fe6caa7e698bedf4d86c4fe427a3a49a227dcbc6
[sfrench/cifs-2.6.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "delayed-inode.h"
10 #include "disk-io.h"
11 #include "transaction.h"
12 #include "ctree.h"
13 #include "qgroup.h"
14
15 #define BTRFS_DELAYED_WRITEBACK         512
16 #define BTRFS_DELAYED_BACKGROUND        128
17 #define BTRFS_DELAYED_BATCH             16
18
19 static struct kmem_cache *delayed_node_cache;
20
21 int __init btrfs_delayed_inode_init(void)
22 {
23         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24                                         sizeof(struct btrfs_delayed_node),
25                                         0,
26                                         SLAB_MEM_SPREAD,
27                                         NULL);
28         if (!delayed_node_cache)
29                 return -ENOMEM;
30         return 0;
31 }
32
33 void __cold btrfs_delayed_inode_exit(void)
34 {
35         kmem_cache_destroy(delayed_node_cache);
36 }
37
38 static inline void btrfs_init_delayed_node(
39                                 struct btrfs_delayed_node *delayed_node,
40                                 struct btrfs_root *root, u64 inode_id)
41 {
42         delayed_node->root = root;
43         delayed_node->inode_id = inode_id;
44         refcount_set(&delayed_node->refs, 0);
45         delayed_node->ins_root = RB_ROOT;
46         delayed_node->del_root = RB_ROOT;
47         mutex_init(&delayed_node->mutex);
48         INIT_LIST_HEAD(&delayed_node->n_list);
49         INIT_LIST_HEAD(&delayed_node->p_list);
50 }
51
52 static inline int btrfs_is_continuous_delayed_item(
53                                         struct btrfs_delayed_item *item1,
54                                         struct btrfs_delayed_item *item2)
55 {
56         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57             item1->key.objectid == item2->key.objectid &&
58             item1->key.type == item2->key.type &&
59             item1->key.offset + 1 == item2->key.offset)
60                 return 1;
61         return 0;
62 }
63
64 static struct btrfs_delayed_node *btrfs_get_delayed_node(
65                 struct btrfs_inode *btrfs_inode)
66 {
67         struct btrfs_root *root = btrfs_inode->root;
68         u64 ino = btrfs_ino(btrfs_inode);
69         struct btrfs_delayed_node *node;
70
71         node = READ_ONCE(btrfs_inode->delayed_node);
72         if (node) {
73                 refcount_inc(&node->refs);
74                 return node;
75         }
76
77         spin_lock(&root->inode_lock);
78         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79
80         if (node) {
81                 if (btrfs_inode->delayed_node) {
82                         refcount_inc(&node->refs);      /* can be accessed */
83                         BUG_ON(btrfs_inode->delayed_node != node);
84                         spin_unlock(&root->inode_lock);
85                         return node;
86                 }
87
88                 /*
89                  * It's possible that we're racing into the middle of removing
90                  * this node from the radix tree.  In this case, the refcount
91                  * was zero and it should never go back to one.  Just return
92                  * NULL like it was never in the radix at all; our release
93                  * function is in the process of removing it.
94                  *
95                  * Some implementations of refcount_inc refuse to bump the
96                  * refcount once it has hit zero.  If we don't do this dance
97                  * here, refcount_inc() may decide to just WARN_ONCE() instead
98                  * of actually bumping the refcount.
99                  *
100                  * If this node is properly in the radix, we want to bump the
101                  * refcount twice, once for the inode and once for this get
102                  * operation.
103                  */
104                 if (refcount_inc_not_zero(&node->refs)) {
105                         refcount_inc(&node->refs);
106                         btrfs_inode->delayed_node = node;
107                 } else {
108                         node = NULL;
109                 }
110
111                 spin_unlock(&root->inode_lock);
112                 return node;
113         }
114         spin_unlock(&root->inode_lock);
115
116         return NULL;
117 }
118
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121                 struct btrfs_inode *btrfs_inode)
122 {
123         struct btrfs_delayed_node *node;
124         struct btrfs_root *root = btrfs_inode->root;
125         u64 ino = btrfs_ino(btrfs_inode);
126         int ret;
127
128 again:
129         node = btrfs_get_delayed_node(btrfs_inode);
130         if (node)
131                 return node;
132
133         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134         if (!node)
135                 return ERR_PTR(-ENOMEM);
136         btrfs_init_delayed_node(node, root, ino);
137
138         /* cached in the btrfs inode and can be accessed */
139         refcount_set(&node->refs, 2);
140
141         ret = radix_tree_preload(GFP_NOFS);
142         if (ret) {
143                 kmem_cache_free(delayed_node_cache, node);
144                 return ERR_PTR(ret);
145         }
146
147         spin_lock(&root->inode_lock);
148         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149         if (ret == -EEXIST) {
150                 spin_unlock(&root->inode_lock);
151                 kmem_cache_free(delayed_node_cache, node);
152                 radix_tree_preload_end();
153                 goto again;
154         }
155         btrfs_inode->delayed_node = node;
156         spin_unlock(&root->inode_lock);
157         radix_tree_preload_end();
158
159         return node;
160 }
161
162 /*
163  * Call it when holding delayed_node->mutex
164  *
165  * If mod = 1, add this node into the prepared list.
166  */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168                                      struct btrfs_delayed_node *node,
169                                      int mod)
170 {
171         spin_lock(&root->lock);
172         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173                 if (!list_empty(&node->p_list))
174                         list_move_tail(&node->p_list, &root->prepare_list);
175                 else if (mod)
176                         list_add_tail(&node->p_list, &root->prepare_list);
177         } else {
178                 list_add_tail(&node->n_list, &root->node_list);
179                 list_add_tail(&node->p_list, &root->prepare_list);
180                 refcount_inc(&node->refs);      /* inserted into list */
181                 root->nodes++;
182                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183         }
184         spin_unlock(&root->lock);
185 }
186
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189                                        struct btrfs_delayed_node *node)
190 {
191         spin_lock(&root->lock);
192         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193                 root->nodes--;
194                 refcount_dec(&node->refs);      /* not in the list */
195                 list_del_init(&node->n_list);
196                 if (!list_empty(&node->p_list))
197                         list_del_init(&node->p_list);
198                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199         }
200         spin_unlock(&root->lock);
201 }
202
203 static struct btrfs_delayed_node *btrfs_first_delayed_node(
204                         struct btrfs_delayed_root *delayed_root)
205 {
206         struct list_head *p;
207         struct btrfs_delayed_node *node = NULL;
208
209         spin_lock(&delayed_root->lock);
210         if (list_empty(&delayed_root->node_list))
211                 goto out;
212
213         p = delayed_root->node_list.next;
214         node = list_entry(p, struct btrfs_delayed_node, n_list);
215         refcount_inc(&node->refs);
216 out:
217         spin_unlock(&delayed_root->lock);
218
219         return node;
220 }
221
222 static struct btrfs_delayed_node *btrfs_next_delayed_node(
223                                                 struct btrfs_delayed_node *node)
224 {
225         struct btrfs_delayed_root *delayed_root;
226         struct list_head *p;
227         struct btrfs_delayed_node *next = NULL;
228
229         delayed_root = node->root->fs_info->delayed_root;
230         spin_lock(&delayed_root->lock);
231         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232                 /* not in the list */
233                 if (list_empty(&delayed_root->node_list))
234                         goto out;
235                 p = delayed_root->node_list.next;
236         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237                 goto out;
238         else
239                 p = node->n_list.next;
240
241         next = list_entry(p, struct btrfs_delayed_node, n_list);
242         refcount_inc(&next->refs);
243 out:
244         spin_unlock(&delayed_root->lock);
245
246         return next;
247 }
248
249 static void __btrfs_release_delayed_node(
250                                 struct btrfs_delayed_node *delayed_node,
251                                 int mod)
252 {
253         struct btrfs_delayed_root *delayed_root;
254
255         if (!delayed_node)
256                 return;
257
258         delayed_root = delayed_node->root->fs_info->delayed_root;
259
260         mutex_lock(&delayed_node->mutex);
261         if (delayed_node->count)
262                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263         else
264                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265         mutex_unlock(&delayed_node->mutex);
266
267         if (refcount_dec_and_test(&delayed_node->refs)) {
268                 struct btrfs_root *root = delayed_node->root;
269
270                 spin_lock(&root->inode_lock);
271                 /*
272                  * Once our refcount goes to zero, nobody is allowed to bump it
273                  * back up.  We can delete it now.
