Merge tag 'rproc-v5.1' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19                       *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21                       const struct btrfs_key *ins_key, struct btrfs_path *path,
22                       int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24                           struct btrfs_fs_info *fs_info,
25                           struct extent_buffer *dst,
26                           struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28                               struct btrfs_fs_info *fs_info,
29                               struct extent_buffer *dst_buf,
30                               struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32                     int level, int slot);
33
34 struct btrfs_path *btrfs_alloc_path(void)
35 {
36         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
37 }
38
39 /*
40  * set all locked nodes in the path to blocking locks.  This should
41  * be done before scheduling
42  */
43 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
44 {
45         int i;
46         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
47                 if (!p->nodes[i] || !p->locks[i])
48                         continue;
49                 /*
50                  * If we currently have a spinning reader or writer lock this
51                  * will bump the count of blocking holders and drop the
52                  * spinlock.
53                  */
54                 if (p->locks[i] == BTRFS_READ_LOCK) {
55                         btrfs_set_lock_blocking_read(p->nodes[i]);
56                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
57                 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
58                         btrfs_set_lock_blocking_write(p->nodes[i]);
59                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
60                 }
61         }
62 }
63
64 /* this also releases the path */
65 void btrfs_free_path(struct btrfs_path *p)
66 {
67         if (!p)
68                 return;
69         btrfs_release_path(p);
70         kmem_cache_free(btrfs_path_cachep, p);
71 }
72
73 /*
74  * path release drops references on the extent buffers in the path
75  * and it drops any locks held by this path
76  *
77  * It is safe to call this on paths that no locks or extent buffers held.
78  */
79 noinline void btrfs_release_path(struct btrfs_path *p)
80 {
81         int i;
82
83         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
84                 p->slots[i] = 0;
85                 if (!p->nodes[i])
86                         continue;
87                 if (p->locks[i]) {
88                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
89                         p->locks[i] = 0;
90                 }
91                 free_extent_buffer(p->nodes[i]);
92                 p->nodes[i] = NULL;
93         }
94 }
95
96 /*
97  * safely gets a reference on the root node of a tree.  A lock
98  * is not taken, so a concurrent writer may put a different node
99  * at the root of the tree.  See btrfs_lock_root_node for the
100  * looping required.
101  *
102  * The extent buffer returned by this has a reference taken, so
103  * it won't disappear.  It may stop being the root of the tree
104  * at any time because there are no locks held.
105  */
106 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
107 {
108         struct extent_buffer *eb;
109
110         while (1) {
111                 rcu_read_lock();
112                 eb = rcu_dereference(root->node);
113
114                 /*
115                  * RCU really hurts here, we could free up the root node because
116                  * it was COWed but we may not get the new root node yet so do
117                  * the inc_not_zero dance and if it doesn't work then
118                  * synchronize_rcu and try again.
119                  */
120                 if (atomic_inc_not_zero(&eb->refs)) {
121                         rcu_read_unlock();
122                         break;
123                 }
124                 rcu_read_unlock();
125                 synchronize_rcu();
126         }
127         return eb;
128 }
129
130 /* loop around taking references on and locking the root node of the
131  * tree until you end up with a lock on the root.  A locked buffer
132  * is returned, with a reference held.
133  */
134 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
135 {
136         struct extent_buffer *eb;
137
138         while (1) {
139                 eb = btrfs_root_node(root);
140                 btrfs_tree_lock(eb);
141                 if (eb == root->node)
142                         break;
143                 btrfs_tree_unlock(eb);
144                 free_extent_buffer(eb);
145         }
146         return eb;
147 }
148
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
154 {
155         struct extent_buffer *eb;
156
157         while (1) {
158                 eb = btrfs_root_node(root);
159                 btrfs_tree_read_lock(eb);
160                 if (eb == root->node)
161                         break;
162                 btrfs_tree_read_unlock(eb);
163                 free_extent_buffer(eb);
164         }
165         return eb;
166 }
167
168 /* cowonly root (everything not a reference counted cow subvolume), just get
169  * put onto a simple dirty list.  transaction.c walks this to make sure they
170  * get properly updated on disk.
171  */
172 static void add_root_to_dirty_list(struct btrfs_root *root)
173 {
174         struct btrfs_fs_info *fs_info = root->fs_info;
175
176         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
177             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
178                 return;
179
180         spin_lock(&fs_info->trans_lock);
181         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
182                 /* Want the extent tree to be the last on the list */
183                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
184                         list_move_tail(&root->dirty_list,
185                                        &fs_info->dirty_cowonly_roots);
186                 else
187                         list_move(&root->dirty_list,
188                                   &fs_info->dirty_cowonly_roots);
189         }
190         spin_unlock(&fs_info->trans_lock);
191 }
192
193 /*
194  * used by snapshot creation to make a copy of a root for a tree with
195  * a given objectid.  The buffer with the new root node is returned in
196  * cow_ret, and this func returns zero on success or a negative error code.
197  */
198 int btrfs_copy_root(struct btrfs_trans_handle *trans,
199                       struct btrfs_root *root,
200                       struct extent_buffer *buf,
201                       struct extent_buffer **cow_ret, u64 new_root_objectid)
202 {
203         struct btrfs_fs_info *fs_info = root->fs_info;
204         struct extent_buffer *cow;
205         int ret = 0;
206         int level;
207         struct btrfs_disk_key disk_key;
208
209         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210                 trans->transid != fs_info->running_transaction->transid);
211         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
212                 trans->transid != root->last_trans);
213
214         level = btrfs_header_level(buf);
215         if (level == 0)
216                 btrfs_item_key(buf, &disk_key, 0);
217         else
218                 btrfs_node_key(buf, &disk_key, 0);
219
220         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
221                         &disk_key, level, buf->start, 0);
222         if (IS_ERR(cow))
223                 return PTR_ERR(cow);
224
225         copy_extent_buffer_full(cow, buf);
226         btrfs_set_header_bytenr(cow, cow->start);
227         btrfs_set_header_generation(cow, trans->transid);
228         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230                                      BTRFS_HEADER_FLAG_RELOC);
231         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233         else
234                 btrfs_set_header_owner(cow, new_root_objectid);
235
236         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
237
238         WARN_ON(btrfs_header_generation(buf) > trans->transid);
239         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240                 ret = btrfs_inc_ref(trans, root, cow, 1);
241         else
242                 ret = btrfs_inc_ref(trans, root, cow, 0);
243
244         if (ret)
245                 return ret;
246
247         btrfs_mark_buffer_dirty(cow);
248         *cow_ret = cow;
249         return 0;
250 }
251
252 enum mod_log_op {
253         MOD_LOG_KEY_REPLACE,
254         MOD_LOG_KEY_ADD,
255         MOD_LOG_KEY_REMOVE,
256         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
257         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
258         MOD_LOG_MOVE_KEYS,
259         MOD_LOG_ROOT_REPLACE,
260 };
261
262 struct tree_mod_root {
263         u64 logical;
264         u8 level;
265 };
266
267 struct tree_mod_elem {
268         struct rb_node node;
269         u64 logical;
270         u64 seq;
271         enum mod_log_op op;
272
273         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
274         int slot;
275
276         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
277         u64 generation;
278
279         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
280         struct btrfs_disk_key key;
281         u64 blockptr;
282
283         /* this is used for op == MOD_LOG_MOVE_KEYS */
284         struct {
285                 int dst_slot;
286                 int nr_items;
287         } move;
288
289         /* this is used for op == MOD_LOG_ROOT_REPLACE */
290         struct tree_mod_root old_root;
291 };
292
293 /*
294  * Pull a new tree mod seq number for our operation.
295  */
296 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
297 {
298         return atomic64_inc_return(&fs_info->tree_mod_seq);
299 }
300
301 /*
302  * This adds a new blocker to the tree mod log's blocker list if the @elem
303  * passed does not already have a sequence number set. So when a caller expects
304  * to record tree modifications, it should ensure to set elem->seq to zero
305  * before calling btrfs_get_tree_mod_seq.
306  * Returns a fresh, unused tree log modification sequence number, even if no new
307  * blocker was added.
308  */
309 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
310                            struct seq_list *elem)
311 {
312         write_lock(&fs_info->tree_mod_log_lock);
313         spin_lock(&fs_info->tree_mod_seq_lock);
314         if (!elem->seq) {
315                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
316                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
317         }
318         spin_unlock(&fs_info->tree_mod_seq_lock);
319         write_unlock(&fs_info->tree_mod_log_lock);
320
321         return elem->seq;
322 }
323
324 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
325                             struct seq_list *elem)
326 {
327         struct rb_root *tm_root;
328         struct rb_node *node;
329         struct rb_node *next;
330         struct seq_list *cur_elem;
331         struct tree_mod_elem *tm;
332         u64 min_seq = (u64)-1;
333         u64 seq_putting = elem->seq;
334
335         if (!seq_putting)
336                 return;
337
338         spin_lock(&fs_info->tree_mod_seq_lock);
339         list_del(&elem->list);
340         elem->seq = 0;
341
342         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
343                 if (cur_elem->seq < min_seq) {
344                         if (seq_putting > cur_elem->seq) {
345                                 /*
346                                  * blocker with lower sequence number exists, we
347                                  * cannot remove anything from the log
348                                  */
349                                 spin_unlock(&fs_info->tree_mod_seq_lock);
350                                 return;
351                         }
352                         min_seq = cur_elem->seq;
353                 }
354         }
355         spin_unlock(&fs_info->tree_mod_seq_lock);
356
357         /*
358          * anything that's lower than the lowest existing (read: blocked)
359          * sequence number can be removed from the tree.
360          */
361         write_lock(&fs_info->tree_mod_log_lock);
362         tm_root = &fs_info->tree_mod_log;
363         for (node = rb_first(tm_root); node; node = next) {
364                 next = rb_next(node);
365                 tm = rb_entry(node, struct tree_mod_elem, node);
366                 if (tm->seq > min_seq)
367                         continue;
368                 rb_erase(node, tm_root);
369                 kfree(tm);
370         }
371         write_unlock(&fs_info->tree_mod_log_lock);
372 }
373
374 /*
375  * key order of the log:
376  *       node/leaf start address -> sequence
377  *
378  * The 'start address' is the logical address of the *new* root node
379  * for root replace operations, or the logical address of the affected
380  * block for all other operations.
381  *
382  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
383  */
384 static noinline int
385 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
386 {
387         struct rb_root *tm_root;
388         struct rb_node **new;
389         struct rb_node *parent = NULL;
390         struct tree_mod_elem *cur;
391
392         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
393
394         tm_root = &fs_info->tree_mod_log;
395         new = &tm_root->rb_node;
396         while (*new) {
397                 cur = rb_entry(*new, struct tree_mod_elem, node);
398                 parent = *new;
399                 if (cur->logical < tm->logical)
400                         new = &((*new)->rb_left);
401                 else if (cur->logical > tm->logical)
402                         new = &((*new)->rb_right);
403                 else if (cur->seq < tm->seq)
404                         new = &((*new)->rb_left);
405                 else if (cur->seq > tm->seq)
406                         new = &((*new)->rb_right);
407                 else
408                         return -EEXIST;
409         }
410
411         rb_link_node(&tm->node, parent, new);
412         rb_insert_color(&tm->node, tm_root);
413         return 0;
414 }
415
416 /*
417  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
418  * returns zero with the tree_mod_log_lock acquired. The caller must hold
419  * this until all tree mod log insertions are recorded in the rb tree and then
420  * write unlock fs_info::tree_mod_log_lock.
421  */
422 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
423                                     struct extent_buffer *eb) {
424         smp_mb();
425         if (list_empty(&(fs_info)->tree_mod_seq_list))
426                 return 1;
427         if (eb && btrfs_header_level(eb) == 0)
428                 return 1;
429
430         write_lock(&fs_info->tree_mod_log_lock);
431         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
432                 write_unlock(&fs_info->tree_mod_log_lock);
433                 return 1;
434         }
435
436         return 0;
437 }
438
439 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
440 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
441                                     struct extent_buffer *eb)
442 {
443         smp_mb();
444         if (list_empty(&(fs_info)->tree_mod_seq_list))
445                 return 0;
446         if (eb && btrfs_header_level(eb) == 0)
447                 return 0;
448
449         return 1;
450 }
451
452 static struct tree_mod_elem *
453 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
454                     enum mod_log_op op, gfp_t flags)
455 {
456         struct tree_mod_elem *tm;
457
458         tm = kzalloc(sizeof(*tm), flags);
459         if (!tm)
460                 return NULL;
461
462         tm->logical = eb->start;
463         if (op != MOD_LOG_KEY_ADD) {
464                 btrfs_node_key(eb, &tm->key, slot);
465                 tm->blockptr = btrfs_node_blockptr(eb, slot);
466         }
467         tm->op = op;
468         tm->slot = slot;
469         tm->generation = btrfs_node_ptr_generation(eb, slot);
470         RB_CLEAR_NODE(&tm->node);
471
472         return tm;
473 }
474
475 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
476                 enum mod_log_op op, gfp_t flags)
477 {
478         struct tree_mod_elem *tm;
479         int ret;
480
481         if (!tree_mod_need_log(eb->fs_info, eb))
482                 return 0;
483
484         tm = alloc_tree_mod_elem(eb, slot, op, flags);
485         if (!tm)
486                 return -ENOMEM;
487
488         if (tree_mod_dont_log(eb->fs_info, eb)) {
489                 kfree(tm);
490                 return 0;
491         }
492
493         ret = __tree_mod_log_insert(eb->fs_info, tm);
494         write_unlock(&eb->fs_info->tree_mod_log_lock);
495         if (ret)
496                 kfree(tm);
497
498         return ret;
499 }
500
501 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
502                 int dst_slot, int src_slot, int nr_items)
503 {
504         struct tree_mod_elem *tm = NULL;
505         struct tree_mod_elem **tm_list = NULL;
506         int ret = 0;
507         int i;
508         int locked = 0;
509
510         if (!tree_mod_need_log(eb->fs_info, eb))
511                 return 0;
512
513         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
514         if (!tm_list)
515                 return -ENOMEM;
516
517         tm = kzalloc(sizeof(*tm), GFP_NOFS);
518         if (!tm) {
519                 ret = -ENOMEM;
520                 goto free_tms;
521         }
522
523         tm->logical = eb->start;
524         tm->slot = src_slot;
525         tm->move.dst_slot = dst_slot;
526         tm->move.nr_items = nr_items;
527         tm->op = MOD_LOG_MOVE_KEYS;
528
529         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
530                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
531                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
532                 if (!tm_list[i]) {
533                         ret = -ENOMEM;
534                         goto free_tms;
535                 }
536         }
537
538         if (tree_mod_dont_log(eb->fs_info, eb))
539                 goto free_tms;
540         locked = 1;
541
542         /*
543          * When we override something during the move, we log these removals.
544          * This can only happen when we move towards the beginning of the
545          * buffer, i.e. dst_slot < src_slot.
546          */
547         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
548                 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
549                 if (ret)
550                         goto free_tms;
551         }
552
553         ret = __tree_mod_log_insert(eb->fs_info, tm);
554         if (ret)
555                 goto free_tms;
556         write_unlock(&eb->fs_info->tree_mod_log_lock);
557         kfree(tm_list);
558
559         return 0;
560 free_tms:
561         for (i = 0; i < nr_items; i++) {
562                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
563                         rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
564                 kfree(tm_list[i]);
565         }
566         if (locked)
567                 write_unlock(&eb->fs_info->tree_mod_log_lock);
568         kfree(tm_list);
569         kfree(tm);
570
571         return ret;
572 }
573
574 static inline int
575 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
576                        struct tree_mod_elem **tm_list,
577                        int nritems)
578 {
579         int i, j;
580         int ret;
581
582         for (i = nritems - 1; i >= 0; i--) {
583                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
584                 if (ret) {
585                         for (j = nritems - 1; j > i; j--)
586                                 rb_erase(&tm_list[j]->node,
587                                          &fs_info->tree_mod_log);
588                         return ret;
589                 }
590         }
591
592         return 0;
593 }
594
595 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
596                          struct extent_buffer *new_root, int log_removal)
597 {
598         struct btrfs_fs_info *fs_info = old_root->fs_info;
599         struct tree_mod_elem *tm = NULL;
600         struct tree_mod_elem **tm_list = NULL;
601         int nritems = 0;
602         int ret = 0;
603         int i;
604
605         if (!tree_mod_need_log(fs_info, NULL))
606                 return 0;
607
608         if (log_removal && btrfs_header_level(old_root) > 0) {
609                 nritems = btrfs_header_nritems(old_root);
610                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
611                                   GFP_NOFS);
612                 if (!tm_list) {
613                         ret = -ENOMEM;
614                         goto free_tms;
615                 }
616                 for (i = 0; i < nritems; i++) {
617                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
618                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
619                         if (!tm_list[i]) {
620                                 ret = -ENOMEM;
621                                 goto free_tms;
622                         }
623                 }
624         }
625
626         tm = kzalloc(sizeof(*tm), GFP_NOFS);
627         if (!tm) {
628                 ret = -ENOMEM;
629                 goto free_tms;
630         }
631
632         tm->logical = new_root->start;
633         tm->old_root.logical = old_root->start;
634         tm->old_root.level = btrfs_header_level(old_root);
635         tm->generation = btrfs_header_generation(old_root);
636         tm->op = MOD_LOG_ROOT_REPLACE;
637
638         if (tree_mod_dont_log(fs_info, NULL))
639                 goto free_tms;
640
641         if (tm_list)
642                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
643         if (!ret)
644                 ret = __tree_mod_log_insert(fs_info, tm);
645
646         write_unlock(&fs_info->tree_mod_log_lock);
647         if (ret)
648                 goto free_tms;
649         kfree(tm_list);
650
651         return ret;
652
653 free_tms:
654         if (tm_list) {
655                 for (i = 0; i < nritems; i++)
656                         kfree(tm_list[i]);
657                 kfree(tm_list);
658         }
659         kfree(tm);
660
661         return ret;
662 }
663
664 static struct tree_mod_elem *
665 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
666                       int smallest)
667 {
668         struct rb_root *tm_root;
669         struct rb_node *node;
670         struct tree_mod_elem *cur = NULL;
671         struct tree_mod_elem *found = NULL;
672
673         read_lock(&fs_info->tree_mod_log_lock);
674         tm_root = &fs_info->tree_mod_log;
675         node = tm_root->rb_node;
676         while (node) {
677                 cur = rb_entry(node, struct tree_mod_elem, node);
678                 if (cur->logical < start) {
679                         node = node->rb_left;
680                 } else if (cur->logical > start) {
681                         node = node->rb_right;
682                 } else if (cur->seq < min_seq) {
683                         node = node->rb_left;
684                 } else if (!smallest) {
685                         /* we want the node with the highest seq */
686                         if (found)
687                                 BUG_ON(found->seq > cur->seq);
688                         found = cur;
689                         node = node->rb_left;
690                 } else if (cur->seq > min_seq) {
691                         /* we want the node with the smallest seq */
692                         if (found)
693                                 BUG_ON(found->seq < cur->seq);
694                         found = cur;
695                         node = node->rb_right;
696                 } else {
697                         found = cur;
698                         break;
699                 }
700         }
701         read_unlock(&fs_info->tree_mod_log_lock);
702
703         return found;
704 }
705
706 /*
707  * this returns the element from the log with the smallest time sequence
708  * value that's in the log (the oldest log item). any element with a time
709  * sequence lower than min_seq will be ignored.
710  */
711 static struct tree_mod_elem *
712 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
713                            u64 min_seq)
714 {
715         return __tree_mod_log_search(fs_info, start, min_seq, 1);
716 }
717
718 /*
719  * this returns the element from the log with the largest time sequence
720  * value that's in the log (the most recent log item). any element with
721  * a time sequence lower than min_seq will be ignored.
722  */
723 static struct tree_mod_elem *
724 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
725 {
726         return __tree_mod_log_search(fs_info, start, min_seq, 0);
727 }
728
729 static noinline int
730 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
731                      struct extent_buffer *src, unsigned long dst_offset,
732                      unsigned long src_offset, int nr_items)
733 {
734         int ret = 0;
735         struct tree_mod_elem **tm_list = NULL;
736         struct tree_mod_elem **tm_list_add, **tm_list_rem;
737         int i;
738         int locked = 0;
739
740         if (!tree_mod_need_log(fs_info, NULL))
741                 return 0;
742
743         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744                 return 0;
745
746         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
747                           GFP_NOFS);
748         if (!tm_list)
749                 return -ENOMEM;
750
751         tm_list_add = tm_list;
752         tm_list_rem = tm_list + nr_items;
753         for (i = 0; i < nr_items; i++) {
754                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
755                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
756                 if (!tm_list_rem[i]) {
757                         ret = -ENOMEM;
758                         goto free_tms;
759                 }
760
761                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
762                     MOD_LOG_KEY_ADD, GFP_NOFS);
763                 if (!tm_list_add[i]) {
764                         ret = -ENOMEM;
765                         goto free_tms;
766                 }
767         }
768
769         if (tree_mod_dont_log(fs_info, NULL))
770                 goto free_tms;
771         locked = 1;
772
773         for (i = 0; i < nr_items; i++) {
774                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
775                 if (ret)
776                         goto free_tms;
777                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
778                 if (ret)
779                         goto free_tms;
780         }
781
782         write_unlock(&fs_info->tree_mod_log_lock);
783         kfree(tm_list);
784
785         return 0;
786
787 free_tms:
788         for (i = 0; i < nr_items * 2; i++) {
789                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
790                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
791                 kfree(tm_list[i]);
792         }
793         if (locked)
794                 write_unlock(&fs_info->tree_mod_log_lock);
795         kfree(tm_list);
796
797         return ret;
798 }
799
800 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
801 {
802         struct tree_mod_elem **tm_list = NULL;
803         int nritems = 0;
804         int i;
805         int ret = 0;
806
807         if (btrfs_header_level(eb) == 0)
808                 return 0;
809
810         if (!tree_mod_need_log(eb->fs_info, NULL))
811                 return 0;
812
813         nritems = btrfs_header_nritems(eb);
814         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
815         if (!tm_list)
816                 return -ENOMEM;
817
818         for (i = 0; i < nritems; i++) {
819                 tm_list[i] = alloc_tree_mod_elem(eb, i,
820                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
821                 if (!tm_list[i]) {
822                         ret = -ENOMEM;
823                         goto free_tms;
824                 }
825         }
826
827         if (tree_mod_dont_log(eb->fs_info, eb))
828                 goto free_tms;
829
830         ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
831         write_unlock(&eb->fs_info->tree_mod_log_lock);
832         if (ret)
833                 goto free_tms;
834         kfree(tm_list);
835
836         return 0;
837
838 free_tms:
839         for (i = 0; i < nritems; i++)
840                 kfree(tm_list[i]);
841         kfree(tm_list);
842
843         return ret;
844 }
845
846 /*
847  * check if the tree block can be shared by multiple trees
848  */
849 int btrfs_block_can_be_shared(struct btrfs_root *root,
850                               struct extent_buffer *buf)
851 {
852         /*
853          * Tree blocks not in reference counted trees and tree roots
854          * are never shared. If a block was allocated after the last
855          * snapshot and the block was not allocated by tree relocation,
856          * we know the block is not shared.
