1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 *root, struct btrfs_path *path, int level);
18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 const struct btrfs_key *ins_key, struct btrfs_path *path,
20 int data_size, int extend);
21 static int push_node_left(struct btrfs_trans_handle *trans,
22 struct btrfs_fs_info *fs_info,
23 struct extent_buffer *dst,
24 struct extent_buffer *src, int empty);
25 static int balance_node_right(struct btrfs_trans_handle *trans,
26 struct btrfs_fs_info *fs_info,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 struct btrfs_path *btrfs_alloc_path(void)
34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 if (!p->nodes[i] || !p->locks[i])
47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 if (p->locks[i] == BTRFS_READ_LOCK)
49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
55 /* this also releases the path */
56 void btrfs_free_path(struct btrfs_path *p)
60 btrfs_release_path(p);
61 kmem_cache_free(btrfs_path_cachep, p);
65 * path release drops references on the extent buffers in the path
66 * and it drops any locks held by this path
68 * It is safe to call this on paths that no locks or extent buffers held.
70 noinline void btrfs_release_path(struct btrfs_path *p)
74 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
79 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
82 free_extent_buffer(p->nodes[i]);
88 * safely gets a reference on the root node of a tree. A lock
89 * is not taken, so a concurrent writer may put a different node
90 * at the root of the tree. See btrfs_lock_root_node for the
93 * The extent buffer returned by this has a reference taken, so
94 * it won't disappear. It may stop being the root of the tree
95 * at any time because there are no locks held.
97 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
99 struct extent_buffer *eb;
103 eb = rcu_dereference(root->node);
106 * RCU really hurts here, we could free up the root node because
107 * it was COWed but we may not get the new root node yet so do
108 * the inc_not_zero dance and if it doesn't work then
109 * synchronize_rcu and try again.
111 if (atomic_inc_not_zero(&eb->refs)) {
121 /* loop around taking references on and locking the root node of the
122 * tree until you end up with a lock on the root. A locked buffer
123 * is returned, with a reference held.
125 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
127 struct extent_buffer *eb;
130 eb = btrfs_root_node(root);
132 if (eb == root->node)
134 btrfs_tree_unlock(eb);
135 free_extent_buffer(eb);
140 /* loop around taking references on and locking the root node of the
141 * tree until you end up with a lock on the root. A locked buffer
142 * is returned, with a reference held.
144 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
146 struct extent_buffer *eb;
149 eb = btrfs_root_node(root);
150 btrfs_tree_read_lock(eb);
151 if (eb == root->node)
153 btrfs_tree_read_unlock(eb);
154 free_extent_buffer(eb);
159 /* cowonly root (everything not a reference counted cow subvolume), just get
160 * put onto a simple dirty list. transaction.c walks this to make sure they
161 * get properly updated on disk.
163 static void add_root_to_dirty_list(struct btrfs_root *root)
165 struct btrfs_fs_info *fs_info = root->fs_info;
167 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
168 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
171 spin_lock(&fs_info->trans_lock);
172 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
173 /* Want the extent tree to be the last on the list */
174 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
175 list_move_tail(&root->dirty_list,
176 &fs_info->dirty_cowonly_roots);
178 list_move(&root->dirty_list,
179 &fs_info->dirty_cowonly_roots);
181 spin_unlock(&fs_info->trans_lock);
185 * used by snapshot creation to make a copy of a root for a tree with
186 * a given objectid. The buffer with the new root node is returned in
187 * cow_ret, and this func returns zero on success or a negative error code.
189 int btrfs_copy_root(struct btrfs_trans_handle *trans,
190 struct btrfs_root *root,
191 struct extent_buffer *buf,
192 struct extent_buffer **cow_ret, u64 new_root_objectid)
194 struct btrfs_fs_info *fs_info = root->fs_info;
195 struct extent_buffer *cow;
198 struct btrfs_disk_key disk_key;
200 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
201 trans->transid != fs_info->running_transaction->transid);
202 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
203 trans->transid != root->last_trans);
205 level = btrfs_header_level(buf);
207 btrfs_item_key(buf, &disk_key, 0);
209 btrfs_node_key(buf, &disk_key, 0);
211 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
212 &disk_key, level, buf->start, 0);
216 copy_extent_buffer_full(cow, buf);
217 btrfs_set_header_bytenr(cow, cow->start);
218 btrfs_set_header_generation(cow, trans->transid);
219 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
220 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
221 BTRFS_HEADER_FLAG_RELOC);
222 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
225 btrfs_set_header_owner(cow, new_root_objectid);
227 write_extent_buffer_fsid(cow, fs_info->fsid);
229 WARN_ON(btrfs_header_generation(buf) > trans->transid);
230 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
231 ret = btrfs_inc_ref(trans, root, cow, 1);
233 ret = btrfs_inc_ref(trans, root, cow, 0);
238 btrfs_mark_buffer_dirty(cow);
247 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
248 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
250 MOD_LOG_ROOT_REPLACE,
253 struct tree_mod_root {
258 struct tree_mod_elem {
264 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
267 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
270 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
271 struct btrfs_disk_key key;
274 /* this is used for op == MOD_LOG_MOVE_KEYS */
280 /* this is used for op == MOD_LOG_ROOT_REPLACE */
281 struct tree_mod_root old_root;
285 * Pull a new tree mod seq number for our operation.
287 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
289 return atomic64_inc_return(&fs_info->tree_mod_seq);
293 * This adds a new blocker to the tree mod log's blocker list if the @elem
294 * passed does not already have a sequence number set. So when a caller expects
295 * to record tree modifications, it should ensure to set elem->seq to zero
296 * before calling btrfs_get_tree_mod_seq.
297 * Returns a fresh, unused tree log modification sequence number, even if no new
300 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
301 struct seq_list *elem)
303 write_lock(&fs_info->tree_mod_log_lock);
304 spin_lock(&fs_info->tree_mod_seq_lock);
306 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
307 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
309 spin_unlock(&fs_info->tree_mod_seq_lock);
310 write_unlock(&fs_info->tree_mod_log_lock);
315 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
316 struct seq_list *elem)
318 struct rb_root *tm_root;
319 struct rb_node *node;
320 struct rb_node *next;
321 struct seq_list *cur_elem;
322 struct tree_mod_elem *tm;
323 u64 min_seq = (u64)-1;
324 u64 seq_putting = elem->seq;
329 spin_lock(&fs_info->tree_mod_seq_lock);
330 list_del(&elem->list);
333 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
334 if (cur_elem->seq < min_seq) {
335 if (seq_putting > cur_elem->seq) {
337 * blocker with lower sequence number exists, we
338 * cannot remove anything from the log
340 spin_unlock(&fs_info->tree_mod_seq_lock);
343 min_seq = cur_elem->seq;
346 spin_unlock(&fs_info->tree_mod_seq_lock);
349 * anything that's lower than the lowest existing (read: blocked)
350 * sequence number can be removed from the tree.
352 write_lock(&fs_info->tree_mod_log_lock);
353 tm_root = &fs_info->tree_mod_log;
354 for (node = rb_first(tm_root); node; node = next) {
355 next = rb_next(node);
356 tm = rb_entry(node, struct tree_mod_elem, node);
357 if (tm->seq > min_seq)
359 rb_erase(node, tm_root);
362 write_unlock(&fs_info->tree_mod_log_lock);
366 * key order of the log:
367 * node/leaf start address -> sequence
369 * The 'start address' is the logical address of the *new* root node
370 * for root replace operations, or the logical address of the affected
371 * block for all other operations.
373 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
376 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
378 struct rb_root *tm_root;
379 struct rb_node **new;
380 struct rb_node *parent = NULL;
381 struct tree_mod_elem *cur;
383 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
385 tm_root = &fs_info->tree_mod_log;
386 new = &tm_root->rb_node;
388 cur = rb_entry(*new, struct tree_mod_elem, node);
390 if (cur->logical < tm->logical)
391 new = &((*new)->rb_left);
392 else if (cur->logical > tm->logical)
393 new = &((*new)->rb_right);
394 else if (cur->seq < tm->seq)
395 new = &((*new)->rb_left);
396 else if (cur->seq > tm->seq)
397 new = &((*new)->rb_right);
402 rb_link_node(&tm->node, parent, new);
403 rb_insert_color(&tm->node, tm_root);
408 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
409 * returns zero with the tree_mod_log_lock acquired. The caller must hold
410 * this until all tree mod log insertions are recorded in the rb tree and then
411 * write unlock fs_info::tree_mod_log_lock.
