1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct btrfs_fs_info *fs_info,
25 struct extent_buffer *dst,
26 struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 struct btrfs_fs_info *fs_info,
29 struct extent_buffer *dst_buf,
30 struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
34 struct btrfs_path *btrfs_alloc_path(void)
36 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
40 * set all locked nodes in the path to blocking locks. This should
41 * be done before scheduling
43 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
46 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
47 if (!p->nodes[i] || !p->locks[i])
50 * If we currently have a spinning reader or writer lock this
51 * will bump the count of blocking holders and drop the
54 if (p->locks[i] == BTRFS_READ_LOCK) {
55 btrfs_set_lock_blocking_read(p->nodes[i]);
56 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
57 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
58 btrfs_set_lock_blocking_write(p->nodes[i]);
59 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 /* this also releases the path */
65 void btrfs_free_path(struct btrfs_path *p)
69 btrfs_release_path(p);
70 kmem_cache_free(btrfs_path_cachep, p);
74 * path release drops references on the extent buffers in the path
75 * and it drops any locks held by this path
77 * It is safe to call this on paths that no locks or extent buffers held.
79 noinline void btrfs_release_path(struct btrfs_path *p)
83 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
88 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
91 free_extent_buffer(p->nodes[i]);
97 * safely gets a reference on the root node of a tree. A lock
98 * is not taken, so a concurrent writer may put a different node
99 * at the root of the tree. See btrfs_lock_root_node for the
102 * The extent buffer returned by this has a reference taken, so
103 * it won't disappear. It may stop being the root of the tree
104 * at any time because there are no locks held.
106 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
108 struct extent_buffer *eb;
112 eb = rcu_dereference(root->node);
115 * RCU really hurts here, we could free up the root node because
116 * it was COWed but we may not get the new root node yet so do
117 * the inc_not_zero dance and if it doesn't work then
118 * synchronize_rcu and try again.
120 if (atomic_inc_not_zero(&eb->refs)) {
130 /* loop around taking references on and locking the root node of the
131 * tree until you end up with a lock on the root. A locked buffer
132 * is returned, with a reference held.
134 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
136 struct extent_buffer *eb;
139 eb = btrfs_root_node(root);
141 if (eb == root->node)
143 btrfs_tree_unlock(eb);
144 free_extent_buffer(eb);
149 /* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
153 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
155 struct extent_buffer *eb;
158 eb = btrfs_root_node(root);
159 btrfs_tree_read_lock(eb);
160 if (eb == root->node)
162 btrfs_tree_read_unlock(eb);
163 free_extent_buffer(eb);
168 /* cowonly root (everything not a reference counted cow subvolume), just get
169 * put onto a simple dirty list. transaction.c walks this to make sure they
170 * get properly updated on disk.
172 static void add_root_to_dirty_list(struct btrfs_root *root)
174 struct btrfs_fs_info *fs_info = root->fs_info;
176 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
177 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
180 spin_lock(&fs_info->trans_lock);
181 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
182 /* Want the extent tree to be the last on the list */
183 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
184 list_move_tail(&root->dirty_list,
185 &fs_info->dirty_cowonly_roots);
187 list_move(&root->dirty_list,
188 &fs_info->dirty_cowonly_roots);
190 spin_unlock(&fs_info->trans_lock);
194 * used by snapshot creation to make a copy of a root for a tree with
195 * a given objectid. The buffer with the new root node is returned in
196 * cow_ret, and this func returns zero on success or a negative error code.
198 int btrfs_copy_root(struct btrfs_trans_handle *trans,
199 struct btrfs_root *root,
200 struct extent_buffer *buf,
201 struct extent_buffer **cow_ret, u64 new_root_objectid)
203 struct btrfs_fs_info *fs_info = root->fs_info;
204 struct extent_buffer *cow;
207 struct btrfs_disk_key disk_key;
209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210 trans->transid != fs_info->running_transaction->transid);
211 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
212 trans->transid != root->last_trans);
214 level = btrfs_header_level(buf);
216 btrfs_item_key(buf, &disk_key, 0);
218 btrfs_node_key(buf, &disk_key, 0);
220 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
221 &disk_key, level, buf->start, 0);
225 copy_extent_buffer_full(cow, buf);
226 btrfs_set_header_bytenr(cow, cow->start);
227 btrfs_set_header_generation(cow, trans->transid);
228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 BTRFS_HEADER_FLAG_RELOC);
231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
234 btrfs_set_header_owner(cow, new_root_objectid);
236 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
238 WARN_ON(btrfs_header_generation(buf) > trans->transid);
239 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240 ret = btrfs_inc_ref(trans, root, cow, 1);
242 ret = btrfs_inc_ref(trans, root, cow, 0);
247 btrfs_mark_buffer_dirty(cow);
256 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
257 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
259 MOD_LOG_ROOT_REPLACE,
262 struct tree_mod_root {
267 struct tree_mod_elem {
273 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
276 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
279 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
280 struct btrfs_disk_key key;
283 /* this is used for op == MOD_LOG_MOVE_KEYS */
289 /* this is used for op == MOD_LOG_ROOT_REPLACE */
290 struct tree_mod_root old_root;
294 * Pull a new tree mod seq number for our operation.
296 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
298 return atomic64_inc_return(&fs_info->tree_mod_seq);
302 * This adds a new blocker to the tree mod log's blocker list if the @elem
303 * passed does not already have a sequence number set. So when a caller expects
304 * to record tree modifications, it should ensure to set elem->seq to zero
305 * before calling btrfs_get_tree_mod_seq.
306 * Returns a fresh, unused tree log modification sequence number, even if no new
309 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
310 struct seq_list *elem)
312 write_lock(&fs_info->tree_mod_log_lock);
313 spin_lock(&fs_info->tree_mod_seq_lock);
315 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
316 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
318 spin_unlock(&fs_info->tree_mod_seq_lock);
319 write_unlock(&fs_info->tree_mod_log_lock);
324 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
325 struct seq_list *elem)
327 struct rb_root *tm_root;
328 struct rb_node *node;
329 struct rb_node *next;
330 struct seq_list *cur_elem;
331 struct tree_mod_elem *tm;
332 u64 min_seq = (u64)-1;
333 u64 seq_putting = elem->seq;
338 spin_lock(&fs_info->tree_mod_seq_lock);
339 list_del(&elem->list);
342 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
343 if (cur_elem->seq < min_seq) {
344 if (seq_putting > cur_elem->seq) {
346 * blocker with lower sequence number exists, we
347 * cannot remove anything from the log
349 spin_unlock(&fs_info->tree_mod_seq_lock);
352 min_seq = cur_elem->seq;
355 spin_unlock(&fs_info->tree_mod_seq_lock);
358 * anything that's lower than the lowest existing (read: blocked)
359 * sequence number can be removed from the tree.
361 write_lock(&fs_info->tree_mod_log_lock);
362 tm_root = &fs_info->tree_mod_log;
363 for (node = rb_first(tm_root); node; node = next) {
364 next = rb_next(node);
365 tm = rb_entry(node, struct tree_mod_elem, node);
366 if (tm->seq > min_seq)
368 rb_erase(node, tm_root);
371 write_unlock(&fs_info->tree_mod_log_lock);
375 * key order of the log:
376 * node/leaf start address -> sequence
378 * The 'start address' is the logical address of the *new* root node
379 * for root replace operations, or the logical address of the affected
380 * block for all other operations.
382 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
385 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
387 struct rb_root *tm_root;
388 struct rb_node **new;
389 struct rb_node *parent = NULL;
390 struct tree_mod_elem *cur;
392 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
394 tm_root = &fs_info->tree_mod_log;
395 new = &tm_root->rb_node;
397 cur = rb_entry(*new, struct tree_mod_elem, node);
399 if (cur->logical < tm->logical)
400 new = &((*new)->rb_left);
401 else if (cur->logical > tm->logical)
402 new = &((*new)->rb_right);
403 else if (cur->seq < tm->seq)
404 new = &((*new)->rb_left);
405 else if (cur->seq > tm->seq)
406 new = &((*new)->rb_right);
411 rb_link_node(&tm->node, parent, new);
412 rb_insert_color(&tm->node, tm_root);
417 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
418 * returns zero with the tree_mod_log_lock acquired. The caller must hold
419 * this until all tree mod log insertions are recorded in the rb tree and then
420 * write unlock fs_info::tree_mod_log_lock.