857          */
858         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
859             buf != root->node && buf != root->commit_root &&
860             (btrfs_header_generation(buf) <=
861              btrfs_root_last_snapshot(&root->root_item) ||
862              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
863                 return 1;
864
865         return 0;
866 }
867
868 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
869                                        struct btrfs_root *root,
870                                        struct extent_buffer *buf,
871                                        struct extent_buffer *cow,
872                                        int *last_ref)
873 {
874         struct btrfs_fs_info *fs_info = root->fs_info;
875         u64 refs;
876         u64 owner;
877         u64 flags;
878         u64 new_flags = 0;
879         int ret;
880
881         /*
882          * Backrefs update rules:
883          *
884          * Always use full backrefs for extent pointers in tree block
885          * allocated by tree relocation.
886          *
887          * If a shared tree block is no longer referenced by its owner
888          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
889          * use full backrefs for extent pointers in tree block.
890          *
891          * If a tree block is been relocating
892          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
893          * use full backrefs for extent pointers in tree block.
894          * The reason for this is some operations (such as drop tree)
895          * are only allowed for blocks use full backrefs.
896          */
897
898         if (btrfs_block_can_be_shared(root, buf)) {
899                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
900                                                btrfs_header_level(buf), 1,
901                                                &refs, &flags);
902                 if (ret)
903                         return ret;
904                 if (refs == 0) {
905                         ret = -EROFS;
906                         btrfs_handle_fs_error(fs_info, ret, NULL);
907                         return ret;
908                 }
909         } else {
910                 refs = 1;
911                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
912                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
913                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
914                 else
915                         flags = 0;
916         }
917
918         owner = btrfs_header_owner(buf);
919         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
920                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
921
922         if (refs > 1) {
923                 if ((owner == root->root_key.objectid ||
924                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
925                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
926                         ret = btrfs_inc_ref(trans, root, buf, 1);
927                         if (ret)
928                                 return ret;
929
930                         if (root->root_key.objectid ==
931                             BTRFS_TREE_RELOC_OBJECTID) {
932                                 ret = btrfs_dec_ref(trans, root, buf, 0);
933                                 if (ret)
934                                         return ret;
935                                 ret = btrfs_inc_ref(trans, root, cow, 1);
936                                 if (ret)
937                                         return ret;
938                         }
939                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
940                 } else {
941
942                         if (root->root_key.objectid ==
943                             BTRFS_TREE_RELOC_OBJECTID)
944                                 ret = btrfs_inc_ref(trans, root, cow, 1);
945                         else
946                                 ret = btrfs_inc_ref(trans, root, cow, 0);
947                         if (ret)
948                                 return ret;
949                 }
950                 if (new_flags != 0) {
951                         int level = btrfs_header_level(buf);
952
953                         ret = btrfs_set_disk_extent_flags(trans, fs_info,
954                                                           buf->start,
955                                                           buf->len,
956                                                           new_flags, level, 0);
957                         if (ret)
958                                 return ret;
959                 }
960         } else {
961                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
962                         if (root->root_key.objectid ==
963                             BTRFS_TREE_RELOC_OBJECTID)
964                                 ret = btrfs_inc_ref(trans, root, cow, 1);
965                         else
966                                 ret = btrfs_inc_ref(trans, root, cow, 0);
967                         if (ret)
968                                 return ret;
969                         ret = btrfs_dec_ref(trans, root, buf, 1);
970                         if (ret)
971                                 return ret;
972                 }
973                 clean_tree_block(fs_info, buf);
974                 *last_ref = 1;
975         }
976         return 0;
977 }
978
979 static struct extent_buffer *alloc_tree_block_no_bg_flush(
980                                           struct btrfs_trans_handle *trans,
981                                           struct btrfs_root *root,
982                                           u64 parent_start,
983                                           const struct btrfs_disk_key *disk_key,
984                                           int level,
985                                           u64 hint,
986                                           u64 empty_size)
987 {
988         struct btrfs_fs_info *fs_info = root->fs_info;
989         struct extent_buffer *ret;
990
991         /*
992          * If we are COWing a node/leaf from the extent, chunk, device or free
993          * space trees, make sure that we do not finish block group creation of
994          * pending block groups. We do this to avoid a deadlock.
995          * COWing can result in allocation of a new chunk, and flushing pending
996          * block groups (btrfs_create_pending_block_groups()) can be triggered
997          * when finishing allocation of a new chunk. Creation of a pending block
998          * group modifies the extent, chunk, device and free space trees,
999          * therefore we could deadlock with ourselves since we are holding a
1000          * lock on an extent buffer that btrfs_create_pending_block_groups() may
1001          * try to COW later.
1002          * For similar reasons, we also need to delay flushing pending block
1003          * groups when splitting a leaf or node, from one of those trees, since
1004          * we are holding a write lock on it and its parent or when inserting a
1005          * new root node for one of those trees.
1006          */
1007         if (root == fs_info->extent_root ||
1008             root == fs_info->chunk_root ||
1009             root == fs_info->dev_root ||
1010             root == fs_info->free_space_root)
1011                 trans->can_flush_pending_bgs = false;
1012
1013         ret = btrfs_alloc_tree_block(trans, root, parent_start,
1014                                      root->root_key.objectid, disk_key, level,
1015                                      hint, empty_size);
1016         trans->can_flush_pending_bgs = true;
1017
1018         return ret;
1019 }
1020
1021 /*
1022  * does the dirty work in cow of a single block.  The parent block (if
1023  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1024  * dirty and returned locked.  If you modify the block it needs to be marked
1025  * dirty again.
1026  *
1027  * search_start -- an allocation hint for the new block
1028  *
1029  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1030  * bytes the allocator should try to find free next to the block it returns.
1031  * This is just a hint and may be ignored by the allocator.
1032  */
1033 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1034                              struct btrfs_root *root,
1035                              struct extent_buffer *buf,
1036                              struct extent_buffer *parent, int parent_slot,
1037                              struct extent_buffer **cow_ret,
1038                              u64 search_start, u64 empty_size)
1039 {
1040         struct btrfs_fs_info *fs_info = root->fs_info;
1041         struct btrfs_disk_key disk_key;
1042         struct extent_buffer *cow;
1043         int level, ret;
1044         int last_ref = 0;
1045         int unlock_orig = 0;
1046         u64 parent_start = 0;
1047
1048         if (*cow_ret == buf)
1049                 unlock_orig = 1;
1050
1051         btrfs_assert_tree_locked(buf);
1052
1053         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054                 trans->transid != fs_info->running_transaction->transid);
1055         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1056                 trans->transid != root->last_trans);
1057
1058         level = btrfs_header_level(buf);
1059
1060         if (level == 0)
1061                 btrfs_item_key(buf, &disk_key, 0);
1062         else
1063                 btrfs_node_key(buf, &disk_key, 0);
1064
1065         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1066                 parent_start = parent->start;
1067
1068         cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1069                                            level, search_start, empty_size);
1070         if (IS_ERR(cow))
1071                 return PTR_ERR(cow);
1072
1073         /* cow is set to blocking by btrfs_init_new_buffer */
1074
1075         copy_extent_buffer_full(cow, buf);
1076         btrfs_set_header_bytenr(cow, cow->start);
1077         btrfs_set_header_generation(cow, trans->transid);
1078         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1079         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1080                                      BTRFS_HEADER_FLAG_RELOC);
1081         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1082                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1083         else
1084                 btrfs_set_header_owner(cow, root->root_key.objectid);
1085
1086         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1087
1088         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1089         if (ret) {
1090                 btrfs_abort_transaction(trans, ret);
1091                 return ret;
1092         }
1093
1094         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1095                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1096                 if (ret) {
1097                         btrfs_abort_transaction(trans, ret);
1098                         return ret;
1099                 }
1100         }
1101
1102         if (buf == root->node) {
1103                 WARN_ON(parent && parent != buf);
1104                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1105                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1106                         parent_start = buf->start;
1107
1108                 extent_buffer_get(cow);
1109                 ret = tree_mod_log_insert_root(root->node, cow, 1);
1110                 BUG_ON(ret < 0);
1111                 rcu_assign_pointer(root->node, cow);
1112
1113                 btrfs_free_tree_block(trans, root, buf, parent_start,
1114                                       last_ref);
1115                 free_extent_buffer(buf);
1116                 add_root_to_dirty_list(root);
1117         } else {
1118                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1119                 tree_mod_log_insert_key(parent, parent_slot,
1120                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1121                 btrfs_set_node_blockptr(parent, parent_slot,
1122                                         cow->start);
1123                 btrfs_set_node_ptr_generation(parent, parent_slot,
1124                                               trans->transid);
1125                 btrfs_mark_buffer_dirty(parent);
1126                 if (last_ref) {
1127                         ret = tree_mod_log_free_eb(buf);
1128                         if (ret) {
1129                                 btrfs_abort_transaction(trans, ret);
1130                                 return ret;
1131                         }
1132                 }
1133                 btrfs_free_tree_block(trans, root, buf, parent_start,
1134                                       last_ref);
1135         }
1136         if (unlock_orig)
1137                 btrfs_tree_unlock(buf);
1138         free_extent_buffer_stale(buf);
1139         btrfs_mark_buffer_dirty(cow);
1140         *cow_ret = cow;
1141         return 0;
1142 }
1143
1144 /*
1145  * returns the logical address of the oldest predecessor of the given root.
1146  * entries older than time_seq are ignored.
1147  */
1148 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1149                 struct extent_buffer *eb_root, u64 time_seq)
1150 {
1151         struct tree_mod_elem *tm;
1152         struct tree_mod_elem *found = NULL;
1153         u64 root_logical = eb_root->start;
1154         int looped = 0;
1155
1156         if (!time_seq)
1157                 return NULL;
1158
1159         /*
1160          * the very last operation that's logged for a root is the
1161          * replacement operation (if it is replaced at all). this has
1162          * the logical address of the *new* root, making it the very
1163          * first operation that's logged for this root.
1164          */
1165         while (1) {
1166                 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1167                                                 time_seq);
1168                 if (!looped && !tm)
1169                         return NULL;
1170                 /*
1171                  * if there are no tree operation for the oldest root, we simply
1172                  * return it. this should only happen if that (old) root is at
1173                  * level 0.
1174                  */
1175                 if (!tm)
1176                         break;
1177
1178                 /*
1179                  * if there's an operation that's not a root replacement, we
1180                  * found the oldest version of our root. normally, we'll find a
1181                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1182                  */
1183                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1184                         break;
1185
1186                 found = tm;
1187                 root_logical = tm->old_root.logical;
1188                 looped = 1;
1189         }
1190
1191         /* if there's no old root to return, return what we found instead */
1192         if (!found)
1193                 found = tm;
1194
1195         return found;
1196 }
1197
1198 /*
1199  * tm is a pointer to the first operation to rewind within eb. then, all
1200  * previous operations will be rewound (until we reach something older than
1201  * time_seq).
1202  */
1203 static void
1204 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1205                       u64 time_seq, struct tree_mod_elem *first_tm)
1206 {
1207         u32 n;
1208         struct rb_node *next;
1209         struct tree_mod_elem *tm = first_tm;
1210         unsigned long o_dst;
1211         unsigned long o_src;
1212         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1213
1214         n = btrfs_header_nritems(eb);
1215         read_lock(&fs_info->tree_mod_log_lock);
1216         while (tm && tm->seq >= time_seq) {
1217                 /*
1218                  * all the operations are recorded with the operator used for
1219                  * the modification. as we're going backwards, we do the
1220                  * opposite of each operation here.
1221                  */
1222                 switch (tm->op) {
1223                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1224                         BUG_ON(tm->slot < n);
1225                         /* Fallthrough */
1226                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1227                 case MOD_LOG_KEY_REMOVE:
1228                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1229                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1230                         btrfs_set_node_ptr_generation(eb, tm->slot,
1231                                                       tm->generation);
1232                         n++;
1233                         break;
1234                 case MOD_LOG_KEY_REPLACE:
1235                         BUG_ON(tm->slot >= n);
1236                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1237                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1238                         btrfs_set_node_ptr_generation(eb, tm->slot,
1239                                                       tm->generation);
1240                         break;
1241                 case MOD_LOG_KEY_ADD:
1242                         /* if a move operation is needed it's in the log */
1243                         n--;
1244                         break;
1245                 case MOD_LOG_MOVE_KEYS:
1246                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1247                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1248                         memmove_extent_buffer(eb, o_dst, o_src,
1249                                               tm->move.nr_items * p_size);
1250                         break;
1251                 case MOD_LOG_ROOT_REPLACE:
1252                         /*
1253                          * this operation is special. for roots, this must be
1254                          * handled explicitly before rewinding.
1255                          * for non-roots, this operation may exist if the node
1256                          * was a root: root A -> child B; then A gets empty and
1257                          * B is promoted to the new root. in the mod log, we'll
1258                          * have a root-replace operation for B, a tree block
1259                          * that is no root. we simply ignore that operation.
1260                          */
1261                         break;
1262                 }
1263                 next = rb_next(&tm->node);
1264                 if (!next)
1265                         break;
1266                 tm = rb_entry(next, struct tree_mod_elem, node);
1267                 if (tm->logical != first_tm->logical)
1268                         break;
1269         }
1270         read_unlock(&fs_info->tree_mod_log_lock);
1271         btrfs_set_header_nritems(eb, n);
1272 }
1273
1274 /*
1275  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1276  * is returned. If rewind operations happen, a fresh buffer is returned. The
1277  * returned buffer is always read-locked. If the returned buffer is not the
1278  * input buffer, the lock on the input buffer is released and the input buffer
1279  * is freed (its refcount is decremented).
1280  */
1281 static struct extent_buffer *
1282 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1283                     struct extent_buffer *eb, u64 time_seq)
1284 {
1285         struct extent_buffer *eb_rewin;
1286         struct tree_mod_elem *tm;
1287
1288         if (!time_seq)
1289                 return eb;
1290
1291         if (btrfs_header_level(eb) == 0)
1292                 return eb;
1293
1294         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1295         if (!tm)
1296                 return eb;
1297
1298         btrfs_set_path_blocking(path);
1299         btrfs_set_lock_blocking_read(eb);
1300
1301         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1302                 BUG_ON(tm->slot != 0);
1303                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1304                 if (!eb_rewin) {
1305                         btrfs_tree_read_unlock_blocking(eb);
1306                         free_extent_buffer(eb);
1307                         return NULL;
1308                 }
1309                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1310                 btrfs_set_header_backref_rev(eb_rewin,
1311                                              btrfs_header_backref_rev(eb));
1312                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1313                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1314         } else {
1315                 eb_rewin = btrfs_clone_extent_buffer(eb);
1316                 if (!eb_rewin) {
1317                         btrfs_tree_read_unlock_blocking(eb);
1318                         free_extent_buffer(eb);
1319                         return NULL;
1320                 }
1321         }
1322
1323         btrfs_tree_read_unlock_blocking(eb);
1324         free_extent_buffer(eb);
1325
1326         btrfs_tree_read_lock(eb_rewin);
1327         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1328         WARN_ON(btrfs_header_nritems(eb_rewin) >
1329                 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1330
1331         return eb_rewin;
1332 }
1333
1334 /*
1335  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1336  * value. If there are no changes, the current root->root_node is returned. If
1337  * anything changed in between, there's a fresh buffer allocated on which the
1338  * rewind operations are done. In any case, the returned buffer is read locked.
1339  * Returns NULL on error (with no locks held).
1340  */
1341 static inline struct extent_buffer *
1342 get_old_root(struct btrfs_root *root, u64 time_seq)
1343 {
1344         struct btrfs_fs_info *fs_info = root->fs_info;
1345         struct tree_mod_elem *tm;
1346         struct extent_buffer *eb = NULL;
1347         struct extent_buffer *eb_root;
1348         struct extent_buffer *old;
1349         struct tree_mod_root *old_root = NULL;
1350         u64 old_generation = 0;
1351         u64 logical;
1352         int level;
1353
1354         eb_root = btrfs_read_lock_root_node(root);
1355         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1356         if (!tm)
1357                 return eb_root;
1358
1359         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1360                 old_root = &tm->old_root;
1361                 old_generation = tm->generation;
1362                 logical = old_root->logical;
1363                 level = old_root->level;
1364         } else {
1365                 logical = eb_root->start;
1366                 level = btrfs_header_level(eb_root);
1367         }
1368
1369         tm = tree_mod_log_search(fs_info, logical, time_seq);
1370         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1371                 btrfs_tree_read_unlock(eb_root);
1372                 free_extent_buffer(eb_root);
1373                 old = read_tree_block(fs_info, logical, 0, level, NULL);
1374                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1375                         if (!IS_ERR(old))
1376                                 free_extent_buffer(old);
1377                         btrfs_warn(fs_info,
1378                                    "failed to read tree block %llu from get_old_root",
1379                                    logical);
1380                 } else {
1381                         eb = btrfs_clone_extent_buffer(old);
1382                         free_extent_buffer(old);
1383                 }
1384         } else if (old_root) {
1385                 btrfs_tree_read_unlock(eb_root);
1386                 free_extent_buffer(eb_root);
1387                 eb = alloc_dummy_extent_buffer(fs_info, logical);
1388         } else {
1389                 btrfs_set_lock_blocking_read(eb_root);
1390                 eb = btrfs_clone_extent_buffer(eb_root);
1391                 btrfs_tree_read_unlock_blocking(eb_root);
1392                 free_extent_buffer(eb_root);
1393         }
1394
1395         if (!eb)
1396                 return NULL;
1397         btrfs_tree_read_lock(eb);
1398         if (old_root) {
1399                 btrfs_set_header_bytenr(eb, eb->start);
1400                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1401                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1402                 btrfs_set_header_level(eb, old_root->level);
1403                 btrfs_set_header_generation(eb, old_generation);
1404         }
1405         if (tm)
1406                 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1407         else
1408                 WARN_ON(btrfs_header_level(eb) != 0);
1409         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1410
1411         return eb;
1412 }
1413
1414 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1415 {
1416         struct tree_mod_elem *tm;
1417         int level;
1418         struct extent_buffer *eb_root = btrfs_root_node(root);
1419
1420         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1421         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422                 level = tm->old_root.level;
1423         } else {
1424                 level = btrfs_header_level(eb_root);
1425         }
1426         free_extent_buffer(eb_root);
1427
1428         return level;
1429 }
1430
1431 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432                                    struct btrfs_root *root,
1433                                    struct extent_buffer *buf)
1434 {
1435         if (btrfs_is_testing(root->fs_info))
1436                 return 0;
1437
1438         /* Ensure we can see the FORCE_COW bit */
1439         smp_mb__before_atomic();
1440
1441         /*
1442          * We do not need to cow a block if
1443          * 1) this block is not created or changed in this transaction;
1444          * 2) this block does not belong to TREE_RELOC tree;
1445          * 3) the root is not forced COW.
1446          *
1447          * What is forced COW:
1448          *    when we create snapshot during committing the transaction,
1449          *    after we've finished copying src root, we must COW the shared
1450          *    block to ensure the metadata consistency.
1451          */
1452         if (btrfs_header_generation(buf) == trans->transid &&
1453             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1455               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1456             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1457                 return 0;
1458         return 1;
1459 }
1460
1461 /*
1462  * cows a single block, see __btrfs_cow_block for the real work.
1463  * This version of it has extra checks so that a block isn't COWed more than
1464  * once per transaction, as long as it hasn't been written yet
1465  */
1466 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1467                     struct btrfs_root *root, struct extent_buffer *buf,
1468                     struct extent_buffer *parent, int parent_slot,
1469                     struct extent_buffer **cow_ret)
1470 {
1471         struct btrfs_fs_info *fs_info = root->fs_info;
1472         u64 search_start;
1473         int ret;
1474
1475         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1476                 btrfs_err(fs_info,
1477                         "COW'ing blocks on a fs root that's being dropped");
1478
1479         if (trans->transaction != fs_info->running_transaction)
1480                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1481                        trans->transid,
1482                        fs_info->running_transaction->transid);
1483
1484         if (trans->transid != fs_info->generation)
1485                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1486                        trans->transid, fs_info->generation);
1487
1488         if (!should_cow_block(trans, root, buf)) {
1489                 trans->dirty = true;
1490                 *cow_ret = buf;
1491                 return 0;
1492         }
1493
1494         search_start = buf->start & ~((u64)SZ_1G - 1);
1495
1496         if (parent)
1497                 btrfs_set_lock_blocking_write(parent);
1498         btrfs_set_lock_blocking_write(buf);
1499
1500         /*
1501          * Before CoWing this block for later modification, check if it's
1502          * the subtree root and do the delayed subtree trace if needed.
1503          *
1504          * Also We don't care about the error, as it's handled internally.
