Merge branch 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK         512
27 #define BTRFS_DELAYED_BACKGROUND        128
28 #define BTRFS_DELAYED_BATCH             16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35                                         sizeof(struct btrfs_delayed_node),
36                                         0,
37                                         SLAB_MEM_SPREAD,
38                                         NULL);
39         if (!delayed_node_cache)
40                 return -ENOMEM;
41         return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46         kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         refcount_set(&delayed_node->refs, 0);
56         delayed_node->ins_root = RB_ROOT;
57         delayed_node->del_root = RB_ROOT;
58         mutex_init(&delayed_node->mutex);
59         INIT_LIST_HEAD(&delayed_node->n_list);
60         INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
63 static inline int btrfs_is_continuous_delayed_item(
64                                         struct btrfs_delayed_item *item1,
65                                         struct btrfs_delayed_item *item2)
66 {
67         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68             item1->key.objectid == item2->key.objectid &&
69             item1->key.type == item2->key.type &&
70             item1->key.offset + 1 == item2->key.offset)
71                 return 1;
72         return 0;
73 }
74
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(
76                 struct btrfs_inode *btrfs_inode)
77 {
78         struct btrfs_root *root = btrfs_inode->root;
79         u64 ino = btrfs_ino(btrfs_inode);
80         struct btrfs_delayed_node *node;
81
82         node = READ_ONCE(btrfs_inode->delayed_node);
83         if (node) {
84                 refcount_inc(&node->refs);
85                 return node;
86         }
87
88         spin_lock(&root->inode_lock);
89         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90         if (node) {
91                 if (btrfs_inode->delayed_node) {
92                         refcount_inc(&node->refs);      /* can be accessed */
93                         BUG_ON(btrfs_inode->delayed_node != node);
94                         spin_unlock(&root->inode_lock);
95                         return node;
96                 }
97                 btrfs_inode->delayed_node = node;
98                 /* can be accessed and cached in the inode */
99                 refcount_add(2, &node->refs);
100                 spin_unlock(&root->inode_lock);
101                 return node;
102         }
103         spin_unlock(&root->inode_lock);
104
105         return NULL;
106 }
107
108 /* Will return either the node or PTR_ERR(-ENOMEM) */
109 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110                 struct btrfs_inode *btrfs_inode)
111 {
112         struct btrfs_delayed_node *node;
113         struct btrfs_root *root = btrfs_inode->root;
114         u64 ino = btrfs_ino(btrfs_inode);
115         int ret;
116
117 again:
118         node = btrfs_get_delayed_node(btrfs_inode);
119         if (node)
120                 return node;
121
122         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
123         if (!node)
124                 return ERR_PTR(-ENOMEM);
125         btrfs_init_delayed_node(node, root, ino);
126
127         /* cached in the btrfs inode and can be accessed */
128         refcount_set(&node->refs, 2);
129
130         ret = radix_tree_preload(GFP_NOFS);
131         if (ret) {
132                 kmem_cache_free(delayed_node_cache, node);
133                 return ERR_PTR(ret);
134         }
135
136         spin_lock(&root->inode_lock);
137         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
138         if (ret == -EEXIST) {
139                 spin_unlock(&root->inode_lock);
140                 kmem_cache_free(delayed_node_cache, node);
141                 radix_tree_preload_end();
142                 goto again;
143         }
144         btrfs_inode->delayed_node = node;
145         spin_unlock(&root->inode_lock);
146         radix_tree_preload_end();
147
148         return node;
149 }
150
151 /*
152  * Call it when holding delayed_node->mutex
153  *
154  * If mod = 1, add this node into the prepared list.
155  */
156 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
157                                      struct btrfs_delayed_node *node,
158                                      int mod)
159 {
160         spin_lock(&root->lock);
161         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
162                 if (!list_empty(&node->p_list))
163                         list_move_tail(&node->p_list, &root->prepare_list);
164                 else if (mod)
165                         list_add_tail(&node->p_list, &root->prepare_list);
166         } else {
167                 list_add_tail(&node->n_list, &root->node_list);
168                 list_add_tail(&node->p_list, &root->prepare_list);
169                 refcount_inc(&node->refs);      /* inserted into list */
170                 root->nodes++;
171                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
172         }
173         spin_unlock(&root->lock);
174 }
175
176 /* Call it when holding delayed_node->mutex */
177 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
178                                        struct btrfs_delayed_node *node)
179 {
180         spin_lock(&root->lock);
181         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
182                 root->nodes--;
183                 refcount_dec(&node->refs);      /* not in the list */
184                 list_del_init(&node->n_list);
185                 if (!list_empty(&node->p_list))
186                         list_del_init(&node->p_list);
187                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
188         }
189         spin_unlock(&root->lock);
190 }
191
192 static struct btrfs_delayed_node *btrfs_first_delayed_node(
193                         struct btrfs_delayed_root *delayed_root)
194 {
195         struct list_head *p;
196         struct btrfs_delayed_node *node = NULL;
197
198         spin_lock(&delayed_root->lock);
199         if (list_empty(&delayed_root->node_list))
200                 goto out;
201
202         p = delayed_root->node_list.next;
203         node = list_entry(p, struct btrfs_delayed_node, n_list);
204         refcount_inc(&node->refs);
205 out:
206         spin_unlock(&delayed_root->lock);
207
208         return node;
209 }
210
211 static struct btrfs_delayed_node *btrfs_next_delayed_node(
212                                                 struct btrfs_delayed_node *node)
213 {
214         struct btrfs_delayed_root *delayed_root;
215         struct list_head *p;
216         struct btrfs_delayed_node *next = NULL;
217
218         delayed_root = node->root->fs_info->delayed_root;
219         spin_lock(&delayed_root->lock);
220         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221                 /* not in the list */
222                 if (list_empty(&delayed_root->node_list))
223                         goto out;
224                 p = delayed_root->node_list.next;
225         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
226                 goto out;
227         else
228                 p = node->n_list.next;
229
230         next = list_entry(p, struct btrfs_delayed_node, n_list);
231         refcount_inc(&next->refs);
232 out:
233         spin_unlock(&delayed_root->lock);
234
235         return next;
236 }
237
238 static void __btrfs_release_delayed_node(
239                                 struct btrfs_delayed_node *delayed_node,
240                                 int mod)
241 {
242         struct btrfs_delayed_root *delayed_root;
243
244         if (!delayed_node)
245                 return;
246
247         delayed_root = delayed_node->root->fs_info->delayed_root;
248
249         mutex_lock(&delayed_node->mutex);
250         if (delayed_node->count)
251                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
252         else
253                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
254         mutex_unlock(&delayed_node->mutex);
255
256         if (refcount_dec_and_test(&delayed_node->refs)) {
257                 bool free = false;
258                 struct btrfs_root *root = delayed_node->root;
259                 spin_lock(&root->inode_lock);
260                 if (refcount_read(&delayed_node->refs) == 0) {
261                         radix_tree_delete(&root->delayed_nodes_tree,
262                                           delayed_node->inode_id);
263                         free = true;
264                 }
265                 spin_unlock(&root->inode_lock);
266                 if (free)
267                         kmem_cache_free(delayed_node_cache, delayed_node);
268         }
269 }
270
271 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
272 {
273         __btrfs_release_delayed_node(node, 0);
274 }
275
276 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
277                                         struct btrfs_delayed_root *delayed_root)
278 {
279         struct list_head *p;
280         struct btrfs_delayed_node *node = NULL;
281
282         spin_lock(&delayed_root->lock);
283         if (list_empty(&delayed_root->prepare_list))
284                 goto out;
285
286         p = delayed_root->prepare_list.next;
287         list_del_init(p);
288         node = list_entry(p, struct btrfs_delayed_node, p_list);
289         refcount_inc(&node->refs);
290 out:
291         spin_unlock(&delayed_root->lock);
292
293         return node;
294 }
295
296 static inline void btrfs_release_prepared_delayed_node(
297                                         struct btrfs_delayed_node *node)
298 {
299         __btrfs_release_delayed_node(node, 1);
300 }
301
302 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
303 {
304         struct btrfs_delayed_item *item;
305         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
306         if (item) {
307                 item->data_len = data_len;
308                 item->ins_or_del = 0;
309                 item->bytes_reserved = 0;
310                 item->delayed_node = NULL;
311                 refcount_set(&item->refs, 1);
312         }
313         return item;
314 }
315
316 /*
317  * __btrfs_lookup_delayed_item - look up the delayed item by key
318  * @delayed_node: pointer to the delayed node
319  * @key:          the key to look up
320  * @prev:         used to store the prev item if the right item isn't found
321  * @next:         used to store the next item if the right item isn't found
322  *
323  * Note: if we don't find the right item, we will return the prev item and
324  * the next item.
