Merge tag 'iommu-fixes-v4.20-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72
73         do {
74                 result = readl(ptr);
75                 if (result == ~(u32)0)          /* card removed */
76                         return -ENODEV;
77                 result &= mask;
78                 if (result == done)
79                         return 0;
80                 udelay(1);
81                 usec--;
82         } while (usec > 0);
83         return -ETIMEDOUT;
84 }
85
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91         u32 halted;
92         u32 cmd;
93         u32 mask;
94
95         mask = ~(XHCI_IRQS);
96         halted = readl(&xhci->op_regs->status) & STS_HALT;
97         if (!halted)
98                 mask &= ~CMD_RUN;
99
100         cmd = readl(&xhci->op_regs->command);
101         cmd &= mask;
102         writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115         int ret;
116         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117         xhci_quiesce(xhci);
118
119         ret = xhci_handshake(&xhci->op_regs->status,
120                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121         if (ret) {
122                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123                 return ret;
124         }
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170         u32 command;
171         u32 state;
172         int ret, i;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command,
202                         CMD_RESET, 0, 10 * 1000 * 1000);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status,
216                         STS_CNR, 0, 10 * 1000 * 1000);
217
218         for (i = 0; i < 2; i++) {
219                 xhci->bus_state[i].port_c_suspend = 0;
220                 xhci->bus_state[i].suspended_ports = 0;
221                 xhci->bus_state[i].resuming_ports = 0;
222         }
223
224         return ret;
225 }
226
227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 {
229         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230         int err, i;
231         u64 val;
232
233         /*
234          * Some Renesas controllers get into a weird state if they are
235          * reset while programmed with 64bit addresses (they will preserve
236          * the top half of the address in internal, non visible
237          * registers). You end up with half the address coming from the
238          * kernel, and the other half coming from the firmware. Also,
239          * changing the programming leads to extra accesses even if the
240          * controller is supposed to be halted. The controller ends up with
241          * a fatal fault, and is then ripe for being properly reset.
242          *
243          * Special care is taken to only apply this if the device is behind
244          * an iommu. Doing anything when there is no iommu is definitely
245          * unsafe...
246          */
247         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
248                 return;
249
250         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252         /* Clear HSEIE so that faults do not get signaled */
253         val = readl(&xhci->op_regs->command);
254         val &= ~CMD_HSEIE;
255         writel(val, &xhci->op_regs->command);
256
257         /* Clear HSE (aka FATAL) */
258         val = readl(&xhci->op_regs->status);
259         val |= STS_FATAL;
260         writel(val, &xhci->op_regs->status);
261
262         /* Now zero the registers, and brace for impact */
263         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267         if (upper_32_bits(val))
268                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
271                 struct xhci_intr_reg __iomem *ir;
272
273                 ir = &xhci->run_regs->ir_set[i];
274                 val = xhci_read_64(xhci, &ir->erst_base);
275                 if (upper_32_bits(val))
276                         xhci_write_64(xhci, 0, &ir->erst_base);
277                 val= xhci_read_64(xhci, &ir->erst_dequeue);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
280         }
281
282         /* Wait for the fault to appear. It will be cleared on reset */
283         err = xhci_handshake(&xhci->op_regs->status,
284                              STS_FATAL, STS_FATAL,
285                              XHCI_MAX_HALT_USEC);
286         if (!err)
287                 xhci_info(xhci, "Fault detected\n");
288 }
289
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296         int ret;
297         /*
298          * TODO:Check with MSI Soc for sysdev
299          */
300         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301
302         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303         if (ret < 0) {
304                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305                                 "failed to allocate MSI entry");
306                 return ret;
307         }
308
309         ret = request_irq(pdev->irq, xhci_msi_irq,
310                                 0, "xhci_hcd", xhci_to_hcd(xhci));
311         if (ret) {
312                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313                                 "disable MSI interrupt");
314                 pci_free_irq_vectors(pdev);
315         }
316
317         return ret;
318 }
319
320 /*
321  * Set up MSI-X
322  */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325         int i, ret = 0;
326         struct usb_hcd *hcd = xhci_to_hcd(xhci);
327         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329         /*
330          * calculate number of msi-x vectors supported.
331          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332          *   with max number of interrupters based on the xhci HCSPARAMS1.
333          * - num_online_cpus: maximum msi-x vectors per CPUs core.
334          *   Add additional 1 vector to ensure always available interrupt.
335          */
336         xhci->msix_count = min(num_online_cpus() + 1,
337                                 HCS_MAX_INTRS(xhci->hcs_params1));
338
339         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340                         PCI_IRQ_MSIX);
341         if (ret < 0) {
342                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343                                 "Failed to enable MSI-X");
344                 return ret;
345         }
346
347         for (i = 0; i < xhci->msix_count; i++) {
348                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349                                 "xhci_hcd", xhci_to_hcd(xhci));
350                 if (ret)
351                         goto disable_msix;
352         }
353
354         hcd->msix_enabled = 1;
355         return ret;
356
357 disable_msix:
358         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359         while (--i >= 0)
360                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361         pci_free_irq_vectors(pdev);
362         return ret;
363 }
364
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368         struct usb_hcd *hcd = xhci_to_hcd(xhci);
369         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370
371         if (xhci->quirks & XHCI_PLAT)
372                 return;
373
374         /* return if using legacy interrupt */
375         if (hcd->irq > 0)
376                 return;
377
378         if (hcd->msix_enabled) {
379                 int i;
380
381                 for (i = 0; i < xhci->msix_count; i++)
382                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383         } else {
384                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385         }
386
387         pci_free_irq_vectors(pdev);
388         hcd->msix_enabled = 0;
389 }
390
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393         struct usb_hcd *hcd = xhci_to_hcd(xhci);
394
395         if (hcd->msix_enabled) {
396                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397                 int i;
398
399                 for (i = 0; i < xhci->msix_count; i++)
400                         synchronize_irq(pci_irq_vector(pdev, i));
401         }
402 }
403
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407         struct pci_dev  *pdev;
408         int ret;
409
410         /* The xhci platform device has set up IRQs through usb_add_hcd. */
411         if (xhci->quirks & XHCI_PLAT)
412                 return 0;
413
414         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415         /*
416          * Some Fresco Logic host controllers advertise MSI, but fail to
417          * generate interrupts.  Don't even try to enable MSI.
