane order to the
2192          * devices
2193          */
2194         fs_info->submit_workers =
2195                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2196                                       min_t(u64, fs_devices->num_devices,
2197                                             max_active), 64);
2198
2199         fs_info->fixup_workers =
2200                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2201
2202         /*
2203          * endios are largely parallel and should have a very
2204          * low idle thresh
2205          */
2206         fs_info->endio_workers =
2207                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2208         fs_info->endio_meta_workers =
2209                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2210                                       max_active, 4);
2211         fs_info->endio_meta_write_workers =
2212                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2213                                       max_active, 2);
2214         fs_info->endio_raid56_workers =
2215                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2216                                       max_active, 4);
2217         fs_info->endio_repair_workers =
2218                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2219         fs_info->rmw_workers =
2220                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2221         fs_info->endio_write_workers =
2222                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2223                                       max_active, 2);
2224         fs_info->endio_freespace_worker =
2225                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2226                                       max_active, 0);
2227         fs_info->delayed_workers =
2228                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2229                                       max_active, 0);
2230         fs_info->readahead_workers =
2231                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2232                                       max_active, 2);
2233         fs_info->qgroup_rescan_workers =
2234                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2235         fs_info->extent_workers =
2236                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2237                                       min_t(u64, fs_devices->num_devices,
2238                                             max_active), 8);
2239
2240         if (!(fs_info->workers && fs_info->delalloc_workers &&
2241               fs_info->submit_workers && fs_info->flush_workers &&
2242               fs_info->endio_workers && fs_info->endio_meta_workers &&
2243               fs_info->endio_meta_write_workers &&
2244               fs_info->endio_repair_workers &&
2245               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2246               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2247               fs_info->caching_workers && fs_info->readahead_workers &&
2248               fs_info->fixup_workers && fs_info->delayed_workers &&
2249               fs_info->extent_workers &&
2250               fs_info->qgroup_rescan_workers)) {
2251                 return -ENOMEM;
2252         }
2253
2254         return 0;
2255 }
2256
2257 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2258 {
2259         struct crypto_shash *csum_shash;
2260         const char *csum_name = btrfs_super_csum_name(csum_type);
2261
2262         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2263
2264         if (IS_ERR(csum_shash)) {
2265                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2266                           csum_name);
2267                 return PTR_ERR(csum_shash);
2268         }
2269
2270         fs_info->csum_shash = csum_shash;
2271
2272         return 0;
2273 }
2274
2275 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2276 {
2277         crypto_free_shash(fs_info->csum_shash);
2278 }
2279
2280 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281                             struct btrfs_fs_devices *fs_devices)
2282 {
2283         int ret;
2284         struct btrfs_root *log_tree_root;
2285         struct btrfs_super_block *disk_super = fs_info->super_copy;
2286         u64 bytenr = btrfs_super_log_root(disk_super);
2287         int level = btrfs_super_log_root_level(disk_super);
2288
2289         if (fs_devices->rw_devices == 0) {
2290                 btrfs_warn(fs_info, "log replay required on RO media");
2291                 return -EIO;
2292         }
2293
2294         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2295         if (!log_tree_root)
2296                 return -ENOMEM;
2297
2298         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2299
2300         log_tree_root->node = read_tree_block(fs_info, bytenr,
2301                                               fs_info->generation + 1,
2302                                               level, NULL);
2303         if (IS_ERR(log_tree_root->node)) {
2304                 btrfs_warn(fs_info, "failed to read log tree");
2305                 ret = PTR_ERR(log_tree_root->node);
2306                 kfree(log_tree_root);
2307                 return ret;
2308         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2309                 btrfs_err(fs_info, "failed to read log tree");
2310                 free_extent_buffer(log_tree_root->node);
2311                 kfree(log_tree_root);
2312                 return -EIO;
2313         }
2314         /* returns with log_tree_root freed on success */
2315         ret = btrfs_recover_log_trees(log_tree_root);
2316         if (ret) {
2317                 btrfs_handle_fs_error(fs_info, ret,
2318                                       "Failed to recover log tree");
2319                 free_extent_buffer(log_tree_root->node);
2320                 kfree(log_tree_root);
2321                 return ret;
2322         }
2323
2324         if (sb_rdonly(fs_info->sb)) {
2325                 ret = btrfs_commit_super(fs_info);
2326                 if (ret)
2327                         return ret;
2328         }
2329
2330         return 0;
2331 }
2332
2333 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2334 {
2335         struct btrfs_root *tree_root = fs_info->tree_root;
2336         struct btrfs_root *root;
2337         struct btrfs_key location;
2338         int ret;
2339
2340         BUG_ON(!fs_info->tree_root);
2341
2342         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2343         location.type = BTRFS_ROOT_ITEM_KEY;
2344         location.offset = 0;
2345
2346         root = btrfs_read_tree_root(tree_root, &location);
2347         if (IS_ERR(root)) {
2348                 ret = PTR_ERR(root);
2349                 goto out;
2350         }
2351         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352         fs_info->extent_root = root;
2353
2354         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2355         root = btrfs_read_tree_root(tree_root, &location);
2356         if (IS_ERR(root)) {
2357                 ret = PTR_ERR(root);
2358                 goto out;
2359         }
2360         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361         fs_info->dev_root = root;
2362         btrfs_init_devices_late(fs_info);
2363
2364         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2365         root = btrfs_read_tree_root(tree_root, &location);
2366         if (IS_ERR(root)) {
2367                 ret = PTR_ERR(root);
2368                 goto out;
2369         }
2370         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371         fs_info->csum_root = root;
2372
2373         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2374         root = btrfs_read_tree_root(tree_root, &location);
2375         if (!IS_ERR(root)) {
2376                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2378                 fs_info->quota_root = root;
2379         }
2380
2381         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2382         root = btrfs_read_tree_root(tree_root, &location);
2383         if (IS_ERR(root)) {
2384                 ret = PTR_ERR(root);
2385                 if (ret != -ENOENT)
2386                         goto out;
2387         } else {
2388                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389                 fs_info->uuid_root = root;
2390         }
2391
2392         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2393                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2394                 root = btrfs_read_tree_root(tree_root, &location);
2395                 if (IS_ERR(root)) {
2396                         ret = PTR_ERR(root);
2397                         goto out;
2398                 }
2399                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2400                 fs_info->free_space_root = root;
2401         }
2402
2403         return 0;
2404 out:
2405         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2406                    location.objectid, ret);
2407         return ret;
2408 }
2409
2410 /*
2411  * Real super block validation
2412  * NOTE: super csum type and incompat features will not be checked here.
2413  *
2414  * @sb:         super block to check
2415  * @mirror_num: the super block number to check its bytenr:
2416  *              0       the primary (1st) sb
2417  *              1, 2    2nd and 3rd backup copy
2418  *             -1       skip bytenr check
2419  */
2420 static int validate_super(struct btrfs_fs_info *fs_info,
2421                             struct btrfs_super_block *sb, int mirror_num)
2422 {
2423         u64 nodesize = btrfs_super_nodesize(sb);
2424         u64 sectorsize = btrfs_super_sectorsize(sb);
2425         int ret = 0;
2426
2427         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2428                 btrfs_err(fs_info, "no valid FS found");
2429                 ret = -EINVAL;
2430         }
2431         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2432                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2433                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2434                 ret = -EINVAL;
2435         }
2436         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2437                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2438                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2439                 ret = -EINVAL;
2440         }
2441         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2442                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2443                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2444                 ret = -EINVAL;
2445         }
2446         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2447                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2448                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2449                 ret = -EINVAL;
2450         }
2451
2452         /*
2453          * Check sectorsize and nodesize first, other check will need it.
2454          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2455          */
2456         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2457             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2458                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2459                 ret = -EINVAL;
2460         }
2461         /* Only PAGE SIZE is supported yet */
2462         if (sectorsize != PAGE_SIZE) {
2463                 btrfs_err(fs_info,
2464                         "sectorsize %llu not supported yet, only support %lu",
2465                         sectorsize, PAGE_SIZE);
2466                 ret = -EINVAL;
2467         }
2468         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2469             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2471                 ret = -EINVAL;
2472         }
2473         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2474                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2475                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2476                 ret = -EINVAL;
2477         }
2478
2479         /* Root alignment check */
2480         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2481                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2482                            btrfs_super_root(sb));
2483                 ret = -EINVAL;
2484         }
2485         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2486                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2487                            btrfs_super_chunk_root(sb));
2488                 ret = -EINVAL;
2489         }
2490         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2491                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2492                            btrfs_super_log_root(sb));
2493                 ret = -EINVAL;
2494         }
2495
2496         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2497                    BTRFS_FSID_SIZE) != 0) {
2498                 btrfs_err(fs_info,
2499                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2500                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2501                 ret = -EINVAL;
2502         }
2503
2504         /*
2505          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2506          * done later
2507          */
2508         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2509                 btrfs_err(fs_info, "bytes_used is too small %llu",
2510                           btrfs_super_bytes_used(sb));
2511                 ret = -EINVAL;
2512         }
2513         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2514                 btrfs_err(fs_info, "invalid stripesize %u",
2515                           btrfs_super_stripesize(sb));
2516                 ret = -EINVAL;
2517         }
2518         if (btrfs_super_num_devices(sb) > (1UL << 31))
2519                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2520                            btrfs_super_num_devices(sb));
2521         if (btrfs_super_num_devices(sb) == 0) {
2522                 btrfs_err(fs_info, "number of devices is 0");
2523                 ret = -EINVAL;
2524         }
2525
2526         if (mirror_num >= 0 &&
2527             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2528                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2529                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2530                 ret = -EINVAL;
2531         }
2532
2533         /*
2534          * Obvious sys_chunk_array corruptions, it must hold at least one key
2535          * and one chunk
2536          */
2537         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2538                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2539                           btrfs_super_sys_array_size(sb),
2540                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2541                 ret = -EINVAL;
2542         }
2543         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2544                         + sizeof(struct btrfs_chunk)) {
2545                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2546                           btrfs_super_sys_array_size(sb),
2547                           sizeof(struct btrfs_disk_key)
2548                           + sizeof(struct btrfs_chunk));
2549                 ret = -EINVAL;
2550         }
2551
2552         /*
2553          * The generation is a global counter, we'll trust it more than the others
2554          * but it's still possible that it's the one that's wrong.