325  */
326 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
327                                 struct rb_root *root,
328                                 struct btrfs_key *key,
329                                 struct btrfs_delayed_item **prev,
330                                 struct btrfs_delayed_item **next)
331 {
332         struct rb_node *node, *prev_node = NULL;
333         struct btrfs_delayed_item *delayed_item = NULL;
334         int ret = 0;
335
336         node = root->rb_node;
337
338         while (node) {
339                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
340                                         rb_node);
341                 prev_node = node;
342                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
343                 if (ret < 0)
344                         node = node->rb_right;
345                 else if (ret > 0)
346                         node = node->rb_left;
347                 else
348                         return delayed_item;
349         }
350
351         if (prev) {
352                 if (!prev_node)
353                         *prev = NULL;
354                 else if (ret < 0)
355                         *prev = delayed_item;
356                 else if ((node = rb_prev(prev_node)) != NULL) {
357                         *prev = rb_entry(node, struct btrfs_delayed_item,
358                                          rb_node);
359                 } else
360                         *prev = NULL;
361         }
362
363         if (next) {
364                 if (!prev_node)
365                         *next = NULL;
366                 else if (ret > 0)
367                         *next = delayed_item;
368                 else if ((node = rb_next(prev_node)) != NULL) {
369                         *next = rb_entry(node, struct btrfs_delayed_item,
370                                          rb_node);
371                 } else
372                         *next = NULL;
373         }
374         return NULL;
375 }
376
377 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
378                                         struct btrfs_delayed_node *delayed_node,
379                                         struct btrfs_key *key)
380 {
381         return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
382                                            NULL, NULL);
383 }
384
385 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
386                                     struct btrfs_delayed_item *ins,
387                                     int action)
388 {
389         struct rb_node **p, *node;
390         struct rb_node *parent_node = NULL;
391         struct rb_root *root;
392         struct btrfs_delayed_item *item;
393         int cmp;
394
395         if (action == BTRFS_DELAYED_INSERTION_ITEM)
396                 root = &delayed_node->ins_root;
397         else if (action == BTRFS_DELAYED_DELETION_ITEM)
398                 root = &delayed_node->del_root;
399         else
400                 BUG();
401         p = &root->rb_node;
402         node = &ins->rb_node;
403
404         while (*p) {
405                 parent_node = *p;
406                 item = rb_entry(parent_node, struct btrfs_delayed_item,
407                                  rb_node);
408
409                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
410                 if (cmp < 0)
411                         p = &(*p)->rb_right;
412                 else if (cmp > 0)
413                         p = &(*p)->rb_left;
414                 else
415                         return -EEXIST;
416         }
417
418         rb_link_node(node, parent_node, p);
419         rb_insert_color(node, root);
420         ins->delayed_node = delayed_node;
421         ins->ins_or_del = action;
422
423         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
424             action == BTRFS_DELAYED_INSERTION_ITEM &&
425             ins->key.offset >= delayed_node->index_cnt)
426                         delayed_node->index_cnt = ins->key.offset + 1;
427
428         delayed_node->count++;
429         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
430         return 0;
431 }
432
433 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
434                                               struct btrfs_delayed_item *item)
435 {
436         return __btrfs_add_delayed_item(node, item,
437                                         BTRFS_DELAYED_INSERTION_ITEM);
438 }
439
440 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
441                                              struct btrfs_delayed_item *item)
442 {
443         return __btrfs_add_delayed_item(node, item,
444                                         BTRFS_DELAYED_DELETION_ITEM);
445 }
446
447 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
448 {
449         int seq = atomic_inc_return(&delayed_root->items_seq);
450
451         /*
452          * atomic_dec_return implies a barrier for waitqueue_active
453          */
454         if ((atomic_dec_return(&delayed_root->items) <
455             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
456             waitqueue_active(&delayed_root->wait))
457                 wake_up(&delayed_root->wait);
458 }
459
460 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
461 {
462         struct rb_root *root;
463         struct btrfs_delayed_root *delayed_root;
464
465         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
466
467         BUG_ON(!delayed_root);
468         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
469                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
470
471         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
472                 root = &delayed_item->delayed_node->ins_root;
473         else
474                 root = &delayed_item->delayed_node->del_root;
475
476         rb_erase(&delayed_item->rb_node, root);
477         delayed_item->delayed_node->count--;
478
479         finish_one_item(delayed_root);
480 }
481
482 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
483 {
484         if (item) {
485                 __btrfs_remove_delayed_item(item);
486                 if (refcount_dec_and_test(&item->refs))
487                         kfree(item);
488         }
489 }
490
491 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
492                                         struct btrfs_delayed_node *delayed_node)
493 {
494         struct rb_node *p;
495         struct btrfs_delayed_item *item = NULL;
496
497         p = rb_first(&delayed_node->ins_root);
498         if (p)
499                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
500
501         return item;
502 }
503
504 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
505                                         struct btrfs_delayed_node *delayed_node)
506 {
507         struct rb_node *p;
508         struct btrfs_delayed_item *item = NULL;
509
510         p = rb_first(&delayed_node->del_root);
511         if (p)
512                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
513
514         return item;
515 }
516
517 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
518                                                 struct btrfs_delayed_item *item)
519 {
520         struct rb_node *p;
521         struct btrfs_delayed_item *next = NULL;
522
523         p = rb_next(&item->rb_node);
524         if (p)
525                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
526
527         return next;
528 }
529
530 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
531                                                struct btrfs_fs_info *fs_info,
532                                                struct btrfs_delayed_item *item)
533 {
534         struct btrfs_block_rsv *src_rsv;
535         struct btrfs_block_rsv *dst_rsv;
536         u64 num_bytes;
537         int ret;
538
539         if (!trans->bytes_reserved)
540                 return 0;
541
542         src_rsv = trans->block_rsv;
543         dst_rsv = &fs_info->delayed_block_rsv;
544
545         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
546         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