418          */
419         if (xhci->quirks & XHCI_BROKEN_MSI)
420                 goto legacy_irq;
421
422         /* unregister the legacy interrupt */
423         if (hcd->irq)
424                 free_irq(hcd->irq, hcd);
425         hcd->irq = 0;
426
427         ret = xhci_setup_msix(xhci);
428         if (ret)
429                 /* fall back to msi*/
430                 ret = xhci_setup_msi(xhci);
431
432         if (!ret) {
433                 hcd->msi_enabled = 1;
434                 return 0;
435         }
436
437         if (!pdev->irq) {
438                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439                 return -EINVAL;
440         }
441
442  legacy_irq:
443         if (!strlen(hcd->irq_descr))
444                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445                          hcd->driver->description, hcd->self.busnum);
446
447         /* fall back to legacy interrupt*/
448         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                         hcd->irq_descr, hcd);
450         if (ret) {
451                 xhci_err(xhci, "request interrupt %d failed\n",
452                                 pdev->irq);
453                 return ret;
454         }
455         hcd->irq = pdev->irq;
456         return 0;
457 }
458
459 #else
460
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463         return 0;
464 }
465
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473
474 #endif
475
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478         struct xhci_hcd *xhci;
479         struct usb_hcd *hcd;
480         struct xhci_hub *rhub;
481         u32 temp;
482         int i;
483
484         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485         rhub = &xhci->usb3_rhub;
486
487         for (i = 0; i < rhub->num_ports; i++) {
488                 temp = readl(rhub->ports[i]->addr);
489                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490                         /*
491                          * Compliance Mode Detected. Letting USB Core
492                          * handle the Warm Reset
493                          */
494                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                                         "Compliance mode detected->port %d",
496                                         i + 1);
497                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498                                         "Attempting compliance mode recovery");
499                         hcd = xhci->shared_hcd;
500
501                         if (hcd->state == HC_STATE_SUSPENDED)
502                                 usb_hcd_resume_root_hub(hcd);
503
504                         usb_hcd_poll_rh_status(hcd);
505                 }
506         }
507
508         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509                 mod_timer(&xhci->comp_mode_recovery_timer,
510                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525         xhci->port_status_u0 = 0;
526         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527                     0);
528         xhci->comp_mode_recovery_timer.expires = jiffies +
529                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530
531         add_timer(&xhci->comp_mode_recovery_timer);
532         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533                         "Compliance mode recovery timer initialized");
534 }
535
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544         const char *dmi_product_name, *dmi_sys_vendor;
545
546         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548         if (!dmi_product_name || !dmi_sys_vendor)
549                 return false;
550
551         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552                 return false;
553
554         if (strstr(dmi_product_name, "Z420") ||
555                         strstr(dmi_product_name, "Z620") ||
556                         strstr(dmi_product_name, "Z820") ||
557                         strstr(dmi_product_name, "Z1 Workstation"))
558                 return true;
559
560         return false;
561 }
562
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567
568
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579         int retval = 0;
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582         spin_lock_init(&xhci->lock);
583         if (xhci->hci_version == 0x95 && link_quirk) {
584                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585                                 "QUIRK: Not clearing Link TRB chain bits.");
586                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587         } else {
588                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589                                 "xHCI doesn't need link TRB QUIRK");
590         }
591         retval = xhci_mem_init(xhci, GFP_KERNEL);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593
594         /* Initializing Compliance Mode Recovery Data If Needed */
595         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597                 compliance_mode_recovery_timer_init(xhci);
598         }
599
600         return retval;
601 }
602
603 /*-------------------------------------------------------------------------*/
604
605
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608         if (xhci_start(xhci)) {
609                 xhci_halt(xhci);
610                 return -ENODEV;
611         }
612         xhci->shared_hcd->state = HC_STATE_RUNNING;
613         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614
615         if (xhci->quirks & XHCI_NEC_HOST)
616                 xhci_ring_cmd_db(xhci);
617
618         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619                         "Finished xhci_run for USB3 roothub");
620         return 0;
621 }
622
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637         u32 temp;
638         u64 temp_64;
639         int ret;
640         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641
642         /* Start the xHCI host controller running only after the USB 2.0 roothub
643          * is setup.
644          */
645
646         hcd->uses_new_polling = 1;
647         if (!usb_hcd_is_primary_hcd(hcd))
648                 return xhci_run_finished(xhci);
649
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651
652         ret = xhci_try_enable_msi(hcd);
653         if (ret)
654                 return ret;
655
656         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657         temp_64 &= ~ERST_PTR_MASK;
658         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "// Set the interrupt modulation register");
663         temp = readl(&xhci->ir_set->irq_control);
664         temp &= ~ER_IRQ_INTERVAL_MASK;
665         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666         writel(temp, &xhci->ir_set->irq_control);
667
668         /* Set the HCD state before we enable the irqs */
669         temp = readl(&xhci->op_regs->command);
670         temp |= (CMD_EIE);
671         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672                         "// Enable interrupts, cmd = 0x%x.", temp);
673         writel(temp, &xhci->op_regs->command);
674
675         temp = readl(&xhci->ir_set->irq_pending);
676         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680
681         if (xhci->quirks & XHCI_NEC_HOST) {
682                 struct xhci_command *command;
683
684                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685                 if (!command)
686                         return -ENOMEM;
687
688                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689                                 TRB_TYPE(TRB_NEC_GET_FW));
690                 if (ret)
691                         xhci_free_command(xhci, command);
692         }
693         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694                         "Finished xhci_run for USB2 roothub");
695
696         xhci_dbc_init(xhci);
697
698         xhci_debugfs_init(xhci);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715         u32 temp;
716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718         mutex_lock(&xhci->mutex);
719
720         /* Only halt host and free memory after both hcds are removed */
721         if (!usb_hcd_is_primary_hcd(hcd)) {
722                 mutex_unlock(&xhci->mutex);
723                 return;
724         }
725
726         xhci_dbc_exit(xhci);
727
728         spin_lock_irq(&xhci->lock);
729         xhci->xhc_state |= XHCI_STATE_HALTED;
730         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731         xhci_halt(xhci);
732         xhci_reset(xhci);
733         spin_unlock_irq(&xhci->lock);
734
735         xhci_cleanup_msix(xhci);
736
737         /* Deleting Compliance Mode Recovery Timer */
738         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739                         (!(xhci_all_ports_seen_u0(xhci)))) {
740                 del_timer_sync(&xhci->comp_mode_recovery_timer);
741                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742                                 "%s: compliance mode recovery timer deleted",
743                                 __func__);
744         }
745
746         if (xhci->quirks & XHCI_AMD_PLL_FIX)
747                 usb_amd_dev_put();
748
749         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750                         "// Disabling event ring interrupts");
751         temp = readl(&xhci->op_regs->status);
752         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753         temp = readl(&xhci->ir_set->irq_pending);
754         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757         xhci_mem_cleanup(xhci);
758         xhci_debugfs_exit(xhci);
759         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760                         "xhci_stop completed - status = %x",
761                         readl(&xhci->op_regs->status));
762         mutex_unlock(&xhci->mutex);
763 }
764
765 /*
766  * Shutdown HC (not bus-specific)
767  *
768  * This is called when the machine is rebooting or halting.  We assume that the
769  * machine will be powered off, and the HC's internal state will be reset.