274                  */
275                 ASSERT(refcount_read(&delayed_node->refs) == 0);
276                 radix_tree_delete(&root->delayed_nodes_tree,
277                                   delayed_node->inode_id);
278                 spin_unlock(&root->inode_lock);
279                 kmem_cache_free(delayed_node_cache, delayed_node);
280         }
281 }
282
283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284 {
285         __btrfs_release_delayed_node(node, 0);
286 }
287
288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289                                         struct btrfs_delayed_root *delayed_root)
290 {
291         struct list_head *p;
292         struct btrfs_delayed_node *node = NULL;
293
294         spin_lock(&delayed_root->lock);
295         if (list_empty(&delayed_root->prepare_list))
296                 goto out;
297
298         p = delayed_root->prepare_list.next;
299         list_del_init(p);
300         node = list_entry(p, struct btrfs_delayed_node, p_list);
301         refcount_inc(&node->refs);
302 out:
303         spin_unlock(&delayed_root->lock);
304
305         return node;
306 }
307
308 static inline void btrfs_release_prepared_delayed_node(
309                                         struct btrfs_delayed_node *node)
310 {
311         __btrfs_release_delayed_node(node, 1);
312 }
313
314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 {
316         struct btrfs_delayed_item *item;
317         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318         if (item) {
319                 item->data_len = data_len;
320                 item->ins_or_del = 0;
321                 item->bytes_reserved = 0;
322                 item->delayed_node = NULL;
323                 refcount_set(&item->refs, 1);
324         }
325         return item;
326 }
327
328 /*
329  * __btrfs_lookup_delayed_item - look up the delayed item by key
330  * @delayed_node: pointer to the delayed node
331  * @key:          the key to look up
332  * @prev:         used to store the prev item if the right item isn't found
333  * @next:         used to store the next item if the right item isn't found
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339                                 struct rb_root *root,
340                                 struct btrfs_key *key,
341                                 struct btrfs_delayed_item **prev,
342                                 struct btrfs_delayed_item **next)
343 {
344         struct rb_node *node, *prev_node = NULL;
345         struct btrfs_delayed_item *delayed_item = NULL;
346         int ret = 0;
347
348         node = root->rb_node;
349
350         while (node) {
351                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352                                         rb_node);
353                 prev_node = node;
354                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355                 if (ret < 0)
356                         node = node->rb_right;
357                 else if (ret > 0)
358                         node = node->rb_left;
359                 else
360                         return delayed_item;
361         }
362
363         if (prev) {
364                 if (!prev_node)
365                         *prev = NULL;
366                 else if (ret < 0)
367                         *prev = delayed_item;
368                 else if ((node = rb_prev(prev_node)) != NULL) {
369                         *prev = rb_entry(node, struct btrfs_delayed_item,
370                                          rb_node);
371                 } else
372                         *prev = NULL;
373         }
374
375         if (next) {
376                 if (!prev_node)
377                         *next = NULL;
378                 else if (ret > 0)
379                         *next = delayed_item;
380                 else if ((node = rb_next(prev_node)) != NULL) {
381                         *next = rb_entry(node, struct btrfs_delayed_item,
382                                          rb_node);
383                 } else
384                         *next = NULL;
385         }
386         return NULL;
387 }
388
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390                                         struct btrfs_delayed_node *delayed_node,
391                                         struct btrfs_key *key)
392 {
393         return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394                                            NULL, NULL);
395 }
396
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398                                     struct btrfs_delayed_item *ins,
399                                     int action)
400 {
401         struct rb_node **p, *node;
402         struct rb_node *parent_node = NULL;
403         struct rb_root *root;
404         struct btrfs_delayed_item *item;
405         int cmp;
406
407         if (action == BTRFS_DELAYED_INSERTION_ITEM)
408                 root = &delayed_node->ins_root;
409         else if (action == BTRFS_DELAYED_DELETION_ITEM)
410                 root = &delayed_node->del_root;
411         else
412                 BUG();
413         p = &root->rb_node;
414         node = &ins->rb_node;
415
416         while (*p) {
417                 parent_node = *p;
418                 item = rb_entry(parent_node, struct btrfs_delayed_item,
419                                  rb_node);
420
421                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422                 if (cmp < 0)
423                         p = &(*p)->rb_right;
424                 else if (cmp > 0)
425                         p = &(*p)->rb_left;
426                 else
427                         return -EEXIST;
428         }
429
430         rb_link_node(node, parent_node, p);
431         rb_insert_color(node, root);
432         ins->delayed_node = delayed_node;
433         ins->ins_or_del = action;
434
435         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436             action == BTRFS_DELAYED_INSERTION_ITEM &&
437             ins->key.offset >= delayed_node->index_cnt)
438                         delayed_node->index_cnt = ins->key.offset + 1;
439
440         delayed_node->count++;
441         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442         return 0;
443 }
444
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446                                               struct btrfs_delayed_item *item)
447 {
448         return __btrfs_add_delayed_item(node, item,
449                                         BTRFS_DELAYED_INSERTION_ITEM);
450 }
451
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453                                              struct btrfs_delayed_item *item)
454 {
455         return __btrfs_add_delayed_item(node, item,
456                                         BTRFS_DELAYED_DELETION_ITEM);
457 }
458
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461         int seq = atomic_inc_return(&delayed_root->items_seq);
462
463         /* atomic_dec_return implies a barrier */
464         if ((atomic_dec_return(&delayed_root->items) <
465             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
466                 cond_wake_up_nomb(&delayed_root->wait);
467 }
468
469 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
470 {
471         struct rb_root *root;
472         struct btrfs_delayed_root *delayed_root;
473
474         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
475
476         BUG_ON(!delayed_root);
477         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
478                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
479
480         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
481                 root = &delayed_item->delayed_node->ins_root;
482         else
483                 root = &delayed_item->delayed_node->del_root;
484
485         rb_erase(&delayed_item->rb_node, root);
486         delayed_item->delayed_node->count--;
487
488         finish_one_item(delayed_root);
489 }
490
491 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
492 {
493         if (item) {
494                 __btrfs_remove_delayed_item(item);
495                 if (refcount_dec_and_test(&item->refs))
496                         kfree(item);
497         }
498 }
499
500 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501                                         struct btrfs_delayed_node *delayed_node)
502 {
503         struct rb_node *p;
504         struct btrfs_delayed_item *item = NULL;
505
506         p = rb_first(&delayed_node->ins_root);
507         if (p)
508                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
509
510         return item;
511 }
512
513 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514                                         struct btrfs_delayed_node *delayed_node)
515 {
516         struct rb_node *p;
517         struct btrfs_delayed_item *item = NULL;
518
519         p = rb_first(&delayed_node->del_root);
520         if (p)
521                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522
523         return item;
524 }
525
526 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527                                                 struct btrfs_delayed_item *item)
528 {
529         struct rb_node *p;
530         struct btrfs_delayed_item *next = NULL;
531
532         p = rb_next(&item->rb_node);
533         if (p)
534                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
535
536         return next;
537 }
538
539 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
540                                                struct btrfs_root *root,
541                                                struct btrfs_delayed_item *item)
542 {
543         struct btrfs_block_rsv *src_rsv;
544         struct btrfs_block_rsv *dst_rsv;
545         struct btrfs_fs_info *fs_info = root->fs_info;
546         u64 num_bytes;
547         int ret;
548
549         if (!trans->bytes_reserved)
550                 return 0;
551
552         src_rsv = trans->block_rsv;
553         dst_rsv = &fs_info->delayed_block_rsv;
554
555         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
556
557         /*
558          * Here we migrate space rsv from transaction rsv, since have already
559          * reserved space when starting a transaction.  So no need to reserve
560          * qgroup space here.
