2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
46 struct btrfs_path *btrfs_alloc_path(void)
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
91 btrfs_set_path_blocking(p);
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
104 btrfs_clear_lock_blocking_rw(held, held_rw);
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
112 btrfs_release_path(p);
113 kmem_cache_free(btrfs_path_cachep, p);
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
120 * It is safe to call this on paths that no locks or extent buffers held.
122 noinline void btrfs_release_path(struct btrfs_path *p)
126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
134 free_extent_buffer(p->nodes[i]);
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
151 struct extent_buffer *eb;
155 eb = rcu_dereference(root->node);
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
163 if (atomic_inc_not_zero(&eb->refs)) {
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
179 struct extent_buffer *eb;
182 eb = btrfs_root_node(root);
184 if (eb == root->node)
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
198 struct extent_buffer *eb;
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
215 static void add_root_to_dirty_list(struct btrfs_root *root)
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
221 spin_lock(&root->fs_info->trans_lock);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
231 spin_unlock(&root->fs_info->trans_lock);
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 struct extent_buffer *cow;
247 struct btrfs_disk_key disk_key;
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
254 level = btrfs_header_level(buf);
256 btrfs_item_key(buf, &disk_key, 0);
258 btrfs_node_key(buf, &disk_key, 0);
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 btrfs_set_header_owner(cow, new_root_objectid);
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1);
283 ret = btrfs_inc_ref(trans, root, cow, 0);
288 btrfs_mark_buffer_dirty(cow);
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_ROOT_REPLACE,
303 struct tree_mod_move {
308 struct tree_mod_root {
313 struct tree_mod_elem {
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 read_lock(&fs_info->tree_mod_log_lock);
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 read_unlock(&fs_info->tree_mod_log_lock);
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 write_lock(&fs_info->tree_mod_log_lock);
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 write_unlock(&fs_info->tree_mod_log_lock);
357 * Pull a new tree mod seq number for our operation.
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
375 tree_mod_log_write_lock(fs_info);
376 spin_lock(&fs_info->tree_mod_seq_lock);
378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 spin_unlock(&fs_info->tree_mod_seq_lock);
382 tree_mod_log_write_unlock(fs_info);
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 if (cur_elem->seq < min_seq) {
407 if (seq_putting > cur_elem->seq) {
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
412 spin_unlock(&fs_info->tree_mod_seq_lock);
415 min_seq = cur_elem->seq;
418 spin_unlock(&fs_info->tree_mod_seq_lock);
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
424 tree_mod_log_write_lock(fs_info);
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
429 if (tm->seq > min_seq)
431 rb_erase(node, tm_root);
434 tree_mod_log_write_unlock(fs_info);
438 * key order of the log:
439 * node/leaf start address -> sequence
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
445 * Note: must be called with write lock (tree_mod_log_write_lock).
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
462 cur = container_of(*new, struct tree_mod_elem, node);
464 if (cur->logical < tm->logical)
465 new = &((*new)->rb_left);
466 else if (cur->logical > tm->logical)
467 new = &((*new)->rb_right);
468 else if (cur->seq < tm->seq)
469 new = &((*new)->rb_left);
470 else if (cur->seq > tm->seq)
471 new = &((*new)->rb_right);
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 if (eb && btrfs_header_level(eb) == 0)
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
511 if (eb && btrfs_header_level(eb) == 0)
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
521 struct tree_mod_elem *tm;
523 tm = kzalloc(sizeof(*tm), flags);
527 tm->logical = eb->start;
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
535 RB_CLEAR_NODE(&tm->node);
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
545 struct tree_mod_elem *tm;
548 if (!tree_mod_need_log(fs_info, eb))
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
555 if (tree_mod_dont_log(fs_info, eb)) {
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
579 if (!tree_mod_need_log(fs_info, eb))
582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
586 tm = kzalloc(sizeof(*tm), flags);
592 tm->logical = eb->start;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
607 if (tree_mod_dont_log(fs_info, eb))
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
622 ret = __tree_mod_log_insert(fs_info, tm);
625 tree_mod_log_write_unlock(fs_info);
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
636 tree_mod_log_write_unlock(fs_info);
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
651 for (i = nritems - 1; i >= 0; i--) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
667 struct extent_buffer *new_root, gfp_t flags,
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
676 if (!tree_mod_need_log(fs_info, NULL))
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
697 tm = kzalloc(sizeof(*tm), flags);
703 tm->logical = new_root->start;
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
709 if (tree_mod_dont_log(fs_info, NULL))
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 ret = __tree_mod_log_insert(fs_info, tm);
717 tree_mod_log_write_unlock(fs_info);
726 for (i = 0; i < nritems; i++)
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->logical < start) {
750 node = node->rb_left;
751 } else if (cur->logical > start) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
758 BUG_ON(found->seq > cur->seq);