547         if (!ret) {
548                 trace_btrfs_space_reservation(fs_info, "delayed_item",
549                                               item->key.objectid,
550                                               num_bytes, 1);
551                 item->bytes_reserved = num_bytes;
552         }
553
554         return ret;
555 }
556
557 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
558                                                 struct btrfs_delayed_item *item)
559 {
560         struct btrfs_block_rsv *rsv;
561
562         if (!item->bytes_reserved)
563                 return;
564
565         rsv = &fs_info->delayed_block_rsv;
566         trace_btrfs_space_reservation(fs_info, "delayed_item",
567                                       item->key.objectid, item->bytes_reserved,
568                                       0);
569         btrfs_block_rsv_release(fs_info, rsv,
570                                 item->bytes_reserved);
571 }
572
573 static int btrfs_delayed_inode_reserve_metadata(
574                                         struct btrfs_trans_handle *trans,
575                                         struct btrfs_root *root,
576                                         struct btrfs_inode *inode,
577                                         struct btrfs_delayed_node *node)
578 {
579         struct btrfs_fs_info *fs_info = root->fs_info;
580         struct btrfs_block_rsv *src_rsv;
581         struct btrfs_block_rsv *dst_rsv;
582         u64 num_bytes;
583         int ret;
584
585         src_rsv = trans->block_rsv;
586         dst_rsv = &fs_info->delayed_block_rsv;
587
588         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
589
590         /*
591          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592          * which doesn't reserve space for speed.  This is a problem since we
593          * still need to reserve space for this update, so try to reserve the
594          * space.
595          *
596          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597          * we always reserve enough to update the inode item.
598          */
599         if (!src_rsv || (!trans->bytes_reserved &&
600                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
602                                           BTRFS_RESERVE_NO_FLUSH);
603                 /*
604                  * Since we're under a transaction reserve_metadata_bytes could
605                  * try to commit the transaction which will make it return
606                  * EAGAIN to make us stop the transaction we have, so return
607                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
608                  */
609                 if (ret == -EAGAIN)
610                         ret = -ENOSPC;
611                 if (!ret) {
612                         node->bytes_reserved = num_bytes;
613                         trace_btrfs_space_reservation(fs_info,
614                                                       "delayed_inode",
615                                                       btrfs_ino(inode),
616                                                       num_bytes, 1);
617                 }
618                 return ret;
619         }
620
621         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
622         if (!ret) {
623                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
624                                               btrfs_ino(inode), num_bytes, 1);
625                 node->bytes_reserved = num_bytes;
626         }
627
628         return ret;
629 }
630
631 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
632                                                 struct btrfs_delayed_node *node)
633 {
634         struct btrfs_block_rsv *rsv;
635
636         if (!node->bytes_reserved)
637                 return;
638
639         rsv = &fs_info->delayed_block_rsv;
640         trace_btrfs_space_reservation(fs_info, "delayed_inode",
641                                       node->inode_id, node->bytes_reserved, 0);
642         btrfs_block_rsv_release(fs_info, rsv,
643                                 node->bytes_reserved);
644         node->bytes_reserved = 0;
645 }
646
647 /*
648  * This helper will insert some continuous items into the same leaf according
649  * to the free space of the leaf.
650  */
651 static int btrfs_batch_insert_items(struct btrfs_root *root,
652                                     struct btrfs_path *path,
653                                     struct btrfs_delayed_item *item)
654 {
655         struct btrfs_fs_info *fs_info = root->fs_info;
656         struct btrfs_delayed_item *curr, *next;
657         int free_space;
658         int total_data_size = 0, total_size = 0;
659         struct extent_buffer *leaf;
660         char *data_ptr;
661         struct btrfs_key *keys;
662         u32 *data_size;
663         struct list_head head;
664         int slot;
665         int nitems;
666         int i;
667         int ret = 0;
668
669         BUG_ON(!path->nodes[0]);
670
671         leaf = path->nodes[0];
672         free_space = btrfs_leaf_free_space(fs_info, leaf);
673         INIT_LIST_HEAD(&head);
674
675         next = item;
676         nitems = 0;
677
678         /*
679          * count the number of the continuous items that we can insert in batch
680          */
681         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
682                free_space) {
683                 total_data_size += next->data_len;
684                 total_size += next->data_len + sizeof(struct btrfs_item);
685                 list_add_tail(&next->tree_list, &head);
686                 nitems++;
687
688                 curr = next;
689                 next = __btrfs_next_delayed_item(curr);
690                 if (!next)
691                         break;
692
693                 if (!btrfs_is_continuous_delayed_item(curr, next))
694                         break;
695         }
696
697         if (!nitems) {
698                 ret = 0;
699                 goto out;
700         }
701
702         /*
703          * we need allocate some memory space, but it might cause the task
704          * to sleep, so we set all locked nodes in the path to blocking locks
705          * first.
706          */
707         btrfs_set_path_blocking(path);
708
709         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
710         if (!keys) {
711                 ret = -ENOMEM;
712                 goto out;
713         }
714
715         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
716         if (!data_size) {
717                 ret = -ENOMEM;
718                 goto error;
719         }
720
721         /* get keys of all the delayed items */
722         i = 0;
723         list_for_each_entry(next, &head, tree_list) {
724                 keys[i] = next->key;
725                 data_size[i] = next->data_len;
726                 i++;
727         }
728
729         /* reset all the locked nodes in the patch to spinning locks. */
730         btrfs_clear_path_blocking(path, NULL, 0);
731
732         /* insert the keys of the items */
733         setup_items_for_insert(root, path, keys, data_size,
734                                total_data_size, total_size, nitems);
735
736         /* insert the dir index items */
737         slot = path->slots[0];
738         list_for_each_entry_safe(curr, next, &head, tree_list) {
739                 data_ptr = btrfs_item_ptr(leaf, slot, char);
740                 write_extent_buffer(leaf, &curr->data,
741                                     (unsigned long)data_ptr,
742                                     curr->data_len);
743                 slot++;
744
745                 btrfs_delayed_item_release_metadata(fs_info, curr);
746
747                 list_del(&curr->tree_list);
748                 btrfs_release_delayed_item(curr);
749         }
750
751 error:
752         kfree(data_size);
753         kfree(keys);
754 out:
755         return ret;
756 }
757
758 /*
759  * This helper can just do simple insertion that needn't extend item for new
760  * data, such as directory name index insertion, inode insertion.
