Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "backref.h"
25 #include "ulist.h"
26 #include "transaction.h"
27 #include "delayed-ref.h"
28 #include "locking.h"
29
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
32
33 struct extent_inode_elem {
34         u64 inum;
35         u64 offset;
36         struct extent_inode_elem *next;
37 };
38
39 static int check_extent_in_eb(const struct btrfs_key *key,
40                               const struct extent_buffer *eb,
41                               const struct btrfs_file_extent_item *fi,
42                               u64 extent_item_pos,
43                               struct extent_inode_elem **eie,
44                               bool ignore_offset)
45 {
46         u64 offset = 0;
47         struct extent_inode_elem *e;
48
49         if (!ignore_offset &&
50             !btrfs_file_extent_compression(eb, fi) &&
51             !btrfs_file_extent_encryption(eb, fi) &&
52             !btrfs_file_extent_other_encoding(eb, fi)) {
53                 u64 data_offset;
54                 u64 data_len;
55
56                 data_offset = btrfs_file_extent_offset(eb, fi);
57                 data_len = btrfs_file_extent_num_bytes(eb, fi);
58
59                 if (extent_item_pos < data_offset ||
60                     extent_item_pos >= data_offset + data_len)
61                         return 1;
62                 offset = extent_item_pos - data_offset;
63         }
64
65         e = kmalloc(sizeof(*e), GFP_NOFS);
66         if (!e)
67                 return -ENOMEM;
68
69         e->next = *eie;
70         e->inum = key->objectid;
71         e->offset = key->offset + offset;
72         *eie = e;
73
74         return 0;
75 }
76
77 static void free_inode_elem_list(struct extent_inode_elem *eie)
78 {
79         struct extent_inode_elem *eie_next;
80
81         for (; eie; eie = eie_next) {
82                 eie_next = eie->next;
83                 kfree(eie);
84         }
85 }
86
87 static int find_extent_in_eb(const struct extent_buffer *eb,
88                              u64 wanted_disk_byte, u64 extent_item_pos,
89                              struct extent_inode_elem **eie,
90                              bool ignore_offset)
91 {
92         u64 disk_byte;
93         struct btrfs_key key;
94         struct btrfs_file_extent_item *fi;
95         int slot;
96         int nritems;
97         int extent_type;
98         int ret;
99
100         /*
101          * from the shared data ref, we only have the leaf but we need
102          * the key. thus, we must look into all items and see that we
103          * find one (some) with a reference to our extent item.
104          */
105         nritems = btrfs_header_nritems(eb);
106         for (slot = 0; slot < nritems; ++slot) {
107                 btrfs_item_key_to_cpu(eb, &key, slot);
108                 if (key.type != BTRFS_EXTENT_DATA_KEY)
109                         continue;
110                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
111                 extent_type = btrfs_file_extent_type(eb, fi);
112                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
113                         continue;
114                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
116                 if (disk_byte != wanted_disk_byte)
117                         continue;
118
119                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
120                 if (ret < 0)
121                         return ret;
122         }
123
124         return 0;
125 }
126
127 struct preftree {
128         struct rb_root root;
129         unsigned int count;
130 };
131
132 #define PREFTREE_INIT   { .root = RB_ROOT, .count = 0 }
133
134 struct preftrees {
135         struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136         struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137         struct preftree indirect_missing_keys;
138 };
139
140 /*
141  * Checks for a shared extent during backref search.
142  *
143  * The share_count tracks prelim_refs (direct and indirect) having a
144  * ref->count >0:
145  *  - incremented when a ref->count transitions to >0
146  *  - decremented when a ref->count transitions to <1
147  */
148 struct share_check {
149         u64 root_objectid;
150         u64 inum;
151         int share_count;
152 };
153
154 static inline int extent_is_shared(struct share_check *sc)
155 {
156         return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
157 }
158
159 static struct kmem_cache *btrfs_prelim_ref_cache;
160
161 int __init btrfs_prelim_ref_init(void)
162 {
163         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
164                                         sizeof(struct prelim_ref),
165                                         0,
166                                         SLAB_MEM_SPREAD,
167                                         NULL);
168         if (!btrfs_prelim_ref_cache)
169                 return -ENOMEM;
170         return 0;
171 }
172
173 void btrfs_prelim_ref_exit(void)
174 {
175         kmem_cache_destroy(btrfs_prelim_ref_cache);
176 }
177
178 static void free_pref(struct prelim_ref *ref)
179 {
180         kmem_cache_free(btrfs_prelim_ref_cache, ref);
181 }
182
183 /*
184  * Return 0 when both refs are for the same block (and can be merged).
185  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186  * indicates a 'higher' block.
187  */
188 static int prelim_ref_compare(struct prelim_ref *ref1,
189                               struct prelim_ref *ref2)
190 {
191         if (ref1->level < ref2->level)
192                 return -1;
193         if (ref1->level > ref2->level)
194                 return 1;
195         if (ref1->root_id < ref2->root_id)
196                 return -1;
197         if (ref1->root_id > ref2->root_id)
198                 return 1;
199         if (ref1->key_for_search.type < ref2->key_for_search.type)
200                 return -1;
201         if (ref1->key_for_search.type > ref2->key_for_search.type)
202                 return 1;
203         if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
204                 return -1;
205         if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
206                 return 1;
207         if (ref1->key_for_search.offset < ref2->key_for_search.offset)
208                 return -1;
209         if (ref1->key_for_search.offset > ref2->key_for_search.offset)
210                 return 1;
211         if (ref1->parent < ref2->parent)
212                 return -1;
213         if (ref1->parent > ref2->parent)
214                 return 1;
215
216         return 0;
217 }
218
219 void update_share_count(struct share_check *sc, int oldcount, int newcount)
220 {
221         if ((!sc) || (oldcount == 0 && newcount < 1))
222                 return;
223
224         if (oldcount > 0 && newcount < 1)
225                 sc->share_count--;
226         else if (oldcount < 1 && newcount > 0)
227                 sc->share_count++;
228 }
229
230 /*
231  * Add @newref to the @root rbtree, merging identical refs.
232  *
233  * Callers should assume that newref has been freed after calling.
234  */
235 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
236                               struct preftree *preftree,
237                               struct prelim_ref *newref,
238                               struct share_check *sc)
239 {
240         struct rb_root *root;
241         struct rb_node **p;
242         struct rb_node *parent = NULL;
243         struct prelim_ref *ref;
244         int result;
245
246         root = &preftree->root;
247         p = &root->rb_node;
248
249         while (*p) {
250                 parent = *p;
251                 ref = rb_entry(parent, struct prelim_ref, rbnode);
252                 result = prelim_ref_compare(ref, newref);
253                 if (result < 0) {
254                         p = &(*p)->rb_left;
255                 } else if (result > 0) {
256                         p = &(*p)->rb_right;
257                 } else {
258                         /* Identical refs, merge them and free @newref */
259                         struct extent_inode_elem *eie = ref->inode_list;
260
261                         while (eie && eie->next)
262                                 eie = eie->next;
263
264                         if (!eie)
265                                 ref->inode_list = newref->inode_list;
266                         else
267                                 eie->next = newref->inode_list;
268                         trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
269                                                      preftree->count);
270                         /*
271                          * A delayed ref can have newref->count < 0.
272                          * The ref->count is updated to follow any
273                          * BTRFS_[ADD|DROP]_DELAYED_REF actions.
274                          */
275                         update_share_count(sc, ref->count,
276                                            ref->count + newref->count);
277                         ref->count += newref->count;
278                         free_pref(newref);
279                         return;
280                 }
281         }
282
283         update_share_count(sc, 0, newref->count);
284         preftree->count++;
285         trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
286         rb_link_node(&newref->rbnode, parent, p);
287         rb_insert_color(&newref->rbnode, root);
288 }
289
290 /*
291  * Release the entire tree.  We don't care about internal consistency so
292  * just free everything and then reset the tree root.
293  */
294 static void prelim_release(struct preftree *preftree)
295 {
296         struct prelim_ref *ref, *next_ref;
297
298         rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
299                                              rbnode)
300                 free_pref(ref);
301
302         preftree->root = RB_ROOT;
303         preftree->count = 0;
304 }
305
306 /*
307  * the rules for all callers of this function are:
308  * - obtaining the parent is the goal
309  * - if you add a key, you must know that it is a correct key
310  * - if you cannot add the parent or a correct key, then we will look into the
311  *   block later to set a correct key
312  *
313  * delayed refs
314  * ============
315  *        backref type | shared | indirect | shared | indirect
316  * information         |   tree |     tree |   data |     data
317  * --------------------+--------+----------+--------+----------
318  *      parent logical |    y   |     -    |    -   |     -
319  *      key to resolve |    -   |     y    |    y   |     y
320  *  tree block logical |    -   |     -    |    -   |     -
321  *  root for resolving |    y   |     y    |    y   |     y
322  *
323  * - column 1:       we've the parent -> done
324  * - column 2, 3, 4: we use the key to find the parent
325  *
326  * on disk refs (inline or keyed)
327  * ==============================
328  *        backref type | shared | indirect | shared | indirect
329  * information         |   tree |     tree |   data |     data
330  * --------------------+--------+----------+--------+----------
331  *      parent logical |    y   |     -    |    y   |     -
332  *      key to resolve |    -   |     -    |    -   |     y
333  *  tree block logical |    y   |     y    |    y   |     y
334  *  root for resolving |    -   |     y    |    y   |     y
335  *
336  * - column 1, 3: we've the parent -> done
337  * - column 2:    we take the first key from the block to find the parent
338  *                (see add_missing_keys)
339  * - column 4:    we use the key to find the parent
340  *
341  * additional information that's available but not required to find the parent
342  * block might help in merging entries to gain some speed.