413 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
414 struct extent_buffer *eb) {
416 if (list_empty(&(fs_info)->tree_mod_seq_list))
418 if (eb && btrfs_header_level(eb) == 0)
421 write_lock(&fs_info->tree_mod_log_lock);
422 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
423 write_unlock(&fs_info->tree_mod_log_lock);
430 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
431 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
432 struct extent_buffer *eb)
435 if (list_empty(&(fs_info)->tree_mod_seq_list))
437 if (eb && btrfs_header_level(eb) == 0)
443 static struct tree_mod_elem *
444 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
445 enum mod_log_op op, gfp_t flags)
447 struct tree_mod_elem *tm;
449 tm = kzalloc(sizeof(*tm), flags);
453 tm->logical = eb->start;
454 if (op != MOD_LOG_KEY_ADD) {
455 btrfs_node_key(eb, &tm->key, slot);
456 tm->blockptr = btrfs_node_blockptr(eb, slot);
460 tm->generation = btrfs_node_ptr_generation(eb, slot);
461 RB_CLEAR_NODE(&tm->node);
466 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
467 enum mod_log_op op, gfp_t flags)
469 struct tree_mod_elem *tm;
472 if (!tree_mod_need_log(eb->fs_info, eb))
475 tm = alloc_tree_mod_elem(eb, slot, op, flags);
479 if (tree_mod_dont_log(eb->fs_info, eb)) {
484 ret = __tree_mod_log_insert(eb->fs_info, tm);
485 write_unlock(&eb->fs_info->tree_mod_log_lock);
492 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
493 int dst_slot, int src_slot, int nr_items)
495 struct tree_mod_elem *tm = NULL;
496 struct tree_mod_elem **tm_list = NULL;
501 if (!tree_mod_need_log(eb->fs_info, eb))
504 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
508 tm = kzalloc(sizeof(*tm), GFP_NOFS);
514 tm->logical = eb->start;
516 tm->move.dst_slot = dst_slot;
517 tm->move.nr_items = nr_items;
518 tm->op = MOD_LOG_MOVE_KEYS;
520 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
521 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
522 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
529 if (tree_mod_dont_log(eb->fs_info, eb))
534 * When we override something during the move, we log these removals.
535 * This can only happen when we move towards the beginning of the
536 * buffer, i.e. dst_slot < src_slot.
538 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
539 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
544 ret = __tree_mod_log_insert(eb->fs_info, tm);
547 write_unlock(&eb->fs_info->tree_mod_log_lock);
552 for (i = 0; i < nr_items; i++) {
553 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
554 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
558 write_unlock(&eb->fs_info->tree_mod_log_lock);
566 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
567 struct tree_mod_elem **tm_list,
573 for (i = nritems - 1; i >= 0; i--) {
574 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
576 for (j = nritems - 1; j > i; j--)
577 rb_erase(&tm_list[j]->node,
578 &fs_info->tree_mod_log);
586 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
587 struct extent_buffer *new_root, int log_removal)
589 struct btrfs_fs_info *fs_info = old_root->fs_info;
590 struct tree_mod_elem *tm = NULL;
591 struct tree_mod_elem **tm_list = NULL;
596 if (!tree_mod_need_log(fs_info, NULL))
599 if (log_removal && btrfs_header_level(old_root) > 0) {
600 nritems = btrfs_header_nritems(old_root);
601 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
607 for (i = 0; i < nritems; i++) {
608 tm_list[i] = alloc_tree_mod_elem(old_root, i,
609 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
617 tm = kzalloc(sizeof(*tm), GFP_NOFS);
623 tm->logical = new_root->start;
624 tm->old_root.logical = old_root->start;
625 tm->old_root.level = btrfs_header_level(old_root);
626 tm->generation = btrfs_header_generation(old_root);
627 tm->op = MOD_LOG_ROOT_REPLACE;
629 if (tree_mod_dont_log(fs_info, NULL))
633 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
635 ret = __tree_mod_log_insert(fs_info, tm);
637 write_unlock(&fs_info->tree_mod_log_lock);
646 for (i = 0; i < nritems; i++)
655 static struct tree_mod_elem *
656 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
659 struct rb_root *tm_root;
660 struct rb_node *node;
661 struct tree_mod_elem *cur = NULL;
662 struct tree_mod_elem *found = NULL;
664 read_lock(&fs_info->tree_mod_log_lock);
665 tm_root = &fs_info->tree_mod_log;
666 node = tm_root->rb_node;
668 cur = rb_entry(node, struct tree_mod_elem, node);
669 if (cur->logical < start) {
670 node = node->rb_left;
671 } else if (cur->logical > start) {
672 node = node->rb_right;
673 } else if (cur->seq < min_seq) {
674 node = node->rb_left;
675 } else if (!smallest) {
676 /* we want the node with the highest seq */
678 BUG_ON(found->seq > cur->seq);
680 node = node->rb_left;
681 } else if (cur->seq > min_seq) {
682 /* we want the node with the smallest seq */
684 BUG_ON(found->seq < cur->seq);
686 node = node->rb_right;
692 read_unlock(&fs_info->tree_mod_log_lock);
698 * this returns the element from the log with the smallest time sequence
699 * value that's in the log (the oldest log item). any element with a time
700 * sequence lower than min_seq will be ignored.
702 static struct tree_mod_elem *
703 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
706 return __tree_mod_log_search(fs_info, start, min_seq, 1);
710 * this returns the element from the log with the largest time sequence
711 * value that's in the log (the most recent log item). any element with
712 * a time sequence lower than min_seq will be ignored.
714 static struct tree_mod_elem *
715 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
717 return __tree_mod_log_search(fs_info, start, min_seq, 0);
721 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
722 struct extent_buffer *src, unsigned long dst_offset,
723 unsigned long src_offset, int nr_items)
726 struct tree_mod_elem **tm_list = NULL;
727 struct tree_mod_elem **tm_list_add, **tm_list_rem;
731 if (!tree_mod_need_log(fs_info, NULL))
734 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
737 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
742 tm_list_add = tm_list;
743 tm_list_rem = tm_list + nr_items;
744 for (i = 0; i < nr_items; i++) {
745 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
746 MOD_LOG_KEY_REMOVE, GFP_NOFS);
747 if (!tm_list_rem[i]) {
752 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
753 MOD_LOG_KEY_ADD, GFP_NOFS);
754 if (!tm_list_add[i]) {
760 if (tree_mod_dont_log(fs_info, NULL))
764 for (i = 0; i < nr_items; i++) {
765 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
768 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
773 write_unlock(&fs_info->tree_mod_log_lock);
779 for (i = 0; i < nr_items * 2; i++) {
780 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
781 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
785 write_unlock(&fs_info->tree_mod_log_lock);
791 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
793 struct tree_mod_elem **tm_list = NULL;
798 if (btrfs_header_level(eb) == 0)
801 if (!tree_mod_need_log(eb->fs_info, NULL))
804 nritems = btrfs_header_nritems(eb);
805 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
809 for (i = 0; i < nritems; i++) {
810 tm_list[i] = alloc_tree_mod_elem(eb, i,
811 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
818 if (tree_mod_dont_log(eb->fs_info, eb))
821 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
822 write_unlock(&eb->fs_info->tree_mod_log_lock);
830 for (i = 0; i < nritems; i++)
838 * check if the tree block can be shared by multiple trees
840 int btrfs_block_can_be_shared(struct btrfs_root *root,
841 struct extent_buffer *buf)
844 * Tree blocks not in reference counted trees and tree roots
845 * are never shared. If a block was allocated after the last
846 * snapshot and the block was not allocated by tree relocation,
847 * we know the block is not shared.
849 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
850 buf != root->node && buf != root->commit_root &&
851 (btrfs_header_generation(buf) <=
852 btrfs_root_last_snapshot(&root->root_item) ||
853 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
859 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
860 struct btrfs_root *root,
861 struct extent_buffer *buf,
862 struct extent_buffer *cow,
865 struct btrfs_fs_info *fs_info = root->fs_info;
873 * Backrefs update rules:
875 * Always use full backrefs for extent pointers in tree block
876 * allocated by tree relocation.
878 * If a shared tree block is no longer referenced by its owner
879 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
880 * use full backrefs for extent pointers in tree block.