561          */
562         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
563         if (!ret) {
564                 trace_btrfs_space_reservation(fs_info, "delayed_item",
565                                               item->key.objectid,
566                                               num_bytes, 1);
567                 item->bytes_reserved = num_bytes;
568         }
569
570         return ret;
571 }
572
573 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
574                                                 struct btrfs_delayed_item *item)
575 {
576         struct btrfs_block_rsv *rsv;
577         struct btrfs_fs_info *fs_info = root->fs_info;
578
579         if (!item->bytes_reserved)
580                 return;
581
582         rsv = &fs_info->delayed_block_rsv;
583         /*
584          * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
585          * to release/reserve qgroup space.
586          */
587         trace_btrfs_space_reservation(fs_info, "delayed_item",
588                                       item->key.objectid, item->bytes_reserved,
589                                       0);
590         btrfs_block_rsv_release(fs_info, rsv,
591                                 item->bytes_reserved);
592 }
593
594 static int btrfs_delayed_inode_reserve_metadata(
595                                         struct btrfs_trans_handle *trans,
596                                         struct btrfs_root *root,
597                                         struct btrfs_inode *inode,
598                                         struct btrfs_delayed_node *node)
599 {
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         struct btrfs_block_rsv *src_rsv;
602         struct btrfs_block_rsv *dst_rsv;
603         u64 num_bytes;
604         int ret;
605
606         src_rsv = trans->block_rsv;
607         dst_rsv = &fs_info->delayed_block_rsv;
608
609         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
610
611         /*
612          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
613          * which doesn't reserve space for speed.  This is a problem since we
614          * still need to reserve space for this update, so try to reserve the
615          * space.
616          *
617          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
618          * we always reserve enough to update the inode item.
619          */
620         if (!src_rsv || (!trans->bytes_reserved &&
621                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
622                 ret = btrfs_qgroup_reserve_meta_prealloc(root,
623                                 fs_info->nodesize, true);
624                 if (ret < 0)
625                         return ret;
626                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
627                                           BTRFS_RESERVE_NO_FLUSH);
628                 /*
629                  * Since we're under a transaction reserve_metadata_bytes could
630                  * try to commit the transaction which will make it return
631                  * EAGAIN to make us stop the transaction we have, so return
632                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633                  */
634                 if (ret == -EAGAIN) {
635                         ret = -ENOSPC;
636                         btrfs_qgroup_free_meta_prealloc(root, num_bytes);
637                 }
638                 if (!ret) {
639                         node->bytes_reserved = num_bytes;
640                         trace_btrfs_space_reservation(fs_info,
641                                                       "delayed_inode",
642                                                       btrfs_ino(inode),
643                                                       num_bytes, 1);
644                 } else {
645                         btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
646                 }
647                 return ret;
648         }
649
650         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
651         if (!ret) {
652                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
653                                               btrfs_ino(inode), num_bytes, 1);
654                 node->bytes_reserved = num_bytes;
655         }
656
657         return ret;
658 }
659
660 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
661                                                 struct btrfs_delayed_node *node,
662                                                 bool qgroup_free)
663 {
664         struct btrfs_block_rsv *rsv;
665
666         if (!node->bytes_reserved)
667                 return;
668
669         rsv = &fs_info->delayed_block_rsv;
670         trace_btrfs_space_reservation(fs_info, "delayed_inode",
671                                       node->inode_id, node->bytes_reserved, 0);
672         btrfs_block_rsv_release(fs_info, rsv,
673                                 node->bytes_reserved);
674         if (qgroup_free)
675                 btrfs_qgroup_free_meta_prealloc(node->root,
676                                 node->bytes_reserved);
677         else
678                 btrfs_qgroup_convert_reserved_meta(node->root,
679                                 node->bytes_reserved);
680         node->bytes_reserved = 0;
681 }
682
683 /*
684  * This helper will insert some continuous items into the same leaf according
685  * to the free space of the leaf.
686  */
687 static int btrfs_batch_insert_items(struct btrfs_root *root,
688                                     struct btrfs_path *path,
689                                     struct btrfs_delayed_item *item)
690 {
691         struct btrfs_fs_info *fs_info = root->fs_info;
692         struct btrfs_delayed_item *curr, *next;
693         int free_space;
694         int total_data_size = 0, total_size = 0;
695         struct extent_buffer *leaf;
696         char *data_ptr;
697         struct btrfs_key *keys;
698         u32 *data_size;
699         struct list_head head;
700         int slot;
701         int nitems;
702         int i;
703         int ret = 0;
704
705         BUG_ON(!path->nodes[0]);
706
707         leaf = path->nodes[0];
708         free_space = btrfs_leaf_free_space(fs_info, leaf);
709         INIT_LIST_HEAD(&head);
710
711         next = item;
712         nitems = 0;
713
714         /*
715          * count the number of the continuous items that we can insert in batch
716          */
717         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
718                free_space) {
719                 total_data_size += next->data_len;
720                 total_size += next->data_len + sizeof(struct btrfs_item);
721                 list_add_tail(&next->tree_list, &head);
722                 nitems++;
723
724                 curr = next;
725                 next = __btrfs_next_delayed_item(curr);
726                 if (!next)
727                         break;
728
729                 if (!btrfs_is_continuous_delayed_item(curr, next))
730                         break;
731         }
732
733         if (!nitems) {
734                 ret = 0;
735                 goto out;
736         }
737
738         /*
739          * we need allocate some memory space, but it might cause the task
740          * to sleep, so we set all locked nodes in the path to blocking locks
741          * first.