761  */
762 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
763                                      struct btrfs_root *root,
764                                      struct btrfs_path *path,
765                                      struct btrfs_delayed_item *delayed_item)
766 {
767         struct btrfs_fs_info *fs_info = root->fs_info;
768         struct extent_buffer *leaf;
769         char *ptr;
770         int ret;
771
772         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
773                                       delayed_item->data_len);
774         if (ret < 0 && ret != -EEXIST)
775                 return ret;
776
777         leaf = path->nodes[0];
778
779         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
780
781         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
782                             delayed_item->data_len);
783         btrfs_mark_buffer_dirty(leaf);
784
785         btrfs_delayed_item_release_metadata(fs_info, delayed_item);
786         return 0;
787 }
788
789 /*
790  * we insert an item first, then if there are some continuous items, we try
791  * to insert those items into the same leaf.
792  */
793 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
794                                       struct btrfs_path *path,
795                                       struct btrfs_root *root,
796                                       struct btrfs_delayed_node *node)
797 {
798         struct btrfs_delayed_item *curr, *prev;
799         int ret = 0;
800
801 do_again:
802         mutex_lock(&node->mutex);
803         curr = __btrfs_first_delayed_insertion_item(node);
804         if (!curr)
805                 goto insert_end;
806
807         ret = btrfs_insert_delayed_item(trans, root, path, curr);
808         if (ret < 0) {
809                 btrfs_release_path(path);
810                 goto insert_end;
811         }
812
813         prev = curr;
814         curr = __btrfs_next_delayed_item(prev);
815         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
816                 /* insert the continuous items into the same leaf */
817                 path->slots[0]++;
818                 btrfs_batch_insert_items(root, path, curr);
819         }
820         btrfs_release_delayed_item(prev);
821         btrfs_mark_buffer_dirty(path->nodes[0]);
822
823         btrfs_release_path(path);
824         mutex_unlock(&node->mutex);
825         goto do_again;
826
827 insert_end:
828         mutex_unlock(&node->mutex);
829         return ret;
830 }
831
832 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
833                                     struct btrfs_root *root,
834                                     struct btrfs_path *path,
835                                     struct btrfs_delayed_item *item)
836 {
837         struct btrfs_fs_info *fs_info = root->fs_info;
838         struct btrfs_delayed_item *curr, *next;
839         struct extent_buffer *leaf;
840         struct btrfs_key key;
841         struct list_head head;
842         int nitems, i, last_item;
843         int ret = 0;
844
845         BUG_ON(!path->nodes[0]);
846
847         leaf = path->nodes[0];
848
849         i = path->slots[0];
850         last_item = btrfs_header_nritems(leaf) - 1;
851         if (i > last_item)
852                 return -ENOENT; /* FIXME: Is errno suitable? */
853
854         next = item;
855         INIT_LIST_HEAD(&head);
856         btrfs_item_key_to_cpu(leaf, &key, i);
857         nitems = 0;
858         /*
859          * count the number of the dir index items that we can delete in batch
860          */
861         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
862                 list_add_tail(&next->tree_list, &head);
863                 nitems++;
864
865                 curr = next;
866                 next = __btrfs_next_delayed_item(curr);
867                 if (!next)
868                         break;
869
870                 if (!btrfs_is_continuous_delayed_item(curr, next))
871                         break;
872
873                 i++;
874                 if (i > last_item)
875                         break;
876                 btrfs_item_key_to_cpu(leaf, &key, i);
877         }
878
879         if (!nitems)
880                 return 0;
881
882         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
883         if (ret)
884                 goto out;
885
886         list_for_each_entry_safe(curr, next, &head, tree_list) {
887                 btrfs_delayed_item_release_metadata(fs_info, curr);
888                 list_del(&curr->tree_list);
889                 btrfs_release_delayed_item(curr);
890         }
891
892 out:
893         return ret;
894 }
895
896 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
897                                       struct btrfs_path *path,
898                                       struct btrfs_root *root,
899                                       struct btrfs_delayed_node *node)
900 {
901         struct btrfs_delayed_item *curr, *prev;
902         int ret = 0;
903
904 do_again:
905         mutex_lock(&node->mutex);
906         curr = __btrfs_first_delayed_deletion_item(node);
907         if (!curr)
908                 goto delete_fail;
909
910         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
911         if (ret < 0)
912                 goto delete_fail;
913         else if (ret > 0) {
914                 /*
915                  * can't find the item which the node points to, so this node
916                  * is invalid, just drop it.
917                  */
918                 prev = curr;
919                 curr = __btrfs_next_delayed_item(prev);
920                 btrfs_release_delayed_item(prev);
921                 ret = 0;
922                 btrfs_release_path(path);
923                 if (curr) {
924                         mutex_unlock(&node->mutex);
925                         goto do_again;
926                 } else
927                         goto delete_fail;
928         }
929
930         btrfs_batch_delete_items(trans, root, path, curr);
931         btrfs_release_path(path);
932         mutex_unlock(&node->mutex);
933         goto do_again;
934
935 delete_fail:
936         btrfs_release_path(path);
937         mutex_unlock(&node->mutex);
938         return ret;
939 }
940
941 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
942 {
943         struct btrfs_delayed_root *delayed_root;
944
945         if (delayed_node &&
946             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
947                 BUG_ON(!delayed_node->root);
948                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
949                 delayed_node->count--;
950
951                 delayed_root = delayed_node->root->fs_info->delayed_root;
952                 finish_one_item(delayed_root);
953         }
954 }
955
956 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
957 {
958         struct btrfs_delayed_root *delayed_root;
959
960         ASSERT(delayed_node->root);
961         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
962         delayed_node->count--;
963
964         delayed_root = delayed_node->root->fs_info->delayed_root;
965         finish_one_item(delayed_root);
966 }
967
968 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
969                                         struct btrfs_root *root,
970                                         struct btrfs_path *path,
971                                         struct btrfs_delayed_node *node)
972 {
973         struct btrfs_fs_info *fs_info = root->fs_info;
974         struct btrfs_key key;
975         struct btrfs_inode_item *inode_item;
976         struct extent_buffer *leaf;
977         int mod;
978         int ret;
979
980         key.objectid = node->inode_id;
981         key.type = BTRFS_INODE_ITEM_KEY;
982         key.offset = 0;
983
984         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
985                 mod = -1;
986         else
987                 mod = 1;
988
989         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
990         if (ret > 0) {
991                 btrfs_release_path(path);
992                 return -ENOENT;
993         } else if (ret < 0) {
994                 return ret;
995         }
996
997         leaf = path->nodes[0];
998         inode_item = btrfs_item_ptr(leaf, path->slots[0],
999                                     struct btrfs_inode_item);
1000         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1001                             sizeof(struct btrfs_inode_item));
1002         btrfs_mark_buffer_dirty(leaf);
1003
1004         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1005                 goto no_iref;
1006
1007         path->slots[0]++;
1008         if (path->slots[0] >= btrfs_header_nritems(leaf))
1009                 goto search;
1010 again:
1011         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1012         if (key.objectid != node->inode_id)
1013                 goto out;
1014
1015         if (key.type != BTRFS_INODE_REF_KEY &&
1016             key.type != BTRFS_INODE_EXTREF_KEY)
1017                 goto out;
1018
1019         /*
1020          * Delayed iref deletion is for the inode who has only one link,
1021          * so there is only one iref. The case that several irefs are
1022          * in the same item doesn't exist.