882 * If a tree block is been relocating
883 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
884 * use full backrefs for extent pointers in tree block.
885 * The reason for this is some operations (such as drop tree)
886 * are only allowed for blocks use full backrefs.
889 if (btrfs_block_can_be_shared(root, buf)) {
890 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
891 btrfs_header_level(buf), 1,
897 btrfs_handle_fs_error(fs_info, ret, NULL);
902 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
903 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
904 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
909 owner = btrfs_header_owner(buf);
910 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
911 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
914 if ((owner == root->root_key.objectid ||
915 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
916 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
917 ret = btrfs_inc_ref(trans, root, buf, 1);
921 if (root->root_key.objectid ==
922 BTRFS_TREE_RELOC_OBJECTID) {
923 ret = btrfs_dec_ref(trans, root, buf, 0);
926 ret = btrfs_inc_ref(trans, root, cow, 1);
930 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
933 if (root->root_key.objectid ==
934 BTRFS_TREE_RELOC_OBJECTID)
935 ret = btrfs_inc_ref(trans, root, cow, 1);
937 ret = btrfs_inc_ref(trans, root, cow, 0);
941 if (new_flags != 0) {
942 int level = btrfs_header_level(buf);
944 ret = btrfs_set_disk_extent_flags(trans, fs_info,
947 new_flags, level, 0);
952 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
953 if (root->root_key.objectid ==
954 BTRFS_TREE_RELOC_OBJECTID)
955 ret = btrfs_inc_ref(trans, root, cow, 1);
957 ret = btrfs_inc_ref(trans, root, cow, 0);
960 ret = btrfs_dec_ref(trans, root, buf, 1);
964 clean_tree_block(fs_info, buf);
971 * does the dirty work in cow of a single block. The parent block (if
972 * supplied) is updated to point to the new cow copy. The new buffer is marked
973 * dirty and returned locked. If you modify the block it needs to be marked
976 * search_start -- an allocation hint for the new block
978 * empty_size -- a hint that you plan on doing more cow. This is the size in
979 * bytes the allocator should try to find free next to the block it returns.
980 * This is just a hint and may be ignored by the allocator.
982 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
983 struct btrfs_root *root,
984 struct extent_buffer *buf,
985 struct extent_buffer *parent, int parent_slot,
986 struct extent_buffer **cow_ret,
987 u64 search_start, u64 empty_size)
989 struct btrfs_fs_info *fs_info = root->fs_info;
990 struct btrfs_disk_key disk_key;
991 struct extent_buffer *cow;
995 u64 parent_start = 0;
1000 btrfs_assert_tree_locked(buf);
1002 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1003 trans->transid != fs_info->running_transaction->transid);
1004 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1005 trans->transid != root->last_trans);
1007 level = btrfs_header_level(buf);
1010 btrfs_item_key(buf, &disk_key, 0);
1012 btrfs_node_key(buf, &disk_key, 0);
1014 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1015 parent_start = parent->start;
1018 * If we are COWing a node/leaf from the extent, chunk or device trees,
1019 * make sure that we do not finish block group creation of pending block
1020 * groups. We do this to avoid a deadlock.
1021 * COWing can result in allocation of a new chunk, and flushing pending
1022 * block groups (btrfs_create_pending_block_groups()) can be triggered
1023 * when finishing allocation of a new chunk. Creation of a pending block
1024 * group modifies the extent, chunk and device trees, therefore we could
1025 * deadlock with ourselves since we are holding a lock on an extent
1026 * buffer that btrfs_create_pending_block_groups() may try to COW later.
1028 if (root == fs_info->extent_root ||
1029 root == fs_info->chunk_root ||
1030 root == fs_info->dev_root)
1031 trans->can_flush_pending_bgs = false;
1033 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1034 root->root_key.objectid, &disk_key, level,
1035 search_start, empty_size);
1036 trans->can_flush_pending_bgs = true;
1038 return PTR_ERR(cow);
1040 /* cow is set to blocking by btrfs_init_new_buffer */
1042 copy_extent_buffer_full(cow, buf);
1043 btrfs_set_header_bytenr(cow, cow->start);
1044 btrfs_set_header_generation(cow, trans->transid);
1045 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1046 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1047 BTRFS_HEADER_FLAG_RELOC);
1048 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1049 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1051 btrfs_set_header_owner(cow, root->root_key.objectid);
1053 write_extent_buffer_fsid(cow, fs_info->fsid);
1055 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1057 btrfs_abort_transaction(trans, ret);
1061 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1062 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1064 btrfs_abort_transaction(trans, ret);
1069 if (buf == root->node) {
1070 WARN_ON(parent && parent != buf);
1071 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1072 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1073 parent_start = buf->start;
1075 extent_buffer_get(cow);
1076 ret = tree_mod_log_insert_root(root->node, cow, 1);
1078 rcu_assign_pointer(root->node, cow);
1080 btrfs_free_tree_block(trans, root, buf, parent_start,
1082 free_extent_buffer(buf);
1083 add_root_to_dirty_list(root);
1085 WARN_ON(trans->transid != btrfs_header_generation(parent));
1086 tree_mod_log_insert_key(parent, parent_slot,
1087 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1088 btrfs_set_node_blockptr(parent, parent_slot,
1090 btrfs_set_node_ptr_generation(parent, parent_slot,
1092 btrfs_mark_buffer_dirty(parent);
1094 ret = tree_mod_log_free_eb(buf);
1096 btrfs_abort_transaction(trans, ret);
1100 btrfs_free_tree_block(trans, root, buf, parent_start,
1104 btrfs_tree_unlock(buf);
1105 free_extent_buffer_stale(buf);
1106 btrfs_mark_buffer_dirty(cow);
1112 * returns the logical address of the oldest predecessor of the given root.
1113 * entries older than time_seq are ignored.
1115 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1116 struct extent_buffer *eb_root, u64 time_seq)
1118 struct tree_mod_elem *tm;
1119 struct tree_mod_elem *found = NULL;
1120 u64 root_logical = eb_root->start;
1127 * the very last operation that's logged for a root is the
1128 * replacement operation (if it is replaced at all). this has
1129 * the logical address of the *new* root, making it the very
1130 * first operation that's logged for this root.
1133 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1138 * if there are no tree operation for the oldest root, we simply
1139 * return it. this should only happen if that (old) root is at
1146 * if there's an operation that's not a root replacement, we
1147 * found the oldest version of our root. normally, we'll find a
1148 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1150 if (tm->op != MOD_LOG_ROOT_REPLACE)
1154 root_logical = tm->old_root.logical;
1158 /* if there's no old root to return, return what we found instead */
1166 * tm is a pointer to the first operation to rewind within eb. then, all
1167 * previous operations will be rewound (until we reach something older than
1171 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1172 u64 time_seq, struct tree_mod_elem *first_tm)
1175 struct rb_node *next;
1176 struct tree_mod_elem *tm = first_tm;
1177 unsigned long o_dst;
1178 unsigned long o_src;
1179 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1181 n = btrfs_header_nritems(eb);
1182 read_lock(&fs_info->tree_mod_log_lock);
1183 while (tm && tm->seq >= time_seq) {
1185 * all the operations are recorded with the operator used for
1186 * the modification. as we're going backwards, we do the
1187 * opposite of each operation here.
1190 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1191 BUG_ON(tm->slot < n);
1193 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1194 case MOD_LOG_KEY_REMOVE:
1195 btrfs_set_node_key(eb, &tm->key, tm->slot);
1196 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1197 btrfs_set_node_ptr_generation(eb, tm->slot,
1201 case MOD_LOG_KEY_REPLACE:
1202 BUG_ON(tm->slot >= n);
1203 btrfs_set_node_key(eb, &tm->key, tm->slot);
1204 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1205 btrfs_set_node_ptr_generation(eb, tm->slot,
1208 case MOD_LOG_KEY_ADD:
1209 /* if a move operation is needed it's in the log */
1212 case MOD_LOG_MOVE_KEYS:
1213 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1214 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1215 memmove_extent_buffer(eb, o_dst, o_src,
1216 tm->move.nr_items * p_size);
1218 case MOD_LOG_ROOT_REPLACE:
1220 * this operation is special. for roots, this must be
1221 * handled explicitly before rewinding.