2555          */
2556         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2557                 btrfs_warn(fs_info,
2558                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2559                         btrfs_super_generation(sb),
2560                         btrfs_super_chunk_root_generation(sb));
2561         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2562             && btrfs_super_cache_generation(sb) != (u64)-1)
2563                 btrfs_warn(fs_info,
2564                         "suspicious: generation < cache_generation: %llu < %llu",
2565                         btrfs_super_generation(sb),
2566                         btrfs_super_cache_generation(sb));
2567
2568         return ret;
2569 }
2570
2571 /*
2572  * Validation of super block at mount time.
2573  * Some checks already done early at mount time, like csum type and incompat
2574  * flags will be skipped.
2575  */
2576 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2577 {
2578         return validate_super(fs_info, fs_info->super_copy, 0);
2579 }
2580
2581 /*
2582  * Validation of super block at write time.
2583  * Some checks like bytenr check will be skipped as their values will be
2584  * overwritten soon.
2585  * Extra checks like csum type and incompat flags will be done here.
2586  */
2587 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2588                                       struct btrfs_super_block *sb)
2589 {
2590         int ret;
2591
2592         ret = validate_super(fs_info, sb, -1);
2593         if (ret < 0)
2594                 goto out;
2595         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2596                 ret = -EUCLEAN;
2597                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2598                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2599                 goto out;
2600         }
2601         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2602                 ret = -EUCLEAN;
2603                 btrfs_err(fs_info,
2604                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2605                           btrfs_super_incompat_flags(sb),
2606                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2607                 goto out;
2608         }
2609 out:
2610         if (ret < 0)
2611                 btrfs_err(fs_info,
2612                 "super block corruption detected before writing it to disk");
2613         return ret;
2614 }
2615
2616 int open_ctree(struct super_block *sb,
2617                struct btrfs_fs_devices *fs_devices,
2618                char *options)
2619 {
2620         u32 sectorsize;
2621         u32 nodesize;
2622         u32 stripesize;
2623         u64 generation;
2624         u64 features;
2625         u16 csum_type;
2626         struct btrfs_key location;
2627         struct buffer_head *bh;
2628         struct btrfs_super_block *disk_super;
2629         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2630         struct btrfs_root *tree_root;
2631         struct btrfs_root *chunk_root;
2632         int ret;
2633         int err = -EINVAL;
2634         int num_backups_tried = 0;
2635         int backup_index = 0;
2636         int clear_free_space_tree = 0;
2637         int level;
2638
2639         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2640         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2641         if (!tree_root || !chunk_root) {
2642                 err = -ENOMEM;
2643                 goto fail;
2644         }
2645
2646         ret = init_srcu_struct(&fs_info->subvol_srcu);
2647         if (ret) {
2648                 err = ret;
2649                 goto fail;
2650         }
2651
2652         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2653         if (ret) {
2654                 err = ret;
2655                 goto fail_srcu;
2656         }
2657
2658         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2659         if (ret) {
2660                 err = ret;
2661                 goto fail_dio_bytes;
2662         }
2663         fs_info->dirty_metadata_batch = PAGE_SIZE *
2664                                         (1 + ilog2(nr_cpu_ids));
2665
2666         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2667         if (ret) {
2668                 err = ret;
2669                 goto fail_dirty_metadata_bytes;
2670         }
2671
2672         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2673                         GFP_KERNEL);
2674         if (ret) {
2675                 err = ret;
2676                 goto fail_delalloc_bytes;
2677         }
2678
2679         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2680         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2681         INIT_LIST_HEAD(&fs_info->trans_list);
2682         INIT_LIST_HEAD(&fs_info->dead_roots);
2683         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2684         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2685         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2686         spin_lock_init(&fs_info->delalloc_root_lock);
2687         spin_lock_init(&fs_info->trans_lock);
2688         spin_lock_init(&fs_info->fs_roots_radix_lock);
2689         spin_lock_init(&fs_info->delayed_iput_lock);
2690         spin_lock_init(&fs_info->defrag_inodes_lock);
2691         spin_lock_init(&fs_info->tree_mod_seq_lock);
2692         spin_lock_init(&fs_info->super_lock);
2693         spin_lock_init(&fs_info->buffer_lock);
2694         spin_lock_init(&fs_info->unused_bgs_lock);
2695         rwlock_init(&fs_info->tree_mod_log_lock);
2696         mutex_init(&fs_info->unused_bg_unpin_mutex);
2697         mutex_init(&fs_info->delete_unused_bgs_mutex);
2698         mutex_init(&fs_info->reloc_mutex);
2699         mutex_init(&fs_info->delalloc_root_mutex);
2700         seqlock_init(&fs_info->profiles_lock);
2701
2702         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2703         INIT_LIST_HEAD(&fs_info->space_info);
2704         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2705         INIT_LIST_HEAD(&fs_info->unused_bgs);
2706         extent_map_tree_init(&fs_info->mapping_tree);
2707         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2708                              BTRFS_BLOCK_RSV_GLOBAL);
2709         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2710         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2711         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2712         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2713                              BTRFS_BLOCK_RSV_DELOPS);
2714         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2715                              BTRFS_BLOCK_RSV_DELREFS);
2716
2717         atomic_set(&fs_info->async_delalloc_pages, 0);
2718         atomic_set(&fs_info->defrag_running, 0);
2719         atomic_set(&fs_info->reada_works_cnt, 0);
2720         atomic_set(&fs_info->nr_delayed_iputs, 0);
2721         atomic64_set(&fs_info->tree_mod_seq, 0);
2722         fs_info->sb = sb;
2723         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2724         fs_info->metadata_ratio = 0;
2725         fs_info->defrag_inodes = RB_ROOT;
2726         atomic64_set(&fs_info->free_chunk_space, 0);
2727         fs_info->tree_mod_log = RB_ROOT;
2728         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2729         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2730         /* readahead state */
2731         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2732         spin_lock_init(&fs_info->reada_lock);
2733         btrfs_init_ref_verify(fs_info);
2734
2735         fs_info->thread_pool_size = min_t(unsigned long,
2736                                           num_online_cpus() + 2, 8);
2737
2738         INIT_LIST_HEAD(&fs_info->ordered_roots);
2739         spin_lock_init(&fs_info->ordered_root_lock);
2740
2741         fs_info->btree_inode = new_inode(sb);
2742         if (!fs_info->btree_inode) {
2743                 err = -ENOMEM;
2744                 goto fail_bio_counter;
2745         }
2746         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2747
2748         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2749                                         GFP_KERNEL);
2750         if (!fs_info->delayed_root) {
2751                 err = -ENOMEM;
2752                 goto fail_iput;
2753         }
2754         btrfs_init_delayed_root(fs_info->delayed_root);
2755
2756         btrfs_init_scrub(fs_info);
2757 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2758         fs_info->check_integrity_print_mask = 0;
2759 #endif
2760         btrfs_init_balance(fs_info);
2761         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2762
2763         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2764         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2765
2766         btrfs_init_btree_inode(fs_info);
2767
2768         spin_lock_init(&fs_info->block_group_cache_lock);
2769         fs_info->block_group_cache_tree = RB_ROOT;
2770         fs_info->first_logical_byte = (u64)-1;
2771
2772         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2773                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2774         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2775                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2776         fs_info->pinned_extents = &fs_info->freed_extents[0];
2777         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2778
2779         mutex_init(&fs_info->ordered_operations_mutex);
2780         mutex_init(&fs_info->tree_log_mutex);
2781         mutex_init(&fs_info->chunk_mutex);
2782         mutex_init(&fs_info->transaction_kthread_mutex);
2783         mutex_init(&fs_info->cleaner_mutex);
2784         mutex_init(&fs_info->ro_block_group_mutex);
2785         init_rwsem(&fs_info->commit_root_sem);
2786         init_rwsem(&fs_info->cleanup_work_sem);
2787         init_rwsem(&fs_info->subvol_sem);
2788         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2789
2790         btrfs_init_dev_replace_locks(fs_info);
2791         btrfs_init_qgroup(fs_info);
2792
2793         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2794         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2795
2796         init_waitqueue_head(&fs_info->transaction_throttle);
2797         init_waitqueue_head(&fs_info->transaction_wait);
2798         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2799         init_waitqueue_head(&fs_info->async_submit_wait);
2800         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2801
2802         /* Usable values until the real ones are cached from the superblock */
2803         fs_info->nodesize = 4096;
2804         fs_info->sectorsize = 4096;
2805         fs_info->stripesize = 4096;
2806
2807         spin_lock_init(&fs_info->swapfile_pins_lock);
2808         fs_info->swapfile_pins = RB_ROOT;
2809
2810         fs_info->send_in_progress = 0;
2811
2812         ret = btrfs_alloc_stripe_hash_table(fs_info);
2813         if (ret) {
2814                 err = ret;
2815                 goto fail_alloc;
2816         }
2817
2818         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2819
2820         invalidate_bdev(fs_devices->latest_bdev);
2821
2822         /*
2823          * Read super block and check the signature bytes only
2824          */
2825         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2826         if (IS_ERR(bh)) {
2827                 err = PTR_ERR(bh);
2828                 goto fail_alloc;
2829         }
2830
2831         /*
2832          * Verify the type first, if that or the the checksum value are
2833          * corrupted, we'll find out
2834          */
2835         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2836         if (!btrfs_supported_super_csum(csum_type)) {
2837                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2838                           csum_type);
2839                 err = -EINVAL;
2840                 brelse(bh);
2841                 goto fail_alloc;
2842         }
2843
2844         ret = btrfs_init_csum_hash(fs_info, csum_type);
2845         if (ret) {
2846                 err = ret;
2847                 goto fail_alloc;
2848         }
2849
2850         /*
2851          * We want to check superblock checksum, the type is stored inside.