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
764 BUG_ON(found->seq < cur->seq);
766 node = node->rb_right;
772 tree_mod_log_read_unlock(fs_info);
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
811 if (!tree_mod_need_log(fs_info, NULL))
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
840 if (tree_mod_dont_log(fs_info, NULL))
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
853 tree_mod_log_write_unlock(fs_info);
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
865 tree_mod_log_write_unlock(fs_info);
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896 struct tree_mod_elem **tm_list = NULL;
901 if (btrfs_header_level(eb) == 0)
904 if (!tree_mod_need_log(fs_info, NULL))
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
921 if (tree_mod_dont_log(fs_info, eb))
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
933 for (i = 0; i < nritems; i++)
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1014 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1060 new_flags, level, 0);
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1075 clean_tree_block(trans, root->fs_info, buf);
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1104 int unlock_orig = 0;
1107 if (*cow_ret == buf)
1110 btrfs_assert_tree_locked(buf);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1117 level = btrfs_header_level(buf);
1120 btrfs_item_key(buf, &disk_key, 0);
1122 btrfs_node_key(buf, &disk_key, 0);
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1126 parent_start = parent->start;
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1136 return PTR_ERR(cow);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1156 btrfs_abort_transaction(trans, root, ret);
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1163 btrfs_abort_transaction(trans, root, ret);
1168 if (buf == root->node) {
1169 WARN_ON(parent && parent != buf);
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1176 extent_buffer_get(cow);
1177 tree_mod_log_set_root_pointer(root, cow, 1);
1178 rcu_assign_pointer(root->node, cow);
1180 btrfs_free_tree_block(trans, root, buf, parent_start,
1182 free_extent_buffer(buf);
1183 add_root_to_dirty_list(root);
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 btrfs_set_node_blockptr(parent, parent_slot,
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1197 btrfs_mark_buffer_dirty(parent);
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1201 btrfs_abort_transaction(trans, root, ret);
1205 btrfs_free_tree_block(trans, root, buf, parent_start,
1209 btrfs_tree_unlock(buf);
1210 free_extent_buffer_stale(buf);
1211 btrfs_mark_buffer_dirty(cow);
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 struct extent_buffer *eb_root, u64 time_seq)
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
1226 u64 root_logical = eb_root->start;
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1260 root_logical = tm->old_root.logical;
1264 /* if there's no old root to return, return what we found instead */
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) {
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1314 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */
1318 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size);
1324 case MOD_LOG_ROOT_REPLACE:
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1336 next = rb_next(&tm->node);
1339 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->logical != first_tm->logical)
1343 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n);
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1364 if (btrfs_header_level(eb) == 0)
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1379 btrfs_tree_read_unlock_blocking(eb);
1380 free_extent_buffer(eb);
1383 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1389 eb_rewin = btrfs_clone_extent_buffer(eb);
1391 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb);
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb);
1399 free_extent_buffer(eb);
1401 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin);
1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1420 struct tree_mod_elem *tm;
1421 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root;
1423 struct extent_buffer *old;
1424 struct tree_mod_root *old_root = NULL;
1425 u64 old_generation = 0;
1428 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root;
1435 old_generation = tm->generation;
1436 logical = old_root->logical;
1438 logical = eb_root->start;
1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root);
1445 old = read_tree_block(root, logical, 0);
1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1448 free_extent_buffer(old);
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
1455 } else if (old_root) {
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 eb = btrfs_clone_extent_buffer(eb_root);
1463 btrfs_tree_read_unlock_blocking(eb_root);
1464 free_extent_buffer(eb_root);
1469 extent_buffer_get(eb);
1470 btrfs_tree_read_lock(eb);
1472 btrfs_set_header_bytenr(eb, eb->start);
1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 btrfs_set_header_level(eb, old_root->level);
1476 btrfs_set_header_generation(eb, old_generation);
1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1481 WARN_ON(btrfs_header_level(eb) != 0);
1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1489 struct tree_mod_elem *tm;
1491 struct extent_buffer *eb_root = btrfs_root_node(root);
1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 level = tm->old_root.level;
1497 level = btrfs_header_level(eb_root);
1499 free_extent_buffer(eb_root);
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *root,
1506 struct extent_buffer *buf)
1508 if (btrfs_test_is_dummy_root(root))
1511 /* ensure we can see the force_cow */
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
1542 struct extent_buffer **cow_ret)
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1550 root->fs_info->running_transaction->transid);
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 trans->transid, root->fs_info->generation);
1556 if (!should_cow_block(trans, root, buf)) {