770  * Don't bother to free memory.
771  *
772  * This will only ever be called with the main usb_hcd (the USB3 roothub).
773  */
774 static void xhci_shutdown(struct usb_hcd *hcd)
775 {
776         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777
778         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
779                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
780
781         spin_lock_irq(&xhci->lock);
782         xhci_halt(xhci);
783         /* Workaround for spurious wakeups at shutdown with HSW */
784         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
785                 xhci_reset(xhci);
786         spin_unlock_irq(&xhci->lock);
787
788         xhci_cleanup_msix(xhci);
789
790         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
791                         "xhci_shutdown completed - status = %x",
792                         readl(&xhci->op_regs->status));
793
794         /* Yet another workaround for spurious wakeups at shutdown with HSW */
795         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
796                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
797 }
798
799 #ifdef CONFIG_PM
800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802         xhci->s3.command = readl(&xhci->op_regs->command);
803         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812
813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815         writel(xhci->s3.command, &xhci->op_regs->command);
816         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825
826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828         u64     val_64;
829
830         /* step 2: initialize command ring buffer */
831         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834                                       xhci->cmd_ring->dequeue) &
835                  (u64) ~CMD_RING_RSVD_BITS) |
836                 xhci->cmd_ring->cycle_state;
837         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838                         "// Setting command ring address to 0x%llx",
839                         (long unsigned long) val_64);
840         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842
843 /*
844  * The whole command ring must be cleared to zero when we suspend the host.
845  *
846  * The host doesn't save the command ring pointer in the suspend well, so we
847  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
848  * aligned, because of the reserved bits in the command ring dequeue pointer
849  * register.  Therefore, we can't just set the dequeue pointer back in the
850  * middle of the ring (TRBs are 16-byte aligned).
851  */
852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854         struct xhci_ring *ring;
855         struct xhci_segment *seg;
856
857         ring = xhci->cmd_ring;
858         seg = ring->deq_seg;
859         do {
860                 memset(seg->trbs, 0,
861                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863                         cpu_to_le32(~TRB_CYCLE);
864                 seg = seg->next;
865         } while (seg != ring->deq_seg);
866
867         /* Reset the software enqueue and dequeue pointers */
868         ring->deq_seg = ring->first_seg;
869         ring->dequeue = ring->first_seg->trbs;
870         ring->enq_seg = ring->deq_seg;
871         ring->enqueue = ring->dequeue;
872
873         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874         /*
875          * Ring is now zeroed, so the HW should look for change of ownership
876          * when the cycle bit is set to 1.
877          */
878         ring->cycle_state = 1;
879
880         /*
881          * Reset the hardware dequeue pointer.
882          * Yes, this will need to be re-written after resume, but we're paranoid
883          * and want to make sure the hardware doesn't access bogus memory
884          * because, say, the BIOS or an SMI started the host without changing
885          * the command ring pointers.
886          */
887         xhci_set_cmd_ring_deq(xhci);
888 }
889
890 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
891 {
892         struct xhci_port **ports;
893         int port_index;
894         unsigned long flags;
895         u32 t1, t2;
896
897         spin_lock_irqsave(&xhci->lock, flags);
898
899         /* disable usb3 ports Wake bits */
900         port_index = xhci->usb3_rhub.num_ports;
901         ports = xhci->usb3_rhub.ports;
902         while (port_index--) {
903                 t1 = readl(ports[port_index]->addr);
904                 t1 = xhci_port_state_to_neutral(t1);
905                 t2 = t1 & ~PORT_WAKE_BITS;
906                 if (t1 != t2)
907                         writel(t2, ports[port_index]->addr);
908         }
909
910         /* disable usb2 ports Wake bits */
911         port_index = xhci->usb2_rhub.num_ports;
912         ports = xhci->usb2_rhub.ports;
913         while (port_index--) {
914                 t1 = readl(ports[port_index]->addr);
915                 t1 = xhci_port_state_to_neutral(t1);
916                 t2 = t1 & ~PORT_WAKE_BITS;
917                 if (t1 != t2)
918                         writel(t2, ports[port_index]->addr);
919         }
920
921         spin_unlock_irqrestore(&xhci->lock, flags);
922 }
923
924 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
925 {
926         struct xhci_port        **ports;
927         int                     port_index;
928         u32                     status;
929         u32                     portsc;
930
931         status = readl(&xhci->op_regs->status);
932         if (status & STS_EINT)
933                 return true;
934         /*
935          * Checking STS_EINT is not enough as there is a lag between a change
936          * bit being set and the Port Status Change Event that it generated
937          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
938          */
939
940         port_index = xhci->usb2_rhub.num_ports;
941         ports = xhci->usb2_rhub.ports;
942         while (port_index--) {
943                 portsc = readl(ports[port_index]->addr);
944                 if (portsc & PORT_CHANGE_MASK ||
945                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
946                         return true;
947         }
948         port_index = xhci->usb3_rhub.num_ports;
949         ports = xhci->usb3_rhub.ports;
950         while (port_index--) {
951                 portsc = readl(ports[port_index]->addr);
952                 if (portsc & PORT_CHANGE_MASK ||
953                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954                         return true;
955         }
956         return false;
957 }
958
959 /*
960  * Stop HC (not bus-specific)
961  *
962  * This is called when the machine transition into S3/S4 mode.