343  */
344 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
345                           struct preftree *preftree, u64 root_id,
346                           const struct btrfs_key *key, int level, u64 parent,
347                           u64 wanted_disk_byte, int count,
348                           struct share_check *sc, gfp_t gfp_mask)
349 {
350         struct prelim_ref *ref;
351
352         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
353                 return 0;
354
355         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
356         if (!ref)
357                 return -ENOMEM;
358
359         ref->root_id = root_id;
360         if (key) {
361                 ref->key_for_search = *key;
362                 /*
363                  * We can often find data backrefs with an offset that is too
364                  * large (>= LLONG_MAX, maximum allowed file offset) due to
365                  * underflows when subtracting a file's offset with the data
366                  * offset of its corresponding extent data item. This can
367                  * happen for example in the clone ioctl.
368                  * So if we detect such case we set the search key's offset to
369                  * zero to make sure we will find the matching file extent item
370                  * at add_all_parents(), otherwise we will miss it because the
371                  * offset taken form the backref is much larger then the offset
372                  * of the file extent item. This can make us scan a very large
373                  * number of file extent items, but at least it will not make
374                  * us miss any.
375                  * This is an ugly workaround for a behaviour that should have
376                  * never existed, but it does and a fix for the clone ioctl
377                  * would touch a lot of places, cause backwards incompatibility
378                  * and would not fix the problem for extents cloned with older
379                  * kernels.
380                  */
381                 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
382                     ref->key_for_search.offset >= LLONG_MAX)
383                         ref->key_for_search.offset = 0;
384         } else {
385                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
386         }
387
388         ref->inode_list = NULL;
389         ref->level = level;
390         ref->count = count;
391         ref->parent = parent;
392         ref->wanted_disk_byte = wanted_disk_byte;
393         prelim_ref_insert(fs_info, preftree, ref, sc);
394         return extent_is_shared(sc);
395 }
396
397 /* direct refs use root == 0, key == NULL */
398 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
399                           struct preftrees *preftrees, int level, u64 parent,
400                           u64 wanted_disk_byte, int count,
401                           struct share_check *sc, gfp_t gfp_mask)
402 {
403         return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
404                               parent, wanted_disk_byte, count, sc, gfp_mask);
405 }
406
407 /* indirect refs use parent == 0 */
408 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
409                             struct preftrees *preftrees, u64 root_id,
410                             const struct btrfs_key *key, int level,
411                             u64 wanted_disk_byte, int count,
412                             struct share_check *sc, gfp_t gfp_mask)
413 {
414         struct preftree *tree = &preftrees->indirect;
415
416         if (!key)
417                 tree = &preftrees->indirect_missing_keys;
418         return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
419                               wanted_disk_byte, count, sc, gfp_mask);
420 }
421
422 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
423                            struct ulist *parents, struct prelim_ref *ref,
424                            int level, u64 time_seq, const u64 *extent_item_pos,
425                            u64 total_refs, bool ignore_offset)
426 {
427         int ret = 0;
428         int slot;
429         struct extent_buffer *eb;
430         struct btrfs_key key;
431         struct btrfs_key *key_for_search = &ref->key_for_search;
432         struct btrfs_file_extent_item *fi;
433         struct extent_inode_elem *eie = NULL, *old = NULL;
434         u64 disk_byte;
435         u64 wanted_disk_byte = ref->wanted_disk_byte;
436         u64 count = 0;
437
438         if (level != 0) {
439                 eb = path->nodes[level];
440                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
441                 if (ret < 0)
442                         return ret;
443                 return 0;
444         }
445
446         /*
447          * We normally enter this function with the path already pointing to
448          * the first item to check. But sometimes, we may enter it with
449          * slot==nritems. In that case, go to the next leaf before we continue.
450          */
451         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
452                 if (time_seq == SEQ_LAST)
453                         ret = btrfs_next_leaf(root, path);
454                 else
455                         ret = btrfs_next_old_leaf(root, path, time_seq);
456         }
457
458         while (!ret && count < total_refs) {
459                 eb = path->nodes[0];
460                 slot = path->slots[0];
461
462                 btrfs_item_key_to_cpu(eb, &key, slot);
463
464                 if (key.objectid != key_for_search->objectid ||
465                     key.type != BTRFS_EXTENT_DATA_KEY)
466                         break;
467
468                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
469                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
470
471                 if (disk_byte == wanted_disk_byte) {
472                         eie = NULL;
473                         old = NULL;
474                         count++;
475                         if (extent_item_pos) {
476                                 ret = check_extent_in_eb(&key, eb, fi,
477                                                 *extent_item_pos,
478                                                 &eie, ignore_offset);
479                                 if (ret < 0)
480                                         break;
481                         }
482                         if (ret > 0)
483                                 goto next;
484                         ret = ulist_add_merge_ptr(parents, eb->start,
485                                                   eie, (void **)&old, GFP_NOFS);
486                         if (ret < 0)
487                                 break;
488                         if (!ret && extent_item_pos) {
489                                 while (old->next)
490                                         old = old->next;
491                                 old->next = eie;
492                         }
493                         eie = NULL;
494                 }
495 next:
496                 if (time_seq == SEQ_LAST)
497                         ret = btrfs_next_item(root, path);
498                 else
499                         ret = btrfs_next_old_item(root, path, time_seq);
500         }
501
502         if (ret > 0)
503                 ret = 0;
504         else if (ret < 0)
505                 free_inode_elem_list(eie);
506         return ret;
507 }
508
509 /*
510  * resolve an indirect backref in the form (root_id, key, level)
511  * to a logical address
512  */
513 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
514                                 struct btrfs_path *path, u64 time_seq,
515                                 struct prelim_ref *ref, struct ulist *parents,
516                                 const u64 *extent_item_pos, u64 total_refs,
517                                 bool ignore_offset)
518 {
519         struct btrfs_root *root;
520         struct btrfs_key root_key;
521         struct extent_buffer *eb;
522         int ret = 0;
523         int root_level;
524         int level = ref->level;
525         int index;
526
527         root_key.objectid = ref->root_id;
528         root_key.type = BTRFS_ROOT_ITEM_KEY;
529         root_key.offset = (u64)-1;
530
531         index = srcu_read_lock(&fs_info->subvol_srcu);
532
533         root = btrfs_get_fs_root(fs_info, &root_key, false);
534         if (IS_ERR(root)) {
535                 srcu_read_unlock(&fs_info->subvol_srcu, index);
536                 ret = PTR_ERR(root);
537                 goto out;
538         }
539
540         if (btrfs_is_testing(fs_info)) {
541                 srcu_read_unlock(&fs_info->subvol_srcu, index);
542                 ret = -ENOENT;
543                 goto out;
544         }
545
546         if (path->search_commit_root)
547                 root_level = btrfs_header_level(root->commit_root);
548         else if (time_seq == SEQ_LAST)
549                 root_level = btrfs_header_level(root->node);
550         else
551                 root_level = btrfs_old_root_level(root, time_seq);
552
553         if (root_level + 1 == level) {
554                 srcu_read_unlock(&fs_info->subvol_srcu, index);
555                 goto out;
556         }
557
558         path->lowest_level = level;
559         if (time_seq == SEQ_LAST)
560                 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
561                                         0, 0);
562         else
563                 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
564                                             time_seq);
565
566         /* root node has been locked, we can release @subvol_srcu safely here */
567         srcu_read_unlock(&fs_info->subvol_srcu, index);
568
569         btrfs_debug(fs_info,
570                 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
571                  ref->root_id, level, ref->count, ret,
572                  ref->key_for_search.objectid, ref->key_for_search.type,
573                  ref->key_for_search.offset);
574         if (ret < 0)
575                 goto out;
576
577         eb = path->nodes[level];
578         while (!eb) {
579                 if (WARN_ON(!level)) {
580                         ret = 1;
581                         goto out;
582                 }
583                 level--;
584                 eb = path->nodes[level];
585         }
586
587         ret = add_all_parents(root, path, parents, ref, level, time_seq,
588                               extent_item_pos, total_refs, ignore_offset);
589 out:
590         path->lowest_level = 0;
591         btrfs_release_path(path);
592         return ret;
593 }
594
595 static struct extent_inode_elem *
596 unode_aux_to_inode_list(struct ulist_node *node)
597 {
598         if (!node)
599                 return NULL;
600         return (struct extent_inode_elem *)(uintptr_t)node->aux;
601 }
602
603 /*
604  * We maintain three seperate rbtrees: one for direct refs, one for
605  * indirect refs which have a key, and one for indirect refs which do not
606  * have a key. Each tree does merge on insertion.