2852          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853          */
2854         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2855                 btrfs_err(fs_info, "superblock checksum mismatch");
2856                 err = -EINVAL;
2857                 brelse(bh);
2858                 goto fail_csum;
2859         }
2860
2861         /*
2862          * super_copy is zeroed at allocation time and we never touch the
2863          * following bytes up to INFO_SIZE, the checksum is calculated from
2864          * the whole block of INFO_SIZE
2865          */
2866         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2867         brelse(bh);
2868
2869         disk_super = fs_info->super_copy;
2870
2871         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2872                        BTRFS_FSID_SIZE));
2873
2874         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2875                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2876                                 fs_info->super_copy->metadata_uuid,
2877                                 BTRFS_FSID_SIZE));
2878         }
2879
2880         features = btrfs_super_flags(disk_super);
2881         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2882                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2883                 btrfs_set_super_flags(disk_super, features);
2884                 btrfs_info(fs_info,
2885                         "found metadata UUID change in progress flag, clearing");
2886         }
2887
2888         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2889                sizeof(*fs_info->super_for_commit));
2890
2891         ret = btrfs_validate_mount_super(fs_info);
2892         if (ret) {
2893                 btrfs_err(fs_info, "superblock contains fatal errors");
2894                 err = -EINVAL;
2895                 goto fail_csum;
2896         }
2897
2898         if (!btrfs_super_root(disk_super))
2899                 goto fail_csum;
2900
2901         /* check FS state, whether FS is broken. */
2902         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2903                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2904
2905         /*
2906          * run through our array of backup supers and setup
2907          * our ring pointer to the oldest one
2908          */
2909         generation = btrfs_super_generation(disk_super);
2910         find_oldest_super_backup(fs_info, generation);
2911
2912         /*
2913          * In the long term, we'll store the compression type in the super
2914          * block, and it'll be used for per file compression control.
2915          */
2916         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2917
2918         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2919         if (ret) {
2920                 err = ret;
2921                 goto fail_csum;
2922         }
2923
2924         features = btrfs_super_incompat_flags(disk_super) &
2925                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2926         if (features) {
2927                 btrfs_err(fs_info,
2928                     "cannot mount because of unsupported optional features (%llx)",
2929                     features);
2930                 err = -EINVAL;
2931                 goto fail_csum;
2932         }
2933
2934         features = btrfs_super_incompat_flags(disk_super);
2935         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2936         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2937                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2938         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2939                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2940
2941         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2942                 btrfs_info(fs_info, "has skinny extents");
2943
2944         /*
2945          * flag our filesystem as having big metadata blocks if
2946          * they are bigger than the page size
2947          */
2948         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2949                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2950                         btrfs_info(fs_info,
2951                                 "flagging fs with big metadata feature");
2952                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2953         }
2954
2955         nodesize = btrfs_super_nodesize(disk_super);
2956         sectorsize = btrfs_super_sectorsize(disk_super);
2957         stripesize = sectorsize;
2958         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2959         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2960
2961         /* Cache block sizes */
2962         fs_info->nodesize = nodesize;
2963         fs_info->sectorsize = sectorsize;
2964         fs_info->stripesize = stripesize;
2965
2966         /*
2967          * mixed block groups end up with duplicate but slightly offset
2968          * extent buffers for the same range.  It leads to corruptions
2969          */
2970         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2971             (sectorsize != nodesize)) {
2972                 btrfs_err(fs_info,
2973 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2974                         nodesize, sectorsize);
2975                 goto fail_csum;
2976         }
2977
2978         /*
2979          * Needn't use the lock because there is no other task which will
2980          * update the flag.
2981          */
2982         btrfs_set_super_incompat_flags(disk_super, features);
2983
2984         features = btrfs_super_compat_ro_flags(disk_super) &
2985                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2986         if (!sb_rdonly(sb) && features) {
2987                 btrfs_err(fs_info,
2988         "cannot mount read-write because of unsupported optional features (%llx)",
2989                        features);
2990                 err = -EINVAL;
2991                 goto fail_csum;
2992         }
2993
2994         ret = btrfs_init_workqueues(fs_info, fs_devices);
2995         if (ret) {
2996                 err = ret;
2997                 goto fail_sb_buffer;
2998         }
2999
3000         sb->s_bdi->congested_fn = btrfs_congested_fn;
3001         sb->s_bdi->congested_data = fs_info;
3002         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3003         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3004         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3005         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3006
3007         sb->s_blocksize = sectorsize;
3008         sb->s_blocksize_bits = blksize_bits(sectorsize);
3009         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3010
3011         mutex_lock(&fs_info->chunk_mutex);
3012         ret = btrfs_read_sys_array(fs_info);
3013         mutex_unlock(&fs_info->chunk_mutex);
3014         if (ret) {
3015                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3016                 goto fail_sb_buffer;
3017         }
3018
3019         generation = btrfs_super_chunk_root_generation(disk_super);
3020         level = btrfs_super_chunk_root_level(disk_super);
3021
3022         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3023
3024         chunk_root->node = read_tree_block(fs_info,
3025                                            btrfs_super_chunk_root(disk_super),
3026                                            generation, level, NULL);
3027         if (IS_ERR(chunk_root->node) ||
3028             !extent_buffer_uptodate(chunk_root->node)) {
3029                 btrfs_err(fs_info, "failed to read chunk root");
3030                 if (!IS_ERR(chunk_root->node))
3031                         free_extent_buffer(chunk_root->node);
3032                 chunk_root->node = NULL;
3033                 goto fail_tree_roots;
3034         }
3035         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3036         chunk_root->commit_root = btrfs_root_node(chunk_root);
3037
3038         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3039            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3040
3041         ret = btrfs_read_chunk_tree(fs_info);
3042         if (ret) {
3043                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3044                 goto fail_tree_roots;
3045         }
3046
3047         /*
3048          * Keep the devid that is marked to be the target device for the
3049          * device replace procedure
3050          */
3051         btrfs_free_extra_devids(fs_devices, 0);
3052
3053         if (!fs_devices->latest_bdev) {
3054                 btrfs_err(fs_info, "failed to read devices");
3055                 goto fail_tree_roots;
3056         }
3057
3058 retry_root_backup:
3059         generation = btrfs_super_generation(disk_super);
3060         level = btrfs_super_root_level(disk_super);
3061
3062         tree_root->node = read_tree_block(fs_info,
3063                                           btrfs_super_root(disk_super),
3064                                           generation, level, NULL);
3065         if (IS_ERR(tree_root->node) ||
3066             !extent_buffer_uptodate(tree_root->node)) {
3067                 btrfs_warn(fs_info, "failed to read tree root");
3068                 if (!IS_ERR(tree_root->node))
3069                         free_extent_buffer(tree_root->node);
3070                 tree_root->node = NULL;
3071                 goto recovery_tree_root;
3072         }
3073
3074         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3075         tree_root->commit_root = btrfs_root_node(tree_root);
3076         btrfs_set_root_refs(&tree_root->root_item, 1);
3077
3078         mutex_lock(&tree_root->objectid_mutex);
3079         ret = btrfs_find_highest_objectid(tree_root,
3080                                         &tree_root->highest_objectid);
3081         if (ret) {
3082                 mutex_unlock(&tree_root->objectid_mutex);
3083                 goto recovery_tree_root;
3084         }
3085
3086         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3087
3088         mutex_unlock(&tree_root->objectid_mutex);
3089
3090         ret = btrfs_read_roots(fs_info);
3091         if (ret)
3092                 goto recovery_tree_root;
3093
3094         fs_info->generation = generation;
3095         fs_info->last_trans_committed = generation;
3096
3097         ret = btrfs_verify_dev_extents(fs_info);
3098         if (ret) {
3099                 btrfs_err(fs_info,
3100                           "failed to verify dev extents against chunks: %d",
3101                           ret);
3102                 goto fail_block_groups;
3103         }
3104         ret = btrfs_recover_balance(fs_info);
3105         if (ret) {
3106                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3107                 goto fail_block_groups;
3108         }
3109
3110         ret = btrfs_init_dev_stats(fs_info);
3111         if (ret) {
3112                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3113                 goto fail_block_groups;
3114         }
3115
3116         ret = btrfs_init_dev_replace(fs_info);
3117         if (ret) {
3118                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3119                 goto fail_block_groups;
3120         }
3121
3122         btrfs_free_extra_devids(fs_devices, 1);
3123
3124         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3125         if (ret) {
3126                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3127                                 ret);
3128                 goto fail_block_groups;
3129         }
3130
3131         ret = btrfs_sysfs_add_device(fs_devices);
3132         if (ret) {
3133                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3134                                 ret);
3135                 goto fail_fsdev_sysfs;
3136         }
3137
3138         ret = btrfs_sysfs_add_mounted(fs_info);
3139         if (ret) {
3140                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3141                 goto fail_fsdev_sysfs;
3142         }
3143
3144         ret = btrfs_init_space_info(fs_info);