1023          */
1024         btrfs_del_item(trans, root, path);
1025 out:
1026         btrfs_release_delayed_iref(node);
1027 no_iref:
1028         btrfs_release_path(path);
1029 err_out:
1030         btrfs_delayed_inode_release_metadata(fs_info, node);
1031         btrfs_release_delayed_inode(node);
1032
1033         return ret;
1034
1035 search:
1036         btrfs_release_path(path);
1037
1038         key.type = BTRFS_INODE_EXTREF_KEY;
1039         key.offset = -1;
1040         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041         if (ret < 0)
1042                 goto err_out;
1043         ASSERT(ret);
1044
1045         ret = 0;
1046         leaf = path->nodes[0];
1047         path->slots[0]--;
1048         goto again;
1049 }
1050
1051 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1052                                              struct btrfs_root *root,
1053                                              struct btrfs_path *path,
1054                                              struct btrfs_delayed_node *node)
1055 {
1056         int ret;
1057
1058         mutex_lock(&node->mutex);
1059         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1060                 mutex_unlock(&node->mutex);
1061                 return 0;
1062         }
1063
1064         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1065         mutex_unlock(&node->mutex);
1066         return ret;
1067 }
1068
1069 static inline int
1070 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1071                                    struct btrfs_path *path,
1072                                    struct btrfs_delayed_node *node)
1073 {
1074         int ret;
1075
1076         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1077         if (ret)
1078                 return ret;
1079
1080         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1081         if (ret)
1082                 return ret;
1083
1084         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1085         return ret;
1086 }
1087
1088 /*
1089  * Called when committing the transaction.
1090  * Returns 0 on success.
1091  * Returns < 0 on error and returns with an aborted transaction with any
1092  * outstanding delayed items cleaned up.
1093  */
1094 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1095                                      struct btrfs_fs_info *fs_info, int nr)
1096 {
1097         struct btrfs_delayed_root *delayed_root;
1098         struct btrfs_delayed_node *curr_node, *prev_node;
1099         struct btrfs_path *path;
1100         struct btrfs_block_rsv *block_rsv;
1101         int ret = 0;
1102         bool count = (nr > 0);
1103
1104         if (trans->aborted)
1105                 return -EIO;
1106
1107         path = btrfs_alloc_path();
1108         if (!path)
1109                 return -ENOMEM;
1110         path->leave_spinning = 1;
1111
1112         block_rsv = trans->block_rsv;
1113         trans->block_rsv = &fs_info->delayed_block_rsv;
1114
1115         delayed_root = fs_info->delayed_root;
1116
1117         curr_node = btrfs_first_delayed_node(delayed_root);
1118         while (curr_node && (!count || (count && nr--))) {
1119                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1120                                                          curr_node);
1121                 if (ret) {
1122                         btrfs_release_delayed_node(curr_node);
1123                         curr_node = NULL;
1124                         btrfs_abort_transaction(trans, ret);
1125                         break;
1126                 }
1127
1128                 prev_node = curr_node;
1129                 curr_node = btrfs_next_delayed_node(curr_node);
1130                 btrfs_release_delayed_node(prev_node);
1131         }
1132
1133         if (curr_node)
1134                 btrfs_release_delayed_node(curr_node);
1135         btrfs_free_path(path);
1136         trans->block_rsv = block_rsv;
1137
1138         return ret;
1139 }
1140
1141 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1142                             struct btrfs_fs_info *fs_info)
1143 {
1144         return __btrfs_run_delayed_items(trans, fs_info, -1);
1145 }
1146
1147 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1148                                struct btrfs_fs_info *fs_info, int nr)
1149 {
1150         return __btrfs_run_delayed_items(trans, fs_info, nr);
1151 }
1152
1153 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1154                                      struct btrfs_inode *inode)
1155 {
1156         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1157         struct btrfs_path *path;
1158         struct btrfs_block_rsv *block_rsv;
1159         int ret;
1160
1161         if (!delayed_node)
1162                 return 0;
1163
1164         mutex_lock(&delayed_node->mutex);
1165         if (!delayed_node->count) {
1166                 mutex_unlock(&delayed_node->mutex);
1167                 btrfs_release_delayed_node(delayed_node);
1168                 return 0;
1169         }
1170         mutex_unlock(&delayed_node->mutex);
1171
1172         path = btrfs_alloc_path();
1173         if (!path) {
1174                 btrfs_release_delayed_node(delayed_node);
1175                 return -ENOMEM;
1176         }
1177         path->leave_spinning = 1;
1178
1179         block_rsv = trans->block_rsv;
1180         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1181
1182         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1183
1184         btrfs_release_delayed_node(delayed_node);
1185         btrfs_free_path(path);
1186         trans->block_rsv = block_rsv;
1187
1188         return ret;
1189 }
1190
1191 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1192 {
1193         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1194         struct btrfs_trans_handle *trans;
1195         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1196         struct btrfs_path *path;
1197         struct btrfs_block_rsv *block_rsv;
1198         int ret;
1199
1200         if (!delayed_node)
1201                 return 0;
1202
1203         mutex_lock(&delayed_node->mutex);
1204         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1205                 mutex_unlock(&delayed_node->mutex);
1206                 btrfs_release_delayed_node(delayed_node);
1207                 return 0;
1208         }
1209         mutex_unlock(&delayed_node->mutex);
1210
1211         trans = btrfs_join_transaction(delayed_node->root);
1212         if (IS_ERR(trans)) {
1213                 ret = PTR_ERR(trans);
1214                 goto out;
1215         }
1216
1217         path = btrfs_alloc_path();
1218         if (!path) {
1219                 ret = -ENOMEM;
1220                 goto trans_out;
1221         }
1222         path->leave_spinning = 1;
1223
1224         block_rsv = trans->block_rsv;
1225         trans->block_rsv = &fs_info->delayed_block_rsv;
1226
1227         mutex_lock(&delayed_node->mutex);
1228         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1229                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1230                                                    path, delayed_node);
1231         else
1232                 ret = 0;
1233         mutex_unlock(&delayed_node->mutex);
1234
1235         btrfs_free_path(path);
1236         trans->block_rsv = block_rsv;
1237 trans_out:
1238         btrfs_end_transaction(trans);
1239         btrfs_btree_balance_dirty(fs_info);
1240 out:
1241         btrfs_release_delayed_node(delayed_node);
1242
1243         return ret;
1244 }
1245
1246 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1247 {
1248         struct btrfs_delayed_node *delayed_node;
1249
1250         delayed_node = READ_ONCE(inode->delayed_node);
1251         if (!delayed_node)
1252                 return;
1253
1254         inode->delayed_node = NULL;
1255         btrfs_release_delayed_node(delayed_node);
1256 }
1257
1258 struct btrfs_async_delayed_work {
1259         struct btrfs_delayed_root *delayed_root;
1260         int nr;
1261         struct btrfs_work work;
1262 };
1263
1264 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1265 {
1266         struct btrfs_async_delayed_work *async_work;
1267         struct btrfs_delayed_root *delayed_root;