422 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
423 struct extent_buffer *eb) {
425 if (list_empty(&(fs_info)->tree_mod_seq_list))
427 if (eb && btrfs_header_level(eb) == 0)
430 write_lock(&fs_info->tree_mod_log_lock);
431 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
432 write_unlock(&fs_info->tree_mod_log_lock);
439 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
440 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
441 struct extent_buffer *eb)
444 if (list_empty(&(fs_info)->tree_mod_seq_list))
446 if (eb && btrfs_header_level(eb) == 0)
452 static struct tree_mod_elem *
453 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
454 enum mod_log_op op, gfp_t flags)
456 struct tree_mod_elem *tm;
458 tm = kzalloc(sizeof(*tm), flags);
462 tm->logical = eb->start;
463 if (op != MOD_LOG_KEY_ADD) {
464 btrfs_node_key(eb, &tm->key, slot);
465 tm->blockptr = btrfs_node_blockptr(eb, slot);
469 tm->generation = btrfs_node_ptr_generation(eb, slot);
470 RB_CLEAR_NODE(&tm->node);
475 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
476 enum mod_log_op op, gfp_t flags)
478 struct tree_mod_elem *tm;
481 if (!tree_mod_need_log(eb->fs_info, eb))
484 tm = alloc_tree_mod_elem(eb, slot, op, flags);
488 if (tree_mod_dont_log(eb->fs_info, eb)) {
493 ret = __tree_mod_log_insert(eb->fs_info, tm);
494 write_unlock(&eb->fs_info->tree_mod_log_lock);
501 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
502 int dst_slot, int src_slot, int nr_items)
504 struct tree_mod_elem *tm = NULL;
505 struct tree_mod_elem **tm_list = NULL;
510 if (!tree_mod_need_log(eb->fs_info, eb))
513 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
517 tm = kzalloc(sizeof(*tm), GFP_NOFS);
523 tm->logical = eb->start;
525 tm->move.dst_slot = dst_slot;
526 tm->move.nr_items = nr_items;
527 tm->op = MOD_LOG_MOVE_KEYS;
529 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
530 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
531 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
538 if (tree_mod_dont_log(eb->fs_info, eb))
543 * When we override something during the move, we log these removals.
544 * This can only happen when we move towards the beginning of the
545 * buffer, i.e. dst_slot < src_slot.
547 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
548 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
553 ret = __tree_mod_log_insert(eb->fs_info, tm);
556 write_unlock(&eb->fs_info->tree_mod_log_lock);
561 for (i = 0; i < nr_items; i++) {
562 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
563 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
567 write_unlock(&eb->fs_info->tree_mod_log_lock);
575 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
576 struct tree_mod_elem **tm_list,
582 for (i = nritems - 1; i >= 0; i--) {
583 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
585 for (j = nritems - 1; j > i; j--)
586 rb_erase(&tm_list[j]->node,
587 &fs_info->tree_mod_log);
595 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
596 struct extent_buffer *new_root, int log_removal)
598 struct btrfs_fs_info *fs_info = old_root->fs_info;
599 struct tree_mod_elem *tm = NULL;
600 struct tree_mod_elem **tm_list = NULL;
605 if (!tree_mod_need_log(fs_info, NULL))
608 if (log_removal && btrfs_header_level(old_root) > 0) {
609 nritems = btrfs_header_nritems(old_root);
610 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
616 for (i = 0; i < nritems; i++) {
617 tm_list[i] = alloc_tree_mod_elem(old_root, i,
618 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
626 tm = kzalloc(sizeof(*tm), GFP_NOFS);
632 tm->logical = new_root->start;
633 tm->old_root.logical = old_root->start;
634 tm->old_root.level = btrfs_header_level(old_root);
635 tm->generation = btrfs_header_generation(old_root);
636 tm->op = MOD_LOG_ROOT_REPLACE;
638 if (tree_mod_dont_log(fs_info, NULL))
642 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
644 ret = __tree_mod_log_insert(fs_info, tm);
646 write_unlock(&fs_info->tree_mod_log_lock);
655 for (i = 0; i < nritems; i++)
664 static struct tree_mod_elem *
665 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 struct rb_root *tm_root;
669 struct rb_node *node;
670 struct tree_mod_elem *cur = NULL;
671 struct tree_mod_elem *found = NULL;
673 read_lock(&fs_info->tree_mod_log_lock);
674 tm_root = &fs_info->tree_mod_log;
675 node = tm_root->rb_node;
677 cur = rb_entry(node, struct tree_mod_elem, node);
678 if (cur->logical < start) {
679 node = node->rb_left;
680 } else if (cur->logical > start) {
681 node = node->rb_right;
682 } else if (cur->seq < min_seq) {
683 node = node->rb_left;
684 } else if (!smallest) {
685 /* we want the node with the highest seq */
687 BUG_ON(found->seq > cur->seq);
689 node = node->rb_left;
690 } else if (cur->seq > min_seq) {
691 /* we want the node with the smallest seq */
693 BUG_ON(found->seq < cur->seq);
695 node = node->rb_right;
701 read_unlock(&fs_info->tree_mod_log_lock);
707 * this returns the element from the log with the smallest time sequence
708 * value that's in the log (the oldest log item). any element with a time
709 * sequence lower than min_seq will be ignored.
711 static struct tree_mod_elem *
712 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
715 return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 * this returns the element from the log with the largest time sequence
720 * value that's in the log (the most recent log item). any element with
721 * a time sequence lower than min_seq will be ignored.
723 static struct tree_mod_elem *
724 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
726 return __tree_mod_log_search(fs_info, start, min_seq, 0);
729 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
730 struct extent_buffer *src, unsigned long dst_offset,
731 unsigned long src_offset, int nr_items)
733 struct btrfs_fs_info *fs_info = dst->fs_info;
735 struct tree_mod_elem **tm_list = NULL;
736 struct tree_mod_elem **tm_list_add, **tm_list_rem;
740 if (!tree_mod_need_log(fs_info, NULL))
743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
746 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
751 tm_list_add = tm_list;
752 tm_list_rem = tm_list + nr_items;
753 for (i = 0; i < nr_items; i++) {
754 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
755 MOD_LOG_KEY_REMOVE, GFP_NOFS);
756 if (!tm_list_rem[i]) {
761 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
762 MOD_LOG_KEY_ADD, GFP_NOFS);
763 if (!tm_list_add[i]) {
769 if (tree_mod_dont_log(fs_info, NULL))
773 for (i = 0; i < nr_items; i++) {
774 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
777 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
782 write_unlock(&fs_info->tree_mod_log_lock);
788 for (i = 0; i < nr_items * 2; i++) {
789 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
790 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
794 write_unlock(&fs_info->tree_mod_log_lock);
800 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
802 struct tree_mod_elem **tm_list = NULL;
807 if (btrfs_header_level(eb) == 0)
810 if (!tree_mod_need_log(eb->fs_info, NULL))
813 nritems = btrfs_header_nritems(eb);
814 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
818 for (i = 0; i < nritems; i++) {
819 tm_list[i] = alloc_tree_mod_elem(eb, i,
820 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
827 if (tree_mod_dont_log(eb->fs_info, eb))
830 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
831 write_unlock(&eb->fs_info->tree_mod_log_lock);
839 for (i = 0; i < nritems; i++)
847 * check if the tree block can be shared by multiple trees
849 int btrfs_block_can_be_shared(struct btrfs_root *root,
850 struct extent_buffer *buf)
853 * Tree blocks not in reference counted trees and tree roots
854 * are never shared. If a block was allocated after the last
855 * snapshot and the block was not allocated by tree relocation,
856 * we know the block is not shared.
858 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
859 buf != root->node && buf != root->commit_root &&
860 (btrfs_header_generation(buf) <=
861 btrfs_root_last_snapshot(&root->root_item) ||
862 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
868 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
869 struct btrfs_root *root,
870 struct extent_buffer *buf,
871 struct extent_buffer *cow,
874 struct btrfs_fs_info *fs_info = root->fs_info;
882 * Backrefs update rules:
884 * Always use full backrefs for extent pointers in tree block
885 * allocated by tree relocation.
887 * If a shared tree block is no longer referenced by its owner
888 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
889 * use full backrefs for extent pointers in tree block.
891 * If a tree block is been relocating
892 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
893 * use full backrefs for extent pointers in tree block.
