1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
23 #include "transaction.h"
24 #include "btrfs_inode.h"
26 #include "print-tree.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
43 #include <asm/cpufeature.h>
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_end_io_wq {
76 struct btrfs_fs_info *info;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
82 static struct kmem_cache *btrfs_end_io_wq_cache;
84 int __init btrfs_end_io_wq_init(void)
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
91 if (!btrfs_end_io_wq_cache)
96 void __cold btrfs_end_io_wq_exit(void)
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
106 struct async_submit_bio {
109 extent_submit_bio_start_t *submit_bio_start;
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
116 struct btrfs_work work;
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
148 static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166 { .id = 0, .name_stem = "tree" },
169 void __init btrfs_init_lockdep(void)
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
186 struct btrfs_lockdep_keyset *ks;
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 struct page *page, size_t pg_offset, u64 start, u64 len,
209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 struct extent_map_tree *em_tree = &inode->extent_tree;
211 struct extent_map *em;
214 read_lock(&em_tree->lock);
215 em = lookup_extent_mapping(em_tree, start, len);
217 em->bdev = fs_info->fs_devices->latest_bdev;
218 read_unlock(&em_tree->lock);
221 read_unlock(&em_tree->lock);
223 em = alloc_extent_map();
225 em = ERR_PTR(-ENOMEM);
230 em->block_len = (u64)-1;
232 em->bdev = fs_info->fs_devices->latest_bdev;
234 write_lock(&em_tree->lock);
235 ret = add_extent_mapping(em_tree, em, 0);
236 if (ret == -EEXIST) {
238 em = lookup_extent_mapping(em_tree, start, len);
245 write_unlock(&em_tree->lock);
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 return crc32c(seed, data, len);
256 void btrfs_csum_final(u32 crc, u8 *result)
258 put_unaligned_le32(~crc, result);
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 char result[BTRFS_CSUM_SIZE];
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
275 unsigned long map_start;
276 unsigned long map_len;
280 len = buf->len - offset;
283 * Note: we don't need to check for the err == 1 case here, as
284 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
285 * and 'min_len = 32' and the currently implemented mapping
286 * algorithm we cannot cross a page boundary.
288 err = map_private_extent_buffer(buf, offset, 32,
289 &kaddr, &map_start, &map_len);
292 cur_len = min(len, map_len - (offset - map_start));
293 crc = btrfs_csum_data(kaddr + offset - map_start,
298 memset(result, 0, BTRFS_CSUM_SIZE);
300 btrfs_csum_final(crc, result);
303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
306 memcpy(&found, result, csum_size);
308 read_extent_buffer(buf, &val, 0, csum_size);
309 btrfs_warn_rl(fs_info,
310 "%s checksum verify failed on %llu wanted %X found %X level %d",
311 fs_info->sb->s_id, buf->start,
312 val, found, btrfs_header_level(buf));
316 write_extent_buffer(buf, result, 0, csum_size);
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329 struct extent_buffer *eb, u64 parent_transid,
332 struct extent_state *cached_state = NULL;
334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
349 if (extent_buffer_uptodate(eb) &&
350 btrfs_header_generation(eb) == parent_transid) {
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
357 parent_transid, btrfs_header_generation(eb));
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
363 * block that has been freed and re-allocated. So don't clear uptodate
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
374 btrfs_tree_read_unlock_blocking(eb);
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
392 char result[sizeof(crc)];
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 * is filled with zeros and is included in the checksum.
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
403 if (memcmp(raw_disk_sb, result, sizeof(result)))
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
418 struct btrfs_key *first_key, u64 parent_transid)
421 struct btrfs_key found_key;
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
452 #ifdef CONFIG_BTRFS_DEBUG
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb->start, parent_transid, first_key->objectid,
458 first_key->type, first_key->offset,
459 found_key.objectid, found_key.type,
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 struct extent_buffer *eb,
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
479 struct extent_io_tree *io_tree;
484 int failed_mirror = 0;
486 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
488 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
492 if (verify_parent_transid(io_tree, eb,
495 else if (verify_level_key(fs_info, eb, level,
496 first_key, parent_transid))
502 num_copies = btrfs_num_copies(fs_info,
507 if (!failed_mirror) {
509 failed_mirror = eb->read_mirror;
513 if (mirror_num == failed_mirror)
516 if (mirror_num > num_copies)
520 if (failed && !ret && failed_mirror)
521 repair_eb_io_failure(fs_info, eb, failed_mirror);
527 * checksum a dirty tree block before IO. This has extra checks to make sure
528 * we only fill in the checksum field in the first page of a multi-page block
531 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
533 u64 start = page_offset(page);
535 struct extent_buffer *eb;
537 eb = (struct extent_buffer *)page->private;
538 if (page != eb->pages[0])
541 found_start = btrfs_header_bytenr(eb);
543 * Please do not consolidate these warnings into a single if.
544 * It is useful to know what went wrong.
546 if (WARN_ON(found_start != start))
548 if (WARN_ON(!PageUptodate(page)))
551 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
552 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
554 return csum_tree_block(fs_info, eb, 0);
557 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
558 struct extent_buffer *eb)
560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
561 u8 fsid[BTRFS_FSID_SIZE];
564 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
569 * Checking the incompat flag is only valid for the current
570 * fs. For seed devices it's forbidden to have their uuid
571 * changed so reading ->fsid in this case is fine
573 if (fs_devices == fs_info->fs_devices &&
574 btrfs_fs_incompat(fs_info, METADATA_UUID))
575 metadata_uuid = fs_devices->metadata_uuid;
577 metadata_uuid = fs_devices->fsid;
579 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
583 fs_devices = fs_devices->seed;
588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
589 u64 phy_offset, struct page *page,
590 u64 start, u64 end, int mirror)
594 struct extent_buffer *eb;
595 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
596 struct btrfs_fs_info *fs_info = root->fs_info;
603 eb = (struct extent_buffer *)page->private;
605 /* the pending IO might have been the only thing that kept this buffer
606 * in memory. Make sure we have a ref for all this other checks
608 extent_buffer_get(eb);
610 reads_done = atomic_dec_and_test(&eb->io_pages);
614 eb->read_mirror = mirror;
615 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
620 found_start = btrfs_header_bytenr(eb);
621 if (found_start != eb->start) {
622 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
623 eb->start, found_start);
627 if (check_tree_block_fsid(fs_info, eb)) {
628 btrfs_err_rl(fs_info, "bad fsid on block %llu",
633 found_level = btrfs_header_level(eb);
634 if (found_level >= BTRFS_MAX_LEVEL) {
635 btrfs_err(fs_info, "bad tree block level %d on %llu",
636 (int)btrfs_header_level(eb), eb->start);
641 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
644 ret = csum_tree_block(fs_info, eb, 1);
649 * If this is a leaf block and it is corrupt, set the corrupt bit so
650 * that we don't try and read the other copies of this block, just
653 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
654 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
658 if (found_level > 0 && btrfs_check_node(fs_info, eb))
662 set_extent_buffer_uptodate(eb);
665 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
666 btree_readahead_hook(eb, ret);
670 * our io error hook is going to dec the io pages
671 * again, we have to make sure it has something
674 atomic_inc(&eb->io_pages);
675 clear_extent_buffer_uptodate(eb);
677 free_extent_buffer(eb);
682 static void end_workqueue_bio(struct bio *bio)
684 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
685 struct btrfs_fs_info *fs_info;
686 struct btrfs_workqueue *wq;
687 btrfs_work_func_t func;
689 fs_info = end_io_wq->info;
690 end_io_wq->status = bio->bi_status;
692 if (bio_op(bio) == REQ_OP_WRITE) {
693 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
694 wq = fs_info->endio_meta_write_workers;
695 func = btrfs_endio_meta_write_helper;
696 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
697 wq = fs_info->endio_freespace_worker;
698 func = btrfs_freespace_write_helper;
699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
700 wq = fs_info->endio_raid56_workers;
701 func = btrfs_endio_raid56_helper;
703 wq = fs_info->endio_write_workers;
704 func = btrfs_endio_write_helper;
707 if (unlikely(end_io_wq->metadata ==
708 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
709 wq = fs_info->endio_repair_workers;
710 func = btrfs_endio_repair_helper;
711 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
712 wq = fs_info->endio_raid56_workers;
713 func = btrfs_endio_raid56_helper;
714 } else if (end_io_wq->metadata) {
715 wq = fs_info->endio_meta_workers;
716 func = btrfs_endio_meta_helper;
718 wq = fs_info->endio_workers;
719 func = btrfs_endio_helper;
723 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
724 btrfs_queue_work(wq, &end_io_wq->work);
727 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
728 enum btrfs_wq_endio_type metadata)
730 struct btrfs_end_io_wq *end_io_wq;
732 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
734 return BLK_STS_RESOURCE;
736 end_io_wq->private = bio->bi_private;
737 end_io_wq->end_io = bio->bi_end_io;
738 end_io_wq->info = info;
739 end_io_wq->status = 0;
740 end_io_wq->bio = bio;
741 end_io_wq->metadata = metadata;
743 bio->bi_private = end_io_wq;
744 bio->bi_end_io = end_workqueue_bio;
748 static void run_one_async_start(struct btrfs_work *work)
750 struct async_submit_bio *async;
753 async = container_of(work, struct async_submit_bio, work);
754 ret = async->submit_bio_start(async->private_data, async->bio,
761 * In order to insert checksums into the metadata in large chunks, we wait
762 * until bio submission time. All the pages in the bio are checksummed and
763 * sums are attached onto the ordered extent record.