1505          */
1506         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1507         ret = __btrfs_cow_block(trans, root, buf, parent,
1508                                  parent_slot, cow_ret, search_start, 0);
1509
1510         trace_btrfs_cow_block(root, buf, *cow_ret);
1511
1512         return ret;
1513 }
1514
1515 /*
1516  * helper function for defrag to decide if two blocks pointed to by a
1517  * node are actually close by
1518  */
1519 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1520 {
1521         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1522                 return 1;
1523         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1524                 return 1;
1525         return 0;
1526 }
1527
1528 /*
1529  * compare two keys in a memcmp fashion
1530  */
1531 static int comp_keys(const struct btrfs_disk_key *disk,
1532                      const struct btrfs_key *k2)
1533 {
1534         struct btrfs_key k1;
1535
1536         btrfs_disk_key_to_cpu(&k1, disk);
1537
1538         return btrfs_comp_cpu_keys(&k1, k2);
1539 }
1540
1541 /*
1542  * same as comp_keys only with two btrfs_key's
1543  */
1544 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 {
1546         if (k1->objectid > k2->objectid)
1547                 return 1;
1548         if (k1->objectid < k2->objectid)
1549                 return -1;
1550         if (k1->type > k2->type)
1551                 return 1;
1552         if (k1->type < k2->type)
1553                 return -1;
1554         if (k1->offset > k2->offset)
1555                 return 1;
1556         if (k1->offset < k2->offset)
1557                 return -1;
1558         return 0;
1559 }
1560
1561 /*
1562  * this is used by the defrag code to go through all the
1563  * leaves pointed to by a node and reallocate them so that
1564  * disk order is close to key order
1565  */
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567                        struct btrfs_root *root, struct extent_buffer *parent,
1568                        int start_slot, u64 *last_ret,
1569                        struct btrfs_key *progress)
1570 {
1571         struct btrfs_fs_info *fs_info = root->fs_info;
1572         struct extent_buffer *cur;
1573         u64 blocknr;
1574         u64 gen;
1575         u64 search_start = *last_ret;
1576         u64 last_block = 0;
1577         u64 other;
1578         u32 parent_nritems;
1579         int end_slot;
1580         int i;
1581         int err = 0;
1582         int parent_level;
1583         int uptodate;
1584         u32 blocksize;
1585         int progress_passed = 0;
1586         struct btrfs_disk_key disk_key;
1587
1588         parent_level = btrfs_header_level(parent);
1589
1590         WARN_ON(trans->transaction != fs_info->running_transaction);
1591         WARN_ON(trans->transid != fs_info->generation);
1592
1593         parent_nritems = btrfs_header_nritems(parent);
1594         blocksize = fs_info->nodesize;
1595         end_slot = parent_nritems - 1;
1596
1597         if (parent_nritems <= 1)
1598                 return 0;
1599
1600         btrfs_set_lock_blocking_write(parent);
1601
1602         for (i = start_slot; i <= end_slot; i++) {
1603                 struct btrfs_key first_key;
1604                 int close = 1;
1605
1606                 btrfs_node_key(parent, &disk_key, i);
1607                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1608                         continue;
1609
1610                 progress_passed = 1;
1611                 blocknr = btrfs_node_blockptr(parent, i);
1612                 gen = btrfs_node_ptr_generation(parent, i);
1613                 btrfs_node_key_to_cpu(parent, &first_key, i);
1614                 if (last_block == 0)
1615                         last_block = blocknr;
1616
1617                 if (i > 0) {
1618                         other = btrfs_node_blockptr(parent, i - 1);
1619                         close = close_blocks(blocknr, other, blocksize);
1620                 }
1621                 if (!close && i < end_slot) {
1622                         other = btrfs_node_blockptr(parent, i + 1);
1623                         close = close_blocks(blocknr, other, blocksize);
1624                 }
1625                 if (close) {
1626                         last_block = blocknr;
1627                         continue;
1628                 }
1629
1630                 cur = find_extent_buffer(fs_info, blocknr);
1631                 if (cur)
1632                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1633                 else
1634                         uptodate = 0;
1635                 if (!cur || !uptodate) {
1636                         if (!cur) {
1637                                 cur = read_tree_block(fs_info, blocknr, gen,
1638                                                       parent_level - 1,
1639                                                       &first_key);
1640                                 if (IS_ERR(cur)) {
1641                                         return PTR_ERR(cur);
1642                                 } else if (!extent_buffer_uptodate(cur)) {
1643                                         free_extent_buffer(cur);
1644                                         return -EIO;
1645                                 }
1646                         } else if (!uptodate) {
1647                                 err = btrfs_read_buffer(cur, gen,
1648                                                 parent_level - 1,&first_key);
1649                                 if (err) {
1650                                         free_extent_buffer(cur);
1651                                         return err;
1652                                 }
1653                         }
1654                 }
1655                 if (search_start == 0)
1656                         search_start = last_block;
1657
1658                 btrfs_tree_lock(cur);
1659                 btrfs_set_lock_blocking_write(cur);
1660                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1661                                         &cur, search_start,
1662                                         min(16 * blocksize,
1663                                             (end_slot - i) * blocksize));
1664                 if (err) {
1665                         btrfs_tree_unlock(cur);
1666                         free_extent_buffer(cur);
1667                         break;
1668                 }
1669                 search_start = cur->start;
1670                 last_block = cur->start;
1671                 *last_ret = search_start;
1672                 btrfs_tree_unlock(cur);
1673                 free_extent_buffer(cur);
1674         }
1675         return err;
1676 }
1677
1678 /*
1679  * search for key in the extent_buffer.  The items start at offset p,
1680  * and they are item_size apart.  There are 'max' items in p.
1681  *
1682  * the slot in the array is returned via slot, and it points to
1683  * the place where you would insert key if it is not found in
1684  * the array.
1685  *
1686  * slot may point to max if the key is bigger than all of the keys
1687  */
1688 static noinline int generic_bin_search(struct extent_buffer *eb,
1689                                        unsigned long p, int item_size,
1690                                        const struct btrfs_key *key,
1691                                        int max, int *slot)
1692 {
1693         int low = 0;
1694         int high = max;
1695         int mid;
1696         int ret;
1697         struct btrfs_disk_key *tmp = NULL;
1698         struct btrfs_disk_key unaligned;
1699         unsigned long offset;
1700         char *kaddr = NULL;
1701         unsigned long map_start = 0;
1702         unsigned long map_len = 0;
1703         int err;
1704
1705         if (low > high) {
1706                 btrfs_err(eb->fs_info,
1707                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708                           __func__, low, high, eb->start,
1709                           btrfs_header_owner(eb), btrfs_header_level(eb));
1710                 return -EINVAL;
1711         }
1712
1713         while (low < high) {
1714                 mid = (low + high) / 2;
1715                 offset = p + mid * item_size;
1716
1717                 if (!kaddr || offset < map_start ||
1718                     (offset + sizeof(struct btrfs_disk_key)) >
1719                     map_start + map_len) {
1720
1721                         err = map_private_extent_buffer(eb, offset,
1722                                                 sizeof(struct btrfs_disk_key),
1723                                                 &kaddr, &map_start, &map_len);
1724
1725                         if (!err) {
1726                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1727                                                         map_start);
1728                         } else if (err == 1) {
1729                                 read_extent_buffer(eb, &unaligned,
1730                                                    offset, sizeof(unaligned));
1731                                 tmp = &unaligned;
1732                         } else {
1733                                 return err;
1734                         }
1735
1736                 } else {
1737                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1738                                                         map_start);
1739                 }
1740                 ret = comp_keys(tmp, key);
1741
1742                 if (ret < 0)
1743                         low = mid + 1;
1744                 else if (ret > 0)
1745                         high = mid;
1746                 else {
1747                         *slot = mid;
1748                         return 0;
1749                 }
1750         }
1751         *slot = low;
1752         return 1;
1753 }
1754
1755 /*
1756  * simple bin_search frontend that does the right thing for
1757  * leaves vs nodes
1758  */
1759 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760                      int level, int *slot)
1761 {
1762         if (level == 0)
1763                 return generic_bin_search(eb,
1764                                           offsetof(struct btrfs_leaf, items),
1765                                           sizeof(struct btrfs_item),
1766                                           key, btrfs_header_nritems(eb),
1767                                           slot);
1768         else
1769                 return generic_bin_search(eb,
1770                                           offsetof(struct btrfs_node, ptrs),
1771                                           sizeof(struct btrfs_key_ptr),
1772                                           key, btrfs_header_nritems(eb),
1773                                           slot);
1774 }
1775
1776 static void root_add_used(struct btrfs_root *root, u32 size)
1777 {
1778         spin_lock(&root->accounting_lock);
1779         btrfs_set_root_used(&root->root_item,
1780                             btrfs_root_used(&root->root_item) + size);
1781         spin_unlock(&root->accounting_lock);
1782 }
1783
1784 static void root_sub_used(struct btrfs_root *root, u32 size)
1785 {
1786         spin_lock(&root->accounting_lock);
1787         btrfs_set_root_used(&root->root_item,
1788                             btrfs_root_used(&root->root_item) - size);
1789         spin_unlock(&root->accounting_lock);
1790 }
1791
1792 /* given a node and slot number, this reads the blocks it points to.  The
1793  * extent buffer is returned with a reference taken (but unlocked).
1794  */
1795 static noinline struct extent_buffer *
1796 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1797                int slot)
1798 {
1799         int level = btrfs_header_level(parent);
1800         struct extent_buffer *eb;
1801         struct btrfs_key first_key;
1802
1803         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1804                 return ERR_PTR(-ENOENT);
1805
1806         BUG_ON(level == 0);
1807
1808         btrfs_node_key_to_cpu(parent, &first_key, slot);
1809         eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1810                              btrfs_node_ptr_generation(parent, slot),
1811                              level - 1, &first_key);
1812         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1813                 free_extent_buffer(eb);
1814                 eb = ERR_PTR(-EIO);
1815         }
1816
1817         return eb;
1818 }
1819
1820 /*
1821  * node level balancing, used to make sure nodes are in proper order for
1822  * item deletion.  We balance from the top down, so we have to make sure
1823  * that a deletion won't leave an node completely empty later on.
1824  */
1825 static noinline int balance_level(struct btrfs_trans_handle *trans,
1826                          struct btrfs_root *root,
1827                          struct btrfs_path *path, int level)
1828 {
1829         struct btrfs_fs_info *fs_info = root->fs_info;
1830         struct extent_buffer *right = NULL;
1831         struct extent_buffer *mid;
1832         struct extent_buffer *left = NULL;
1833         struct extent_buffer *parent = NULL;
1834         int ret = 0;
1835         int wret;
1836         int pslot;
1837         int orig_slot = path->slots[level];
1838         u64 orig_ptr;
1839
1840         ASSERT(level > 0);
1841
1842         mid = path->nodes[level];
1843
1844         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1845                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1846         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1847
1848         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1849
1850         if (level < BTRFS_MAX_LEVEL - 1) {
1851                 parent = path->nodes[level + 1];
1852                 pslot = path->slots[level + 1];
1853         }
1854
1855         /*
1856          * deal with the case where there is only one pointer in the root
1857          * by promoting the node below to a root
1858          */
1859         if (!parent) {
1860                 struct extent_buffer *child;
1861
1862                 if (btrfs_header_nritems(mid) != 1)
1863                         return 0;
1864
1865                 /* promote the child to a root */
1866                 child = read_node_slot(fs_info, mid, 0);
1867                 if (IS_ERR(child)) {
1868                         ret = PTR_ERR(child);
1869                         btrfs_handle_fs_error(fs_info, ret, NULL);
1870                         goto enospc;
1871                 }
1872
1873                 btrfs_tree_lock(child);
1874                 btrfs_set_lock_blocking_write(child);
1875                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1876                 if (ret) {
1877                         btrfs_tree_unlock(child);
1878                         free_extent_buffer(child);
1879                         goto enospc;
1880                 }
1881
1882                 ret = tree_mod_log_insert_root(root->node, child, 1);
1883                 BUG_ON(ret < 0);
1884                 rcu_assign_pointer(root->node, child);
1885
1886                 add_root_to_dirty_list(root);
1887                 btrfs_tree_unlock(child);
1888
1889                 path->locks[level] = 0;
1890                 path->nodes[level] = NULL;
1891                 clean_tree_block(fs_info, mid);
1892                 btrfs_tree_unlock(mid);
1893                 /* once for the path */
1894                 free_extent_buffer(mid);
1895
1896                 root_sub_used(root, mid->len);
1897                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1898                 /* once for the root ptr */
1899                 free_extent_buffer_stale(mid);
1900                 return 0;
1901         }
1902         if (btrfs_header_nritems(mid) >
1903             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1904                 return 0;
1905
1906         left = read_node_slot(fs_info, parent, pslot - 1);
1907         if (IS_ERR(left))
1908                 left = NULL;
1909
1910         if (left) {
1911                 btrfs_tree_lock(left);
1912                 btrfs_set_lock_blocking_write(left);
1913                 wret = btrfs_cow_block(trans, root, left,
1914                                        parent, pslot - 1, &left);
1915                 if (wret) {
1916                         ret = wret;
1917                         goto enospc;
1918                 }
1919         }
1920
1921         right = read_node_slot(fs_info, parent, pslot + 1);
1922         if (IS_ERR(right))
1923                 right = NULL;
1924
1925         if (right) {
1926                 btrfs_tree_lock(right);
1927                 btrfs_set_lock_blocking_write(right);
1928                 wret = btrfs_cow_block(trans, root, right,
1929                                        parent, pslot + 1, &right);
1930                 if (wret) {
1931                         ret = wret;
1932                         goto enospc;
1933                 }
1934         }
1935
1936         /* first, try to make some room in the middle buffer */
1937         if (left) {
1938                 orig_slot += btrfs_header_nritems(left);
1939                 wret = push_node_left(trans, fs_info, left, mid, 1);
1940                 if (wret < 0)
1941                         ret = wret;
1942         }
1943
1944         /*
1945          * then try to empty the right most buffer into the middle
1946          */
1947         if (right) {
1948                 wret = push_node_left(trans, fs_info, mid, right, 1);
1949                 if (wret < 0 && wret != -ENOSPC)
1950                         ret = wret;
1951                 if (btrfs_header_nritems(right) == 0) {
1952                         clean_tree_block(fs_info, right);
1953                         btrfs_tree_unlock(right);
1954                         del_ptr(root, path, level + 1, pslot + 1);
1955                         root_sub_used(root, right->len);
1956                         btrfs_free_tree_block(trans, root, right, 0, 1);
1957                         free_extent_buffer_stale(right);
1958                         right = NULL;
1959                 } else {
1960                         struct btrfs_disk_key right_key;
1961                         btrfs_node_key(right, &right_key, 0);
1962                         ret = tree_mod_log_insert_key(parent, pslot + 1,
1963                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1964                         BUG_ON(ret < 0);
1965                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1966                         btrfs_mark_buffer_dirty(parent);
1967                 }
1968         }
1969         if (btrfs_header_nritems(mid) == 1) {
1970                 /*
1971                  * we're not allowed to leave a node with one item in the
1972                  * tree during a delete.  A deletion from lower in the tree
1973                  * could try to delete the only pointer in this node.
1974                  * So, pull some keys from the left.
1975                  * There has to be a left pointer at this point because
1976                  * otherwise we would have pulled some pointers from the
1977                  * right
1978                  */
1979                 if (!left) {
1980                         ret = -EROFS;
1981                         btrfs_handle_fs_error(fs_info, ret, NULL);
1982                         goto enospc;
1983                 }
1984                 wret = balance_node_right(trans, fs_info, mid, left);
1985                 if (wret < 0) {
1986                         ret = wret;
1987                         goto enospc;
1988                 }
1989                 if (wret == 1) {
1990                         wret = push_node_left(trans, fs_info, left, mid, 1);
1991                         if (wret < 0)
1992                                 ret = wret;
1993                 }
1994                 BUG_ON(wret == 1);
1995         }
1996         if (btrfs_header_nritems(mid) == 0) {
1997                 clean_tree_block(fs_info, mid);
1998                 btrfs_tree_unlock(mid);
1999                 del_ptr(root, path, level + 1, pslot);
2000                 root_sub_used(root, mid->len);
2001                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2002                 free_extent_buffer_stale(mid);
2003                 mid = NULL;
2004         } else {
2005                 /* update the parent key to reflect our changes */
2006                 struct btrfs_disk_key mid_key;
2007                 btrfs_node_key(mid, &mid_key, 0);
2008                 ret = tree_mod_log_insert_key(parent, pslot,
2009                                 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2010                 BUG_ON(ret < 0);
2011                 btrfs_set_node_key(parent, &mid_key, pslot);
2012                 btrfs_mark_buffer_dirty(parent);
2013         }
2014
2015         /* update the path */
2016         if (left) {
2017                 if (btrfs_header_nritems(left) > orig_slot) {
2018                         extent_buffer_get(left);
2019                         /* left was locked after cow */
2020                         path->nodes[level] = left;
2021                         path->slots[level + 1] -= 1;
2022                         path->slots[level] = orig_slot;
2023                         if (mid) {
2024                                 btrfs_tree_unlock(mid);
2025                                 free_extent_buffer(mid);
2026                         }
2027                 } else {
2028                         orig_slot -= btrfs_header_nritems(left);
2029                         path->slots[level] = orig_slot;
2030                 }
2031         }
2032         /* double check we haven't messed things up */
2033         if (orig_ptr !=
2034             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2035                 BUG();
2036 enospc:
2037         if (right) {
2038                 btrfs_tree_unlock(right);
2039                 free_extent_buffer(right);
2040         }
2041         if (left) {
2042                 if (path->nodes[level] != left)
2043                         btrfs_tree_unlock(left);
2044                 free_extent_buffer(left);
2045         }
2046         return ret;
2047 }
2048
2049 /* Node balancing for insertion.  Here we only split or push nodes around
2050  * when they are completely full.  This is also done top down, so we
2051  * have to be pessimistic.
2052  */
2053 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2054                                           struct btrfs_root *root,
2055                                           struct btrfs_path *path, int level)
2056 {
2057         struct btrfs_fs_info *fs_info = root->fs_info;
2058         struct extent_buffer *right = NULL;
2059         struct extent_buffer *mid;
2060         struct extent_buffer *left = NULL;
2061         struct extent_buffer *parent = NULL;
2062         int ret = 0;
2063         int wret;
2064         int pslot;
2065         int orig_slot = path->slots[level];
2066
2067         if (level == 0)
2068                 return 1;
2069
2070         mid = path->nodes[level];
2071         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2072
2073         if (level < BTRFS_MAX_LEVEL - 1) {
2074                 parent = path->nodes[level + 1];
2075                 pslot = path->slots[level + 1];
2076         }
2077
2078         if (!parent)
2079                 return 1;
2080
2081         left = read_node_slot(fs_info, parent, pslot - 1);
2082         if (IS_ERR(left))
2083                 left = NULL;
2084
2085         /* first, try to make some room in the middle buffer */
2086         if (left) {
2087                 u32 left_nr;
2088
2089                 btrfs_tree_lock(left);
2090                 btrfs_set_lock_blocking_write(left);
2091
2092                 left_nr = btrfs_header_nritems(left);
2093                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2094                         wret = 1;
2095                 } else {
2096                         ret = btrfs_cow_block(trans, root, left, parent,
2097                                               pslot - 1, &left);
2098                         if (ret)
2099                                 wret = 1;
2100                         else {
2101                                 wret = push_node_left(trans, fs_info,
2102                                                       left, mid, 0);
2103                         }
2104                 }
2105                 if (wret < 0)
2106                         ret = wret;
2107                 if (wret == 0) {
2108                         struct btrfs_disk_key disk_key;
2109                         orig_slot += left_nr;
2110                         btrfs_node_key(mid, &disk_key, 0);
2111                         ret = tree_mod_log_insert_key(parent, pslot,
2112                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2113                         BUG_ON(ret < 0);
2114                         btrfs_set_node_key(parent, &disk_key, pslot);
2115                         btrfs_mark_buffer_dirty(parent);
2116                         if (btrfs_header_nritems(left) > orig_slot) {
2117                                 path->nodes[level] = left;
2118                                 path->slots[level + 1] -= 1;
2119                                 path->slots[level] = orig_slot;
2120                                 btrfs_tree_unlock(mid);
2121                                 free_extent_buffer(mid);
2122                         } else {
2123                                 orig_slot -=
2124                                         btrfs_header_nritems(left);
2125                                 path->slots[level] = orig_slot;
2126                                 btrfs_tree_unlock(left);
2127                                 free_extent_buffer(left);
2128                         }
2129                         return 0;
2130                 }
2131                 btrfs_tree_unlock(left);
2132                 free_extent_buffer(left);
2133         }
2134         right = read_node_slot(fs_info, parent, pslot + 1);
2135         if (IS_ERR(right))
2136                 right = NULL;
2137
2138         /*
2139          * then try to empty the right most buffer into the middle
2140          */
2141         if (right) {
2142                 u32 right_nr;
2143
2144                 btrfs_tree_lock(right);
2145                 btrfs_set_lock_blocking_write(right);
2146
2147                 right_nr = btrfs_header_nritems(right);
2148                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2149                         wret = 1;
2150                 } else {
2151                         ret = btrfs_cow_block(trans, root, right,
2152                                               parent, pslot + 1,
2153                                               &right);
2154                         if (ret)
2155                                 wret = 1;
2156                         else {
2157                                 wret = balance_node_right(trans, fs_info,
2158                                                           right, mid);
2159                         }
2160                 }
2161                 if (wret < 0)
2162                         ret = wret;
2163                 if (wret == 0) {
2164                         struct btrfs_disk_key disk_key;
2165
2166                         btrfs_node_key(right, &disk_key, 0);
2167                         ret = tree_mod_log_insert_key(parent, pslot + 1,
2168                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2169                         BUG_ON(ret < 0);
2170                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2171                         btrfs_mark_buffer_dirty(parent);
2172
2173                         if (btrfs_header_nritems(mid) <= orig_slot) {
2174                                 path->nodes[level] = right;
2175                                 path->slots[level + 1] += 1;
2176                                 path->slots[level] = orig_slot -
2177                                         btrfs_header_nritems(mid);
2178                                 btrfs_tree_unlock(mid);
2179                                 free_extent_buffer(mid);
2180                         } else {
2181                                 btrfs_tree_unlock(right);
2182                                 free_extent_buffer(right);
2183                         }
2184                         return 0;
2185                 }
2186                 btrfs_tree_unlock(right);
2187                 free_extent_buffer(right);
2188         }
2189         return 1;
2190 }
2191
2192 /*
2193  * readahead one full node of leaves, finding things that are close
2194  * to the block in 'slot', and triggering ra on them.
2195  */
2196 static void reada_for_search(struct btrfs_fs_info *fs_info,
2197                              struct btrfs_path *path,
2198                              int level, int slot, u64 objectid)
2199 {
2200         struct extent_buffer *node;
2201         struct btrfs_disk_key disk_key;
2202         u32 nritems;
2203         u64 search;
2204         u64 target;
2205         u64 nread = 0;
2206         struct extent_buffer *eb;
2207         u32 nr;
2208         u32 blocksize;
2209         u32 nscan = 0;
2210
2211         if (level != 1)
2212                 return;
2213
2214         if (!path->nodes[level])
2215                 return;
2216
2217         node = path->nodes[level];
2218
2219         search = btrfs_node_blockptr(node, slot);
2220         blocksize = fs_info->nodesize;
2221         eb = find_extent_buffer(fs_info, search);
2222         if (eb) {
2223                 free_extent_buffer(eb);
2224                 return;
2225         }
2226
2227         target = search;
2228
2229         nritems = btrfs_header_nritems(node);
2230         nr = slot;
2231
2232         while (1) {
2233                 if (path->reada == READA_BACK) {
2234                         if (nr == 0)
2235                                 break;
2236                         nr--;
2237                 } else if (path->reada == READA_FORWARD) {
2238                         nr++;
2239                         if (nr >= nritems)
2240                                 break;
2241                 }
2242                 if (path->reada == READA_BACK && objectid) {
2243                         btrfs_node_key(node, &disk_key, nr);
2244                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2245                                 break;
2246                 }
2247                 search = btrfs_node_blockptr(node, nr);
2248                 if ((search <= target && target - search <= 65536) ||
2249                     (search > target && search - target <= 65536)) {
2250                         readahead_tree_block(fs_info, search);
2251                         nread += blocksize;
2252                 }
2253                 nscan++;
2254                 if ((nread > 65536 || nscan > 32))
2255                         break;
2256         }
2257 }
2258
2259 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2260                                        struct btrfs_path *path, int level)
2261 {
2262         int slot;
2263         int nritems;
2264         struct extent_buffer *parent;
2265         struct extent_buffer *eb;
2266         u64 gen;
2267         u64 block1 = 0;
2268         u64 block2 = 0;
2269
2270         parent = path->nodes[level + 1];
2271         if (!parent)
2272                 return;
2273
2274         nritems = btrfs_header_nritems(parent);
2275         slot = path->slots[level + 1];
2276
2277         if (slot > 0) {
2278                 block1 = btrfs_node_blockptr(parent, slot - 1);
2279                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2280                 eb = find_extent_buffer(fs_info, block1);
2281                 /*
2282                  * if we get -eagain from btrfs_buffer_uptodate, we
2283                  * don't want to return eagain here.  That will loop
2284                  * forever
2285                  */
2286                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2287                         block1 = 0;
2288                 free_extent_buffer(eb);
2289         }
2290         if (slot + 1 < nritems) {
2291                 block2 = btrfs_node_blockptr(parent, slot + 1);
2292                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2293                 eb = find_extent_buffer(fs_info, block2);
2294                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2295                         block2 = 0;
2296                 free_extent_buffer(eb);
2297         }
2298
2299         if (block1)
2300                 readahead_tree_block(fs_info, block1);
2301         if (block2)
2302                 readahead_tree_block(fs_info, block2);
2303 }
2304
2305
2306 /*
2307  * when we walk down the tree, it is usually safe to unlock the higher layers
2308  * in the tree.  The exceptions are when our path goes through slot 0, because
2309  * operations on the tree might require changing key pointers higher up in the
2310  * tree.
