2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
37 struct extent_buffer *src, int empty);
38 static int balance_node_right(struct btrfs_trans_handle *trans,
39 struct btrfs_fs_info *fs_info,
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45 struct extent_buffer *eb);
47 struct btrfs_path *btrfs_alloc_path(void)
49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
71 * reset all the locked nodes in the patch to spinning locks.
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 btrfs_set_path_blocking(p);
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
103 btrfs_clear_lock_blocking_rw(held, held_rw);
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
119 * It is safe to call this on paths that no locks or extent buffers held.
121 noinline void btrfs_release_path(struct btrfs_path *p)
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
133 free_extent_buffer(p->nodes[i]);
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 struct extent_buffer *eb;
154 eb = rcu_dereference(root->node);
157 * RCU really hurts here, we could free up the root node because
158 * it was COWed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
162 if (atomic_inc_not_zero(&eb->refs)) {
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 struct extent_buffer *eb;
181 eb = btrfs_root_node(root);
183 if (eb == root->node)
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
195 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 struct extent_buffer *eb;
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
214 static void add_root_to_dirty_list(struct btrfs_root *root)
216 struct btrfs_fs_info *fs_info = root->fs_info;
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
222 spin_lock(&fs_info->trans_lock);
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
227 &fs_info->dirty_cowonly_roots);
229 list_move(&root->dirty_list,
230 &fs_info->dirty_cowonly_roots);
232 spin_unlock(&fs_info->trans_lock);
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
245 struct btrfs_fs_info *fs_info = root->fs_info;
246 struct extent_buffer *cow;
249 struct btrfs_disk_key disk_key;
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != fs_info->running_transaction->transid);
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
256 level = btrfs_header_level(buf);
258 btrfs_item_key(buf, &disk_key, 0);
260 btrfs_node_key(buf, &disk_key, 0);
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
267 copy_extent_buffer_full(cow, buf);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
276 btrfs_set_header_owner(cow, new_root_objectid);
278 write_extent_buffer_fsid(cow, fs_info->fsid);
280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 ret = btrfs_inc_ref(trans, root, cow, 1);
284 ret = btrfs_inc_ref(trans, root, cow, 0);
289 btrfs_mark_buffer_dirty(cow);
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_ROOT_REPLACE,
304 struct tree_mod_move {
309 struct tree_mod_root {
314 struct tree_mod_elem {
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 read_lock(&fs_info->tree_mod_log_lock);
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 read_unlock(&fs_info->tree_mod_log_lock);
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 write_lock(&fs_info->tree_mod_log_lock);
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 write_unlock(&fs_info->tree_mod_log_lock);
358 * Pull a new tree mod seq number for our operation.
360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383 tree_mod_log_write_unlock(fs_info);
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407 if (cur_elem->seq < min_seq) {
408 if (seq_putting > cur_elem->seq) {
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
413 spin_unlock(&fs_info->tree_mod_seq_lock);
416 min_seq = cur_elem->seq;
419 spin_unlock(&fs_info->tree_mod_seq_lock);
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
425 tree_mod_log_write_lock(fs_info);
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
429 tm = rb_entry(node, struct tree_mod_elem, node);
430 if (tm->seq > min_seq)
432 rb_erase(node, tm_root);
435 tree_mod_log_write_unlock(fs_info);
439 * key order of the log:
440 * node/leaf start address -> sequence
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
446 * Note: must be called with write lock (tree_mod_log_write_lock).
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
461 cur = rb_entry(*new, struct tree_mod_elem, node);
463 if (cur->logical < tm->logical)
464 new = &((*new)->rb_left);
465 else if (cur->logical > tm->logical)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 if (eb && btrfs_header_level(eb) == 0)
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
510 if (eb && btrfs_header_level(eb) == 0)
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
520 struct tree_mod_elem *tm;
522 tm = kzalloc(sizeof(*tm), flags);
526 tm->logical = eb->start;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
544 struct tree_mod_elem *tm;
547 if (!tree_mod_need_log(fs_info, eb))
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
554 if (tree_mod_dont_log(fs_info, eb)) {
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
578 if (!tree_mod_need_log(fs_info, eb))
581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
585 tm = kzalloc(sizeof(*tm), GFP_NOFS);
591 tm->logical = eb->start;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
606 if (tree_mod_dont_log(fs_info, eb))
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
621 ret = __tree_mod_log_insert(fs_info, tm);
624 tree_mod_log_write_unlock(fs_info);
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
635 tree_mod_log_write_unlock(fs_info);
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root,
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
675 if (!tree_mod_need_log(fs_info, NULL))
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
696 tm = kzalloc(sizeof(*tm), GFP_NOFS);
702 tm->logical = new_root->start;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
708 if (tree_mod_dont_log(fs_info, NULL))
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 ret = __tree_mod_log_insert(fs_info, tm);
716 tree_mod_log_write_unlock(fs_info);
725 for (i = 0; i < nritems; i++)
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
743 tree_mod_log_read_lock(fs_info);
744 tm_root = &fs_info->tree_mod_log;
745 node = tm_root->rb_node;
747 cur = rb_entry(node, struct tree_mod_elem, node);
748 if (cur->logical < start) {
749 node = node->rb_left;
750 } else if (cur->logical > start) {
751 node = node->rb_right;
752 } else if (cur->seq < min_seq) {
753 node = node->rb_left;
754 } else if (!smallest) {
755 /* we want the node with the highest seq */
757 BUG_ON(found->seq > cur->seq);
759 node = node->rb_left;
760 } else if (cur->seq > min_seq) {
761 /* we want the node with the smallest seq */
763 BUG_ON(found->seq < cur->seq);
765 node = node->rb_right;
771 tree_mod_log_read_unlock(fs_info);
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
781 static struct tree_mod_elem *
782 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
785 return __tree_mod_log_search(fs_info, start, min_seq, 1);
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
793 static struct tree_mod_elem *
794 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 return __tree_mod_log_search(fs_info, start, min_seq, 0);
800 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 struct extent_buffer *src, unsigned long dst_offset,
802 unsigned long src_offset, int nr_items)
805 struct tree_mod_elem **tm_list = NULL;
806 struct tree_mod_elem **tm_list_add, **tm_list_rem;
810 if (!tree_mod_need_log(fs_info, NULL))
813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
821 tm_list_add = tm_list;
822 tm_list_rem = tm_list + nr_items;
823 for (i = 0; i < nr_items; i++) {
824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 if (!tm_list_rem[i]) {
831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 MOD_LOG_KEY_ADD, GFP_NOFS);
833 if (!tm_list_add[i]) {
839 if (tree_mod_dont_log(fs_info, NULL))
843 for (i = 0; i < nr_items; i++) {
844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
852 tree_mod_log_write_unlock(fs_info);
858 for (i = 0; i < nr_items * 2; i++) {
859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
864 tree_mod_log_write_unlock(fs_info);
871 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 int dst_offset, int src_offset, int nr_items)
875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
881 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
882 struct extent_buffer *eb, int slot, int atomic)
886 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 atomic ? GFP_ATOMIC : GFP_NOFS);
893 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 struct tree_mod_elem **tm_list = NULL;
900 if (btrfs_header_level(eb) == 0)
903 if (!tree_mod_need_log(fs_info, NULL))
906 nritems = btrfs_header_nritems(eb);
907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
911 for (i = 0; i < nritems; i++) {
912 tm_list[i] = alloc_tree_mod_elem(eb, i,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
920 if (tree_mod_dont_log(fs_info, eb))
923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 tree_mod_log_write_unlock(fs_info);
932 for (i = 0; i < nritems; i++)
940 tree_mod_log_set_root_pointer(struct btrfs_root *root,
941 struct extent_buffer *new_root_node,
945 ret = tree_mod_log_insert_root(root->fs_info, root->node,
946 new_root_node, log_removal);
951 * check if the tree block can be shared by multiple trees
953 int btrfs_block_can_be_shared(struct btrfs_root *root,
954 struct extent_buffer *buf)
957 * Tree blocks not in reference counted trees and tree roots
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
963 buf != root->node && buf != root->commit_root &&
964 (btrfs_header_generation(buf) <=
965 btrfs_root_last_snapshot(&root->root_item) ||
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
976 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct extent_buffer *buf,
979 struct extent_buffer *cow,
982 struct btrfs_fs_info *fs_info = root->fs_info;
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1008 btrfs_header_level(buf), 1,
1014 btrfs_handle_fs_error(fs_info, ret, NULL);
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1038 if (root->root_key.objectid ==
1039 BTRFS_TREE_RELOC_OBJECTID) {
1040 ret = btrfs_dec_ref(trans, root, buf, 0);
1043 ret = btrfs_inc_ref(trans, root, cow, 1);
1047 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1050 if (root->root_key.objectid ==
1051 BTRFS_TREE_RELOC_OBJECTID)
1052 ret = btrfs_inc_ref(trans, root, cow, 1);
1054 ret = btrfs_inc_ref(trans, root, cow, 0);
1058 if (new_flags != 0) {
1059 int level = btrfs_header_level(buf);
1061 ret = btrfs_set_disk_extent_flags(trans, fs_info,
1064 new_flags, level, 0);
1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 if (root->root_key.objectid ==
1071 BTRFS_TREE_RELOC_OBJECTID)
1072 ret = btrfs_inc_ref(trans, root, cow, 1);
1074 ret = btrfs_inc_ref(trans, root, cow, 0);
1077 ret = btrfs_dec_ref(trans, root, buf, 1);
1081 clean_tree_block(fs_info, buf);
1088 * does the dirty work in cow of a single block. The parent block (if
1089 * supplied) is updated to point to the new cow copy. The new buffer is marked
1090 * dirty and returned locked. If you modify the block it needs to be marked
1093 * search_start -- an allocation hint for the new block
1095 * empty_size -- a hint that you plan on doing more cow. This is the size in
1096 * bytes the allocator should try to find free next to the block it returns.