1557 trans->dirty = true;
1562 search_start = buf->start & ~((u64)SZ_1G - 1);
1565 btrfs_set_lock_blocking(parent);
1566 btrfs_set_lock_blocking(buf);
1568 ret = __btrfs_cow_block(trans, root, buf, parent,
1569 parent_slot, cow_ret, search_start, 0);
1571 trace_btrfs_cow_block(root, buf, *cow_ret);
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1582 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1584 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1590 * compare two keys in a memcmp fashion
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1594 struct btrfs_key k1;
1596 btrfs_disk_key_to_cpu(&k1, disk);
1598 return btrfs_comp_cpu_keys(&k1, k2);
1602 * same as comp_keys only with two btrfs_key's
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1606 if (k1->objectid > k2->objectid)
1608 if (k1->objectid < k2->objectid)
1610 if (k1->type > k2->type)
1612 if (k1->type < k2->type)
1614 if (k1->offset > k2->offset)
1616 if (k1->offset < k2->offset)
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627 struct btrfs_root *root, struct extent_buffer *parent,
1628 int start_slot, u64 *last_ret,
1629 struct btrfs_key *progress)
1631 struct extent_buffer *cur;
1634 u64 search_start = *last_ret;
1644 int progress_passed = 0;
1645 struct btrfs_disk_key disk_key;
1647 parent_level = btrfs_header_level(parent);
1649 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 WARN_ON(trans->transid != root->fs_info->generation);
1652 parent_nritems = btrfs_header_nritems(parent);
1653 blocksize = root->nodesize;
1654 end_slot = parent_nritems - 1;
1656 if (parent_nritems <= 1)
1659 btrfs_set_lock_blocking(parent);
1661 for (i = start_slot; i <= end_slot; i++) {
1664 btrfs_node_key(parent, &disk_key, i);
1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1668 progress_passed = 1;
1669 blocknr = btrfs_node_blockptr(parent, i);
1670 gen = btrfs_node_ptr_generation(parent, i);
1671 if (last_block == 0)
1672 last_block = blocknr;
1675 other = btrfs_node_blockptr(parent, i - 1);
1676 close = close_blocks(blocknr, other, blocksize);
1678 if (!close && i < end_slot) {
1679 other = btrfs_node_blockptr(parent, i + 1);
1680 close = close_blocks(blocknr, other, blocksize);
1683 last_block = blocknr;
1687 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1692 if (!cur || !uptodate) {
1694 cur = read_tree_block(root, blocknr, gen);
1696 return PTR_ERR(cur);
1697 } else if (!extent_buffer_uptodate(cur)) {
1698 free_extent_buffer(cur);
1701 } else if (!uptodate) {
1702 err = btrfs_read_buffer(cur, gen);
1704 free_extent_buffer(cur);
1709 if (search_start == 0)
1710 search_start = last_block;
1712 btrfs_tree_lock(cur);
1713 btrfs_set_lock_blocking(cur);
1714 err = __btrfs_cow_block(trans, root, cur, parent, i,
1717 (end_slot - i) * blocksize));
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
1723 search_start = cur->start;
1724 last_block = cur->start;
1725 *last_ret = search_start;
1726 btrfs_tree_unlock(cur);
1727 free_extent_buffer(cur);
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738 struct extent_buffer *leaf)
1740 u32 nr = btrfs_header_nritems(leaf);
1742 return BTRFS_LEAF_DATA_SIZE(root);
1743 return btrfs_item_offset_nr(leaf, nr - 1);
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1755 * slot may point to max if the key is bigger than all of the keys
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1759 int item_size, struct btrfs_key *key,
1766 struct btrfs_disk_key *tmp = NULL;
1767 struct btrfs_disk_key unaligned;
1768 unsigned long offset;
1770 unsigned long map_start = 0;
1771 unsigned long map_len = 0;
1774 while (low < high) {
1775 mid = (low + high) / 2;
1776 offset = p + mid * item_size;
1778 if (!kaddr || offset < map_start ||
1779 (offset + sizeof(struct btrfs_disk_key)) >
1780 map_start + map_len) {
1782 err = map_private_extent_buffer(eb, offset,
1783 sizeof(struct btrfs_disk_key),
1784 &kaddr, &map_start, &map_len);
1787 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1789 } else if (err == 1) {
1790 read_extent_buffer(eb, &unaligned,
1791 offset, sizeof(unaligned));
1798 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1801 ret = comp_keys(tmp, key);
1817 * simple bin_search frontend that does the right thing for
1820 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1821 int level, int *slot)
1824 return generic_bin_search(eb,
1825 offsetof(struct btrfs_leaf, items),
1826 sizeof(struct btrfs_item),
1827 key, btrfs_header_nritems(eb),
1830 return generic_bin_search(eb,
1831 offsetof(struct btrfs_node, ptrs),
1832 sizeof(struct btrfs_key_ptr),
1833 key, btrfs_header_nritems(eb),
1837 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1838 int level, int *slot)
1840 return bin_search(eb, key, level, slot);
1843 static void root_add_used(struct btrfs_root *root, u32 size)
1845 spin_lock(&root->accounting_lock);
1846 btrfs_set_root_used(&root->root_item,
1847 btrfs_root_used(&root->root_item) + size);
1848 spin_unlock(&root->accounting_lock);
1851 static void root_sub_used(struct btrfs_root *root, u32 size)
1853 spin_lock(&root->accounting_lock);
1854 btrfs_set_root_used(&root->root_item,
1855 btrfs_root_used(&root->root_item) - size);
1856 spin_unlock(&root->accounting_lock);
1859 /* given a node and slot number, this reads the blocks it points to. The
1860 * extent buffer is returned with a reference taken (but unlocked).
1861 * NULL is returned on error.
1863 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1864 struct extent_buffer *parent, int slot)
1866 int level = btrfs_header_level(parent);
1867 struct extent_buffer *eb;
1871 if (slot >= btrfs_header_nritems(parent))
1876 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1877 btrfs_node_ptr_generation(parent, slot));
1878 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1880 free_extent_buffer(eb);
1888 * node level balancing, used to make sure nodes are in proper order for
1889 * item deletion. We balance from the top down, so we have to make sure
1890 * that a deletion won't leave an node completely empty later on.