2311  *
2312  * callers might also have set path->keep_locks, which tells this code to keep
2313  * the lock if the path points to the last slot in the block.  This is part of
2314  * walking through the tree, and selecting the next slot in the higher block.
2315  *
2316  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2317  * if lowest_unlock is 1, level 0 won't be unlocked
2318  */
2319 static noinline void unlock_up(struct btrfs_path *path, int level,
2320                                int lowest_unlock, int min_write_lock_level,
2321                                int *write_lock_level)
2322 {
2323         int i;
2324         int skip_level = level;
2325         int no_skips = 0;
2326         struct extent_buffer *t;
2327
2328         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2329                 if (!path->nodes[i])
2330                         break;
2331                 if (!path->locks[i])
2332                         break;
2333                 if (!no_skips && path->slots[i] == 0) {
2334                         skip_level = i + 1;
2335                         continue;
2336                 }
2337                 if (!no_skips && path->keep_locks) {
2338                         u32 nritems;
2339                         t = path->nodes[i];
2340                         nritems = btrfs_header_nritems(t);
2341                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2342                                 skip_level = i + 1;
2343                                 continue;
2344                         }
2345                 }
2346                 if (skip_level < i && i >= lowest_unlock)
2347                         no_skips = 1;
2348
2349                 t = path->nodes[i];
2350                 if (i >= lowest_unlock && i > skip_level) {
2351                         btrfs_tree_unlock_rw(t, path->locks[i]);
2352                         path->locks[i] = 0;
2353                         if (write_lock_level &&
2354                             i > min_write_lock_level &&
2355                             i <= *write_lock_level) {
2356                                 *write_lock_level = i - 1;
2357                         }
2358                 }
2359         }
2360 }
2361
2362 /*
2363  * This releases any locks held in the path starting at level and
2364  * going all the way up to the root.
2365  *
2366  * btrfs_search_slot will keep the lock held on higher nodes in a few
2367  * corner cases, such as COW of the block at slot zero in the node.  This
2368  * ignores those rules, and it should only be called when there are no
2369  * more updates to be done higher up in the tree.
2370  */
2371 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2372 {
2373         int i;
2374
2375         if (path->keep_locks)
2376                 return;
2377
2378         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379                 if (!path->nodes[i])
2380                         continue;
2381                 if (!path->locks[i])
2382                         continue;
2383                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2384                 path->locks[i] = 0;
2385         }
2386 }
2387
2388 /*
2389  * helper function for btrfs_search_slot.  The goal is to find a block
2390  * in cache without setting the path to blocking.  If we find the block
2391  * we return zero and the path is unchanged.
2392  *
2393  * If we can't find the block, we set the path blocking and do some
2394  * reada.  -EAGAIN is returned and the search must be repeated.
2395  */
2396 static int
2397 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2398                       struct extent_buffer **eb_ret, int level, int slot,
2399                       const struct btrfs_key *key)
2400 {
2401         struct btrfs_fs_info *fs_info = root->fs_info;
2402         u64 blocknr;
2403         u64 gen;
2404         struct extent_buffer *b = *eb_ret;
2405         struct extent_buffer *tmp;
2406         struct btrfs_key first_key;
2407         int ret;
2408         int parent_level;
2409
2410         blocknr = btrfs_node_blockptr(b, slot);
2411         gen = btrfs_node_ptr_generation(b, slot);
2412         parent_level = btrfs_header_level(b);
2413         btrfs_node_key_to_cpu(b, &first_key, slot);
2414
2415         tmp = find_extent_buffer(fs_info, blocknr);
2416         if (tmp) {
2417                 /* first we do an atomic uptodate check */
2418                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2419                         *eb_ret = tmp;
2420                         return 0;
2421                 }
2422
2423                 /* the pages were up to date, but we failed
2424                  * the generation number check.  Do a full
2425                  * read for the generation number that is correct.
2426                  * We must do this without dropping locks so
2427                  * we can trust our generation number
2428                  */
2429                 btrfs_set_path_blocking(p);
2430
2431                 /* now we're allowed to do a blocking uptodate check */
2432                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2433                 if (!ret) {
2434                         *eb_ret = tmp;
2435                         return 0;
2436                 }
2437                 free_extent_buffer(tmp);
2438                 btrfs_release_path(p);
2439                 return -EIO;
2440         }
2441
2442         /*
2443          * reduce lock contention at high levels
2444          * of the btree by dropping locks before
2445          * we read.  Don't release the lock on the current
2446          * level because we need to walk this node to figure
2447          * out which blocks to read.
2448          */
2449         btrfs_unlock_up_safe(p, level + 1);
2450         btrfs_set_path_blocking(p);
2451
2452         if (p->reada != READA_NONE)
2453                 reada_for_search(fs_info, p, level, slot, key->objectid);
2454
2455         ret = -EAGAIN;
2456         tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2457                               &first_key);
2458         if (!IS_ERR(tmp)) {
2459                 /*
2460                  * If the read above didn't mark this buffer up to date,
2461                  * it will never end up being up to date.  Set ret to EIO now
2462                  * and give up so that our caller doesn't loop forever
2463                  * on our EAGAINs.
2464                  */
2465                 if (!extent_buffer_uptodate(tmp))
2466                         ret = -EIO;
2467                 free_extent_buffer(tmp);
2468         } else {
2469                 ret = PTR_ERR(tmp);
2470         }
2471
2472         btrfs_release_path(p);
2473         return ret;
2474 }
2475
2476 /*
2477  * helper function for btrfs_search_slot.  This does all of the checks
2478  * for node-level blocks and does any balancing required based on
2479  * the ins_len.
2480  *
2481  * If no extra work was required, zero is returned.  If we had to
2482  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2483  * start over
2484  */
2485 static int
2486 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2487                        struct btrfs_root *root, struct btrfs_path *p,
2488                        struct extent_buffer *b, int level, int ins_len,
2489                        int *write_lock_level)
2490 {
2491         struct btrfs_fs_info *fs_info = root->fs_info;
2492         int ret;
2493
2494         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2495             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2496                 int sret;
2497
2498                 if (*write_lock_level < level + 1) {
2499                         *write_lock_level = level + 1;
2500                         btrfs_release_path(p);
2501                         goto again;
2502                 }
2503
2504                 btrfs_set_path_blocking(p);
2505                 reada_for_balance(fs_info, p, level);
2506                 sret = split_node(trans, root, p, level);
2507
2508                 BUG_ON(sret > 0);
2509                 if (sret) {
2510                         ret = sret;
2511                         goto done;
2512                 }
2513                 b = p->nodes[level];
2514         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2515                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2516                 int sret;
2517
2518                 if (*write_lock_level < level + 1) {
2519                         *write_lock_level = level + 1;
2520                         btrfs_release_path(p);
2521                         goto again;
2522                 }
2523
2524                 btrfs_set_path_blocking(p);
2525                 reada_for_balance(fs_info, p, level);
2526                 sret = balance_level(trans, root, p, level);
2527
2528                 if (sret) {
2529                         ret = sret;
2530                         goto done;
2531                 }
2532                 b = p->nodes[level];
2533                 if (!b) {
2534                         btrfs_release_path(p);
2535                         goto again;
2536                 }
2537                 BUG_ON(btrfs_header_nritems(b) == 1);
2538         }
2539         return 0;
2540
2541 again:
2542         ret = -EAGAIN;
2543 done:
2544         return ret;
2545 }
2546
2547 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2548                       int level, int *prev_cmp, int *slot)
2549 {
2550         if (*prev_cmp != 0) {
2551                 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2552                 return *prev_cmp;
2553         }
2554
2555         *slot = 0;
2556
2557         return 0;
2558 }
2559
2560 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2561                 u64 iobjectid, u64 ioff, u8 key_type,
2562                 struct btrfs_key *found_key)
2563 {
2564         int ret;
2565         struct btrfs_key key;
2566         struct extent_buffer *eb;
2567
2568         ASSERT(path);
2569         ASSERT(found_key);
2570
2571         key.type = key_type;
2572         key.objectid = iobjectid;
2573         key.offset = ioff;
2574
2575         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2576         if (ret < 0)
2577                 return ret;
2578
2579         eb = path->nodes[0];
2580         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2581                 ret = btrfs_next_leaf(fs_root, path);
2582                 if (ret)
2583                         return ret;
2584                 eb = path->nodes[0];
2585         }
2586
2587         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2588         if (found_key->type != key.type ||
2589                         found_key->objectid != key.objectid)
2590                 return 1;
2591
2592         return 0;
2593 }
2594
2595 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2596                                                         struct btrfs_path *p,
2597                                                         int write_lock_level)
2598 {
2599         struct btrfs_fs_info *fs_info = root->fs_info;
2600         struct extent_buffer *b;
2601         int root_lock;
2602         int level = 0;
2603
2604         /* We try very hard to do read locks on the root */
2605         root_lock = BTRFS_READ_LOCK;
2606
2607         if (p->search_commit_root) {
2608                 /*
2609                  * The commit roots are read only so we always do read locks,
2610                  * and we always must hold the commit_root_sem when doing
2611                  * searches on them, the only exception is send where we don't
2612                  * want to block transaction commits for a long time, so
2613                  * we need to clone the commit root in order to avoid races
2614                  * with transaction commits that create a snapshot of one of
2615                  * the roots used by a send operation.
2616                  */
2617                 if (p->need_commit_sem) {
2618                         down_read(&fs_info->commit_root_sem);
2619                         b = btrfs_clone_extent_buffer(root->commit_root);
2620                         up_read(&fs_info->commit_root_sem);
2621                         if (!b)
2622                                 return ERR_PTR(-ENOMEM);
2623
2624                 } else {
2625                         b = root->commit_root;
2626                         extent_buffer_get(b);
2627                 }
2628                 level = btrfs_header_level(b);
2629                 /*
2630                  * Ensure that all callers have set skip_locking when
2631                  * p->search_commit_root = 1.
2632                  */
2633                 ASSERT(p->skip_locking == 1);
2634
2635                 goto out;
2636         }
2637
2638         if (p->skip_locking) {
2639                 b = btrfs_root_node(root);
2640                 level = btrfs_header_level(b);
2641                 goto out;
2642         }
2643
2644         /*
2645          * If the level is set to maximum, we can skip trying to get the read
2646          * lock.
2647          */
2648         if (write_lock_level < BTRFS_MAX_LEVEL) {
2649                 /*
2650                  * We don't know the level of the root node until we actually
2651                  * have it read locked
2652                  */
2653                 b = btrfs_read_lock_root_node(root);
2654                 level = btrfs_header_level(b);
2655                 if (level > write_lock_level)
2656                         goto out;
2657
2658                 /* Whoops, must trade for write lock */
2659                 btrfs_tree_read_unlock(b);
2660                 free_extent_buffer(b);
2661         }
2662
2663         b = btrfs_lock_root_node(root);
2664         root_lock = BTRFS_WRITE_LOCK;
2665
2666         /* The level might have changed, check again */
2667         level = btrfs_header_level(b);
2668
2669 out:
2670         p->nodes[level] = b;
2671         if (!p->skip_locking)
2672                 p->locks[level] = root_lock;
2673         /*
2674          * Callers are responsible for dropping b's references.
2675          */
2676         return b;
2677 }
2678
2679
2680 /*
2681  * btrfs_search_slot - look for a key in a tree and perform necessary
2682  * modifications to preserve tree invariants.
2683  *
2684  * @trans:      Handle of transaction, used when modifying the tree
2685  * @p:          Holds all btree nodes along the search path
2686  * @root:       The root node of the tree
2687  * @key:        The key we are looking for
2688  * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2689  *              deletions it's -1. 0 for plain searches
2690  * @cow:        boolean should CoW operations be performed. Must always be 1
2691  *              when modifying the tree.
2692  *
2693  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2694  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2695  *
2696  * If @key is found, 0 is returned and you can find the item in the leaf level
2697  * of the path (level 0)
2698  *
2699  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2700  * points to the slot where it should be inserted
2701  *
2702  * If an error is encountered while searching the tree a negative error number
2703  * is returned
2704  */
2705 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2706                       const struct btrfs_key *key, struct btrfs_path *p,
2707                       int ins_len, int cow)
2708 {
2709         struct btrfs_fs_info *fs_info = root->fs_info;
2710         struct extent_buffer *b;
2711         int slot;
2712         int ret;
2713         int err;
2714         int level;
2715         int lowest_unlock = 1;
2716         /* everything at write_lock_level or lower must be write locked */
2717         int write_lock_level = 0;
2718         u8 lowest_level = 0;
2719         int min_write_lock_level;
2720         int prev_cmp;
2721
2722         lowest_level = p->lowest_level;
2723         WARN_ON(lowest_level && ins_len > 0);
2724         WARN_ON(p->nodes[0] != NULL);
2725         BUG_ON(!cow && ins_len);
2726
2727         if (ins_len < 0) {
2728                 lowest_unlock = 2;
2729
2730                 /* when we are removing items, we might have to go up to level
2731                  * two as we update tree pointers  Make sure we keep write
2732                  * for those levels as well
2733                  */
2734                 write_lock_level = 2;
2735         } else if (ins_len > 0) {
2736                 /*
2737                  * for inserting items, make sure we have a write lock on
2738                  * level 1 so we can update keys
2739                  */
2740                 write_lock_level = 1;
2741         }
2742
2743         if (!cow)
2744                 write_lock_level = -1;
2745
2746         if (cow && (p->keep_locks || p->lowest_level))
2747                 write_lock_level = BTRFS_MAX_LEVEL;
2748
2749         min_write_lock_level = write_lock_level;
2750
2751 again:
2752         prev_cmp = -1;
2753         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2754         if (IS_ERR(b)) {
2755                 ret = PTR_ERR(b);
2756                 goto done;
2757         }
2758
2759         while (b) {
2760                 level = btrfs_header_level(b);
2761
2762                 /*
2763                  * setup the path here so we can release it under lock
2764                  * contention with the cow code
2765                  */
2766                 if (cow) {
2767                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2768
2769                         /*
2770                          * if we don't really need to cow this block
2771                          * then we don't want to set the path blocking,
2772                          * so we test it here
2773                          */
2774                         if (!should_cow_block(trans, root, b)) {
2775                                 trans->dirty = true;
2776                                 goto cow_done;
2777                         }
2778
2779                         /*
2780                          * must have write locks on this node and the
2781                          * parent
2782                          */
2783                         if (level > write_lock_level ||
2784                             (level + 1 > write_lock_level &&
2785                             level + 1 < BTRFS_MAX_LEVEL &&
2786                             p->nodes[level + 1])) {
2787                                 write_lock_level = level + 1;
2788                                 btrfs_release_path(p);
2789                                 goto again;
2790                         }
2791
2792                         btrfs_set_path_blocking(p);
2793                         if (last_level)
2794                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2795                                                       &b);
2796                         else
2797                                 err = btrfs_cow_block(trans, root, b,
2798                                                       p->nodes[level + 1],
2799                                                       p->slots[level + 1], &b);
2800                         if (err) {
2801                                 ret = err;
2802                                 goto done;
2803                         }
2804                 }
2805 cow_done:
2806                 p->nodes[level] = b;
2807                 /*
2808                  * Leave path with blocking locks to avoid massive
2809                  * lock context switch, this is made on purpose.
2810                  */
2811
2812                 /*
2813                  * we have a lock on b and as long as we aren't changing
2814                  * the tree, there is no way to for the items in b to change.
2815                  * It is safe to drop the lock on our parent before we
2816                  * go through the expensive btree search on b.
2817                  *
2818                  * If we're inserting or deleting (ins_len != 0), then we might
2819                  * be changing slot zero, which may require changing the parent.
2820                  * So, we can't drop the lock until after we know which slot
2821                  * we're operating on.
2822                  */
2823                 if (!ins_len && !p->keep_locks) {
2824                         int u = level + 1;
2825
2826                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2827                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2828                                 p->locks[u] = 0;
2829                         }
2830                 }
2831
2832                 ret = key_search(b, key, level, &prev_cmp, &slot);
2833                 if (ret < 0)
2834                         goto done;
2835
2836                 if (level != 0) {
2837                         int dec = 0;
2838                         if (ret && slot > 0) {
2839                                 dec = 1;
2840                                 slot -= 1;
2841                         }
2842                         p->slots[level] = slot;
2843                         err = setup_nodes_for_search(trans, root, p, b, level,
2844                                              ins_len, &write_lock_level);
2845                         if (err == -EAGAIN)
2846                                 goto again;
2847                         if (err) {
2848                                 ret = err;
2849                                 goto done;
2850                         }
2851                         b = p->nodes[level];
2852                         slot = p->slots[level];
2853
2854                         /*
2855                          * slot 0 is special, if we change the key
2856                          * we have to update the parent pointer
2857                          * which means we must have a write lock
2858                          * on the parent
2859                          */
2860                         if (slot == 0 && ins_len &&
2861                             write_lock_level < level + 1) {
2862                                 write_lock_level = level + 1;
2863                                 btrfs_release_path(p);
2864                                 goto again;
2865                         }
2866
2867                         unlock_up(p, level, lowest_unlock,
2868                                   min_write_lock_level, &write_lock_level);
2869
2870                         if (level == lowest_level) {
2871                                 if (dec)
2872                                         p->slots[level]++;
2873                                 goto done;
2874                         }
2875
2876                         err = read_block_for_search(root, p, &b, level,
2877                                                     slot, key);
2878                         if (err == -EAGAIN)
2879                                 goto again;
2880                         if (err) {
2881                                 ret = err;
2882                                 goto done;
2883                         }
2884
2885                         if (!p->skip_locking) {
2886                                 level = btrfs_header_level(b);
2887                                 if (level <= write_lock_level) {
2888                                         err = btrfs_try_tree_write_lock(b);
2889                                         if (!err) {
2890                                                 btrfs_set_path_blocking(p);
2891                                                 btrfs_tree_lock(b);
2892                                         }
2893                                         p->locks[level] = BTRFS_WRITE_LOCK;
2894                                 } else {
2895                                         err = btrfs_tree_read_lock_atomic(b);
2896                                         if (!err) {
2897                                                 btrfs_set_path_blocking(p);
2898                                                 btrfs_tree_read_lock(b);
2899                                         }
2900                                         p->locks[level] = BTRFS_READ_LOCK;
2901                                 }
2902                                 p->nodes[level] = b;
2903                         }
2904                 } else {
2905                         p->slots[level] = slot;
2906                         if (ins_len > 0 &&
2907                             btrfs_leaf_free_space(fs_info, b) < ins_len) {
2908                                 if (write_lock_level < 1) {
2909                                         write_lock_level = 1;
2910                                         btrfs_release_path(p);
2911                                         goto again;
2912                                 }
2913
2914                                 btrfs_set_path_blocking(p);
2915                                 err = split_leaf(trans, root, key,
2916                                                  p, ins_len, ret == 0);
2917
2918                                 BUG_ON(err > 0);
2919                                 if (err) {
2920                                         ret = err;
2921                                         goto done;
2922                                 }
2923                         }
2924                         if (!p->search_for_split)
2925                                 unlock_up(p, level, lowest_unlock,
2926                                           min_write_lock_level, NULL);
2927                         goto done;
2928                 }
2929         }
2930         ret = 1;
2931 done:
2932         /*
2933          * we don't really know what they plan on doing with the path
2934          * from here on, so for now just mark it as blocking
2935          */
2936         if (!p->leave_spinning)
2937                 btrfs_set_path_blocking(p);
2938         if (ret < 0 && !p->skip_release_on_error)
2939                 btrfs_release_path(p);
2940         return ret;
2941 }
2942
2943 /*
2944  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945  * current state of the tree together with the operations recorded in the tree
2946  * modification log to search for the key in a previous version of this tree, as
2947  * denoted by the time_seq parameter.
2948  *
2949  * Naturally, there is no support for insert, delete or cow operations.
2950  *
2951  * The resulting path and return value will be set up as if we called
2952  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953  */
2954 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2955                           struct btrfs_path *p, u64 time_seq)
2956 {
2957         struct btrfs_fs_info *fs_info = root->fs_info;
2958         struct extent_buffer *b;
2959         int slot;
2960         int ret;
2961         int err;
2962         int level;
2963         int lowest_unlock = 1;
2964         u8 lowest_level = 0;
2965         int prev_cmp = -1;
2966
2967         lowest_level = p->lowest_level;
2968         WARN_ON(p->nodes[0] != NULL);
2969
2970         if (p->search_commit_root) {
2971                 BUG_ON(time_seq);
2972                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2973         }
2974
2975 again:
2976         b = get_old_root(root, time_seq);
2977         if (!b) {
2978                 ret = -EIO;
2979                 goto done;
2980         }
2981         level = btrfs_header_level(b);
2982         p->locks[level] = BTRFS_READ_LOCK;
2983
2984         while (b) {
2985                 level = btrfs_header_level(b);
2986                 p->nodes[level] = b;
2987
2988                 /*
2989                  * we have a lock on b and as long as we aren't changing
2990                  * the tree, there is no way to for the items in b to change.
2991                  * It is safe to drop the lock on our parent before we
2992                  * go through the expensive btree search on b.
2993                  */
2994                 btrfs_unlock_up_safe(p, level + 1);
2995
2996                 /*
2997                  * Since we can unwind ebs we want to do a real search every
2998                  * time.
2999                  */
3000                 prev_cmp = -1;
3001                 ret = key_search(b, key, level, &prev_cmp, &slot);
3002                 if (ret < 0)
3003                         goto done;
3004
3005                 if (level != 0) {
3006                         int dec = 0;
3007                         if (ret && slot > 0) {
3008                                 dec = 1;
3009                                 slot -= 1;
3010                         }
3011                         p->slots[level] = slot;
3012                         unlock_up(p, level, lowest_unlock, 0, NULL);
3013
3014                         if (level == lowest_level) {
3015                                 if (dec)
3016                                         p->slots[level]++;
3017                                 goto done;
3018                         }
3019
3020                         err = read_block_for_search(root, p, &b, level,
3021                                                     slot, key);
3022                         if (err == -EAGAIN)
3023                                 goto again;
3024                         if (err) {
3025                                 ret = err;
3026                                 goto done;
3027                         }
3028
3029                         level = btrfs_header_level(b);
3030                         err = btrfs_tree_read_lock_atomic(b);
3031                         if (!err) {
3032                                 btrfs_set_path_blocking(p);
3033                                 btrfs_tree_read_lock(b);
3034                         }
3035                         b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3036                         if (!b) {
3037                                 ret = -ENOMEM;
3038                                 goto done;
3039                         }
3040                         p->locks[level] = BTRFS_READ_LOCK;
3041                         p->nodes[level] = b;
3042                 } else {
3043                         p->slots[level] = slot;
3044                         unlock_up(p, level, lowest_unlock, 0, NULL);
3045                         goto done;
3046                 }
3047         }
3048         ret = 1;
3049 done:
3050         if (!p->leave_spinning)
3051                 btrfs_set_path_blocking(p);
3052         if (ret < 0)
3053                 btrfs_release_path(p);
3054
3055         return ret;
3056 }
3057
3058 /*
3059  * helper to use instead of search slot if no exact match is needed but
3060  * instead the next or previous item should be returned.