1097 * This is just a hint and may be ignored by the allocator.
1099 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root,
1101 struct extent_buffer *buf,
1102 struct extent_buffer *parent, int parent_slot,
1103 struct extent_buffer **cow_ret,
1104 u64 search_start, u64 empty_size)
1106 struct btrfs_fs_info *fs_info = root->fs_info;
1107 struct btrfs_disk_key disk_key;
1108 struct extent_buffer *cow;
1111 int unlock_orig = 0;
1112 u64 parent_start = 0;
1114 if (*cow_ret == buf)
1117 btrfs_assert_tree_locked(buf);
1119 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1120 trans->transid != fs_info->running_transaction->transid);
1121 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1122 trans->transid != root->last_trans);
1124 level = btrfs_header_level(buf);
1127 btrfs_item_key(buf, &disk_key, 0);
1129 btrfs_node_key(buf, &disk_key, 0);
1131 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1132 parent_start = parent->start;
1134 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1135 root->root_key.objectid, &disk_key, level,
1136 search_start, empty_size);
1138 return PTR_ERR(cow);
1140 /* cow is set to blocking by btrfs_init_new_buffer */
1142 copy_extent_buffer_full(cow, buf);
1143 btrfs_set_header_bytenr(cow, cow->start);
1144 btrfs_set_header_generation(cow, trans->transid);
1145 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1146 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1147 BTRFS_HEADER_FLAG_RELOC);
1148 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1149 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1151 btrfs_set_header_owner(cow, root->root_key.objectid);
1153 write_extent_buffer_fsid(cow, fs_info->fsid);
1155 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1157 btrfs_abort_transaction(trans, ret);
1161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1162 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1164 btrfs_abort_transaction(trans, ret);
1169 if (buf == root->node) {
1170 WARN_ON(parent && parent != buf);
1171 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1172 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1173 parent_start = buf->start;
1175 extent_buffer_get(cow);
1176 tree_mod_log_set_root_pointer(root, cow, 1);
1177 rcu_assign_pointer(root->node, cow);
1179 btrfs_free_tree_block(trans, root, buf, parent_start,
1181 free_extent_buffer(buf);
1182 add_root_to_dirty_list(root);
1184 WARN_ON(trans->transid != btrfs_header_generation(parent));
1185 tree_mod_log_insert_key(fs_info, parent, parent_slot,
1186 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1187 btrfs_set_node_blockptr(parent, parent_slot,
1189 btrfs_set_node_ptr_generation(parent, parent_slot,
1191 btrfs_mark_buffer_dirty(parent);
1193 ret = tree_mod_log_free_eb(fs_info, buf);
1195 btrfs_abort_transaction(trans, ret);
1199 btrfs_free_tree_block(trans, root, buf, parent_start,
1203 btrfs_tree_unlock(buf);
1204 free_extent_buffer_stale(buf);
1205 btrfs_mark_buffer_dirty(cow);
1211 * returns the logical address of the oldest predecessor of the given root.
1212 * entries older than time_seq are ignored.
1214 static struct tree_mod_elem *
1215 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1216 struct extent_buffer *eb_root, u64 time_seq)
1218 struct tree_mod_elem *tm;
1219 struct tree_mod_elem *found = NULL;
1220 u64 root_logical = eb_root->start;
1227 * the very last operation that's logged for a root is the
1228 * replacement operation (if it is replaced at all). this has
1229 * the logical address of the *new* root, making it the very
1230 * first operation that's logged for this root.
1233 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1238 * if there are no tree operation for the oldest root, we simply
1239 * return it. this should only happen if that (old) root is at
1246 * if there's an operation that's not a root replacement, we
1247 * found the oldest version of our root. normally, we'll find a
1248 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1250 if (tm->op != MOD_LOG_ROOT_REPLACE)
1254 root_logical = tm->old_root.logical;
1258 /* if there's no old root to return, return what we found instead */
1266 * tm is a pointer to the first operation to rewind within eb. then, all
1267 * previous operations will be rewound (until we reach something older than
1271 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1272 u64 time_seq, struct tree_mod_elem *first_tm)
1275 struct rb_node *next;
1276 struct tree_mod_elem *tm = first_tm;
1277 unsigned long o_dst;
1278 unsigned long o_src;
1279 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1281 n = btrfs_header_nritems(eb);
1282 tree_mod_log_read_lock(fs_info);
1283 while (tm && tm->seq >= time_seq) {
1285 * all the operations are recorded with the operator used for
1286 * the modification. as we're going backwards, we do the
1287 * opposite of each operation here.
1290 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1291 BUG_ON(tm->slot < n);
1293 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1294 case MOD_LOG_KEY_REMOVE:
1295 btrfs_set_node_key(eb, &tm->key, tm->slot);
1296 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1297 btrfs_set_node_ptr_generation(eb, tm->slot,
1301 case MOD_LOG_KEY_REPLACE:
1302 BUG_ON(tm->slot >= n);
1303 btrfs_set_node_key(eb, &tm->key, tm->slot);
1304 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1305 btrfs_set_node_ptr_generation(eb, tm->slot,
1308 case MOD_LOG_KEY_ADD:
1309 /* if a move operation is needed it's in the log */
1312 case MOD_LOG_MOVE_KEYS:
1313 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1314 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1315 memmove_extent_buffer(eb, o_dst, o_src,
1316 tm->move.nr_items * p_size);
1318 case MOD_LOG_ROOT_REPLACE:
1320 * this operation is special. for roots, this must be
1321 * handled explicitly before rewinding.
1322 * for non-roots, this operation may exist if the node
1323 * was a root: root A -> child B; then A gets empty and
1324 * B is promoted to the new root. in the mod log, we'll
1325 * have a root-replace operation for B, a tree block
1326 * that is no root. we simply ignore that operation.
1330 next = rb_next(&tm->node);
1333 tm = rb_entry(next, struct tree_mod_elem, node);
1334 if (tm->logical != first_tm->logical)
1337 tree_mod_log_read_unlock(fs_info);
1338 btrfs_set_header_nritems(eb, n);
1342 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1343 * is returned. If rewind operations happen, a fresh buffer is returned. The
1344 * returned buffer is always read-locked. If the returned buffer is not the
1345 * input buffer, the lock on the input buffer is released and the input buffer
1346 * is freed (its refcount is decremented).
1348 static struct extent_buffer *
1349 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1350 struct extent_buffer *eb, u64 time_seq)
1352 struct extent_buffer *eb_rewin;
1353 struct tree_mod_elem *tm;
1358 if (btrfs_header_level(eb) == 0)
1361 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365 btrfs_set_path_blocking(path);
1366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1368 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 BUG_ON(tm->slot != 0);
1370 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1372 btrfs_tree_read_unlock_blocking(eb);
1373 free_extent_buffer(eb);
1376 btrfs_set_header_bytenr(eb_rewin, eb->start);
1377 btrfs_set_header_backref_rev(eb_rewin,
1378 btrfs_header_backref_rev(eb));
1379 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1380 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1382 eb_rewin = btrfs_clone_extent_buffer(eb);
1384 btrfs_tree_read_unlock_blocking(eb);
1385 free_extent_buffer(eb);
1390 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1391 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb);
1394 extent_buffer_get(eb_rewin);
1395 btrfs_tree_read_lock(eb_rewin);
1396 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1397 WARN_ON(btrfs_header_nritems(eb_rewin) >
1398 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1404 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1405 * value. If there are no changes, the current root->root_node is returned. If
1406 * anything changed in between, there's a fresh buffer allocated on which the
1407 * rewind operations are done. In any case, the returned buffer is read locked.