742          */
743         btrfs_set_path_blocking(path);
744
745         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
746         if (!keys) {
747                 ret = -ENOMEM;
748                 goto out;
749         }
750
751         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
752         if (!data_size) {
753                 ret = -ENOMEM;
754                 goto error;
755         }
756
757         /* get keys of all the delayed items */
758         i = 0;
759         list_for_each_entry(next, &head, tree_list) {
760                 keys[i] = next->key;
761                 data_size[i] = next->data_len;
762                 i++;
763         }
764
765         /* reset all the locked nodes in the patch to spinning locks. */
766         btrfs_clear_path_blocking(path, NULL, 0);
767
768         /* insert the keys of the items */
769         setup_items_for_insert(root, path, keys, data_size,
770                                total_data_size, total_size, nitems);
771
772         /* insert the dir index items */
773         slot = path->slots[0];
774         list_for_each_entry_safe(curr, next, &head, tree_list) {
775                 data_ptr = btrfs_item_ptr(leaf, slot, char);
776                 write_extent_buffer(leaf, &curr->data,
777                                     (unsigned long)data_ptr,
778                                     curr->data_len);
779                 slot++;
780
781                 btrfs_delayed_item_release_metadata(root, curr);
782
783                 list_del(&curr->tree_list);
784                 btrfs_release_delayed_item(curr);
785         }
786
787 error:
788         kfree(data_size);
789         kfree(keys);
790 out:
791         return ret;
792 }
793
794 /*
795  * This helper can just do simple insertion that needn't extend item for new
796  * data, such as directory name index insertion, inode insertion.
797  */
798 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
799                                      struct btrfs_root *root,
800                                      struct btrfs_path *path,
801                                      struct btrfs_delayed_item *delayed_item)
802 {
803         struct extent_buffer *leaf;
804         char *ptr;
805         int ret;
806
807         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
808                                       delayed_item->data_len);
809         if (ret < 0 && ret != -EEXIST)
810                 return ret;
811
812         leaf = path->nodes[0];
813
814         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
815
816         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
817                             delayed_item->data_len);
818         btrfs_mark_buffer_dirty(leaf);
819
820         btrfs_delayed_item_release_metadata(root, delayed_item);
821         return 0;
822 }
823
824 /*
825  * we insert an item first, then if there are some continuous items, we try
826  * to insert those items into the same leaf.
827  */
828 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
829                                       struct btrfs_path *path,
830                                       struct btrfs_root *root,
831                                       struct btrfs_delayed_node *node)
832 {
833         struct btrfs_delayed_item *curr, *prev;
834         int ret = 0;
835
836 do_again:
837         mutex_lock(&node->mutex);
838         curr = __btrfs_first_delayed_insertion_item(node);
839         if (!curr)
840                 goto insert_end;
841
842         ret = btrfs_insert_delayed_item(trans, root, path, curr);
843         if (ret < 0) {
844                 btrfs_release_path(path);
845                 goto insert_end;
846         }
847
848         prev = curr;
849         curr = __btrfs_next_delayed_item(prev);
850         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
851                 /* insert the continuous items into the same leaf */
852                 path->slots[0]++;
853                 btrfs_batch_insert_items(root, path, curr);
854         }
855         btrfs_release_delayed_item(prev);
856         btrfs_mark_buffer_dirty(path->nodes[0]);
857
858         btrfs_release_path(path);
859         mutex_unlock(&node->mutex);
860         goto do_again;
861
862 insert_end:
863         mutex_unlock(&node->mutex);
864         return ret;
865 }
866
867 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
868                                     struct btrfs_root *root,
869                                     struct btrfs_path *path,
870                                     struct btrfs_delayed_item *item)
871 {
872         struct btrfs_delayed_item *curr, *next;
873         struct extent_buffer *leaf;
874         struct btrfs_key key;
875         struct list_head head;
876         int nitems, i, last_item;
877         int ret = 0;
878
879         BUG_ON(!path->nodes[0]);
880
881         leaf = path->nodes[0];
882
883         i = path->slots[0];
884         last_item = btrfs_header_nritems(leaf) - 1;
885         if (i > last_item)
886                 return -ENOENT; /* FIXME: Is errno suitable? */
887
888         next = item;
889         INIT_LIST_HEAD(&head);
890         btrfs_item_key_to_cpu(leaf, &key, i);
891         nitems = 0;
892         /*
893          * count the number of the dir index items that we can delete in batch
894          */
895         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
896                 list_add_tail(&next->tree_list, &head);
897                 nitems++;
898
899                 curr = next;
900                 next = __btrfs_next_delayed_item(curr);
901                 if (!next)
902                         break;
903
904                 if (!btrfs_is_continuous_delayed_item(curr, next))
905                         break;
906
907                 i++;
908                 if (i > last_item)
909                         break;
910                 btrfs_item_key_to_cpu(leaf, &key, i);
911         }
912
913         if (!nitems)
914                 return 0;
915
916         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
917         if (ret)
918                 goto out;
919
920         list_for_each_entry_safe(curr, next, &head, tree_list) {
921                 btrfs_delayed_item_release_metadata(root, curr);
922                 list_del(&curr->tree_list);
923                 btrfs_release_delayed_item(curr);
924         }
925
926 out:
927         return ret;
928 }
929
930 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
931                                       struct btrfs_path *path,
932                                       struct btrfs_root *root,
933                                       struct btrfs_delayed_node *node)
934 {
935         struct btrfs_delayed_item *curr, *prev;
936         int ret = 0;
937
938 do_again:
939         mutex_lock(&node->mutex);
940         curr = __btrfs_first_delayed_deletion_item(node);
941         if (!curr)
942                 goto delete_fail;
943
944         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
945         if (ret < 0)
946                 goto delete_fail;
947         else if (ret > 0) {
948                 /*
949                  * can't find the item which the node points to, so this node
950                  * is invalid, just drop it.