1222 * for non-roots, this operation may exist if the node
1223 * was a root: root A -> child B; then A gets empty and
1224 * B is promoted to the new root. in the mod log, we'll
1225 * have a root-replace operation for B, a tree block
1226 * that is no root. we simply ignore that operation.
1230 next = rb_next(&tm->node);
1233 tm = rb_entry(next, struct tree_mod_elem, node);
1234 if (tm->logical != first_tm->logical)
1237 read_unlock(&fs_info->tree_mod_log_lock);
1238 btrfs_set_header_nritems(eb, n);
1242 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1243 * is returned. If rewind operations happen, a fresh buffer is returned. The
1244 * returned buffer is always read-locked. If the returned buffer is not the
1245 * input buffer, the lock on the input buffer is released and the input buffer
1246 * is freed (its refcount is decremented).
1248 static struct extent_buffer *
1249 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1250 struct extent_buffer *eb, u64 time_seq)
1252 struct extent_buffer *eb_rewin;
1253 struct tree_mod_elem *tm;
1258 if (btrfs_header_level(eb) == 0)
1261 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1265 btrfs_set_path_blocking(path);
1266 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1268 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1269 BUG_ON(tm->slot != 0);
1270 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1272 btrfs_tree_read_unlock_blocking(eb);
1273 free_extent_buffer(eb);
1276 btrfs_set_header_bytenr(eb_rewin, eb->start);
1277 btrfs_set_header_backref_rev(eb_rewin,
1278 btrfs_header_backref_rev(eb));
1279 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1280 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1282 eb_rewin = btrfs_clone_extent_buffer(eb);
1284 btrfs_tree_read_unlock_blocking(eb);
1285 free_extent_buffer(eb);
1290 btrfs_tree_read_unlock_blocking(eb);
1291 free_extent_buffer(eb);
1293 btrfs_tree_read_lock(eb_rewin);
1294 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1295 WARN_ON(btrfs_header_nritems(eb_rewin) >
1296 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1302 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1303 * value. If there are no changes, the current root->root_node is returned. If
1304 * anything changed in between, there's a fresh buffer allocated on which the
1305 * rewind operations are done. In any case, the returned buffer is read locked.
1306 * Returns NULL on error (with no locks held).
1308 static inline struct extent_buffer *
1309 get_old_root(struct btrfs_root *root, u64 time_seq)
1311 struct btrfs_fs_info *fs_info = root->fs_info;
1312 struct tree_mod_elem *tm;
1313 struct extent_buffer *eb = NULL;
1314 struct extent_buffer *eb_root;
1315 struct extent_buffer *old;
1316 struct tree_mod_root *old_root = NULL;
1317 u64 old_generation = 0;
1321 eb_root = btrfs_read_lock_root_node(root);
1322 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1326 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1327 old_root = &tm->old_root;
1328 old_generation = tm->generation;
1329 logical = old_root->logical;
1330 level = old_root->level;
1332 logical = eb_root->start;
1333 level = btrfs_header_level(eb_root);
1336 tm = tree_mod_log_search(fs_info, logical, time_seq);
1337 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1338 btrfs_tree_read_unlock(eb_root);
1339 free_extent_buffer(eb_root);
1340 old = read_tree_block(fs_info, logical, 0, level, NULL);
1341 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1343 free_extent_buffer(old);
1345 "failed to read tree block %llu from get_old_root",
1348 eb = btrfs_clone_extent_buffer(old);
1349 free_extent_buffer(old);
1351 } else if (old_root) {
1352 btrfs_tree_read_unlock(eb_root);
1353 free_extent_buffer(eb_root);
1354 eb = alloc_dummy_extent_buffer(fs_info, logical);
1356 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1357 eb = btrfs_clone_extent_buffer(eb_root);
1358 btrfs_tree_read_unlock_blocking(eb_root);
1359 free_extent_buffer(eb_root);
1364 btrfs_tree_read_lock(eb);
1366 btrfs_set_header_bytenr(eb, eb->start);
1367 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1368 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1369 btrfs_set_header_level(eb, old_root->level);
1370 btrfs_set_header_generation(eb, old_generation);
1373 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1375 WARN_ON(btrfs_header_level(eb) != 0);
1376 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1381 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1383 struct tree_mod_elem *tm;
1385 struct extent_buffer *eb_root = btrfs_root_node(root);
1387 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1388 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1389 level = tm->old_root.level;
1391 level = btrfs_header_level(eb_root);
1393 free_extent_buffer(eb_root);
1398 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1399 struct btrfs_root *root,
1400 struct extent_buffer *buf)
1402 if (btrfs_is_testing(root->fs_info))
1405 /* Ensure we can see the FORCE_COW bit */
1406 smp_mb__before_atomic();
1409 * We do not need to cow a block if
1410 * 1) this block is not created or changed in this transaction;
1411 * 2) this block does not belong to TREE_RELOC tree;
1412 * 3) the root is not forced COW.
1414 * What is forced COW:
1415 * when we create snapshot during committing the transaction,
1416 * after we've finished coping src root, we must COW the shared
1417 * block to ensure the metadata consistency.
1419 if (btrfs_header_generation(buf) == trans->transid &&
1420 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1421 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1422 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1423 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1429 * cows a single block, see __btrfs_cow_block for the real work.
1430 * This version of it has extra checks so that a block isn't COWed more than
1431 * once per transaction, as long as it hasn't been written yet
1433 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1434 struct btrfs_root *root, struct extent_buffer *buf,
1435 struct extent_buffer *parent, int parent_slot,
1436 struct extent_buffer **cow_ret)
1438 struct btrfs_fs_info *fs_info = root->fs_info;
1442 if (trans->transaction != fs_info->running_transaction)
1443 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1445 fs_info->running_transaction->transid);
1447 if (trans->transid != fs_info->generation)
1448 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1449 trans->transid, fs_info->generation);
1451 if (!should_cow_block(trans, root, buf)) {
1452 trans->dirty = true;
1457 search_start = buf->start & ~((u64)SZ_1G - 1);
1460 btrfs_set_lock_blocking(parent);
1461 btrfs_set_lock_blocking(buf);
1463 ret = __btrfs_cow_block(trans, root, buf, parent,
1464 parent_slot, cow_ret, search_start, 0);
1466 trace_btrfs_cow_block(root, buf, *cow_ret);
1472 * helper function for defrag to decide if two blocks pointed to by a
1473 * node are actually close by
1475 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1477 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1479 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1485 * compare two keys in a memcmp fashion
1487 static int comp_keys(const struct btrfs_disk_key *disk,
1488 const struct btrfs_key *k2)
1490 struct btrfs_key k1;
1492 btrfs_disk_key_to_cpu(&k1, disk);
1494 return btrfs_comp_cpu_keys(&k1, k2);
1498 * same as comp_keys only with two btrfs_key's
1500 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1502 if (k1->objectid > k2->objectid)
1504 if (k1->objectid < k2->objectid)
1506 if (k1->type > k2->type)
1508 if (k1->type < k2->type)
1510 if (k1->offset > k2->offset)
1512 if (k1->offset < k2->offset)
1518 * this is used by the defrag code to go through all the
1519 * leaves pointed to by a node and reallocate them so that
1520 * disk order is close to key order
1522 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1523 struct btrfs_root *root, struct extent_buffer *parent,
1524 int start_slot, u64 *last_ret,
1525 struct btrfs_key *progress)
1527 struct btrfs_fs_info *fs_info = root->fs_info;
1528 struct extent_buffer *cur;
1531 u64 search_start = *last_ret;
1541 int progress_passed = 0;
1542 struct btrfs_disk_key disk_key;
1544 parent_level = btrfs_header_level(parent);
1546 WARN_ON(trans->transaction != fs_info->running_transaction);
1547 WARN_ON(trans->transid != fs_info->generation);
1549 parent_nritems = btrfs_header_nritems(parent);
1550 blocksize = fs_info->nodesize;
1551 end_slot = parent_nritems - 1;
1553 if (parent_nritems <= 1)
1556 btrfs_set_lock_blocking(parent);
1558 for (i = start_slot; i <= end_slot; i++) {
1559 struct btrfs_key first_key;
1562 btrfs_node_key(parent, &disk_key, i);
1563 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1566 progress_passed = 1;
1567 blocknr = btrfs_node_blockptr(parent, i);
1568 gen = btrfs_node_ptr_generation(parent, i);
1569 btrfs_node_key_to_cpu(parent, &first_key, i);
1570 if (last_block == 0)
1571 last_block = blocknr;
1574 other = btrfs_node_blockptr(parent, i - 1);
1575 close = close_blocks(blocknr, other, blocksize);
1577 if (!close && i < end_slot) {
1578 other = btrfs_node_blockptr(parent, i + 1);
1579 close = close_blocks(blocknr, other, blocksize);
1582 last_block = blocknr;
1586 cur = find_extent_buffer(fs_info, blocknr);
1588 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1591 if (!cur || !uptodate) {
1593 cur = read_tree_block(fs_info, blocknr, gen,
1597 return PTR_ERR(cur);
1598 } else if (!extent_buffer_uptodate(cur)) {
1599 free_extent_buffer(cur);
1602 } else if (!uptodate) {
1603 err = btrfs_read_buffer(cur, gen,
1604 parent_level - 1,&first_key);
1606 free_extent_buffer(cur);
1611 if (search_start == 0)
1612 search_start = last_block;
1614 btrfs_tree_lock(cur);
1615 btrfs_set_lock_blocking(cur);
1616 err = __btrfs_cow_block(trans, root, cur, parent, i,
1619 (end_slot - i) * blocksize));
1621 btrfs_tree_unlock(cur);
1622 free_extent_buffer(cur);
1625 search_start = cur->start;
1626 last_block = cur->start;
1627 *last_ret = search_start;
1628 btrfs_tree_unlock(cur);
1629 free_extent_buffer(cur);
1635 * search for key in the extent_buffer. The items start at offset p,
1636 * and they are item_size apart. There are 'max' items in p.