1268         struct btrfs_trans_handle *trans;
1269         struct btrfs_path *path;
1270         struct btrfs_delayed_node *delayed_node = NULL;
1271         struct btrfs_root *root;
1272         struct btrfs_block_rsv *block_rsv;
1273         int total_done = 0;
1274
1275         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1276         delayed_root = async_work->delayed_root;
1277
1278         path = btrfs_alloc_path();
1279         if (!path)
1280                 goto out;
1281
1282 again:
1283         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1284                 goto free_path;
1285
1286         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1287         if (!delayed_node)
1288                 goto free_path;
1289
1290         path->leave_spinning = 1;
1291         root = delayed_node->root;
1292
1293         trans = btrfs_join_transaction(root);
1294         if (IS_ERR(trans))
1295                 goto release_path;
1296
1297         block_rsv = trans->block_rsv;
1298         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1299
1300         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1301
1302         trans->block_rsv = block_rsv;
1303         btrfs_end_transaction(trans);
1304         btrfs_btree_balance_dirty_nodelay(root->fs_info);
1305
1306 release_path:
1307         btrfs_release_path(path);
1308         total_done++;
1309
1310         btrfs_release_prepared_delayed_node(delayed_node);
1311         if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1312             total_done < async_work->nr)
1313                 goto again;
1314
1315 free_path:
1316         btrfs_free_path(path);
1317 out:
1318         wake_up(&delayed_root->wait);
1319         kfree(async_work);
1320 }
1321
1322
1323 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1324                                      struct btrfs_fs_info *fs_info, int nr)
1325 {
1326         struct btrfs_async_delayed_work *async_work;
1327
1328         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1329             btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1330                 return 0;
1331
1332         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1333         if (!async_work)
1334                 return -ENOMEM;
1335
1336         async_work->delayed_root = delayed_root;
1337         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1338                         btrfs_async_run_delayed_root, NULL, NULL);
1339         async_work->nr = nr;
1340
1341         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1342         return 0;
1343 }
1344
1345 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1346 {
1347         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1348 }
1349
1350 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1351 {
1352         int val = atomic_read(&delayed_root->items_seq);
1353
1354         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1355                 return 1;
1356
1357         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1358                 return 1;
1359
1360         return 0;
1361 }
1362
1363 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1364 {
1365         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1366
1367         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1368                 return;
1369
1370         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1371                 int seq;
1372                 int ret;
1373
1374                 seq = atomic_read(&delayed_root->items_seq);
1375
1376                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1377                 if (ret)
1378                         return;
1379
1380                 wait_event_interruptible(delayed_root->wait,
1381                                          could_end_wait(delayed_root, seq));
1382                 return;
1383         }
1384
1385         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1386 }
1387
1388 /* Will return 0 or -ENOMEM */
1389 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1390                                    struct btrfs_fs_info *fs_info,
1391                                    const char *name, int name_len,
1392                                    struct btrfs_inode *dir,
1393                                    struct btrfs_disk_key *disk_key, u8 type,
1394                                    u64 index)
1395 {
1396         struct btrfs_delayed_node *delayed_node;
1397         struct btrfs_delayed_item *delayed_item;
1398         struct btrfs_dir_item *dir_item;
1399         int ret;
1400
1401         delayed_node = btrfs_get_or_create_delayed_node(dir);
1402         if (IS_ERR(delayed_node))
1403                 return PTR_ERR(delayed_node);
1404
1405         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1406         if (!delayed_item) {
1407                 ret = -ENOMEM;
1408                 goto release_node;
1409         }
1410
1411         delayed_item->key.objectid = btrfs_ino(dir);
1412         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1413         delayed_item->key.offset = index;
1414
1415         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1416         dir_item->location = *disk_key;
1417         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1418         btrfs_set_stack_dir_data_len(dir_item, 0);
1419         btrfs_set_stack_dir_name_len(dir_item, name_len);
1420         btrfs_set_stack_dir_type(dir_item, type);
1421         memcpy((char *)(dir_item + 1), name, name_len);
1422
1423         ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1424         /*
1425          * we have reserved enough space when we start a new transaction,
1426          * so reserving metadata failure is impossible
1427          */
1428         BUG_ON(ret);
1429
1430
1431         mutex_lock(&delayed_node->mutex);
1432         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1433         if (unlikely(ret)) {
1434                 btrfs_err(fs_info,
1435                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1436                           name_len, name, delayed_node->root->objectid,
1437                           delayed_node->inode_id, ret);
1438                 BUG();
1439         }
1440         mutex_unlock(&delayed_node->mutex);
1441
1442 release_node:
1443         btrfs_release_delayed_node(delayed_node);
1444         return ret;
1445 }
1446
1447 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1448                                                struct btrfs_delayed_node *node,
1449                                                struct btrfs_key *key)
1450 {
1451         struct btrfs_delayed_item *item;
1452
1453         mutex_lock(&node->mutex);
1454         item = __btrfs_lookup_delayed_insertion_item(node, key);
1455         if (!item) {
1456                 mutex_unlock(&node->mutex);
1457                 return 1;
1458         }
1459
1460         btrfs_delayed_item_release_metadata(fs_info, item);
1461         btrfs_release_delayed_item(item);
1462         mutex_unlock(&node->mutex);
1463         return 0;
1464 }
1465
1466 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1467                                    struct btrfs_fs_info *fs_info,
1468                                    struct btrfs_inode *dir, u64 index)
1469 {
1470         struct btrfs_delayed_node *node;
1471         struct btrfs_delayed_item *item;
1472         struct btrfs_key item_key;
1473         int ret;
1474
1475         node = btrfs_get_or_create_delayed_node(dir);
1476         if (IS_ERR(node))
1477                 return PTR_ERR(node);
1478
1479         item_key.objectid = btrfs_ino(dir);
1480         item_key.type = BTRFS_DIR_INDEX_KEY;
1481         item_key.offset = index;
1482
1483         ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1484         if (!ret)
1485                 goto end;
1486
1487         item = btrfs_alloc_delayed_item(0);
1488         if (!item) {
1489                 ret = -ENOMEM;
1490                 goto end;
1491         }
1492
1493         item->key = item_key;
1494
1495         ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1496         /*
1497          * we have reserved enough space when we start a new transaction,
1498          * so reserving metadata failure is impossible.