951                  */
952                 prev = curr;
953                 curr = __btrfs_next_delayed_item(prev);
954                 btrfs_release_delayed_item(prev);
955                 ret = 0;
956                 btrfs_release_path(path);
957                 if (curr) {
958                         mutex_unlock(&node->mutex);
959                         goto do_again;
960                 } else
961                         goto delete_fail;
962         }
963
964         btrfs_batch_delete_items(trans, root, path, curr);
965         btrfs_release_path(path);
966         mutex_unlock(&node->mutex);
967         goto do_again;
968
969 delete_fail:
970         btrfs_release_path(path);
971         mutex_unlock(&node->mutex);
972         return ret;
973 }
974
975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
976 {
977         struct btrfs_delayed_root *delayed_root;
978
979         if (delayed_node &&
980             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981                 BUG_ON(!delayed_node->root);
982                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983                 delayed_node->count--;
984
985                 delayed_root = delayed_node->root->fs_info->delayed_root;
986                 finish_one_item(delayed_root);
987         }
988 }
989
990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
991 {
992         struct btrfs_delayed_root *delayed_root;
993
994         ASSERT(delayed_node->root);
995         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
996         delayed_node->count--;
997
998         delayed_root = delayed_node->root->fs_info->delayed_root;
999         finish_one_item(delayed_root);
1000 }
1001
1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003                                         struct btrfs_root *root,
1004                                         struct btrfs_path *path,
1005                                         struct btrfs_delayed_node *node)
1006 {
1007         struct btrfs_fs_info *fs_info = root->fs_info;
1008         struct btrfs_key key;
1009         struct btrfs_inode_item *inode_item;
1010         struct extent_buffer *leaf;
1011         int mod;
1012         int ret;
1013
1014         key.objectid = node->inode_id;
1015         key.type = BTRFS_INODE_ITEM_KEY;
1016         key.offset = 0;
1017
1018         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1019                 mod = -1;
1020         else
1021                 mod = 1;
1022
1023         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1024         if (ret > 0) {
1025                 btrfs_release_path(path);
1026                 return -ENOENT;
1027         } else if (ret < 0) {
1028                 return ret;
1029         }
1030
1031         leaf = path->nodes[0];
1032         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1033                                     struct btrfs_inode_item);
1034         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1035                             sizeof(struct btrfs_inode_item));
1036         btrfs_mark_buffer_dirty(leaf);
1037
1038         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1039                 goto no_iref;
1040
1041         path->slots[0]++;
1042         if (path->slots[0] >= btrfs_header_nritems(leaf))
1043                 goto search;
1044 again:
1045         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1046         if (key.objectid != node->inode_id)
1047                 goto out;
1048
1049         if (key.type != BTRFS_INODE_REF_KEY &&
1050             key.type != BTRFS_INODE_EXTREF_KEY)
1051                 goto out;
1052
1053         /*
1054          * Delayed iref deletion is for the inode who has only one link,
1055          * so there is only one iref. The case that several irefs are
1056          * in the same item doesn't exist.
1057          */
1058         btrfs_del_item(trans, root, path);
1059 out:
1060         btrfs_release_delayed_iref(node);
1061 no_iref:
1062         btrfs_release_path(path);
1063 err_out:
1064         btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1065         btrfs_release_delayed_inode(node);
1066
1067         return ret;
1068
1069 search:
1070         btrfs_release_path(path);
1071
1072         key.type = BTRFS_INODE_EXTREF_KEY;
1073         key.offset = -1;
1074         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1075         if (ret < 0)
1076                 goto err_out;
1077         ASSERT(ret);
1078
1079         ret = 0;
1080         leaf = path->nodes[0];
1081         path->slots[0]--;
1082         goto again;
1083 }
1084
1085 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1086                                              struct btrfs_root *root,
1087                                              struct btrfs_path *path,
1088                                              struct btrfs_delayed_node *node)
1089 {
1090         int ret;
1091
1092         mutex_lock(&node->mutex);
1093         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1094                 mutex_unlock(&node->mutex);
1095                 return 0;
1096         }
1097
1098         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1099         mutex_unlock(&node->mutex);
1100         return ret;
1101 }
1102
1103 static inline int
1104 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1105                                    struct btrfs_path *path,
1106                                    struct btrfs_delayed_node *node)
1107 {
1108         int ret;
1109
1110         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1111         if (ret)
1112                 return ret;
1113
1114         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1115         if (ret)
1116                 return ret;
1117
1118         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1119         return ret;
1120 }
1121
1122 /*
1123  * Called when committing the transaction.
1124  * Returns 0 on success.
1125  * Returns < 0 on error and returns with an aborted transaction with any
1126  * outstanding delayed items cleaned up.
1127  */
1128 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1129 {
1130         struct btrfs_fs_info *fs_info = trans->fs_info;
1131         struct btrfs_delayed_root *delayed_root;
1132         struct btrfs_delayed_node *curr_node, *prev_node;
1133         struct btrfs_path *path;
1134         struct btrfs_block_rsv *block_rsv;
1135         int ret = 0;
1136         bool count = (nr > 0);
1137
1138         if (trans->aborted)
1139                 return -EIO;
1140
1141         path = btrfs_alloc_path();
1142         if (!path)
1143                 return -ENOMEM;
1144         path->leave_spinning = 1;
1145
1146         block_rsv = trans->block_rsv;
1147         trans->block_rsv = &fs_info->delayed_block_rsv;
1148
1149         delayed_root = fs_info->delayed_root;
1150
1151         curr_node = btrfs_first_delayed_node(delayed_root);
1152         while (curr_node && (!count || (count && nr--))) {
1153                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154                                                          curr_node);
1155                 if (ret) {
1156                         btrfs_release_delayed_node(curr_node);
1157                         curr_node = NULL;
1158                         btrfs_abort_transaction(trans, ret);
1159                         break;
1160                 }
1161
1162                 prev_node = curr_node;
1163                 curr_node = btrfs_next_delayed_node(curr_node);
1164                 btrfs_release_delayed_node(prev_node);
1165         }
1166
1167         if (curr_node)
1168                 btrfs_release_delayed_node(curr_node);
1169         btrfs_free_path(path);
1170         trans->block_rsv = block_rsv;
1171
1172         return ret;
1173 }
1174
1175 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176 {
1177         return __btrfs_run_delayed_items(trans, -1);
1178 }
1179
1180 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181 {
1182         return __btrfs_run_delayed_items(trans, nr);
1183 }
1184
1185 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186                                      struct btrfs_inode *inode)
1187 {
1188         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189         struct btrfs_path *path;
1190         struct btrfs_block_rsv *block_rsv;
1191         int ret;
1192
1193         if (!delayed_node)
1194                 return 0;
1195
1196         mutex_lock(&delayed_node->mutex);
1197         if (!delayed_node->count) {
1198                 mutex_unlock(&delayed_node->mutex);
1199                 btrfs_release_delayed_node(delayed_node);
1200                 return 0;
1201         }
1202         mutex_unlock(&delayed_node->mutex);
1203
1204         path = btrfs_alloc_path();
1205         if (!path) {
1206                 btrfs_release_delayed_node(delayed_node);
1207                 return -ENOMEM;
1208         }
1209         path->leave_spinning = 1;
1210
1211         block_rsv = trans->block_rsv;
1212         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1213
1214         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1215
1216         btrfs_release_delayed_node(delayed_node);
1217         btrfs_free_path(path);
1218         trans->block_rsv = block_rsv;
1219
1220         return ret;
1221 }
1222
1223 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1224 {
1225         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1226         struct btrfs_trans_handle *trans;
1227         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1228         struct btrfs_path *path;
1229         struct btrfs_block_rsv *block_rsv;
1230         int ret;
1231
1232         if (!delayed_node)
1233                 return 0;
1234
1235         mutex_lock(&delayed_node->mutex);
1236         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1237                 mutex_unlock(&delayed_node->mutex);
1238                 btrfs_release_delayed_node(delayed_node);
1239                 return 0;
1240         }
1241         mutex_unlock(&delayed_node->mutex);
1242
1243         trans = btrfs_join_transaction(delayed_node->root);
1244         if (IS_ERR(trans)) {
1245                 ret = PTR_ERR(trans);