963  *
964  */
965 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
966 {
967         int                     rc = 0;
968         unsigned int            delay = XHCI_MAX_HALT_USEC;
969         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
970         u32                     command;
971
972         if (!hcd->state)
973                 return 0;
974
975         if (hcd->state != HC_STATE_SUSPENDED ||
976                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
977                 return -EINVAL;
978
979         xhci_dbc_suspend(xhci);
980
981         /* Clear root port wake on bits if wakeup not allowed. */
982         if (!do_wakeup)
983                 xhci_disable_port_wake_on_bits(xhci);
984
985         /* Don't poll the roothubs on bus suspend. */
986         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
987         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
988         del_timer_sync(&hcd->rh_timer);
989         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
990         del_timer_sync(&xhci->shared_hcd->rh_timer);
991
992         if (xhci->quirks & XHCI_SUSPEND_DELAY)
993                 usleep_range(1000, 1500);
994
995         spin_lock_irq(&xhci->lock);
996         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
997         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
998         /* step 1: stop endpoint */
999         /* skipped assuming that port suspend has done */
1000
1001         /* step 2: clear Run/Stop bit */
1002         command = readl(&xhci->op_regs->command);
1003         command &= ~CMD_RUN;
1004         writel(command, &xhci->op_regs->command);
1005
1006         /* Some chips from Fresco Logic need an extraordinary delay */
1007         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1008
1009         if (xhci_handshake(&xhci->op_regs->status,
1010                       STS_HALT, STS_HALT, delay)) {
1011                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1012                 spin_unlock_irq(&xhci->lock);
1013                 return -ETIMEDOUT;
1014         }
1015         xhci_clear_command_ring(xhci);
1016
1017         /* step 3: save registers */
1018         xhci_save_registers(xhci);
1019
1020         /* step 4: set CSS flag */
1021         command = readl(&xhci->op_regs->command);
1022         command |= CMD_CSS;
1023         writel(command, &xhci->op_regs->command);
1024         if (xhci_handshake(&xhci->op_regs->status,
1025                                 STS_SAVE, 0, 10 * 1000)) {
1026                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1027                 spin_unlock_irq(&xhci->lock);
1028                 return -ETIMEDOUT;
1029         }
1030         spin_unlock_irq(&xhci->lock);
1031
1032         /*
1033          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1034          * is about to be suspended.
1035          */
1036         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1037                         (!(xhci_all_ports_seen_u0(xhci)))) {
1038                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1039                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1040                                 "%s: compliance mode recovery timer deleted",
1041                                 __func__);
1042         }
1043
1044         /* step 5: remove core well power */
1045         /* synchronize irq when using MSI-X */
1046         xhci_msix_sync_irqs(xhci);
1047
1048         return rc;
1049 }
1050 EXPORT_SYMBOL_GPL(xhci_suspend);
1051
1052 /*
1053  * start xHC (not bus-specific)
1054  *
1055  * This is called when the machine transition from S3/S4 mode.
1056  *
1057  */
1058 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1059 {
1060         u32                     command, temp = 0;
1061         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1062         struct usb_hcd          *secondary_hcd;
1063         int                     retval = 0;
1064         bool                    comp_timer_running = false;
1065
1066         if (!hcd->state)
1067                 return 0;
1068
1069         /* Wait a bit if either of the roothubs need to settle from the
1070          * transition into bus suspend.
1071          */
1072         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1073                         time_before(jiffies,
1074                                 xhci->bus_state[1].next_statechange))
1075                 msleep(100);
1076
1077         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1078         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1079
1080         spin_lock_irq(&xhci->lock);
1081         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1082                 hibernated = true;
1083
1084         if (!hibernated) {
1085                 /* step 1: restore register */
1086                 xhci_restore_registers(xhci);
1087                 /* step 2: initialize command ring buffer */
1088                 xhci_set_cmd_ring_deq(xhci);
1089                 /* step 3: restore state and start state*/
1090                 /* step 3: set CRS flag */
1091                 command = readl(&xhci->op_regs->command);
1092                 command |= CMD_CRS;
1093                 writel(command, &xhci->op_regs->command);
1094                 /*
1095                  * Some controllers take up to 55+ ms to complete the controller
1096                  * restore so setting the timeout to 100ms. Xhci specification
1097                  * doesn't mention any timeout value.
1098                  */
1099                 if (xhci_handshake(&xhci->op_regs->status,
1100                               STS_RESTORE, 0, 100 * 1000)) {
1101                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1102                         spin_unlock_irq(&xhci->lock);
1103                         return -ETIMEDOUT;
1104                 }
1105                 temp = readl(&xhci->op_regs->status);
1106         }
1107
1108         /* If restore operation fails, re-initialize the HC during resume */
1109         if ((temp & STS_SRE) || hibernated) {
1110
1111                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1112                                 !(xhci_all_ports_seen_u0(xhci))) {
1113                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1114                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1115                                 "Compliance Mode Recovery Timer deleted!");
1116                 }
1117
1118                 /* Let the USB core know _both_ roothubs lost power. */
1119                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1120                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1121
1122                 xhci_dbg(xhci, "Stop HCD\n");
1123                 xhci_halt(xhci);
1124                 xhci_zero_64b_regs(xhci);
1125                 xhci_reset(xhci);
1126                 spin_unlock_irq(&xhci->lock);
1127                 xhci_cleanup_msix(xhci);
1128
1129                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1130                 temp = readl(&xhci->op_regs->status);
1131                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1132                 temp = readl(&xhci->ir_set->irq_pending);
1133                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1134
1135                 xhci_dbg(xhci, "cleaning up memory\n");
1136                 xhci_mem_cleanup(xhci);
1137                 xhci_debugfs_exit(xhci);
1138                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1139                             readl(&xhci->op_regs->status));
1140
1141                 /* USB core calls the PCI reinit and start functions twice:
1142                  * first with the primary HCD, and then with the secondary HCD.
1143                  * If we don't do the same, the host will never be started.
1144                  */
1145                 if (!usb_hcd_is_primary_hcd(hcd))
1146                         secondary_hcd = hcd;
1147                 else
1148                         secondary_hcd = xhci->shared_hcd;
1149
1150                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1151                 retval = xhci_init(hcd->primary_hcd);
1152                 if (retval)
1153                         return retval;
1154                 comp_timer_running = true;
1155
1156                 xhci_dbg(xhci, "Start the primary HCD\n");
1157                 retval = xhci_run(hcd->primary_hcd);
1158                 if (!retval) {
1159                         xhci_dbg(xhci, "Start the secondary HCD\n");
1160                         retval = xhci_run(secondary_hcd);
1161                 }
1162                 hcd->state = HC_STATE_SUSPENDED;
1163                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1164                 goto done;
1165         }
1166
1167         /* step 4: set Run/Stop bit */
1168         command = readl(&xhci->op_regs->command);
1169         command |= CMD_RUN;
1170         writel(command, &xhci->op_regs->command);
1171         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1172                   0, 250 * 1000);
1173
1174         /* step 5: walk topology and initialize portsc,
1175          * portpmsc and portli
1176          */
1177         /* this is done in bus_resume */
1178
1179         /* step 6: restart each of the previously
1180          * Running endpoints by ringing their doorbells
1181          */
1182
1183         spin_unlock_irq(&xhci->lock);
1184
1185         xhci_dbc_resume(xhci);
1186
1187  done:
1188         if (retval == 0) {
1189                 /* Resume root hubs only when have pending events. */
1190                 if (xhci_pending_portevent(xhci)) {
1191                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1192                         usb_hcd_resume_root_hub(hcd);
1193                 }
1194         }
1195
1196         /*
1197          * If system is subject to the Quirk, Compliance Mode Timer needs to
1198          * be re-initialized Always after a system resume. Ports are subject
1199          * to suffer the Compliance Mode issue again. It doesn't matter if
1200          * ports have entered previously to U0 before system's suspension.