894 * The reason for this is some operations (such as drop tree)
895 * are only allowed for blocks use full backrefs.
898 if (btrfs_block_can_be_shared(root, buf)) {
899 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
900 btrfs_header_level(buf), 1,
906 btrfs_handle_fs_error(fs_info, ret, NULL);
911 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
912 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
913 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
918 owner = btrfs_header_owner(buf);
919 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
920 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
923 if ((owner == root->root_key.objectid ||
924 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
925 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
926 ret = btrfs_inc_ref(trans, root, buf, 1);
930 if (root->root_key.objectid ==
931 BTRFS_TREE_RELOC_OBJECTID) {
932 ret = btrfs_dec_ref(trans, root, buf, 0);
935 ret = btrfs_inc_ref(trans, root, cow, 1);
939 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
942 if (root->root_key.objectid ==
943 BTRFS_TREE_RELOC_OBJECTID)
944 ret = btrfs_inc_ref(trans, root, cow, 1);
946 ret = btrfs_inc_ref(trans, root, cow, 0);
950 if (new_flags != 0) {
951 int level = btrfs_header_level(buf);
953 ret = btrfs_set_disk_extent_flags(trans, fs_info,
956 new_flags, level, 0);
961 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
962 if (root->root_key.objectid ==
963 BTRFS_TREE_RELOC_OBJECTID)
964 ret = btrfs_inc_ref(trans, root, cow, 1);
966 ret = btrfs_inc_ref(trans, root, cow, 0);
969 ret = btrfs_dec_ref(trans, root, buf, 1);
973 btrfs_clean_tree_block(buf);
979 static struct extent_buffer *alloc_tree_block_no_bg_flush(
980 struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
983 const struct btrfs_disk_key *disk_key,
988 struct btrfs_fs_info *fs_info = root->fs_info;
989 struct extent_buffer *ret;
992 * If we are COWing a node/leaf from the extent, chunk, device or free
993 * space trees, make sure that we do not finish block group creation of
994 * pending block groups. We do this to avoid a deadlock.
995 * COWing can result in allocation of a new chunk, and flushing pending
996 * block groups (btrfs_create_pending_block_groups()) can be triggered
997 * when finishing allocation of a new chunk. Creation of a pending block
998 * group modifies the extent, chunk, device and free space trees,
999 * therefore we could deadlock with ourselves since we are holding a
1000 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1002 * For similar reasons, we also need to delay flushing pending block
1003 * groups when splitting a leaf or node, from one of those trees, since
1004 * we are holding a write lock on it and its parent or when inserting a
1005 * new root node for one of those trees.
1007 if (root == fs_info->extent_root ||
1008 root == fs_info->chunk_root ||
1009 root == fs_info->dev_root ||
1010 root == fs_info->free_space_root)
1011 trans->can_flush_pending_bgs = false;
1013 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1014 root->root_key.objectid, disk_key, level,
1016 trans->can_flush_pending_bgs = true;
1022 * does the dirty work in cow of a single block. The parent block (if
1023 * supplied) is updated to point to the new cow copy. The new buffer is marked
1024 * dirty and returned locked. If you modify the block it needs to be marked
1027 * search_start -- an allocation hint for the new block
1029 * empty_size -- a hint that you plan on doing more cow. This is the size in
1030 * bytes the allocator should try to find free next to the block it returns.
1031 * This is just a hint and may be ignored by the allocator.
1033 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1034 struct btrfs_root *root,
1035 struct extent_buffer *buf,
1036 struct extent_buffer *parent, int parent_slot,
1037 struct extent_buffer **cow_ret,
1038 u64 search_start, u64 empty_size)
1040 struct btrfs_fs_info *fs_info = root->fs_info;
1041 struct btrfs_disk_key disk_key;
1042 struct extent_buffer *cow;
1045 int unlock_orig = 0;
1046 u64 parent_start = 0;
1048 if (*cow_ret == buf)
1051 btrfs_assert_tree_locked(buf);
1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054 trans->transid != fs_info->running_transaction->transid);
1055 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1056 trans->transid != root->last_trans);
1058 level = btrfs_header_level(buf);
1061 btrfs_item_key(buf, &disk_key, 0);
1063 btrfs_node_key(buf, &disk_key, 0);
1065 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1066 parent_start = parent->start;
1068 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1069 level, search_start, empty_size);
1071 return PTR_ERR(cow);
1073 /* cow is set to blocking by btrfs_init_new_buffer */
1075 copy_extent_buffer_full(cow, buf);
1076 btrfs_set_header_bytenr(cow, cow->start);
1077 btrfs_set_header_generation(cow, trans->transid);
1078 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1079 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1080 BTRFS_HEADER_FLAG_RELOC);
1081 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1082 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1084 btrfs_set_header_owner(cow, root->root_key.objectid);
1086 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1088 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1090 btrfs_abort_transaction(trans, ret);
1094 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1095 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1097 btrfs_abort_transaction(trans, ret);
1102 if (buf == root->node) {
1103 WARN_ON(parent && parent != buf);
1104 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1105 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1106 parent_start = buf->start;
1108 extent_buffer_get(cow);
1109 ret = tree_mod_log_insert_root(root->node, cow, 1);
1111 rcu_assign_pointer(root->node, cow);
1113 btrfs_free_tree_block(trans, root, buf, parent_start,
1115 free_extent_buffer(buf);
1116 add_root_to_dirty_list(root);
1118 WARN_ON(trans->transid != btrfs_header_generation(parent));
1119 tree_mod_log_insert_key(parent, parent_slot,
1120 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1121 btrfs_set_node_blockptr(parent, parent_slot,
1123 btrfs_set_node_ptr_generation(parent, parent_slot,
1125 btrfs_mark_buffer_dirty(parent);
1127 ret = tree_mod_log_free_eb(buf);
1129 btrfs_abort_transaction(trans, ret);
1133 btrfs_free_tree_block(trans, root, buf, parent_start,
1137 btrfs_tree_unlock(buf);
1138 free_extent_buffer_stale(buf);
1139 btrfs_mark_buffer_dirty(cow);
1145 * returns the logical address of the oldest predecessor of the given root.
1146 * entries older than time_seq are ignored.
1148 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1149 struct extent_buffer *eb_root, u64 time_seq)
1151 struct tree_mod_elem *tm;
1152 struct tree_mod_elem *found = NULL;
1153 u64 root_logical = eb_root->start;
1160 * the very last operation that's logged for a root is the
1161 * replacement operation (if it is replaced at all). this has
1162 * the logical address of the *new* root, making it the very
1163 * first operation that's logged for this root.
1166 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1171 * if there are no tree operation for the oldest root, we simply
1172 * return it. this should only happen if that (old) root is at
1179 * if there's an operation that's not a root replacement, we
1180 * found the oldest version of our root. normally, we'll find a
1181 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1183 if (tm->op != MOD_LOG_ROOT_REPLACE)
1187 root_logical = tm->old_root.logical;
1191 /* if there's no old root to return, return what we found instead */
1199 * tm is a pointer to the first operation to rewind within eb. then, all
1200 * previous operations will be rewound (until we reach something older than
1204 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1205 u64 time_seq, struct tree_mod_elem *first_tm)
1208 struct rb_node *next;
1209 struct tree_mod_elem *tm = first_tm;
1210 unsigned long o_dst;
1211 unsigned long o_src;
1212 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1214 n = btrfs_header_nritems(eb);
1215 read_lock(&fs_info->tree_mod_log_lock);
1216 while (tm && tm->seq >= time_seq) {
1218 * all the operations are recorded with the operator used for
1219 * the modification. as we're going backwards, we do the
1220 * opposite of each operation here.
1223 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1224 BUG_ON(tm->slot < n);
1226 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1227 case MOD_LOG_KEY_REMOVE:
1228 btrfs_set_node_key(eb, &tm->key, tm->slot);
1229 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1230 btrfs_set_node_ptr_generation(eb, tm->slot,
1234 case MOD_LOG_KEY_REPLACE:
1235 BUG_ON(tm->slot >= n);
1236 btrfs_set_node_key(eb, &tm->key, tm->slot);
1237 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1238 btrfs_set_node_ptr_generation(eb, tm->slot,
1241 case MOD_LOG_KEY_ADD:
1242 /* if a move operation is needed it's in the log */
1245 case MOD_LOG_MOVE_KEYS:
1246 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1247 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1248 memmove_extent_buffer(eb, o_dst, o_src,
1249 tm->move.nr_items * p_size);
1251 case MOD_LOG_ROOT_REPLACE:
1253 * this operation is special. for roots, this must be
1254 * handled explicitly before rewinding.