1499          */
1500         BUG_ON(ret);
1501
1502         mutex_lock(&node->mutex);
1503         ret = __btrfs_add_delayed_deletion_item(node, item);
1504         if (unlikely(ret)) {
1505                 btrfs_err(fs_info,
1506                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1507                           index, node->root->objectid, node->inode_id, ret);
1508                 BUG();
1509         }
1510         mutex_unlock(&node->mutex);
1511 end:
1512         btrfs_release_delayed_node(node);
1513         return ret;
1514 }
1515
1516 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1517 {
1518         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1519
1520         if (!delayed_node)
1521                 return -ENOENT;
1522
1523         /*
1524          * Since we have held i_mutex of this directory, it is impossible that
1525          * a new directory index is added into the delayed node and index_cnt
1526          * is updated now. So we needn't lock the delayed node.
1527          */
1528         if (!delayed_node->index_cnt) {
1529                 btrfs_release_delayed_node(delayed_node);
1530                 return -EINVAL;
1531         }
1532
1533         inode->index_cnt = delayed_node->index_cnt;
1534         btrfs_release_delayed_node(delayed_node);
1535         return 0;
1536 }
1537
1538 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1539                                      struct list_head *ins_list,
1540                                      struct list_head *del_list)
1541 {
1542         struct btrfs_delayed_node *delayed_node;
1543         struct btrfs_delayed_item *item;
1544
1545         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1546         if (!delayed_node)
1547                 return false;
1548
1549         /*
1550          * We can only do one readdir with delayed items at a time because of
1551          * item->readdir_list.
1552          */
1553         inode_unlock_shared(inode);
1554         inode_lock(inode);
1555
1556         mutex_lock(&delayed_node->mutex);
1557         item = __btrfs_first_delayed_insertion_item(delayed_node);
1558         while (item) {
1559                 refcount_inc(&item->refs);
1560                 list_add_tail(&item->readdir_list, ins_list);
1561                 item = __btrfs_next_delayed_item(item);
1562         }
1563
1564         item = __btrfs_first_delayed_deletion_item(delayed_node);
1565         while (item) {
1566                 refcount_inc(&item->refs);
1567                 list_add_tail(&item->readdir_list, del_list);
1568                 item = __btrfs_next_delayed_item(item);
1569         }
1570         mutex_unlock(&delayed_node->mutex);
1571         /*
1572          * This delayed node is still cached in the btrfs inode, so refs
1573          * must be > 1 now, and we needn't check it is going to be freed
1574          * or not.
1575          *
1576          * Besides that, this function is used to read dir, we do not
1577          * insert/delete delayed items in this period. So we also needn't
1578          * requeue or dequeue this delayed node.
1579          */
1580         refcount_dec(&delayed_node->refs);
1581
1582         return true;
1583 }
1584
1585 void btrfs_readdir_put_delayed_items(struct inode *inode,
1586                                      struct list_head *ins_list,
1587                                      struct list_head *del_list)
1588 {
1589         struct btrfs_delayed_item *curr, *next;
1590
1591         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1592                 list_del(&curr->readdir_list);
1593                 if (refcount_dec_and_test(&curr->refs))
1594                         kfree(curr);
1595         }
1596
1597         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1598                 list_del(&curr->readdir_list);
1599                 if (refcount_dec_and_test(&curr->refs))
1600                         kfree(curr);
1601         }
1602
1603         /*
1604          * The VFS is going to do up_read(), so we need to downgrade back to a
1605          * read lock.
1606          */
1607         downgrade_write(&inode->i_rwsem);
1608 }
1609
1610 int btrfs_should_delete_dir_index(struct list_head *del_list,
1611                                   u64 index)
1612 {
1613         struct btrfs_delayed_item *curr, *next;
1614         int ret;
1615
1616         if (list_empty(del_list))
1617                 return 0;
1618
1619         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1620                 if (curr->key.offset > index)
1621                         break;
1622
1623                 list_del(&curr->readdir_list);
1624                 ret = (curr->key.offset == index);
1625
1626                 if (refcount_dec_and_test(&curr->refs))
1627                         kfree(curr);
1628
1629                 if (ret)
1630                         return 1;
1631                 else
1632                         continue;
1633         }
1634         return 0;
1635 }
1636
1637 /*
1638  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1639  *
1640  */
1641 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1642                                     struct list_head *ins_list)
1643 {
1644         struct btrfs_dir_item *di;
1645         struct btrfs_delayed_item *curr, *next;
1646         struct btrfs_key location;
1647         char *name;
1648         int name_len;
1649         int over = 0;
1650         unsigned char d_type;
1651
1652         if (list_empty(ins_list))
1653                 return 0;
1654
1655         /*
1656          * Changing the data of the delayed item is impossible. So
1657          * we needn't lock them. And we have held i_mutex of the
1658          * directory, nobody can delete any directory indexes now.