1201          */
1202         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1203                 compliance_mode_recovery_timer_init(xhci);
1204
1205         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1206                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1207
1208         /* Re-enable port polling. */
1209         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1210         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1211         usb_hcd_poll_rh_status(xhci->shared_hcd);
1212         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1213         usb_hcd_poll_rh_status(hcd);
1214
1215         return retval;
1216 }
1217 EXPORT_SYMBOL_GPL(xhci_resume);
1218 #endif  /* CONFIG_PM */
1219
1220 /*-------------------------------------------------------------------------*/
1221
1222 /**
1223  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1224  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1225  * value to right shift 1 for the bitmask.
1226  *
1227  * Index  = (epnum * 2) + direction - 1,
1228  * where direction = 0 for OUT, 1 for IN.
1229  * For control endpoints, the IN index is used (OUT index is unused), so
1230  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1231  */
1232 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1233 {
1234         unsigned int index;
1235         if (usb_endpoint_xfer_control(desc))
1236                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1237         else
1238                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1239                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1240         return index;
1241 }
1242
1243 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1244  * address from the XHCI endpoint index.
1245  */
1246 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1247 {
1248         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1249         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1250         return direction | number;
1251 }
1252
1253 /* Find the flag for this endpoint (for use in the control context).  Use the
1254  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1255  * bit 1, etc.
1256  */
1257 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1258 {
1259         return 1 << (xhci_get_endpoint_index(desc) + 1);
1260 }
1261
1262 /* Find the flag for this endpoint (for use in the control context).  Use the
1263  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1264  * bit 1, etc.
1265  */
1266 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1267 {
1268         return 1 << (ep_index + 1);
1269 }
1270
1271 /* Compute the last valid endpoint context index.  Basically, this is the
1272  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1273  * we find the most significant bit set in the added contexts flags.
1274  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1275  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1276  */
1277 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1278 {
1279         return fls(added_ctxs) - 1;
1280 }
1281
1282 /* Returns 1 if the arguments are OK;
1283  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1284  */
1285 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1286                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1287                 const char *func) {
1288         struct xhci_hcd *xhci;
1289         struct xhci_virt_device *virt_dev;
1290
1291         if (!hcd || (check_ep && !ep) || !udev) {
1292                 pr_debug("xHCI %s called with invalid args\n", func);
1293                 return -EINVAL;
1294         }
1295         if (!udev->parent) {
1296                 pr_debug("xHCI %s called for root hub\n", func);
1297                 return 0;
1298         }
1299
1300         xhci = hcd_to_xhci(hcd);
1301         if (check_virt_dev) {
1302                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1303                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1304                                         func);
1305                         return -EINVAL;
1306                 }
1307
1308                 virt_dev = xhci->devs[udev->slot_id];
1309                 if (virt_dev->udev != udev) {
1310                         xhci_dbg(xhci, "xHCI %s called with udev and "
1311                                           "virt_dev does not match\n", func);
1312                         return -EINVAL;
1313                 }
1314         }
1315
1316         if (xhci->xhc_state & XHCI_STATE_HALTED)
1317                 return -ENODEV;
1318
1319         return 1;
1320 }
1321
1322 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1323                 struct usb_device *udev, struct xhci_command *command,
1324                 bool ctx_change, bool must_succeed);
1325
1326 /*
1327  * Full speed devices may have a max packet size greater than 8 bytes, but the
1328  * USB core doesn't know that until it reads the first 8 bytes of the
1329  * descriptor.  If the usb_device's max packet size changes after that point,
1330  * we need to issue an evaluate context command and wait on it.
1331  */
1332 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1333                 unsigned int ep_index, struct urb *urb)
1334 {
1335         struct xhci_container_ctx *out_ctx;
1336         struct xhci_input_control_ctx *ctrl_ctx;
1337         struct xhci_ep_ctx *ep_ctx;
1338         struct xhci_command *command;
1339         int max_packet_size;
1340         int hw_max_packet_size;
1341         int ret = 0;
1342
1343         out_ctx = xhci->devs[slot_id]->out_ctx;
1344         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1345         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1346         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1347         if (hw_max_packet_size != max_packet_size) {
1348                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1349                                 "Max Packet Size for ep 0 changed.");
1350                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1351                                 "Max packet size in usb_device = %d",
1352                                 max_packet_size);
1353                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1354                                 "Max packet size in xHCI HW = %d",
1355                                 hw_max_packet_size);
1356                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1357                                 "Issuing evaluate context command.");
1358
1359                 /* Set up the input context flags for the command */
1360                 /* FIXME: This won't work if a non-default control endpoint
1361                  * changes max packet sizes.
1362                  */
1363
1364                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1365                 if (!command)
1366                         return -ENOMEM;
1367
1368                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1369                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1370                 if (!ctrl_ctx) {
1371                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1372                                         __func__);
1373                         ret = -ENOMEM;
1374                         goto command_cleanup;
1375                 }
1376                 /* Set up the modified control endpoint 0 */
1377                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1378                                 xhci->devs[slot_id]->out_ctx, ep_index);
1379
1380                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1381                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1382                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1383
1384                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1385                 ctrl_ctx->drop_flags = 0;
1386
1387                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1388                                 true, false);
1389
1390                 /* Clean up the input context for later use by bandwidth
1391                  * functions.