1892 static noinline int balance_level(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path, int level)
1896 struct extent_buffer *right = NULL;
1897 struct extent_buffer *mid;
1898 struct extent_buffer *left = NULL;
1899 struct extent_buffer *parent = NULL;
1903 int orig_slot = path->slots[level];
1909 mid = path->nodes[level];
1911 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1912 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1913 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1915 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1917 if (level < BTRFS_MAX_LEVEL - 1) {
1918 parent = path->nodes[level + 1];
1919 pslot = path->slots[level + 1];
1923 * deal with the case where there is only one pointer in the root
1924 * by promoting the node below to a root
1927 struct extent_buffer *child;
1929 if (btrfs_header_nritems(mid) != 1)
1932 /* promote the child to a root */
1933 child = read_node_slot(root, mid, 0);
1936 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1940 btrfs_tree_lock(child);
1941 btrfs_set_lock_blocking(child);
1942 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1944 btrfs_tree_unlock(child);
1945 free_extent_buffer(child);
1949 tree_mod_log_set_root_pointer(root, child, 1);
1950 rcu_assign_pointer(root->node, child);
1952 add_root_to_dirty_list(root);
1953 btrfs_tree_unlock(child);
1955 path->locks[level] = 0;
1956 path->nodes[level] = NULL;
1957 clean_tree_block(trans, root->fs_info, mid);
1958 btrfs_tree_unlock(mid);
1959 /* once for the path */
1960 free_extent_buffer(mid);
1962 root_sub_used(root, mid->len);
1963 btrfs_free_tree_block(trans, root, mid, 0, 1);
1964 /* once for the root ptr */
1965 free_extent_buffer_stale(mid);
1968 if (btrfs_header_nritems(mid) >
1969 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1972 left = read_node_slot(root, parent, pslot - 1);
1974 btrfs_tree_lock(left);
1975 btrfs_set_lock_blocking(left);
1976 wret = btrfs_cow_block(trans, root, left,
1977 parent, pslot - 1, &left);
1983 right = read_node_slot(root, parent, pslot + 1);
1985 btrfs_tree_lock(right);
1986 btrfs_set_lock_blocking(right);
1987 wret = btrfs_cow_block(trans, root, right,
1988 parent, pslot + 1, &right);
1995 /* first, try to make some room in the middle buffer */
1997 orig_slot += btrfs_header_nritems(left);
1998 wret = push_node_left(trans, root, left, mid, 1);
2004 * then try to empty the right most buffer into the middle
2007 wret = push_node_left(trans, root, mid, right, 1);
2008 if (wret < 0 && wret != -ENOSPC)
2010 if (btrfs_header_nritems(right) == 0) {
2011 clean_tree_block(trans, root->fs_info, right);
2012 btrfs_tree_unlock(right);
2013 del_ptr(root, path, level + 1, pslot + 1);
2014 root_sub_used(root, right->len);
2015 btrfs_free_tree_block(trans, root, right, 0, 1);
2016 free_extent_buffer_stale(right);
2019 struct btrfs_disk_key right_key;
2020 btrfs_node_key(right, &right_key, 0);
2021 tree_mod_log_set_node_key(root->fs_info, parent,
2023 btrfs_set_node_key(parent, &right_key, pslot + 1);
2024 btrfs_mark_buffer_dirty(parent);
2027 if (btrfs_header_nritems(mid) == 1) {
2029 * we're not allowed to leave a node with one item in the
2030 * tree during a delete. A deletion from lower in the tree
2031 * could try to delete the only pointer in this node.
2032 * So, pull some keys from the left.
2033 * There has to be a left pointer at this point because
2034 * otherwise we would have pulled some pointers from the
2039 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2042 wret = balance_node_right(trans, root, mid, left);
2048 wret = push_node_left(trans, root, left, mid, 1);
2054 if (btrfs_header_nritems(mid) == 0) {
2055 clean_tree_block(trans, root->fs_info, mid);
2056 btrfs_tree_unlock(mid);
2057 del_ptr(root, path, level + 1, pslot);
2058 root_sub_used(root, mid->len);
2059 btrfs_free_tree_block(trans, root, mid, 0, 1);
2060 free_extent_buffer_stale(mid);
2063 /* update the parent key to reflect our changes */
2064 struct btrfs_disk_key mid_key;
2065 btrfs_node_key(mid, &mid_key, 0);
2066 tree_mod_log_set_node_key(root->fs_info, parent,
2068 btrfs_set_node_key(parent, &mid_key, pslot);
2069 btrfs_mark_buffer_dirty(parent);
2072 /* update the path */
2074 if (btrfs_header_nritems(left) > orig_slot) {
2075 extent_buffer_get(left);
2076 /* left was locked after cow */
2077 path->nodes[level] = left;
2078 path->slots[level + 1] -= 1;
2079 path->slots[level] = orig_slot;
2081 btrfs_tree_unlock(mid);
2082 free_extent_buffer(mid);
2085 orig_slot -= btrfs_header_nritems(left);
2086 path->slots[level] = orig_slot;
2089 /* double check we haven't messed things up */
2091 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2095 btrfs_tree_unlock(right);
2096 free_extent_buffer(right);
2099 if (path->nodes[level] != left)
2100 btrfs_tree_unlock(left);
2101 free_extent_buffer(left);
2106 /* Node balancing for insertion. Here we only split or push nodes around
2107 * when they are completely full. This is also done top down, so we
2108 * have to be pessimistic.