1255 * for non-roots, this operation may exist if the node
1256 * was a root: root A -> child B; then A gets empty and
1257 * B is promoted to the new root. in the mod log, we'll
1258 * have a root-replace operation for B, a tree block
1259 * that is no root. we simply ignore that operation.
1263 next = rb_next(&tm->node);
1266 tm = rb_entry(next, struct tree_mod_elem, node);
1267 if (tm->logical != first_tm->logical)
1270 read_unlock(&fs_info->tree_mod_log_lock);
1271 btrfs_set_header_nritems(eb, n);
1275 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1276 * is returned. If rewind operations happen, a fresh buffer is returned. The
1277 * returned buffer is always read-locked. If the returned buffer is not the
1278 * input buffer, the lock on the input buffer is released and the input buffer
1279 * is freed (its refcount is decremented).
1281 static struct extent_buffer *
1282 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1283 struct extent_buffer *eb, u64 time_seq)
1285 struct extent_buffer *eb_rewin;
1286 struct tree_mod_elem *tm;
1291 if (btrfs_header_level(eb) == 0)
1294 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1298 btrfs_set_path_blocking(path);
1299 btrfs_set_lock_blocking_read(eb);
1301 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1302 BUG_ON(tm->slot != 0);
1303 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1305 btrfs_tree_read_unlock_blocking(eb);
1306 free_extent_buffer(eb);
1309 btrfs_set_header_bytenr(eb_rewin, eb->start);
1310 btrfs_set_header_backref_rev(eb_rewin,
1311 btrfs_header_backref_rev(eb));
1312 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1313 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1315 eb_rewin = btrfs_clone_extent_buffer(eb);
1317 btrfs_tree_read_unlock_blocking(eb);
1318 free_extent_buffer(eb);
1323 btrfs_tree_read_unlock_blocking(eb);
1324 free_extent_buffer(eb);
1326 btrfs_tree_read_lock(eb_rewin);
1327 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1328 WARN_ON(btrfs_header_nritems(eb_rewin) >
1329 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1335 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1336 * value. If there are no changes, the current root->root_node is returned. If
1337 * anything changed in between, there's a fresh buffer allocated on which the
1338 * rewind operations are done. In any case, the returned buffer is read locked.
1339 * Returns NULL on error (with no locks held).
1341 static inline struct extent_buffer *
1342 get_old_root(struct btrfs_root *root, u64 time_seq)
1344 struct btrfs_fs_info *fs_info = root->fs_info;
1345 struct tree_mod_elem *tm;
1346 struct extent_buffer *eb = NULL;
1347 struct extent_buffer *eb_root;
1348 struct extent_buffer *old;
1349 struct tree_mod_root *old_root = NULL;
1350 u64 old_generation = 0;
1354 eb_root = btrfs_read_lock_root_node(root);
1355 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1359 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1360 old_root = &tm->old_root;
1361 old_generation = tm->generation;
1362 logical = old_root->logical;
1363 level = old_root->level;
1365 logical = eb_root->start;
1366 level = btrfs_header_level(eb_root);
1369 tm = tree_mod_log_search(fs_info, logical, time_seq);
1370 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1371 btrfs_tree_read_unlock(eb_root);
1372 free_extent_buffer(eb_root);
1373 old = read_tree_block(fs_info, logical, 0, level, NULL);
1374 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1376 free_extent_buffer(old);
1378 "failed to read tree block %llu from get_old_root",
1381 eb = btrfs_clone_extent_buffer(old);
1382 free_extent_buffer(old);
1384 } else if (old_root) {
1385 btrfs_tree_read_unlock(eb_root);
1386 free_extent_buffer(eb_root);
1387 eb = alloc_dummy_extent_buffer(fs_info, logical);
1389 btrfs_set_lock_blocking_read(eb_root);
1390 eb = btrfs_clone_extent_buffer(eb_root);
1391 btrfs_tree_read_unlock_blocking(eb_root);
1392 free_extent_buffer(eb_root);
1397 btrfs_tree_read_lock(eb);
1399 btrfs_set_header_bytenr(eb, eb->start);
1400 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1402 btrfs_set_header_level(eb, old_root->level);
1403 btrfs_set_header_generation(eb, old_generation);
1406 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1408 WARN_ON(btrfs_header_level(eb) != 0);
1409 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1414 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1416 struct tree_mod_elem *tm;
1418 struct extent_buffer *eb_root = btrfs_root_node(root);
1420 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1421 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422 level = tm->old_root.level;
1424 level = btrfs_header_level(eb_root);
1426 free_extent_buffer(eb_root);
1431 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432 struct btrfs_root *root,
1433 struct extent_buffer *buf)
1435 if (btrfs_is_testing(root->fs_info))
1438 /* Ensure we can see the FORCE_COW bit */
1439 smp_mb__before_atomic();
1442 * We do not need to cow a block if
1443 * 1) this block is not created or changed in this transaction;
1444 * 2) this block does not belong to TREE_RELOC tree;
1445 * 3) the root is not forced COW.
1447 * What is forced COW:
1448 * when we create snapshot during committing the transaction,
1449 * after we've finished copying src root, we must COW the shared
1450 * block to ensure the metadata consistency.
1452 if (btrfs_header_generation(buf) == trans->transid &&
1453 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1455 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1456 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1462 * cows a single block, see __btrfs_cow_block for the real work.
1463 * This version of it has extra checks so that a block isn't COWed more than
1464 * once per transaction, as long as it hasn't been written yet
1466 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1467 struct btrfs_root *root, struct extent_buffer *buf,
1468 struct extent_buffer *parent, int parent_slot,
1469 struct extent_buffer **cow_ret)
1471 struct btrfs_fs_info *fs_info = root->fs_info;
1475 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1477 "COW'ing blocks on a fs root that's being dropped");
1479 if (trans->transaction != fs_info->running_transaction)
1480 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1482 fs_info->running_transaction->transid);
1484 if (trans->transid != fs_info->generation)
1485 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1486 trans->transid, fs_info->generation);
1488 if (!should_cow_block(trans, root, buf)) {
1489 trans->dirty = true;
1494 search_start = buf->start & ~((u64)SZ_1G - 1);
1497 btrfs_set_lock_blocking_write(parent);
1498 btrfs_set_lock_blocking_write(buf);
1501 * Before CoWing this block for later modification, check if it's
1502 * the subtree root and do the delayed subtree trace if needed.
1504 * Also We don't care about the error, as it's handled internally.