765 * At IO completion time the csums attached on the ordered extent record are
766 * inserted into the tree.
768 static void run_one_async_done(struct btrfs_work *work)
770 struct async_submit_bio *async;
774 async = container_of(work, struct async_submit_bio, work);
775 inode = async->private_data;
777 /* If an error occurred we just want to clean up the bio and move on */
779 async->bio->bi_status = async->status;
780 bio_endio(async->bio);
784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
785 async->mirror_num, 1);
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
792 static void run_one_async_free(struct btrfs_work *work)
794 struct async_submit_bio *async;
796 async = container_of(work, struct async_submit_bio, work);
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
803 extent_submit_bio_start_t *submit_bio_start)
805 struct async_submit_bio *async;
807 async = kmalloc(sizeof(*async), GFP_NOFS);
809 return BLK_STS_RESOURCE;
811 async->private_data = private_data;
813 async->mirror_num = mirror_num;
814 async->submit_bio_start = submit_bio_start;
816 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
817 run_one_async_done, run_one_async_free);
819 async->bio_offset = bio_offset;
823 if (op_is_sync(bio->bi_opf))
824 btrfs_set_work_high_priority(&async->work);
826 btrfs_queue_work(fs_info->workers, &async->work);
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
832 struct bio_vec *bvec;
833 struct btrfs_root *root;
836 ASSERT(!bio_flagged(bio, BIO_CLONED));
837 bio_for_each_segment_all(bvec, bio, i) {
838 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
839 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
844 return errno_to_blk_status(ret);
847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
854 return btree_csum_one_bio(bio);
857 static int check_async_write(struct btrfs_inode *bi)
859 if (atomic_read(&bi->sync_writers))
862 if (static_cpu_has(X86_FEATURE_XMM4_2))
868 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
869 int mirror_num, unsigned long bio_flags,
872 struct inode *inode = private_data;
873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
874 int async = check_async_write(BTRFS_I(inode));
877 if (bio_op(bio) != REQ_OP_WRITE) {
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
882 ret = btrfs_bio_wq_end_io(fs_info, bio,
883 BTRFS_WQ_ENDIO_METADATA);
886 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
888 ret = btree_csum_one_bio(bio);
891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
894 * kthread helpers are used to submit writes so that
895 * checksumming can happen in parallel across all CPUs
897 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
898 bio_offset, private_data,
899 btree_submit_bio_start);
907 bio->bi_status = ret;
912 #ifdef CONFIG_MIGRATION
913 static int btree_migratepage(struct address_space *mapping,
914 struct page *newpage, struct page *page,
915 enum migrate_mode mode)
918 * we can't safely write a btree page from here,
919 * we haven't done the locking hook
924 * Buffers may be managed in a filesystem specific way.
925 * We must have no buffers or drop them.
927 if (page_has_private(page) &&
928 !try_to_release_page(page, GFP_KERNEL))
930 return migrate_page(mapping, newpage, page, mode);
935 static int btree_writepages(struct address_space *mapping,
936 struct writeback_control *wbc)
938 struct btrfs_fs_info *fs_info;
941 if (wbc->sync_mode == WB_SYNC_NONE) {
943 if (wbc->for_kupdate)
946 fs_info = BTRFS_I(mapping->host)->root->fs_info;
947 /* this is a bit racy, but that's ok */
948 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
949 BTRFS_DIRTY_METADATA_THRESH,
950 fs_info->dirty_metadata_batch);
954 return btree_write_cache_pages(mapping, wbc);
957 static int btree_readpage(struct file *file, struct page *page)
959 struct extent_io_tree *tree;
960 tree = &BTRFS_I(page->mapping->host)->io_tree;
961 return extent_read_full_page(tree, page, btree_get_extent, 0);
964 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
966 if (PageWriteback(page) || PageDirty(page))
969 return try_release_extent_buffer(page);
972 static void btree_invalidatepage(struct page *page, unsigned int offset,
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
977 extent_invalidatepage(tree, page, offset);
978 btree_releasepage(page, GFP_NOFS);
979 if (PagePrivate(page)) {
980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 "page private not zero on page %llu",
982 (unsigned long long)page_offset(page));
983 ClearPagePrivate(page);
984 set_page_private(page, 0);
989 static int btree_set_page_dirty(struct page *page)
992 struct extent_buffer *eb;
994 BUG_ON(!PagePrivate(page));
995 eb = (struct extent_buffer *)page->private;
997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 BUG_ON(!atomic_read(&eb->refs));
999 btrfs_assert_tree_locked(eb);
1001 return __set_page_dirty_nobuffers(page);
1004 static const struct address_space_operations btree_aops = {
1005 .readpage = btree_readpage,
1006 .writepages = btree_writepages,
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 .migratepage = btree_migratepage,
1012 .set_page_dirty = btree_set_page_dirty,
1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1017 struct extent_buffer *buf = NULL;
1018 struct inode *btree_inode = fs_info->btree_inode;
1020 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1023 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1025 free_extent_buffer(buf);
1028 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1029 int mirror_num, struct extent_buffer **eb)
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = fs_info->btree_inode;
1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1042 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1045 free_extent_buffer(buf);
1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 free_extent_buffer(buf);
1052 } else if (extent_buffer_uptodate(buf)) {
1055 free_extent_buffer(buf);
1060 struct extent_buffer *btrfs_find_create_tree_block(
1061 struct btrfs_fs_info *fs_info,
1064 if (btrfs_is_testing(fs_info))
1065 return alloc_test_extent_buffer(fs_info, bytenr);
1066 return alloc_extent_buffer(fs_info, bytenr);
1070 int btrfs_write_tree_block(struct extent_buffer *buf)
1072 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1073 buf->start + buf->len - 1);
1076 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1078 filemap_fdatawait_range(buf->pages[0]->mapping,
1079 buf->start, buf->start + buf->len - 1);
1083 * Read tree block at logical address @bytenr and do variant basic but critical
1086 * @parent_transid: expected transid of this tree block, skip check if 0
1087 * @level: expected level, mandatory check
1088 * @first_key: expected key in slot 0, skip check if NULL
1090 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1091 u64 parent_transid, int level,
1092 struct btrfs_key *first_key)
1094 struct extent_buffer *buf = NULL;
1097 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1101 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1104 free_extent_buffer(buf);
1105 return ERR_PTR(ret);
1111 void clean_tree_block(struct btrfs_fs_info *fs_info,
1112 struct extent_buffer *buf)
1114 if (btrfs_header_generation(buf) ==
1115 fs_info->running_transaction->transid) {
1116 btrfs_assert_tree_locked(buf);
1118 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1119 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1121 fs_info->dirty_metadata_batch);
1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1123 btrfs_set_lock_blocking(buf);
1124 clear_extent_buffer_dirty(buf);
1129 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1131 struct btrfs_subvolume_writers *writers;
1134 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1136 return ERR_PTR(-ENOMEM);
1138 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1141 return ERR_PTR(ret);
1144 init_waitqueue_head(&writers->wait);
1149 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1151 percpu_counter_destroy(&writers->counter);
1155 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1158 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1160 root->commit_root = NULL;