2110 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2111 struct btrfs_root *root,
2112 struct btrfs_path *path, int level)
2114 struct extent_buffer *right = NULL;
2115 struct extent_buffer *mid;
2116 struct extent_buffer *left = NULL;
2117 struct extent_buffer *parent = NULL;
2121 int orig_slot = path->slots[level];
2126 mid = path->nodes[level];
2127 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2129 if (level < BTRFS_MAX_LEVEL - 1) {
2130 parent = path->nodes[level + 1];
2131 pslot = path->slots[level + 1];
2137 left = read_node_slot(root, parent, pslot - 1);
2139 /* first, try to make some room in the middle buffer */
2143 btrfs_tree_lock(left);
2144 btrfs_set_lock_blocking(left);
2146 left_nr = btrfs_header_nritems(left);
2147 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2150 ret = btrfs_cow_block(trans, root, left, parent,
2155 wret = push_node_left(trans, root,
2162 struct btrfs_disk_key disk_key;
2163 orig_slot += left_nr;
2164 btrfs_node_key(mid, &disk_key, 0);
2165 tree_mod_log_set_node_key(root->fs_info, parent,
2167 btrfs_set_node_key(parent, &disk_key, pslot);
2168 btrfs_mark_buffer_dirty(parent);
2169 if (btrfs_header_nritems(left) > orig_slot) {
2170 path->nodes[level] = left;
2171 path->slots[level + 1] -= 1;
2172 path->slots[level] = orig_slot;
2173 btrfs_tree_unlock(mid);
2174 free_extent_buffer(mid);
2177 btrfs_header_nritems(left);
2178 path->slots[level] = orig_slot;
2179 btrfs_tree_unlock(left);
2180 free_extent_buffer(left);
2184 btrfs_tree_unlock(left);
2185 free_extent_buffer(left);
2187 right = read_node_slot(root, parent, pslot + 1);
2190 * then try to empty the right most buffer into the middle
2195 btrfs_tree_lock(right);
2196 btrfs_set_lock_blocking(right);
2198 right_nr = btrfs_header_nritems(right);
2199 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2202 ret = btrfs_cow_block(trans, root, right,
2208 wret = balance_node_right(trans, root,
2215 struct btrfs_disk_key disk_key;
2217 btrfs_node_key(right, &disk_key, 0);
2218 tree_mod_log_set_node_key(root->fs_info, parent,
2220 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2221 btrfs_mark_buffer_dirty(parent);
2223 if (btrfs_header_nritems(mid) <= orig_slot) {
2224 path->nodes[level] = right;
2225 path->slots[level + 1] += 1;
2226 path->slots[level] = orig_slot -
2227 btrfs_header_nritems(mid);
2228 btrfs_tree_unlock(mid);
2229 free_extent_buffer(mid);
2231 btrfs_tree_unlock(right);
2232 free_extent_buffer(right);
2236 btrfs_tree_unlock(right);
2237 free_extent_buffer(right);
2243 * readahead one full node of leaves, finding things that are close
2244 * to the block in 'slot', and triggering ra on them.
2246 static void reada_for_search(struct btrfs_root *root,
2247 struct btrfs_path *path,
2248 int level, int slot, u64 objectid)
2250 struct extent_buffer *node;
2251 struct btrfs_disk_key disk_key;
2257 struct extent_buffer *eb;
2265 if (!path->nodes[level])
2268 node = path->nodes[level];
2270 search = btrfs_node_blockptr(node, slot);
2271 blocksize = root->nodesize;
2272 eb = btrfs_find_tree_block(root->fs_info, search);
2274 free_extent_buffer(eb);
2280 nritems = btrfs_header_nritems(node);
2284 if (path->reada == READA_BACK) {
2288 } else if (path->reada == READA_FORWARD) {
2293 if (path->reada == READA_BACK && objectid) {
2294 btrfs_node_key(node, &disk_key, nr);
2295 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2298 search = btrfs_node_blockptr(node, nr);
2299 if ((search <= target && target - search <= 65536) ||
2300 (search > target && search - target <= 65536)) {
2301 gen = btrfs_node_ptr_generation(node, nr);
2302 readahead_tree_block(root, search);
2306 if ((nread > 65536 || nscan > 32))
2311 static noinline void reada_for_balance(struct btrfs_root *root,
2312 struct btrfs_path *path, int level)
2316 struct extent_buffer *parent;
2317 struct extent_buffer *eb;
2322 parent = path->nodes[level + 1];
2326 nritems = btrfs_header_nritems(parent);
2327 slot = path->slots[level + 1];
2330 block1 = btrfs_node_blockptr(parent, slot - 1);
2331 gen = btrfs_node_ptr_generation(parent, slot - 1);
2332 eb = btrfs_find_tree_block(root->fs_info, block1);
2334 * if we get -eagain from btrfs_buffer_uptodate, we
2335 * don't want to return eagain here. That will loop
2338 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2340 free_extent_buffer(eb);
2342 if (slot + 1 < nritems) {
2343 block2 = btrfs_node_blockptr(parent, slot + 1);
2344 gen = btrfs_node_ptr_generation(parent, slot + 1);
2345 eb = btrfs_find_tree_block(root->fs_info, block2);
2346 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2348 free_extent_buffer(eb);
2352 readahead_tree_block(root, block1);
2354 readahead_tree_block(root, block2);
2359 * when we walk down the tree, it is usually safe to unlock the higher layers
2360 * in the tree. The exceptions are when our path goes through slot 0, because
2361 * operations on the tree might require changing key pointers higher up in the
2364 * callers might also have set path->keep_locks, which tells this code to keep
2365 * the lock if the path points to the last slot in the block. This is part of
2366 * walking through the tree, and selecting the next slot in the higher block.