1506 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1507 ret = __btrfs_cow_block(trans, root, buf, parent,
1508 parent_slot, cow_ret, search_start, 0);
1510 trace_btrfs_cow_block(root, buf, *cow_ret);
1516 * helper function for defrag to decide if two blocks pointed to by a
1517 * node are actually close by
1519 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1521 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1523 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1529 * compare two keys in a memcmp fashion
1531 static int comp_keys(const struct btrfs_disk_key *disk,
1532 const struct btrfs_key *k2)
1534 struct btrfs_key k1;
1536 btrfs_disk_key_to_cpu(&k1, disk);
1538 return btrfs_comp_cpu_keys(&k1, k2);
1542 * same as comp_keys only with two btrfs_key's
1544 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1546 if (k1->objectid > k2->objectid)
1548 if (k1->objectid < k2->objectid)
1550 if (k1->type > k2->type)
1552 if (k1->type < k2->type)
1554 if (k1->offset > k2->offset)
1556 if (k1->offset < k2->offset)
1562 * this is used by the defrag code to go through all the
1563 * leaves pointed to by a node and reallocate them so that
1564 * disk order is close to key order
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567 struct btrfs_root *root, struct extent_buffer *parent,
1568 int start_slot, u64 *last_ret,
1569 struct btrfs_key *progress)
1571 struct btrfs_fs_info *fs_info = root->fs_info;
1572 struct extent_buffer *cur;
1575 u64 search_start = *last_ret;
1585 int progress_passed = 0;
1586 struct btrfs_disk_key disk_key;
1588 parent_level = btrfs_header_level(parent);
1590 WARN_ON(trans->transaction != fs_info->running_transaction);
1591 WARN_ON(trans->transid != fs_info->generation);
1593 parent_nritems = btrfs_header_nritems(parent);
1594 blocksize = fs_info->nodesize;
1595 end_slot = parent_nritems - 1;
1597 if (parent_nritems <= 1)
1600 btrfs_set_lock_blocking_write(parent);
1602 for (i = start_slot; i <= end_slot; i++) {
1603 struct btrfs_key first_key;
1606 btrfs_node_key(parent, &disk_key, i);
1607 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1610 progress_passed = 1;
1611 blocknr = btrfs_node_blockptr(parent, i);
1612 gen = btrfs_node_ptr_generation(parent, i);
1613 btrfs_node_key_to_cpu(parent, &first_key, i);
1614 if (last_block == 0)
1615 last_block = blocknr;
1618 other = btrfs_node_blockptr(parent, i - 1);
1619 close = close_blocks(blocknr, other, blocksize);
1621 if (!close && i < end_slot) {
1622 other = btrfs_node_blockptr(parent, i + 1);
1623 close = close_blocks(blocknr, other, blocksize);
1626 last_block = blocknr;
1630 cur = find_extent_buffer(fs_info, blocknr);
1632 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1635 if (!cur || !uptodate) {
1637 cur = read_tree_block(fs_info, blocknr, gen,
1641 return PTR_ERR(cur);
1642 } else if (!extent_buffer_uptodate(cur)) {
1643 free_extent_buffer(cur);
1646 } else if (!uptodate) {
1647 err = btrfs_read_buffer(cur, gen,
1648 parent_level - 1,&first_key);
1650 free_extent_buffer(cur);
1655 if (search_start == 0)
1656 search_start = last_block;
1658 btrfs_tree_lock(cur);
1659 btrfs_set_lock_blocking_write(cur);
1660 err = __btrfs_cow_block(trans, root, cur, parent, i,
1663 (end_slot - i) * blocksize));
1665 btrfs_tree_unlock(cur);
1666 free_extent_buffer(cur);
1669 search_start = cur->start;
1670 last_block = cur->start;
1671 *last_ret = search_start;
1672 btrfs_tree_unlock(cur);
1673 free_extent_buffer(cur);
1679 * search for key in the extent_buffer. The items start at offset p,
1680 * and they are item_size apart. There are 'max' items in p.
1682 * the slot in the array is returned via slot, and it points to
1683 * the place where you would insert key if it is not found in
1686 * slot may point to max if the key is bigger than all of the keys
1688 static noinline int generic_bin_search(struct extent_buffer *eb,
1689 unsigned long p, int item_size,
1690 const struct btrfs_key *key,
1697 struct btrfs_disk_key *tmp = NULL;
1698 struct btrfs_disk_key unaligned;
1699 unsigned long offset;
1701 unsigned long map_start = 0;
1702 unsigned long map_len = 0;
1706 btrfs_err(eb->fs_info,
1707 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708 __func__, low, high, eb->start,
1709 btrfs_header_owner(eb), btrfs_header_level(eb));
1713 while (low < high) {
1714 mid = (low + high) / 2;
1715 offset = p + mid * item_size;
1717 if (!kaddr || offset < map_start ||
1718 (offset + sizeof(struct btrfs_disk_key)) >
1719 map_start + map_len) {
1721 err = map_private_extent_buffer(eb, offset,
1722 sizeof(struct btrfs_disk_key),
1723 &kaddr, &map_start, &map_len);
1726 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1728 } else if (err == 1) {
1729 read_extent_buffer(eb, &unaligned,
1730 offset, sizeof(unaligned));
1737 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1740 ret = comp_keys(tmp, key);
1756 * simple bin_search frontend that does the right thing for
1759 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760 int level, int *slot)
1763 return generic_bin_search(eb,
1764 offsetof(struct btrfs_leaf, items),
1765 sizeof(struct btrfs_item),
1766 key, btrfs_header_nritems(eb),
1769 return generic_bin_search(eb,
1770 offsetof(struct btrfs_node, ptrs),
1771 sizeof(struct btrfs_key_ptr),
1772 key, btrfs_header_nritems(eb),
1776 static void root_add_used(struct btrfs_root *root, u32 size)
1778 spin_lock(&root->accounting_lock);
1779 btrfs_set_root_used(&root->root_item,
1780 btrfs_root_used(&root->root_item) + size);
1781 spin_unlock(&root->accounting_lock);
1784 static void root_sub_used(struct btrfs_root *root, u32 size)
1786 spin_lock(&root->accounting_lock);
1787 btrfs_set_root_used(&root->root_item,
1788 btrfs_root_used(&root->root_item) - size);
1789 spin_unlock(&root->accounting_lock);
1792 /* given a node and slot number, this reads the blocks it points to. The
1793 * extent buffer is returned with a reference taken (but unlocked).
1795 static noinline struct extent_buffer *read_node_slot(
1796 struct extent_buffer *parent, int slot)
1798 int level = btrfs_header_level(parent);
1799 struct extent_buffer *eb;
1800 struct btrfs_key first_key;
1802 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1803 return ERR_PTR(-ENOENT);
1807 btrfs_node_key_to_cpu(parent, &first_key, slot);
1808 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1809 btrfs_node_ptr_generation(parent, slot),
1810 level - 1, &first_key);
1811 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1812 free_extent_buffer(eb);
1820 * node level balancing, used to make sure nodes are in proper order for
1821 * item deletion. We balance from the top down, so we have to make sure
1822 * that a deletion won't leave an node completely empty later on.
1824 static noinline int balance_level(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path, int level)
1828 struct btrfs_fs_info *fs_info = root->fs_info;
1829 struct extent_buffer *right = NULL;
1830 struct extent_buffer *mid;
1831 struct extent_buffer *left = NULL;
1832 struct extent_buffer *parent = NULL;
1836 int orig_slot = path->slots[level];
1841 mid = path->nodes[level];
1843 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1844 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1845 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1847 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1849 if (level < BTRFS_MAX_LEVEL - 1) {
1850 parent = path->nodes[level + 1];
1851 pslot = path->slots[level + 1];
1855 * deal with the case where there is only one pointer in the root
1856 * by promoting the node below to a root
1859 struct extent_buffer *child;
1861 if (btrfs_header_nritems(mid) != 1)
1864 /* promote the child to a root */
1865 child = read_node_slot(mid, 0);
1866 if (IS_ERR(child)) {
1867 ret = PTR_ERR(child);
1868 btrfs_handle_fs_error(fs_info, ret, NULL);
1872 btrfs_tree_lock(child);
1873 btrfs_set_lock_blocking_write(child);
1874 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1876 btrfs_tree_unlock(child);
1877 free_extent_buffer(child);
1881 ret = tree_mod_log_insert_root(root->node, child, 1);
1883 rcu_assign_pointer(root->node, child);
1885 add_root_to_dirty_list(root);
1886 btrfs_tree_unlock(child);
1888 path->locks[level] = 0;
1889 path->nodes[level] = NULL;
1890 btrfs_clean_tree_block(mid);
1891 btrfs_tree_unlock(mid);
1892 /* once for the path */
1893 free_extent_buffer(mid);
1895 root_sub_used(root, mid->len);
1896 btrfs_free_tree_block(trans, root, mid, 0, 1);
1897 /* once for the root ptr */
1898 free_extent_buffer_stale(mid);
1901 if (btrfs_header_nritems(mid) >
1902 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1905 left = read_node_slot(parent, pslot - 1);
1910 btrfs_tree_lock(left);
1911 btrfs_set_lock_blocking_write(left);
1912 wret = btrfs_cow_block(trans, root, left,
1913 parent, pslot - 1, &left);
1920 right = read_node_slot(parent, pslot + 1);
1925 btrfs_tree_lock(right);
1926 btrfs_set_lock_blocking_write(right);
1927 wret = btrfs_cow_block(trans, root, right,
1928 parent, pslot + 1, &right);
1935 /* first, try to make some room in the middle buffer */
1937 orig_slot += btrfs_header_nritems(left);
1938 wret = push_node_left(trans, fs_info, left, mid, 1);
1944 * then try to empty the right most buffer into the middle
1947 wret = push_node_left(trans, fs_info, mid, right, 1);
1948 if (wret < 0 && wret != -ENOSPC)
1950 if (btrfs_header_nritems(right) == 0) {
1951 btrfs_clean_tree_block(right);
1952 btrfs_tree_unlock(right);
1953 del_ptr(root, path, level + 1, pslot + 1);
1954 root_sub_used(root, right->len);
1955 btrfs_free_tree_block(trans, root, right, 0, 1);
1956 free_extent_buffer_stale(right);
1959 struct btrfs_disk_key right_key;
1960 btrfs_node_key(right, &right_key, 0);
1961 ret = tree_mod_log_insert_key(parent, pslot + 1,
1962 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1964 btrfs_set_node_key(parent, &right_key, pslot + 1);
1965 btrfs_mark_buffer_dirty(parent);
1968 if (btrfs_header_nritems(mid) == 1) {
1970 * we're not allowed to leave a node with one item in the
1971 * tree during a delete. A deletion from lower in the tree
1972 * could try to delete the only pointer in this node.