1162 root->orphan_cleanup_state = 0;
1164 root->last_trans = 0;
1165 root->highest_objectid = 0;
1166 root->nr_delalloc_inodes = 0;
1167 root->nr_ordered_extents = 0;
1168 root->inode_tree = RB_ROOT;
1169 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1170 root->block_rsv = NULL;
1172 INIT_LIST_HEAD(&root->dirty_list);
1173 INIT_LIST_HEAD(&root->root_list);
1174 INIT_LIST_HEAD(&root->delalloc_inodes);
1175 INIT_LIST_HEAD(&root->delalloc_root);
1176 INIT_LIST_HEAD(&root->ordered_extents);
1177 INIT_LIST_HEAD(&root->ordered_root);
1178 INIT_LIST_HEAD(&root->logged_list[0]);
1179 INIT_LIST_HEAD(&root->logged_list[1]);
1180 spin_lock_init(&root->inode_lock);
1181 spin_lock_init(&root->delalloc_lock);
1182 spin_lock_init(&root->ordered_extent_lock);
1183 spin_lock_init(&root->accounting_lock);
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
1186 spin_lock_init(&root->qgroup_meta_rsv_lock);
1187 mutex_init(&root->objectid_mutex);
1188 mutex_init(&root->log_mutex);
1189 mutex_init(&root->ordered_extent_mutex);
1190 mutex_init(&root->delalloc_mutex);
1191 init_waitqueue_head(&root->log_writer_wait);
1192 init_waitqueue_head(&root->log_commit_wait[0]);
1193 init_waitqueue_head(&root->log_commit_wait[1]);
1194 INIT_LIST_HEAD(&root->log_ctxs[0]);
1195 INIT_LIST_HEAD(&root->log_ctxs[1]);
1196 atomic_set(&root->log_commit[0], 0);
1197 atomic_set(&root->log_commit[1], 0);
1198 atomic_set(&root->log_writers, 0);
1199 atomic_set(&root->log_batch, 0);
1200 refcount_set(&root->refs, 1);
1201 atomic_set(&root->will_be_snapshotted, 0);
1202 atomic_set(&root->snapshot_force_cow, 0);
1203 atomic_set(&root->nr_swapfiles, 0);
1204 root->log_transid = 0;
1205 root->log_transid_committed = -1;
1206 root->last_log_commit = 0;
1208 extent_io_tree_init(&root->dirty_log_pages, NULL);
1210 memset(&root->root_key, 0, sizeof(root->root_key));
1211 memset(&root->root_item, 0, sizeof(root->root_item));
1212 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1214 root->defrag_trans_start = fs_info->generation;
1216 root->defrag_trans_start = 0;
1217 root->root_key.objectid = objectid;
1220 spin_lock_init(&root->root_item_lock);
1223 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1226 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1228 root->fs_info = fs_info;
1232 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1233 /* Should only be used by the testing infrastructure */
1234 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1236 struct btrfs_root *root;
1239 return ERR_PTR(-EINVAL);
1241 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1243 return ERR_PTR(-ENOMEM);
1245 /* We don't use the stripesize in selftest, set it as sectorsize */
1246 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1247 root->alloc_bytenr = 0;
1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1257 struct extent_buffer *leaf;
1258 struct btrfs_root *tree_root = fs_info->tree_root;
1259 struct btrfs_root *root;
1260 struct btrfs_key key;
1262 uuid_le uuid = NULL_UUID_LE;
1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1266 return ERR_PTR(-ENOMEM);
1268 __setup_root(root, fs_info, objectid);
1269 root->root_key.objectid = objectid;
1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 root->root_key.offset = 0;
1273 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1275 ret = PTR_ERR(leaf);
1281 btrfs_mark_buffer_dirty(leaf);
1283 root->commit_root = btrfs_root_node(root);
1284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1286 root->root_item.flags = 0;
1287 root->root_item.byte_limit = 0;
1288 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1289 btrfs_set_root_generation(&root->root_item, trans->transid);
1290 btrfs_set_root_level(&root->root_item, 0);
1291 btrfs_set_root_refs(&root->root_item, 1);
1292 btrfs_set_root_used(&root->root_item, leaf->len);
1293 btrfs_set_root_last_snapshot(&root->root_item, 0);
1294 btrfs_set_root_dirid(&root->root_item, 0);
1295 if (is_fstree(objectid))
1297 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1298 root->root_item.drop_level = 0;
1300 key.objectid = objectid;
1301 key.type = BTRFS_ROOT_ITEM_KEY;
1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1307 btrfs_tree_unlock(leaf);
1313 btrfs_tree_unlock(leaf);
1314 free_extent_buffer(root->commit_root);
1315 free_extent_buffer(leaf);
1319 return ERR_PTR(ret);
1322 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info)
1325 struct btrfs_root *root;
1326 struct extent_buffer *leaf;
1328 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1330 return ERR_PTR(-ENOMEM);
1332 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1339 * DON'T set REF_COWS for log trees
1341 * log trees do not get reference counted because they go away
1342 * before a real commit is actually done. They do store pointers
1343 * to file data extents, and those reference counts still get
1344 * updated (along with back refs to the log tree).
1347 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351 return ERR_CAST(leaf);
1356 btrfs_mark_buffer_dirty(root->node);
1357 btrfs_tree_unlock(root->node);
1361 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1362 struct btrfs_fs_info *fs_info)
1364 struct btrfs_root *log_root;
1366 log_root = alloc_log_tree(trans, fs_info);
1367 if (IS_ERR(log_root))
1368 return PTR_ERR(log_root);
1369 WARN_ON(fs_info->log_root_tree);
1370 fs_info->log_root_tree = log_root;
1374 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1375 struct btrfs_root *root)
1377 struct btrfs_fs_info *fs_info = root->fs_info;
1378 struct btrfs_root *log_root;
1379 struct btrfs_inode_item *inode_item;
1381 log_root = alloc_log_tree(trans, fs_info);
1382 if (IS_ERR(log_root))
1383 return PTR_ERR(log_root);
1385 log_root->last_trans = trans->transid;
1386 log_root->root_key.offset = root->root_key.objectid;
1388 inode_item = &log_root->root_item.inode;
1389 btrfs_set_stack_inode_generation(inode_item, 1);
1390 btrfs_set_stack_inode_size(inode_item, 3);
1391 btrfs_set_stack_inode_nlink(inode_item, 1);
1392 btrfs_set_stack_inode_nbytes(inode_item,
1394 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1396 btrfs_set_root_node(&log_root->root_item, log_root->node);
1398 WARN_ON(root->log_root);
1399 root->log_root = log_root;
1400 root->log_transid = 0;
1401 root->log_transid_committed = -1;
1402 root->last_log_commit = 0;
1406 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1407 struct btrfs_key *key)
1409 struct btrfs_root *root;
1410 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1411 struct btrfs_path *path;
1416 path = btrfs_alloc_path();
1418 return ERR_PTR(-ENOMEM);
1420 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1426 __setup_root(root, fs_info, key->objectid);
1428 ret = btrfs_find_root(tree_root, key, path,
1429 &root->root_item, &root->root_key);
1436 generation = btrfs_root_generation(&root->root_item);
1437 level = btrfs_root_level(&root->root_item);
1438 root->node = read_tree_block(fs_info,
1439 btrfs_root_bytenr(&root->root_item),
1440 generation, level, NULL);
1441 if (IS_ERR(root->node)) {
1442 ret = PTR_ERR(root->node);
1444 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1446 free_extent_buffer(root->node);
1449 root->commit_root = btrfs_root_node(root);
1451 btrfs_free_path(path);
1457 root = ERR_PTR(ret);
1461 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1462 struct btrfs_key *location)
1464 struct btrfs_root *root;
1466 root = btrfs_read_tree_root(tree_root, location);
1470 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1471 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1472 btrfs_check_and_init_root_item(&root->root_item);
1478 int btrfs_init_fs_root(struct btrfs_root *root)
1481 struct btrfs_subvolume_writers *writers;
1483 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1484 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1491 writers = btrfs_alloc_subvolume_writers();
1492 if (IS_ERR(writers)) {
1493 ret = PTR_ERR(writers);
1496 root->subv_writers = writers;
1498 btrfs_init_free_ino_ctl(root);
1499 spin_lock_init(&root->ino_cache_lock);
1500 init_waitqueue_head(&root->ino_cache_wait);