1392                  */
1393                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1394 command_cleanup:
1395                 kfree(command->completion);
1396                 kfree(command);
1397         }
1398         return ret;
1399 }
1400
1401 /*
1402  * non-error returns are a promise to giveback() the urb later
1403  * we drop ownership so next owner (or urb unlink) can get it
1404  */
1405 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1406 {
1407         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1408         unsigned long flags;
1409         int ret = 0;
1410         unsigned int slot_id, ep_index;
1411         unsigned int *ep_state;
1412         struct urb_priv *urb_priv;
1413         int num_tds;
1414
1415         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1416                                         true, true, __func__) <= 0)
1417                 return -EINVAL;
1418
1419         slot_id = urb->dev->slot_id;
1420         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1421         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1422
1423         if (!HCD_HW_ACCESSIBLE(hcd)) {
1424                 if (!in_interrupt())
1425                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1426                 return -ESHUTDOWN;
1427         }
1428
1429         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1430                 num_tds = urb->number_of_packets;
1431         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1432             urb->transfer_buffer_length > 0 &&
1433             urb->transfer_flags & URB_ZERO_PACKET &&
1434             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1435                 num_tds = 2;
1436         else
1437                 num_tds = 1;
1438
1439         urb_priv = kzalloc(sizeof(struct urb_priv) +
1440                            num_tds * sizeof(struct xhci_td), mem_flags);
1441         if (!urb_priv)
1442                 return -ENOMEM;
1443
1444         urb_priv->num_tds = num_tds;
1445         urb_priv->num_tds_done = 0;
1446         urb->hcpriv = urb_priv;
1447
1448         trace_xhci_urb_enqueue(urb);
1449
1450         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1451                 /* Check to see if the max packet size for the default control
1452                  * endpoint changed during FS device enumeration
1453                  */
1454                 if (urb->dev->speed == USB_SPEED_FULL) {
1455                         ret = xhci_check_maxpacket(xhci, slot_id,
1456                                         ep_index, urb);
1457                         if (ret < 0) {
1458                                 xhci_urb_free_priv(urb_priv);
1459                                 urb->hcpriv = NULL;
1460                                 return ret;
1461                         }
1462                 }
1463         }
1464
1465         spin_lock_irqsave(&xhci->lock, flags);
1466
1467         if (xhci->xhc_state & XHCI_STATE_DYING) {
1468                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1469                          urb->ep->desc.bEndpointAddress, urb);
1470                 ret = -ESHUTDOWN;
1471                 goto free_priv;
1472         }
1473         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1474                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1475                           *ep_state);
1476                 ret = -EINVAL;
1477                 goto free_priv;
1478         }
1479         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1480                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1481                 ret = -EINVAL;
1482                 goto free_priv;
1483         }
1484
1485         switch (usb_endpoint_type(&urb->ep->desc)) {
1486
1487         case USB_ENDPOINT_XFER_CONTROL:
1488                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1489                                          slot_id, ep_index);
1490                 break;
1491         case USB_ENDPOINT_XFER_BULK:
1492                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1493                                          slot_id, ep_index);
1494                 break;
1495         case USB_ENDPOINT_XFER_INT:
1496                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1497                                 slot_id, ep_index);
1498                 break;
1499         case USB_ENDPOINT_XFER_ISOC:
1500                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1501                                 slot_id, ep_index);
1502         }
1503
1504         if (ret) {
1505 free_priv:
1506                 xhci_urb_free_priv(urb_priv);
1507                 urb->hcpriv = NULL;
1508         }
1509         spin_unlock_irqrestore(&xhci->lock, flags);
1510         return ret;
1511 }
1512
1513 /*
1514  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1515  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1516  * should pick up where it left off in the TD, unless a Set Transfer Ring
1517  * Dequeue Pointer is issued.
1518  *
1519  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1520  * the ring.  Since the ring is a contiguous structure, they can't be physically
1521  * removed.  Instead, there are two options:
1522  *
1523  *  1) If the HC is in the middle of processing the URB to be canceled, we
1524  *     simply move the ring's dequeue pointer past those TRBs using the Set
1525  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1526  *     when drivers timeout on the last submitted URB and attempt to cancel.
1527  *
1528  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1529  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1530  *     HC will need to invalidate the any TRBs it has cached after the stop
1531  *     endpoint command, as noted in the xHCI 0.95 errata.
1532  *
1533  *  3) The TD may have completed by the time the Stop Endpoint Command
1534  *     completes, so software needs to handle that case too.
1535  *
1536  * This function should protect against the TD enqueueing code ringing the
1537  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1538  * It also needs to account for multiple cancellations on happening at the same
1539  * time for the same endpoint.
1540  *
1541  * Note that this function can be called in any context, or so says
1542  * usb_hcd_unlink_urb()
1543  */
1544 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1545 {
1546         unsigned long flags;
1547         int ret, i;
1548         u32 temp;
1549         struct xhci_hcd *xhci;
1550         struct urb_priv *urb_priv;
1551         struct xhci_td *td;
1552         unsigned int ep_index;
1553         struct xhci_ring *ep_ring;
1554         struct xhci_virt_ep *ep;
1555         struct xhci_command *command;
1556         struct xhci_virt_device *vdev;
1557
1558         xhci = hcd_to_xhci(hcd);
1559         spin_lock_irqsave(&xhci->lock, flags);
1560
1561         trace_xhci_urb_dequeue(urb);
1562
1563         /* Make sure the URB hasn't completed or been unlinked already */
1564         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1565         if (ret)
1566                 goto done;
1567
1568         /* give back URB now if we can't queue it for cancel */
1569         vdev = xhci->devs[urb->dev->slot_id];
1570         urb_priv = urb->hcpriv;
1571         if (!vdev || !urb_priv)
1572                 goto err_giveback;
1573
1574         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1575         ep = &vdev->eps[ep_index];
1576         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1577         if (!ep || !ep_ring)
1578                 goto err_giveback;
1579
1580         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1581         temp = readl(&xhci->op_regs->status);
1582         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1583                 xhci_hc_died(xhci);
1584                 goto done;
1585         }
1586
1587         /*
1588          * check ring is not re-allocated since URB was enqueued. If it is, then
1589          * make sure none of the ring related pointers in this URB private data
1590          * are touched, such as td_list, otherwise we overwrite freed data
1591          */
1592         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1593                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1594                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1595                         td = &urb_priv->td[i];
1596                         if (!list_empty(&td->cancelled_td_list))
1597                                 list_del_init(&td->cancelled_td_list);
1598                 }
1599                 goto err_giveback;
1600         }
1601
1602         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1603                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1604                                 "HC halted, freeing TD manually.");
1605                 for (i = urb_priv->num_tds_done;
1606                      i < urb_priv->num_tds;
1607                      i++) {
1608                         td = &urb_priv->td[i];
1609                         if (!list_empty(&td->td_list))
1610                                 list_del_init(&td->td_list);
1611                         if (!list_empty(&td->cancelled_td_list))
1612                                 list_del_init(&td->cancelled_td_list);
1613                 }
1614                 goto err_giveback;
1615         }
1616
1617         i = urb_priv->num_tds_done;
1618         if (i < urb_priv->num_tds)
1619                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1620                                 "Cancel URB %p, dev %s, ep 0x%x, "
1621                                 "starting at offset 0x%llx",
1622                                 urb, urb->dev->devpath,
1623                                 urb->ep->desc.bEndpointAddress,
1624                                 (unsigned long long) xhci_trb_virt_to_dma(
1625                                         urb_priv->td[i].start_seg,
1626                                         urb_priv->td[i].first_trb));
1627
1628         for (; i < urb_priv->num_tds; i++) {
1629                 td = &urb_priv->td[i];
1630                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1631         }
1632
1633         /* Queue a stop endpoint command, but only if this is
1634          * the first cancellation to be handled.