1973 * So, pull some keys from the left.
1974 * There has to be a left pointer at this point because
1975 * otherwise we would have pulled some pointers from the
1980 btrfs_handle_fs_error(fs_info, ret, NULL);
1983 wret = balance_node_right(trans, fs_info, mid, left);
1989 wret = push_node_left(trans, fs_info, left, mid, 1);
1995 if (btrfs_header_nritems(mid) == 0) {
1996 btrfs_clean_tree_block(mid);
1997 btrfs_tree_unlock(mid);
1998 del_ptr(root, path, level + 1, pslot);
1999 root_sub_used(root, mid->len);
2000 btrfs_free_tree_block(trans, root, mid, 0, 1);
2001 free_extent_buffer_stale(mid);
2004 /* update the parent key to reflect our changes */
2005 struct btrfs_disk_key mid_key;
2006 btrfs_node_key(mid, &mid_key, 0);
2007 ret = tree_mod_log_insert_key(parent, pslot,
2008 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2010 btrfs_set_node_key(parent, &mid_key, pslot);
2011 btrfs_mark_buffer_dirty(parent);
2014 /* update the path */
2016 if (btrfs_header_nritems(left) > orig_slot) {
2017 extent_buffer_get(left);
2018 /* left was locked after cow */
2019 path->nodes[level] = left;
2020 path->slots[level + 1] -= 1;
2021 path->slots[level] = orig_slot;
2023 btrfs_tree_unlock(mid);
2024 free_extent_buffer(mid);
2027 orig_slot -= btrfs_header_nritems(left);
2028 path->slots[level] = orig_slot;
2031 /* double check we haven't messed things up */
2033 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2037 btrfs_tree_unlock(right);
2038 free_extent_buffer(right);
2041 if (path->nodes[level] != left)
2042 btrfs_tree_unlock(left);
2043 free_extent_buffer(left);
2048 /* Node balancing for insertion. Here we only split or push nodes around
2049 * when they are completely full. This is also done top down, so we
2050 * have to be pessimistic.
2052 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2053 struct btrfs_root *root,
2054 struct btrfs_path *path, int level)
2056 struct btrfs_fs_info *fs_info = root->fs_info;
2057 struct extent_buffer *right = NULL;
2058 struct extent_buffer *mid;
2059 struct extent_buffer *left = NULL;
2060 struct extent_buffer *parent = NULL;
2064 int orig_slot = path->slots[level];
2069 mid = path->nodes[level];
2070 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2072 if (level < BTRFS_MAX_LEVEL - 1) {
2073 parent = path->nodes[level + 1];
2074 pslot = path->slots[level + 1];
2080 left = read_node_slot(parent, pslot - 1);
2084 /* first, try to make some room in the middle buffer */
2088 btrfs_tree_lock(left);
2089 btrfs_set_lock_blocking_write(left);
2091 left_nr = btrfs_header_nritems(left);
2092 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2095 ret = btrfs_cow_block(trans, root, left, parent,
2100 wret = push_node_left(trans, fs_info,
2107 struct btrfs_disk_key disk_key;
2108 orig_slot += left_nr;
2109 btrfs_node_key(mid, &disk_key, 0);
2110 ret = tree_mod_log_insert_key(parent, pslot,
2111 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2113 btrfs_set_node_key(parent, &disk_key, pslot);
2114 btrfs_mark_buffer_dirty(parent);
2115 if (btrfs_header_nritems(left) > orig_slot) {
2116 path->nodes[level] = left;
2117 path->slots[level + 1] -= 1;
2118 path->slots[level] = orig_slot;
2119 btrfs_tree_unlock(mid);
2120 free_extent_buffer(mid);
2123 btrfs_header_nritems(left);
2124 path->slots[level] = orig_slot;
2125 btrfs_tree_unlock(left);
2126 free_extent_buffer(left);
2130 btrfs_tree_unlock(left);
2131 free_extent_buffer(left);
2133 right = read_node_slot(parent, pslot + 1);
2138 * then try to empty the right most buffer into the middle
2143 btrfs_tree_lock(right);
2144 btrfs_set_lock_blocking_write(right);
2146 right_nr = btrfs_header_nritems(right);
2147 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2150 ret = btrfs_cow_block(trans, root, right,
2156 wret = balance_node_right(trans, fs_info,
2163 struct btrfs_disk_key disk_key;
2165 btrfs_node_key(right, &disk_key, 0);
2166 ret = tree_mod_log_insert_key(parent, pslot + 1,
2167 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2169 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2170 btrfs_mark_buffer_dirty(parent);
2172 if (btrfs_header_nritems(mid) <= orig_slot) {
2173 path->nodes[level] = right;
2174 path->slots[level + 1] += 1;
2175 path->slots[level] = orig_slot -
2176 btrfs_header_nritems(mid);
2177 btrfs_tree_unlock(mid);
2178 free_extent_buffer(mid);
2180 btrfs_tree_unlock(right);
2181 free_extent_buffer(right);
2185 btrfs_tree_unlock(right);
2186 free_extent_buffer(right);
2192 * readahead one full node of leaves, finding things that are close
2193 * to the block in 'slot', and triggering ra on them.
2195 static void reada_for_search(struct btrfs_fs_info *fs_info,
2196 struct btrfs_path *path,
2197 int level, int slot, u64 objectid)
2199 struct extent_buffer *node;
2200 struct btrfs_disk_key disk_key;
2205 struct extent_buffer *eb;
2213 if (!path->nodes[level])
2216 node = path->nodes[level];
2218 search = btrfs_node_blockptr(node, slot);
2219 blocksize = fs_info->nodesize;
2220 eb = find_extent_buffer(fs_info, search);
2222 free_extent_buffer(eb);
2228 nritems = btrfs_header_nritems(node);
2232 if (path->reada == READA_BACK) {
2236 } else if (path->reada == READA_FORWARD) {
2241 if (path->reada == READA_BACK && objectid) {
2242 btrfs_node_key(node, &disk_key, nr);
2243 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2246 search = btrfs_node_blockptr(node, nr);
2247 if ((search <= target && target - search <= 65536) ||
2248 (search > target && search - target <= 65536)) {
2249 readahead_tree_block(fs_info, search);
2253 if ((nread > 65536 || nscan > 32))
2258 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2259 struct btrfs_path *path, int level)
2263 struct extent_buffer *parent;
2264 struct extent_buffer *eb;
2269 parent = path->nodes[level + 1];
2273 nritems = btrfs_header_nritems(parent);
2274 slot = path->slots[level + 1];
2277 block1 = btrfs_node_blockptr(parent, slot - 1);
2278 gen = btrfs_node_ptr_generation(parent, slot - 1);
2279 eb = find_extent_buffer(fs_info, block1);
2281 * if we get -eagain from btrfs_buffer_uptodate, we
2282 * don't want to return eagain here. That will loop
2285 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2287 free_extent_buffer(eb);
2289 if (slot + 1 < nritems) {
2290 block2 = btrfs_node_blockptr(parent, slot + 1);
2291 gen = btrfs_node_ptr_generation(parent, slot + 1);
2292 eb = find_extent_buffer(fs_info, block2);
2293 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2295 free_extent_buffer(eb);
2299 readahead_tree_block(fs_info, block1);
2301 readahead_tree_block(fs_info, block2);
2306 * when we walk down the tree, it is usually safe to unlock the higher layers
2307 * in the tree. The exceptions are when our path goes through slot 0, because
2308 * operations on the tree might require changing key pointers higher up in the
2311 * callers might also have set path->keep_locks, which tells this code to keep
2312 * the lock if the path points to the last slot in the block. This is part of
2313 * walking through the tree, and selecting the next slot in the higher block.