1502 ret = get_anon_bdev(&root->anon_dev);
1506 mutex_lock(&root->objectid_mutex);
1507 ret = btrfs_find_highest_objectid(root,
1508 &root->highest_objectid);
1510 mutex_unlock(&root->objectid_mutex);
1514 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1516 mutex_unlock(&root->objectid_mutex);
1520 /* The caller is responsible to call btrfs_free_fs_root */
1524 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1527 struct btrfs_root *root;
1529 spin_lock(&fs_info->fs_roots_radix_lock);
1530 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1531 (unsigned long)root_id);
1532 spin_unlock(&fs_info->fs_roots_radix_lock);
1536 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1537 struct btrfs_root *root)
1541 ret = radix_tree_preload(GFP_NOFS);
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547 (unsigned long)root->root_key.objectid,
1550 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1551 spin_unlock(&fs_info->fs_roots_radix_lock);
1552 radix_tree_preload_end();
1557 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1558 struct btrfs_key *location,
1561 struct btrfs_root *root;
1562 struct btrfs_path *path;
1563 struct btrfs_key key;
1566 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1567 return fs_info->tree_root;
1568 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1569 return fs_info->extent_root;
1570 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1571 return fs_info->chunk_root;
1572 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1573 return fs_info->dev_root;
1574 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1575 return fs_info->csum_root;
1576 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1577 return fs_info->quota_root ? fs_info->quota_root :
1579 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1580 return fs_info->uuid_root ? fs_info->uuid_root :
1582 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1583 return fs_info->free_space_root ? fs_info->free_space_root :
1586 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1589 return ERR_PTR(-ENOENT);
1593 root = btrfs_read_fs_root(fs_info->tree_root, location);
1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1602 ret = btrfs_init_fs_root(root);
1606 path = btrfs_alloc_path();
1611 key.objectid = BTRFS_ORPHAN_OBJECTID;
1612 key.type = BTRFS_ORPHAN_ITEM_KEY;
1613 key.offset = location->objectid;
1615 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1616 btrfs_free_path(path);
1620 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1622 ret = btrfs_insert_fs_root(fs_info, root);
1624 if (ret == -EEXIST) {
1625 btrfs_free_fs_root(root);
1632 btrfs_free_fs_root(root);
1633 return ERR_PTR(ret);
1636 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1638 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1640 struct btrfs_device *device;
1641 struct backing_dev_info *bdi;
1644 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1647 bdi = device->bdev->bd_bdi;
1648 if (bdi_congested(bdi, bdi_bits)) {
1658 * called by the kthread helper functions to finally call the bio end_io
1659 * functions. This is where read checksum verification actually happens
1661 static void end_workqueue_fn(struct btrfs_work *work)
1664 struct btrfs_end_io_wq *end_io_wq;
1666 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1667 bio = end_io_wq->bio;
1669 bio->bi_status = end_io_wq->status;
1670 bio->bi_private = end_io_wq->private;
1671 bio->bi_end_io = end_io_wq->end_io;
1672 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1676 static int cleaner_kthread(void *arg)
1678 struct btrfs_root *root = arg;
1679 struct btrfs_fs_info *fs_info = root->fs_info;
1685 /* Make the cleaner go to sleep early. */
1686 if (btrfs_need_cleaner_sleep(fs_info))
1690 * Do not do anything if we might cause open_ctree() to block
1691 * before we have finished mounting the filesystem.
1693 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1696 if (!mutex_trylock(&fs_info->cleaner_mutex))
1700 * Avoid the problem that we change the status of the fs
1701 * during the above check and trylock.
1703 if (btrfs_need_cleaner_sleep(fs_info)) {
1704 mutex_unlock(&fs_info->cleaner_mutex);
1708 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1709 btrfs_run_delayed_iputs(fs_info);
1710 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1712 again = btrfs_clean_one_deleted_snapshot(root);
1713 mutex_unlock(&fs_info->cleaner_mutex);
1716 * The defragger has dealt with the R/O remount and umount,
1717 * needn't do anything special here.
1719 btrfs_run_defrag_inodes(fs_info);
1722 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1723 * with relocation (btrfs_relocate_chunk) and relocation
1724 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1725 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1726 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1727 * unused block groups.
1729 btrfs_delete_unused_bgs(fs_info);
1731 if (kthread_should_park())
1733 if (kthread_should_stop())
1736 set_current_state(TASK_INTERRUPTIBLE);
1738 __set_current_state(TASK_RUNNING);
1743 static int transaction_kthread(void *arg)
1745 struct btrfs_root *root = arg;
1746 struct btrfs_fs_info *fs_info = root->fs_info;
1747 struct btrfs_trans_handle *trans;
1748 struct btrfs_transaction *cur;
1751 unsigned long delay;
1755 cannot_commit = false;
1756 delay = HZ * fs_info->commit_interval;
1757 mutex_lock(&fs_info->transaction_kthread_mutex);
1759 spin_lock(&fs_info->trans_lock);
1760 cur = fs_info->running_transaction;
1762 spin_unlock(&fs_info->trans_lock);
1766 now = ktime_get_seconds();
1767 if (cur->state < TRANS_STATE_BLOCKED &&
1768 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1769 (now < cur->start_time ||
1770 now - cur->start_time < fs_info->commit_interval)) {
1771 spin_unlock(&fs_info->trans_lock);
1775 transid = cur->transid;
1776 spin_unlock(&fs_info->trans_lock);
1778 /* If the file system is aborted, this will always fail. */
1779 trans = btrfs_attach_transaction(root);
1780 if (IS_ERR(trans)) {
1781 if (PTR_ERR(trans) != -ENOENT)
1782 cannot_commit = true;
1785 if (transid == trans->transid) {
1786 btrfs_commit_transaction(trans);
1788 btrfs_end_transaction(trans);
1791 wake_up_process(fs_info->cleaner_kthread);
1792 mutex_unlock(&fs_info->transaction_kthread_mutex);
1794 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1795 &fs_info->fs_state)))
1796 btrfs_cleanup_transaction(fs_info);
1797 if (!kthread_should_stop() &&
1798 (!btrfs_transaction_blocked(fs_info) ||
1800 schedule_timeout_interruptible(delay);
1801 } while (!kthread_should_stop());
1806 * this will find the highest generation in the array of
1807 * root backups. The index of the highest array is returned,
1808 * or -1 if we can't find anything.
1810 * We check to make sure the array is valid by comparing the
1811 * generation of the latest root in the array with the generation
1812 * in the super block. If they don't match we pitch it.
1814 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1817 int newest_index = -1;
1818 struct btrfs_root_backup *root_backup;
1821 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1822 root_backup = info->super_copy->super_roots + i;
1823 cur = btrfs_backup_tree_root_gen(root_backup);
1824 if (cur == newest_gen)
1828 /* check to see if we actually wrapped around */
1829 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1830 root_backup = info->super_copy->super_roots;
1831 cur = btrfs_backup_tree_root_gen(root_backup);
1832 if (cur == newest_gen)
1835 return newest_index;
1840 * find the oldest backup so we know where to store new entries
1841 * in the backup array. This will set the backup_root_index
1842 * field in the fs_info struct
1844 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1847 int newest_index = -1;
1849 newest_index = find_newest_super_backup(info, newest_gen);
1850 /* if there was garbage in there, just move along */
1851 if (newest_index == -1) {
1852 info->backup_root_index = 0;
1854 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1859 * copy all the root pointers into the super backup array.