1638 * the slot in the array is returned via slot, and it points to
1639 * the place where you would insert key if it is not found in
1642 * slot may point to max if the key is bigger than all of the keys
1644 static noinline int generic_bin_search(struct extent_buffer *eb,
1645 unsigned long p, int item_size,
1646 const struct btrfs_key *key,
1653 struct btrfs_disk_key *tmp = NULL;
1654 struct btrfs_disk_key unaligned;
1655 unsigned long offset;
1657 unsigned long map_start = 0;
1658 unsigned long map_len = 0;
1662 btrfs_err(eb->fs_info,
1663 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1664 __func__, low, high, eb->start,
1665 btrfs_header_owner(eb), btrfs_header_level(eb));
1669 while (low < high) {
1670 mid = (low + high) / 2;
1671 offset = p + mid * item_size;
1673 if (!kaddr || offset < map_start ||
1674 (offset + sizeof(struct btrfs_disk_key)) >
1675 map_start + map_len) {
1677 err = map_private_extent_buffer(eb, offset,
1678 sizeof(struct btrfs_disk_key),
1679 &kaddr, &map_start, &map_len);
1682 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1684 } else if (err == 1) {
1685 read_extent_buffer(eb, &unaligned,
1686 offset, sizeof(unaligned));
1693 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1696 ret = comp_keys(tmp, key);
1712 * simple bin_search frontend that does the right thing for
1715 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1716 int level, int *slot)
1719 return generic_bin_search(eb,
1720 offsetof(struct btrfs_leaf, items),
1721 sizeof(struct btrfs_item),
1722 key, btrfs_header_nritems(eb),
1725 return generic_bin_search(eb,
1726 offsetof(struct btrfs_node, ptrs),
1727 sizeof(struct btrfs_key_ptr),
1728 key, btrfs_header_nritems(eb),
1732 static void root_add_used(struct btrfs_root *root, u32 size)
1734 spin_lock(&root->accounting_lock);
1735 btrfs_set_root_used(&root->root_item,
1736 btrfs_root_used(&root->root_item) + size);
1737 spin_unlock(&root->accounting_lock);
1740 static void root_sub_used(struct btrfs_root *root, u32 size)
1742 spin_lock(&root->accounting_lock);
1743 btrfs_set_root_used(&root->root_item,
1744 btrfs_root_used(&root->root_item) - size);
1745 spin_unlock(&root->accounting_lock);
1748 /* given a node and slot number, this reads the blocks it points to. The
1749 * extent buffer is returned with a reference taken (but unlocked).
1751 static noinline struct extent_buffer *
1752 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1755 int level = btrfs_header_level(parent);
1756 struct extent_buffer *eb;
1757 struct btrfs_key first_key;
1759 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1760 return ERR_PTR(-ENOENT);
1764 btrfs_node_key_to_cpu(parent, &first_key, slot);
1765 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1766 btrfs_node_ptr_generation(parent, slot),
1767 level - 1, &first_key);
1768 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1769 free_extent_buffer(eb);
1777 * node level balancing, used to make sure nodes are in proper order for
1778 * item deletion. We balance from the top down, so we have to make sure
1779 * that a deletion won't leave an node completely empty later on.
1781 static noinline int balance_level(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path, int level)
1785 struct btrfs_fs_info *fs_info = root->fs_info;
1786 struct extent_buffer *right = NULL;
1787 struct extent_buffer *mid;
1788 struct extent_buffer *left = NULL;
1789 struct extent_buffer *parent = NULL;
1793 int orig_slot = path->slots[level];
1798 mid = path->nodes[level];
1800 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1801 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1802 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1804 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1806 if (level < BTRFS_MAX_LEVEL - 1) {
1807 parent = path->nodes[level + 1];
1808 pslot = path->slots[level + 1];
1812 * deal with the case where there is only one pointer in the root
1813 * by promoting the node below to a root
1816 struct extent_buffer *child;
1818 if (btrfs_header_nritems(mid) != 1)
1821 /* promote the child to a root */
1822 child = read_node_slot(fs_info, mid, 0);
1823 if (IS_ERR(child)) {
1824 ret = PTR_ERR(child);
1825 btrfs_handle_fs_error(fs_info, ret, NULL);
1829 btrfs_tree_lock(child);
1830 btrfs_set_lock_blocking(child);
1831 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1833 btrfs_tree_unlock(child);
1834 free_extent_buffer(child);
1838 ret = tree_mod_log_insert_root(root->node, child, 1);
1840 rcu_assign_pointer(root->node, child);
1842 add_root_to_dirty_list(root);
1843 btrfs_tree_unlock(child);
1845 path->locks[level] = 0;
1846 path->nodes[level] = NULL;
1847 clean_tree_block(fs_info, mid);
1848 btrfs_tree_unlock(mid);
1849 /* once for the path */
1850 free_extent_buffer(mid);
1852 root_sub_used(root, mid->len);
1853 btrfs_free_tree_block(trans, root, mid, 0, 1);
1854 /* once for the root ptr */
1855 free_extent_buffer_stale(mid);
1858 if (btrfs_header_nritems(mid) >
1859 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1862 left = read_node_slot(fs_info, parent, pslot - 1);
1867 btrfs_tree_lock(left);
1868 btrfs_set_lock_blocking(left);
1869 wret = btrfs_cow_block(trans, root, left,
1870 parent, pslot - 1, &left);
1877 right = read_node_slot(fs_info, parent, pslot + 1);
1882 btrfs_tree_lock(right);
1883 btrfs_set_lock_blocking(right);
1884 wret = btrfs_cow_block(trans, root, right,
1885 parent, pslot + 1, &right);
1892 /* first, try to make some room in the middle buffer */
1894 orig_slot += btrfs_header_nritems(left);
1895 wret = push_node_left(trans, fs_info, left, mid, 1);
1901 * then try to empty the right most buffer into the middle
1904 wret = push_node_left(trans, fs_info, mid, right, 1);
1905 if (wret < 0 && wret != -ENOSPC)
1907 if (btrfs_header_nritems(right) == 0) {
1908 clean_tree_block(fs_info, right);
1909 btrfs_tree_unlock(right);
1910 del_ptr(root, path, level + 1, pslot + 1);
1911 root_sub_used(root, right->len);
1912 btrfs_free_tree_block(trans, root, right, 0, 1);
1913 free_extent_buffer_stale(right);
1916 struct btrfs_disk_key right_key;
1917 btrfs_node_key(right, &right_key, 0);
1918 ret = tree_mod_log_insert_key(parent, pslot + 1,
1919 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1921 btrfs_set_node_key(parent, &right_key, pslot + 1);
1922 btrfs_mark_buffer_dirty(parent);
1925 if (btrfs_header_nritems(mid) == 1) {
1927 * we're not allowed to leave a node with one item in the
1928 * tree during a delete. A deletion from lower in the tree
1929 * could try to delete the only pointer in this node.