3061  * When find_higher is true, the next higher item is returned, the next lower
3062  * otherwise.
3063  * When return_any and find_higher are both true, and no higher item is found,
3064  * return the next lower instead.
3065  * When return_any is true and find_higher is false, and no lower item is found,
3066  * return the next higher instead.
3067  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3068  * < 0 on error
3069  */
3070 int btrfs_search_slot_for_read(struct btrfs_root *root,
3071                                const struct btrfs_key *key,
3072                                struct btrfs_path *p, int find_higher,
3073                                int return_any)
3074 {
3075         int ret;
3076         struct extent_buffer *leaf;
3077
3078 again:
3079         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3080         if (ret <= 0)
3081                 return ret;
3082         /*
3083          * a return value of 1 means the path is at the position where the
3084          * item should be inserted. Normally this is the next bigger item,
3085          * but in case the previous item is the last in a leaf, path points
3086          * to the first free slot in the previous leaf, i.e. at an invalid
3087          * item.
3088          */
3089         leaf = p->nodes[0];
3090
3091         if (find_higher) {
3092                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3093                         ret = btrfs_next_leaf(root, p);
3094                         if (ret <= 0)
3095                                 return ret;
3096                         if (!return_any)
3097                                 return 1;
3098                         /*
3099                          * no higher item found, return the next
3100                          * lower instead
3101                          */
3102                         return_any = 0;
3103                         find_higher = 0;
3104                         btrfs_release_path(p);
3105                         goto again;
3106                 }
3107         } else {
3108                 if (p->slots[0] == 0) {
3109                         ret = btrfs_prev_leaf(root, p);
3110                         if (ret < 0)
3111                                 return ret;
3112                         if (!ret) {
3113                                 leaf = p->nodes[0];
3114                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3115                                         p->slots[0]--;
3116                                 return 0;
3117                         }
3118                         if (!return_any)
3119                                 return 1;
3120                         /*
3121                          * no lower item found, return the next
3122                          * higher instead
3123                          */
3124                         return_any = 0;
3125                         find_higher = 1;
3126                         btrfs_release_path(p);
3127                         goto again;
3128                 } else {
3129                         --p->slots[0];
3130                 }
3131         }
3132         return 0;
3133 }
3134
3135 /*
3136  * adjust the pointers going up the tree, starting at level
3137  * making sure the right key of each node is points to 'key'.
3138  * This is used after shifting pointers to the left, so it stops
3139  * fixing up pointers when a given leaf/node is not in slot 0 of the
3140  * higher levels
3141  *
3142  */
3143 static void fixup_low_keys(struct btrfs_path *path,
3144                            struct btrfs_disk_key *key, int level)
3145 {
3146         int i;
3147         struct extent_buffer *t;
3148         int ret;
3149
3150         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3151                 int tslot = path->slots[i];
3152
3153                 if (!path->nodes[i])
3154                         break;
3155                 t = path->nodes[i];
3156                 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3157                                 GFP_ATOMIC);
3158                 BUG_ON(ret < 0);
3159                 btrfs_set_node_key(t, key, tslot);
3160                 btrfs_mark_buffer_dirty(path->nodes[i]);
3161                 if (tslot != 0)
3162                         break;
3163         }
3164 }
3165
3166 /*
3167  * update item key.
3168  *
3169  * This function isn't completely safe. It's the caller's responsibility
3170  * that the new key won't break the order
3171  */
3172 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3173                              struct btrfs_path *path,
3174                              const struct btrfs_key *new_key)
3175 {
3176         struct btrfs_disk_key disk_key;
3177         struct extent_buffer *eb;
3178         int slot;
3179
3180         eb = path->nodes[0];
3181         slot = path->slots[0];
3182         if (slot > 0) {
3183                 btrfs_item_key(eb, &disk_key, slot - 1);
3184                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3185         }
3186         if (slot < btrfs_header_nritems(eb) - 1) {
3187                 btrfs_item_key(eb, &disk_key, slot + 1);
3188                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3189         }
3190
3191         btrfs_cpu_key_to_disk(&disk_key, new_key);
3192         btrfs_set_item_key(eb, &disk_key, slot);
3193         btrfs_mark_buffer_dirty(eb);
3194         if (slot == 0)
3195                 fixup_low_keys(path, &disk_key, 1);
3196 }
3197
3198 /*
3199  * try to push data from one node into the next node left in the
3200  * tree.
3201  *
3202  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3203  * error, and > 0 if there was no room in the left hand block.
3204  */
3205 static int push_node_left(struct btrfs_trans_handle *trans,
3206                           struct btrfs_fs_info *fs_info,
3207                           struct extent_buffer *dst,
3208                           struct extent_buffer *src, int empty)
3209 {
3210         int push_items = 0;
3211         int src_nritems;
3212         int dst_nritems;
3213         int ret = 0;
3214
3215         src_nritems = btrfs_header_nritems(src);
3216         dst_nritems = btrfs_header_nritems(dst);
3217         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3218         WARN_ON(btrfs_header_generation(src) != trans->transid);
3219         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3220
3221         if (!empty && src_nritems <= 8)
3222                 return 1;
3223
3224         if (push_items <= 0)
3225                 return 1;
3226
3227         if (empty) {
3228                 push_items = min(src_nritems, push_items);
3229                 if (push_items < src_nritems) {
3230                         /* leave at least 8 pointers in the node if
3231                          * we aren't going to empty it
3232                          */
3233                         if (src_nritems - push_items < 8) {
3234                                 if (push_items <= 8)
3235                                         return 1;
3236                                 push_items -= 8;
3237                         }
3238                 }
3239         } else
3240                 push_items = min(src_nritems - 8, push_items);
3241
3242         ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3243                                    push_items);
3244         if (ret) {
3245                 btrfs_abort_transaction(trans, ret);
3246                 return ret;
3247         }
3248         copy_extent_buffer(dst, src,
3249                            btrfs_node_key_ptr_offset(dst_nritems),
3250                            btrfs_node_key_ptr_offset(0),
3251                            push_items * sizeof(struct btrfs_key_ptr));
3252
3253         if (push_items < src_nritems) {
3254                 /*
3255                  * Don't call tree_mod_log_insert_move here, key removal was
3256                  * already fully logged by tree_mod_log_eb_copy above.
3257                  */
3258                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3259                                       btrfs_node_key_ptr_offset(push_items),
3260                                       (src_nritems - push_items) *
3261                                       sizeof(struct btrfs_key_ptr));
3262         }
3263         btrfs_set_header_nritems(src, src_nritems - push_items);
3264         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3265         btrfs_mark_buffer_dirty(src);
3266         btrfs_mark_buffer_dirty(dst);
3267
3268         return ret;
3269 }
3270
3271 /*
3272  * try to push data from one node into the next node right in the
3273  * tree.
3274  *
3275  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3276  * error, and > 0 if there was no room in the right hand block.
3277  *
3278  * this will  only push up to 1/2 the contents of the left node over
3279  */
3280 static int balance_node_right(struct btrfs_trans_handle *trans,
3281                               struct btrfs_fs_info *fs_info,
3282                               struct extent_buffer *dst,
3283                               struct extent_buffer *src)
3284 {
3285         int push_items = 0;
3286         int max_push;
3287         int src_nritems;
3288         int dst_nritems;
3289         int ret = 0;
3290
3291         WARN_ON(btrfs_header_generation(src) != trans->transid);
3292         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3293
3294         src_nritems = btrfs_header_nritems(src);
3295         dst_nritems = btrfs_header_nritems(dst);
3296         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3297         if (push_items <= 0)
3298                 return 1;
3299
3300         if (src_nritems < 4)
3301                 return 1;
3302
3303         max_push = src_nritems / 2 + 1;
3304         /* don't try to empty the node */
3305         if (max_push >= src_nritems)
3306                 return 1;
3307
3308         if (max_push < push_items)
3309                 push_items = max_push;
3310
3311         ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3312         BUG_ON(ret < 0);
3313         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3314                                       btrfs_node_key_ptr_offset(0),
3315                                       (dst_nritems) *
3316                                       sizeof(struct btrfs_key_ptr));
3317
3318         ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3319                                    src_nritems - push_items, push_items);
3320         if (ret) {
3321                 btrfs_abort_transaction(trans, ret);
3322                 return ret;
3323         }
3324         copy_extent_buffer(dst, src,
3325                            btrfs_node_key_ptr_offset(0),
3326                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3327                            push_items * sizeof(struct btrfs_key_ptr));
3328
3329         btrfs_set_header_nritems(src, src_nritems - push_items);
3330         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3331
3332         btrfs_mark_buffer_dirty(src);
3333         btrfs_mark_buffer_dirty(dst);
3334
3335         return ret;
3336 }
3337
3338 /*
3339  * helper function to insert a new root level in the tree.
3340  * A new node is allocated, and a single item is inserted to
3341  * point to the existing root
3342  *
3343  * returns zero on success or < 0 on failure.
3344  */
3345 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3346                            struct btrfs_root *root,
3347                            struct btrfs_path *path, int level)
3348 {
3349         struct btrfs_fs_info *fs_info = root->fs_info;
3350         u64 lower_gen;
3351         struct extent_buffer *lower;
3352         struct extent_buffer *c;
3353         struct extent_buffer *old;
3354         struct btrfs_disk_key lower_key;
3355         int ret;
3356
3357         BUG_ON(path->nodes[level]);
3358         BUG_ON(path->nodes[level-1] != root->node);
3359
3360         lower = path->nodes[level-1];
3361         if (level == 1)
3362                 btrfs_item_key(lower, &lower_key, 0);
3363         else
3364                 btrfs_node_key(lower, &lower_key, 0);
3365
3366         c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3367                                          root->node->start, 0);
3368         if (IS_ERR(c))
3369                 return PTR_ERR(c);
3370
3371         root_add_used(root, fs_info->nodesize);
3372
3373         btrfs_set_header_nritems(c, 1);
3374         btrfs_set_node_key(c, &lower_key, 0);
3375         btrfs_set_node_blockptr(c, 0, lower->start);
3376         lower_gen = btrfs_header_generation(lower);
3377         WARN_ON(lower_gen != trans->transid);
3378
3379         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3380
3381         btrfs_mark_buffer_dirty(c);
3382
3383         old = root->node;
3384         ret = tree_mod_log_insert_root(root->node, c, 0);
3385         BUG_ON(ret < 0);
3386         rcu_assign_pointer(root->node, c);
3387
3388         /* the super has an extra ref to root->node */
3389         free_extent_buffer(old);
3390
3391         add_root_to_dirty_list(root);
3392         extent_buffer_get(c);
3393         path->nodes[level] = c;
3394         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3395         path->slots[level] = 0;
3396         return 0;
3397 }
3398
3399 /*
3400  * worker function to insert a single pointer in a node.
3401  * the node should have enough room for the pointer already
3402  *
3403  * slot and level indicate where you want the key to go, and
3404  * blocknr is the block the key points to.
3405  */
3406 static void insert_ptr(struct btrfs_trans_handle *trans,
3407                        struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3408                        struct btrfs_disk_key *key, u64 bytenr,
3409                        int slot, int level)
3410 {
3411         struct extent_buffer *lower;
3412         int nritems;
3413         int ret;
3414
3415         BUG_ON(!path->nodes[level]);
3416         btrfs_assert_tree_locked(path->nodes[level]);
3417         lower = path->nodes[level];
3418         nritems = btrfs_header_nritems(lower);
3419         BUG_ON(slot > nritems);
3420         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3421         if (slot != nritems) {
3422                 if (level) {
3423                         ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3424                                         nritems - slot);
3425                         BUG_ON(ret < 0);
3426                 }
3427                 memmove_extent_buffer(lower,
3428                               btrfs_node_key_ptr_offset(slot + 1),
3429                               btrfs_node_key_ptr_offset(slot),
3430                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431         }
3432         if (level) {
3433                 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3434                                 GFP_NOFS);
3435                 BUG_ON(ret < 0);
3436         }
3437         btrfs_set_node_key(lower, key, slot);
3438         btrfs_set_node_blockptr(lower, slot, bytenr);
3439         WARN_ON(trans->transid == 0);
3440         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441         btrfs_set_header_nritems(lower, nritems + 1);
3442         btrfs_mark_buffer_dirty(lower);
3443 }
3444
3445 /*
3446  * split the node at the specified level in path in two.
3447  * The path is corrected to point to the appropriate node after the split
3448  *
3449  * Before splitting this tries to make some room in the node by pushing
3450  * left and right, if either one works, it returns right away.
3451  *
3452  * returns 0 on success and < 0 on failure
3453  */
3454 static noinline int split_node(struct btrfs_trans_handle *trans,
3455                                struct btrfs_root *root,
3456                                struct btrfs_path *path, int level)
3457 {
3458         struct btrfs_fs_info *fs_info = root->fs_info;
3459         struct extent_buffer *c;
3460         struct extent_buffer *split;
3461         struct btrfs_disk_key disk_key;
3462         int mid;
3463         int ret;
3464         u32 c_nritems;
3465
3466         c = path->nodes[level];
3467         WARN_ON(btrfs_header_generation(c) != trans->transid);
3468         if (c == root->node) {
3469                 /*
3470                  * trying to split the root, lets make a new one
3471                  *
3472                  * tree mod log: We don't log_removal old root in
3473                  * insert_new_root, because that root buffer will be kept as a
3474                  * normal node. We are going to log removal of half of the
3475                  * elements below with tree_mod_log_eb_copy. We're holding a
3476                  * tree lock on the buffer, which is why we cannot race with
3477                  * other tree_mod_log users.
3478                  */
3479                 ret = insert_new_root(trans, root, path, level + 1);
3480                 if (ret)
3481                         return ret;
3482         } else {
3483                 ret = push_nodes_for_insert(trans, root, path, level);
3484                 c = path->nodes[level];
3485                 if (!ret && btrfs_header_nritems(c) <
3486                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487                         return 0;
3488                 if (ret < 0)
3489                         return ret;
3490         }
3491
3492         c_nritems = btrfs_header_nritems(c);
3493         mid = (c_nritems + 1) / 2;
3494         btrfs_node_key(c, &disk_key, mid);
3495
3496         split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3497                                              c->start, 0);
3498         if (IS_ERR(split))
3499                 return PTR_ERR(split);
3500
3501         root_add_used(root, fs_info->nodesize);
3502         ASSERT(btrfs_header_level(c) == level);
3503
3504         ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3505         if (ret) {
3506                 btrfs_abort_transaction(trans, ret);
3507                 return ret;
3508         }
3509         copy_extent_buffer(split, c,
3510                            btrfs_node_key_ptr_offset(0),
3511                            btrfs_node_key_ptr_offset(mid),
3512                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3513         btrfs_set_header_nritems(split, c_nritems - mid);
3514         btrfs_set_header_nritems(c, mid);
3515         ret = 0;
3516
3517         btrfs_mark_buffer_dirty(c);
3518         btrfs_mark_buffer_dirty(split);
3519
3520         insert_ptr(trans, fs_info, path, &disk_key, split->start,
3521                    path->slots[level + 1] + 1, level + 1);
3522
3523         if (path->slots[level] >= mid) {
3524                 path->slots[level] -= mid;
3525                 btrfs_tree_unlock(c);
3526                 free_extent_buffer(c);
3527                 path->nodes[level] = split;
3528                 path->slots[level + 1] += 1;
3529         } else {
3530                 btrfs_tree_unlock(split);
3531                 free_extent_buffer(split);
3532         }
3533         return ret;
3534 }
3535
3536 /*
3537  * how many bytes are required to store the items in a leaf.  start
3538  * and nr indicate which items in the leaf to check.  This totals up the
3539  * space used both by the item structs and the item data
3540  */
3541 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3542 {
3543         struct btrfs_item *start_item;
3544         struct btrfs_item *end_item;
3545         struct btrfs_map_token token;
3546         int data_len;
3547         int nritems = btrfs_header_nritems(l);
3548         int end = min(nritems, start + nr) - 1;
3549
3550         if (!nr)
3551                 return 0;
3552         btrfs_init_map_token(&token);
3553         start_item = btrfs_item_nr(start);
3554         end_item = btrfs_item_nr(end);
3555         data_len = btrfs_token_item_offset(l, start_item, &token) +
3556                 btrfs_token_item_size(l, start_item, &token);
3557         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3558         data_len += sizeof(struct btrfs_item) * nr;
3559         WARN_ON(data_len < 0);
3560         return data_len;
3561 }
3562
3563 /*
3564  * The space between the end of the leaf items and
3565  * the start of the leaf data.  IOW, how much room
3566  * the leaf has left for both items and data
3567  */
3568 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3569                                    struct extent_buffer *leaf)
3570 {
3571         int nritems = btrfs_header_nritems(leaf);
3572         int ret;
3573
3574         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3575         if (ret < 0) {
3576                 btrfs_crit(fs_info,
3577                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3578                            ret,
3579                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3580                            leaf_space_used(leaf, 0, nritems), nritems);
3581         }
3582         return ret;
3583 }
3584
3585 /*
3586  * min slot controls the lowest index we're willing to push to the
3587  * right.  We'll push up to and including min_slot, but no lower
3588  */
3589 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3590                                       struct btrfs_path *path,
3591                                       int data_size, int empty,
3592                                       struct extent_buffer *right,
3593                                       int free_space, u32 left_nritems,
3594                                       u32 min_slot)
3595 {
3596         struct extent_buffer *left = path->nodes[0];
3597         struct extent_buffer *upper = path->nodes[1];
3598         struct btrfs_map_token token;
3599         struct btrfs_disk_key disk_key;
3600         int slot;
3601         u32 i;
3602         int push_space = 0;
3603         int push_items = 0;
3604         struct btrfs_item *item;
3605         u32 nr;
3606         u32 right_nritems;
3607         u32 data_end;
3608         u32 this_item_size;
3609
3610         btrfs_init_map_token(&token);
3611
3612         if (empty)
3613                 nr = 0;
3614         else
3615                 nr = max_t(u32, 1, min_slot);
3616
3617         if (path->slots[0] >= left_nritems)
3618                 push_space += data_size;
3619
3620         slot = path->slots[1];
3621         i = left_nritems - 1;
3622         while (i >= nr) {
3623                 item = btrfs_item_nr(i);
3624
3625                 if (!empty && push_items > 0) {
3626                         if (path->slots[0] > i)
3627                                 break;
3628                         if (path->slots[0] == i) {
3629                                 int space = btrfs_leaf_free_space(fs_info, left);
3630                                 if (space + push_space * 2 > free_space)
3631                                         break;
3632                         }
3633                 }
3634
3635                 if (path->slots[0] == i)
3636                         push_space += data_size;
3637
3638                 this_item_size = btrfs_item_size(left, item);
3639                 if (this_item_size + sizeof(*item) + push_space > free_space)
3640                         break;
3641
3642                 push_items++;
3643                 push_space += this_item_size + sizeof(*item);
3644                 if (i == 0)
3645                         break;
3646                 i--;
3647         }
3648
3649         if (push_items == 0)
3650                 goto out_unlock;
3651
3652         WARN_ON(!empty && push_items == left_nritems);
3653
3654         /* push left to right */
3655         right_nritems = btrfs_header_nritems(right);
3656
3657         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3658         push_space -= leaf_data_end(fs_info, left);
3659
3660         /* make room in the right data area */
3661         data_end = leaf_data_end(fs_info, right);
3662         memmove_extent_buffer(right,
3663                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3664                               BTRFS_LEAF_DATA_OFFSET + data_end,
3665                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3666
3667         /* copy from the left data area */
3668         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3669                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3670                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3671                      push_space);
3672
3673         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3674                               btrfs_item_nr_offset(0),
3675                               right_nritems * sizeof(struct btrfs_item));
3676
3677         /* copy the items from left to right */
3678         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3679                    btrfs_item_nr_offset(left_nritems - push_items),
3680                    push_items * sizeof(struct btrfs_item));
3681
3682         /* update the item pointers */
3683         right_nritems += push_items;
3684         btrfs_set_header_nritems(right, right_nritems);
3685         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3686         for (i = 0; i < right_nritems; i++) {
3687                 item = btrfs_item_nr(i);
3688                 push_space -= btrfs_token_item_size(right, item, &token);
3689                 btrfs_set_token_item_offset(right, item, push_space, &token);
3690         }
3691
3692         left_nritems -= push_items;
3693         btrfs_set_header_nritems(left, left_nritems);
3694
3695         if (left_nritems)
3696                 btrfs_mark_buffer_dirty(left);
3697         else
3698                 clean_tree_block(fs_info, left);
3699
3700         btrfs_mark_buffer_dirty(right);
3701
3702         btrfs_item_key(right, &disk_key, 0);
3703         btrfs_set_node_key(upper, &disk_key, slot + 1);
3704         btrfs_mark_buffer_dirty(upper);
3705
3706         /* then fixup the leaf pointer in the path */
3707         if (path->slots[0] >= left_nritems) {
3708                 path->slots[0] -= left_nritems;
3709                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3710                         clean_tree_block(fs_info, path->nodes[0]);
3711                 btrfs_tree_unlock(path->nodes[0]);
3712                 free_extent_buffer(path->nodes[0]);
3713                 path->nodes[0] = right;
3714                 path->slots[1] += 1;
3715         } else {
3716                 btrfs_tree_unlock(right);
3717                 free_extent_buffer(right);
3718         }
3719         return 0;
3720
3721 out_unlock:
3722         btrfs_tree_unlock(right);
3723         free_extent_buffer(right);
3724         return 1;
3725 }
3726
3727 /*
3728  * push some data in the path leaf to the right, trying to free up at
3729  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3730  *
3731  * returns 1 if the push failed because the other node didn't have enough
3732  * room, 0 if everything worked out and < 0 if there were major errors.
3733  *
3734  * this will push starting from min_slot to the end of the leaf.  It won't
3735  * push any slot lower than min_slot
3736  */
3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3738                            *root, struct btrfs_path *path,
3739                            int min_data_size, int data_size,
3740                            int empty, u32 min_slot)
3741 {
3742         struct btrfs_fs_info *fs_info = root->fs_info;
3743         struct extent_buffer *left = path->nodes[0];
3744         struct extent_buffer *right;
3745         struct extent_buffer *upper;
3746         int slot;
3747         int free_space;
3748         u32 left_nritems;
3749         int ret;
3750
3751         if (!path->nodes[1])
3752                 return 1;
3753
3754         slot = path->slots[1];
3755         upper = path->nodes[1];
3756         if (slot >= btrfs_header_nritems(upper) - 1)
3757                 return 1;
3758
3759         btrfs_assert_tree_locked(path->nodes[1]);
3760
3761         right = read_node_slot(fs_info, upper, slot + 1);
3762         /*
3763          * slot + 1 is not valid or we fail to read the right node,
3764          * no big deal, just return.