2368 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2369 * if lowest_unlock is 1, level 0 won't be unlocked
2371 static noinline void unlock_up(struct btrfs_path *path, int level,
2372 int lowest_unlock, int min_write_lock_level,
2373 int *write_lock_level)
2376 int skip_level = level;
2378 struct extent_buffer *t;
2380 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2381 if (!path->nodes[i])
2383 if (!path->locks[i])
2385 if (!no_skips && path->slots[i] == 0) {
2389 if (!no_skips && path->keep_locks) {
2392 nritems = btrfs_header_nritems(t);
2393 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2398 if (skip_level < i && i >= lowest_unlock)
2402 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2403 btrfs_tree_unlock_rw(t, path->locks[i]);
2405 if (write_lock_level &&
2406 i > min_write_lock_level &&
2407 i <= *write_lock_level) {
2408 *write_lock_level = i - 1;
2415 * This releases any locks held in the path starting at level and
2416 * going all the way up to the root.
2418 * btrfs_search_slot will keep the lock held on higher nodes in a few
2419 * corner cases, such as COW of the block at slot zero in the node. This
2420 * ignores those rules, and it should only be called when there are no
2421 * more updates to be done higher up in the tree.
2423 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2427 if (path->keep_locks)
2430 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2431 if (!path->nodes[i])
2433 if (!path->locks[i])
2435 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2441 * helper function for btrfs_search_slot. The goal is to find a block
2442 * in cache without setting the path to blocking. If we find the block
2443 * we return zero and the path is unchanged.
2445 * If we can't find the block, we set the path blocking and do some
2446 * reada. -EAGAIN is returned and the search must be repeated.
2449 read_block_for_search(struct btrfs_trans_handle *trans,
2450 struct btrfs_root *root, struct btrfs_path *p,
2451 struct extent_buffer **eb_ret, int level, int slot,
2452 struct btrfs_key *key, u64 time_seq)
2456 struct extent_buffer *b = *eb_ret;
2457 struct extent_buffer *tmp;
2460 blocknr = btrfs_node_blockptr(b, slot);
2461 gen = btrfs_node_ptr_generation(b, slot);
2463 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2465 /* first we do an atomic uptodate check */
2466 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2471 /* the pages were up to date, but we failed
2472 * the generation number check. Do a full
2473 * read for the generation number that is correct.
2474 * We must do this without dropping locks so
2475 * we can trust our generation number
2477 btrfs_set_path_blocking(p);
2479 /* now we're allowed to do a blocking uptodate check */
2480 ret = btrfs_read_buffer(tmp, gen);
2485 free_extent_buffer(tmp);
2486 btrfs_release_path(p);
2491 * reduce lock contention at high levels
2492 * of the btree by dropping locks before
2493 * we read. Don't release the lock on the current
2494 * level because we need to walk this node to figure
2495 * out which blocks to read.
2497 btrfs_unlock_up_safe(p, level + 1);
2498 btrfs_set_path_blocking(p);
2500 free_extent_buffer(tmp);
2501 if (p->reada != READA_NONE)
2502 reada_for_search(root, p, level, slot, key->objectid);
2504 btrfs_release_path(p);
2507 tmp = read_tree_block(root, blocknr, 0);
2510 * If the read above didn't mark this buffer up to date,
2511 * it will never end up being up to date. Set ret to EIO now
2512 * and give up so that our caller doesn't loop forever
2515 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2517 free_extent_buffer(tmp);
2525 * helper function for btrfs_search_slot. This does all of the checks
2526 * for node-level blocks and does any balancing required based on
2529 * If no extra work was required, zero is returned. If we had to
2530 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2534 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2535 struct btrfs_root *root, struct btrfs_path *p,
2536 struct extent_buffer *b, int level, int ins_len,
2537 int *write_lock_level)
2540 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2541 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2544 if (*write_lock_level < level + 1) {
2545 *write_lock_level = level + 1;
2546 btrfs_release_path(p);
2550 btrfs_set_path_blocking(p);
2551 reada_for_balance(root, p, level);
2552 sret = split_node(trans, root, p, level);
2553 btrfs_clear_path_blocking(p, NULL, 0);
2560 b = p->nodes[level];
2561 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2562 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2565 if (*write_lock_level < level + 1) {
2566 *write_lock_level = level + 1;
2567 btrfs_release_path(p);
2571 btrfs_set_path_blocking(p);
2572 reada_for_balance(root, p, level);
2573 sret = balance_level(trans, root, p, level);
2574 btrfs_clear_path_blocking(p, NULL, 0);
2580 b = p->nodes[level];
2582 btrfs_release_path(p);
2585 BUG_ON(btrfs_header_nritems(b) == 1);
2595 static void key_search_validate(struct extent_buffer *b,
2596 struct btrfs_key *key,
2599 #ifdef CONFIG_BTRFS_ASSERT
2600 struct btrfs_disk_key disk_key;
2602 btrfs_cpu_key_to_disk(&disk_key, key);
2605 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2606 offsetof(struct btrfs_leaf, items[0].key),
2609 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2610 offsetof(struct btrfs_node, ptrs[0].key),
2615 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2616 int level, int *prev_cmp, int *slot)
2618 if (*prev_cmp != 0) {
2619 *prev_cmp = bin_search(b, key, level, slot);
2623 key_search_validate(b, key, level);
2629 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2630 u64 iobjectid, u64 ioff, u8 key_type,
2631 struct btrfs_key *found_key)
2634 struct btrfs_key key;
2635 struct extent_buffer *eb;
2640 key.type = key_type;
2641 key.objectid = iobjectid;
2644 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2648 eb = path->nodes[0];
2649 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2650 ret = btrfs_next_leaf(fs_root, path);
2653 eb = path->nodes[0];
2656 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2657 if (found_key->type != key.type ||
2658 found_key->objectid != key.objectid)
2665 * look for key in the tree. path is filled in with nodes along the way
2666 * if key is found, we return zero and you can find the item in the leaf
2667 * level of the path (level 0)
2669 * If the key isn't found, the path points to the slot where it should
2670 * be inserted, and 1 is returned. If there are other errors during the
2671 * search a negative error number is returned.