1635          */
1636         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1637                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1638                 if (!command) {
1639                         ret = -ENOMEM;
1640                         goto done;
1641                 }
1642                 ep->ep_state |= EP_STOP_CMD_PENDING;
1643                 ep->stop_cmd_timer.expires = jiffies +
1644                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1645                 add_timer(&ep->stop_cmd_timer);
1646                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1647                                          ep_index, 0);
1648                 xhci_ring_cmd_db(xhci);
1649         }
1650 done:
1651         spin_unlock_irqrestore(&xhci->lock, flags);
1652         return ret;
1653
1654 err_giveback:
1655         if (urb_priv)
1656                 xhci_urb_free_priv(urb_priv);
1657         usb_hcd_unlink_urb_from_ep(hcd, urb);
1658         spin_unlock_irqrestore(&xhci->lock, flags);
1659         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1660         return ret;
1661 }
1662
1663 /* Drop an endpoint from a new bandwidth configuration for this device.
1664  * Only one call to this function is allowed per endpoint before
1665  * check_bandwidth() or reset_bandwidth() must be called.
1666  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1667  * add the endpoint to the schedule with possibly new parameters denoted by a
1668  * different endpoint descriptor in usb_host_endpoint.
1669  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1670  * not allowed.
1671  *
1672  * The USB core will not allow URBs to be queued to an endpoint that is being
1673  * disabled, so there's no need for mutual exclusion to protect
1674  * the xhci->devs[slot_id] structure.
1675  */
1676 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1677                 struct usb_host_endpoint *ep)
1678 {
1679         struct xhci_hcd *xhci;
1680         struct xhci_container_ctx *in_ctx, *out_ctx;
1681         struct xhci_input_control_ctx *ctrl_ctx;
1682         unsigned int ep_index;
1683         struct xhci_ep_ctx *ep_ctx;
1684         u32 drop_flag;
1685         u32 new_add_flags, new_drop_flags;
1686         int ret;
1687
1688         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1689         if (ret <= 0)
1690                 return ret;
1691         xhci = hcd_to_xhci(hcd);
1692         if (xhci->xhc_state & XHCI_STATE_DYING)
1693                 return -ENODEV;
1694
1695         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1696         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1697         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1698                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1699                                 __func__, drop_flag);
1700                 return 0;
1701         }
1702
1703         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1704         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1705         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1706         if (!ctrl_ctx) {
1707                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1708                                 __func__);
1709                 return 0;
1710         }
1711
1712         ep_index = xhci_get_endpoint_index(&ep->desc);
1713         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1714         /* If the HC already knows the endpoint is disabled,
1715          * or the HCD has noted it is disabled, ignore this request
1716          */
1717         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1718             le32_to_cpu(ctrl_ctx->drop_flags) &
1719             xhci_get_endpoint_flag(&ep->desc)) {
1720                 /* Do not warn when called after a usb_device_reset */
1721                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1722                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1723                                   __func__, ep);
1724                 return 0;
1725         }
1726
1727         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1728         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1729
1730         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1731         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1732
1733         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1734
1735         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1736
1737         if (xhci->quirks & XHCI_MTK_HOST)
1738                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1739
1740         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1741                         (unsigned int) ep->desc.bEndpointAddress,
1742                         udev->slot_id,
1743                         (unsigned int) new_drop_flags,
1744                         (unsigned int) new_add_flags);
1745         return 0;
1746 }
1747
1748 /* Add an endpoint to a new possible bandwidth configuration for this device.
1749  * Only one call to this function is allowed per endpoint before
1750  * check_bandwidth() or reset_bandwidth() must be called.
1751  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1752  * add the endpoint to the schedule with possibly new parameters denoted by a
1753  * different endpoint descriptor in usb_host_endpoint.
1754  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1755  * not allowed.
1756  *
1757  * The USB core will not allow URBs to be queued to an endpoint until the
1758  * configuration or alt setting is installed in the device, so there's no need
1759  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1760  */
1761 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1762                 struct usb_host_endpoint *ep)
1763 {
1764         struct xhci_hcd *xhci;
1765         struct xhci_container_ctx *in_ctx;
1766         unsigned int ep_index;
1767         struct xhci_input_control_ctx *ctrl_ctx;
1768         u32 added_ctxs;
1769         u32 new_add_flags, new_drop_flags;
1770         struct xhci_virt_device *virt_dev;
1771         int ret = 0;
1772
1773         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1774         if (ret <= 0) {
1775                 /* So we won't queue a reset ep command for a root hub */
1776                 ep->hcpriv = NULL;
1777                 return ret;
1778         }
1779         xhci = hcd_to_xhci(hcd);
1780         if (xhci->xhc_state & XHCI_STATE_DYING)
1781                 return -ENODEV;
1782
1783         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1784         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1785                 /* FIXME when we have to issue an evaluate endpoint command to
1786                  * deal with ep0 max packet size changing once we get the
1787                  * descriptors
1788                  */
1789                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1790                                 __func__, added_ctxs);
1791                 return 0;
1792         }
1793
1794         virt_dev = xhci->devs[udev->slot_id];
1795         in_ctx = virt_dev->in_ctx;
1796         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1797         if (!ctrl_ctx) {
1798                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1799                                 __func__);
1800                 return 0;
1801         }
1802
1803         ep_index = xhci_get_endpoint_index(&ep->desc);
1804         /* If this endpoint is already in use, and the upper layers are trying
1805          * to add it again without dropping it, reject the addition.
1806          */
1807         if (virt_dev->eps[ep_index].ring &&
1808                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1809                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1810                                 "without dropping it.\n",
1811                                 (unsigned int) ep->desc.bEndpointAddress);
1812                 return -EINVAL;
1813         }
1814
1815         /* If the HCD has already noted the endpoint is enabled,
1816          * ignore this request.
1817          */
1818         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1819                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1820                                 __func__, ep);
1821                 return 0;
1822         }
1823
1824         /*
1825          * Configuration and alternate setting changes must be done in
1826          * process context, not interrupt context (or so documenation
1827          * for usb_set_interface() and usb_set_configuration() claim).