607  *
608  * Once all of the references are located, we iterate over the tree of
609  * indirect refs with missing keys. An appropriate key is located and
610  * the ref is moved onto the tree for indirect refs. After all missing
611  * keys are thus located, we iterate over the indirect ref tree, resolve
612  * each reference, and then insert the resolved reference onto the
613  * direct tree (merging there too).
614  *
615  * New backrefs (i.e., for parent nodes) are added to the appropriate
616  * rbtree as they are encountered. The new backrefs are subsequently
617  * resolved as above.
618  */
619 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
620                                  struct btrfs_path *path, u64 time_seq,
621                                  struct preftrees *preftrees,
622                                  const u64 *extent_item_pos, u64 total_refs,
623                                  struct share_check *sc, bool ignore_offset)
624 {
625         int err;
626         int ret = 0;
627         struct ulist *parents;
628         struct ulist_node *node;
629         struct ulist_iterator uiter;
630         struct rb_node *rnode;
631
632         parents = ulist_alloc(GFP_NOFS);
633         if (!parents)
634                 return -ENOMEM;
635
636         /*
637          * We could trade memory usage for performance here by iterating
638          * the tree, allocating new refs for each insertion, and then
639          * freeing the entire indirect tree when we're done.  In some test
640          * cases, the tree can grow quite large (~200k objects).
641          */
642         while ((rnode = rb_first(&preftrees->indirect.root))) {
643                 struct prelim_ref *ref;
644
645                 ref = rb_entry(rnode, struct prelim_ref, rbnode);
646                 if (WARN(ref->parent,
647                          "BUG: direct ref found in indirect tree")) {
648                         ret = -EINVAL;
649                         goto out;
650                 }
651
652                 rb_erase(&ref->rbnode, &preftrees->indirect.root);
653                 preftrees->indirect.count--;
654
655                 if (ref->count == 0) {
656                         free_pref(ref);
657                         continue;
658                 }
659
660                 if (sc && sc->root_objectid &&
661                     ref->root_id != sc->root_objectid) {
662                         free_pref(ref);
663                         ret = BACKREF_FOUND_SHARED;
664                         goto out;
665                 }
666                 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
667                                            parents, extent_item_pos,
668                                            total_refs, ignore_offset);
669                 /*
670                  * we can only tolerate ENOENT,otherwise,we should catch error
671                  * and return directly.
672                  */
673                 if (err == -ENOENT) {
674                         prelim_ref_insert(fs_info, &preftrees->direct, ref,
675                                           NULL);
676                         continue;
677                 } else if (err) {
678                         free_pref(ref);
679                         ret = err;
680                         goto out;
681                 }
682
683                 /* we put the first parent into the ref at hand */
684                 ULIST_ITER_INIT(&uiter);
685                 node = ulist_next(parents, &uiter);
686                 ref->parent = node ? node->val : 0;
687                 ref->inode_list = unode_aux_to_inode_list(node);
688
689                 /* Add a prelim_ref(s) for any other parent(s). */
690                 while ((node = ulist_next(parents, &uiter))) {
691                         struct prelim_ref *new_ref;
692
693                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
694                                                    GFP_NOFS);
695                         if (!new_ref) {
696                                 free_pref(ref);
697                                 ret = -ENOMEM;
698                                 goto out;
699                         }
700                         memcpy(new_ref, ref, sizeof(*ref));
701                         new_ref->parent = node->val;
702                         new_ref->inode_list = unode_aux_to_inode_list(node);
703                         prelim_ref_insert(fs_info, &preftrees->direct,
704                                           new_ref, NULL);
705                 }
706
707                 /*
708                  * Now it's a direct ref, put it in the the direct tree. We must
709                  * do this last because the ref could be merged/freed here.
710                  */
711                 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
712
713                 ulist_reinit(parents);
714                 cond_resched();
715         }
716 out:
717         ulist_free(parents);
718         return ret;
719 }
720
721 /*
722  * read tree blocks and add keys where required.
723  */
724 static int add_missing_keys(struct btrfs_fs_info *fs_info,
725                             struct preftrees *preftrees)
726 {
727         struct prelim_ref *ref;
728         struct extent_buffer *eb;
729         struct preftree *tree = &preftrees->indirect_missing_keys;
730         struct rb_node *node;
731
732         while ((node = rb_first(&tree->root))) {
733                 ref = rb_entry(node, struct prelim_ref, rbnode);
734                 rb_erase(node, &tree->root);
735
736                 BUG_ON(ref->parent);    /* should not be a direct ref */
737                 BUG_ON(ref->key_for_search.type);
738                 BUG_ON(!ref->wanted_disk_byte);
739
740                 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
741                 if (IS_ERR(eb)) {
742                         free_pref(ref);
743                         return PTR_ERR(eb);
744                 } else if (!extent_buffer_uptodate(eb)) {
745                         free_pref(ref);
746                         free_extent_buffer(eb);
747                         return -EIO;
748                 }
749                 btrfs_tree_read_lock(eb);
750                 if (btrfs_header_level(eb) == 0)
751                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
752                 else
753                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
754                 btrfs_tree_read_unlock(eb);
755                 free_extent_buffer(eb);
756                 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
757                 cond_resched();
758         }
759         return 0;
760 }
761
762 /*
763  * add all currently queued delayed refs from this head whose seq nr is
764  * smaller or equal that seq to the list
765  */
766 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
767                             struct btrfs_delayed_ref_head *head, u64 seq,
768                             struct preftrees *preftrees, u64 *total_refs,
769                             struct share_check *sc)
770 {
771         struct btrfs_delayed_ref_node *node;
772         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
773         struct btrfs_key key;
774         struct btrfs_key tmp_op_key;
775         struct btrfs_key *op_key = NULL;
776         struct rb_node *n;
777         int count;
778         int ret = 0;
779
780         if (extent_op && extent_op->update_key) {
781                 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
782                 op_key = &tmp_op_key;
783         }
784
785         spin_lock(&head->lock);
786         for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
787                 node = rb_entry(n, struct btrfs_delayed_ref_node,
788                                 ref_node);
789                 if (node->seq > seq)
790                         continue;
791
792                 switch (node->action) {
793                 case BTRFS_ADD_DELAYED_EXTENT:
794                 case BTRFS_UPDATE_DELAYED_HEAD:
795                         WARN_ON(1);
796                         continue;
797                 case BTRFS_ADD_DELAYED_REF:
798                         count = node->ref_mod;
799                         break;
800                 case BTRFS_DROP_DELAYED_REF:
801                         count = node->ref_mod * -1;
802                         break;
803                 default:
804                         BUG_ON(1);
805                 }
806                 *total_refs += count;
807                 switch (node->type) {
808                 case BTRFS_TREE_BLOCK_REF_KEY: {
809                         /* NORMAL INDIRECT METADATA backref */
810                         struct btrfs_delayed_tree_ref *ref;
811
812                         ref = btrfs_delayed_node_to_tree_ref(node);
813                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
814                                                &tmp_op_key, ref->level + 1,
815                                                node->bytenr, count, sc,
816                                                GFP_ATOMIC);
817                         break;
818                 }
819                 case BTRFS_SHARED_BLOCK_REF_KEY: {
820                         /* SHARED DIRECT METADATA backref */
821                         struct btrfs_delayed_tree_ref *ref;
822
823                         ref = btrfs_delayed_node_to_tree_ref(node);
824
825                         ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
826                                              ref->parent, node->bytenr, count,
827                                              sc, GFP_ATOMIC);
828                         break;
829                 }
830                 case BTRFS_EXTENT_DATA_REF_KEY: {
831                         /* NORMAL INDIRECT DATA backref */
832                         struct btrfs_delayed_data_ref *ref;
833                         ref = btrfs_delayed_node_to_data_ref(node);
834
835                         key.objectid = ref->objectid;
836                         key.type = BTRFS_EXTENT_DATA_KEY;
837                         key.offset = ref->offset;
838
839                         /*
840                          * Found a inum that doesn't match our known inum, we
841                          * know it's shared.