1408 * Returns NULL on error (with no locks held).
1410 static inline struct extent_buffer *
1411 get_old_root(struct btrfs_root *root, u64 time_seq)
1413 struct btrfs_fs_info *fs_info = root->fs_info;
1414 struct tree_mod_elem *tm;
1415 struct extent_buffer *eb = NULL;
1416 struct extent_buffer *eb_root;
1417 struct extent_buffer *old;
1418 struct tree_mod_root *old_root = NULL;
1419 u64 old_generation = 0;
1422 eb_root = btrfs_read_lock_root_node(root);
1423 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1427 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1428 old_root = &tm->old_root;
1429 old_generation = tm->generation;
1430 logical = old_root->logical;
1432 logical = eb_root->start;
1435 tm = tree_mod_log_search(fs_info, logical, time_seq);
1436 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1437 btrfs_tree_read_unlock(eb_root);
1438 free_extent_buffer(eb_root);
1439 old = read_tree_block(fs_info, logical, 0);
1440 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1442 free_extent_buffer(old);
1444 "failed to read tree block %llu from get_old_root",
1447 eb = btrfs_clone_extent_buffer(old);
1448 free_extent_buffer(old);
1450 } else if (old_root) {
1451 btrfs_tree_read_unlock(eb_root);
1452 free_extent_buffer(eb_root);
1453 eb = alloc_dummy_extent_buffer(fs_info, logical);
1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1456 eb = btrfs_clone_extent_buffer(eb_root);
1457 btrfs_tree_read_unlock_blocking(eb_root);
1458 free_extent_buffer(eb_root);
1463 extent_buffer_get(eb);
1464 btrfs_tree_read_lock(eb);
1466 btrfs_set_header_bytenr(eb, eb->start);
1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1469 btrfs_set_header_level(eb, old_root->level);
1470 btrfs_set_header_generation(eb, old_generation);
1473 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1475 WARN_ON(btrfs_header_level(eb) != 0);
1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1483 struct tree_mod_elem *tm;
1485 struct extent_buffer *eb_root = btrfs_root_node(root);
1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 level = tm->old_root.level;
1491 level = btrfs_header_level(eb_root);
1493 free_extent_buffer(eb_root);
1498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root,
1500 struct extent_buffer *buf)
1502 if (btrfs_is_testing(root->fs_info))
1505 /* ensure we can see the force_cow */
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1514 * What is forced COW:
1515 * when we create snapshot during committing the transaction,
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1519 if (btrfs_header_generation(buf) == trans->transid &&
1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1529 * cows a single block, see __btrfs_cow_block for the real work.
1530 * This version of it has extra checks so that a block isn't COWed more than
1531 * once per transaction, as long as it hasn't been written yet
1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1534 struct btrfs_root *root, struct extent_buffer *buf,
1535 struct extent_buffer *parent, int parent_slot,
1536 struct extent_buffer **cow_ret)
1538 struct btrfs_fs_info *fs_info = root->fs_info;
1542 if (trans->transaction != fs_info->running_transaction)
1543 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545 fs_info->running_transaction->transid);
1547 if (trans->transid != fs_info->generation)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 trans->transid, fs_info->generation);
1551 if (!should_cow_block(trans, root, buf)) {
1552 trans->dirty = true;
1557 search_start = buf->start & ~((u64)SZ_1G - 1);
1560 btrfs_set_lock_blocking(parent);
1561 btrfs_set_lock_blocking(buf);
1563 ret = __btrfs_cow_block(trans, root, buf, parent,
1564 parent_slot, cow_ret, search_start, 0);
1566 trace_btrfs_cow_block(root, buf, *cow_ret);
1572 * helper function for defrag to decide if two blocks pointed to by a
1573 * node are actually close by
1575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1577 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1579 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585 * compare two keys in a memcmp fashion
1587 static int comp_keys(const struct btrfs_disk_key *disk,
1588 const struct btrfs_key *k2)
1590 struct btrfs_key k1;
1592 btrfs_disk_key_to_cpu(&k1, disk);
1594 return btrfs_comp_cpu_keys(&k1, k2);
1598 * same as comp_keys only with two btrfs_key's
1600 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1602 if (k1->objectid > k2->objectid)
1604 if (k1->objectid < k2->objectid)
1606 if (k1->type > k2->type)
1608 if (k1->type < k2->type)
1610 if (k1->offset > k2->offset)
1612 if (k1->offset < k2->offset)
1618 * this is used by the defrag code to go through all the
1619 * leaves pointed to by a node and reallocate them so that
1620 * disk order is close to key order
1622 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1623 struct btrfs_root *root, struct extent_buffer *parent,
1624 int start_slot, u64 *last_ret,
1625 struct btrfs_key *progress)
1627 struct btrfs_fs_info *fs_info = root->fs_info;
1628 struct extent_buffer *cur;
1631 u64 search_start = *last_ret;
1641 int progress_passed = 0;
1642 struct btrfs_disk_key disk_key;
1644 parent_level = btrfs_header_level(parent);
1646 WARN_ON(trans->transaction != fs_info->running_transaction);
1647 WARN_ON(trans->transid != fs_info->generation);
1649 parent_nritems = btrfs_header_nritems(parent);
1650 blocksize = fs_info->nodesize;
1651 end_slot = parent_nritems - 1;
1653 if (parent_nritems <= 1)
1656 btrfs_set_lock_blocking(parent);
1658 for (i = start_slot; i <= end_slot; i++) {
1661 btrfs_node_key(parent, &disk_key, i);
1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1665 progress_passed = 1;
1666 blocknr = btrfs_node_blockptr(parent, i);
1667 gen = btrfs_node_ptr_generation(parent, i);
1668 if (last_block == 0)
1669 last_block = blocknr;
1672 other = btrfs_node_blockptr(parent, i - 1);
1673 close = close_blocks(blocknr, other, blocksize);
1675 if (!close && i < end_slot) {
1676 other = btrfs_node_blockptr(parent, i + 1);
1677 close = close_blocks(blocknr, other, blocksize);
1680 last_block = blocknr;
1684 cur = find_extent_buffer(fs_info, blocknr);
1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1689 if (!cur || !uptodate) {
1691 cur = read_tree_block(fs_info, blocknr, gen);
1693 return PTR_ERR(cur);
1694 } else if (!extent_buffer_uptodate(cur)) {
1695 free_extent_buffer(cur);
1698 } else if (!uptodate) {
1699 err = btrfs_read_buffer(cur, gen);
1701 free_extent_buffer(cur);
1706 if (search_start == 0)
1707 search_start = last_block;
1709 btrfs_tree_lock(cur);
1710 btrfs_set_lock_blocking(cur);
1711 err = __btrfs_cow_block(trans, root, cur, parent, i,
1714 (end_slot - i) * blocksize));
1716 btrfs_tree_unlock(cur);
1717 free_extent_buffer(cur);
1720 search_start = cur->start;
1721 last_block = cur->start;
1722 *last_ret = search_start;
1723 btrfs_tree_unlock(cur);
1724 free_extent_buffer(cur);
1730 * search for key in the extent_buffer. The items start at offset p,
1731 * and they are item_size apart. There are 'max' items in p.