2315 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2316 * if lowest_unlock is 1, level 0 won't be unlocked
2318 static noinline void unlock_up(struct btrfs_path *path, int level,
2319 int lowest_unlock, int min_write_lock_level,
2320 int *write_lock_level)
2323 int skip_level = level;
2325 struct extent_buffer *t;
2327 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2328 if (!path->nodes[i])
2330 if (!path->locks[i])
2332 if (!no_skips && path->slots[i] == 0) {
2336 if (!no_skips && path->keep_locks) {
2339 nritems = btrfs_header_nritems(t);
2340 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2345 if (skip_level < i && i >= lowest_unlock)
2349 if (i >= lowest_unlock && i > skip_level) {
2350 btrfs_tree_unlock_rw(t, path->locks[i]);
2352 if (write_lock_level &&
2353 i > min_write_lock_level &&
2354 i <= *write_lock_level) {
2355 *write_lock_level = i - 1;
2362 * This releases any locks held in the path starting at level and
2363 * going all the way up to the root.
2365 * btrfs_search_slot will keep the lock held on higher nodes in a few
2366 * corner cases, such as COW of the block at slot zero in the node. This
2367 * ignores those rules, and it should only be called when there are no
2368 * more updates to be done higher up in the tree.
2370 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2374 if (path->keep_locks)
2377 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2378 if (!path->nodes[i])
2380 if (!path->locks[i])
2382 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2388 * helper function for btrfs_search_slot. The goal is to find a block
2389 * in cache without setting the path to blocking. If we find the block
2390 * we return zero and the path is unchanged.
2392 * If we can't find the block, we set the path blocking and do some
2393 * reada. -EAGAIN is returned and the search must be repeated.
2396 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2397 struct extent_buffer **eb_ret, int level, int slot,
2398 const struct btrfs_key *key)
2400 struct btrfs_fs_info *fs_info = root->fs_info;
2403 struct extent_buffer *b = *eb_ret;
2404 struct extent_buffer *tmp;
2405 struct btrfs_key first_key;
2409 blocknr = btrfs_node_blockptr(b, slot);
2410 gen = btrfs_node_ptr_generation(b, slot);
2411 parent_level = btrfs_header_level(b);
2412 btrfs_node_key_to_cpu(b, &first_key, slot);
2414 tmp = find_extent_buffer(fs_info, blocknr);
2416 /* first we do an atomic uptodate check */
2417 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2419 * Do extra check for first_key, eb can be stale due to
2420 * being cached, read from scrub, or have multiple
2421 * parents (shared tree blocks).
2423 if (btrfs_verify_level_key(tmp,
2424 parent_level - 1, &first_key, gen)) {
2425 free_extent_buffer(tmp);
2432 /* the pages were up to date, but we failed
2433 * the generation number check. Do a full
2434 * read for the generation number that is correct.
2435 * We must do this without dropping locks so
2436 * we can trust our generation number
2438 btrfs_set_path_blocking(p);
2440 /* now we're allowed to do a blocking uptodate check */
2441 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2446 free_extent_buffer(tmp);
2447 btrfs_release_path(p);
2452 * reduce lock contention at high levels
2453 * of the btree by dropping locks before
2454 * we read. Don't release the lock on the current
2455 * level because we need to walk this node to figure
2456 * out which blocks to read.
2458 btrfs_unlock_up_safe(p, level + 1);
2459 btrfs_set_path_blocking(p);
2461 if (p->reada != READA_NONE)
2462 reada_for_search(fs_info, p, level, slot, key->objectid);
2465 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2469 * If the read above didn't mark this buffer up to date,
2470 * it will never end up being up to date. Set ret to EIO now
2471 * and give up so that our caller doesn't loop forever
2474 if (!extent_buffer_uptodate(tmp))
2476 free_extent_buffer(tmp);
2481 btrfs_release_path(p);
2486 * helper function for btrfs_search_slot. This does all of the checks
2487 * for node-level blocks and does any balancing required based on
2490 * If no extra work was required, zero is returned. If we had to
2491 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2495 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2496 struct btrfs_root *root, struct btrfs_path *p,
2497 struct extent_buffer *b, int level, int ins_len,
2498 int *write_lock_level)
2500 struct btrfs_fs_info *fs_info = root->fs_info;
2503 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2504 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2507 if (*write_lock_level < level + 1) {
2508 *write_lock_level = level + 1;
2509 btrfs_release_path(p);
2513 btrfs_set_path_blocking(p);
2514 reada_for_balance(fs_info, p, level);
2515 sret = split_node(trans, root, p, level);
2522 b = p->nodes[level];
2523 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2524 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2527 if (*write_lock_level < level + 1) {
2528 *write_lock_level = level + 1;
2529 btrfs_release_path(p);
2533 btrfs_set_path_blocking(p);
2534 reada_for_balance(fs_info, p, level);
2535 sret = balance_level(trans, root, p, level);
2541 b = p->nodes[level];
2543 btrfs_release_path(p);
2546 BUG_ON(btrfs_header_nritems(b) == 1);
2556 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2557 int level, int *prev_cmp, int *slot)
2559 if (*prev_cmp != 0) {
2560 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2569 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2570 u64 iobjectid, u64 ioff, u8 key_type,
2571 struct btrfs_key *found_key)
2574 struct btrfs_key key;
2575 struct extent_buffer *eb;
2580 key.type = key_type;
2581 key.objectid = iobjectid;
2584 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2588 eb = path->nodes[0];
2589 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2590 ret = btrfs_next_leaf(fs_root, path);
2593 eb = path->nodes[0];
2596 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2597 if (found_key->type != key.type ||
2598 found_key->objectid != key.objectid)
2604 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2605 struct btrfs_path *p,
2606 int write_lock_level)
2608 struct btrfs_fs_info *fs_info = root->fs_info;
2609 struct extent_buffer *b;
2613 /* We try very hard to do read locks on the root */
2614 root_lock = BTRFS_READ_LOCK;
2616 if (p->search_commit_root) {
2618 * The commit roots are read only so we always do read locks,
2619 * and we always must hold the commit_root_sem when doing
2620 * searches on them, the only exception is send where we don't
2621 * want to block transaction commits for a long time, so
2622 * we need to clone the commit root in order to avoid races
2623 * with transaction commits that create a snapshot of one of
2624 * the roots used by a send operation.
2626 if (p->need_commit_sem) {
2627 down_read(&fs_info->commit_root_sem);
2628 b = btrfs_clone_extent_buffer(root->commit_root);
2629 up_read(&fs_info->commit_root_sem);
2631 return ERR_PTR(-ENOMEM);
2634 b = root->commit_root;
2635 extent_buffer_get(b);
2637 level = btrfs_header_level(b);
2639 * Ensure that all callers have set skip_locking when
2640 * p->search_commit_root = 1.
2642 ASSERT(p->skip_locking == 1);
2647 if (p->skip_locking) {
2648 b = btrfs_root_node(root);
2649 level = btrfs_header_level(b);
2654 * If the level is set to maximum, we can skip trying to get the read
2657 if (write_lock_level < BTRFS_MAX_LEVEL) {
2659 * We don't know the level of the root node until we actually
2660 * have it read locked
2662 b = btrfs_read_lock_root_node(root);
2663 level = btrfs_header_level(b);
2664 if (level > write_lock_level)
2667 /* Whoops, must trade for write lock */
2668 btrfs_tree_read_unlock(b);
2669 free_extent_buffer(b);
2672 b = btrfs_lock_root_node(root);
2673 root_lock = BTRFS_WRITE_LOCK;
2675 /* The level might have changed, check again */
2676 level = btrfs_header_level(b);
2679 p->nodes[level] = b;
2680 if (!p->skip_locking)
2681 p->locks[level] = root_lock;
2683 * Callers are responsible for dropping b's references.
2690 * btrfs_search_slot - look for a key in a tree and perform necessary
2691 * modifications to preserve tree invariants.
2693 * @trans: Handle of transaction, used when modifying the tree
2694 * @p: Holds all btree nodes along the search path
2695 * @root: The root node of the tree
2696 * @key: The key we are looking for
2697 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2698 * deletions it's -1. 0 for plain searches
2699 * @cow: boolean should CoW operations be performed. Must always be 1
2700 * when modifying the tree.