1860 * this will bump the backup pointer by one when it is
1863 static void backup_super_roots(struct btrfs_fs_info *info)
1866 struct btrfs_root_backup *root_backup;
1869 next_backup = info->backup_root_index;
1870 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1871 BTRFS_NUM_BACKUP_ROOTS;
1874 * just overwrite the last backup if we're at the same generation
1875 * this happens only at umount
1877 root_backup = info->super_for_commit->super_roots + last_backup;
1878 if (btrfs_backup_tree_root_gen(root_backup) ==
1879 btrfs_header_generation(info->tree_root->node))
1880 next_backup = last_backup;
1882 root_backup = info->super_for_commit->super_roots + next_backup;
1885 * make sure all of our padding and empty slots get zero filled
1886 * regardless of which ones we use today
1888 memset(root_backup, 0, sizeof(*root_backup));
1890 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1892 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1893 btrfs_set_backup_tree_root_gen(root_backup,
1894 btrfs_header_generation(info->tree_root->node));
1896 btrfs_set_backup_tree_root_level(root_backup,
1897 btrfs_header_level(info->tree_root->node));
1899 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1900 btrfs_set_backup_chunk_root_gen(root_backup,
1901 btrfs_header_generation(info->chunk_root->node));
1902 btrfs_set_backup_chunk_root_level(root_backup,
1903 btrfs_header_level(info->chunk_root->node));
1905 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1906 btrfs_set_backup_extent_root_gen(root_backup,
1907 btrfs_header_generation(info->extent_root->node));
1908 btrfs_set_backup_extent_root_level(root_backup,
1909 btrfs_header_level(info->extent_root->node));
1912 * we might commit during log recovery, which happens before we set
1913 * the fs_root. Make sure it is valid before we fill it in.
1915 if (info->fs_root && info->fs_root->node) {
1916 btrfs_set_backup_fs_root(root_backup,
1917 info->fs_root->node->start);
1918 btrfs_set_backup_fs_root_gen(root_backup,
1919 btrfs_header_generation(info->fs_root->node));
1920 btrfs_set_backup_fs_root_level(root_backup,
1921 btrfs_header_level(info->fs_root->node));
1924 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1925 btrfs_set_backup_dev_root_gen(root_backup,
1926 btrfs_header_generation(info->dev_root->node));
1927 btrfs_set_backup_dev_root_level(root_backup,
1928 btrfs_header_level(info->dev_root->node));
1930 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1931 btrfs_set_backup_csum_root_gen(root_backup,
1932 btrfs_header_generation(info->csum_root->node));
1933 btrfs_set_backup_csum_root_level(root_backup,
1934 btrfs_header_level(info->csum_root->node));
1936 btrfs_set_backup_total_bytes(root_backup,
1937 btrfs_super_total_bytes(info->super_copy));
1938 btrfs_set_backup_bytes_used(root_backup,
1939 btrfs_super_bytes_used(info->super_copy));
1940 btrfs_set_backup_num_devices(root_backup,
1941 btrfs_super_num_devices(info->super_copy));
1944 * if we don't copy this out to the super_copy, it won't get remembered
1945 * for the next commit
1947 memcpy(&info->super_copy->super_roots,
1948 &info->super_for_commit->super_roots,
1949 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953 * this copies info out of the root backup array and back into
1954 * the in-memory super block. It is meant to help iterate through
1955 * the array, so you send it the number of backups you've already
1956 * tried and the last backup index you used.
1958 * this returns -1 when it has tried all the backups
1960 static noinline int next_root_backup(struct btrfs_fs_info *info,
1961 struct btrfs_super_block *super,
1962 int *num_backups_tried, int *backup_index)
1964 struct btrfs_root_backup *root_backup;
1965 int newest = *backup_index;
1967 if (*num_backups_tried == 0) {
1968 u64 gen = btrfs_super_generation(super);
1970 newest = find_newest_super_backup(info, gen);
1974 *backup_index = newest;
1975 *num_backups_tried = 1;
1976 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1977 /* we've tried all the backups, all done */
1980 /* jump to the next oldest backup */
1981 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1982 BTRFS_NUM_BACKUP_ROOTS;
1983 *backup_index = newest;
1984 *num_backups_tried += 1;
1986 root_backup = super->super_roots + newest;
1988 btrfs_set_super_generation(super,
1989 btrfs_backup_tree_root_gen(root_backup));
1990 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1991 btrfs_set_super_root_level(super,
1992 btrfs_backup_tree_root_level(root_backup));
1993 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1996 * fixme: the total bytes and num_devices need to match or we should
1999 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2000 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2004 /* helper to cleanup workers */
2005 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2007 btrfs_destroy_workqueue(fs_info->fixup_workers);
2008 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2009 btrfs_destroy_workqueue(fs_info->workers);
2010 btrfs_destroy_workqueue(fs_info->endio_workers);
2011 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2012 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2013 btrfs_destroy_workqueue(fs_info->rmw_workers);
2014 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2015 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2016 btrfs_destroy_workqueue(fs_info->submit_workers);
2017 btrfs_destroy_workqueue(fs_info->delayed_workers);
2018 btrfs_destroy_workqueue(fs_info->caching_workers);
2019 btrfs_destroy_workqueue(fs_info->readahead_workers);
2020 btrfs_destroy_workqueue(fs_info->flush_workers);
2021 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2022 btrfs_destroy_workqueue(fs_info->extent_workers);
2024 * Now that all other work queues are destroyed, we can safely destroy
2025 * the queues used for metadata I/O, since tasks from those other work
2026 * queues can do metadata I/O operations.
2028 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2029 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2032 static void free_root_extent_buffers(struct btrfs_root *root)
2035 free_extent_buffer(root->node);
2036 free_extent_buffer(root->commit_root);
2038 root->commit_root = NULL;
2042 /* helper to cleanup tree roots */
2043 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2045 free_root_extent_buffers(info->tree_root);
2047 free_root_extent_buffers(info->dev_root);
2048 free_root_extent_buffers(info->extent_root);
2049 free_root_extent_buffers(info->csum_root);
2050 free_root_extent_buffers(info->quota_root);
2051 free_root_extent_buffers(info->uuid_root);
2053 free_root_extent_buffers(info->chunk_root);
2054 free_root_extent_buffers(info->free_space_root);
2057 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2060 struct btrfs_root *gang[8];
2063 while (!list_empty(&fs_info->dead_roots)) {
2064 gang[0] = list_entry(fs_info->dead_roots.next,
2065 struct btrfs_root, root_list);
2066 list_del(&gang[0]->root_list);
2068 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2069 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071 free_extent_buffer(gang[0]->node);
2072 free_extent_buffer(gang[0]->commit_root);
2073 btrfs_put_fs_root(gang[0]);
2078 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2083 for (i = 0; i < ret; i++)
2084 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2088 btrfs_free_log_root_tree(NULL, fs_info);
2089 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2093 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2095 mutex_init(&fs_info->scrub_lock);
2096 atomic_set(&fs_info->scrubs_running, 0);
2097 atomic_set(&fs_info->scrub_pause_req, 0);
2098 atomic_set(&fs_info->scrubs_paused, 0);
2099 atomic_set(&fs_info->scrub_cancel_req, 0);
2100 init_waitqueue_head(&fs_info->scrub_pause_wait);
2101 fs_info->scrub_workers_refcnt = 0;
2104 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2106 spin_lock_init(&fs_info->balance_lock);
2107 mutex_init(&fs_info->balance_mutex);
2108 atomic_set(&fs_info->balance_pause_req, 0);
2109 atomic_set(&fs_info->balance_cancel_req, 0);
2110 fs_info->balance_ctl = NULL;
2111 init_waitqueue_head(&fs_info->balance_wait_q);
2114 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2116 struct inode *inode = fs_info->btree_inode;
2118 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2119 set_nlink(inode, 1);
2121 * we set the i_size on the btree inode to the max possible int.