842                          */
843                         if (sc && sc->inum && ref->objectid != sc->inum) {
844                                 ret = BACKREF_FOUND_SHARED;
845                                 goto out;
846                         }
847
848                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
849                                                &key, 0, node->bytenr, count, sc,
850                                                GFP_ATOMIC);
851                         break;
852                 }
853                 case BTRFS_SHARED_DATA_REF_KEY: {
854                         /* SHARED DIRECT FULL backref */
855                         struct btrfs_delayed_data_ref *ref;
856
857                         ref = btrfs_delayed_node_to_data_ref(node);
858
859                         ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
860                                              node->bytenr, count, sc,
861                                              GFP_ATOMIC);
862                         break;
863                 }
864                 default:
865                         WARN_ON(1);
866                 }
867                 /*
868                  * We must ignore BACKREF_FOUND_SHARED until all delayed
869                  * refs have been checked.
870                  */
871                 if (ret && (ret != BACKREF_FOUND_SHARED))
872                         break;
873         }
874         if (!ret)
875                 ret = extent_is_shared(sc);
876 out:
877         spin_unlock(&head->lock);
878         return ret;
879 }
880
881 /*
882  * add all inline backrefs for bytenr to the list
883  *
884  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
885  */
886 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
887                            struct btrfs_path *path, u64 bytenr,
888                            int *info_level, struct preftrees *preftrees,
889                            u64 *total_refs, struct share_check *sc)
890 {
891         int ret = 0;
892         int slot;
893         struct extent_buffer *leaf;
894         struct btrfs_key key;
895         struct btrfs_key found_key;
896         unsigned long ptr;
897         unsigned long end;
898         struct btrfs_extent_item *ei;
899         u64 flags;
900         u64 item_size;
901
902         /*
903          * enumerate all inline refs
904          */
905         leaf = path->nodes[0];
906         slot = path->slots[0];
907
908         item_size = btrfs_item_size_nr(leaf, slot);
909         BUG_ON(item_size < sizeof(*ei));
910
911         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
912         flags = btrfs_extent_flags(leaf, ei);
913         *total_refs += btrfs_extent_refs(leaf, ei);
914         btrfs_item_key_to_cpu(leaf, &found_key, slot);
915
916         ptr = (unsigned long)(ei + 1);
917         end = (unsigned long)ei + item_size;
918
919         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
920             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
921                 struct btrfs_tree_block_info *info;
922
923                 info = (struct btrfs_tree_block_info *)ptr;
924                 *info_level = btrfs_tree_block_level(leaf, info);
925                 ptr += sizeof(struct btrfs_tree_block_info);
926                 BUG_ON(ptr > end);
927         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
928                 *info_level = found_key.offset;
929         } else {
930                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
931         }
932
933         while (ptr < end) {
934                 struct btrfs_extent_inline_ref *iref;
935                 u64 offset;
936                 int type;
937
938                 iref = (struct btrfs_extent_inline_ref *)ptr;
939                 type = btrfs_get_extent_inline_ref_type(leaf, iref,
940                                                         BTRFS_REF_TYPE_ANY);
941                 if (type == BTRFS_REF_TYPE_INVALID)
942                         return -EINVAL;
943
944                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
945
946                 switch (type) {
947                 case BTRFS_SHARED_BLOCK_REF_KEY:
948                         ret = add_direct_ref(fs_info, preftrees,
949                                              *info_level + 1, offset,
950                                              bytenr, 1, NULL, GFP_NOFS);
951                         break;
952                 case BTRFS_SHARED_DATA_REF_KEY: {
953                         struct btrfs_shared_data_ref *sdref;
954                         int count;
955
956                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
957                         count = btrfs_shared_data_ref_count(leaf, sdref);
958
959                         ret = add_direct_ref(fs_info, preftrees, 0, offset,
960                                              bytenr, count, sc, GFP_NOFS);
961                         break;
962                 }
963                 case BTRFS_TREE_BLOCK_REF_KEY:
964                         ret = add_indirect_ref(fs_info, preftrees, offset,
965                                                NULL, *info_level + 1,
966                                                bytenr, 1, NULL, GFP_NOFS);
967                         break;
968                 case BTRFS_EXTENT_DATA_REF_KEY: {
969                         struct btrfs_extent_data_ref *dref;
970                         int count;
971                         u64 root;
972
973                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
974                         count = btrfs_extent_data_ref_count(leaf, dref);
975                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
976                                                                       dref);
977                         key.type = BTRFS_EXTENT_DATA_KEY;
978                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
979
980                         if (sc && sc->inum && key.objectid != sc->inum) {
981                                 ret = BACKREF_FOUND_SHARED;
982                                 break;
983                         }
984
985                         root = btrfs_extent_data_ref_root(leaf, dref);
986
987                         ret = add_indirect_ref(fs_info, preftrees, root,
988                                                &key, 0, bytenr, count,
989                                                sc, GFP_NOFS);
990                         break;
991                 }
992                 default:
993                         WARN_ON(1);
994                 }
995                 if (ret)
996                         return ret;
997                 ptr += btrfs_extent_inline_ref_size(type);
998         }
999
1000         return 0;
1001 }
1002
1003 /*
1004  * add all non-inline backrefs for bytenr to the list
1005  *
1006  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1007  */
1008 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1009                           struct btrfs_path *path, u64 bytenr,
1010                           int info_level, struct preftrees *preftrees,
1011                           struct share_check *sc)
1012 {
1013         struct btrfs_root *extent_root = fs_info->extent_root;
1014         int ret;
1015         int slot;
1016         struct extent_buffer *leaf;
1017         struct btrfs_key key;
1018
1019         while (1) {
1020                 ret = btrfs_next_item(extent_root, path);
1021                 if (ret < 0)
1022                         break;
1023                 if (ret) {
1024                         ret = 0;
1025                         break;
1026                 }
1027
1028                 slot = path->slots[0];
1029                 leaf = path->nodes[0];
1030                 btrfs_item_key_to_cpu(leaf, &key, slot);
1031
1032                 if (key.objectid != bytenr)
1033                         break;
1034                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1035                         continue;
1036                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1037                         break;
1038
1039                 switch (key.type) {
1040                 case BTRFS_SHARED_BLOCK_REF_KEY:
1041                         /* SHARED DIRECT METADATA backref */
1042                         ret = add_direct_ref(fs_info, preftrees,
1043                                              info_level + 1, key.offset,
1044                                              bytenr, 1, NULL, GFP_NOFS);
1045                         break;
1046                 case BTRFS_SHARED_DATA_REF_KEY: {
1047                         /* SHARED DIRECT FULL backref */
1048                         struct btrfs_shared_data_ref *sdref;
1049                         int count;
1050
1051                         sdref = btrfs_item_ptr(leaf, slot,
1052                                               struct btrfs_shared_data_ref);
1053                         count = btrfs_shared_data_ref_count(leaf, sdref);
1054                         ret = add_direct_ref(fs_info, preftrees, 0,
1055                                              key.offset, bytenr, count,
1056                                              sc, GFP_NOFS);
1057                         break;
1058                 }
1059                 case BTRFS_TREE_BLOCK_REF_KEY:
1060                         /* NORMAL INDIRECT METADATA backref */
1061                         ret = add_indirect_ref(fs_info, preftrees, key.offset,
1062                                                NULL, info_level + 1, bytenr,
1063                                                1, NULL, GFP_NOFS);
1064                         break;
1065                 case BTRFS_EXTENT_DATA_REF_KEY: {
1066                         /* NORMAL INDIRECT DATA backref */
1067                         struct btrfs_extent_data_ref *dref;
1068                         int count;
1069                         u64 root;
1070
1071                         dref = btrfs_item_ptr(leaf, slot,
1072                                               struct btrfs_extent_data_ref);
1073                         count = btrfs_extent_data_ref_count(leaf, dref);
1074                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1075                                                                       dref);
1076                         key.type = BTRFS_EXTENT_DATA_KEY;
1077                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1078
1079                         if (sc && sc->inum && key.objectid != sc->inum) {
1080                                 ret = BACKREF_FOUND_SHARED;
1081                                 break;
1082                         }
1083
1084                         root = btrfs_extent_data_ref_root(leaf, dref);
1085                         ret = add_indirect_ref(fs_info, preftrees, root,
1086                                                &key, 0, bytenr, count,
1087                                                sc, GFP_NOFS);
1088                         break;
1089                 }
1090                 default:
1091                         WARN_ON(1);
1092                 }
1093                 if (ret)
1094                         return ret;
1095
1096         }
1097
1098         return ret;
1099 }
1100
1101 /*
1102  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1103  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1104  * indirect refs to their parent bytenr.
1105  * When roots are found, they're added to the roots list
1106  *
1107  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1108  * much like trans == NULL case, the difference only lies in it will not
1109  * commit root.
1110  * The special case is for qgroup to search roots in commit_transaction().
1111  *
1112  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1113  * shared extent is detected.
1114  *
1115  * Otherwise this returns 0 for success and <0 for an error.
1116  *
1117  * If ignore_offset is set to false, only extent refs whose offsets match
1118  * extent_item_pos are returned.  If true, every extent ref is returned
1119  * and extent_item_pos is ignored.