2702 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2703 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2705 * If @key is found, 0 is returned and you can find the item in the leaf level
2706 * of the path (level 0)
2708 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2709 * points to the slot where it should be inserted
2711 * If an error is encountered while searching the tree a negative error number
2714 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2715 const struct btrfs_key *key, struct btrfs_path *p,
2716 int ins_len, int cow)
2718 struct extent_buffer *b;
2723 int lowest_unlock = 1;
2724 /* everything at write_lock_level or lower must be write locked */
2725 int write_lock_level = 0;
2726 u8 lowest_level = 0;
2727 int min_write_lock_level;
2730 lowest_level = p->lowest_level;
2731 WARN_ON(lowest_level && ins_len > 0);
2732 WARN_ON(p->nodes[0] != NULL);
2733 BUG_ON(!cow && ins_len);
2738 /* when we are removing items, we might have to go up to level
2739 * two as we update tree pointers Make sure we keep write
2740 * for those levels as well
2742 write_lock_level = 2;
2743 } else if (ins_len > 0) {
2745 * for inserting items, make sure we have a write lock on
2746 * level 1 so we can update keys
2748 write_lock_level = 1;
2752 write_lock_level = -1;
2754 if (cow && (p->keep_locks || p->lowest_level))
2755 write_lock_level = BTRFS_MAX_LEVEL;
2757 min_write_lock_level = write_lock_level;
2761 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2768 level = btrfs_header_level(b);
2771 * setup the path here so we can release it under lock
2772 * contention with the cow code
2775 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2778 * if we don't really need to cow this block
2779 * then we don't want to set the path blocking,
2780 * so we test it here
2782 if (!should_cow_block(trans, root, b)) {
2783 trans->dirty = true;
2788 * must have write locks on this node and the
2791 if (level > write_lock_level ||
2792 (level + 1 > write_lock_level &&
2793 level + 1 < BTRFS_MAX_LEVEL &&
2794 p->nodes[level + 1])) {
2795 write_lock_level = level + 1;
2796 btrfs_release_path(p);
2800 btrfs_set_path_blocking(p);
2802 err = btrfs_cow_block(trans, root, b, NULL, 0,
2805 err = btrfs_cow_block(trans, root, b,
2806 p->nodes[level + 1],
2807 p->slots[level + 1], &b);
2814 p->nodes[level] = b;
2816 * Leave path with blocking locks to avoid massive
2817 * lock context switch, this is made on purpose.
2821 * we have a lock on b and as long as we aren't changing
2822 * the tree, there is no way to for the items in b to change.
2823 * It is safe to drop the lock on our parent before we
2824 * go through the expensive btree search on b.
2826 * If we're inserting or deleting (ins_len != 0), then we might
2827 * be changing slot zero, which may require changing the parent.
2828 * So, we can't drop the lock until after we know which slot
2829 * we're operating on.
2831 if (!ins_len && !p->keep_locks) {
2834 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2835 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2840 ret = key_search(b, key, level, &prev_cmp, &slot);
2846 if (ret && slot > 0) {
2850 p->slots[level] = slot;
2851 err = setup_nodes_for_search(trans, root, p, b, level,
2852 ins_len, &write_lock_level);
2859 b = p->nodes[level];
2860 slot = p->slots[level];
2863 * slot 0 is special, if we change the key
2864 * we have to update the parent pointer
2865 * which means we must have a write lock
2868 if (slot == 0 && ins_len &&
2869 write_lock_level < level + 1) {
2870 write_lock_level = level + 1;
2871 btrfs_release_path(p);
2875 unlock_up(p, level, lowest_unlock,
2876 min_write_lock_level, &write_lock_level);
2878 if (level == lowest_level) {
2884 err = read_block_for_search(root, p, &b, level,
2893 if (!p->skip_locking) {
2894 level = btrfs_header_level(b);
2895 if (level <= write_lock_level) {
2896 err = btrfs_try_tree_write_lock(b);
2898 btrfs_set_path_blocking(p);
2901 p->locks[level] = BTRFS_WRITE_LOCK;
2903 err = btrfs_tree_read_lock_atomic(b);
2905 btrfs_set_path_blocking(p);
2906 btrfs_tree_read_lock(b);
2908 p->locks[level] = BTRFS_READ_LOCK;
2910 p->nodes[level] = b;
2913 p->slots[level] = slot;
2915 btrfs_leaf_free_space(b) < ins_len) {
2916 if (write_lock_level < 1) {
2917 write_lock_level = 1;
2918 btrfs_release_path(p);
2922 btrfs_set_path_blocking(p);
2923 err = split_leaf(trans, root, key,
2924 p, ins_len, ret == 0);
2932 if (!p->search_for_split)
2933 unlock_up(p, level, lowest_unlock,
2934 min_write_lock_level, NULL);
2941 * we don't really know what they plan on doing with the path
2942 * from here on, so for now just mark it as blocking
2944 if (!p->leave_spinning)
2945 btrfs_set_path_blocking(p);
2946 if (ret < 0 && !p->skip_release_on_error)
2947 btrfs_release_path(p);
2952 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2953 * current state of the tree together with the operations recorded in the tree
2954 * modification log to search for the key in a previous version of this tree, as
2955 * denoted by the time_seq parameter.
2957 * Naturally, there is no support for insert, delete or cow operations.
2959 * The resulting path and return value will be set up as if we called
2960 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2962 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2963 struct btrfs_path *p, u64 time_seq)
2965 struct btrfs_fs_info *fs_info = root->fs_info;
2966 struct extent_buffer *b;
2971 int lowest_unlock = 1;
2972 u8 lowest_level = 0;
2975 lowest_level = p->lowest_level;
2976 WARN_ON(p->nodes[0] != NULL);
2978 if (p->search_commit_root) {
2980 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2984 b = get_old_root(root, time_seq);
2989 level = btrfs_header_level(b);
2990 p->locks[level] = BTRFS_READ_LOCK;
2993 level = btrfs_header_level(b);
2994 p->nodes[level] = b;
2997 * we have a lock on b and as long as we aren't changing
2998 * the tree, there is no way to for the items in b to change.
2999 * It is safe to drop the lock on our parent before we
3000 * go through the expensive btree search on b.
3002 btrfs_unlock_up_safe(p, level + 1);
3005 * Since we can unwind ebs we want to do a real search every
3009 ret = key_search(b, key, level, &prev_cmp, &slot);
3015 if (ret && slot > 0) {
3019 p->slots[level] = slot;
3020 unlock_up(p, level, lowest_unlock, 0, NULL);
3022 if (level == lowest_level) {
3028 err = read_block_for_search(root, p, &b, level,
3037 level = btrfs_header_level(b);
3038 err = btrfs_tree_read_lock_atomic(b);
3040 btrfs_set_path_blocking(p);
3041 btrfs_tree_read_lock(b);
3043 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3048 p->locks[level] = BTRFS_READ_LOCK;
3049 p->nodes[level] = b;
3051 p->slots[level] = slot;
3052 unlock_up(p, level, lowest_unlock, 0, NULL);
3058 if (!p->leave_spinning)
3059 btrfs_set_path_blocking(p);
3061 btrfs_release_path(p);
3067 * helper to use instead of search slot if no exact match is needed but
3068 * instead the next or previous item should be returned.
3069 * When find_higher is true, the next higher item is returned, the next lower
3071 * When return_any and find_higher are both true, and no higher item is found,
3072 * return the next lower instead.
3073 * When return_any is true and find_higher is false, and no lower item is found,
3074 * return the next higher instead.
3075 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3078 int btrfs_search_slot_for_read(struct btrfs_root *root,
3079 const struct btrfs_key *key,
3080 struct btrfs_path *p, int find_higher,
3084 struct extent_buffer *leaf;
3087 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3091 * a return value of 1 means the path is at the position where the
3092 * item should be inserted. Normally this is the next bigger item,
3093 * but in case the previous item is the last in a leaf, path points
3094 * to the first free slot in the previous leaf, i.e. at an invalid
3100 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3101 ret = btrfs_next_leaf(root, p);
3107 * no higher item found, return the next
3112 btrfs_release_path(p);
3116 if (p->slots[0] == 0) {
3117 ret = btrfs_prev_leaf(root, p);
3122 if (p->slots[0] == btrfs_header_nritems(leaf))