3145         if (ret) {
3146                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3147                 goto fail_sysfs;
3148         }
3149
3150         ret = btrfs_read_block_groups(fs_info);
3151         if (ret) {
3152                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3153                 goto fail_sysfs;
3154         }
3155
3156         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3157                 btrfs_warn(fs_info,
3158                 "writable mount is not allowed due to too many missing devices");
3159                 goto fail_sysfs;
3160         }
3161
3162         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3163                                                "btrfs-cleaner");
3164         if (IS_ERR(fs_info->cleaner_kthread))
3165                 goto fail_sysfs;
3166
3167         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3168                                                    tree_root,
3169                                                    "btrfs-transaction");
3170         if (IS_ERR(fs_info->transaction_kthread))
3171                 goto fail_cleaner;
3172
3173         if (!btrfs_test_opt(fs_info, NOSSD) &&
3174             !fs_info->fs_devices->rotating) {
3175                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3176         }
3177
3178         /*
3179          * Mount does not set all options immediately, we can do it now and do
3180          * not have to wait for transaction commit
3181          */
3182         btrfs_apply_pending_changes(fs_info);
3183
3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3185         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3186                 ret = btrfsic_mount(fs_info, fs_devices,
3187                                     btrfs_test_opt(fs_info,
3188                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3189                                     1 : 0,
3190                                     fs_info->check_integrity_print_mask);
3191                 if (ret)
3192                         btrfs_warn(fs_info,
3193                                 "failed to initialize integrity check module: %d",
3194                                 ret);
3195         }
3196 #endif
3197         ret = btrfs_read_qgroup_config(fs_info);
3198         if (ret)
3199                 goto fail_trans_kthread;
3200
3201         if (btrfs_build_ref_tree(fs_info))
3202                 btrfs_err(fs_info, "couldn't build ref tree");
3203
3204         /* do not make disk changes in broken FS or nologreplay is given */
3205         if (btrfs_super_log_root(disk_super) != 0 &&
3206             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3207                 ret = btrfs_replay_log(fs_info, fs_devices);
3208                 if (ret) {
3209                         err = ret;
3210                         goto fail_qgroup;
3211                 }
3212         }
3213
3214         ret = btrfs_find_orphan_roots(fs_info);
3215         if (ret)
3216                 goto fail_qgroup;
3217
3218         if (!sb_rdonly(sb)) {
3219                 ret = btrfs_cleanup_fs_roots(fs_info);
3220                 if (ret)
3221                         goto fail_qgroup;
3222
3223                 mutex_lock(&fs_info->cleaner_mutex);
3224                 ret = btrfs_recover_relocation(tree_root);
3225                 mutex_unlock(&fs_info->cleaner_mutex);
3226                 if (ret < 0) {
3227                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3228                                         ret);
3229                         err = -EINVAL;
3230                         goto fail_qgroup;
3231                 }
3232         }
3233
3234         location.objectid = BTRFS_FS_TREE_OBJECTID;
3235         location.type = BTRFS_ROOT_ITEM_KEY;
3236         location.offset = 0;
3237
3238         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3239         if (IS_ERR(fs_info->fs_root)) {
3240                 err = PTR_ERR(fs_info->fs_root);
3241                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3242                 goto fail_qgroup;
3243         }
3244
3245         if (sb_rdonly(sb))
3246                 return 0;
3247
3248         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3249             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3250                 clear_free_space_tree = 1;
3251         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3252                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3253                 btrfs_warn(fs_info, "free space tree is invalid");
3254                 clear_free_space_tree = 1;
3255         }
3256
3257         if (clear_free_space_tree) {
3258                 btrfs_info(fs_info, "clearing free space tree");
3259                 ret = btrfs_clear_free_space_tree(fs_info);
3260                 if (ret) {
3261                         btrfs_warn(fs_info,
3262                                    "failed to clear free space tree: %d", ret);
3263                         close_ctree(fs_info);
3264                         return ret;
3265                 }
3266         }
3267
3268         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3269             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3270                 btrfs_info(fs_info, "creating free space tree");
3271                 ret = btrfs_create_free_space_tree(fs_info);
3272                 if (ret) {
3273                         btrfs_warn(fs_info,
3274                                 "failed to create free space tree: %d", ret);
3275                         close_ctree(fs_info);
3276                         return ret;
3277                 }
3278         }
3279
3280         down_read(&fs_info->cleanup_work_sem);
3281         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3282             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3283                 up_read(&fs_info->cleanup_work_sem);
3284                 close_ctree(fs_info);
3285                 return ret;
3286         }
3287         up_read(&fs_info->cleanup_work_sem);
3288
3289         ret = btrfs_resume_balance_async(fs_info);
3290         if (ret) {
3291                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3292                 close_ctree(fs_info);
3293                 return ret;
3294         }
3295
3296         ret = btrfs_resume_dev_replace_async(fs_info);
3297         if (ret) {
3298                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3299                 close_ctree(fs_info);
3300                 return ret;
3301         }
3302
3303         btrfs_qgroup_rescan_resume(fs_info);
3304
3305         if (!fs_info->uuid_root) {
3306                 btrfs_info(fs_info, "creating UUID tree");
3307                 ret = btrfs_create_uuid_tree(fs_info);
3308                 if (ret) {
3309                         btrfs_warn(fs_info,
3310                                 "failed to create the UUID tree: %d", ret);
3311                         close_ctree(fs_info);
3312                         return ret;
3313                 }
3314         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3315                    fs_info->generation !=
3316                                 btrfs_super_uuid_tree_generation(disk_super)) {
3317                 btrfs_info(fs_info, "checking UUID tree");
3318                 ret = btrfs_check_uuid_tree(fs_info);
3319                 if (ret) {
3320                         btrfs_warn(fs_info,
3321                                 "failed to check the UUID tree: %d", ret);
3322                         close_ctree(fs_info);
3323                         return ret;
3324                 }
3325         } else {
3326                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3327         }
3328         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3329
3330         /*
3331          * backuproot only affect mount behavior, and if open_ctree succeeded,
3332          * no need to keep the flag
3333          */
3334         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3335
3336         return 0;
3337
3338 fail_qgroup:
3339         btrfs_free_qgroup_config(fs_info);
3340 fail_trans_kthread:
3341         kthread_stop(fs_info->transaction_kthread);
3342         btrfs_cleanup_transaction(fs_info);
3343         btrfs_free_fs_roots(fs_info);
3344 fail_cleaner:
3345         kthread_stop(fs_info->cleaner_kthread);
3346
3347         /*
3348          * make sure we're done with the btree inode before we stop our
3349          * kthreads
3350          */
3351         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3352
3353 fail_sysfs:
3354         btrfs_sysfs_remove_mounted(fs_info);
3355
3356 fail_fsdev_sysfs:
3357         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3358
3359 fail_block_groups:
3360         btrfs_put_block_group_cache(fs_info);
3361
3362 fail_tree_roots:
3363         free_root_pointers(fs_info, 1);
3364         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3365
3366 fail_sb_buffer:
3367         btrfs_stop_all_workers(fs_info);
3368         btrfs_free_block_groups(fs_info);
3369 fail_csum:
3370         btrfs_free_csum_hash(fs_info);
3371 fail_alloc:
3372 fail_iput:
3373         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3374
3375         iput(fs_info->btree_inode);
3376 fail_bio_counter:
3377         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3378 fail_delalloc_bytes:
3379         percpu_counter_destroy(&fs_info->delalloc_bytes);
3380 fail_dirty_metadata_bytes:
3381         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3382 fail_dio_bytes:
3383         percpu_counter_destroy(&fs_info->dio_bytes);
3384 fail_srcu:
3385         cleanup_srcu_struct(&fs_info->subvol_srcu);
3386 fail:
3387         btrfs_free_stripe_hash_table(fs_info);
3388         btrfs_close_devices(fs_info->fs_devices);
3389         return err;
3390
3391 recovery_tree_root:
3392         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3393                 goto fail_tree_roots;
3394
3395         free_root_pointers(fs_info, 0);
3396
3397         /* don't use the log in recovery mode, it won't be valid */
3398         btrfs_set_super_log_root(disk_super, 0);
3399
3400         /* we can't trust the free space cache either */
3401         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3402
3403         ret = next_root_backup(fs_info, fs_info->super_copy,
3404                                &num_backups_tried, &backup_index);
3405         if (ret == -1)
3406                 goto fail_block_groups;
3407         goto retry_root_backup;
3408 }
3409 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3410
3411 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3412 {
3413         if (uptodate) {
3414                 set_buffer_uptodate(bh);
3415         } else {
3416                 struct btrfs_device *device = (struct btrfs_device *)
3417                         bh->b_private;
3418
3419                 btrfs_warn_rl_in_rcu(device->fs_info,
3420                                 "lost page write due to IO error on %s",
3421                                           rcu_str_deref(device->name));
3422                 /* note, we don't set_buffer_write_io_error because we have
3423                  * our own ways of dealing with the IO errors
3424                  */
3425                 clear_buffer_uptodate(bh);
3426                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3427         }
3428         unlock_buffer(bh);
3429         put_bh(bh);
3430 }
3431
3432 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3433                         struct buffer_head **bh_ret)
3434 {
3435         struct buffer_head *bh;
3436         struct btrfs_super_block *super;
3437         u64 bytenr;
3438
3439         bytenr = btrfs_sb_offset(copy_num);
3440         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3441                 return -EINVAL;
3442
3443         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3444         /*
3445          * If we fail to read from the underlying devices, as of now
3446          * the best option we have is to mark it EIO.