2122 * the real end of the address space is determined by all of
2123 * the devices in the system
2125 inode->i_size = OFFSET_MAX;
2126 inode->i_mapping->a_ops = &btree_aops;
2128 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2129 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2130 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2131 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2133 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2135 BTRFS_I(inode)->root = fs_info->tree_root;
2136 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2137 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2138 btrfs_insert_inode_hash(inode);
2141 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2143 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2144 init_rwsem(&fs_info->dev_replace.rwsem);
2145 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2148 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2150 spin_lock_init(&fs_info->qgroup_lock);
2151 mutex_init(&fs_info->qgroup_ioctl_lock);
2152 fs_info->qgroup_tree = RB_ROOT;
2153 fs_info->qgroup_op_tree = RB_ROOT;
2154 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2155 fs_info->qgroup_seq = 1;
2156 fs_info->qgroup_ulist = NULL;
2157 fs_info->qgroup_rescan_running = false;
2158 mutex_init(&fs_info->qgroup_rescan_lock);
2161 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2162 struct btrfs_fs_devices *fs_devices)
2164 u32 max_active = fs_info->thread_pool_size;
2165 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2168 btrfs_alloc_workqueue(fs_info, "worker",
2169 flags | WQ_HIGHPRI, max_active, 16);
2171 fs_info->delalloc_workers =
2172 btrfs_alloc_workqueue(fs_info, "delalloc",
2173 flags, max_active, 2);
2175 fs_info->flush_workers =
2176 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2177 flags, max_active, 0);
2179 fs_info->caching_workers =
2180 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2183 * a higher idle thresh on the submit workers makes it much more
2184 * likely that bios will be send down in a sane order to the
2187 fs_info->submit_workers =
2188 btrfs_alloc_workqueue(fs_info, "submit", flags,
2189 min_t(u64, fs_devices->num_devices,
2192 fs_info->fixup_workers =
2193 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2196 * endios are largely parallel and should have a very
2199 fs_info->endio_workers =
2200 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2201 fs_info->endio_meta_workers =
2202 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2204 fs_info->endio_meta_write_workers =
2205 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2207 fs_info->endio_raid56_workers =
2208 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2210 fs_info->endio_repair_workers =
2211 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2212 fs_info->rmw_workers =
2213 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2214 fs_info->endio_write_workers =
2215 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2217 fs_info->endio_freespace_worker =
2218 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2220 fs_info->delayed_workers =
2221 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2223 fs_info->readahead_workers =
2224 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2226 fs_info->qgroup_rescan_workers =
2227 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2228 fs_info->extent_workers =
2229 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2230 min_t(u64, fs_devices->num_devices,
2233 if (!(fs_info->workers && fs_info->delalloc_workers &&
2234 fs_info->submit_workers && fs_info->flush_workers &&
2235 fs_info->endio_workers && fs_info->endio_meta_workers &&
2236 fs_info->endio_meta_write_workers &&
2237 fs_info->endio_repair_workers &&
2238 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2239 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2240 fs_info->caching_workers && fs_info->readahead_workers &&
2241 fs_info->fixup_workers && fs_info->delayed_workers &&
2242 fs_info->extent_workers &&
2243 fs_info->qgroup_rescan_workers)) {
2250 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2251 struct btrfs_fs_devices *fs_devices)
2254 struct btrfs_root *log_tree_root;
2255 struct btrfs_super_block *disk_super = fs_info->super_copy;
2256 u64 bytenr = btrfs_super_log_root(disk_super);
2257 int level = btrfs_super_log_root_level(disk_super);
2259 if (fs_devices->rw_devices == 0) {
2260 btrfs_warn(fs_info, "log replay required on RO media");
2264 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2268 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2270 log_tree_root->node = read_tree_block(fs_info, bytenr,
2271 fs_info->generation + 1,
2273 if (IS_ERR(log_tree_root->node)) {
2274 btrfs_warn(fs_info, "failed to read log tree");
2275 ret = PTR_ERR(log_tree_root->node);
2276 kfree(log_tree_root);
2278 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2279 btrfs_err(fs_info, "failed to read log tree");
2280 free_extent_buffer(log_tree_root->node);
2281 kfree(log_tree_root);
2284 /* returns with log_tree_root freed on success */
2285 ret = btrfs_recover_log_trees(log_tree_root);
2287 btrfs_handle_fs_error(fs_info, ret,
2288 "Failed to recover log tree");
2289 free_extent_buffer(log_tree_root->node);
2290 kfree(log_tree_root);
2294 if (sb_rdonly(fs_info->sb)) {
2295 ret = btrfs_commit_super(fs_info);
2303 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2305 struct btrfs_root *tree_root = fs_info->tree_root;
2306 struct btrfs_root *root;
2307 struct btrfs_key location;
2310 BUG_ON(!fs_info->tree_root);
2312 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2313 location.type = BTRFS_ROOT_ITEM_KEY;
2314 location.offset = 0;
2316 root = btrfs_read_tree_root(tree_root, &location);
2318 ret = PTR_ERR(root);
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->extent_root = root;
2324 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2325 root = btrfs_read_tree_root(tree_root, &location);
2327 ret = PTR_ERR(root);
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->dev_root = root;
2332 btrfs_init_devices_late(fs_info);
2334 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2335 root = btrfs_read_tree_root(tree_root, &location);
2337 ret = PTR_ERR(root);
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->csum_root = root;
2343 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2344 root = btrfs_read_tree_root(tree_root, &location);
2345 if (!IS_ERR(root)) {
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2348 fs_info->quota_root = root;
2351 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2352 root = btrfs_read_tree_root(tree_root, &location);
2354 ret = PTR_ERR(root);
2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359 fs_info->uuid_root = root;
2362 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2363 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2364 root = btrfs_read_tree_root(tree_root, &location);
2366 ret = PTR_ERR(root);
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->free_space_root = root;
2375 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2376 location.objectid, ret);
2381 * Real super block validation
2382 * NOTE: super csum type and incompat features will not be checked here.
2384 * @sb: super block to check
2385 * @mirror_num: the super block number to check its bytenr:
2386 * 0 the primary (1st) sb
2387 * 1, 2 2nd and 3rd backup copy
2388 * -1 skip bytenr check
2390 static int validate_super(struct btrfs_fs_info *fs_info,
2391 struct btrfs_super_block *sb, int mirror_num)
2393 u64 nodesize = btrfs_super_nodesize(sb);
2394 u64 sectorsize = btrfs_super_sectorsize(sb);
2397 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2398 btrfs_err(fs_info, "no valid FS found");
2401 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2402 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2403 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2407 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2408 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2412 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2413 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2418 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423 * Check sectorsize and nodesize first, other check will need it.
2424 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2426 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2427 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2428 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431 /* Only PAGE SIZE is supported yet */
2432 if (sectorsize != PAGE_SIZE) {
2434 "sectorsize %llu not supported yet, only support %lu",
2435 sectorsize, PAGE_SIZE);
2438 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2439 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2444 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2445 le32_to_cpu(sb->__unused_leafsize), nodesize);
2449 /* Root alignment check */
2450 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2451 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2452 btrfs_super_root(sb));
2455 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2456 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2457 btrfs_super_chunk_root(sb));
2460 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2461 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2462 btrfs_super_log_root(sb));
2466 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2467 BTRFS_FSID_SIZE) != 0) {
2469 "dev_item UUID does not match metadata fsid: %pU != %pU",
2470 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2475 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479 btrfs_err(fs_info, "bytes_used is too small %llu",
2480 btrfs_super_bytes_used(sb));
2483 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484 btrfs_err(fs_info, "invalid stripesize %u",
2485 btrfs_super_stripesize(sb));
2488 if (btrfs_super_num_devices(sb) > (1UL << 31))
2489 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490 btrfs_super_num_devices(sb));
2491 if (btrfs_super_num_devices(sb) == 0) {
2492 btrfs_err(fs_info, "number of devices is 0");
2496 if (mirror_num >= 0 &&
2497 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2498 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2504 * Obvious sys_chunk_array corruptions, it must hold at least one key
2507 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508 btrfs_err(fs_info, "system chunk array too big %u > %u",
2509 btrfs_super_sys_array_size(sb),
2510 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514 + sizeof(struct btrfs_chunk)) {
2515 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516 btrfs_super_sys_array_size(sb),
2517 sizeof(struct btrfs_disk_key)
2518 + sizeof(struct btrfs_chunk));
2523 * The generation is a global counter, we'll trust it more than the others
2524 * but it's still possible that it's the one that's wrong.
2526 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2528 "suspicious: generation < chunk_root_generation: %llu < %llu",
2529 btrfs_super_generation(sb),
2530 btrfs_super_chunk_root_generation(sb));
2531 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532 && btrfs_super_cache_generation(sb) != (u64)-1)
2534 "suspicious: generation < cache_generation: %llu < %llu",
2535 btrfs_super_generation(sb),
2536 btrfs_super_cache_generation(sb));
2542 * Validation of super block at mount time.
2543 * Some checks already done early at mount time, like csum type and incompat
2544 * flags will be skipped.
2546 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2548 return validate_super(fs_info, fs_info->super_copy, 0);
2552 * Validation of super block at write time.