1733 * the slot in the array is returned via slot, and it points to
1734 * the place where you would insert key if it is not found in
1737 * slot may point to max if the key is bigger than all of the keys
1739 static noinline int generic_bin_search(struct extent_buffer *eb,
1740 unsigned long p, int item_size,
1741 const struct btrfs_key *key,
1748 struct btrfs_disk_key *tmp = NULL;
1749 struct btrfs_disk_key unaligned;
1750 unsigned long offset;
1752 unsigned long map_start = 0;
1753 unsigned long map_len = 0;
1757 btrfs_err(eb->fs_info,
1758 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1759 __func__, low, high, eb->start,
1760 btrfs_header_owner(eb), btrfs_header_level(eb));
1764 while (low < high) {
1765 mid = (low + high) / 2;
1766 offset = p + mid * item_size;
1768 if (!kaddr || offset < map_start ||
1769 (offset + sizeof(struct btrfs_disk_key)) >
1770 map_start + map_len) {
1772 err = map_private_extent_buffer(eb, offset,
1773 sizeof(struct btrfs_disk_key),
1774 &kaddr, &map_start, &map_len);
1777 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779 } else if (err == 1) {
1780 read_extent_buffer(eb, &unaligned,
1781 offset, sizeof(unaligned));
1788 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1791 ret = comp_keys(tmp, key);
1807 * simple bin_search frontend that does the right thing for
1810 static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1811 int level, int *slot)
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_leaf, items),
1816 sizeof(struct btrfs_item),
1817 key, btrfs_header_nritems(eb),
1820 return generic_bin_search(eb,
1821 offsetof(struct btrfs_node, ptrs),
1822 sizeof(struct btrfs_key_ptr),
1823 key, btrfs_header_nritems(eb),
1827 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1828 int level, int *slot)
1830 return bin_search(eb, key, level, slot);
1833 static void root_add_used(struct btrfs_root *root, u32 size)
1835 spin_lock(&root->accounting_lock);
1836 btrfs_set_root_used(&root->root_item,
1837 btrfs_root_used(&root->root_item) + size);
1838 spin_unlock(&root->accounting_lock);
1841 static void root_sub_used(struct btrfs_root *root, u32 size)
1843 spin_lock(&root->accounting_lock);
1844 btrfs_set_root_used(&root->root_item,
1845 btrfs_root_used(&root->root_item) - size);
1846 spin_unlock(&root->accounting_lock);
1849 /* given a node and slot number, this reads the blocks it points to. The
1850 * extent buffer is returned with a reference taken (but unlocked).
1852 static noinline struct extent_buffer *
1853 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1856 int level = btrfs_header_level(parent);
1857 struct extent_buffer *eb;
1859 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1860 return ERR_PTR(-ENOENT);
1864 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1865 btrfs_node_ptr_generation(parent, slot));
1866 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1867 free_extent_buffer(eb);
1875 * node level balancing, used to make sure nodes are in proper order for
1876 * item deletion. We balance from the top down, so we have to make sure
1877 * that a deletion won't leave an node completely empty later on.
1879 static noinline int balance_level(struct btrfs_trans_handle *trans,
1880 struct btrfs_root *root,
1881 struct btrfs_path *path, int level)
1883 struct btrfs_fs_info *fs_info = root->fs_info;
1884 struct extent_buffer *right = NULL;
1885 struct extent_buffer *mid;
1886 struct extent_buffer *left = NULL;
1887 struct extent_buffer *parent = NULL;
1891 int orig_slot = path->slots[level];
1897 mid = path->nodes[level];
1899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1905 if (level < BTRFS_MAX_LEVEL - 1) {
1906 parent = path->nodes[level + 1];
1907 pslot = path->slots[level + 1];
1911 * deal with the case where there is only one pointer in the root
1912 * by promoting the node below to a root
1915 struct extent_buffer *child;
1917 if (btrfs_header_nritems(mid) != 1)
1920 /* promote the child to a root */
1921 child = read_node_slot(fs_info, mid, 0);
1922 if (IS_ERR(child)) {
1923 ret = PTR_ERR(child);
1924 btrfs_handle_fs_error(fs_info, ret, NULL);
1928 btrfs_tree_lock(child);
1929 btrfs_set_lock_blocking(child);
1930 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1932 btrfs_tree_unlock(child);
1933 free_extent_buffer(child);
1937 tree_mod_log_set_root_pointer(root, child, 1);
1938 rcu_assign_pointer(root->node, child);
1940 add_root_to_dirty_list(root);
1941 btrfs_tree_unlock(child);
1943 path->locks[level] = 0;
1944 path->nodes[level] = NULL;
1945 clean_tree_block(fs_info, mid);
1946 btrfs_tree_unlock(mid);
1947 /* once for the path */
1948 free_extent_buffer(mid);
1950 root_sub_used(root, mid->len);
1951 btrfs_free_tree_block(trans, root, mid, 0, 1);
1952 /* once for the root ptr */
1953 free_extent_buffer_stale(mid);
1956 if (btrfs_header_nritems(mid) >
1957 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1960 left = read_node_slot(fs_info, parent, pslot - 1);
1965 btrfs_tree_lock(left);
1966 btrfs_set_lock_blocking(left);
1967 wret = btrfs_cow_block(trans, root, left,
1968 parent, pslot - 1, &left);
1975 right = read_node_slot(fs_info, parent, pslot + 1);
1980 btrfs_tree_lock(right);
1981 btrfs_set_lock_blocking(right);
1982 wret = btrfs_cow_block(trans, root, right,
1983 parent, pslot + 1, &right);
1990 /* first, try to make some room in the middle buffer */
1992 orig_slot += btrfs_header_nritems(left);
1993 wret = push_node_left(trans, fs_info, left, mid, 1);
1999 * then try to empty the right most buffer into the middle
2002 wret = push_node_left(trans, fs_info, mid, right, 1);
2003 if (wret < 0 && wret != -ENOSPC)
2005 if (btrfs_header_nritems(right) == 0) {
2006 clean_tree_block(fs_info, right);
2007 btrfs_tree_unlock(right);
2008 del_ptr(root, path, level + 1, pslot + 1);
2009 root_sub_used(root, right->len);
2010 btrfs_free_tree_block(trans, root, right, 0, 1);
2011 free_extent_buffer_stale(right);
2014 struct btrfs_disk_key right_key;
2015 btrfs_node_key(right, &right_key, 0);
2016 tree_mod_log_set_node_key(fs_info, parent,
2018 btrfs_set_node_key(parent, &right_key, pslot + 1);
2019 btrfs_mark_buffer_dirty(parent);
2022 if (btrfs_header_nritems(mid) == 1) {
2024 * we're not allowed to leave a node with one item in the
2025 * tree during a delete. A deletion from lower in the tree
2026 * could try to delete the only pointer in this node.
2027 * So, pull some keys from the left.
2028 * There has to be a left pointer at this point because
2029 * otherwise we would have pulled some pointers from the
2034 btrfs_handle_fs_error(fs_info, ret, NULL);
2037 wret = balance_node_right(trans, fs_info, mid, left);
2043 wret = push_node_left(trans, fs_info, left, mid, 1);
2049 if (btrfs_header_nritems(mid) == 0) {
2050 clean_tree_block(fs_info, mid);
2051 btrfs_tree_unlock(mid);
2052 del_ptr(root, path, level + 1, pslot);
2053 root_sub_used(root, mid->len);
2054 btrfs_free_tree_block(trans, root, mid, 0, 1);
2055 free_extent_buffer_stale(mid);
2058 /* update the parent key to reflect our changes */
2059 struct btrfs_disk_key mid_key;
2060 btrfs_node_key(mid, &mid_key, 0);
2061 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2062 btrfs_set_node_key(parent, &mid_key, pslot);
2063 btrfs_mark_buffer_dirty(parent);
2066 /* update the path */
2068 if (btrfs_header_nritems(left) > orig_slot) {
2069 extent_buffer_get(left);
2070 /* left was locked after cow */
2071 path->nodes[level] = left;
2072 path->slots[level + 1] -= 1;
2073 path->slots[level] = orig_slot;
2075 btrfs_tree_unlock(mid);
2076 free_extent_buffer(mid);
2079 orig_slot -= btrfs_header_nritems(left);
2080 path->slots[level] = orig_slot;
2083 /* double check we haven't messed things up */
2085 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2089 btrfs_tree_unlock(right);
2090 free_extent_buffer(right);
2093 if (path->nodes[level] != left)
2094 btrfs_tree_unlock(left);
2095 free_extent_buffer(left);
2100 /* Node balancing for insertion. Here we only split or push nodes around
2101 * when they are completely full. This is also done top down, so we
2102 * have to be pessimistic.