2673 * if ins_len > 0, nodes and leaves will be split as we walk down the
2674 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2677 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2678 *root, struct btrfs_key *key, struct btrfs_path *p, int
2681 struct extent_buffer *b;
2686 int lowest_unlock = 1;
2688 /* everything at write_lock_level or lower must be write locked */
2689 int write_lock_level = 0;
2690 u8 lowest_level = 0;
2691 int min_write_lock_level;
2694 lowest_level = p->lowest_level;
2695 WARN_ON(lowest_level && ins_len > 0);
2696 WARN_ON(p->nodes[0] != NULL);
2697 BUG_ON(!cow && ins_len);
2702 /* when we are removing items, we might have to go up to level
2703 * two as we update tree pointers Make sure we keep write
2704 * for those levels as well
2706 write_lock_level = 2;
2707 } else if (ins_len > 0) {
2709 * for inserting items, make sure we have a write lock on
2710 * level 1 so we can update keys
2712 write_lock_level = 1;
2716 write_lock_level = -1;
2718 if (cow && (p->keep_locks || p->lowest_level))
2719 write_lock_level = BTRFS_MAX_LEVEL;
2721 min_write_lock_level = write_lock_level;
2726 * we try very hard to do read locks on the root
2728 root_lock = BTRFS_READ_LOCK;
2730 if (p->search_commit_root) {
2732 * the commit roots are read only
2733 * so we always do read locks
2735 if (p->need_commit_sem)
2736 down_read(&root->fs_info->commit_root_sem);
2737 b = root->commit_root;
2738 extent_buffer_get(b);
2739 level = btrfs_header_level(b);
2740 if (p->need_commit_sem)
2741 up_read(&root->fs_info->commit_root_sem);
2742 if (!p->skip_locking)
2743 btrfs_tree_read_lock(b);
2745 if (p->skip_locking) {
2746 b = btrfs_root_node(root);
2747 level = btrfs_header_level(b);
2749 /* we don't know the level of the root node
2750 * until we actually have it read locked
2752 b = btrfs_read_lock_root_node(root);
2753 level = btrfs_header_level(b);
2754 if (level <= write_lock_level) {
2755 /* whoops, must trade for write lock */
2756 btrfs_tree_read_unlock(b);
2757 free_extent_buffer(b);
2758 b = btrfs_lock_root_node(root);
2759 root_lock = BTRFS_WRITE_LOCK;
2761 /* the level might have changed, check again */
2762 level = btrfs_header_level(b);
2766 p->nodes[level] = b;
2767 if (!p->skip_locking)
2768 p->locks[level] = root_lock;
2771 level = btrfs_header_level(b);
2774 * setup the path here so we can release it under lock
2775 * contention with the cow code
2779 * if we don't really need to cow this block
2780 * then we don't want to set the path blocking,
2781 * so we test it here
2783 if (!should_cow_block(trans, root, b)) {
2784 trans->dirty = true;
2789 * must have write locks on this node and the
2792 if (level > write_lock_level ||
2793 (level + 1 > write_lock_level &&
2794 level + 1 < BTRFS_MAX_LEVEL &&
2795 p->nodes[level + 1])) {
2796 write_lock_level = level + 1;
2797 btrfs_release_path(p);
2801 btrfs_set_path_blocking(p);
2802 err = btrfs_cow_block(trans, root, b,
2803 p->nodes[level + 1],
2804 p->slots[level + 1], &b);
2811 p->nodes[level] = b;
2812 btrfs_clear_path_blocking(p, NULL, 0);
2815 * we have a lock on b and as long as we aren't changing
2816 * the tree, there is no way to for the items in b to change.
2817 * It is safe to drop the lock on our parent before we
2818 * go through the expensive btree search on b.
2820 * If we're inserting or deleting (ins_len != 0), then we might
2821 * be changing slot zero, which may require changing the parent.
2822 * So, we can't drop the lock until after we know which slot
2823 * we're operating on.