2553 * Some checks like bytenr check will be skipped as their values will be
2555 * Extra checks like csum type and incompat flags will be done here.
2557 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558 struct btrfs_super_block *sb)
2562 ret = validate_super(fs_info, sb, -1);
2565 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2567 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575 btrfs_super_incompat_flags(sb),
2576 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2582 "super block corruption detected before writing it to disk");
2586 int open_ctree(struct super_block *sb,
2587 struct btrfs_fs_devices *fs_devices,
2595 struct btrfs_key location;
2596 struct buffer_head *bh;
2597 struct btrfs_super_block *disk_super;
2598 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2599 struct btrfs_root *tree_root;
2600 struct btrfs_root *chunk_root;
2603 int num_backups_tried = 0;
2604 int backup_index = 0;
2605 int clear_free_space_tree = 0;
2608 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2609 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2610 if (!tree_root || !chunk_root) {
2615 ret = init_srcu_struct(&fs_info->subvol_srcu);
2621 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2626 fs_info->dirty_metadata_batch = PAGE_SIZE *
2627 (1 + ilog2(nr_cpu_ids));
2629 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2632 goto fail_dirty_metadata_bytes;
2635 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2639 goto fail_delalloc_bytes;
2642 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2643 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2644 INIT_LIST_HEAD(&fs_info->trans_list);
2645 INIT_LIST_HEAD(&fs_info->dead_roots);
2646 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2647 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2648 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2649 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2650 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2651 spin_lock_init(&fs_info->delalloc_root_lock);
2652 spin_lock_init(&fs_info->trans_lock);
2653 spin_lock_init(&fs_info->fs_roots_radix_lock);
2654 spin_lock_init(&fs_info->delayed_iput_lock);
2655 spin_lock_init(&fs_info->defrag_inodes_lock);
2656 spin_lock_init(&fs_info->tree_mod_seq_lock);
2657 spin_lock_init(&fs_info->super_lock);
2658 spin_lock_init(&fs_info->qgroup_op_lock);
2659 spin_lock_init(&fs_info->buffer_lock);
2660 spin_lock_init(&fs_info->unused_bgs_lock);
2661 rwlock_init(&fs_info->tree_mod_log_lock);
2662 mutex_init(&fs_info->unused_bg_unpin_mutex);
2663 mutex_init(&fs_info->delete_unused_bgs_mutex);
2664 mutex_init(&fs_info->reloc_mutex);
2665 mutex_init(&fs_info->delalloc_root_mutex);
2666 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2667 seqlock_init(&fs_info->profiles_lock);
2669 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2670 INIT_LIST_HEAD(&fs_info->space_info);
2671 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2672 INIT_LIST_HEAD(&fs_info->unused_bgs);
2673 btrfs_mapping_init(&fs_info->mapping_tree);
2674 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2675 BTRFS_BLOCK_RSV_GLOBAL);
2676 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2677 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2678 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2679 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2680 BTRFS_BLOCK_RSV_DELOPS);
2681 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2682 BTRFS_BLOCK_RSV_DELREFS);
2684 atomic_set(&fs_info->async_delalloc_pages, 0);
2685 atomic_set(&fs_info->defrag_running, 0);
2686 atomic_set(&fs_info->qgroup_op_seq, 0);
2687 atomic_set(&fs_info->reada_works_cnt, 0);
2688 atomic64_set(&fs_info->tree_mod_seq, 0);
2690 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2691 fs_info->metadata_ratio = 0;
2692 fs_info->defrag_inodes = RB_ROOT;
2693 atomic64_set(&fs_info->free_chunk_space, 0);
2694 fs_info->tree_mod_log = RB_ROOT;
2695 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2696 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2697 /* readahead state */
2698 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2699 spin_lock_init(&fs_info->reada_lock);
2700 btrfs_init_ref_verify(fs_info);
2702 fs_info->thread_pool_size = min_t(unsigned long,
2703 num_online_cpus() + 2, 8);
2705 INIT_LIST_HEAD(&fs_info->ordered_roots);
2706 spin_lock_init(&fs_info->ordered_root_lock);
2708 fs_info->btree_inode = new_inode(sb);
2709 if (!fs_info->btree_inode) {
2711 goto fail_bio_counter;
2713 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2715 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2717 if (!fs_info->delayed_root) {
2721 btrfs_init_delayed_root(fs_info->delayed_root);
2723 btrfs_init_scrub(fs_info);
2724 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2725 fs_info->check_integrity_print_mask = 0;
2727 btrfs_init_balance(fs_info);
2728 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2730 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2731 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2733 btrfs_init_btree_inode(fs_info);
2735 spin_lock_init(&fs_info->block_group_cache_lock);
2736 fs_info->block_group_cache_tree = RB_ROOT;
2737 fs_info->first_logical_byte = (u64)-1;
2739 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2740 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2741 fs_info->pinned_extents = &fs_info->freed_extents[0];
2742 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2744 mutex_init(&fs_info->ordered_operations_mutex);
2745 mutex_init(&fs_info->tree_log_mutex);
2746 mutex_init(&fs_info->chunk_mutex);
2747 mutex_init(&fs_info->transaction_kthread_mutex);
2748 mutex_init(&fs_info->cleaner_mutex);
2749 mutex_init(&fs_info->ro_block_group_mutex);
2750 init_rwsem(&fs_info->commit_root_sem);
2751 init_rwsem(&fs_info->cleanup_work_sem);
2752 init_rwsem(&fs_info->subvol_sem);
2753 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2755 btrfs_init_dev_replace_locks(fs_info);
2756 btrfs_init_qgroup(fs_info);
2758 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2759 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2761 init_waitqueue_head(&fs_info->transaction_throttle);
2762 init_waitqueue_head(&fs_info->transaction_wait);
2763 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2764 init_waitqueue_head(&fs_info->async_submit_wait);
2766 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2768 /* Usable values until the real ones are cached from the superblock */
2769 fs_info->nodesize = 4096;
2770 fs_info->sectorsize = 4096;
2771 fs_info->stripesize = 4096;
2773 spin_lock_init(&fs_info->swapfile_pins_lock);
2774 fs_info->swapfile_pins = RB_ROOT;
2776 ret = btrfs_alloc_stripe_hash_table(fs_info);
2782 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2784 invalidate_bdev(fs_devices->latest_bdev);
2787 * Read super block and check the signature bytes only
2789 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2796 * We want to check superblock checksum, the type is stored inside.
2797 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2799 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2800 btrfs_err(fs_info, "superblock checksum mismatch");
2807 * super_copy is zeroed at allocation time and we never touch the
2808 * following bytes up to INFO_SIZE, the checksum is calculated from
2809 * the whole block of INFO_SIZE
2811 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2814 disk_super = fs_info->super_copy;
2816 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2819 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2820 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2821 fs_info->super_copy->metadata_uuid,
2825 features = btrfs_super_flags(disk_super);
2826 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2827 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2828 btrfs_set_super_flags(disk_super, features);
2830 "found metadata UUID change in progress flag, clearing");
2833 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2834 sizeof(*fs_info->super_for_commit));
2836 ret = btrfs_validate_mount_super(fs_info);
2838 btrfs_err(fs_info, "superblock contains fatal errors");
2843 if (!btrfs_super_root(disk_super))
2846 /* check FS state, whether FS is broken. */
2847 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2848 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2851 * run through our array of backup supers and setup
2852 * our ring pointer to the oldest one
2854 generation = btrfs_super_generation(disk_super);
2855 find_oldest_super_backup(fs_info, generation);
2858 * In the long term, we'll store the compression type in the super
2859 * block, and it'll be used for per file compression control.