2104 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 struct btrfs_path *path, int level)
2108 struct btrfs_fs_info *fs_info = root->fs_info;
2109 struct extent_buffer *right = NULL;
2110 struct extent_buffer *mid;
2111 struct extent_buffer *left = NULL;
2112 struct extent_buffer *parent = NULL;
2116 int orig_slot = path->slots[level];
2121 mid = path->nodes[level];
2122 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2124 if (level < BTRFS_MAX_LEVEL - 1) {
2125 parent = path->nodes[level + 1];
2126 pslot = path->slots[level + 1];
2132 left = read_node_slot(fs_info, parent, pslot - 1);
2136 /* first, try to make some room in the middle buffer */
2140 btrfs_tree_lock(left);
2141 btrfs_set_lock_blocking(left);
2143 left_nr = btrfs_header_nritems(left);
2144 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2147 ret = btrfs_cow_block(trans, root, left, parent,
2152 wret = push_node_left(trans, fs_info,
2159 struct btrfs_disk_key disk_key;
2160 orig_slot += left_nr;
2161 btrfs_node_key(mid, &disk_key, 0);
2162 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2163 btrfs_set_node_key(parent, &disk_key, pslot);
2164 btrfs_mark_buffer_dirty(parent);
2165 if (btrfs_header_nritems(left) > orig_slot) {
2166 path->nodes[level] = left;
2167 path->slots[level + 1] -= 1;
2168 path->slots[level] = orig_slot;
2169 btrfs_tree_unlock(mid);
2170 free_extent_buffer(mid);
2173 btrfs_header_nritems(left);
2174 path->slots[level] = orig_slot;
2175 btrfs_tree_unlock(left);
2176 free_extent_buffer(left);
2180 btrfs_tree_unlock(left);
2181 free_extent_buffer(left);
2183 right = read_node_slot(fs_info, parent, pslot + 1);
2188 * then try to empty the right most buffer into the middle
2193 btrfs_tree_lock(right);
2194 btrfs_set_lock_blocking(right);
2196 right_nr = btrfs_header_nritems(right);
2197 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2200 ret = btrfs_cow_block(trans, root, right,
2206 wret = balance_node_right(trans, fs_info,
2213 struct btrfs_disk_key disk_key;
2215 btrfs_node_key(right, &disk_key, 0);
2216 tree_mod_log_set_node_key(fs_info, parent,
2218 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2219 btrfs_mark_buffer_dirty(parent);
2221 if (btrfs_header_nritems(mid) <= orig_slot) {
2222 path->nodes[level] = right;
2223 path->slots[level + 1] += 1;
2224 path->slots[level] = orig_slot -
2225 btrfs_header_nritems(mid);
2226 btrfs_tree_unlock(mid);
2227 free_extent_buffer(mid);
2229 btrfs_tree_unlock(right);
2230 free_extent_buffer(right);
2234 btrfs_tree_unlock(right);
2235 free_extent_buffer(right);
2241 * readahead one full node of leaves, finding things that are close
2242 * to the block in 'slot', and triggering ra on them.
2244 static void reada_for_search(struct btrfs_fs_info *fs_info,
2245 struct btrfs_path *path,
2246 int level, int slot, u64 objectid)
2248 struct extent_buffer *node;
2249 struct btrfs_disk_key disk_key;
2254 struct extent_buffer *eb;
2262 if (!path->nodes[level])
2265 node = path->nodes[level];
2267 search = btrfs_node_blockptr(node, slot);
2268 blocksize = fs_info->nodesize;
2269 eb = find_extent_buffer(fs_info, search);
2271 free_extent_buffer(eb);
2277 nritems = btrfs_header_nritems(node);
2281 if (path->reada == READA_BACK) {
2285 } else if (path->reada == READA_FORWARD) {
2290 if (path->reada == READA_BACK && objectid) {
2291 btrfs_node_key(node, &disk_key, nr);
2292 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2295 search = btrfs_node_blockptr(node, nr);
2296 if ((search <= target && target - search <= 65536) ||
2297 (search > target && search - target <= 65536)) {
2298 readahead_tree_block(fs_info, search);
2302 if ((nread > 65536 || nscan > 32))
2307 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2308 struct btrfs_path *path, int level)
2312 struct extent_buffer *parent;
2313 struct extent_buffer *eb;
2318 parent = path->nodes[level + 1];
2322 nritems = btrfs_header_nritems(parent);
2323 slot = path->slots[level + 1];
2326 block1 = btrfs_node_blockptr(parent, slot - 1);
2327 gen = btrfs_node_ptr_generation(parent, slot - 1);
2328 eb = find_extent_buffer(fs_info, block1);
2330 * if we get -eagain from btrfs_buffer_uptodate, we
2331 * don't want to return eagain here. That will loop
2334 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 free_extent_buffer(eb);
2338 if (slot + 1 < nritems) {
2339 block2 = btrfs_node_blockptr(parent, slot + 1);
2340 gen = btrfs_node_ptr_generation(parent, slot + 1);
2341 eb = find_extent_buffer(fs_info, block2);
2342 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2344 free_extent_buffer(eb);
2348 readahead_tree_block(fs_info, block1);
2350 readahead_tree_block(fs_info, block2);
2355 * when we walk down the tree, it is usually safe to unlock the higher layers
2356 * in the tree. The exceptions are when our path goes through slot 0, because
2357 * operations on the tree might require changing key pointers higher up in the
2360 * callers might also have set path->keep_locks, which tells this code to keep
2361 * the lock if the path points to the last slot in the block. This is part of
2362 * walking through the tree, and selecting the next slot in the higher block.
2364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2365 * if lowest_unlock is 1, level 0 won't be unlocked
2367 static noinline void unlock_up(struct btrfs_path *path, int level,
2368 int lowest_unlock, int min_write_lock_level,
2369 int *write_lock_level)
2372 int skip_level = level;
2374 struct extent_buffer *t;
2376 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2377 if (!path->nodes[i])
2379 if (!path->locks[i])
2381 if (!no_skips && path->slots[i] == 0) {
2385 if (!no_skips && path->keep_locks) {
2388 nritems = btrfs_header_nritems(t);
2389 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2394 if (skip_level < i && i >= lowest_unlock)
2398 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2399 btrfs_tree_unlock_rw(t, path->locks[i]);
2401 if (write_lock_level &&
2402 i > min_write_lock_level &&
2403 i <= *write_lock_level) {
2404 *write_lock_level = i - 1;
2411 * This releases any locks held in the path starting at level and
2412 * going all the way up to the root.
2414 * btrfs_search_slot will keep the lock held on higher nodes in a few
2415 * corner cases, such as COW of the block at slot zero in the node. This
2416 * ignores those rules, and it should only be called when there are no
2417 * more updates to be done higher up in the tree.
2419 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2423 if (path->keep_locks)
2426 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2427 if (!path->nodes[i])
2429 if (!path->locks[i])
2431 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2437 * helper function for btrfs_search_slot. The goal is to find a block
2438 * in cache without setting the path to blocking. If we find the block
2439 * we return zero and the path is unchanged.
2441 * If we can't find the block, we set the path blocking and do some
2442 * reada. -EAGAIN is returned and the search must be repeated.
2445 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2446 struct extent_buffer **eb_ret, int level, int slot,
2447 const struct btrfs_key *key)
2449 struct btrfs_fs_info *fs_info = root->fs_info;
2452 struct extent_buffer *b = *eb_ret;
2453 struct extent_buffer *tmp;
2456 blocknr = btrfs_node_blockptr(b, slot);
2457 gen = btrfs_node_ptr_generation(b, slot);
2459 tmp = find_extent_buffer(fs_info, blocknr);
2461 /* first we do an atomic uptodate check */
2462 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2467 /* the pages were up to date, but we failed
2468 * the generation number check. Do a full
2469 * read for the generation number that is correct.
2470 * We must do this without dropping locks so
2471 * we can trust our generation number
2473 btrfs_set_path_blocking(p);
2475 /* now we're allowed to do a blocking uptodate check */
2476 ret = btrfs_read_buffer(tmp, gen);
2481 free_extent_buffer(tmp);
2482 btrfs_release_path(p);
2487 * reduce lock contention at high levels
2488 * of the btree by dropping locks before
2489 * we read. Don't release the lock on the current
2490 * level because we need to walk this node to figure
2491 * out which blocks to read.