1246                 goto out;
1247         }
1248
1249         path = btrfs_alloc_path();
1250         if (!path) {
1251                 ret = -ENOMEM;
1252                 goto trans_out;
1253         }
1254         path->leave_spinning = 1;
1255
1256         block_rsv = trans->block_rsv;
1257         trans->block_rsv = &fs_info->delayed_block_rsv;
1258
1259         mutex_lock(&delayed_node->mutex);
1260         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1261                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1262                                                    path, delayed_node);
1263         else
1264                 ret = 0;
1265         mutex_unlock(&delayed_node->mutex);
1266
1267         btrfs_free_path(path);
1268         trans->block_rsv = block_rsv;
1269 trans_out:
1270         btrfs_end_transaction(trans);
1271         btrfs_btree_balance_dirty(fs_info);
1272 out:
1273         btrfs_release_delayed_node(delayed_node);
1274
1275         return ret;
1276 }
1277
1278 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1279 {
1280         struct btrfs_delayed_node *delayed_node;
1281
1282         delayed_node = READ_ONCE(inode->delayed_node);
1283         if (!delayed_node)
1284                 return;
1285
1286         inode->delayed_node = NULL;
1287         btrfs_release_delayed_node(delayed_node);
1288 }
1289
1290 struct btrfs_async_delayed_work {
1291         struct btrfs_delayed_root *delayed_root;
1292         int nr;
1293         struct btrfs_work work;
1294 };
1295
1296 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1297 {
1298         struct btrfs_async_delayed_work *async_work;
1299         struct btrfs_delayed_root *delayed_root;
1300         struct btrfs_trans_handle *trans;
1301         struct btrfs_path *path;
1302         struct btrfs_delayed_node *delayed_node = NULL;
1303         struct btrfs_root *root;
1304         struct btrfs_block_rsv *block_rsv;
1305         int total_done = 0;
1306
1307         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1308         delayed_root = async_work->delayed_root;
1309
1310         path = btrfs_alloc_path();
1311         if (!path)
1312                 goto out;
1313
1314         do {
1315                 if (atomic_read(&delayed_root->items) <
1316                     BTRFS_DELAYED_BACKGROUND / 2)
1317                         break;
1318
1319                 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1320                 if (!delayed_node)
1321                         break;
1322
1323                 path->leave_spinning = 1;
1324                 root = delayed_node->root;
1325
1326                 trans = btrfs_join_transaction(root);
1327                 if (IS_ERR(trans)) {
1328                         btrfs_release_path(path);
1329                         btrfs_release_prepared_delayed_node(delayed_node);
1330                         total_done++;
1331                         continue;
1332                 }
1333
1334                 block_rsv = trans->block_rsv;
1335                 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1336
1337                 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1338
1339                 trans->block_rsv = block_rsv;
1340                 btrfs_end_transaction(trans);
1341                 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1342
1343                 btrfs_release_path(path);
1344                 btrfs_release_prepared_delayed_node(delayed_node);
1345                 total_done++;
1346
1347         } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1348                  || total_done < async_work->nr);
1349
1350         btrfs_free_path(path);
1351 out:
1352         wake_up(&delayed_root->wait);
1353         kfree(async_work);
1354 }
1355
1356
1357 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1358                                      struct btrfs_fs_info *fs_info, int nr)
1359 {
1360         struct btrfs_async_delayed_work *async_work;
1361
1362         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1363         if (!async_work)
1364                 return -ENOMEM;
1365
1366         async_work->delayed_root = delayed_root;
1367         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1368                         btrfs_async_run_delayed_root, NULL, NULL);
1369         async_work->nr = nr;
1370
1371         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1372         return 0;
1373 }
1374
1375 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1376 {
1377         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1378 }
1379
1380 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1381 {
1382         int val = atomic_read(&delayed_root->items_seq);
1383
1384         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1385                 return 1;
1386
1387         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388                 return 1;
1389
1390         return 0;
1391 }
1392
1393 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1394 {
1395         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1396
1397         if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1398                 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1399                 return;
1400
1401         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1402                 int seq;
1403                 int ret;
1404
1405                 seq = atomic_read(&delayed_root->items_seq);
1406
1407                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1408                 if (ret)
1409                         return;
1410
1411                 wait_event_interruptible(delayed_root->wait,
1412                                          could_end_wait(delayed_root, seq));
1413                 return;
1414         }
1415
1416         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1417 }
1418
1419 /* Will return 0 or -ENOMEM */
1420 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1421                                    struct btrfs_fs_info *fs_info,
1422                                    const char *name, int name_len,
1423                                    struct btrfs_inode *dir,
1424                                    struct btrfs_disk_key *disk_key, u8 type,
1425                                    u64 index)
1426 {
1427         struct btrfs_delayed_node *delayed_node;
1428         struct btrfs_delayed_item *delayed_item;
1429         struct btrfs_dir_item *dir_item;
1430         int ret;
1431
1432         delayed_node = btrfs_get_or_create_delayed_node(dir);
1433         if (IS_ERR(delayed_node))
1434                 return PTR_ERR(delayed_node);
1435
1436         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1437         if (!delayed_item) {
1438                 ret = -ENOMEM;
1439                 goto release_node;
1440         }
1441
1442         delayed_item->key.objectid = btrfs_ino(dir);
1443         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1444         delayed_item->key.offset = index;
1445
1446         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447         dir_item->location = *disk_key;
1448         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449         btrfs_set_stack_dir_data_len(dir_item, 0);
1450         btrfs_set_stack_dir_name_len(dir_item, name_len);
1451         btrfs_set_stack_dir_type(dir_item, type);
1452         memcpy((char *)(dir_item + 1), name, name_len);
1453
1454         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1455         /*
1456          * we have reserved enough space when we start a new transaction,
1457          * so reserving metadata failure is impossible
1458          */
1459         BUG_ON(ret);
1460
1461
1462         mutex_lock(&delayed_node->mutex);
1463         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1464         if (unlikely(ret)) {
1465                 btrfs_err(fs_info,
1466                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1467                           name_len, name, delayed_node->root->objectid,
1468                           delayed_node->inode_id, ret);
1469                 BUG();
1470         }
1471         mutex_unlock(&delayed_node->mutex);
1472
1473 release_node:
1474         btrfs_release_delayed_node(delayed_node);
1475         return ret;
1476 }
1477
1478 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1479                                                struct btrfs_delayed_node *node,
1480                                                struct btrfs_key *key)
1481 {
1482         struct btrfs_delayed_item *item;
1483
1484         mutex_lock(&node->mutex);
1485         item = __btrfs_lookup_delayed_insertion_item(node, key);
1486         if (!item) {
1487                 mutex_unlock(&node->mutex);
1488                 return 1;
1489         }
1490
1491         btrfs_delayed_item_release_metadata(node->root, item);
1492         btrfs_release_delayed_item(item);
1493         mutex_unlock(&node->mutex);
1494         return 0;
1495 }
1496
1497 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1498                                    struct btrfs_fs_info *fs_info,
1499                                    struct btrfs_inode *dir, u64 index)
1500 {
1501         struct btrfs_delayed_node *node;
1502         struct btrfs_delayed_item *item;
1503         struct btrfs_key item_key;
1504         int ret;
1505
1506         node = btrfs_get_or_create_delayed_node(dir);
1507         if (IS_ERR(node))
1508                 return PTR_ERR(node);
1509
1510         item_key.objectid = btrfs_ino(dir);
1511         item_key.type = BTRFS_DIR_INDEX_KEY;
1512         item_key.offset = index;
1513
1514         ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1515         if (!ret)
1516                 goto end;
1517
1518         item = btrfs_alloc_delayed_item(0);
1519         if (!item) {
1520                 ret = -ENOMEM;
1521                 goto end;
1522         }
1523
1524         item->key = item_key;
1525
1526         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1527         /*
1528          * we have reserved enough space when we start a new transaction,
1529          * so reserving metadata failure is impossible.