3447          */
3448         if (!bh)
3449                 return -EIO;
3450
3451         super = (struct btrfs_super_block *)bh->b_data;
3452         if (btrfs_super_bytenr(super) != bytenr ||
3453                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3454                 brelse(bh);
3455                 return -EINVAL;
3456         }
3457
3458         *bh_ret = bh;
3459         return 0;
3460 }
3461
3462
3463 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3464 {
3465         struct buffer_head *bh;
3466         struct buffer_head *latest = NULL;
3467         struct btrfs_super_block *super;
3468         int i;
3469         u64 transid = 0;
3470         int ret = -EINVAL;
3471
3472         /* we would like to check all the supers, but that would make
3473          * a btrfs mount succeed after a mkfs from a different FS.
3474          * So, we need to add a special mount option to scan for
3475          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3476          */
3477         for (i = 0; i < 1; i++) {
3478                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3479                 if (ret)
3480                         continue;
3481
3482                 super = (struct btrfs_super_block *)bh->b_data;
3483
3484                 if (!latest || btrfs_super_generation(super) > transid) {
3485                         brelse(latest);
3486                         latest = bh;
3487                         transid = btrfs_super_generation(super);
3488                 } else {
3489                         brelse(bh);
3490                 }
3491         }
3492
3493         if (!latest)
3494                 return ERR_PTR(ret);
3495
3496         return latest;
3497 }
3498
3499 /*
3500  * Write superblock @sb to the @device. Do not wait for completion, all the
3501  * buffer heads we write are pinned.
3502  *
3503  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3504  * the expected device size at commit time. Note that max_mirrors must be
3505  * same for write and wait phases.
3506  *
3507  * Return number of errors when buffer head is not found or submission fails.
3508  */
3509 static int write_dev_supers(struct btrfs_device *device,
3510                             struct btrfs_super_block *sb, int max_mirrors)
3511 {
3512         struct btrfs_fs_info *fs_info = device->fs_info;
3513         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3514         struct buffer_head *bh;
3515         int i;
3516         int ret;
3517         int errors = 0;
3518         u64 bytenr;
3519         int op_flags;
3520
3521         if (max_mirrors == 0)
3522                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3523
3524         shash->tfm = fs_info->csum_shash;
3525
3526         for (i = 0; i < max_mirrors; i++) {
3527                 bytenr = btrfs_sb_offset(i);
3528                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3529                     device->commit_total_bytes)
3530                         break;
3531
3532                 btrfs_set_super_bytenr(sb, bytenr);
3533
3534                 crypto_shash_init(shash);
3535                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3536                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3537                 crypto_shash_final(shash, sb->csum);
3538
3539                 /* One reference for us, and we leave it for the caller */
3540                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3541                               BTRFS_SUPER_INFO_SIZE);
3542                 if (!bh) {
3543                         btrfs_err(device->fs_info,
3544                             "couldn't get super buffer head for bytenr %llu",
3545                             bytenr);
3546                         errors++;
3547                         continue;
3548                 }
3549
3550                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3551
3552                 /* one reference for submit_bh */
3553                 get_bh(bh);
3554
3555                 set_buffer_uptodate(bh);
3556                 lock_buffer(bh);
3557                 bh->b_end_io = btrfs_end_buffer_write_sync;
3558                 bh->b_private = device;
3559
3560                 /*
3561                  * we fua the first super.  The others we allow
3562                  * to go down lazy.
3563                  */
3564                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3565                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3566                         op_flags |= REQ_FUA;
3567                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3568                 if (ret)
3569                         errors++;
3570         }
3571         return errors < i ? 0 : -1;
3572 }
3573
3574 /*
3575  * Wait for write completion of superblocks done by write_dev_supers,
3576  * @max_mirrors same for write and wait phases.
3577  *
3578  * Return number of errors when buffer head is not found or not marked up to
3579  * date.
3580  */
3581 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3582 {
3583         struct buffer_head *bh;
3584         int i;
3585         int errors = 0;
3586         bool primary_failed = false;
3587         u64 bytenr;
3588
3589         if (max_mirrors == 0)
3590                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3591
3592         for (i = 0; i < max_mirrors; i++) {
3593                 bytenr = btrfs_sb_offset(i);
3594                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3595                     device->commit_total_bytes)
3596                         break;
3597
3598                 bh = __find_get_block(device->bdev,
3599                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3600                                       BTRFS_SUPER_INFO_SIZE);
3601                 if (!bh) {
3602                         errors++;
3603                         if (i == 0)
3604                                 primary_failed = true;
3605                         continue;
3606                 }
3607                 wait_on_buffer(bh);
3608                 if (!buffer_uptodate(bh)) {
3609                         errors++;
3610                         if (i == 0)
3611                                 primary_failed = true;
3612                 }
3613
3614                 /* drop our reference */
3615                 brelse(bh);
3616
3617                 /* drop the reference from the writing run */
3618                 brelse(bh);
3619         }
3620
3621         /* log error, force error return */
3622         if (primary_failed) {
3623                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3624                           device->devid);
3625                 return -1;
3626         }
3627
3628         return errors < i ? 0 : -1;
3629 }
3630
3631 /*
3632  * endio for the write_dev_flush, this will wake anyone waiting
3633  * for the barrier when it is done
3634  */
3635 static void btrfs_end_empty_barrier(struct bio *bio)
3636 {
3637         complete(bio->bi_private);
3638 }
3639
3640 /*
3641  * Submit a flush request to the device if it supports it. Error handling is
3642  * done in the waiting counterpart.
3643  */
3644 static void write_dev_flush(struct btrfs_device *device)
3645 {
3646         struct request_queue *q = bdev_get_queue(device->bdev);
3647         struct bio *bio = device->flush_bio;
3648
3649         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3650                 return;
3651
3652         bio_reset(bio);
3653         bio->bi_end_io = btrfs_end_empty_barrier;
3654         bio_set_dev(bio, device->bdev);
3655         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3656         init_completion(&device->flush_wait);
3657         bio->bi_private = &device->flush_wait;
3658
3659         btrfsic_submit_bio(bio);
3660         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3661 }
3662
3663 /*
3664  * If the flush bio has been submitted by write_dev_flush, wait for it.
3665  */
3666 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3667 {
3668         struct bio *bio = device->flush_bio;
3669
3670         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3671                 return BLK_STS_OK;
3672
3673         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3674         wait_for_completion_io(&device->flush_wait);
3675
3676         return bio->bi_status;
3677 }
3678
3679 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3680 {
3681         if (!btrfs_check_rw_degradable(fs_info, NULL))
3682                 return -EIO;
3683         return 0;
3684 }
3685
3686 /*
3687  * send an empty flush down to each device in parallel,
3688  * then wait for them
3689  */
3690 static int barrier_all_devices(struct btrfs_fs_info *info)
3691 {
3692         struct list_head *head;
3693         struct btrfs_device *dev;
3694         int errors_wait = 0;
3695         blk_status_t ret;
3696
3697         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3698         /* send down all the barriers */
3699         head = &info->fs_devices->devices;
3700         list_for_each_entry(dev, head, dev_list) {
3701                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3702                         continue;
3703                 if (!dev->bdev)
3704                         continue;
3705                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3706                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3707                         continue;
3708
3709                 write_dev_flush(dev);
3710                 dev->last_flush_error = BLK_STS_OK;
3711         }
3712
3713         /* wait for all the barriers */
3714         list_for_each_entry(dev, head, dev_list) {
3715                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3716                         continue;
3717                 if (!dev->bdev) {
3718                         errors_wait++;
3719                         continue;
3720                 }
3721                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3722                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3723                         continue;
3724
3725                 ret = wait_dev_flush(dev);
3726                 if (ret) {
3727                         dev->last_flush_error = ret;
3728                         btrfs_dev_stat_inc_and_print(dev,
3729                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3730                         errors_wait++;
3731                 }
3732         }
3733
3734         if (errors_wait) {
3735                 /*
3736                  * At some point we need the status of all disks
3737                  * to arrive at the volume status. So error checking
3738                  * is being pushed to a separate loop.
3739                  */
3740                 return check_barrier_error(info);
3741         }
3742         return 0;
3743 }
3744
3745 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3746 {
3747         int raid_type;
3748         int min_tolerated = INT_MAX;
3749
3750         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3751             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3752                 min_tolerated = min_t(int, min_tolerated,
3753                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3754                                     tolerated_failures);
3755
3756         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3757                 if (raid_type == BTRFS_RAID_SINGLE)
3758                         continue;
3759                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3760                         continue;
3761                 min_tolerated = min_t(int, min_tolerated,
3762                                     btrfs_raid_array[raid_type].