1120  *
1121  * FIXME some caching might speed things up
1122  */
1123 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1124                              struct btrfs_fs_info *fs_info, u64 bytenr,
1125                              u64 time_seq, struct ulist *refs,
1126                              struct ulist *roots, const u64 *extent_item_pos,
1127                              struct share_check *sc, bool ignore_offset)
1128 {
1129         struct btrfs_key key;
1130         struct btrfs_path *path;
1131         struct btrfs_delayed_ref_root *delayed_refs = NULL;
1132         struct btrfs_delayed_ref_head *head;
1133         int info_level = 0;
1134         int ret;
1135         struct prelim_ref *ref;
1136         struct rb_node *node;
1137         struct extent_inode_elem *eie = NULL;
1138         /* total of both direct AND indirect refs! */
1139         u64 total_refs = 0;
1140         struct preftrees preftrees = {
1141                 .direct = PREFTREE_INIT,
1142                 .indirect = PREFTREE_INIT,
1143                 .indirect_missing_keys = PREFTREE_INIT
1144         };
1145
1146         key.objectid = bytenr;
1147         key.offset = (u64)-1;
1148         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1149                 key.type = BTRFS_METADATA_ITEM_KEY;
1150         else
1151                 key.type = BTRFS_EXTENT_ITEM_KEY;
1152
1153         path = btrfs_alloc_path();
1154         if (!path)
1155                 return -ENOMEM;
1156         if (!trans) {
1157                 path->search_commit_root = 1;
1158                 path->skip_locking = 1;
1159         }
1160
1161         if (time_seq == SEQ_LAST)
1162                 path->skip_locking = 1;
1163
1164         /*
1165          * grab both a lock on the path and a lock on the delayed ref head.
1166          * We need both to get a consistent picture of how the refs look
1167          * at a specified point in time
1168          */
1169 again:
1170         head = NULL;
1171
1172         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1173         if (ret < 0)
1174                 goto out;
1175         BUG_ON(ret == 0);
1176
1177 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1178         if (trans && likely(trans->type != __TRANS_DUMMY) &&
1179             time_seq != SEQ_LAST) {
1180 #else
1181         if (trans && time_seq != SEQ_LAST) {
1182 #endif
1183                 /*
1184                  * look if there are updates for this ref queued and lock the
1185                  * head
1186                  */
1187                 delayed_refs = &trans->transaction->delayed_refs;
1188                 spin_lock(&delayed_refs->lock);
1189                 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1190                 if (head) {
1191                         if (!mutex_trylock(&head->mutex)) {
1192                                 refcount_inc(&head->refs);
1193                                 spin_unlock(&delayed_refs->lock);
1194
1195                                 btrfs_release_path(path);
1196
1197                                 /*
1198                                  * Mutex was contended, block until it's
1199                                  * released and try again
1200                                  */
1201                                 mutex_lock(&head->mutex);
1202                                 mutex_unlock(&head->mutex);
1203                                 btrfs_put_delayed_ref_head(head);
1204                                 goto again;
1205                         }
1206                         spin_unlock(&delayed_refs->lock);
1207                         ret = add_delayed_refs(fs_info, head, time_seq,
1208                                                &preftrees, &total_refs, sc);
1209                         mutex_unlock(&head->mutex);
1210                         if (ret)
1211                                 goto out;
1212                 } else {
1213                         spin_unlock(&delayed_refs->lock);
1214                 }
1215         }
1216
1217         if (path->slots[0]) {
1218                 struct extent_buffer *leaf;
1219                 int slot;
1220
1221                 path->slots[0]--;
1222                 leaf = path->nodes[0];
1223                 slot = path->slots[0];
1224                 btrfs_item_key_to_cpu(leaf, &key, slot);
1225                 if (key.objectid == bytenr &&
1226                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1227                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1228                         ret = add_inline_refs(fs_info, path, bytenr,
1229                                               &info_level, &preftrees,
1230                                               &total_refs, sc);
1231                         if (ret)
1232                                 goto out;
1233                         ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1234                                              &preftrees, sc);
1235                         if (ret)
1236                                 goto out;
1237                 }
1238         }
1239
1240         btrfs_release_path(path);
1241
1242         ret = add_missing_keys(fs_info, &preftrees);
1243         if (ret)
1244                 goto out;
1245
1246         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1247
1248         ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1249                                     extent_item_pos, total_refs, sc, ignore_offset);
1250         if (ret)
1251                 goto out;
1252
1253         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1254
1255         /*
1256          * This walks the tree of merged and resolved refs. Tree blocks are
1257          * read in as needed. Unique entries are added to the ulist, and
1258          * the list of found roots is updated.
1259          *
1260          * We release the entire tree in one go before returning.
1261          */
1262         node = rb_first(&preftrees.direct.root);
1263         while (node) {
1264                 ref = rb_entry(node, struct prelim_ref, rbnode);
1265                 node = rb_next(&ref->rbnode);
1266                 WARN_ON(ref->count < 0);
1267                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1268                         if (sc && sc->root_objectid &&
1269                             ref->root_id != sc->root_objectid) {
1270                                 ret = BACKREF_FOUND_SHARED;
1271                                 goto out;
1272                         }
1273
1274                         /* no parent == root of tree */
1275                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1276                         if (ret < 0)
1277                                 goto out;
1278                 }
1279                 if (ref->count && ref->parent) {
1280                         if (extent_item_pos && !ref->inode_list &&
1281                             ref->level == 0) {
1282                                 struct extent_buffer *eb;
1283
1284                                 eb = read_tree_block(fs_info, ref->parent, 0);
1285                                 if (IS_ERR(eb)) {
1286                                         ret = PTR_ERR(eb);
1287                                         goto out;
1288                                 } else if (!extent_buffer_uptodate(eb)) {
1289                                         free_extent_buffer(eb);
1290                                         ret = -EIO;
1291                                         goto out;
1292                                 }
1293                                 btrfs_tree_read_lock(eb);
1294                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1295                                 ret = find_extent_in_eb(eb, bytenr,
1296                                                         *extent_item_pos, &eie, ignore_offset);
1297                                 btrfs_tree_read_unlock_blocking(eb);
1298                                 free_extent_buffer(eb);
1299                                 if (ret < 0)
1300                                         goto out;
1301                                 ref->inode_list = eie;
1302                         }
1303                         ret = ulist_add_merge_ptr(refs, ref->parent,
1304                                                   ref->inode_list,
1305                                                   (void **)&eie, GFP_NOFS);
1306                         if (ret < 0)
1307                                 goto out;
1308                         if (!ret && extent_item_pos) {
1309                                 /*
1310                                  * we've recorded that parent, so we must extend
1311                                  * its inode list here
1312                                  */
1313                                 BUG_ON(!eie);
1314                                 while (eie->next)
1315                                         eie = eie->next;
1316                                 eie->next = ref->inode_list;
1317                         }
1318                         eie = NULL;
1319                 }
1320                 cond_resched();
1321         }
1322
1323 out:
1324         btrfs_free_path(path);
1325
1326         prelim_release(&preftrees.direct);
1327         prelim_release(&preftrees.indirect);
1328         prelim_release(&preftrees.indirect_missing_keys);
1329
1330         if (ret < 0)
1331                 free_inode_elem_list(eie);
1332         return ret;
1333 }
1334
1335 static void free_leaf_list(struct ulist *blocks)
1336 {
1337         struct ulist_node *node = NULL;
1338         struct extent_inode_elem *eie;
1339         struct ulist_iterator uiter;
1340
1341         ULIST_ITER_INIT(&uiter);
1342         while ((node = ulist_next(blocks, &uiter))) {
1343                 if (!node->aux)
1344                         continue;
1345                 eie = unode_aux_to_inode_list(node);
1346                 free_inode_elem_list(eie);
1347                 node->aux = 0;
1348         }
1349
1350         ulist_free(blocks);
1351 }
1352
1353 /*
1354  * Finds all leafs with a reference to the specified combination of bytenr and
1355  * offset. key_list_head will point to a list of corresponding keys (caller must
1356  * free each list element). The leafs will be stored in the leafs ulist, which
1357  * must be freed with ulist_free.
1358  *
1359  * returns 0 on success, <0 on error
1360  */
1361 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1362                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1363                                 u64 time_seq, struct ulist **leafs,
1364                                 const u64 *extent_item_pos, bool ignore_offset)
1365 {
1366         int ret;
1367
1368         *leafs = ulist_alloc(GFP_NOFS);
1369         if (!*leafs)
1370                 return -ENOMEM;
1371
1372         ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1373                                 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1374         if (ret < 0 && ret != -ENOENT) {
1375                 free_leaf_list(*leafs);
1376                 return ret;
1377         }
1378
1379         return 0;
1380 }
1381
1382 /*
1383  * walk all backrefs for a given extent to find all roots that reference this
1384  * extent. Walking a backref means finding all extents that reference this
1385  * extent and in turn walk the backrefs of those, too. Naturally this is a
1386  * recursive process, but here it is implemented in an iterative fashion: We
1387  * find all referencing extents for the extent in question and put them on a
1388  * list. In turn, we find all referencing extents for those, further appending
1389  * to the list. The way we iterate the list allows adding more elements after
1390  * the current while iterating. The process stops when we reach the end of the
1391  * list. Found roots are added to the roots list.