2493 btrfs_unlock_up_safe(p, level + 1);
2494 btrfs_set_path_blocking(p);
2496 free_extent_buffer(tmp);
2497 if (p->reada != READA_NONE)
2498 reada_for_search(fs_info, p, level, slot, key->objectid);
2500 btrfs_release_path(p);
2503 tmp = read_tree_block(fs_info, blocknr, 0);
2506 * If the read above didn't mark this buffer up to date,
2507 * it will never end up being up to date. Set ret to EIO now
2508 * and give up so that our caller doesn't loop forever
2511 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2513 free_extent_buffer(tmp);
2521 * helper function for btrfs_search_slot. This does all of the checks
2522 * for node-level blocks and does any balancing required based on
2525 * If no extra work was required, zero is returned. If we had to
2526 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2530 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root, struct btrfs_path *p,
2532 struct extent_buffer *b, int level, int ins_len,
2533 int *write_lock_level)
2535 struct btrfs_fs_info *fs_info = root->fs_info;
2538 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2539 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2542 if (*write_lock_level < level + 1) {
2543 *write_lock_level = level + 1;
2544 btrfs_release_path(p);
2548 btrfs_set_path_blocking(p);
2549 reada_for_balance(fs_info, p, level);
2550 sret = split_node(trans, root, p, level);
2551 btrfs_clear_path_blocking(p, NULL, 0);
2558 b = p->nodes[level];
2559 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2560 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2563 if (*write_lock_level < level + 1) {
2564 *write_lock_level = level + 1;
2565 btrfs_release_path(p);
2569 btrfs_set_path_blocking(p);
2570 reada_for_balance(fs_info, p, level);
2571 sret = balance_level(trans, root, p, level);
2572 btrfs_clear_path_blocking(p, NULL, 0);
2578 b = p->nodes[level];
2580 btrfs_release_path(p);
2583 BUG_ON(btrfs_header_nritems(b) == 1);
2593 static void key_search_validate(struct extent_buffer *b,
2594 const struct btrfs_key *key,
2597 #ifdef CONFIG_BTRFS_ASSERT
2598 struct btrfs_disk_key disk_key;
2600 btrfs_cpu_key_to_disk(&disk_key, key);
2603 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 offsetof(struct btrfs_leaf, items[0].key),
2607 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2608 offsetof(struct btrfs_node, ptrs[0].key),
2613 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2614 int level, int *prev_cmp, int *slot)
2616 if (*prev_cmp != 0) {
2617 *prev_cmp = bin_search(b, key, level, slot);
2621 key_search_validate(b, key, level);
2627 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2628 u64 iobjectid, u64 ioff, u8 key_type,
2629 struct btrfs_key *found_key)
2632 struct btrfs_key key;
2633 struct extent_buffer *eb;
2638 key.type = key_type;
2639 key.objectid = iobjectid;
2642 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2646 eb = path->nodes[0];
2647 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2648 ret = btrfs_next_leaf(fs_root, path);
2651 eb = path->nodes[0];
2654 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2655 if (found_key->type != key.type ||
2656 found_key->objectid != key.objectid)
2663 * look for key in the tree. path is filled in with nodes along the way
2664 * if key is found, we return zero and you can find the item in the leaf
2665 * level of the path (level 0)
2667 * If the key isn't found, the path points to the slot where it should
2668 * be inserted, and 1 is returned. If there are other errors during the
2669 * search a negative error number is returned.
2671 * if ins_len > 0, nodes and leaves will be split as we walk down the
2672 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2675 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2676 const struct btrfs_key *key, struct btrfs_path *p,
2677 int ins_len, int cow)
2679 struct btrfs_fs_info *fs_info = root->fs_info;
2680 struct extent_buffer *b;
2685 int lowest_unlock = 1;
2687 /* everything at write_lock_level or lower must be write locked */
2688 int write_lock_level = 0;
2689 u8 lowest_level = 0;
2690 int min_write_lock_level;
2693 lowest_level = p->lowest_level;
2694 WARN_ON(lowest_level && ins_len > 0);
2695 WARN_ON(p->nodes[0] != NULL);
2696 BUG_ON(!cow && ins_len);
2701 /* when we are removing items, we might have to go up to level
2702 * two as we update tree pointers Make sure we keep write
2703 * for those levels as well
2705 write_lock_level = 2;
2706 } else if (ins_len > 0) {
2708 * for inserting items, make sure we have a write lock on
2709 * level 1 so we can update keys
2711 write_lock_level = 1;
2715 write_lock_level = -1;
2717 if (cow && (p->keep_locks || p->lowest_level))
2718 write_lock_level = BTRFS_MAX_LEVEL;
2720 min_write_lock_level = write_lock_level;
2725 * we try very hard to do read locks on the root
2727 root_lock = BTRFS_READ_LOCK;
2729 if (p->search_commit_root) {
2731 * the commit roots are read only
2732 * so we always do read locks
2734 if (p->need_commit_sem)
2735 down_read(&fs_info->commit_root_sem);
2736 b = root->commit_root;
2737 extent_buffer_get(b);
2738 level = btrfs_header_level(b);
2739 if (p->need_commit_sem)
2740 up_read(&fs_info->commit_root_sem);
2741 if (!p->skip_locking)
2742 btrfs_tree_read_lock(b);
2744 if (p->skip_locking) {
2745 b = btrfs_root_node(root);
2746 level = btrfs_header_level(b);
2748 /* we don't know the level of the root node
2749 * until we actually have it read locked
2751 b = btrfs_read_lock_root_node(root);
2752 level = btrfs_header_level(b);
2753 if (level <= write_lock_level) {
2754 /* whoops, must trade for write lock */
2755 btrfs_tree_read_unlock(b);
2756 free_extent_buffer(b);
2757 b = btrfs_lock_root_node(root);
2758 root_lock = BTRFS_WRITE_LOCK;
2760 /* the level might have changed, check again */
2761 level = btrfs_header_level(b);
2765 p->nodes[level] = b;
2766 if (!p->skip_locking)
2767 p->locks[level] = root_lock;
2770 level = btrfs_header_level(b);
2773 * setup the path here so we can release it under lock
2774 * contention with the cow code
2778 * if we don't really need to cow this block
2779 * then we don't want to set the path blocking,
2780 * so we test it here
2782 if (!should_cow_block(trans, root, b)) {
2783 trans->dirty = true;
2788 * must have write locks on this node and the
2791 if (level > write_lock_level ||
2792 (level + 1 > write_lock_level &&
2793 level + 1 < BTRFS_MAX_LEVEL &&
2794 p->nodes[level + 1])) {
2795 write_lock_level = level + 1;
2796 btrfs_release_path(p);
2800 btrfs_set_path_blocking(p);
2801 err = btrfs_cow_block(trans, root, b,
2802 p->nodes[level + 1],
2803 p->slots[level + 1], &b);
2810 p->nodes[level] = b;
2811 btrfs_clear_path_blocking(p, NULL, 0);
2814 * we have a lock on b and as long as we aren't changing
2815 * the tree, there is no way to for the items in b to change.
2816 * It is safe to drop the lock on our parent before we
2817 * go through the expensive btree search on b.
2819 * If we're inserting or deleting (ins_len != 0), then we might
2820 * be changing slot zero, which may require changing the parent.
2821 * So, we can't drop the lock until after we know which slot
2822 * we're operating on.
2824 if (!ins_len && !p->keep_locks) {
2827 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2828 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2833 ret = key_search(b, key, level, &prev_cmp, &slot);
2839 if (ret && slot > 0) {
2843 p->slots[level] = slot;
2844 err = setup_nodes_for_search(trans, root, p, b, level,
2845 ins_len, &write_lock_level);
2852 b = p->nodes[level];
2853 slot = p->slots[level];
2856 * slot 0 is special, if we change the key
2857 * we have to update the parent pointer
2858 * which means we must have a write lock
2861 if (slot == 0 && ins_len &&
2862 write_lock_level < level + 1) {
2863 write_lock_level = level + 1;
2864 btrfs_release_path(p);
2868 unlock_up(p, level, lowest_unlock,
2869 min_write_lock_level, &write_lock_level);
2871 if (level == lowest_level) {
2877 err = read_block_for_search(root, p, &b, level,
2886 if (!p->skip_locking) {
2887 level = btrfs_header_level(b);
2888 if (level <= write_lock_level) {
2889 err = btrfs_try_tree_write_lock(b);
2891 btrfs_set_path_blocking(p);
2893 btrfs_clear_path_blocking(p, b,
2896 p->locks[level] = BTRFS_WRITE_LOCK;
2898 err = btrfs_tree_read_lock_atomic(b);
2900 btrfs_set_path_blocking(p);
2901 btrfs_tree_read_lock(b);
2902 btrfs_clear_path_blocking(p, b,
2905 p->locks[level] = BTRFS_READ_LOCK;
2907 p->nodes[level] = b;
2910 p->slots[level] = slot;
2912 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2913 if (write_lock_level < 1) {
2914 write_lock_level = 1;
2915 btrfs_release_path(p);
2919 btrfs_set_path_blocking(p);
2920 err = split_leaf(trans, root, key,
2921 p, ins_len, ret == 0);
2922 btrfs_clear_path_blocking(p, NULL, 0);
2930 if (!p->search_for_split)
2931 unlock_up(p, level, lowest_unlock,
2932 min_write_lock_level, &write_lock_level);
2939 * we don't really know what they plan on doing with the path
2940 * from here on, so for now just mark it as blocking
2942 if (!p->leave_spinning)
2943 btrfs_set_path_blocking(p);
2944 if (ret < 0 && !p->skip_release_on_error)
2945 btrfs_release_path(p);
2950 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2951 * current state of the tree together with the operations recorded in the tree
2952 * modification log to search for the key in a previous version of this tree, as
2953 * denoted by the time_seq parameter.