2825 if (!ins_len && !p->keep_locks) {
2828 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2829 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2834 ret = key_search(b, key, level, &prev_cmp, &slot);
2840 if (ret && slot > 0) {
2844 p->slots[level] = slot;
2845 err = setup_nodes_for_search(trans, root, p, b, level,
2846 ins_len, &write_lock_level);
2853 b = p->nodes[level];
2854 slot = p->slots[level];
2857 * slot 0 is special, if we change the key
2858 * we have to update the parent pointer
2859 * which means we must have a write lock
2862 if (slot == 0 && ins_len &&
2863 write_lock_level < level + 1) {
2864 write_lock_level = level + 1;
2865 btrfs_release_path(p);
2869 unlock_up(p, level, lowest_unlock,
2870 min_write_lock_level, &write_lock_level);
2872 if (level == lowest_level) {
2878 err = read_block_for_search(trans, root, p,
2879 &b, level, slot, key, 0);
2887 if (!p->skip_locking) {
2888 level = btrfs_header_level(b);
2889 if (level <= write_lock_level) {
2890 err = btrfs_try_tree_write_lock(b);
2892 btrfs_set_path_blocking(p);
2894 btrfs_clear_path_blocking(p, b,
2897 p->locks[level] = BTRFS_WRITE_LOCK;
2899 err = btrfs_tree_read_lock_atomic(b);
2901 btrfs_set_path_blocking(p);
2902 btrfs_tree_read_lock(b);
2903 btrfs_clear_path_blocking(p, b,
2906 p->locks[level] = BTRFS_READ_LOCK;
2908 p->nodes[level] = b;
2911 p->slots[level] = slot;
2913 btrfs_leaf_free_space(root, b) < ins_len) {
2914 if (write_lock_level < 1) {
2915 write_lock_level = 1;
2916 btrfs_release_path(p);
2920 btrfs_set_path_blocking(p);
2921 err = split_leaf(trans, root, key,
2922 p, ins_len, ret == 0);
2923 btrfs_clear_path_blocking(p, NULL, 0);
2931 if (!p->search_for_split)
2932 unlock_up(p, level, lowest_unlock,
2933 min_write_lock_level, &write_lock_level);
2940 * we don't really know what they plan on doing with the path
2941 * from here on, so for now just mark it as blocking
2943 if (!p->leave_spinning)
2944 btrfs_set_path_blocking(p);
2945 if (ret < 0 && !p->skip_release_on_error)
2946 btrfs_release_path(p);
2951 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2952 * current state of the tree together with the operations recorded in the tree
2953 * modification log to search for the key in a previous version of this tree, as
2954 * denoted by the time_seq parameter.
2956 * Naturally, there is no support for insert, delete or cow operations.
2958 * The resulting path and return value will be set up as if we called
2959 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2961 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2962 struct btrfs_path *p, u64 time_seq)
2964 struct extent_buffer *b;
2969 int lowest_unlock = 1;
2970 u8 lowest_level = 0;
2973 lowest_level = p->lowest_level;
2974 WARN_ON(p->nodes[0] != NULL);
2976 if (p->search_commit_root) {
2978 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2982 b = get_old_root(root, time_seq);
2983 level = btrfs_header_level(b);
2984 p->locks[level] = BTRFS_READ_LOCK;
2987 level = btrfs_header_level(b);
2988 p->nodes[level] = b;
2989 btrfs_clear_path_blocking(p, NULL, 0);
2992 * we have a lock on b and as long as we aren't changing
2993 * the tree, there is no way to for the items in b to change.
2994 * It is safe to drop the lock on our parent before we
2995 * go through the expensive btree search on b.
2997 btrfs_unlock_up_safe(p, level + 1);
3000 * Since we can unwind ebs we want to do a real search every
3004 ret = key_search(b, key, level, &prev_cmp, &slot);
3008 if (ret && slot > 0) {
3012 p->slots[level] = slot;
3013 unlock_up(p, level, lowest_unlock, 0, NULL);
3015 if (level == lowest_level) {
3021 err = read_block_for_search(NULL, root, p, &b, level,
3022 slot, key, time_seq);
3030 level = btrfs_header_level(b);
3031 err = btrfs_tree_read_lock_atomic(b);
3033 btrfs_set_path_blocking(p);
3034 btrfs_tree_read_lock(b);
3035 btrfs_clear_path_blocking(p, b,
3038 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3043 p->locks[level] = BTRFS_READ_LOCK;
3044 p->nodes[level] = b;
3046 p->slots[level] = slot;
3047 unlock_up(p, level, lowest_unlock, 0, NULL);
3053 if (!p->leave_spinning)
3054 btrfs_set_path_blocking(p);
3056 btrfs_release_path(p);
3062 * helper to use instead of search slot if no exact match is needed but
3063 * instead the next or previous item should be returned.
3064 * When find_higher is true, the next higher item is returned, the next lower
3066 * When return_any and find_higher are both true, and no higher item is found,
3067 * return the next lower instead.
3068 * When return_any is true and find_higher is false, and no lower item is found,
3069 * return the next higher instead.
3070 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3073 int btrfs_search_slot_for_read(struct btrfs_root *root,
3074 struct btrfs_key *key, struct btrfs_path *p,
3075 int find_higher, int return_any)
3078 struct extent_buffer *leaf;
3081 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3085 * a return value of 1 means the path is at the position where the
3086 * item should be inserted. Normally this is the next bigger item,
3087 * but in case the previous item is the last in a leaf, path points
3088 * to the first free slot in the previous leaf, i.e. at an invalid
3094 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3095 ret = btrfs_next_leaf(root, p);
3101 * no higher item found, return the next
3106 btrfs_release_path(p);
3110 if (p->slots[0] == 0) {
3111 ret = btrfs_prev_leaf(root, p);
3116 if (p->slots[0] == btrfs_header_nritems(leaf))
3123 * no lower item found, return the next
3128 btrfs_release_path(p);
3138 * adjust the pointers going up the tree, starting at level
3139 * making sure the right key of each node is points to 'key'.