1392  *
1393  * returns 0 on success, < 0 on error.
1394  */
1395 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1396                                      struct btrfs_fs_info *fs_info, u64 bytenr,
1397                                      u64 time_seq, struct ulist **roots,
1398                                      bool ignore_offset)
1399 {
1400         struct ulist *tmp;
1401         struct ulist_node *node = NULL;
1402         struct ulist_iterator uiter;
1403         int ret;
1404
1405         tmp = ulist_alloc(GFP_NOFS);
1406         if (!tmp)
1407                 return -ENOMEM;
1408         *roots = ulist_alloc(GFP_NOFS);
1409         if (!*roots) {
1410                 ulist_free(tmp);
1411                 return -ENOMEM;
1412         }
1413
1414         ULIST_ITER_INIT(&uiter);
1415         while (1) {
1416                 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1417                                         tmp, *roots, NULL, NULL, ignore_offset);
1418                 if (ret < 0 && ret != -ENOENT) {
1419                         ulist_free(tmp);
1420                         ulist_free(*roots);
1421                         return ret;
1422                 }
1423                 node = ulist_next(tmp, &uiter);
1424                 if (!node)
1425                         break;
1426                 bytenr = node->val;
1427                 cond_resched();
1428         }
1429
1430         ulist_free(tmp);
1431         return 0;
1432 }
1433
1434 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1435                          struct btrfs_fs_info *fs_info, u64 bytenr,
1436                          u64 time_seq, struct ulist **roots,
1437                          bool ignore_offset)
1438 {
1439         int ret;
1440
1441         if (!trans)
1442                 down_read(&fs_info->commit_root_sem);
1443         ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1444                                         time_seq, roots, ignore_offset);
1445         if (!trans)
1446                 up_read(&fs_info->commit_root_sem);
1447         return ret;
1448 }
1449
1450 /**
1451  * btrfs_check_shared - tell us whether an extent is shared
1452  *
1453  * btrfs_check_shared uses the backref walking code but will short
1454  * circuit as soon as it finds a root or inode that doesn't match the
1455  * one passed in. This provides a significant performance benefit for
1456  * callers (such as fiemap) which want to know whether the extent is
1457  * shared but do not need a ref count.
1458  *
1459  * This attempts to allocate a transaction in order to account for
1460  * delayed refs, but continues on even when the alloc fails.
1461  *
1462  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1463  */
1464 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1465 {
1466         struct btrfs_fs_info *fs_info = root->fs_info;
1467         struct btrfs_trans_handle *trans;
1468         struct ulist *tmp = NULL;
1469         struct ulist *roots = NULL;
1470         struct ulist_iterator uiter;
1471         struct ulist_node *node;
1472         struct seq_list elem = SEQ_LIST_INIT(elem);
1473         int ret = 0;
1474         struct share_check shared = {
1475                 .root_objectid = root->objectid,
1476                 .inum = inum,
1477                 .share_count = 0,
1478         };
1479
1480         tmp = ulist_alloc(GFP_NOFS);
1481         roots = ulist_alloc(GFP_NOFS);
1482         if (!tmp || !roots) {
1483                 ulist_free(tmp);
1484                 ulist_free(roots);
1485                 return -ENOMEM;
1486         }
1487
1488         trans = btrfs_join_transaction(root);
1489         if (IS_ERR(trans)) {
1490                 trans = NULL;
1491                 down_read(&fs_info->commit_root_sem);
1492         } else {
1493                 btrfs_get_tree_mod_seq(fs_info, &elem);
1494         }
1495
1496         ULIST_ITER_INIT(&uiter);
1497         while (1) {
1498                 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1499                                         roots, NULL, &shared, false);
1500                 if (ret == BACKREF_FOUND_SHARED) {
1501                         /* this is the only condition under which we return 1 */
1502                         ret = 1;
1503                         break;
1504                 }
1505                 if (ret < 0 && ret != -ENOENT)
1506                         break;
1507                 ret = 0;
1508                 node = ulist_next(tmp, &uiter);
1509                 if (!node)
1510                         break;
1511                 bytenr = node->val;
1512                 cond_resched();
1513         }
1514
1515         if (trans) {
1516                 btrfs_put_tree_mod_seq(fs_info, &elem);
1517                 btrfs_end_transaction(trans);
1518         } else {
1519                 up_read(&fs_info->commit_root_sem);
1520         }
1521         ulist_free(tmp);
1522         ulist_free(roots);
1523         return ret;
1524 }
1525
1526 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1527                           u64 start_off, struct btrfs_path *path,
1528                           struct btrfs_inode_extref **ret_extref,
1529                           u64 *found_off)
1530 {
1531         int ret, slot;
1532         struct btrfs_key key;
1533         struct btrfs_key found_key;
1534         struct btrfs_inode_extref *extref;
1535         const struct extent_buffer *leaf;
1536         unsigned long ptr;
1537
1538         key.objectid = inode_objectid;
1539         key.type = BTRFS_INODE_EXTREF_KEY;
1540         key.offset = start_off;
1541
1542         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1543         if (ret < 0)
1544                 return ret;
1545
1546         while (1) {
1547                 leaf = path->nodes[0];
1548                 slot = path->slots[0];
1549                 if (slot >= btrfs_header_nritems(leaf)) {
1550                         /*
1551                          * If the item at offset is not found,
1552                          * btrfs_search_slot will point us to the slot
1553                          * where it should be inserted. In our case
1554                          * that will be the slot directly before the
1555                          * next INODE_REF_KEY_V2 item. In the case
1556                          * that we're pointing to the last slot in a
1557                          * leaf, we must move one leaf over.
1558                          */
1559                         ret = btrfs_next_leaf(root, path);
1560                         if (ret) {
1561                                 if (ret >= 1)
1562                                         ret = -ENOENT;
1563                                 break;
1564                         }
1565                         continue;
1566                 }
1567
1568                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1569
1570                 /*
1571                  * Check that we're still looking at an extended ref key for
1572                  * this particular objectid. If we have different
1573                  * objectid or type then there are no more to be found
1574                  * in the tree and we can exit.
1575                  */
1576                 ret = -ENOENT;
1577                 if (found_key.objectid != inode_objectid)
1578                         break;
1579                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1580                         break;
1581
1582                 ret = 0;
1583                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1584                 extref = (struct btrfs_inode_extref *)ptr;
1585                 *ret_extref = extref;
1586                 if (found_off)
1587                         *found_off = found_key.offset;
1588                 break;
1589         }
1590
1591         return ret;
1592 }
1593
1594 /*
1595  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1596  * Elements of the path are separated by '/' and the path is guaranteed to be
1597  * 0-terminated. the path is only given within the current file system.
1598  * Therefore, it never starts with a '/'. the caller is responsible to provide
1599  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1600  * the start point of the resulting string is returned. this pointer is within
1601  * dest, normally.
1602  * in case the path buffer would overflow, the pointer is decremented further
1603  * as if output was written to the buffer, though no more output is actually
1604  * generated. that way, the caller can determine how much space would be
1605  * required for the path to fit into the buffer. in that case, the returned
1606  * value will be smaller than dest. callers must check this!
1607  */
1608 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1609                         u32 name_len, unsigned long name_off,
1610                         struct extent_buffer *eb_in, u64 parent,
1611                         char *dest, u32 size)
1612 {
1613         int slot;
1614         u64 next_inum;
1615         int ret;
1616         s64 bytes_left = ((s64)size) - 1;
1617         struct extent_buffer *eb = eb_in;
1618         struct btrfs_key found_key;
1619         int leave_spinning = path->leave_spinning;
1620         struct btrfs_inode_ref *iref;
1621
1622         if (bytes_left >= 0)
1623                 dest[bytes_left] = '\0';
1624
1625         path->leave_spinning = 1;
1626         while (1) {
1627                 bytes_left -= name_len;
1628                 if (bytes_left >= 0)
1629                         read_extent_buffer(eb, dest + bytes_left,
1630                                            name_off, name_len);
1631                 if (eb != eb_in) {
1632                         if (!path->skip_locking)
1633                                 btrfs_tree_read_unlock_blocking(eb);
1634                         free_extent_buffer(eb);
1635                 }
1636                 ret = btrfs_find_item(fs_root, path, parent, 0,
1637                                 BTRFS_INODE_REF_KEY, &found_key);
1638                 if (ret > 0)
1639                         ret = -ENOENT;
1640                 if (ret)
1641                         break;
1642
1643                 next_inum = found_key.offset;
1644
1645                 /* regular exit ahead */
1646                 if (parent == next_inum)
1647                         break;
1648
1649                 slot = path->slots[0];
1650                 eb = path->nodes[0];
1651                 /* make sure we can use eb after releasing the path */
1652                 if (eb != eb_in) {
1653                         if (!path->skip_locking)
1654                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1655                         path->nodes[0] = NULL;
1656                         path->locks[0] = 0;
1657                 }
1658                 btrfs_release_path(path);
1659                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1660
1661                 name_len = btrfs_inode_ref_name_len(eb, iref);
1662                 name_off = (unsigned long)(iref + 1);
1663
1664                 parent = next_inum;
1665                 --bytes_left;
1666                 if (bytes_left >= 0)
1667                         dest[bytes_left] = '/';
1668         }
1669
1670         btrfs_release_path(path);
1671         path->leave_spinning = leave_spinning;
1672
1673         if (ret)
1674                 return ERR_PTR(ret);
1675
1676         return dest + bytes_left;
1677 }
1678
1679 /*
1680  * this makes the path point to (logical EXTENT_ITEM *)
1681  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1682  * tree blocks and <0 on error.