3765          */
3766         if (IS_ERR(right))
3767                 return 1;
3768
3769         btrfs_tree_lock(right);
3770         btrfs_set_lock_blocking_write(right);
3771
3772         free_space = btrfs_leaf_free_space(fs_info, right);
3773         if (free_space < data_size)
3774                 goto out_unlock;
3775
3776         /* cow and double check */
3777         ret = btrfs_cow_block(trans, root, right, upper,
3778                               slot + 1, &right);
3779         if (ret)
3780                 goto out_unlock;
3781
3782         free_space = btrfs_leaf_free_space(fs_info, right);
3783         if (free_space < data_size)
3784                 goto out_unlock;
3785
3786         left_nritems = btrfs_header_nritems(left);
3787         if (left_nritems == 0)
3788                 goto out_unlock;
3789
3790         if (path->slots[0] == left_nritems && !empty) {
3791                 /* Key greater than all keys in the leaf, right neighbor has
3792                  * enough room for it and we're not emptying our leaf to delete
3793                  * it, therefore use right neighbor to insert the new item and
3794                  * no need to touch/dirty our left leaf. */
3795                 btrfs_tree_unlock(left);
3796                 free_extent_buffer(left);
3797                 path->nodes[0] = right;
3798                 path->slots[0] = 0;
3799                 path->slots[1]++;
3800                 return 0;
3801         }
3802
3803         return __push_leaf_right(fs_info, path, min_data_size, empty,
3804                                 right, free_space, left_nritems, min_slot);
3805 out_unlock:
3806         btrfs_tree_unlock(right);
3807         free_extent_buffer(right);
3808         return 1;
3809 }
3810
3811 /*
3812  * push some data in the path leaf to the left, trying to free up at
3813  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3814  *
3815  * max_slot can put a limit on how far into the leaf we'll push items.  The
3816  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3817  * items
3818  */
3819 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3820                                      struct btrfs_path *path, int data_size,
3821                                      int empty, struct extent_buffer *left,
3822                                      int free_space, u32 right_nritems,
3823                                      u32 max_slot)
3824 {
3825         struct btrfs_disk_key disk_key;
3826         struct extent_buffer *right = path->nodes[0];
3827         int i;
3828         int push_space = 0;
3829         int push_items = 0;
3830         struct btrfs_item *item;
3831         u32 old_left_nritems;
3832         u32 nr;
3833         int ret = 0;
3834         u32 this_item_size;
3835         u32 old_left_item_size;
3836         struct btrfs_map_token token;
3837
3838         btrfs_init_map_token(&token);
3839
3840         if (empty)
3841                 nr = min(right_nritems, max_slot);
3842         else
3843                 nr = min(right_nritems - 1, max_slot);
3844
3845         for (i = 0; i < nr; i++) {
3846                 item = btrfs_item_nr(i);
3847
3848                 if (!empty && push_items > 0) {
3849                         if (path->slots[0] < i)
3850                                 break;
3851                         if (path->slots[0] == i) {
3852                                 int space = btrfs_leaf_free_space(fs_info, right);
3853                                 if (space + push_space * 2 > free_space)
3854                                         break;
3855                         }
3856                 }
3857
3858                 if (path->slots[0] == i)
3859                         push_space += data_size;
3860
3861                 this_item_size = btrfs_item_size(right, item);
3862                 if (this_item_size + sizeof(*item) + push_space > free_space)
3863                         break;
3864
3865                 push_items++;
3866                 push_space += this_item_size + sizeof(*item);
3867         }
3868
3869         if (push_items == 0) {
3870                 ret = 1;
3871                 goto out;
3872         }
3873         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874
3875         /* push data from right to left */
3876         copy_extent_buffer(left, right,
3877                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878                            btrfs_item_nr_offset(0),
3879                            push_items * sizeof(struct btrfs_item));
3880
3881         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3882                      btrfs_item_offset_nr(right, push_items - 1);
3883
3884         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3885                      leaf_data_end(fs_info, left) - push_space,
3886                      BTRFS_LEAF_DATA_OFFSET +
3887                      btrfs_item_offset_nr(right, push_items - 1),
3888                      push_space);
3889         old_left_nritems = btrfs_header_nritems(left);
3890         BUG_ON(old_left_nritems <= 0);
3891
3892         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894                 u32 ioff;
3895
3896                 item = btrfs_item_nr(i);
3897
3898                 ioff = btrfs_token_item_offset(left, item, &token);
3899                 btrfs_set_token_item_offset(left, item,
3900                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3901                       &token);
3902         }
3903         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904
3905         /* fixup right node */
3906         if (push_items > right_nritems)
3907                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908                        right_nritems);
3909
3910         if (push_items < right_nritems) {
3911                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912                                                   leaf_data_end(fs_info, right);
3913                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3914                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3915                                       BTRFS_LEAF_DATA_OFFSET +
3916                                       leaf_data_end(fs_info, right), push_space);
3917
3918                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919                               btrfs_item_nr_offset(push_items),
3920                              (btrfs_header_nritems(right) - push_items) *
3921                              sizeof(struct btrfs_item));
3922         }
3923         right_nritems -= push_items;
3924         btrfs_set_header_nritems(right, right_nritems);
3925         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3926         for (i = 0; i < right_nritems; i++) {
3927                 item = btrfs_item_nr(i);
3928
3929                 push_space = push_space - btrfs_token_item_size(right,
3930                                                                 item, &token);
3931                 btrfs_set_token_item_offset(right, item, push_space, &token);
3932         }
3933
3934         btrfs_mark_buffer_dirty(left);
3935         if (right_nritems)
3936                 btrfs_mark_buffer_dirty(right);
3937         else
3938                 clean_tree_block(fs_info, right);
3939
3940         btrfs_item_key(right, &disk_key, 0);
3941         fixup_low_keys(path, &disk_key, 1);
3942
3943         /* then fixup the leaf pointer in the path */
3944         if (path->slots[0] < push_items) {
3945                 path->slots[0] += old_left_nritems;
3946                 btrfs_tree_unlock(path->nodes[0]);
3947                 free_extent_buffer(path->nodes[0]);
3948                 path->nodes[0] = left;
3949                 path->slots[1] -= 1;
3950         } else {
3951                 btrfs_tree_unlock(left);
3952                 free_extent_buffer(left);
3953                 path->slots[0] -= push_items;
3954         }
3955         BUG_ON(path->slots[0] < 0);
3956         return ret;
3957 out:
3958         btrfs_tree_unlock(left);
3959         free_extent_buffer(left);
3960         return ret;
3961 }
3962
3963 /*
3964  * push some data in the path leaf to the left, trying to free up at
3965  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966  *
3967  * max_slot can put a limit on how far into the leaf we'll push items.  The
3968  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969  * items
3970  */
3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972                           *root, struct btrfs_path *path, int min_data_size,
3973                           int data_size, int empty, u32 max_slot)
3974 {
3975         struct btrfs_fs_info *fs_info = root->fs_info;
3976         struct extent_buffer *right = path->nodes[0];
3977         struct extent_buffer *left;
3978         int slot;
3979         int free_space;
3980         u32 right_nritems;
3981         int ret = 0;
3982
3983         slot = path->slots[1];
3984         if (slot == 0)
3985                 return 1;
3986         if (!path->nodes[1])
3987                 return 1;
3988
3989         right_nritems = btrfs_header_nritems(right);
3990         if (right_nritems == 0)
3991                 return 1;
3992
3993         btrfs_assert_tree_locked(path->nodes[1]);
3994
3995         left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3996         /*
3997          * slot - 1 is not valid or we fail to read the left node,
3998          * no big deal, just return.
3999          */
4000         if (IS_ERR(left))
4001                 return 1;
4002
4003         btrfs_tree_lock(left);
4004         btrfs_set_lock_blocking_write(left);
4005
4006         free_space = btrfs_leaf_free_space(fs_info, left);
4007         if (free_space < data_size) {
4008                 ret = 1;
4009                 goto out;
4010         }
4011
4012         /* cow and double check */
4013         ret = btrfs_cow_block(trans, root, left,
4014                               path->nodes[1], slot - 1, &left);
4015         if (ret) {
4016                 /* we hit -ENOSPC, but it isn't fatal here */
4017                 if (ret == -ENOSPC)
4018                         ret = 1;
4019                 goto out;
4020         }
4021
4022         free_space = btrfs_leaf_free_space(fs_info, left);
4023         if (free_space < data_size) {
4024                 ret = 1;
4025                 goto out;
4026         }
4027
4028         return __push_leaf_left(fs_info, path, min_data_size,
4029                                empty, left, free_space, right_nritems,
4030                                max_slot);
4031 out:
4032         btrfs_tree_unlock(left);
4033         free_extent_buffer(left);
4034         return ret;
4035 }
4036
4037 /*
4038  * split the path's leaf in two, making sure there is at least data_size
4039  * available for the resulting leaf level of the path.
4040  */
4041 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4042                                     struct btrfs_fs_info *fs_info,
4043                                     struct btrfs_path *path,
4044                                     struct extent_buffer *l,
4045                                     struct extent_buffer *right,
4046                                     int slot, int mid, int nritems)
4047 {
4048         int data_copy_size;
4049         int rt_data_off;
4050         int i;
4051         struct btrfs_disk_key disk_key;
4052         struct btrfs_map_token token;
4053
4054         btrfs_init_map_token(&token);
4055
4056         nritems = nritems - mid;
4057         btrfs_set_header_nritems(right, nritems);
4058         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4059
4060         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4061                            btrfs_item_nr_offset(mid),
4062                            nritems * sizeof(struct btrfs_item));
4063
4064         copy_extent_buffer(right, l,
4065                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4066                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4067                      leaf_data_end(fs_info, l), data_copy_size);
4068
4069         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4070
4071         for (i = 0; i < nritems; i++) {
4072                 struct btrfs_item *item = btrfs_item_nr(i);
4073                 u32 ioff;
4074
4075                 ioff = btrfs_token_item_offset(right, item, &token);
4076                 btrfs_set_token_item_offset(right, item,
4077                                             ioff + rt_data_off, &token);
4078         }
4079
4080         btrfs_set_header_nritems(l, mid);
4081         btrfs_item_key(right, &disk_key, 0);
4082         insert_ptr(trans, fs_info, path, &disk_key, right->start,
4083                    path->slots[1] + 1, 1);
4084
4085         btrfs_mark_buffer_dirty(right);
4086         btrfs_mark_buffer_dirty(l);
4087         BUG_ON(path->slots[0] != slot);
4088
4089         if (mid <= slot) {
4090                 btrfs_tree_unlock(path->nodes[0]);
4091                 free_extent_buffer(path->nodes[0]);
4092                 path->nodes[0] = right;
4093                 path->slots[0] -= mid;
4094                 path->slots[1] += 1;
4095         } else {
4096                 btrfs_tree_unlock(right);
4097                 free_extent_buffer(right);
4098         }
4099
4100         BUG_ON(path->slots[0] < 0);
4101 }
4102
4103 /*
4104  * double splits happen when we need to insert a big item in the middle
4105  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4106  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107  *          A                 B                 C
4108  *
4109  * We avoid this by trying to push the items on either side of our target
4110  * into the adjacent leaves.  If all goes well we can avoid the double split
4111  * completely.
4112  */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114                                           struct btrfs_root *root,
4115                                           struct btrfs_path *path,
4116                                           int data_size)
4117 {
4118         struct btrfs_fs_info *fs_info = root->fs_info;
4119         int ret;
4120         int progress = 0;
4121         int slot;
4122         u32 nritems;
4123         int space_needed = data_size;
4124
4125         slot = path->slots[0];
4126         if (slot < btrfs_header_nritems(path->nodes[0]))
4127                 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4128
4129         /*
4130          * try to push all the items after our slot into the
4131          * right leaf
4132          */
4133         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4134         if (ret < 0)
4135                 return ret;
4136
4137         if (ret == 0)
4138                 progress++;
4139
4140         nritems = btrfs_header_nritems(path->nodes[0]);
4141         /*
4142          * our goal is to get our slot at the start or end of a leaf.  If
4143          * we've done so we're done
4144          */
4145         if (path->slots[0] == 0 || path->slots[0] == nritems)
4146                 return 0;
4147
4148         if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4149                 return 0;
4150
4151         /* try to push all the items before our slot into the next leaf */
4152         slot = path->slots[0];
4153         space_needed = data_size;
4154         if (slot > 0)
4155                 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4156         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4157         if (ret < 0)
4158                 return ret;
4159
4160         if (ret == 0)
4161                 progress++;
4162
4163         if (progress)
4164                 return 0;
4165         return 1;
4166 }
4167
4168 /*
4169  * split the path's leaf in two, making sure there is at least data_size
4170  * available for the resulting leaf level of the path.
4171  *
4172  * returns 0 if all went well and < 0 on failure.
4173  */
4174 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4175                                struct btrfs_root *root,
4176                                const struct btrfs_key *ins_key,
4177                                struct btrfs_path *path, int data_size,
4178                                int extend)
4179 {
4180         struct btrfs_disk_key disk_key;
4181         struct extent_buffer *l;
4182         u32 nritems;
4183         int mid;
4184         int slot;
4185         struct extent_buffer *right;
4186         struct btrfs_fs_info *fs_info = root->fs_info;
4187         int ret = 0;
4188         int wret;
4189         int split;
4190         int num_doubles = 0;
4191         int tried_avoid_double = 0;
4192
4193         l = path->nodes[0];
4194         slot = path->slots[0];
4195         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4196             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4197                 return -EOVERFLOW;
4198
4199         /* first try to make some room by pushing left and right */
4200         if (data_size && path->nodes[1]) {
4201                 int space_needed = data_size;
4202
4203                 if (slot < btrfs_header_nritems(l))
4204                         space_needed -= btrfs_leaf_free_space(fs_info, l);
4205
4206                 wret = push_leaf_right(trans, root, path, space_needed,
4207                                        space_needed, 0, 0);
4208                 if (wret < 0)
4209                         return wret;
4210                 if (wret) {
4211                         space_needed = data_size;
4212                         if (slot > 0)
4213                                 space_needed -= btrfs_leaf_free_space(fs_info,
4214                                                                       l);
4215                         wret = push_leaf_left(trans, root, path, space_needed,
4216                                               space_needed, 0, (u32)-1);
4217                         if (wret < 0)
4218                                 return wret;
4219                 }
4220                 l = path->nodes[0];
4221
4222                 /* did the pushes work? */
4223                 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4224                         return 0;
4225         }
4226
4227         if (!path->nodes[1]) {
4228                 ret = insert_new_root(trans, root, path, 1);
4229                 if (ret)
4230                         return ret;
4231         }
4232 again:
4233         split = 1;
4234         l = path->nodes[0];
4235         slot = path->slots[0];
4236         nritems = btrfs_header_nritems(l);
4237         mid = (nritems + 1) / 2;
4238
4239         if (mid <= slot) {
4240                 if (nritems == 1 ||
4241                     leaf_space_used(l, mid, nritems - mid) + data_size >
4242                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243                         if (slot >= nritems) {
4244                                 split = 0;
4245                         } else {
4246                                 mid = slot;
4247                                 if (mid != nritems &&
4248                                     leaf_space_used(l, mid, nritems - mid) +
4249                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250                                         if (data_size && !tried_avoid_double)
4251                                                 goto push_for_double;
4252                                         split = 2;
4253                                 }
4254                         }
4255                 }
4256         } else {
4257                 if (leaf_space_used(l, 0, mid) + data_size >
4258                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4259                         if (!extend && data_size && slot == 0) {
4260                                 split = 0;
4261                         } else if ((extend || !data_size) && slot == 0) {
4262                                 mid = 1;
4263                         } else {
4264                                 mid = slot;
4265                                 if (mid != nritems &&
4266                                     leaf_space_used(l, mid, nritems - mid) +
4267                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4268                                         if (data_size && !tried_avoid_double)
4269                                                 goto push_for_double;
4270                                         split = 2;
4271                                 }
4272                         }
4273                 }
4274         }
4275
4276         if (split == 0)
4277                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4278         else
4279                 btrfs_item_key(l, &disk_key, mid);
4280
4281         right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4282                                              l->start, 0);
4283         if (IS_ERR(right))
4284                 return PTR_ERR(right);
4285
4286         root_add_used(root, fs_info->nodesize);
4287
4288         if (split == 0) {
4289                 if (mid <= slot) {
4290                         btrfs_set_header_nritems(right, 0);
4291                         insert_ptr(trans, fs_info, path, &disk_key,
4292                                    right->start, path->slots[1] + 1, 1);
4293                         btrfs_tree_unlock(path->nodes[0]);
4294                         free_extent_buffer(path->nodes[0]);
4295                         path->nodes[0] = right;
4296                         path->slots[0] = 0;
4297                         path->slots[1] += 1;
4298                 } else {
4299                         btrfs_set_header_nritems(right, 0);
4300                         insert_ptr(trans, fs_info, path, &disk_key,
4301                                    right->start, path->slots[1], 1);
4302                         btrfs_tree_unlock(path->nodes[0]);
4303                         free_extent_buffer(path->nodes[0]);
4304                         path->nodes[0] = right;
4305                         path->slots[0] = 0;
4306                         if (path->slots[1] == 0)
4307                                 fixup_low_keys(path, &disk_key, 1);
4308                 }
4309                 /*
4310                  * We create a new leaf 'right' for the required ins_len and
4311                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4312                  * the content of ins_len to 'right'.
4313                  */
4314                 return ret;
4315         }
4316
4317         copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4318
4319         if (split == 2) {
4320                 BUG_ON(num_doubles != 0);
4321                 num_doubles++;
4322                 goto again;
4323         }
4324
4325         return 0;
4326
4327 push_for_double:
4328         push_for_double_split(trans, root, path, data_size);
4329         tried_avoid_double = 1;
4330         if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4331                 return 0;
4332         goto again;
4333 }
4334
4335 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4336                                          struct btrfs_root *root,
4337                                          struct btrfs_path *path, int ins_len)
4338 {
4339         struct btrfs_fs_info *fs_info = root->fs_info;
4340         struct btrfs_key key;
4341         struct extent_buffer *leaf;
4342         struct btrfs_file_extent_item *fi;
4343         u64 extent_len = 0;
4344         u32 item_size;
4345         int ret;
4346
4347         leaf = path->nodes[0];
4348         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4349
4350         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4351                key.type != BTRFS_EXTENT_CSUM_KEY);
4352
4353         if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4354                 return 0;
4355
4356         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4357         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4358                 fi = btrfs_item_ptr(leaf, path->slots[0],
4359                                     struct btrfs_file_extent_item);
4360                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4361         }
4362         btrfs_release_path(path);
4363
4364         path->keep_locks = 1;
4365         path->search_for_split = 1;
4366         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4367         path->search_for_split = 0;
4368         if (ret > 0)
4369                 ret = -EAGAIN;
4370         if (ret < 0)
4371                 goto err;
4372
4373         ret = -EAGAIN;
4374         leaf = path->nodes[0];
4375         /* if our item isn't there, return now */
4376         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4377                 goto err;
4378
4379         /* the leaf has  changed, it now has room.  return now */
4380         if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4381                 goto err;
4382
4383         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384                 fi = btrfs_item_ptr(leaf, path->slots[0],
4385                                     struct btrfs_file_extent_item);
4386                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4387                         goto err;
4388         }
4389
4390         btrfs_set_path_blocking(path);
4391         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4392         if (ret)
4393                 goto err;
4394
4395         path->keep_locks = 0;
4396         btrfs_unlock_up_safe(path, 1);
4397         return 0;
4398 err:
4399         path->keep_locks = 0;
4400         return ret;
4401 }
4402
4403 static noinline int split_item(struct btrfs_fs_info *fs_info,
4404                                struct btrfs_path *path,
4405                                const struct btrfs_key *new_key,
4406                                unsigned long split_offset)
4407 {
4408         struct extent_buffer *leaf;
4409         struct btrfs_item *item;
4410         struct btrfs_item *new_item;
4411         int slot;
4412         char *buf;
4413         u32 nritems;
4414         u32 item_size;
4415         u32 orig_offset;
4416         struct btrfs_disk_key disk_key;
4417
4418         leaf = path->nodes[0];
4419         BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4420
4421         btrfs_set_path_blocking(path);
4422
4423         item = btrfs_item_nr(path->slots[0]);
4424         orig_offset = btrfs_item_offset(leaf, item);
4425         item_size = btrfs_item_size(leaf, item);
4426
4427         buf = kmalloc(item_size, GFP_NOFS);
4428         if (!buf)
4429                 return -ENOMEM;
4430
4431         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4432                             path->slots[0]), item_size);
4433
4434         slot = path->slots[0] + 1;
4435         nritems = btrfs_header_nritems(leaf);
4436         if (slot != nritems) {
4437                 /* shift the items */
4438                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4439                                 btrfs_item_nr_offset(slot),
4440                                 (nritems - slot) * sizeof(struct btrfs_item));
4441         }
4442
4443         btrfs_cpu_key_to_disk(&disk_key, new_key);
4444         btrfs_set_item_key(leaf, &disk_key, slot);
4445
4446         new_item = btrfs_item_nr(slot);
4447
4448         btrfs_set_item_offset(leaf, new_item, orig_offset);
4449         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4450
4451         btrfs_set_item_offset(leaf, item,
4452                               orig_offset + item_size - split_offset);
4453         btrfs_set_item_size(leaf, item, split_offset);
4454
4455         btrfs_set_header_nritems(leaf, nritems + 1);
4456
4457         /* write the data for the start of the original item */
4458         write_extent_buffer(leaf, buf,
4459                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4460                             split_offset);
4461
4462         /* write the data for the new item */
4463         write_extent_buffer(leaf, buf + split_offset,
4464                             btrfs_item_ptr_offset(leaf, slot),
4465                             item_size - split_offset);
4466         btrfs_mark_buffer_dirty(leaf);
4467
4468         BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4469         kfree(buf);
4470         return 0;
4471 }
4472
4473 /*
4474  * This function splits a single item into two items,
4475  * giving 'new_key' to the new item and splitting the
4476  * old one at split_offset (from the start of the item).
4477  *
4478  * The path may be released by this operation.  After
4479  * the split, the path is pointing to the old item.  The
4480  * new item is going to be in the same node as the old one.
4481  *
4482  * Note, the item being split must be smaller enough to live alone on
4483  * a tree block with room for one extra struct btrfs_item
4484  *
4485  * This allows us to split the item in place, keeping a lock on the
4486  * leaf the entire time.