1930 * So, pull some keys from the left.
1931 * There has to be a left pointer at this point because
1932 * otherwise we would have pulled some pointers from the
1937 btrfs_handle_fs_error(fs_info, ret, NULL);
1940 wret = balance_node_right(trans, fs_info, mid, left);
1946 wret = push_node_left(trans, fs_info, left, mid, 1);
1952 if (btrfs_header_nritems(mid) == 0) {
1953 clean_tree_block(fs_info, mid);
1954 btrfs_tree_unlock(mid);
1955 del_ptr(root, path, level + 1, pslot);
1956 root_sub_used(root, mid->len);
1957 btrfs_free_tree_block(trans, root, mid, 0, 1);
1958 free_extent_buffer_stale(mid);
1961 /* update the parent key to reflect our changes */
1962 struct btrfs_disk_key mid_key;
1963 btrfs_node_key(mid, &mid_key, 0);
1964 ret = tree_mod_log_insert_key(parent, pslot,
1965 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1967 btrfs_set_node_key(parent, &mid_key, pslot);
1968 btrfs_mark_buffer_dirty(parent);
1971 /* update the path */
1973 if (btrfs_header_nritems(left) > orig_slot) {
1974 extent_buffer_get(left);
1975 /* left was locked after cow */
1976 path->nodes[level] = left;
1977 path->slots[level + 1] -= 1;
1978 path->slots[level] = orig_slot;
1980 btrfs_tree_unlock(mid);
1981 free_extent_buffer(mid);
1984 orig_slot -= btrfs_header_nritems(left);
1985 path->slots[level] = orig_slot;
1988 /* double check we haven't messed things up */
1990 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1994 btrfs_tree_unlock(right);
1995 free_extent_buffer(right);
1998 if (path->nodes[level] != left)
1999 btrfs_tree_unlock(left);
2000 free_extent_buffer(left);
2005 /* Node balancing for insertion. Here we only split or push nodes around
2006 * when they are completely full. This is also done top down, so we
2007 * have to be pessimistic.
2009 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 struct btrfs_path *path, int level)
2013 struct btrfs_fs_info *fs_info = root->fs_info;
2014 struct extent_buffer *right = NULL;
2015 struct extent_buffer *mid;
2016 struct extent_buffer *left = NULL;
2017 struct extent_buffer *parent = NULL;
2021 int orig_slot = path->slots[level];
2026 mid = path->nodes[level];
2027 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2029 if (level < BTRFS_MAX_LEVEL - 1) {
2030 parent = path->nodes[level + 1];
2031 pslot = path->slots[level + 1];
2037 left = read_node_slot(fs_info, parent, pslot - 1);
2041 /* first, try to make some room in the middle buffer */
2045 btrfs_tree_lock(left);
2046 btrfs_set_lock_blocking(left);
2048 left_nr = btrfs_header_nritems(left);
2049 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2052 ret = btrfs_cow_block(trans, root, left, parent,
2057 wret = push_node_left(trans, fs_info,
2064 struct btrfs_disk_key disk_key;
2065 orig_slot += left_nr;
2066 btrfs_node_key(mid, &disk_key, 0);
2067 ret = tree_mod_log_insert_key(parent, pslot,
2068 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2070 btrfs_set_node_key(parent, &disk_key, pslot);
2071 btrfs_mark_buffer_dirty(parent);
2072 if (btrfs_header_nritems(left) > orig_slot) {
2073 path->nodes[level] = left;
2074 path->slots[level + 1] -= 1;
2075 path->slots[level] = orig_slot;
2076 btrfs_tree_unlock(mid);
2077 free_extent_buffer(mid);
2080 btrfs_header_nritems(left);
2081 path->slots[level] = orig_slot;
2082 btrfs_tree_unlock(left);
2083 free_extent_buffer(left);
2087 btrfs_tree_unlock(left);
2088 free_extent_buffer(left);
2090 right = read_node_slot(fs_info, parent, pslot + 1);
2095 * then try to empty the right most buffer into the middle
2100 btrfs_tree_lock(right);
2101 btrfs_set_lock_blocking(right);
2103 right_nr = btrfs_header_nritems(right);
2104 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2107 ret = btrfs_cow_block(trans, root, right,
2113 wret = balance_node_right(trans, fs_info,
2120 struct btrfs_disk_key disk_key;
2122 btrfs_node_key(right, &disk_key, 0);
2123 ret = tree_mod_log_insert_key(parent, pslot + 1,
2124 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2126 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2127 btrfs_mark_buffer_dirty(parent);
2129 if (btrfs_header_nritems(mid) <= orig_slot) {
2130 path->nodes[level] = right;
2131 path->slots[level + 1] += 1;
2132 path->slots[level] = orig_slot -
2133 btrfs_header_nritems(mid);
2134 btrfs_tree_unlock(mid);
2135 free_extent_buffer(mid);
2137 btrfs_tree_unlock(right);
2138 free_extent_buffer(right);
2142 btrfs_tree_unlock(right);
2143 free_extent_buffer(right);
2149 * readahead one full node of leaves, finding things that are close
2150 * to the block in 'slot', and triggering ra on them.
2152 static void reada_for_search(struct btrfs_fs_info *fs_info,
2153 struct btrfs_path *path,
2154 int level, int slot, u64 objectid)
2156 struct extent_buffer *node;
2157 struct btrfs_disk_key disk_key;
2162 struct extent_buffer *eb;
2170 if (!path->nodes[level])
2173 node = path->nodes[level];
2175 search = btrfs_node_blockptr(node, slot);
2176 blocksize = fs_info->nodesize;
2177 eb = find_extent_buffer(fs_info, search);
2179 free_extent_buffer(eb);
2185 nritems = btrfs_header_nritems(node);
2189 if (path->reada == READA_BACK) {
2193 } else if (path->reada == READA_FORWARD) {
2198 if (path->reada == READA_BACK && objectid) {
2199 btrfs_node_key(node, &disk_key, nr);
2200 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2203 search = btrfs_node_blockptr(node, nr);
2204 if ((search <= target && target - search <= 65536) ||
2205 (search > target && search - target <= 65536)) {
2206 readahead_tree_block(fs_info, search);
2210 if ((nread > 65536 || nscan > 32))
2215 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2216 struct btrfs_path *path, int level)
2220 struct extent_buffer *parent;
2221 struct extent_buffer *eb;
2226 parent = path->nodes[level + 1];
2230 nritems = btrfs_header_nritems(parent);
2231 slot = path->slots[level + 1];
2234 block1 = btrfs_node_blockptr(parent, slot - 1);
2235 gen = btrfs_node_ptr_generation(parent, slot - 1);
2236 eb = find_extent_buffer(fs_info, block1);
2238 * if we get -eagain from btrfs_buffer_uptodate, we
2239 * don't want to return eagain here. That will loop
2242 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2244 free_extent_buffer(eb);
2246 if (slot + 1 < nritems) {
2247 block2 = btrfs_node_blockptr(parent, slot + 1);
2248 gen = btrfs_node_ptr_generation(parent, slot + 1);
2249 eb = find_extent_buffer(fs_info, block2);
2250 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2252 free_extent_buffer(eb);
2256 readahead_tree_block(fs_info, block1);
2258 readahead_tree_block(fs_info, block2);
2263 * when we walk down the tree, it is usually safe to unlock the higher layers
2264 * in the tree. The exceptions are when our path goes through slot 0, because
2265 * operations on the tree might require changing key pointers higher up in the
2268 * callers might also have set path->keep_locks, which tells this code to keep
2269 * the lock if the path points to the last slot in the block. This is part of
2270 * walking through the tree, and selecting the next slot in the higher block.
2272 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2273 * if lowest_unlock is 1, level 0 won't be unlocked
2275 static noinline void unlock_up(struct btrfs_path *path, int level,
2276 int lowest_unlock, int min_write_lock_level,
2277 int *write_lock_level)
2280 int skip_level = level;
2282 struct extent_buffer *t;
2284 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2285 if (!path->nodes[i])
2287 if (!path->locks[i])
2289 if (!no_skips && path->slots[i] == 0) {
2293 if (!no_skips && path->keep_locks) {
2296 nritems = btrfs_header_nritems(t);
2297 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2302 if (skip_level < i && i >= lowest_unlock)
2306 if (i >= lowest_unlock && i > skip_level) {
2307 btrfs_tree_unlock_rw(t, path->locks[i]);
2309 if (write_lock_level &&
2310 i > min_write_lock_level &&
2311 i <= *write_lock_level) {
2312 *write_lock_level = i - 1;
2319 * This releases any locks held in the path starting at level and
2320 * going all the way up to the root.