1683  */
1684 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1685                         struct btrfs_path *path, struct btrfs_key *found_key,
1686                         u64 *flags_ret)
1687 {
1688         int ret;
1689         u64 flags;
1690         u64 size = 0;
1691         u32 item_size;
1692         const struct extent_buffer *eb;
1693         struct btrfs_extent_item *ei;
1694         struct btrfs_key key;
1695
1696         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1697                 key.type = BTRFS_METADATA_ITEM_KEY;
1698         else
1699                 key.type = BTRFS_EXTENT_ITEM_KEY;
1700         key.objectid = logical;
1701         key.offset = (u64)-1;
1702
1703         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1704         if (ret < 0)
1705                 return ret;
1706
1707         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1708         if (ret) {
1709                 if (ret > 0)
1710                         ret = -ENOENT;
1711                 return ret;
1712         }
1713         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1714         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1715                 size = fs_info->nodesize;
1716         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1717                 size = found_key->offset;
1718
1719         if (found_key->objectid > logical ||
1720             found_key->objectid + size <= logical) {
1721                 btrfs_debug(fs_info,
1722                         "logical %llu is not within any extent", logical);
1723                 return -ENOENT;
1724         }
1725
1726         eb = path->nodes[0];
1727         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1728         BUG_ON(item_size < sizeof(*ei));
1729
1730         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1731         flags = btrfs_extent_flags(eb, ei);
1732
1733         btrfs_debug(fs_info,
1734                 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1735                  logical, logical - found_key->objectid, found_key->objectid,
1736                  found_key->offset, flags, item_size);
1737
1738         WARN_ON(!flags_ret);
1739         if (flags_ret) {
1740                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1741                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1742                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1743                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1744                 else
1745                         BUG_ON(1);
1746                 return 0;
1747         }
1748
1749         return -EIO;
1750 }
1751
1752 /*
1753  * helper function to iterate extent inline refs. ptr must point to a 0 value
1754  * for the first call and may be modified. it is used to track state.
1755  * if more refs exist, 0 is returned and the next call to
1756  * get_extent_inline_ref must pass the modified ptr parameter to get the
1757  * next ref. after the last ref was processed, 1 is returned.
1758  * returns <0 on error
1759  */
1760 static int get_extent_inline_ref(unsigned long *ptr,
1761                                  const struct extent_buffer *eb,
1762                                  const struct btrfs_key *key,
1763                                  const struct btrfs_extent_item *ei,
1764                                  u32 item_size,
1765                                  struct btrfs_extent_inline_ref **out_eiref,
1766                                  int *out_type)
1767 {
1768         unsigned long end;
1769         u64 flags;
1770         struct btrfs_tree_block_info *info;
1771
1772         if (!*ptr) {
1773                 /* first call */
1774                 flags = btrfs_extent_flags(eb, ei);
1775                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1776                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1777                                 /* a skinny metadata extent */
1778                                 *out_eiref =
1779                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1780                         } else {
1781                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1782                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1783                                 *out_eiref =
1784                                    (struct btrfs_extent_inline_ref *)(info + 1);
1785                         }
1786                 } else {
1787                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1788                 }
1789                 *ptr = (unsigned long)*out_eiref;
1790                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1791                         return -ENOENT;
1792         }
1793
1794         end = (unsigned long)ei + item_size;
1795         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1796         *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1797                                                      BTRFS_REF_TYPE_ANY);
1798         if (*out_type == BTRFS_REF_TYPE_INVALID)
1799                 return -EINVAL;
1800
1801         *ptr += btrfs_extent_inline_ref_size(*out_type);
1802         WARN_ON(*ptr > end);
1803         if (*ptr == end)
1804                 return 1; /* last */
1805
1806         return 0;
1807 }
1808
1809 /*
1810  * reads the tree block backref for an extent. tree level and root are returned
1811  * through out_level and out_root. ptr must point to a 0 value for the first
1812  * call and may be modified (see get_extent_inline_ref comment).
1813  * returns 0 if data was provided, 1 if there was no more data to provide or
1814  * <0 on error.
1815  */
1816 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1817                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1818                             u32 item_size, u64 *out_root, u8 *out_level)
1819 {
1820         int ret;
1821         int type;
1822         struct btrfs_extent_inline_ref *eiref;
1823
1824         if (*ptr == (unsigned long)-1)
1825                 return 1;
1826
1827         while (1) {
1828                 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1829                                               &eiref, &type);
1830                 if (ret < 0)
1831                         return ret;
1832
1833                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1834                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1835                         break;
1836
1837                 if (ret == 1)
1838                         return 1;
1839         }
1840
1841         /* we can treat both ref types equally here */
1842         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1843
1844         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1845                 struct btrfs_tree_block_info *info;
1846
1847                 info = (struct btrfs_tree_block_info *)(ei + 1);
1848                 *out_level = btrfs_tree_block_level(eb, info);
1849         } else {
1850                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1851                 *out_level = (u8)key->offset;
1852         }
1853
1854         if (ret == 1)
1855                 *ptr = (unsigned long)-1;
1856
1857         return 0;
1858 }
1859
1860 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1861                              struct extent_inode_elem *inode_list,
1862                              u64 root, u64 extent_item_objectid,
1863                              iterate_extent_inodes_t *iterate, void *ctx)
1864 {
1865         struct extent_inode_elem *eie;
1866         int ret = 0;
1867
1868         for (eie = inode_list; eie; eie = eie->next) {
1869                 btrfs_debug(fs_info,
1870                             "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1871                             extent_item_objectid, eie->inum,
1872                             eie->offset, root);
1873                 ret = iterate(eie->inum, eie->offset, root, ctx);
1874                 if (ret) {
1875                         btrfs_debug(fs_info,
1876                                     "stopping iteration for %llu due to ret=%d",
1877                                     extent_item_objectid, ret);
1878                         break;
1879                 }
1880         }
1881
1882         return ret;
1883 }
1884
1885 /*
1886  * calls iterate() for every inode that references the extent identified by
1887  * the given parameters.
1888  * when the iterator function returns a non-zero value, iteration stops.