4487  */
4488 int btrfs_split_item(struct btrfs_trans_handle *trans,
4489                      struct btrfs_root *root,
4490                      struct btrfs_path *path,
4491                      const struct btrfs_key *new_key,
4492                      unsigned long split_offset)
4493 {
4494         int ret;
4495         ret = setup_leaf_for_split(trans, root, path,
4496                                    sizeof(struct btrfs_item));
4497         if (ret)
4498                 return ret;
4499
4500         ret = split_item(root->fs_info, path, new_key, split_offset);
4501         return ret;
4502 }
4503
4504 /*
4505  * This function duplicate a item, giving 'new_key' to the new item.
4506  * It guarantees both items live in the same tree leaf and the new item
4507  * is contiguous with the original item.
4508  *
4509  * This allows us to split file extent in place, keeping a lock on the
4510  * leaf the entire time.
4511  */
4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4513                          struct btrfs_root *root,
4514                          struct btrfs_path *path,
4515                          const struct btrfs_key *new_key)
4516 {
4517         struct extent_buffer *leaf;
4518         int ret;
4519         u32 item_size;
4520
4521         leaf = path->nodes[0];
4522         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4523         ret = setup_leaf_for_split(trans, root, path,
4524                                    item_size + sizeof(struct btrfs_item));
4525         if (ret)
4526                 return ret;
4527
4528         path->slots[0]++;
4529         setup_items_for_insert(root, path, new_key, &item_size,
4530                                item_size, item_size +
4531                                sizeof(struct btrfs_item), 1);
4532         leaf = path->nodes[0];
4533         memcpy_extent_buffer(leaf,
4534                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4535                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4536                              item_size);
4537         return 0;
4538 }
4539
4540 /*
4541  * make the item pointed to by the path smaller.  new_size indicates
4542  * how small to make it, and from_end tells us if we just chop bytes
4543  * off the end of the item or if we shift the item to chop bytes off
4544  * the front.
4545  */
4546 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4547                          struct btrfs_path *path, u32 new_size, int from_end)
4548 {
4549         int slot;
4550         struct extent_buffer *leaf;
4551         struct btrfs_item *item;
4552         u32 nritems;
4553         unsigned int data_end;
4554         unsigned int old_data_start;
4555         unsigned int old_size;
4556         unsigned int size_diff;
4557         int i;
4558         struct btrfs_map_token token;
4559
4560         btrfs_init_map_token(&token);
4561
4562         leaf = path->nodes[0];
4563         slot = path->slots[0];
4564
4565         old_size = btrfs_item_size_nr(leaf, slot);
4566         if (old_size == new_size)
4567                 return;
4568
4569         nritems = btrfs_header_nritems(leaf);
4570         data_end = leaf_data_end(fs_info, leaf);
4571
4572         old_data_start = btrfs_item_offset_nr(leaf, slot);
4573
4574         size_diff = old_size - new_size;
4575
4576         BUG_ON(slot < 0);
4577         BUG_ON(slot >= nritems);
4578
4579         /*
4580          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4581          */
4582         /* first correct the data pointers */
4583         for (i = slot; i < nritems; i++) {
4584                 u32 ioff;
4585                 item = btrfs_item_nr(i);
4586
4587                 ioff = btrfs_token_item_offset(leaf, item, &token);
4588                 btrfs_set_token_item_offset(leaf, item,
4589                                             ioff + size_diff, &token);
4590         }
4591
4592         /* shift the data */
4593         if (from_end) {
4594                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4595                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4596                               data_end, old_data_start + new_size - data_end);
4597         } else {
4598                 struct btrfs_disk_key disk_key;
4599                 u64 offset;
4600
4601                 btrfs_item_key(leaf, &disk_key, slot);
4602
4603                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4604                         unsigned long ptr;
4605                         struct btrfs_file_extent_item *fi;
4606
4607                         fi = btrfs_item_ptr(leaf, slot,
4608                                             struct btrfs_file_extent_item);
4609                         fi = (struct btrfs_file_extent_item *)(
4610                              (unsigned long)fi - size_diff);
4611
4612                         if (btrfs_file_extent_type(leaf, fi) ==
4613                             BTRFS_FILE_EXTENT_INLINE) {
4614                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4615                                 memmove_extent_buffer(leaf, ptr,
4616                                       (unsigned long)fi,
4617                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4618                         }
4619                 }
4620
4621                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4622                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4623                               data_end, old_data_start - data_end);
4624
4625                 offset = btrfs_disk_key_offset(&disk_key);
4626                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4627                 btrfs_set_item_key(leaf, &disk_key, slot);
4628                 if (slot == 0)
4629                         fixup_low_keys(path, &disk_key, 1);
4630         }
4631
4632         item = btrfs_item_nr(slot);
4633         btrfs_set_item_size(leaf, item, new_size);
4634         btrfs_mark_buffer_dirty(leaf);
4635
4636         if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4637                 btrfs_print_leaf(leaf);
4638                 BUG();
4639         }
4640 }
4641
4642 /*
4643  * make the item pointed to by the path bigger, data_size is the added size.
4644  */
4645 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4646                        u32 data_size)
4647 {
4648         int slot;
4649         struct extent_buffer *leaf;
4650         struct btrfs_item *item;
4651         u32 nritems;
4652         unsigned int data_end;
4653         unsigned int old_data;
4654         unsigned int old_size;
4655         int i;
4656         struct btrfs_map_token token;
4657
4658         btrfs_init_map_token(&token);
4659
4660         leaf = path->nodes[0];
4661
4662         nritems = btrfs_header_nritems(leaf);
4663         data_end = leaf_data_end(fs_info, leaf);
4664
4665         if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4666                 btrfs_print_leaf(leaf);
4667                 BUG();
4668         }
4669         slot = path->slots[0];
4670         old_data = btrfs_item_end_nr(leaf, slot);
4671
4672         BUG_ON(slot < 0);
4673         if (slot >= nritems) {
4674                 btrfs_print_leaf(leaf);
4675                 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4676                            slot, nritems);
4677                 BUG_ON(1);
4678         }
4679
4680         /*
4681          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4682          */
4683         /* first correct the data pointers */
4684         for (i = slot; i < nritems; i++) {
4685                 u32 ioff;
4686                 item = btrfs_item_nr(i);
4687
4688                 ioff = btrfs_token_item_offset(leaf, item, &token);
4689                 btrfs_set_token_item_offset(leaf, item,
4690                                             ioff - data_size, &token);
4691         }
4692
4693         /* shift the data */
4694         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4695                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4696                       data_end, old_data - data_end);
4697
4698         data_end = old_data;
4699         old_size = btrfs_item_size_nr(leaf, slot);
4700         item = btrfs_item_nr(slot);
4701         btrfs_set_item_size(leaf, item, old_size + data_size);
4702         btrfs_mark_buffer_dirty(leaf);
4703
4704         if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4705                 btrfs_print_leaf(leaf);
4706                 BUG();
4707         }
4708 }
4709
4710 /*
4711  * this is a helper for btrfs_insert_empty_items, the main goal here is
4712  * to save stack depth by doing the bulk of the work in a function
4713  * that doesn't call btrfs_search_slot
4714  */
4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4716                             const struct btrfs_key *cpu_key, u32 *data_size,
4717                             u32 total_data, u32 total_size, int nr)
4718 {
4719         struct btrfs_fs_info *fs_info = root->fs_info;
4720         struct btrfs_item *item;
4721         int i;
4722         u32 nritems;
4723         unsigned int data_end;
4724         struct btrfs_disk_key disk_key;
4725         struct extent_buffer *leaf;
4726         int slot;
4727         struct btrfs_map_token token;
4728
4729         if (path->slots[0] == 0) {
4730                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4731                 fixup_low_keys(path, &disk_key, 1);
4732         }
4733         btrfs_unlock_up_safe(path, 1);
4734
4735         btrfs_init_map_token(&token);
4736
4737         leaf = path->nodes[0];
4738         slot = path->slots[0];
4739
4740         nritems = btrfs_header_nritems(leaf);
4741         data_end = leaf_data_end(fs_info, leaf);
4742
4743         if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4744                 btrfs_print_leaf(leaf);
4745                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4746                            total_size, btrfs_leaf_free_space(fs_info, leaf));
4747                 BUG();
4748         }
4749
4750         if (slot != nritems) {
4751                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4752
4753                 if (old_data < data_end) {
4754                         btrfs_print_leaf(leaf);
4755                         btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4756                                    slot, old_data, data_end);
4757                         BUG_ON(1);
4758                 }
4759                 /*
4760                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4761                  */
4762                 /* first correct the data pointers */
4763                 for (i = slot; i < nritems; i++) {
4764                         u32 ioff;
4765
4766                         item = btrfs_item_nr(i);
4767                         ioff = btrfs_token_item_offset(leaf, item, &token);
4768                         btrfs_set_token_item_offset(leaf, item,
4769                                                     ioff - total_data, &token);
4770                 }
4771                 /* shift the items */
4772                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4773                               btrfs_item_nr_offset(slot),
4774                               (nritems - slot) * sizeof(struct btrfs_item));
4775
4776                 /* shift the data */
4777                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4778                               data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4779                               data_end, old_data - data_end);
4780                 data_end = old_data;
4781         }
4782
4783         /* setup the item for the new data */
4784         for (i = 0; i < nr; i++) {
4785                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4786                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4787                 item = btrfs_item_nr(slot + i);
4788                 btrfs_set_token_item_offset(leaf, item,
4789                                             data_end - data_size[i], &token);
4790                 data_end -= data_size[i];
4791                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4792         }
4793
4794         btrfs_set_header_nritems(leaf, nritems + nr);
4795         btrfs_mark_buffer_dirty(leaf);
4796
4797         if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4798                 btrfs_print_leaf(leaf);
4799                 BUG();
4800         }
4801 }
4802
4803 /*
4804  * Given a key and some data, insert items into the tree.
4805  * This does all the path init required, making room in the tree if needed.
4806  */
4807 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4808                             struct btrfs_root *root,
4809                             struct btrfs_path *path,
4810                             const struct btrfs_key *cpu_key, u32 *data_size,
4811                             int nr)
4812 {
4813         int ret = 0;
4814         int slot;
4815         int i;
4816         u32 total_size = 0;
4817         u32 total_data = 0;
4818
4819         for (i = 0; i < nr; i++)
4820                 total_data += data_size[i];
4821
4822         total_size = total_data + (nr * sizeof(struct btrfs_item));
4823         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4824         if (ret == 0)
4825                 return -EEXIST;
4826         if (ret < 0)
4827                 return ret;
4828
4829         slot = path->slots[0];
4830         BUG_ON(slot < 0);
4831
4832         setup_items_for_insert(root, path, cpu_key, data_size,
4833                                total_data, total_size, nr);
4834         return 0;
4835 }
4836
4837 /*
4838  * Given a key and some data, insert an item into the tree.
4839  * This does all the path init required, making room in the tree if needed.
4840  */
4841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4842                       const struct btrfs_key *cpu_key, void *data,
4843                       u32 data_size)
4844 {
4845         int ret = 0;
4846         struct btrfs_path *path;
4847         struct extent_buffer *leaf;
4848         unsigned long ptr;
4849
4850         path = btrfs_alloc_path();
4851         if (!path)
4852                 return -ENOMEM;
4853         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4854         if (!ret) {
4855                 leaf = path->nodes[0];
4856                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4857                 write_extent_buffer(leaf, data, ptr, data_size);
4858                 btrfs_mark_buffer_dirty(leaf);
4859         }
4860         btrfs_free_path(path);
4861         return ret;
4862 }
4863
4864 /*
4865  * delete the pointer from a given node.
4866  *
4867  * the tree should have been previously balanced so the deletion does not
4868  * empty a node.
4869  */
4870 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4871                     int level, int slot)
4872 {
4873         struct extent_buffer *parent = path->nodes[level];
4874         u32 nritems;
4875         int ret;
4876
4877         nritems = btrfs_header_nritems(parent);
4878         if (slot != nritems - 1) {
4879                 if (level) {
4880                         ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4881                                         nritems - slot - 1);
4882                         BUG_ON(ret < 0);
4883                 }
4884                 memmove_extent_buffer(parent,
4885                               btrfs_node_key_ptr_offset(slot),
4886                               btrfs_node_key_ptr_offset(slot + 1),
4887                               sizeof(struct btrfs_key_ptr) *
4888                               (nritems - slot - 1));
4889         } else if (level) {
4890                 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4891                                 GFP_NOFS);
4892                 BUG_ON(ret < 0);
4893         }
4894
4895         nritems--;
4896         btrfs_set_header_nritems(parent, nritems);
4897         if (nritems == 0 && parent == root->node) {
4898                 BUG_ON(btrfs_header_level(root->node) != 1);
4899                 /* just turn the root into a leaf and break */
4900                 btrfs_set_header_level(root->node, 0);
4901         } else if (slot == 0) {
4902                 struct btrfs_disk_key disk_key;
4903
4904                 btrfs_node_key(parent, &disk_key, 0);
4905                 fixup_low_keys(path, &disk_key, level + 1);
4906         }
4907         btrfs_mark_buffer_dirty(parent);
4908 }
4909
4910 /*
4911  * a helper function to delete the leaf pointed to by path->slots[1] and
4912  * path->nodes[1].
4913  *
4914  * This deletes the pointer in path->nodes[1] and frees the leaf
4915  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4916  *
4917  * The path must have already been setup for deleting the leaf, including
4918  * all the proper balancing.  path->nodes[1] must be locked.
4919  */
4920 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4921                                     struct btrfs_root *root,
4922                                     struct btrfs_path *path,
4923                                     struct extent_buffer *leaf)
4924 {
4925         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4926         del_ptr(root, path, 1, path->slots[1]);
4927
4928         /*
4929          * btrfs_free_extent is expensive, we want to make sure we
4930          * aren't holding any locks when we call it
4931          */
4932         btrfs_unlock_up_safe(path, 0);
4933
4934         root_sub_used(root, leaf->len);
4935
4936         extent_buffer_get(leaf);
4937         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4938         free_extent_buffer_stale(leaf);
4939 }
4940 /*
4941  * delete the item at the leaf level in path.  If that empties
4942  * the leaf, remove it from the tree
4943  */
4944 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4945                     struct btrfs_path *path, int slot, int nr)
4946 {
4947         struct btrfs_fs_info *fs_info = root->fs_info;
4948         struct extent_buffer *leaf;
4949         struct btrfs_item *item;
4950         u32 last_off;
4951         u32 dsize = 0;
4952         int ret = 0;
4953         int wret;
4954         int i;
4955         u32 nritems;
4956         struct btrfs_map_token token;
4957
4958         btrfs_init_map_token(&token);
4959
4960         leaf = path->nodes[0];
4961         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4962
4963         for (i = 0; i < nr; i++)
4964                 dsize += btrfs_item_size_nr(leaf, slot + i);
4965
4966         nritems = btrfs_header_nritems(leaf);
4967
4968         if (slot + nr != nritems) {
4969                 int data_end = leaf_data_end(fs_info, leaf);
4970
4971                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4972                               data_end + dsize,
4973                               BTRFS_LEAF_DATA_OFFSET + data_end,
4974                               last_off - data_end);
4975
4976                 for (i = slot + nr; i < nritems; i++) {
4977                         u32 ioff;
4978
4979                         item = btrfs_item_nr(i);
4980                         ioff = btrfs_token_item_offset(leaf, item, &token);
4981                         btrfs_set_token_item_offset(leaf, item,
4982                                                     ioff + dsize, &token);
4983                 }
4984
4985                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4986                               btrfs_item_nr_offset(slot + nr),
4987                               sizeof(struct btrfs_item) *
4988                               (nritems - slot - nr));
4989         }
4990         btrfs_set_header_nritems(leaf, nritems - nr);
4991         nritems -= nr;
4992
4993         /* delete the leaf if we've emptied it */
4994         if (nritems == 0) {
4995                 if (leaf == root->node) {
4996                         btrfs_set_header_level(leaf, 0);
4997                 } else {
4998                         btrfs_set_path_blocking(path);
4999                         clean_tree_block(fs_info, leaf);
5000                         btrfs_del_leaf(trans, root, path, leaf);
5001                 }
5002         } else {
5003                 int used = leaf_space_used(leaf, 0, nritems);
5004                 if (slot == 0) {
5005                         struct btrfs_disk_key disk_key;
5006
5007                         btrfs_item_key(leaf, &disk_key, 0);
5008                         fixup_low_keys(path, &disk_key, 1);
5009                 }
5010
5011                 /* delete the leaf if it is mostly empty */
5012                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5013                         /* push_leaf_left fixes the path.
5014                          * make sure the path still points to our leaf
5015                          * for possible call to del_ptr below
5016                          */
5017                         slot = path->slots[1];
5018                         extent_buffer_get(leaf);
5019
5020                         btrfs_set_path_blocking(path);
5021                         wret = push_leaf_left(trans, root, path, 1, 1,
5022                                               1, (u32)-1);
5023                         if (wret < 0 && wret != -ENOSPC)
5024                                 ret = wret;
5025
5026                         if (path->nodes[0] == leaf &&
5027                             btrfs_header_nritems(leaf)) {
5028                                 wret = push_leaf_right(trans, root, path, 1,
5029                                                        1, 1, 0);
5030                                 if (wret < 0 && wret != -ENOSPC)
5031                                         ret = wret;
5032                         }
5033
5034                         if (btrfs_header_nritems(leaf) == 0) {
5035                                 path->slots[1] = slot;
5036                                 btrfs_del_leaf(trans, root, path, leaf);
5037                                 free_extent_buffer(leaf);
5038                                 ret = 0;
5039                         } else {
5040                                 /* if we're still in the path, make sure
5041                                  * we're dirty.  Otherwise, one of the
5042                                  * push_leaf functions must have already
5043                                  * dirtied this buffer
5044                                  */
5045                                 if (path->nodes[0] == leaf)
5046                                         btrfs_mark_buffer_dirty(leaf);
5047                                 free_extent_buffer(leaf);
5048                         }
5049                 } else {
5050                         btrfs_mark_buffer_dirty(leaf);
5051                 }
5052         }
5053         return ret;
5054 }
5055
5056 /*
5057  * search the tree again to find a leaf with lesser keys
5058  * returns 0 if it found something or 1 if there are no lesser leaves.
5059  * returns < 0 on io errors.
5060  *
5061  * This may release the path, and so you may lose any locks held at the
5062  * time you call it.
5063  */
5064 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5065 {
5066         struct btrfs_key key;
5067         struct btrfs_disk_key found_key;
5068         int ret;
5069
5070         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5071
5072         if (key.offset > 0) {
5073                 key.offset--;
5074         } else if (key.type > 0) {
5075                 key.type--;
5076                 key.offset = (u64)-1;
5077         } else if (key.objectid > 0) {
5078                 key.objectid--;
5079                 key.type = (u8)-1;
5080                 key.offset = (u64)-1;
5081         } else {
5082                 return 1;
5083         }
5084
5085         btrfs_release_path(path);
5086         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5087         if (ret < 0)
5088                 return ret;
5089         btrfs_item_key(path->nodes[0], &found_key, 0);
5090         ret = comp_keys(&found_key, &key);
5091         /*
5092          * We might have had an item with the previous key in the tree right
5093          * before we released our path. And after we released our path, that
5094          * item might have been pushed to the first slot (0) of the leaf we
5095          * were holding due to a tree balance. Alternatively, an item with the
5096          * previous key can exist as the only element of a leaf (big fat item).
5097          * Therefore account for these 2 cases, so that our callers (like
5098          * btrfs_previous_item) don't miss an existing item with a key matching
5099          * the previous key we computed above.
5100          */
5101         if (ret <= 0)
5102                 return 0;
5103         return 1;
5104 }
5105
5106 /*
5107  * A helper function to walk down the tree starting at min_key, and looking
5108  * for nodes or leaves that are have a minimum transaction id.
5109  * This is used by the btree defrag code, and tree logging
5110  *
5111  * This does not cow, but it does stuff the starting key it finds back
5112  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5113  * key and get a writable path.
5114  *
5115  * This honors path->lowest_level to prevent descent past a given level
5116  * of the tree.
5117  *
5118  * min_trans indicates the oldest transaction that you are interested
5119  * in walking through.  Any nodes or leaves older than min_trans are
5120  * skipped over (without reading them).
5121  *
5122  * returns zero if something useful was found, < 0 on error and 1 if there
5123  * was nothing in the tree that matched the search criteria.
5124  */
5125 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5126                          struct btrfs_path *path,
5127                          u64 min_trans)
5128 {
5129         struct btrfs_fs_info *fs_info = root->fs_info;
5130         struct extent_buffer *cur;
5131         struct btrfs_key found_key;
5132         int slot;
5133         int sret;
5134         u32 nritems;
5135         int level;
5136         int ret = 1;
5137         int keep_locks = path->keep_locks;
5138
5139         path->keep_locks = 1;
5140 again:
5141         cur = btrfs_read_lock_root_node(root);
5142         level = btrfs_header_level(cur);
5143         WARN_ON(path->nodes[level]);
5144         path->nodes[level] = cur;
5145         path->locks[level] = BTRFS_READ_LOCK;
5146
5147         if (btrfs_header_generation(cur) < min_trans) {
5148                 ret = 1;
5149                 goto out;
5150         }
5151         while (1) {
5152                 nritems = btrfs_header_nritems(cur);
5153                 level = btrfs_header_level(cur);
5154                 sret = btrfs_bin_search(cur, min_key, level, &slot);
5155                 if (sret < 0) {
5156                         ret = sret;
5157                         goto out;
5158                 }
5159
5160                 /* at the lowest level, we're done, setup the path and exit */
5161                 if (level == path->lowest_level) {
5162                         if (slot >= nritems)
5163                                 goto find_next_key;
5164                         ret = 0;
5165                         path->slots[level] = slot;
5166                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5167                         goto out;
5168                 }
5169                 if (sret && slot > 0)
5170                         slot--;
5171                 /*
5172                  * check this node pointer against the min_trans parameters.
5173                  * If it is too old, old, skip to the next one.