2322 * btrfs_search_slot will keep the lock held on higher nodes in a few
2323 * corner cases, such as COW of the block at slot zero in the node. This
2324 * ignores those rules, and it should only be called when there are no
2325 * more updates to be done higher up in the tree.
2327 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2331 if (path->keep_locks)
2334 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2335 if (!path->nodes[i])
2337 if (!path->locks[i])
2339 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2345 * helper function for btrfs_search_slot. The goal is to find a block
2346 * in cache without setting the path to blocking. If we find the block
2347 * we return zero and the path is unchanged.
2349 * If we can't find the block, we set the path blocking and do some
2350 * reada. -EAGAIN is returned and the search must be repeated.
2353 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2354 struct extent_buffer **eb_ret, int level, int slot,
2355 const struct btrfs_key *key)
2357 struct btrfs_fs_info *fs_info = root->fs_info;
2360 struct extent_buffer *b = *eb_ret;
2361 struct extent_buffer *tmp;
2362 struct btrfs_key first_key;
2366 blocknr = btrfs_node_blockptr(b, slot);
2367 gen = btrfs_node_ptr_generation(b, slot);
2368 parent_level = btrfs_header_level(b);
2369 btrfs_node_key_to_cpu(b, &first_key, slot);
2371 tmp = find_extent_buffer(fs_info, blocknr);
2373 /* first we do an atomic uptodate check */
2374 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2379 /* the pages were up to date, but we failed
2380 * the generation number check. Do a full
2381 * read for the generation number that is correct.
2382 * We must do this without dropping locks so
2383 * we can trust our generation number
2385 btrfs_set_path_blocking(p);
2387 /* now we're allowed to do a blocking uptodate check */
2388 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2393 free_extent_buffer(tmp);
2394 btrfs_release_path(p);
2399 * reduce lock contention at high levels
2400 * of the btree by dropping locks before
2401 * we read. Don't release the lock on the current
2402 * level because we need to walk this node to figure
2403 * out which blocks to read.
2405 btrfs_unlock_up_safe(p, level + 1);
2406 btrfs_set_path_blocking(p);
2408 if (p->reada != READA_NONE)
2409 reada_for_search(fs_info, p, level, slot, key->objectid);
2412 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2416 * If the read above didn't mark this buffer up to date,
2417 * it will never end up being up to date. Set ret to EIO now
2418 * and give up so that our caller doesn't loop forever
2421 if (!extent_buffer_uptodate(tmp))
2423 free_extent_buffer(tmp);
2428 btrfs_release_path(p);
2433 * helper function for btrfs_search_slot. This does all of the checks
2434 * for node-level blocks and does any balancing required based on
2437 * If no extra work was required, zero is returned. If we had to
2438 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2442 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2443 struct btrfs_root *root, struct btrfs_path *p,
2444 struct extent_buffer *b, int level, int ins_len,
2445 int *write_lock_level)
2447 struct btrfs_fs_info *fs_info = root->fs_info;
2450 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2451 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2454 if (*write_lock_level < level + 1) {
2455 *write_lock_level = level + 1;
2456 btrfs_release_path(p);
2460 btrfs_set_path_blocking(p);
2461 reada_for_balance(fs_info, p, level);
2462 sret = split_node(trans, root, p, level);
2469 b = p->nodes[level];
2470 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2471 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2474 if (*write_lock_level < level + 1) {
2475 *write_lock_level = level + 1;
2476 btrfs_release_path(p);
2480 btrfs_set_path_blocking(p);
2481 reada_for_balance(fs_info, p, level);
2482 sret = balance_level(trans, root, p, level);
2488 b = p->nodes[level];
2490 btrfs_release_path(p);
2493 BUG_ON(btrfs_header_nritems(b) == 1);
2503 static void key_search_validate(struct extent_buffer *b,
2504 const struct btrfs_key *key,
2507 #ifdef CONFIG_BTRFS_ASSERT
2508 struct btrfs_disk_key disk_key;
2510 btrfs_cpu_key_to_disk(&disk_key, key);
2513 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2514 offsetof(struct btrfs_leaf, items[0].key),
2517 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2518 offsetof(struct btrfs_node, ptrs[0].key),
2523 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2524 int level, int *prev_cmp, int *slot)
2526 if (*prev_cmp != 0) {
2527 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2531 key_search_validate(b, key, level);
2537 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2538 u64 iobjectid, u64 ioff, u8 key_type,
2539 struct btrfs_key *found_key)
2542 struct btrfs_key key;
2543 struct extent_buffer *eb;
2548 key.type = key_type;
2549 key.objectid = iobjectid;
2552 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2556 eb = path->nodes[0];
2557 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2558 ret = btrfs_next_leaf(fs_root, path);
2561 eb = path->nodes[0];
2564 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2565 if (found_key->type != key.type ||
2566 found_key->objectid != key.objectid)
2572 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2573 struct btrfs_path *p,
2574 int write_lock_level)
2576 struct btrfs_fs_info *fs_info = root->fs_info;
2577 struct extent_buffer *b;
2581 /* We try very hard to do read locks on the root */
2582 root_lock = BTRFS_READ_LOCK;
2584 if (p->search_commit_root) {
2585 /* The commit roots are read only so we always do read locks */
2586 if (p->need_commit_sem)
2587 down_read(&fs_info->commit_root_sem);
2588 b = root->commit_root;
2589 extent_buffer_get(b);
2590 level = btrfs_header_level(b);
2591 if (p->need_commit_sem)
2592 up_read(&fs_info->commit_root_sem);
2594 * Ensure that all callers have set skip_locking when
2595 * p->search_commit_root = 1.
2597 ASSERT(p->skip_locking == 1);
2602 if (p->skip_locking) {
2603 b = btrfs_root_node(root);
2604 level = btrfs_header_level(b);
2609 * If the level is set to maximum, we can skip trying to get the read
2612 if (write_lock_level < BTRFS_MAX_LEVEL) {
2614 * We don't know the level of the root node until we actually
2615 * have it read locked
2617 b = btrfs_read_lock_root_node(root);
2618 level = btrfs_header_level(b);
2619 if (level > write_lock_level)
2622 /* Whoops, must trade for write lock */
2623 btrfs_tree_read_unlock(b);
2624 free_extent_buffer(b);
2627 b = btrfs_lock_root_node(root);
2628 root_lock = BTRFS_WRITE_LOCK;
2630 /* The level might have changed, check again */
2631 level = btrfs_header_level(b);
2634 p->nodes[level] = b;
2635 if (!p->skip_locking)
2636 p->locks[level] = root_lock;
2638 * Callers are responsible for dropping b's references.
2645 * btrfs_search_slot - look for a key in a tree and perform necessary
2646 * modifications to preserve tree invariants.
2648 * @trans: Handle of transaction, used when modifying the tree
2649 * @p: Holds all btree nodes along the search path
2650 * @root: The root node of the tree
2651 * @key: The key we are looking for
2652 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2653 * deletions it's -1. 0 for plain searches
2654 * @cow: boolean should CoW operations be performed. Must always be 1
2655 * when modifying the tree.