1889  */
1890 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1891                                 u64 extent_item_objectid, u64 extent_item_pos,
1892                                 int search_commit_root,
1893                                 iterate_extent_inodes_t *iterate, void *ctx,
1894                                 bool ignore_offset)
1895 {
1896         int ret;
1897         struct btrfs_trans_handle *trans = NULL;
1898         struct ulist *refs = NULL;
1899         struct ulist *roots = NULL;
1900         struct ulist_node *ref_node = NULL;
1901         struct ulist_node *root_node = NULL;
1902         struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1903         struct ulist_iterator ref_uiter;
1904         struct ulist_iterator root_uiter;
1905
1906         btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1907                         extent_item_objectid);
1908
1909         if (!search_commit_root) {
1910                 trans = btrfs_join_transaction(fs_info->extent_root);
1911                 if (IS_ERR(trans))
1912                         return PTR_ERR(trans);
1913                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1914         } else {
1915                 down_read(&fs_info->commit_root_sem);
1916         }
1917
1918         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1919                                    tree_mod_seq_elem.seq, &refs,
1920                                    &extent_item_pos, ignore_offset);
1921         if (ret)
1922                 goto out;
1923
1924         ULIST_ITER_INIT(&ref_uiter);
1925         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1926                 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1927                                                 tree_mod_seq_elem.seq, &roots,
1928                                                 ignore_offset);
1929                 if (ret)
1930                         break;
1931                 ULIST_ITER_INIT(&root_uiter);
1932                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1933                         btrfs_debug(fs_info,
1934                                     "root %llu references leaf %llu, data list %#llx",
1935                                     root_node->val, ref_node->val,
1936                                     ref_node->aux);
1937                         ret = iterate_leaf_refs(fs_info,
1938                                                 (struct extent_inode_elem *)
1939                                                 (uintptr_t)ref_node->aux,
1940                                                 root_node->val,
1941                                                 extent_item_objectid,
1942                                                 iterate, ctx);
1943                 }
1944                 ulist_free(roots);
1945         }
1946
1947         free_leaf_list(refs);
1948 out:
1949         if (!search_commit_root) {
1950                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1951                 btrfs_end_transaction(trans);
1952         } else {
1953                 up_read(&fs_info->commit_root_sem);
1954         }
1955
1956         return ret;
1957 }
1958
1959 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1960                                 struct btrfs_path *path,
1961                                 iterate_extent_inodes_t *iterate, void *ctx,
1962                                 bool ignore_offset)
1963 {
1964         int ret;
1965         u64 extent_item_pos;
1966         u64 flags = 0;
1967         struct btrfs_key found_key;
1968         int search_commit_root = path->search_commit_root;
1969
1970         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1971         btrfs_release_path(path);
1972         if (ret < 0)
1973                 return ret;
1974         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1975                 return -EINVAL;
1976
1977         extent_item_pos = logical - found_key.objectid;
1978         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1979                                         extent_item_pos, search_commit_root,
1980                                         iterate, ctx, ignore_offset);
1981
1982         return ret;
1983 }
1984
1985 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1986                               struct extent_buffer *eb, void *ctx);
1987
1988 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1989                               struct btrfs_path *path,
1990                               iterate_irefs_t *iterate, void *ctx)
1991 {
1992         int ret = 0;
1993         int slot;
1994         u32 cur;
1995         u32 len;
1996         u32 name_len;
1997         u64 parent = 0;
1998         int found = 0;
1999         struct extent_buffer *eb;
2000         struct btrfs_item *item;
2001         struct btrfs_inode_ref *iref;
2002         struct btrfs_key found_key;
2003
2004         while (!ret) {
2005                 ret = btrfs_find_item(fs_root, path, inum,
2006                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2007                                 &found_key);
2008
2009                 if (ret < 0)
2010                         break;
2011                 if (ret) {
2012                         ret = found ? 0 : -ENOENT;
2013                         break;
2014                 }
2015                 ++found;
2016
2017                 parent = found_key.offset;
2018                 slot = path->slots[0];
2019                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2020                 if (!eb) {
2021                         ret = -ENOMEM;
2022                         break;
2023                 }
2024                 extent_buffer_get(eb);
2025                 btrfs_tree_read_lock(eb);
2026                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2027                 btrfs_release_path(path);
2028
2029                 item = btrfs_item_nr(slot);
2030                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2031
2032                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2033                         name_len = btrfs_inode_ref_name_len(eb, iref);
2034                         /* path must be released before calling iterate()! */
2035                         btrfs_debug(fs_root->fs_info,
2036                                 "following ref at offset %u for inode %llu in tree %llu",
2037                                 cur, found_key.objectid, fs_root->objectid);
2038                         ret = iterate(parent, name_len,
2039                                       (unsigned long)(iref + 1), eb, ctx);
2040                         if (ret)
2041                                 break;
2042                         len = sizeof(*iref) + name_len;
2043                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
2044                 }
2045                 btrfs_tree_read_unlock_blocking(eb);
2046                 free_extent_buffer(eb);
2047         }
2048
2049         btrfs_release_path(path);
2050
2051         return ret;
2052 }
2053
2054 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2055                                  struct btrfs_path *path,
2056                                  iterate_irefs_t *iterate, void *ctx)
2057 {
2058         int ret;
2059         int slot;
2060         u64 offset = 0;
2061         u64 parent;
2062         int found = 0;
2063         struct extent_buffer *eb;
2064         struct btrfs_inode_extref *extref;
2065         u32 item_size;
2066         u32 cur_offset;
2067         unsigned long ptr;
2068
2069         while (1) {
2070                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2071                                             &offset);
2072                 if (ret < 0)
2073                         break;
2074                 if (ret) {
2075                         ret = found ? 0 : -ENOENT;
2076                         break;
2077                 }
2078                 ++found;
2079
2080                 slot = path->slots[0];
2081                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2082                 if (!eb) {
2083                         ret = -ENOMEM;
2084                         break;
2085                 }
2086                 extent_buffer_get(eb);
2087
2088                 btrfs_tree_read_lock(eb);
2089                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2090                 btrfs_release_path(path);
2091
2092                 item_size = btrfs_item_size_nr(eb, slot);
2093                 ptr = btrfs_item_ptr_offset(eb, slot);
2094                 cur_offset = 0;
2095
2096                 while (cur_offset < item_size) {
2097                         u32 name_len;
2098
2099                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2100                         parent = btrfs_inode_extref_parent(eb, extref);
2101                         name_len = btrfs_inode_extref_name_len(eb, extref);
2102                         ret = iterate(parent, name_len,
2103                                       (unsigned long)&extref->name, eb, ctx);
2104                         if (ret)
2105                                 break;
2106
2107                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
2108                         cur_offset += sizeof(*extref);
2109                 }
2110                 btrfs_tree_read_unlock_blocking(eb);
2111                 free_extent_buffer(eb);
2112
2113                 offset++;
2114         }
2115
2116         btrfs_release_path(path);
2117
2118         return ret;
2119 }
2120
2121 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2122                          struct btrfs_path *path, iterate_irefs_t *iterate,
2123                          void *ctx)
2124 {
2125         int ret;
2126         int found_refs = 0;
2127
2128         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2129         if (!ret)
2130                 ++found_refs;
2131         else if (ret != -ENOENT)
2132                 return ret;
2133
2134         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2135         if (ret == -ENOENT && found_refs)
2136                 return 0;
2137
2138         return ret;
2139 }
2140
2141 /*
2142  * returns 0 if the path could be dumped (probably truncated)
2143  * returns <0 in case of an error
2144  */
2145 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2146                          struct extent_buffer *eb, void *ctx)
2147 {
2148         struct inode_fs_paths *ipath = ctx;
2149         char *fspath;
2150         char *fspath_min;
2151         int i = ipath->fspath->elem_cnt;
2152         const int s_ptr = sizeof(char *);
2153         u32 bytes_left;
2154
2155         bytes_left = ipath->fspath->bytes_left > s_ptr ?
2156                                         ipath->fspath->bytes_left - s_ptr : 0;
2157
2158         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2159         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2160                                    name_off, eb, inum, fspath_min, bytes_left);
2161         if (IS_ERR(fspath))
2162                 return PTR_ERR(fspath);
2163
2164         if (fspath > fspath_min) {
2165                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2166                 ++ipath->fspath->elem_cnt;
2167                 ipath->fspath->bytes_left = fspath - fspath_min;
2168         } else {
2169                 ++ipath->fspath->elem_missed;
2170                 ipath->fspath->bytes_missing += fspath_min - fspath;
2171                 ipath->fspath->bytes_left = 0;
2172         }
2173
2174         return 0;
2175 }
2176
2177 /*
2178  * this dumps all file system paths to the inode into the ipath struct, provided
2179  * is has been created large enough. each path is zero-terminated and accessed
2180  * from ipath->fspath->val[i].
2181  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2182  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2183  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2184  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2185  * have been needed to return all paths.
2186  */
2187 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2188 {
2189         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2190                              inode_to_path, ipath);
2191 }
2192
2193 struct btrfs_data_container *init_data_container(u32 total_bytes)
2194 {
2195         struct btrfs_data_container *data;
2196         size_t alloc_bytes;
2197
2198         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2199         data = kvmalloc(alloc_bytes, GFP_KERNEL);
2200         if (!data)
2201                 return ERR_PTR(-ENOMEM);
2202
2203         if (total_bytes >= sizeof(*data)) {
2204                 data->bytes_left = total_bytes - sizeof(*data);
2205                 data->bytes_missing = 0;
2206         } else {
2207                 data->bytes_missing = sizeof(*data) - total_bytes;
2208                 data->bytes_left = 0;
2209         }
2210
2211         data->elem_cnt = 0;
2212         data->elem_missed = 0;
2213
2214         return data;
2215 }
2216
2217 /*
2218  * allocates space to return multiple file system paths for an inode.
2219  * total_bytes to allocate are passed, note that space usable for actual path
2220  * information will be total_bytes - sizeof(struct inode_fs_paths).
2221  * the returned pointer must be freed with free_ipath() in the end.
2222  */
2223 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2224                                         struct btrfs_path *path)
2225 {
2226         struct inode_fs_paths *ifp;
2227         struct btrfs_data_container *fspath;
2228
2229         fspath = init_data_container(total_bytes);
2230         if (IS_ERR(fspath))
2231                 return (void *)fspath;
2232
2233         ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2234         if (!ifp) {
2235                 kvfree(fspath);
2236                 return ERR_PTR(-ENOMEM);
2237         }
2238
2239         ifp->btrfs_path = path;
2240         ifp->fspath = fspath;
2241         ifp->fs_root = fs_root;
2242
2243         return ifp;
2244 }
2245
2246 void free_ipath(struct inode_fs_paths *ipath)
2247 {
2248         if (!ipath)
2249                 return;
2250         kvfree(ipath->fspath);
2251         kfree(ipath);
2252 }