3763                                     tolerated_failures);
3764         }
3765
3766         if (min_tolerated == INT_MAX) {
3767                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3768                 min_tolerated = 0;
3769         }
3770
3771         return min_tolerated;
3772 }
3773
3774 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3775 {
3776         struct list_head *head;
3777         struct btrfs_device *dev;
3778         struct btrfs_super_block *sb;
3779         struct btrfs_dev_item *dev_item;
3780         int ret;
3781         int do_barriers;
3782         int max_errors;
3783         int total_errors = 0;
3784         u64 flags;
3785
3786         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3787
3788         /*
3789          * max_mirrors == 0 indicates we're from commit_transaction,
3790          * not from fsync where the tree roots in fs_info have not
3791          * been consistent on disk.
3792          */
3793         if (max_mirrors == 0)
3794                 backup_super_roots(fs_info);
3795
3796         sb = fs_info->super_for_commit;
3797         dev_item = &sb->dev_item;
3798
3799         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3800         head = &fs_info->fs_devices->devices;
3801         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3802
3803         if (do_barriers) {
3804                 ret = barrier_all_devices(fs_info);
3805                 if (ret) {
3806                         mutex_unlock(
3807                                 &fs_info->fs_devices->device_list_mutex);
3808                         btrfs_handle_fs_error(fs_info, ret,
3809                                               "errors while submitting device barriers.");
3810                         return ret;
3811                 }
3812         }
3813
3814         list_for_each_entry(dev, head, dev_list) {
3815                 if (!dev->bdev) {
3816                         total_errors++;
3817                         continue;
3818                 }
3819                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3821                         continue;
3822
3823                 btrfs_set_stack_device_generation(dev_item, 0);
3824                 btrfs_set_stack_device_type(dev_item, dev->type);
3825                 btrfs_set_stack_device_id(dev_item, dev->devid);
3826                 btrfs_set_stack_device_total_bytes(dev_item,
3827                                                    dev->commit_total_bytes);
3828                 btrfs_set_stack_device_bytes_used(dev_item,
3829                                                   dev->commit_bytes_used);
3830                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3831                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3832                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3833                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3834                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3835                        BTRFS_FSID_SIZE);
3836
3837                 flags = btrfs_super_flags(sb);
3838                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3839
3840                 ret = btrfs_validate_write_super(fs_info, sb);
3841                 if (ret < 0) {
3842                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3844                                 "unexpected superblock corruption detected");
3845                         return -EUCLEAN;
3846                 }
3847
3848                 ret = write_dev_supers(dev, sb, max_mirrors);
3849                 if (ret)
3850                         total_errors++;
3851         }
3852         if (total_errors > max_errors) {
3853                 btrfs_err(fs_info, "%d errors while writing supers",
3854                           total_errors);
3855                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856
3857                 /* FUA is masked off if unsupported and can't be the reason */
3858                 btrfs_handle_fs_error(fs_info, -EIO,
3859                                       "%d errors while writing supers",
3860                                       total_errors);
3861                 return -EIO;
3862         }
3863
3864         total_errors = 0;
3865         list_for_each_entry(dev, head, dev_list) {
3866                 if (!dev->bdev)
3867                         continue;
3868                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3869                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3870                         continue;
3871
3872                 ret = wait_dev_supers(dev, max_mirrors);
3873                 if (ret)
3874                         total_errors++;
3875         }
3876         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877         if (total_errors > max_errors) {
3878                 btrfs_handle_fs_error(fs_info, -EIO,
3879                                       "%d errors while writing supers",
3880                                       total_errors);
3881                 return -EIO;
3882         }
3883         return 0;
3884 }
3885
3886 /* Drop a fs root from the radix tree and free it. */
3887 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3888                                   struct btrfs_root *root)
3889 {
3890         spin_lock(&fs_info->fs_roots_radix_lock);
3891         radix_tree_delete(&fs_info->fs_roots_radix,
3892                           (unsigned long)root->root_key.objectid);
3893         spin_unlock(&fs_info->fs_roots_radix_lock);
3894
3895         if (btrfs_root_refs(&root->root_item) == 0)
3896                 synchronize_srcu(&fs_info->subvol_srcu);
3897
3898         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3899                 btrfs_free_log(NULL, root);
3900                 if (root->reloc_root) {
3901                         free_extent_buffer(root->reloc_root->node);
3902                         free_extent_buffer(root->reloc_root->commit_root);
3903                         btrfs_put_fs_root(root->reloc_root);
3904                         root->reloc_root = NULL;
3905                 }
3906         }
3907
3908         if (root->free_ino_pinned)
3909                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3910         if (root->free_ino_ctl)
3911                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3912         btrfs_free_fs_root(root);
3913 }
3914
3915 void btrfs_free_fs_root(struct btrfs_root *root)
3916 {
3917         iput(root->ino_cache_inode);
3918         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3919         if (root->anon_dev)
3920                 free_anon_bdev(root->anon_dev);
3921         if (root->subv_writers)
3922                 btrfs_free_subvolume_writers(root->subv_writers);
3923         free_extent_buffer(root->node);
3924         free_extent_buffer(root->commit_root);
3925         kfree(root->free_ino_ctl);
3926         kfree(root->free_ino_pinned);
3927         btrfs_put_fs_root(root);
3928 }
3929
3930 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3931 {
3932         u64 root_objectid = 0;
3933         struct btrfs_root *gang[8];
3934         int i = 0;
3935         int err = 0;
3936         unsigned int ret = 0;
3937         int index;
3938
3939         while (1) {
3940                 index = srcu_read_lock(&fs_info->subvol_srcu);
3941                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3942                                              (void **)gang, root_objectid,
3943                                              ARRAY_SIZE(gang));
3944                 if (!ret) {
3945                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3946                         break;
3947                 }
3948                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3949
3950                 for (i = 0; i < ret; i++) {
3951                         /* Avoid to grab roots in dead_roots */
3952                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3953                                 gang[i] = NULL;
3954                                 continue;
3955                         }
3956                         /* grab all the search result for later use */
3957                         gang[i] = btrfs_grab_fs_root(gang[i]);
3958                 }
3959                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3960
3961                 for (i = 0; i < ret; i++) {
3962                         if (!gang[i])
3963                                 continue;
3964                         root_objectid = gang[i]->root_key.objectid;
3965                         err = btrfs_orphan_cleanup(gang[i]);
3966                         if (err)
3967                                 break;
3968                         btrfs_put_fs_root(gang[i]);
3969                 }
3970                 root_objectid++;
3971         }
3972
3973         /* release the uncleaned roots due to error */
3974         for (; i < ret; i++) {
3975                 if (gang[i])
3976                         btrfs_put_fs_root(gang[i]);
3977         }
3978         return err;
3979 }
3980
3981 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3982 {
3983         struct btrfs_root *root = fs_info->tree_root;
3984         struct btrfs_trans_handle *trans;
3985
3986         mutex_lock(&fs_info->cleaner_mutex);
3987         btrfs_run_delayed_iputs(fs_info);
3988         mutex_unlock(&fs_info->cleaner_mutex);
3989         wake_up_process(fs_info->cleaner_kthread);
3990
3991         /* wait until ongoing cleanup work done */
3992         down_write(&fs_info->cleanup_work_sem);
3993         up_write(&fs_info->cleanup_work_sem);
3994
3995         trans = btrfs_join_transaction(root);
3996         if (IS_ERR(trans))
3997                 return PTR_ERR(trans);
3998         return btrfs_commit_transaction(trans);
3999 }
4000
4001 void close_ctree(struct btrfs_fs_info *fs_info)
4002 {
4003         int ret;
4004
4005         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4006         /*
4007          * We don't want the cleaner to start new transactions, add more delayed
4008          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4009          * because that frees the task_struct, and the transaction kthread might
4010          * still try to wake up the cleaner.
4011          */
4012         kthread_park(fs_info->cleaner_kthread);
4013
4014         /* wait for the qgroup rescan worker to stop */
4015         btrfs_qgroup_wait_for_completion(fs_info, false);
4016
4017         /* wait for the uuid_scan task to finish */
4018         down(&fs_info->uuid_tree_rescan_sem);
4019         /* avoid complains from lockdep et al., set sem back to initial state */
4020         up(&fs_info->uuid_tree_rescan_sem);
4021
4022         /* pause restriper - we want to resume on mount */
4023         btrfs_pause_balance(fs_info);
4024
4025         btrfs_dev_replace_suspend_for_unmount(fs_info);
4026
4027         btrfs_scrub_cancel(fs_info);
4028
4029         /* wait for any defraggers to finish */
4030         wait_event(fs_info->transaction_wait,
4031                    (atomic_read(&fs_info->defrag_running) == 0));
4032
4033         /* clear out the rbtree of defraggable inodes */
4034         btrfs_cleanup_defrag_inodes(fs_info);
4035
4036         cancel_work_sync(&fs_info->async_reclaim_work);
4037
4038         if (!sb_rdonly(fs_info->sb)) {
4039                 /*
4040                  * The cleaner kthread is stopped, so do one final pass over
4041                  * unused block groups.