2657 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2658 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2660 * If @key is found, 0 is returned and you can find the item in the leaf level
2661 * of the path (level 0)
2663 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2664 * points to the slot where it should be inserted
2666 * If an error is encountered while searching the tree a negative error number
2669 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2670 const struct btrfs_key *key, struct btrfs_path *p,
2671 int ins_len, int cow)
2673 struct btrfs_fs_info *fs_info = root->fs_info;
2674 struct extent_buffer *b;
2679 int lowest_unlock = 1;
2680 /* everything at write_lock_level or lower must be write locked */
2681 int write_lock_level = 0;
2682 u8 lowest_level = 0;
2683 int min_write_lock_level;
2686 lowest_level = p->lowest_level;
2687 WARN_ON(lowest_level && ins_len > 0);
2688 WARN_ON(p->nodes[0] != NULL);
2689 BUG_ON(!cow && ins_len);
2694 /* when we are removing items, we might have to go up to level
2695 * two as we update tree pointers Make sure we keep write
2696 * for those levels as well
2698 write_lock_level = 2;
2699 } else if (ins_len > 0) {
2701 * for inserting items, make sure we have a write lock on
2702 * level 1 so we can update keys
2704 write_lock_level = 1;
2708 write_lock_level = -1;
2710 if (cow && (p->keep_locks || p->lowest_level))
2711 write_lock_level = BTRFS_MAX_LEVEL;
2713 min_write_lock_level = write_lock_level;
2717 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2720 level = btrfs_header_level(b);
2723 * setup the path here so we can release it under lock
2724 * contention with the cow code
2727 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2730 * if we don't really need to cow this block
2731 * then we don't want to set the path blocking,
2732 * so we test it here
2734 if (!should_cow_block(trans, root, b)) {
2735 trans->dirty = true;
2740 * must have write locks on this node and the
2743 if (level > write_lock_level ||
2744 (level + 1 > write_lock_level &&
2745 level + 1 < BTRFS_MAX_LEVEL &&
2746 p->nodes[level + 1])) {
2747 write_lock_level = level + 1;
2748 btrfs_release_path(p);
2752 btrfs_set_path_blocking(p);
2754 err = btrfs_cow_block(trans, root, b, NULL, 0,
2757 err = btrfs_cow_block(trans, root, b,
2758 p->nodes[level + 1],
2759 p->slots[level + 1], &b);
2766 p->nodes[level] = b;
2768 * Leave path with blocking locks to avoid massive
2769 * lock context switch, this is made on purpose.
2773 * we have a lock on b and as long as we aren't changing
2774 * the tree, there is no way to for the items in b to change.
2775 * It is safe to drop the lock on our parent before we
2776 * go through the expensive btree search on b.
2778 * If we're inserting or deleting (ins_len != 0), then we might
2779 * be changing slot zero, which may require changing the parent.
2780 * So, we can't drop the lock until after we know which slot
2781 * we're operating on.
2783 if (!ins_len && !p->keep_locks) {
2786 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2787 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2792 ret = key_search(b, key, level, &prev_cmp, &slot);
2798 if (ret && slot > 0) {
2802 p->slots[level] = slot;
2803 err = setup_nodes_for_search(trans, root, p, b, level,
2804 ins_len, &write_lock_level);
2811 b = p->nodes[level];
2812 slot = p->slots[level];
2815 * slot 0 is special, if we change the key
2816 * we have to update the parent pointer
2817 * which means we must have a write lock
2820 if (slot == 0 && ins_len &&
2821 write_lock_level < level + 1) {
2822 write_lock_level = level + 1;
2823 btrfs_release_path(p);
2827 unlock_up(p, level, lowest_unlock,
2828 min_write_lock_level, &write_lock_level);
2830 if (level == lowest_level) {
2836 err = read_block_for_search(root, p, &b, level,
2845 if (!p->skip_locking) {
2846 level = btrfs_header_level(b);
2847 if (level <= write_lock_level) {
2848 err = btrfs_try_tree_write_lock(b);
2850 btrfs_set_path_blocking(p);
2853 p->locks[level] = BTRFS_WRITE_LOCK;
2855 err = btrfs_tree_read_lock_atomic(b);
2857 btrfs_set_path_blocking(p);
2858 btrfs_tree_read_lock(b);
2860 p->locks[level] = BTRFS_READ_LOCK;
2862 p->nodes[level] = b;
2865 p->slots[level] = slot;
2867 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2868 if (write_lock_level < 1) {
2869 write_lock_level = 1;
2870 btrfs_release_path(p);
2874 btrfs_set_path_blocking(p);
2875 err = split_leaf(trans, root, key,
2876 p, ins_len, ret == 0);
2884 if (!p->search_for_split)
2885 unlock_up(p, level, lowest_unlock,
2886 min_write_lock_level, NULL);
2893 * we don't really know what they plan on doing with the path
2894 * from here on, so for now just mark it as blocking
2896 if (!p->leave_spinning)
2897 btrfs_set_path_blocking(p);
2898 if (ret < 0 && !p->skip_release_on_error)
2899 btrfs_release_path(p);
2904 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2905 * current state of the tree together with the operations recorded in the tree
2906 * modification log to search for the key in a previous version of this tree, as
2907 * denoted by the time_seq parameter.
2909 * Naturally, there is no support for insert, delete or cow operations.
2911 * The resulting path and return value will be set up as if we called
2912 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2914 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2915 struct btrfs_path *p, u64 time_seq)
2917 struct btrfs_fs_info *fs_info = root->fs_info;
2918 struct extent_buffer *b;
2923 int lowest_unlock = 1;
2924 u8 lowest_level = 0;
2927 lowest_level = p->lowest_level;
2928 WARN_ON(p->nodes[0] != NULL);
2930 if (p->search_commit_root) {
2932 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2936 b = get_old_root(root, time_seq);
2941 level = btrfs_header_level(b);
2942 p->locks[level] = BTRFS_READ_LOCK;
2945 level = btrfs_header_level(b);
2946 p->nodes[level] = b;
2949 * we have a lock on b and as long as we aren't changing
2950 * the tree, there is no way to for the items in b to change.
2951 * It is safe to drop the lock on our parent before we
2952 * go through the expensive btree search on b.
2954 btrfs_unlock_up_safe(p, level + 1);
2957 * Since we can unwind ebs we want to do a real search every
2961 ret = key_search(b, key, level, &prev_cmp, &slot);
2965 if (ret && slot > 0) {
2969 p->slots[level] = slot;
2970 unlock_up(p, level, lowest_unlock, 0, NULL);
2972 if (level == lowest_level) {
2978 err = read_block_for_search(root, p, &b, level,
2987 level = btrfs_header_level(b);
2988 err = btrfs_tree_read_lock_atomic(b);
2990 btrfs_set_path_blocking(p);
2991 btrfs_tree_read_lock(b);
2993 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2998 p->locks[level] = BTRFS_READ_LOCK;
2999 p->nodes[level] = b;
3001 p->slots[level] = slot;
3002 unlock_up(p, level, lowest_unlock, 0, NULL);
3008 if (!p->leave_spinning)
3009 btrfs_set_path_blocking(p);
3011 btrfs_release_path(p);
3017 * helper to use instead of search slot if no exact match is needed but
3018 * instead the next or previous item should be returned.
3019 * When find_higher is true, the next higher item is returned, the next lower
3021 * When return_any and find_higher are both true, and no higher item is found,
3022 * return the next lower instead.
3023 * When return_any is true and find_higher is false, and no lower item is found,
3024 * return the next higher instead.
3025 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3028 int btrfs_search_slot_for_read(struct btrfs_root *root,
3029 const struct btrfs_key *key,
3030 struct btrfs_path *p, int find_higher,
3034 struct extent_buffer *leaf;
3037 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3041 * a return value of 1 means the path is at the position where the
3042 * item should be inserted. Normally this is the next bigger item,
3043 * but in case the previous item is the last in a leaf, path points
3044 * to the first free slot in the previous leaf, i.e. at an invalid
3050 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3051 ret = btrfs_next_leaf(root, p);
3057 * no higher item found, return the next
3062 btrfs_release_path(p);
3066 if (p->slots[0] == 0) {
3067 ret = btrfs_prev_leaf(root, p);
3072 if (p->slots[0] == btrfs_header_nritems(leaf))
3079 * no lower item found, return the next
3084 btrfs_release_path(p);
3094 * adjust the pointers going up the tree, starting at level
3095 * making sure the right key of each node is points to 'key'.
3096 * This is used after shifting pointers to the left, so it stops
3097 * fixing up pointers when a given leaf/node is not in slot 0 of the
3101 static void fixup_low_keys(struct btrfs_path *path,
3102 struct btrfs_disk_key *key, int level)
3105 struct extent_buffer *t;
3108 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3109 int tslot = path->slots[i];
3111 if (!path->nodes[i])
3114 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3117 btrfs_set_node_key(t, key, tslot);
3118 btrfs_mark_buffer_dirty(path->nodes[i]);
3127 * This function isn't completely safe. It's the caller's responsibility
3128 * that the new key won't break the order
3130 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3131 struct btrfs_path *path,
3132 const struct btrfs_key *new_key)
3134 struct btrfs_disk_key disk_key;
3135 struct extent_buffer *eb;
3138 eb = path->nodes[0];