1530          */
1531         BUG_ON(ret);
1532
1533         mutex_lock(&node->mutex);
1534         ret = __btrfs_add_delayed_deletion_item(node, item);
1535         if (unlikely(ret)) {
1536                 btrfs_err(fs_info,
1537                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1538                           index, node->root->objectid, node->inode_id, ret);
1539                 BUG();
1540         }
1541         mutex_unlock(&node->mutex);
1542 end:
1543         btrfs_release_delayed_node(node);
1544         return ret;
1545 }
1546
1547 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1548 {
1549         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1550
1551         if (!delayed_node)
1552                 return -ENOENT;
1553
1554         /*
1555          * Since we have held i_mutex of this directory, it is impossible that
1556          * a new directory index is added into the delayed node and index_cnt
1557          * is updated now. So we needn't lock the delayed node.
1558          */
1559         if (!delayed_node->index_cnt) {
1560                 btrfs_release_delayed_node(delayed_node);
1561                 return -EINVAL;
1562         }
1563
1564         inode->index_cnt = delayed_node->index_cnt;
1565         btrfs_release_delayed_node(delayed_node);
1566         return 0;
1567 }
1568
1569 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1570                                      struct list_head *ins_list,
1571                                      struct list_head *del_list)
1572 {
1573         struct btrfs_delayed_node *delayed_node;
1574         struct btrfs_delayed_item *item;
1575
1576         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1577         if (!delayed_node)
1578                 return false;
1579
1580         /*
1581          * We can only do one readdir with delayed items at a time because of
1582          * item->readdir_list.
1583          */
1584         inode_unlock_shared(inode);
1585         inode_lock(inode);
1586
1587         mutex_lock(&delayed_node->mutex);
1588         item = __btrfs_first_delayed_insertion_item(delayed_node);
1589         while (item) {
1590                 refcount_inc(&item->refs);
1591                 list_add_tail(&item->readdir_list, ins_list);
1592                 item = __btrfs_next_delayed_item(item);
1593         }
1594
1595         item = __btrfs_first_delayed_deletion_item(delayed_node);
1596         while (item) {
1597                 refcount_inc(&item->refs);
1598                 list_add_tail(&item->readdir_list, del_list);
1599                 item = __btrfs_next_delayed_item(item);
1600         }
1601         mutex_unlock(&delayed_node->mutex);
1602         /*
1603          * This delayed node is still cached in the btrfs inode, so refs
1604          * must be > 1 now, and we needn't check it is going to be freed
1605          * or not.
1606          *
1607          * Besides that, this function is used to read dir, we do not
1608          * insert/delete delayed items in this period. So we also needn't
1609          * requeue or dequeue this delayed node.
1610          */
1611         refcount_dec(&delayed_node->refs);
1612
1613         return true;
1614 }
1615
1616 void btrfs_readdir_put_delayed_items(struct inode *inode,
1617                                      struct list_head *ins_list,
1618                                      struct list_head *del_list)
1619 {
1620         struct btrfs_delayed_item *curr, *next;
1621
1622         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1623                 list_del(&curr->readdir_list);
1624                 if (refcount_dec_and_test(&curr->refs))
1625                         kfree(curr);
1626         }
1627
1628         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1629                 list_del(&curr->readdir_list);
1630                 if (refcount_dec_and_test(&curr->refs))
1631                         kfree(curr);
1632         }
1633
1634         /*
1635          * The VFS is going to do up_read(), so we need to downgrade back to a
1636          * read lock.
1637          */
1638         downgrade_write(&inode->i_rwsem);
1639 }
1640
1641 int btrfs_should_delete_dir_index(struct list_head *del_list,
1642                                   u64 index)
1643 {
1644         struct btrfs_delayed_item *curr;
1645         int ret = 0;
1646
1647         list_for_each_entry(curr, del_list, readdir_list) {
1648                 if (curr->key.offset > index)
1649                         break;
1650                 if (curr->key.offset == index) {
1651                         ret = 1;
1652                         break;
1653                 }
1654         }
1655         return ret;
1656 }
1657
1658 /*
1659  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1660  *
1661  */
1662 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1663                                     struct list_head *ins_list)
1664 {
1665         struct btrfs_dir_item *di;
1666         struct btrfs_delayed_item *curr, *next;
1667         struct btrfs_key location;
1668         char *name;
1669         int name_len;
1670         int over = 0;
1671         unsigned char d_type;
1672
1673         if (list_empty(ins_list))
1674                 return 0;
1675
1676         /*
1677          * Changing the data of the delayed item is impossible. So
1678          * we needn't lock them. And we have held i_mutex of the
1679          * directory, nobody can delete any directory indexes now.