4042                  */
4043                 btrfs_delete_unused_bgs(fs_info);
4044
4045                 ret = btrfs_commit_super(fs_info);
4046                 if (ret)
4047                         btrfs_err(fs_info, "commit super ret %d", ret);
4048         }
4049
4050         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4051             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4052                 btrfs_error_commit_super(fs_info);
4053
4054         kthread_stop(fs_info->transaction_kthread);
4055         kthread_stop(fs_info->cleaner_kthread);
4056
4057         ASSERT(list_empty(&fs_info->delayed_iputs));
4058         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4059
4060         btrfs_free_qgroup_config(fs_info);
4061         ASSERT(list_empty(&fs_info->delalloc_roots));
4062
4063         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4064                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4065                        percpu_counter_sum(&fs_info->delalloc_bytes));
4066         }
4067
4068         if (percpu_counter_sum(&fs_info->dio_bytes))
4069                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4070                            percpu_counter_sum(&fs_info->dio_bytes));
4071
4072         btrfs_sysfs_remove_mounted(fs_info);
4073         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4074
4075         btrfs_free_fs_roots(fs_info);
4076
4077         btrfs_put_block_group_cache(fs_info);
4078
4079         /*
4080          * we must make sure there is not any read request to
4081          * submit after we stopping all workers.
4082          */
4083         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4084         btrfs_stop_all_workers(fs_info);
4085
4086         btrfs_free_block_groups(fs_info);
4087
4088         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4089         free_root_pointers(fs_info, 1);
4090
4091         iput(fs_info->btree_inode);
4092
4093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4094         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4095                 btrfsic_unmount(fs_info->fs_devices);
4096 #endif
4097
4098         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4099         btrfs_close_devices(fs_info->fs_devices);
4100
4101         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4102         percpu_counter_destroy(&fs_info->delalloc_bytes);
4103         percpu_counter_destroy(&fs_info->dio_bytes);
4104         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4105         cleanup_srcu_struct(&fs_info->subvol_srcu);
4106
4107         btrfs_free_csum_hash(fs_info);
4108         btrfs_free_stripe_hash_table(fs_info);
4109         btrfs_free_ref_cache(fs_info);
4110 }
4111
4112 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4113                           int atomic)
4114 {
4115         int ret;
4116         struct inode *btree_inode = buf->pages[0]->mapping->host;
4117
4118         ret = extent_buffer_uptodate(buf);
4119         if (!ret)
4120                 return ret;
4121
4122         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4123                                     parent_transid, atomic);
4124         if (ret == -EAGAIN)
4125                 return ret;
4126         return !ret;
4127 }
4128
4129 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4130 {
4131         struct btrfs_fs_info *fs_info;
4132         struct btrfs_root *root;
4133         u64 transid = btrfs_header_generation(buf);
4134         int was_dirty;
4135
4136 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4137         /*
4138          * This is a fast path so only do this check if we have sanity tests
4139          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4140          * outside of the sanity tests.
4141          */
4142         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4143                 return;
4144 #endif
4145         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4146         fs_info = root->fs_info;
4147         btrfs_assert_tree_locked(buf);
4148         if (transid != fs_info->generation)
4149                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4150                         buf->start, transid, fs_info->generation);
4151         was_dirty = set_extent_buffer_dirty(buf);
4152         if (!was_dirty)
4153                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4154                                          buf->len,
4155                                          fs_info->dirty_metadata_batch);
4156 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4157         /*
4158          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4159          * but item data not updated.
4160          * So here we should only check item pointers, not item data.
4161          */
4162         if (btrfs_header_level(buf) == 0 &&
4163             btrfs_check_leaf_relaxed(buf)) {
4164                 btrfs_print_leaf(buf);
4165                 ASSERT(0);
4166         }
4167 #endif
4168 }
4169
4170 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4171                                         int flush_delayed)
4172 {
4173         /*
4174          * looks as though older kernels can get into trouble with
4175          * this code, they end up stuck in balance_dirty_pages forever
4176          */
4177         int ret;
4178
4179         if (current->flags & PF_MEMALLOC)
4180                 return;
4181
4182         if (flush_delayed)
4183                 btrfs_balance_delayed_items(fs_info);
4184
4185         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4186                                      BTRFS_DIRTY_METADATA_THRESH,
4187                                      fs_info->dirty_metadata_batch);
4188         if (ret > 0) {
4189                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4190         }
4191 }
4192
4193 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4194 {
4195         __btrfs_btree_balance_dirty(fs_info, 1);
4196 }
4197
4198 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4199 {
4200         __btrfs_btree_balance_dirty(fs_info, 0);
4201 }
4202
4203 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4204                       struct btrfs_key *first_key)
4205 {
4206         return btree_read_extent_buffer_pages(buf, parent_transid,
4207                                               level, first_key);
4208 }
4209
4210 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4211 {
4212         /* cleanup FS via transaction */
4213         btrfs_cleanup_transaction(fs_info);
4214
4215         mutex_lock(&fs_info->cleaner_mutex);
4216         btrfs_run_delayed_iputs(fs_info);
4217         mutex_unlock(&fs_info->cleaner_mutex);
4218
4219         down_write(&fs_info->cleanup_work_sem);
4220         up_write(&fs_info->cleanup_work_sem);
4221 }
4222
4223 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4224 {
4225         struct btrfs_ordered_extent *ordered;
4226
4227         spin_lock(&root->ordered_extent_lock);
4228         /*
4229          * This will just short circuit the ordered completion stuff which will
4230          * make sure the ordered extent gets properly cleaned up.
4231          */
4232         list_for_each_entry(ordered, &root->ordered_extents,
4233                             root_extent_list)
4234                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4235         spin_unlock(&root->ordered_extent_lock);
4236 }
4237
4238 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4239 {
4240         struct btrfs_root *root;
4241         struct list_head splice;
4242
4243         INIT_LIST_HEAD(&splice);
4244
4245         spin_lock(&fs_info->ordered_root_lock);
4246         list_splice_init(&fs_info->ordered_roots, &splice);
4247         while (!list_empty(&splice)) {
4248                 root = list_first_entry(&splice, struct btrfs_root,
4249                                         ordered_root);
4250                 list_move_tail(&root->ordered_root,
4251                                &fs_info->ordered_roots);
4252
4253                 spin_unlock(&fs_info->ordered_root_lock);
4254                 btrfs_destroy_ordered_extents(root);
4255
4256                 cond_resched();
4257                 spin_lock(&fs_info->ordered_root_lock);
4258         }
4259         spin_unlock(&fs_info->ordered_root_lock);
4260
4261         /*
4262          * We need this here because if we've been flipped read-only we won't
4263          * get sync() from the umount, so we need to make sure any ordered
4264          * extents that haven't had their dirty pages IO start writeout yet
4265          * actually get run and error out properly.
4266          */
4267         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4268 }
4269
4270 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4271                                       struct btrfs_fs_info *fs_info)
4272 {
4273         struct rb_node *node;
4274         struct btrfs_delayed_ref_root *delayed_refs;
4275         struct btrfs_delayed_ref_node *ref;
4276         int ret = 0;
4277
4278         delayed_refs = &trans->delayed_refs;
4279
4280         spin_lock(&delayed_refs->lock);
4281         if (atomic_read(&delayed_refs->num_entries) == 0) {
4282                 spin_unlock(&delayed_refs->lock);
4283                 btrfs_info(fs_info, "delayed_refs has NO entry");
4284                 return ret;
4285         }
4286
4287         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4288                 struct btrfs_delayed_ref_head *head;
4289                 struct rb_node *n;
4290                 bool pin_bytes = false;
4291
4292                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4293                                 href_node);
4294                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4295                         continue;
4296
4297                 spin_lock(&head->lock);
4298                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4299                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4300                                        ref_node);
4301                         ref->in_tree = 0;
4302                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4303                         RB_CLEAR_NODE(&ref->ref_node);
4304                         if (!list_empty(&ref->add_list))
4305                                 list_del(&ref->add_list);
4306                         atomic_dec(&delayed_refs->num_entries);
4307                         btrfs_put_delayed_ref(ref);
4308                 }
4309                 if (head->must_insert_reserved)
4310                         pin_bytes = true;
4311                 btrfs_free_delayed_extent_op(head->extent_op);
4312                 btrfs_delete_ref_head(delayed_refs, head);
4313                 spin_unlock(&head->lock);
4314                 spin_unlock(&delayed_refs->lock);
4315                 mutex_unlock(&head->mutex);
4316
4317                 if (pin_bytes)
4318                         btrfs_pin_extent(fs_info, head->bytenr,
4319                                          head->num_bytes, 1);
4320                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4321                 btrfs_put_delayed_ref_head(head);
4322                 cond_resched();
4323                 spin_lock(&delayed_refs->lock);
4324         }
4325
4326         spin_unlock(&delayed_refs->lock);
4327
4328         return ret;
4329 }
4330
4331 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4332 {
4333         struct btrfs_inode *btrfs_inode;
4334         struct list_head splice;
4335
4336         INIT_LIST_HEAD(&splice);
4337
4338         spin_lock(&root->delalloc_lock);
4339         list_splice_init(&root->delalloc_inodes, &splice);
4340
4341         while (!list_empty(&splice)) {
4342                 struct inode *inode = NULL;
4343                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4344                                                delalloc_inodes);
4345                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4346                 spin_unlock(&root->delalloc_lock);
4347
4348                 /*
4349                  * Make sure we get a live inode and that it'll not disappear
4350                  * meanwhile.