1659          */
1660         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1661                 list_del(&curr->readdir_list);
1662
1663                 if (curr->key.offset < ctx->pos) {
1664                         if (refcount_dec_and_test(&curr->refs))
1665                                 kfree(curr);
1666                         continue;
1667                 }
1668
1669                 ctx->pos = curr->key.offset;
1670
1671                 di = (struct btrfs_dir_item *)curr->data;
1672                 name = (char *)(di + 1);
1673                 name_len = btrfs_stack_dir_name_len(di);
1674
1675                 d_type = btrfs_filetype_table[di->type];
1676                 btrfs_disk_key_to_cpu(&location, &di->location);
1677
1678                 over = !dir_emit(ctx, name, name_len,
1679                                location.objectid, d_type);
1680
1681                 if (refcount_dec_and_test(&curr->refs))
1682                         kfree(curr);
1683
1684                 if (over)
1685                         return 1;
1686                 ctx->pos++;
1687         }
1688         return 0;
1689 }
1690
1691 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1692                                   struct btrfs_inode_item *inode_item,
1693                                   struct inode *inode)
1694 {
1695         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1696         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1697         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1698         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1699         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1700         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1701         btrfs_set_stack_inode_generation(inode_item,
1702                                          BTRFS_I(inode)->generation);
1703         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1704         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1705         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1706         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1707         btrfs_set_stack_inode_block_group(inode_item, 0);
1708
1709         btrfs_set_stack_timespec_sec(&inode_item->atime,
1710                                      inode->i_atime.tv_sec);
1711         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1712                                       inode->i_atime.tv_nsec);
1713
1714         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1715                                      inode->i_mtime.tv_sec);
1716         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1717                                       inode->i_mtime.tv_nsec);
1718
1719         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1720                                      inode->i_ctime.tv_sec);
1721         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1722                                       inode->i_ctime.tv_nsec);
1723
1724         btrfs_set_stack_timespec_sec(&inode_item->otime,
1725                                      BTRFS_I(inode)->i_otime.tv_sec);
1726         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1727                                      BTRFS_I(inode)->i_otime.tv_nsec);
1728 }
1729
1730 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1731 {
1732         struct btrfs_delayed_node *delayed_node;
1733         struct btrfs_inode_item *inode_item;
1734
1735         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1736         if (!delayed_node)
1737                 return -ENOENT;
1738
1739         mutex_lock(&delayed_node->mutex);
1740         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1741                 mutex_unlock(&delayed_node->mutex);
1742                 btrfs_release_delayed_node(delayed_node);
1743                 return -ENOENT;
1744         }
1745
1746         inode_item = &delayed_node->inode_item;
1747
1748         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1749         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1750         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1751         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1752         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1753         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1754         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1755         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1756
1757         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1758         inode->i_rdev = 0;
1759         *rdev = btrfs_stack_inode_rdev(inode_item);
1760         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761
1762         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1763         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1764
1765         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1766         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1767
1768         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1769         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1770
1771         BTRFS_I(inode)->i_otime.tv_sec =
1772                 btrfs_stack_timespec_sec(&inode_item->otime);
1773         BTRFS_I(inode)->i_otime.tv_nsec =
1774                 btrfs_stack_timespec_nsec(&inode_item->otime);
1775
1776         inode->i_generation = BTRFS_I(inode)->generation;
1777         BTRFS_I(inode)->index_cnt = (u64)-1;
1778
1779         mutex_unlock(&delayed_node->mutex);
1780         btrfs_release_delayed_node(delayed_node);
1781         return 0;
1782 }
1783
1784 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1785                                struct btrfs_root *root, struct inode *inode)
1786 {
1787         struct btrfs_delayed_node *delayed_node;
1788         int ret = 0;
1789
1790         delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1791         if (IS_ERR(delayed_node))
1792                 return PTR_ERR(delayed_node);
1793
1794         mutex_lock(&delayed_node->mutex);
1795         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1796                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1797                 goto release_node;
1798         }
1799
1800         ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1801                                                    delayed_node);
1802         if (ret)
1803                 goto release_node;
1804
1805         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1806         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1807         delayed_node->count++;
1808         atomic_inc(&root->fs_info->delayed_root->items);
1809 release_node:
1810         mutex_unlock(&delayed_node->mutex);
1811         btrfs_release_delayed_node(delayed_node);
1812         return ret;
1813 }
1814
1815 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1816 {
1817         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1818         struct btrfs_delayed_node *delayed_node;
1819
1820         /*
1821          * we don't do delayed inode updates during log recovery because it
1822          * leads to enospc problems.  This means we also can't do
1823          * delayed inode refs
1824          */
1825         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1826                 return -EAGAIN;
1827
1828         delayed_node = btrfs_get_or_create_delayed_node(inode);
1829         if (IS_ERR(delayed_node))
1830                 return PTR_ERR(delayed_node);
1831
1832         /*
1833          * We don't reserve space for inode ref deletion is because:
1834          * - We ONLY do async inode ref deletion for the inode who has only
1835          *   one link(i_nlink == 1), it means there is only one inode ref.
1836          *   And in most case, the inode ref and the inode item are in the
1837          *   same leaf, and we will deal with them at the same time.
1838          *   Since we are sure we will reserve the space for the inode item,
1839          *   it is unnecessary to reserve space for inode ref deletion.
1840          * - If the inode ref and the inode item are not in the same leaf,
1841          *   We also needn't worry about enospc problem, because we reserve
1842          *   much more space for the inode update than it needs.
1843          * - At the worst, we can steal some space from the global reservation.
1844          *   It is very rare.
1845          */
1846         mutex_lock(&delayed_node->mutex);
1847         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1848                 goto release_node;
1849
1850         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1851         delayed_node->count++;
1852         atomic_inc(&fs_info->delayed_root->items);
1853 release_node:
1854         mutex_unlock(&delayed_node->mutex);
1855         btrfs_release_delayed_node(delayed_node);
1856         return 0;
1857 }
1858
1859 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1860 {
1861         struct btrfs_root *root = delayed_node->root;
1862         struct btrfs_fs_info *fs_info = root->fs_info;
1863         struct btrfs_delayed_item *curr_item, *prev_item;
1864
1865         mutex_lock(&delayed_node->mutex);
1866         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1867         while (curr_item) {
1868                 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1869                 prev_item = curr_item;
1870                 curr_item = __btrfs_next_delayed_item(prev_item);
1871                 btrfs_release_delayed_item(prev_item);
1872         }
1873
1874         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1875         while (curr_item) {
1876                 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1877                 prev_item = curr_item;
1878                 curr_item = __btrfs_next_delayed_item(prev_item);
1879                 btrfs_release_delayed_item(prev_item);
1880         }
1881
1882         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1883                 btrfs_release_delayed_iref(delayed_node);
1884
1885         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1886                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1887                 btrfs_release_delayed_inode(delayed_node);
1888         }
1889         mutex_unlock(&delayed_node->mutex);
1890 }
1891
1892 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1893 {
1894         struct btrfs_delayed_node *delayed_node;
1895
1896         delayed_node = btrfs_get_delayed_node(inode);
1897         if (!delayed_node)
1898                 return;
1899
1900         __btrfs_kill_delayed_node(delayed_node);
1901         btrfs_release_delayed_node(delayed_node);
1902 }
1903
1904 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1905 {
1906         u64 inode_id = 0;
1907         struct btrfs_delayed_node *delayed_nodes[8];
1908         int i, n;
1909
1910         while (1) {
1911                 spin_lock(&root->inode_lock);
1912                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1913                                            (void **)delayed_nodes, inode_id,
1914                                            ARRAY_SIZE(delayed_nodes));
1915                 if (!n) {
1916                         spin_unlock(&root->inode_lock);
1917                         break;
1918                 }
1919
1920                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1921
1922                 for (i = 0; i < n; i++)
1923                         refcount_inc(&delayed_nodes[i]->refs);
1924                 spin_unlock(&root->inode_lock);
1925
1926                 for (i = 0; i < n; i++) {
1927                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1928                         btrfs_release_delayed_node(delayed_nodes[i]);
1929                 }
1930         }
1931 }
1932
1933 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1934 {
1935         struct btrfs_delayed_node *curr_node, *prev_node;
1936
1937         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1938         while (curr_node) {
1939                 __btrfs_kill_delayed_node(curr_node);
1940
1941                 prev_node = curr_node;
1942                 curr_node = btrfs_next_delayed_node(curr_node);
1943                 btrfs_release_delayed_node(prev_node);
1944         }
1945 }
1946