1680          */
1681         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1682                 list_del(&curr->readdir_list);
1683
1684                 if (curr->key.offset < ctx->pos) {
1685                         if (refcount_dec_and_test(&curr->refs))
1686                                 kfree(curr);
1687                         continue;
1688                 }
1689
1690                 ctx->pos = curr->key.offset;
1691
1692                 di = (struct btrfs_dir_item *)curr->data;
1693                 name = (char *)(di + 1);
1694                 name_len = btrfs_stack_dir_name_len(di);
1695
1696                 d_type = btrfs_filetype_table[di->type];
1697                 btrfs_disk_key_to_cpu(&location, &di->location);
1698
1699                 over = !dir_emit(ctx, name, name_len,
1700                                location.objectid, d_type);
1701
1702                 if (refcount_dec_and_test(&curr->refs))
1703                         kfree(curr);
1704
1705                 if (over)
1706                         return 1;
1707                 ctx->pos++;
1708         }
1709         return 0;
1710 }
1711
1712 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1713                                   struct btrfs_inode_item *inode_item,
1714                                   struct inode *inode)
1715 {
1716         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1717         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1718         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1719         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1720         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1721         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1722         btrfs_set_stack_inode_generation(inode_item,
1723                                          BTRFS_I(inode)->generation);
1724         btrfs_set_stack_inode_sequence(inode_item,
1725                                        inode_peek_iversion(inode));
1726         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1727         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1728         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1729         btrfs_set_stack_inode_block_group(inode_item, 0);
1730
1731         btrfs_set_stack_timespec_sec(&inode_item->atime,
1732                                      inode->i_atime.tv_sec);
1733         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1734                                       inode->i_atime.tv_nsec);
1735
1736         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1737                                      inode->i_mtime.tv_sec);
1738         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1739                                       inode->i_mtime.tv_nsec);
1740
1741         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1742                                      inode->i_ctime.tv_sec);
1743         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1744                                       inode->i_ctime.tv_nsec);
1745
1746         btrfs_set_stack_timespec_sec(&inode_item->otime,
1747                                      BTRFS_I(inode)->i_otime.tv_sec);
1748         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1749                                      BTRFS_I(inode)->i_otime.tv_nsec);
1750 }
1751
1752 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1753 {
1754         struct btrfs_delayed_node *delayed_node;
1755         struct btrfs_inode_item *inode_item;
1756
1757         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1758         if (!delayed_node)
1759                 return -ENOENT;
1760
1761         mutex_lock(&delayed_node->mutex);
1762         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1763                 mutex_unlock(&delayed_node->mutex);
1764                 btrfs_release_delayed_node(delayed_node);
1765                 return -ENOENT;
1766         }
1767
1768         inode_item = &delayed_node->inode_item;
1769
1770         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1771         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1772         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1773         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1774         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1775         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1776         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1777         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1778
1779         inode_set_iversion_queried(inode,
1780                                    btrfs_stack_inode_sequence(inode_item));
1781         inode->i_rdev = 0;
1782         *rdev = btrfs_stack_inode_rdev(inode_item);
1783         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1784
1785         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1786         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1787
1788         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1789         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1790
1791         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1792         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1793
1794         BTRFS_I(inode)->i_otime.tv_sec =
1795                 btrfs_stack_timespec_sec(&inode_item->otime);
1796         BTRFS_I(inode)->i_otime.tv_nsec =
1797                 btrfs_stack_timespec_nsec(&inode_item->otime);
1798
1799         inode->i_generation = BTRFS_I(inode)->generation;
1800         BTRFS_I(inode)->index_cnt = (u64)-1;
1801
1802         mutex_unlock(&delayed_node->mutex);
1803         btrfs_release_delayed_node(delayed_node);
1804         return 0;
1805 }
1806
1807 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1808                                struct btrfs_root *root, struct inode *inode)
1809 {
1810         struct btrfs_delayed_node *delayed_node;
1811         int ret = 0;
1812
1813         delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1814         if (IS_ERR(delayed_node))
1815                 return PTR_ERR(delayed_node);
1816
1817         mutex_lock(&delayed_node->mutex);
1818         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1819                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1820                 goto release_node;
1821         }
1822
1823         ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1824                                                    delayed_node);
1825         if (ret)
1826                 goto release_node;
1827
1828         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1829         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1830         delayed_node->count++;
1831         atomic_inc(&root->fs_info->delayed_root->items);
1832 release_node:
1833         mutex_unlock(&delayed_node->mutex);
1834         btrfs_release_delayed_node(delayed_node);
1835         return ret;
1836 }
1837
1838 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1839 {
1840         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1841         struct btrfs_delayed_node *delayed_node;
1842
1843         /*
1844          * we don't do delayed inode updates during log recovery because it
1845          * leads to enospc problems.  This means we also can't do
1846          * delayed inode refs
1847          */
1848         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1849                 return -EAGAIN;
1850
1851         delayed_node = btrfs_get_or_create_delayed_node(inode);
1852         if (IS_ERR(delayed_node))
1853                 return PTR_ERR(delayed_node);
1854
1855         /*
1856          * We don't reserve space for inode ref deletion is because:
1857          * - We ONLY do async inode ref deletion for the inode who has only
1858          *   one link(i_nlink == 1), it means there is only one inode ref.
1859          *   And in most case, the inode ref and the inode item are in the
1860          *   same leaf, and we will deal with them at the same time.
1861          *   Since we are sure we will reserve the space for the inode item,
1862          *   it is unnecessary to reserve space for inode ref deletion.
1863          * - If the inode ref and the inode item are not in the same leaf,
1864          *   We also needn't worry about enospc problem, because we reserve
1865          *   much more space for the inode update than it needs.
1866          * - At the worst, we can steal some space from the global reservation.
1867          *   It is very rare.
1868          */
1869         mutex_lock(&delayed_node->mutex);
1870         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1871                 goto release_node;
1872
1873         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1874         delayed_node->count++;
1875         atomic_inc(&fs_info->delayed_root->items);
1876 release_node:
1877         mutex_unlock(&delayed_node->mutex);
1878         btrfs_release_delayed_node(delayed_node);
1879         return 0;
1880 }
1881
1882 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1883 {
1884         struct btrfs_root *root = delayed_node->root;
1885         struct btrfs_fs_info *fs_info = root->fs_info;
1886         struct btrfs_delayed_item *curr_item, *prev_item;
1887
1888         mutex_lock(&delayed_node->mutex);
1889         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1890         while (curr_item) {
1891                 btrfs_delayed_item_release_metadata(root, curr_item);
1892                 prev_item = curr_item;
1893                 curr_item = __btrfs_next_delayed_item(prev_item);
1894                 btrfs_release_delayed_item(prev_item);
1895         }
1896
1897         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1898         while (curr_item) {
1899                 btrfs_delayed_item_release_metadata(root, curr_item);
1900                 prev_item = curr_item;
1901                 curr_item = __btrfs_next_delayed_item(prev_item);
1902                 btrfs_release_delayed_item(prev_item);
1903         }
1904
1905         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1906                 btrfs_release_delayed_iref(delayed_node);
1907
1908         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1909                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1910                 btrfs_release_delayed_inode(delayed_node);
1911         }
1912         mutex_unlock(&delayed_node->mutex);
1913 }
1914
1915 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1916 {
1917         struct btrfs_delayed_node *delayed_node;
1918
1919         delayed_node = btrfs_get_delayed_node(inode);
1920         if (!delayed_node)
1921                 return;
1922
1923         __btrfs_kill_delayed_node(delayed_node);
1924         btrfs_release_delayed_node(delayed_node);
1925 }
1926
1927 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1928 {
1929         u64 inode_id = 0;
1930         struct btrfs_delayed_node *delayed_nodes[8];
1931         int i, n;
1932
1933         while (1) {
1934                 spin_lock(&root->inode_lock);
1935                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1936                                            (void **)delayed_nodes, inode_id,
1937                                            ARRAY_SIZE(delayed_nodes));
1938                 if (!n) {
1939                         spin_unlock(&root->inode_lock);
1940                         break;
1941                 }
1942
1943                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1944
1945                 for (i = 0; i < n; i++)
1946                         refcount_inc(&delayed_nodes[i]->refs);
1947                 spin_unlock(&root->inode_lock);
1948
1949                 for (i = 0; i < n; i++) {
1950                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1951                         btrfs_release_delayed_node(delayed_nodes[i]);
1952                 }
1953         }
1954 }
1955
1956 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1957 {
1958         struct btrfs_delayed_node *curr_node, *prev_node;
1959
1960         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1961         while (curr_node) {
1962                 __btrfs_kill_delayed_node(curr_node);
1963
1964                 prev_node = curr_node;
1965                 curr_node = btrfs_next_delayed_node(curr_node);
1966                 btrfs_release_delayed_node(prev_node);
1967         }
1968 }
1969