5174                  */
5175                 while (slot < nritems) {
5176                         u64 gen;
5177
5178                         gen = btrfs_node_ptr_generation(cur, slot);
5179                         if (gen < min_trans) {
5180                                 slot++;
5181                                 continue;
5182                         }
5183                         break;
5184                 }
5185 find_next_key:
5186                 /*
5187                  * we didn't find a candidate key in this node, walk forward
5188                  * and find another one
5189                  */
5190                 if (slot >= nritems) {
5191                         path->slots[level] = slot;
5192                         btrfs_set_path_blocking(path);
5193                         sret = btrfs_find_next_key(root, path, min_key, level,
5194                                                   min_trans);
5195                         if (sret == 0) {
5196                                 btrfs_release_path(path);
5197                                 goto again;
5198                         } else {
5199                                 goto out;
5200                         }
5201                 }
5202                 /* save our key for returning back */
5203                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5204                 path->slots[level] = slot;
5205                 if (level == path->lowest_level) {
5206                         ret = 0;
5207                         goto out;
5208                 }
5209                 btrfs_set_path_blocking(path);
5210                 cur = read_node_slot(fs_info, cur, slot);
5211                 if (IS_ERR(cur)) {
5212                         ret = PTR_ERR(cur);
5213                         goto out;
5214                 }
5215
5216                 btrfs_tree_read_lock(cur);
5217
5218                 path->locks[level - 1] = BTRFS_READ_LOCK;
5219                 path->nodes[level - 1] = cur;
5220                 unlock_up(path, level, 1, 0, NULL);
5221         }
5222 out:
5223         path->keep_locks = keep_locks;
5224         if (ret == 0) {
5225                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5226                 btrfs_set_path_blocking(path);
5227                 memcpy(min_key, &found_key, sizeof(found_key));
5228         }
5229         return ret;
5230 }
5231
5232 static int tree_move_down(struct btrfs_fs_info *fs_info,
5233                            struct btrfs_path *path,
5234                            int *level)
5235 {
5236         struct extent_buffer *eb;
5237
5238         BUG_ON(*level == 0);
5239         eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5240         if (IS_ERR(eb))
5241                 return PTR_ERR(eb);
5242
5243         path->nodes[*level - 1] = eb;
5244         path->slots[*level - 1] = 0;
5245         (*level)--;
5246         return 0;
5247 }
5248
5249 static int tree_move_next_or_upnext(struct btrfs_path *path,
5250                                     int *level, int root_level)
5251 {
5252         int ret = 0;
5253         int nritems;
5254         nritems = btrfs_header_nritems(path->nodes[*level]);
5255
5256         path->slots[*level]++;
5257
5258         while (path->slots[*level] >= nritems) {
5259                 if (*level == root_level)
5260                         return -1;
5261
5262                 /* move upnext */
5263                 path->slots[*level] = 0;
5264                 free_extent_buffer(path->nodes[*level]);
5265                 path->nodes[*level] = NULL;
5266                 (*level)++;
5267                 path->slots[*level]++;
5268
5269                 nritems = btrfs_header_nritems(path->nodes[*level]);
5270                 ret = 1;
5271         }
5272         return ret;
5273 }
5274
5275 /*
5276  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5277  * or down.
5278  */
5279 static int tree_advance(struct btrfs_fs_info *fs_info,
5280                         struct btrfs_path *path,
5281                         int *level, int root_level,
5282                         int allow_down,
5283                         struct btrfs_key *key)
5284 {
5285         int ret;
5286
5287         if (*level == 0 || !allow_down) {
5288                 ret = tree_move_next_or_upnext(path, level, root_level);
5289         } else {
5290                 ret = tree_move_down(fs_info, path, level);
5291         }
5292         if (ret >= 0) {
5293                 if (*level == 0)
5294                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5295                                         path->slots[*level]);
5296                 else
5297                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5298                                         path->slots[*level]);
5299         }
5300         return ret;
5301 }
5302
5303 static int tree_compare_item(struct btrfs_path *left_path,
5304                              struct btrfs_path *right_path,
5305                              char *tmp_buf)
5306 {
5307         int cmp;
5308         int len1, len2;
5309         unsigned long off1, off2;
5310
5311         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5312         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5313         if (len1 != len2)
5314                 return 1;
5315
5316         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5317         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5318                                 right_path->slots[0]);
5319
5320         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5321
5322         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5323         if (cmp)
5324                 return 1;
5325         return 0;
5326 }
5327
5328 #define ADVANCE 1
5329 #define ADVANCE_ONLY_NEXT -1
5330
5331 /*
5332  * This function compares two trees and calls the provided callback for
5333  * every changed/new/deleted item it finds.
5334  * If shared tree blocks are encountered, whole subtrees are skipped, making
5335  * the compare pretty fast on snapshotted subvolumes.
5336  *
5337  * This currently works on commit roots only. As commit roots are read only,
5338  * we don't do any locking. The commit roots are protected with transactions.
5339  * Transactions are ended and rejoined when a commit is tried in between.
5340  *
5341  * This function checks for modifications done to the trees while comparing.
5342  * If it detects a change, it aborts immediately.
5343  */
5344 int btrfs_compare_trees(struct btrfs_root *left_root,
5345                         struct btrfs_root *right_root,
5346                         btrfs_changed_cb_t changed_cb, void *ctx)
5347 {
5348         struct btrfs_fs_info *fs_info = left_root->fs_info;
5349         int ret;
5350         int cmp;
5351         struct btrfs_path *left_path = NULL;
5352         struct btrfs_path *right_path = NULL;
5353         struct btrfs_key left_key;
5354         struct btrfs_key right_key;
5355         char *tmp_buf = NULL;
5356         int left_root_level;
5357         int right_root_level;
5358         int left_level;
5359         int right_level;
5360         int left_end_reached;
5361         int right_end_reached;
5362         int advance_left;
5363         int advance_right;
5364         u64 left_blockptr;
5365         u64 right_blockptr;
5366         u64 left_gen;
5367         u64 right_gen;
5368
5369         left_path = btrfs_alloc_path();
5370         if (!left_path) {
5371                 ret = -ENOMEM;
5372                 goto out;
5373         }
5374         right_path = btrfs_alloc_path();
5375         if (!right_path) {
5376                 ret = -ENOMEM;
5377                 goto out;
5378         }
5379
5380         tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5381         if (!tmp_buf) {
5382                 ret = -ENOMEM;
5383                 goto out;
5384         }
5385
5386         left_path->search_commit_root = 1;
5387         left_path->skip_locking = 1;
5388         right_path->search_commit_root = 1;
5389         right_path->skip_locking = 1;
5390
5391         /*
5392          * Strategy: Go to the first items of both trees. Then do
5393          *
5394          * If both trees are at level 0
5395          *   Compare keys of current items
5396          *     If left < right treat left item as new, advance left tree
5397          *       and repeat
5398          *     If left > right treat right item as deleted, advance right tree
5399          *       and repeat
5400          *     If left == right do deep compare of items, treat as changed if
5401          *       needed, advance both trees and repeat
5402          * If both trees are at the same level but not at level 0
5403          *   Compare keys of current nodes/leafs
5404          *     If left < right advance left tree and repeat
5405          *     If left > right advance right tree and repeat
5406          *     If left == right compare blockptrs of the next nodes/leafs
5407          *       If they match advance both trees but stay at the same level
5408          *         and repeat
5409          *       If they don't match advance both trees while allowing to go
5410          *         deeper and repeat
5411          * If tree levels are different
5412          *   Advance the tree that needs it and repeat
5413          *
5414          * Advancing a tree means:
5415          *   If we are at level 0, try to go to the next slot. If that's not
5416          *   possible, go one level up and repeat. Stop when we found a level
5417          *   where we could go to the next slot. We may at this point be on a
5418          *   node or a leaf.
5419          *
5420          *   If we are not at level 0 and not on shared tree blocks, go one
5421          *   level deeper.
5422          *
5423          *   If we are not at level 0 and on shared tree blocks, go one slot to
5424          *   the right if possible or go up and right.
5425          */
5426
5427         down_read(&fs_info->commit_root_sem);
5428         left_level = btrfs_header_level(left_root->commit_root);
5429         left_root_level = left_level;
5430         left_path->nodes[left_level] =
5431                         btrfs_clone_extent_buffer(left_root->commit_root);
5432         if (!left_path->nodes[left_level]) {
5433                 up_read(&fs_info->commit_root_sem);
5434                 ret = -ENOMEM;
5435                 goto out;
5436         }
5437
5438         right_level = btrfs_header_level(right_root->commit_root);
5439         right_root_level = right_level;
5440         right_path->nodes[right_level] =
5441                         btrfs_clone_extent_buffer(right_root->commit_root);
5442         if (!right_path->nodes[right_level]) {
5443                 up_read(&fs_info->commit_root_sem);
5444                 ret = -ENOMEM;
5445                 goto out;
5446         }
5447         up_read(&fs_info->commit_root_sem);
5448
5449         if (left_level == 0)
5450                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5451                                 &left_key, left_path->slots[left_level]);
5452         else
5453                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5454                                 &left_key, left_path->slots[left_level]);
5455         if (right_level == 0)
5456                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5457                                 &right_key, right_path->slots[right_level]);
5458         else
5459                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5460                                 &right_key, right_path->slots[right_level]);
5461
5462         left_end_reached = right_end_reached = 0;
5463         advance_left = advance_right = 0;
5464
5465         while (1) {
5466                 if (advance_left && !left_end_reached) {
5467                         ret = tree_advance(fs_info, left_path, &left_level,
5468                                         left_root_level,
5469                                         advance_left != ADVANCE_ONLY_NEXT,
5470                                         &left_key);
5471                         if (ret == -1)
5472                                 left_end_reached = ADVANCE;
5473                         else if (ret < 0)
5474                                 goto out;
5475                         advance_left = 0;
5476                 }
5477                 if (advance_right && !right_end_reached) {
5478                         ret = tree_advance(fs_info, right_path, &right_level,
5479                                         right_root_level,
5480                                         advance_right != ADVANCE_ONLY_NEXT,
5481                                         &right_key);
5482                         if (ret == -1)
5483                                 right_end_reached = ADVANCE;
5484                         else if (ret < 0)
5485                                 goto out;
5486                         advance_right = 0;
5487                 }
5488
5489                 if (left_end_reached && right_end_reached) {
5490                         ret = 0;
5491                         goto out;
5492                 } else if (left_end_reached) {
5493                         if (right_level == 0) {
5494                                 ret = changed_cb(left_path, right_path,
5495                                                 &right_key,
5496                                                 BTRFS_COMPARE_TREE_DELETED,
5497                                                 ctx);
5498                                 if (ret < 0)
5499                                         goto out;
5500                         }
5501                         advance_right = ADVANCE;
5502                         continue;
5503                 } else if (right_end_reached) {
5504                         if (left_level == 0) {
5505                                 ret = changed_cb(left_path, right_path,
5506                                                 &left_key,
5507                                                 BTRFS_COMPARE_TREE_NEW,
5508                                                 ctx);
5509                                 if (ret < 0)
5510                                         goto out;
5511                         }
5512                         advance_left = ADVANCE;
5513                         continue;
5514                 }
5515
5516                 if (left_level == 0 && right_level == 0) {
5517                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5518                         if (cmp < 0) {
5519                                 ret = changed_cb(left_path, right_path,
5520                                                 &left_key,
5521                                                 BTRFS_COMPARE_TREE_NEW,
5522                                                 ctx);
5523                                 if (ret < 0)
5524                                         goto out;
5525                                 advance_left = ADVANCE;
5526                         } else if (cmp > 0) {
5527                                 ret = changed_cb(left_path, right_path,
5528                                                 &right_key,
5529                                                 BTRFS_COMPARE_TREE_DELETED,
5530                                                 ctx);
5531                                 if (ret < 0)
5532                                         goto out;
5533                                 advance_right = ADVANCE;
5534                         } else {
5535                                 enum btrfs_compare_tree_result result;
5536
5537                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538                                 ret = tree_compare_item(left_path, right_path,
5539                                                         tmp_buf);
5540                                 if (ret)
5541                                         result = BTRFS_COMPARE_TREE_CHANGED;
5542                                 else
5543                                         result = BTRFS_COMPARE_TREE_SAME;
5544                                 ret = changed_cb(left_path, right_path,
5545                                                  &left_key, result, ctx);
5546                                 if (ret < 0)
5547                                         goto out;
5548                                 advance_left = ADVANCE;
5549                                 advance_right = ADVANCE;
5550                         }
5551                 } else if (left_level == right_level) {
5552                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5553                         if (cmp < 0) {
5554                                 advance_left = ADVANCE;
5555                         } else if (cmp > 0) {
5556                                 advance_right = ADVANCE;
5557                         } else {
5558                                 left_blockptr = btrfs_node_blockptr(
5559                                                 left_path->nodes[left_level],
5560                                                 left_path->slots[left_level]);
5561                                 right_blockptr = btrfs_node_blockptr(
5562                                                 right_path->nodes[right_level],
5563                                                 right_path->slots[right_level]);
5564                                 left_gen = btrfs_node_ptr_generation(
5565                                                 left_path->nodes[left_level],
5566                                                 left_path->slots[left_level]);
5567                                 right_gen = btrfs_node_ptr_generation(
5568                                                 right_path->nodes[right_level],
5569                                                 right_path->slots[right_level]);
5570                                 if (left_blockptr == right_blockptr &&
5571                                     left_gen == right_gen) {
5572                                         /*
5573                                          * As we're on a shared block, don't
5574                                          * allow to go deeper.
5575                                          */
5576                                         advance_left = ADVANCE_ONLY_NEXT;
5577                                         advance_right = ADVANCE_ONLY_NEXT;
5578                                 } else {
5579                                         advance_left = ADVANCE;
5580                                         advance_right = ADVANCE;
5581                                 }
5582                         }
5583                 } else if (left_level < right_level) {
5584                         advance_right = ADVANCE;
5585                 } else {
5586                         advance_left = ADVANCE;
5587                 }
5588         }
5589
5590 out:
5591         btrfs_free_path(left_path);
5592         btrfs_free_path(right_path);
5593         kvfree(tmp_buf);
5594         return ret;
5595 }
5596
5597 /*
5598  * this is similar to btrfs_next_leaf, but does not try to preserve
5599  * and fixup the path.  It looks for and returns the next key in the
5600  * tree based on the current path and the min_trans parameters.
5601  *
5602  * 0 is returned if another key is found, < 0 if there are any errors
5603  * and 1 is returned if there are no higher keys in the tree
5604  *
5605  * path->keep_locks should be set to 1 on the search made before
5606  * calling this function.
5607  */
5608 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5609                         struct btrfs_key *key, int level, u64 min_trans)
5610 {
5611         int slot;
5612         struct extent_buffer *c;
5613
5614         WARN_ON(!path->keep_locks);
5615         while (level < BTRFS_MAX_LEVEL) {
5616                 if (!path->nodes[level])
5617                         return 1;
5618
5619                 slot = path->slots[level] + 1;
5620                 c = path->nodes[level];
5621 next:
5622                 if (slot >= btrfs_header_nritems(c)) {
5623                         int ret;
5624                         int orig_lowest;
5625                         struct btrfs_key cur_key;
5626                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5627                             !path->nodes[level + 1])
5628                                 return 1;
5629
5630                         if (path->locks[level + 1]) {
5631                                 level++;
5632                                 continue;
5633                         }
5634
5635                         slot = btrfs_header_nritems(c) - 1;
5636                         if (level == 0)
5637                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5638                         else
5639                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5640
5641                         orig_lowest = path->lowest_level;
5642                         btrfs_release_path(path);
5643                         path->lowest_level = level;
5644                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5645                                                 0, 0);
5646                         path->lowest_level = orig_lowest;
5647                         if (ret < 0)
5648                                 return ret;
5649
5650                         c = path->nodes[level];
5651                         slot = path->slots[level];
5652                         if (ret == 0)
5653                                 slot++;
5654                         goto next;
5655                 }
5656
5657                 if (level == 0)
5658                         btrfs_item_key_to_cpu(c, key, slot);
5659                 else {
5660                         u64 gen = btrfs_node_ptr_generation(c, slot);
5661
5662                         if (gen < min_trans) {
5663                                 slot++;
5664                                 goto next;
5665                         }
5666                         btrfs_node_key_to_cpu(c, key, slot);
5667                 }
5668                 return 0;
5669         }
5670         return 1;
5671 }
5672
5673 /*
5674  * search the tree again to find a leaf with greater keys
5675  * returns 0 if it found something or 1 if there are no greater leaves.
5676  * returns < 0 on io errors.
5677  */
5678 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5679 {
5680         return btrfs_next_old_leaf(root, path, 0);
5681 }
5682
5683 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5684                         u64 time_seq)
5685 {
5686         int slot;
5687         int level;
5688         struct extent_buffer *c;
5689         struct extent_buffer *next;
5690         struct btrfs_key key;
5691         u32 nritems;
5692         int ret;
5693         int old_spinning = path->leave_spinning;
5694         int next_rw_lock = 0;
5695
5696         nritems = btrfs_header_nritems(path->nodes[0]);
5697         if (nritems == 0)
5698                 return 1;
5699
5700         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5701 again:
5702         level = 1;
5703         next = NULL;
5704         next_rw_lock = 0;
5705         btrfs_release_path(path);
5706
5707         path->keep_locks = 1;
5708         path->leave_spinning = 1;
5709
5710         if (time_seq)
5711                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5712         else
5713                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714         path->keep_locks = 0;
5715
5716         if (ret < 0)
5717                 return ret;
5718
5719         nritems = btrfs_header_nritems(path->nodes[0]);
5720         /*
5721          * by releasing the path above we dropped all our locks.  A balance
5722          * could have added more items next to the key that used to be
5723          * at the very end of the block.  So, check again here and
5724          * advance the path if there are now more items available.
5725          */
5726         if (nritems > 0 && path->slots[0] < nritems - 1) {
5727                 if (ret == 0)
5728                         path->slots[0]++;
5729                 ret = 0;
5730                 goto done;
5731         }
5732         /*
5733          * So the above check misses one case:
5734          * - after releasing the path above, someone has removed the item that
5735          *   used to be at the very end of the block, and balance between leafs
5736          *   gets another one with bigger key.offset to replace it.
5737          *
5738          * This one should be returned as well, or we can get leaf corruption
5739          * later(esp. in __btrfs_drop_extents()).
5740          *
5741          * And a bit more explanation about this check,
5742          * with ret > 0, the key isn't found, the path points to the slot
5743          * where it should be inserted, so the path->slots[0] item must be the
5744          * bigger one.
5745          */
5746         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5747                 ret = 0;
5748                 goto done;
5749         }
5750
5751         while (level < BTRFS_MAX_LEVEL) {
5752                 if (!path->nodes[level]) {
5753                         ret = 1;
5754                         goto done;
5755                 }
5756
5757                 slot = path->slots[level] + 1;
5758                 c = path->nodes[level];
5759                 if (slot >= btrfs_header_nritems(c)) {
5760                         level++;
5761                         if (level == BTRFS_MAX_LEVEL) {
5762                                 ret = 1;
5763                                 goto done;
5764                         }
5765                         continue;
5766                 }
5767
5768                 if (next) {
5769                         btrfs_tree_unlock_rw(next, next_rw_lock);
5770                         free_extent_buffer(next);
5771                 }
5772
5773                 next = c;
5774                 next_rw_lock = path->locks[level];
5775                 ret = read_block_for_search(root, path, &next, level,
5776                                             slot, &key);
5777                 if (ret == -EAGAIN)
5778                         goto again;
5779
5780                 if (ret < 0) {
5781                         btrfs_release_path(path);
5782                         goto done;
5783                 }
5784
5785                 if (!path->skip_locking) {
5786                         ret = btrfs_try_tree_read_lock(next);
5787                         if (!ret && time_seq) {
5788                                 /*
5789                                  * If we don't get the lock, we may be racing
5790                                  * with push_leaf_left, holding that lock while
5791                                  * itself waiting for the leaf we've currently
5792                                  * locked. To solve this situation, we give up
5793                                  * on our lock and cycle.
5794                                  */
5795                                 free_extent_buffer(next);
5796                                 btrfs_release_path(path);
5797                                 cond_resched();
5798                                 goto again;
5799                         }
5800                         if (!ret) {
5801                                 btrfs_set_path_blocking(path);
5802                                 btrfs_tree_read_lock(next);
5803                         }
5804                         next_rw_lock = BTRFS_READ_LOCK;
5805                 }
5806                 break;
5807         }
5808         path->slots[level] = slot;
5809         while (1) {
5810                 level--;
5811                 c = path->nodes[level];
5812                 if (path->locks[level])
5813                         btrfs_tree_unlock_rw(c, path->locks[level]);
5814
5815                 free_extent_buffer(c);
5816                 path->nodes[level] = next;
5817                 path->slots[level] = 0;
5818                 if (!path->skip_locking)
5819                         path->locks[level] = next_rw_lock;
5820                 if (!level)
5821                         break;
5822
5823                 ret = read_block_for_search(root, path, &next, level,
5824                                             0, &key);
5825                 if (ret == -EAGAIN)
5826                         goto again;
5827
5828                 if (ret < 0) {
5829                         btrfs_release_path(path);
5830                         goto done;
5831                 }
5832
5833                 if (!path->skip_locking) {
5834                         ret = btrfs_try_tree_read_lock(next);
5835                         if (!ret) {
5836                                 btrfs_set_path_blocking(path);
5837                                 btrfs_tree_read_lock(next);
5838                         }
5839                         next_rw_lock = BTRFS_READ_LOCK;
5840                 }
5841         }
5842         ret = 0;
5843 done:
5844         unlock_up(path, 0, 1, 0, NULL);
5845         path->leave_spinning = old_spinning;
5846         if (!old_spinning)
5847                 btrfs_set_path_blocking(path);
5848
5849         return ret;
5850 }
5851
5852 /*
5853  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5854  * searching until it gets past min_objectid or finds an item of 'type'
5855  *
5856  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5857  */
5858 int btrfs_previous_item(struct btrfs_root *root,
5859                         struct btrfs_path *path, u64 min_objectid,
5860                         int type)
5861 {
5862         struct btrfs_key found_key;
5863         struct extent_buffer *leaf;
5864         u32 nritems;
5865         int ret;
5866
5867         while (1) {
5868                 if (path->slots[0] == 0) {
5869                         btrfs_set_path_blocking(path);
5870                         ret = btrfs_prev_leaf(root, path);
5871                         if (ret != 0)
5872                                 return ret;
5873                 } else {
5874                         path->slots[0]--;
5875                 }
5876                 leaf = path->nodes[0];
5877                 nritems = btrfs_header_nritems(leaf);
5878                 if (nritems == 0)
5879                         return 1;
5880                 if (path->slots[0] == nritems)
5881                         path->slots[0]--;
5882
5883                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5884                 if (found_key.objectid < min_objectid)
5885                         break;
5886                 if (found_key.type == type)
5887                         return 0;
5888                 if (found_key.objectid == min_objectid &&
5889                     found_key.type < type)
5890                         break;
5891         }
5892         return 1;
5893 }
5894
5895 /*
5896  * search in extent tree to find a previous Metadata/Data extent item with
5897  * min objecitd.
5898  *
5899  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5900  */
5901 int btrfs_previous_extent_item(struct btrfs_root *root,
5902                         struct btrfs_path *path, u64 min_objectid)
5903 {
5904         struct btrfs_key found_key;
5905         struct extent_buffer *leaf;
5906         u32 nritems;
5907         int ret;
5908
5909         while (1) {
5910                 if (path->slots[0] == 0) {
5911                         btrfs_set_path_blocking(path);
5912                         ret = btrfs_prev_leaf(root, path);
5913                         if (ret != 0)
5914                                 return ret;
5915                 } else {
5916                         path->slots[0]--;
5917                 }
5918                 leaf = path->nodes[0];
5919                 nritems = btrfs_header_nritems(leaf);
5920                 if (nritems == 0)
5921                         return 1;
5922                 if (path->slots[0] == nritems)
5923                         path->slots[0]--;
5924
5925                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5926                 if (found_key.objectid < min_objectid)
5927                         break;
5928                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5929                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5930                         return 0;
5931                 if (found_key.objectid == min_objectid &&
5932                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5933                         break;
5934         }
5935         return 1;
5936 }