2861 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2863 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2869 features = btrfs_super_incompat_flags(disk_super) &
2870 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2873 "cannot mount because of unsupported optional features (%llx)",
2879 features = btrfs_super_incompat_flags(disk_super);
2880 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2881 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2882 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2883 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2884 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2886 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2887 btrfs_info(fs_info, "has skinny extents");
2890 * flag our filesystem as having big metadata blocks if
2891 * they are bigger than the page size
2893 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2894 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2896 "flagging fs with big metadata feature");
2897 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2900 nodesize = btrfs_super_nodesize(disk_super);
2901 sectorsize = btrfs_super_sectorsize(disk_super);
2902 stripesize = sectorsize;
2903 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2904 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2906 /* Cache block sizes */
2907 fs_info->nodesize = nodesize;
2908 fs_info->sectorsize = sectorsize;
2909 fs_info->stripesize = stripesize;
2912 * mixed block groups end up with duplicate but slightly offset
2913 * extent buffers for the same range. It leads to corruptions
2915 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2916 (sectorsize != nodesize)) {
2918 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2919 nodesize, sectorsize);
2924 * Needn't use the lock because there is no other task which will
2927 btrfs_set_super_incompat_flags(disk_super, features);
2929 features = btrfs_super_compat_ro_flags(disk_super) &
2930 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2931 if (!sb_rdonly(sb) && features) {
2933 "cannot mount read-write because of unsupported optional features (%llx)",
2939 ret = btrfs_init_workqueues(fs_info, fs_devices);
2942 goto fail_sb_buffer;
2945 sb->s_bdi->congested_fn = btrfs_congested_fn;
2946 sb->s_bdi->congested_data = fs_info;
2947 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2948 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2949 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2950 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2952 sb->s_blocksize = sectorsize;
2953 sb->s_blocksize_bits = blksize_bits(sectorsize);
2954 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2956 mutex_lock(&fs_info->chunk_mutex);
2957 ret = btrfs_read_sys_array(fs_info);
2958 mutex_unlock(&fs_info->chunk_mutex);
2960 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2961 goto fail_sb_buffer;
2964 generation = btrfs_super_chunk_root_generation(disk_super);
2965 level = btrfs_super_chunk_root_level(disk_super);
2967 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2969 chunk_root->node = read_tree_block(fs_info,
2970 btrfs_super_chunk_root(disk_super),
2971 generation, level, NULL);
2972 if (IS_ERR(chunk_root->node) ||
2973 !extent_buffer_uptodate(chunk_root->node)) {
2974 btrfs_err(fs_info, "failed to read chunk root");
2975 if (!IS_ERR(chunk_root->node))
2976 free_extent_buffer(chunk_root->node);
2977 chunk_root->node = NULL;
2978 goto fail_tree_roots;
2980 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2981 chunk_root->commit_root = btrfs_root_node(chunk_root);
2983 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2984 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2986 ret = btrfs_read_chunk_tree(fs_info);
2988 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2989 goto fail_tree_roots;
2993 * Keep the devid that is marked to be the target device for the
2994 * device replace procedure
2996 btrfs_free_extra_devids(fs_devices, 0);
2998 if (!fs_devices->latest_bdev) {
2999 btrfs_err(fs_info, "failed to read devices");
3000 goto fail_tree_roots;
3004 generation = btrfs_super_generation(disk_super);
3005 level = btrfs_super_root_level(disk_super);
3007 tree_root->node = read_tree_block(fs_info,
3008 btrfs_super_root(disk_super),
3009 generation, level, NULL);
3010 if (IS_ERR(tree_root->node) ||
3011 !extent_buffer_uptodate(tree_root->node)) {
3012 btrfs_warn(fs_info, "failed to read tree root");
3013 if (!IS_ERR(tree_root->node))
3014 free_extent_buffer(tree_root->node);
3015 tree_root->node = NULL;
3016 goto recovery_tree_root;
3019 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3020 tree_root->commit_root = btrfs_root_node(tree_root);
3021 btrfs_set_root_refs(&tree_root->root_item, 1);
3023 mutex_lock(&tree_root->objectid_mutex);
3024 ret = btrfs_find_highest_objectid(tree_root,
3025 &tree_root->highest_objectid);
3027 mutex_unlock(&tree_root->objectid_mutex);
3028 goto recovery_tree_root;
3031 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3033 mutex_unlock(&tree_root->objectid_mutex);
3035 ret = btrfs_read_roots(fs_info);
3037 goto recovery_tree_root;
3039 fs_info->generation = generation;
3040 fs_info->last_trans_committed = generation;
3042 ret = btrfs_verify_dev_extents(fs_info);
3045 "failed to verify dev extents against chunks: %d",
3047 goto fail_block_groups;
3049 ret = btrfs_recover_balance(fs_info);
3051 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3052 goto fail_block_groups;
3055 ret = btrfs_init_dev_stats(fs_info);
3057 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3058 goto fail_block_groups;
3061 ret = btrfs_init_dev_replace(fs_info);
3063 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3064 goto fail_block_groups;
3067 btrfs_free_extra_devids(fs_devices, 1);
3069 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3071 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3073 goto fail_block_groups;
3076 ret = btrfs_sysfs_add_device(fs_devices);
3078 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3080 goto fail_fsdev_sysfs;
3083 ret = btrfs_sysfs_add_mounted(fs_info);
3085 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3086 goto fail_fsdev_sysfs;
3089 ret = btrfs_init_space_info(fs_info);
3091 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3095 ret = btrfs_read_block_groups(fs_info);
3097 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3101 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3103 "writeable mount is not allowed due to too many missing devices");
3107 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3109 if (IS_ERR(fs_info->cleaner_kthread))
3112 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3114 "btrfs-transaction");
3115 if (IS_ERR(fs_info->transaction_kthread))
3118 if (!btrfs_test_opt(fs_info, NOSSD) &&
3119 !fs_info->fs_devices->rotating) {
3120 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3124 * Mount does not set all options immediately, we can do it now and do
3125 * not have to wait for transaction commit
3127 btrfs_apply_pending_changes(fs_info);
3129 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3130 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3131 ret = btrfsic_mount(fs_info, fs_devices,
3132 btrfs_test_opt(fs_info,
3133 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3135 fs_info->check_integrity_print_mask);
3138 "failed to initialize integrity check module: %d",
3142 ret = btrfs_read_qgroup_config(fs_info);
3144 goto fail_trans_kthread;
3146 if (btrfs_build_ref_tree(fs_info))
3147 btrfs_err(fs_info, "couldn't build ref tree");
3149 /* do not make disk changes in broken FS or nologreplay is given */
3150 if (btrfs_super_log_root(disk_super) != 0 &&
3151 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3152 ret = btrfs_replay_log(fs_info, fs_devices);
3159 ret = btrfs_find_orphan_roots(fs_info);
3163 if (!sb_rdonly(sb)) {
3164 ret = btrfs_cleanup_fs_roots(fs_info);
3168 mutex_lock(&fs_info->cleaner_mutex);
3169 ret = btrfs_recover_relocation(tree_root);
3170 mutex_unlock(&fs_info->cleaner_mutex);
3172 btrfs_warn(fs_info, "failed to recover relocation: %d",
3179 location.objectid = BTRFS_FS_TREE_OBJECTID;
3180 location.type = BTRFS_ROOT_ITEM_KEY;
3181 location.offset = 0;
3183 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3184 if (IS_ERR(fs_info->fs_root)) {
3185 err = PTR_ERR(fs_info->fs_root);
3186 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3193 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3194 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3195 clear_free_space_tree = 1;
3196 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3197 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3198 btrfs_warn(fs_info, "free space tree is invalid");
3199 clear_free_space_tree = 1;
3202 if (clear_free_space_tree) {
3203 btrfs_info(fs_info, "clearing free space tree");
3204 ret = btrfs_clear_free_space_tree(fs_info);
3207 "failed to clear free space tree: %d", ret);
3208 close_ctree(fs_info);
3213 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3214 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3215 btrfs_info(fs_info, "creating free space tree");
3216 ret = btrfs_create_free_space_tree(fs_info);
3219 "failed to create free space tree: %d", ret);
3220 close_ctree(fs_info);
3225 down_read(&fs_info->cleanup_work_sem);
3226 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3227 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3228 up_read(&fs_info->cleanup_work_sem);
3229 close_ctree(fs_info);
3232 up_read(&fs_info->cleanup_work_sem);
3234 ret = btrfs_resume_balance_async(fs_info);
3236 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3237 close_ctree(fs_info);
3241 ret = btrfs_resume_dev_replace_async(fs_info);
3243 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3244 close_ctree(fs_info);
3248 btrfs_qgroup_rescan_resume(fs_info);
3250 if (!fs_info->uuid_root) {
3251 btrfs_info(fs_info, "creating UUID tree");
3252 ret = btrfs_create_uuid_tree(fs_info);
3255 "failed to create the UUID tree: %d", ret);
3256 close_ctree(fs_info);