4351                  */
4352                 inode = igrab(&btrfs_inode->vfs_inode);
4353                 if (inode) {
4354                         invalidate_inode_pages2(inode->i_mapping);
4355                         iput(inode);
4356                 }
4357                 spin_lock(&root->delalloc_lock);
4358         }
4359         spin_unlock(&root->delalloc_lock);
4360 }
4361
4362 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4363 {
4364         struct btrfs_root *root;
4365         struct list_head splice;
4366
4367         INIT_LIST_HEAD(&splice);
4368
4369         spin_lock(&fs_info->delalloc_root_lock);
4370         list_splice_init(&fs_info->delalloc_roots, &splice);
4371         while (!list_empty(&splice)) {
4372                 root = list_first_entry(&splice, struct btrfs_root,
4373                                          delalloc_root);
4374                 root = btrfs_grab_fs_root(root);
4375                 BUG_ON(!root);
4376                 spin_unlock(&fs_info->delalloc_root_lock);
4377
4378                 btrfs_destroy_delalloc_inodes(root);
4379                 btrfs_put_fs_root(root);
4380
4381                 spin_lock(&fs_info->delalloc_root_lock);
4382         }
4383         spin_unlock(&fs_info->delalloc_root_lock);
4384 }
4385
4386 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4387                                         struct extent_io_tree *dirty_pages,
4388                                         int mark)
4389 {
4390         int ret;
4391         struct extent_buffer *eb;
4392         u64 start = 0;
4393         u64 end;
4394
4395         while (1) {
4396                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4397                                             mark, NULL);
4398                 if (ret)
4399                         break;
4400
4401                 clear_extent_bits(dirty_pages, start, end, mark);
4402                 while (start <= end) {
4403                         eb = find_extent_buffer(fs_info, start);
4404                         start += fs_info->nodesize;
4405                         if (!eb)
4406                                 continue;
4407                         wait_on_extent_buffer_writeback(eb);
4408
4409                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4410                                                &eb->bflags))
4411                                 clear_extent_buffer_dirty(eb);
4412                         free_extent_buffer_stale(eb);
4413                 }
4414         }
4415
4416         return ret;
4417 }
4418
4419 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4420                                        struct extent_io_tree *pinned_extents)
4421 {
4422         struct extent_io_tree *unpin;
4423         u64 start;
4424         u64 end;
4425         int ret;
4426         bool loop = true;
4427
4428         unpin = pinned_extents;
4429 again:
4430         while (1) {
4431                 struct extent_state *cached_state = NULL;
4432
4433                 /*
4434                  * The btrfs_finish_extent_commit() may get the same range as
4435                  * ours between find_first_extent_bit and clear_extent_dirty.
4436                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4437                  * the same extent range.
4438                  */
4439                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4440                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4441                                             EXTENT_DIRTY, &cached_state);
4442                 if (ret) {
4443                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4444                         break;
4445                 }
4446
4447                 clear_extent_dirty(unpin, start, end, &cached_state);
4448                 free_extent_state(cached_state);
4449                 btrfs_error_unpin_extent_range(fs_info, start, end);
4450                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4451                 cond_resched();
4452         }
4453
4454         if (loop) {
4455                 if (unpin == &fs_info->freed_extents[0])
4456                         unpin = &fs_info->freed_extents[1];
4457                 else
4458                         unpin = &fs_info->freed_extents[0];
4459                 loop = false;
4460                 goto again;
4461         }
4462
4463         return 0;
4464 }
4465
4466 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4467 {
4468         struct inode *inode;
4469
4470         inode = cache->io_ctl.inode;
4471         if (inode) {
4472                 invalidate_inode_pages2(inode->i_mapping);
4473                 BTRFS_I(inode)->generation = 0;
4474                 cache->io_ctl.inode = NULL;
4475                 iput(inode);
4476         }
4477         btrfs_put_block_group(cache);
4478 }
4479
4480 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4481                              struct btrfs_fs_info *fs_info)
4482 {
4483         struct btrfs_block_group_cache *cache;
4484
4485         spin_lock(&cur_trans->dirty_bgs_lock);
4486         while (!list_empty(&cur_trans->dirty_bgs)) {
4487                 cache = list_first_entry(&cur_trans->dirty_bgs,
4488                                          struct btrfs_block_group_cache,
4489                                          dirty_list);
4490
4491                 if (!list_empty(&cache->io_list)) {
4492                         spin_unlock(&cur_trans->dirty_bgs_lock);
4493                         list_del_init(&cache->io_list);
4494                         btrfs_cleanup_bg_io(cache);
4495                         spin_lock(&cur_trans->dirty_bgs_lock);
4496                 }
4497
4498                 list_del_init(&cache->dirty_list);
4499                 spin_lock(&cache->lock);
4500                 cache->disk_cache_state = BTRFS_DC_ERROR;
4501                 spin_unlock(&cache->lock);
4502
4503                 spin_unlock(&cur_trans->dirty_bgs_lock);
4504                 btrfs_put_block_group(cache);
4505                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4506                 spin_lock(&cur_trans->dirty_bgs_lock);
4507         }
4508         spin_unlock(&cur_trans->dirty_bgs_lock);
4509
4510         /*
4511          * Refer to the definition of io_bgs member for details why it's safe
4512          * to use it without any locking
4513          */
4514         while (!list_empty(&cur_trans->io_bgs)) {
4515                 cache = list_first_entry(&cur_trans->io_bgs,
4516                                          struct btrfs_block_group_cache,
4517                                          io_list);
4518
4519                 list_del_init(&cache->io_list);
4520                 spin_lock(&cache->lock);
4521                 cache->disk_cache_state = BTRFS_DC_ERROR;
4522                 spin_unlock(&cache->lock);
4523                 btrfs_cleanup_bg_io(cache);
4524         }
4525 }
4526
4527 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4528                                    struct btrfs_fs_info *fs_info)
4529 {
4530         struct btrfs_device *dev, *tmp;
4531
4532         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4533         ASSERT(list_empty(&cur_trans->dirty_bgs));
4534         ASSERT(list_empty(&cur_trans->io_bgs));
4535
4536         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4537                                  post_commit_list) {
4538                 list_del_init(&dev->post_commit_list);
4539         }
4540
4541         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4542
4543         cur_trans->state = TRANS_STATE_COMMIT_START;
4544         wake_up(&fs_info->transaction_blocked_wait);
4545
4546         cur_trans->state = TRANS_STATE_UNBLOCKED;
4547         wake_up(&fs_info->transaction_wait);
4548
4549         btrfs_destroy_delayed_inodes(fs_info);
4550         btrfs_assert_delayed_root_empty(fs_info);
4551
4552         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4553                                      EXTENT_DIRTY);
4554         btrfs_destroy_pinned_extent(fs_info,
4555                                     fs_info->pinned_extents);
4556
4557         cur_trans->state =TRANS_STATE_COMPLETED;
4558         wake_up(&cur_trans->commit_wait);
4559 }
4560
4561 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4562 {
4563         struct btrfs_transaction *t;
4564
4565         mutex_lock(&fs_info->transaction_kthread_mutex);
4566
4567         spin_lock(&fs_info->trans_lock);
4568         while (!list_empty(&fs_info->trans_list)) {
4569                 t = list_first_entry(&fs_info->trans_list,
4570                                      struct btrfs_transaction, list);
4571                 if (t->state >= TRANS_STATE_COMMIT_START) {
4572                         refcount_inc(&t->use_count);
4573                         spin_unlock(&fs_info->trans_lock);
4574                         btrfs_wait_for_commit(fs_info, t->transid);
4575                         btrfs_put_transaction(t);
4576                         spin_lock(&fs_info->trans_lock);
4577                         continue;
4578                 }
4579                 if (t == fs_info->running_transaction) {
4580                         t->state = TRANS_STATE_COMMIT_DOING;
4581                         spin_unlock(&fs_info->trans_lock);
4582                         /*
4583                          * We wait for 0 num_writers since we don't hold a trans
4584                          * handle open currently for this transaction.
4585                          */
4586                         wait_event(t->writer_wait,
4587                                    atomic_read(&t->num_writers) == 0);
4588                 } else {
4589                         spin_unlock(&fs_info->trans_lock);
4590                 }
4591                 btrfs_cleanup_one_transaction(t, fs_info);
4592
4593                 spin_lock(&fs_info->trans_lock);
4594                 if (t == fs_info->running_transaction)
4595                         fs_info->running_transaction = NULL;
4596                 list_del_init(&t->list);
4597                 spin_unlock(&fs_info->trans_lock);
4598
4599                 btrfs_put_transaction(t);
4600                 trace_btrfs_transaction_commit(fs_info->tree_root);
4601                 spin_lock(&fs_info->trans_lock);
4602         }
4603         spin_unlock(&fs_info->trans_lock);
4604         btrfs_destroy_all_ordered_extents(fs_info);
4605         btrfs_destroy_delayed_inodes(fs_info);
4606         btrfs_assert_delayed_root_empty(fs_info);
4607         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4608         btrfs_destroy_all_delalloc_inodes(fs_info);
4609         mutex_unlock(&fs_info->transaction_kthread_mutex);
4610
4611         return 0;
4612 }
4613
4614 static const struct extent_io_ops btree_extent_io_ops = {
4615         /* mandatory callbacks */
4616         .submit_bio_hook = btree_submit_bio_hook,
4617         .readpage_end_io_hook = btree_readpage_end_io_hook,
4618 };