2955 * Naturally, there is no support for insert, delete or cow operations.
2957 * The resulting path and return value will be set up as if we called
2958 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2960 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2961 struct btrfs_path *p, u64 time_seq)
2963 struct btrfs_fs_info *fs_info = root->fs_info;
2964 struct extent_buffer *b;
2969 int lowest_unlock = 1;
2970 u8 lowest_level = 0;
2973 lowest_level = p->lowest_level;
2974 WARN_ON(p->nodes[0] != NULL);
2976 if (p->search_commit_root) {
2978 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2982 b = get_old_root(root, time_seq);
2983 level = btrfs_header_level(b);
2984 p->locks[level] = BTRFS_READ_LOCK;
2987 level = btrfs_header_level(b);
2988 p->nodes[level] = b;
2989 btrfs_clear_path_blocking(p, NULL, 0);
2992 * we have a lock on b and as long as we aren't changing
2993 * the tree, there is no way to for the items in b to change.
2994 * It is safe to drop the lock on our parent before we
2995 * go through the expensive btree search on b.
2997 btrfs_unlock_up_safe(p, level + 1);
3000 * Since we can unwind ebs we want to do a real search every
3004 ret = key_search(b, key, level, &prev_cmp, &slot);
3008 if (ret && slot > 0) {
3012 p->slots[level] = slot;
3013 unlock_up(p, level, lowest_unlock, 0, NULL);
3015 if (level == lowest_level) {
3021 err = read_block_for_search(root, p, &b, level,
3030 level = btrfs_header_level(b);
3031 err = btrfs_tree_read_lock_atomic(b);
3033 btrfs_set_path_blocking(p);
3034 btrfs_tree_read_lock(b);
3035 btrfs_clear_path_blocking(p, b,
3038 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3043 p->locks[level] = BTRFS_READ_LOCK;
3044 p->nodes[level] = b;
3046 p->slots[level] = slot;
3047 unlock_up(p, level, lowest_unlock, 0, NULL);
3053 if (!p->leave_spinning)
3054 btrfs_set_path_blocking(p);
3056 btrfs_release_path(p);
3062 * helper to use instead of search slot if no exact match is needed but
3063 * instead the next or previous item should be returned.
3064 * When find_higher is true, the next higher item is returned, the next lower
3066 * When return_any and find_higher are both true, and no higher item is found,
3067 * return the next lower instead.
3068 * When return_any is true and find_higher is false, and no lower item is found,
3069 * return the next higher instead.
3070 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3073 int btrfs_search_slot_for_read(struct btrfs_root *root,
3074 const struct btrfs_key *key,
3075 struct btrfs_path *p, int find_higher,
3079 struct extent_buffer *leaf;
3082 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3086 * a return value of 1 means the path is at the position where the
3087 * item should be inserted. Normally this is the next bigger item,
3088 * but in case the previous item is the last in a leaf, path points
3089 * to the first free slot in the previous leaf, i.e. at an invalid
3095 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3096 ret = btrfs_next_leaf(root, p);
3102 * no higher item found, return the next
3107 btrfs_release_path(p);
3111 if (p->slots[0] == 0) {
3112 ret = btrfs_prev_leaf(root, p);
3117 if (p->slots[0] == btrfs_header_nritems(leaf))
3124 * no lower item found, return the next
3129 btrfs_release_path(p);
3139 * adjust the pointers going up the tree, starting at level
3140 * making sure the right key of each node is points to 'key'.
3141 * This is used after shifting pointers to the left, so it stops
3142 * fixing up pointers when a given leaf/node is not in slot 0 of the
3146 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3147 struct btrfs_path *path,
3148 struct btrfs_disk_key *key, int level)
3151 struct extent_buffer *t;
3153 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3154 int tslot = path->slots[i];
3155 if (!path->nodes[i])
3158 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3159 btrfs_set_node_key(t, key, tslot);
3160 btrfs_mark_buffer_dirty(path->nodes[i]);
3169 * This function isn't completely safe. It's the caller's responsibility
3170 * that the new key won't break the order
3172 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3173 struct btrfs_path *path,
3174 const struct btrfs_key *new_key)
3176 struct btrfs_disk_key disk_key;
3177 struct extent_buffer *eb;
3180 eb = path->nodes[0];
3181 slot = path->slots[0];
3183 btrfs_item_key(eb, &disk_key, slot - 1);
3184 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3186 if (slot < btrfs_header_nritems(eb) - 1) {
3187 btrfs_item_key(eb, &disk_key, slot + 1);
3188 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3191 btrfs_cpu_key_to_disk(&disk_key, new_key);
3192 btrfs_set_item_key(eb, &disk_key, slot);
3193 btrfs_mark_buffer_dirty(eb);
3195 fixup_low_keys(fs_info, path, &disk_key, 1);
3199 * try to push data from one node into the next node left in the
3202 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3203 * error, and > 0 if there was no room in the left hand block.
3205 static int push_node_left(struct btrfs_trans_handle *trans,
3206 struct btrfs_fs_info *fs_info,
3207 struct extent_buffer *dst,
3208 struct extent_buffer *src, int empty)
3215 src_nritems = btrfs_header_nritems(src);
3216 dst_nritems = btrfs_header_nritems(dst);
3217 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3218 WARN_ON(btrfs_header_generation(src) != trans->transid);
3219 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3221 if (!empty && src_nritems <= 8)
3224 if (push_items <= 0)
3228 push_items = min(src_nritems, push_items);
3229 if (push_items < src_nritems) {
3230 /* leave at least 8 pointers in the node if
3231 * we aren't going to empty it
3233 if (src_nritems - push_items < 8) {
3234 if (push_items <= 8)
3240 push_items = min(src_nritems - 8, push_items);
3242 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3245 btrfs_abort_transaction(trans, ret);
3248 copy_extent_buffer(dst, src,
3249 btrfs_node_key_ptr_offset(dst_nritems),
3250 btrfs_node_key_ptr_offset(0),
3251 push_items * sizeof(struct btrfs_key_ptr));
3253 if (push_items < src_nritems) {
3255 * don't call tree_mod_log_eb_move here, key removal was already
3256 * fully logged by tree_mod_log_eb_copy above.
3258 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3259 btrfs_node_key_ptr_offset(push_items),
3260 (src_nritems - push_items) *
3261 sizeof(struct btrfs_key_ptr));
3263 btrfs_set_header_nritems(src, src_nritems - push_items);
3264 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3265 btrfs_mark_buffer_dirty(src);
3266 btrfs_mark_buffer_dirty(dst);
3272 * try to push data from one node into the next node right in the
3275 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3276 * error, and > 0 if there was no room in the right hand block.
3278 * this will only push up to 1/2 the contents of the left node over
3280 static int balance_node_right(struct btrfs_trans_handle *trans,
3281 struct btrfs_fs_info *fs_info,
3282 struct extent_buffer *dst,
3283 struct extent_buffer *src)
3291 WARN_ON(btrfs_header_generation(src) != trans->transid);
3292 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3294 src_nritems = btrfs_header_nritems(src);
3295 dst_nritems = btrfs_header_nritems(dst);
3296 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3297 if (push_items <= 0)
3300 if (src_nritems < 4)
3303 max_push = src_nritems / 2 + 1;
3304 /* don't try to empty the node */
3305 if (max_push >= src_nritems)
3308 if (max_push < push_items)
3309 push_items = max_push;
3311 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3312 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3313 btrfs_node_key_ptr_offset(0),
3315 sizeof(struct btrfs_key_ptr));
3317 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3318 src_nritems - push_items, push_items);
3320 btrfs_abort_transaction(trans, ret);
3323 copy_extent_buffer(dst, src,
3324 btrfs_node_key_ptr_offset(0),
3325 btrfs_node_key_ptr_offset(src_nritems - push_items),
3326 push_items * sizeof(struct btrfs_key_ptr));
3328 btrfs_set_header_nritems(src, src_nritems - push_items);
3329 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3331 btrfs_mark_buffer_dirty(src);
3332 btrfs_mark_buffer_dirty(dst);
3338 * helper function to insert a new root level in the tree.
3339 * A new node is allocated, and a single item is inserted to
3340 * point to the existing root
3342 * returns zero on success or < 0 on failure.
3344 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3345 struct btrfs_root *root,
3346 struct btrfs_path *path, int level)
3348 struct btrfs_fs_info *fs_info = root->fs_info;
3350 struct extent_buffer *lower;
3351 struct extent_buffer *c;
3352 struct extent_buffer *old;
3353 struct btrfs_disk_key lower_key;
3355 BUG_ON(path->nodes[level]);
3356 BUG_ON(path->nodes[level-1] != root->node);
3358 lower = path->nodes[level-1];
3360 btrfs_item_key(lower, &lower_key, 0);
3362 btrfs_node_key(lower, &lower_key, 0);
3364 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3365 &lower_key, level, root->node->start, 0);
3369 root_add_used(root, fs_info->nodesize);
3371 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3372 btrfs_set_header_nritems(c, 1);
3373 btrfs_set_header_level(c, level);
3374 btrfs_set_header_bytenr(c, c->start);
3375 btrfs_set_header_generation(c, trans->transid);
3376 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3377 btrfs_set_header_owner(c, root->root_key.objectid);
3379 write_extent_buffer_fsid(c, fs_info->fsid);
3380 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3382 btrfs_set_node_key(c, &lower_key, 0);
3383 btrfs_set_node_blockptr(c, 0, lower->start);
3384 lower_gen = btrfs_header_generation(lower);
3385 WARN_ON(lower_gen != trans->transid);
3387 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3389 btrfs_mark_buffer_dirty(c);
3392 tree_mod_log_set_root_pointer(root, c, 0);
3393 rcu_assign_pointer(root->node, c);
3395 /* the super has an extra ref to root->node */
3396 free_extent_buffer(old);
3398 add_root_to_dirty_list(root);
3399 extent_buffer_get(c);
3400 path->nodes[level] = c;
3401 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3402 path->slots[level] = 0;
3407 * worker function to insert a single pointer in a node.
3408 * the node should have enough room for the pointer already
3410 * slot and level indicate where you want the key to go, and
3411 * blocknr is the block the key points to.
3413 static void insert_ptr(struct btrfs_trans_handle *trans,
3414 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3415 struct btrfs_disk_key *key, u64 bytenr,
3416 int slot, int level)
3418 struct extent_buffer *lower;
3422 BUG_ON(!path->nodes[level]);
3423 btrfs_assert_tree_locked(path->nodes[level]);
3424 lower = path->nodes[level];
3425 nritems = btrfs_header_nritems(lower);
3426 BUG_ON(slot > nritems);
3427 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3428 if (slot != nritems) {
3430 tree_mod_log_eb_move(fs_info, lower, slot + 1,
3431 slot, nritems - slot);
3432 memmove_extent_buffer(lower,
3433 btrfs_node_key_ptr_offset(slot + 1),
3434 btrfs_node_key_ptr_offset(slot),
3435 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3438 ret = tree_mod_log_insert_key(fs_info, lower, slot,
3439 MOD_LOG_KEY_ADD, GFP_NOFS);
3442 btrfs_set_node_key(lower, key, slot);
3443 btrfs_set_node_blockptr(lower, slot, bytenr);
3444 WARN_ON(trans->transid == 0);
3445 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3446 btrfs_set_header_nritems(lower, nritems + 1);
3447 btrfs_mark_buffer_dirty(lower);
3451 * split the node at the specified level in path in two.
3452 * The path is corrected to point to the appropriate node after the split
3454 * Before splitting this tries to make some room in the node by pushing
3455 * left and right, if either one works, it returns right away.
3457 * returns 0 on success and < 0 on failure
3459 static noinline int split_node(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *root,
3461 struct btrfs_path *path, int level)
3463 struct btrfs_fs_info *fs_info = root->fs_info;
3464 struct extent_buffer *c;
3465 struct extent_buffer *split;
3466 struct btrfs_disk_key disk_key;
3471 c = path->nodes[level];
3472 WARN_ON(btrfs_header_generation(c) != trans->transid);
3473 if (c == root->node) {
3475 * trying to split the root, lets make a new one
3477 * tree mod log: We don't log_removal old root in
3478 * insert_new_root, because that root buffer will be kept as a
3479 * normal node. We are going to log removal of half of the
3480 * elements below with tree_mod_log_eb_copy. We're holding a
3481 * tree lock on the buffer, which is why we cannot race with
3482 * other tree_mod_log users.
3484 ret = insert_new_root(trans, root, path, level + 1);
3488 ret = push_nodes_for_insert(trans, root, path, level);
3489 c = path->nodes[level];
3490 if (!ret && btrfs_header_nritems(c) <
3491 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3497 c_nritems = btrfs_header_nritems(c);
3498 mid = (c_nritems + 1) / 2;
3499 btrfs_node_key(c, &disk_key, mid);
3501 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3502 &disk_key, level, c->start, 0);
3504 return PTR_ERR(split);
3506 root_add_used(root, fs_info->nodesize);
3508 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3509 btrfs_set_header_level(split, btrfs_header_level(c));
3510 btrfs_set_header_bytenr(split, split->start);
3511 btrfs_set_header_generation(split, trans->transid);
3512 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3513 btrfs_set_header_owner(split, root->root_key.objectid);
3514 write_extent_buffer_fsid(split, fs_info->fsid);
3515 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3517 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3519 btrfs_abort_transaction(trans, ret);
3522 copy_extent_buffer(split, c,
3523 btrfs_node_key_ptr_offset(0),
3524 btrfs_node_key_ptr_offset(mid),
3525 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3526 btrfs_set_header_nritems(split, c_nritems - mid);
3527 btrfs_set_header_nritems(c, mid);
3530 btrfs_mark_buffer_dirty(c);
3531 btrfs_mark_buffer_dirty(split);
3533 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3534 path->slots[level + 1] + 1, level + 1);
3536 if (path->slots[level] >= mid) {
3537 path->slots[level] -= mid;
3538 btrfs_tree_unlock(c);
3539 free_extent_buffer(c);
3540 path->nodes[level] = split;
3541 path->slots[level + 1] += 1;
3543 btrfs_tree_unlock(split);
3544 free_extent_buffer(split);
3550 * how many bytes are required to store the items in a leaf. start
3551 * and nr indicate which items in the leaf to check. This totals up the
3552 * space used both by the item structs and the item data
3554 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3556 struct btrfs_item *start_item;
3557 struct btrfs_item *end_item;
3558 struct btrfs_map_token token;
3560 int nritems = btrfs_header_nritems(l);
3561 int end = min(nritems, start + nr) - 1;
3565 btrfs_init_map_token(&token);
3566 start_item = btrfs_item_nr(start);
3567 end_item = btrfs_item_nr(end);
3568 data_len = btrfs_token_item_offset(l, start_item, &token) +
3569 btrfs_token_item_size(l, start_item, &token);
3570 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3571 data_len += sizeof(struct btrfs_item) * nr;
3572 WARN_ON(data_len < 0);
3577 * The space between the end of the leaf items and
3578 * the start of the leaf data. IOW, how much room
3579 * the leaf has left for both items and data
3581 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3582 struct extent_buffer *leaf)
3584 int nritems = btrfs_header_nritems(leaf);
3587 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3590 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3592 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3593 leaf_space_used(leaf, 0, nritems), nritems);
3599 * min slot controls the lowest index we're willing to push to the
3600 * right. We'll push up to and including min_slot, but no lower
3602 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3603 struct btrfs_path *path,
3604 int data_size, int empty,
3605 struct extent_buffer *right,
3606 int free_space, u32 left_nritems,
3609 struct extent_buffer *left = path->nodes[0];
3610 struct extent_buffer *upper = path->nodes[1];
3611 struct btrfs_map_token token;
3612 struct btrfs_disk_key disk_key;
3617 struct btrfs_item *item;
3623 btrfs_init_map_token(&token);
3628 nr = max_t(u32, 1, min_slot);
3630 if (path->slots[0] >= left_nritems)
3631 push_space += data_size;
3633 slot = path->slots[1];
3634 i = left_nritems - 1;
3636 item = btrfs_item_nr(i);
3638 if (!empty && push_items > 0) {
3639 if (path->slots[0] > i)
3641 if (path->slots[0] == i) {
3642 int space = btrfs_leaf_free_space(fs_info, left);
3643 if (space + push_space * 2 > free_space)