1828          */
1829         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1830                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1831                                 __func__, ep->desc.bEndpointAddress);
1832                 return -ENOMEM;
1833         }
1834
1835         if (xhci->quirks & XHCI_MTK_HOST) {
1836                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1837                 if (ret < 0) {
1838                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1839                         virt_dev->eps[ep_index].new_ring = NULL;
1840                         return ret;
1841                 }
1842         }
1843
1844         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1845         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1846
1847         /* If xhci_endpoint_disable() was called for this endpoint, but the
1848          * xHC hasn't been notified yet through the check_bandwidth() call,
1849          * this re-adds a new state for the endpoint from the new endpoint
1850          * descriptors.  We must drop and re-add this endpoint, so we leave the
1851          * drop flags alone.
1852          */
1853         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854
1855         /* Store the usb_device pointer for later use */
1856         ep->hcpriv = udev;
1857
1858         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1859
1860         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1861                         (unsigned int) ep->desc.bEndpointAddress,
1862                         udev->slot_id,
1863                         (unsigned int) new_drop_flags,
1864                         (unsigned int) new_add_flags);
1865         return 0;
1866 }
1867
1868 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1869 {
1870         struct xhci_input_control_ctx *ctrl_ctx;
1871         struct xhci_ep_ctx *ep_ctx;
1872         struct xhci_slot_ctx *slot_ctx;
1873         int i;
1874
1875         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1876         if (!ctrl_ctx) {
1877                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1878                                 __func__);
1879                 return;
1880         }
1881
1882         /* When a device's add flag and drop flag are zero, any subsequent
1883          * configure endpoint command will leave that endpoint's state
1884          * untouched.  Make sure we don't leave any old state in the input
1885          * endpoint contexts.
1886          */
1887         ctrl_ctx->drop_flags = 0;
1888         ctrl_ctx->add_flags = 0;
1889         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1890         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1891         /* Endpoint 0 is always valid */
1892         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1893         for (i = 1; i < 31; i++) {
1894                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1895                 ep_ctx->ep_info = 0;
1896                 ep_ctx->ep_info2 = 0;
1897                 ep_ctx->deq = 0;
1898                 ep_ctx->tx_info = 0;
1899         }
1900 }
1901
1902 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1903                 struct usb_device *udev, u32 *cmd_status)
1904 {
1905         int ret;
1906
1907         switch (*cmd_status) {
1908         case COMP_COMMAND_ABORTED:
1909         case COMP_COMMAND_RING_STOPPED:
1910                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1911                 ret = -ETIME;
1912                 break;
1913         case COMP_RESOURCE_ERROR:
1914                 dev_warn(&udev->dev,
1915                          "Not enough host controller resources for new device state.\n");
1916                 ret = -ENOMEM;
1917                 /* FIXME: can we allocate more resources for the HC? */
1918                 break;
1919         case COMP_BANDWIDTH_ERROR:
1920         case COMP_SECONDARY_BANDWIDTH_ERROR:
1921                 dev_warn(&udev->dev,
1922                          "Not enough bandwidth for new device state.\n");
1923                 ret = -ENOSPC;
1924                 /* FIXME: can we go back to the old state? */
1925                 break;
1926         case COMP_TRB_ERROR:
1927                 /* the HCD set up something wrong */
1928                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1929                                 "add flag = 1, "
1930                                 "and endpoint is not disabled.\n");
1931                 ret = -EINVAL;
1932                 break;
1933         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1934                 dev_warn(&udev->dev,
1935                          "ERROR: Incompatible device for endpoint configure command.\n");
1936                 ret = -ENODEV;
1937                 break;
1938         case COMP_SUCCESS:
1939                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1940                                 "Successful Endpoint Configure command");
1941                 ret = 0;
1942                 break;
1943         default:
1944                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1945                                 *cmd_status);
1946                 ret = -EINVAL;
1947                 break;
1948         }
1949         return ret;
1950 }
1951
1952 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1953                 struct usb_device *udev, u32 *cmd_status)
1954 {
1955         int ret;
1956
1957         switch (*cmd_status) {
1958         case COMP_COMMAND_ABORTED:
1959         case COMP_COMMAND_RING_STOPPED:
1960                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1961                 ret = -ETIME;
1962                 break;
1963         case COMP_PARAMETER_ERROR:
1964                 dev_warn(&udev->dev,
1965                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1966                 ret = -EINVAL;
1967                 break;
1968         case COMP_SLOT_NOT_ENABLED_ERROR:
1969                 dev_warn(&udev->dev,
1970                         "WARN: slot not enabled for evaluate context command.\n");
1971                 ret = -EINVAL;
1972                 break;
1973         case COMP_CONTEXT_STATE_ERROR:
1974                 dev_warn(&udev->dev,
1975                         "WARN: invalid context state for evaluate context command.\n");
1976                 ret = -EINVAL;
1977                 break;
1978         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1979                 dev_warn(&udev->dev,
1980                         "ERROR: Incompatible device for evaluate context command.\n");
1981                 ret = -ENODEV;
1982                 break;
1983         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1984                 /* Max Exit Latency too large error */
1985                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1986                 ret = -EINVAL;
1987                 break;
1988         case COMP_SUCCESS:
1989                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1990                                 "Successful evaluate context command");
1991                 ret = 0;
1992                 break;
1993         default:
1994                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1995                         *cmd_status);
1996                 ret = -EINVAL;
1997                 break;
1998         }
1999         return ret;
2000 }
2001
2002 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2003                 struct xhci_input_control_ctx *ctrl_ctx)
2004 {
2005         u32 valid_add_flags;
2006         u32 valid_drop_flags;
2007
2008         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2009          * (bit 1).  The default control endpoint is added during the Address
2010          * Device command and is never removed until the slot is disabled.
2011          */
2012         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2013         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2014
2015         /* Use hweight32 to count the number of ones in the add flags, or
2016          * number of endpoints added.  Don't count endpoints that are changed
2017          * (both added and dropped).
2018          */
2019         return hweight32(valid_add_flags) -
2020                 hweight32(valid_add_flags & valid_drop_flags);
2021 }
2022
2023 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2024                 struct xhci_input_control_ctx *ctrl_ctx)
2025 {
2026         u32 valid_add_flags;
2027         u32 valid_drop_flags;
2028
2029         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2030         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2031
2032         return hweight32(valid_drop_flags) -
2033                 hweight32(valid_add_flags & valid_drop_flags);
2034 }
2035
2036 /*
2037  * We need to reserve the new number of endpoints before the configure endpoint
2038  * command completes.  We can't subtract the dropped endpoints from the number
2039  * of active endpoints until the command completes because we can oversubscribe
2040  * the host in this case:
2041  *
2042  *  - the first configure endpoint command drops more endpoints than it adds
2043  *  - a second configure endpoint command that adds more endpoints is queued
2044  *  - the first configure endpoint command fails, so the config is unchanged
2045  *  - the second command may succeed, even though there isn't enough resources
2046  *
2047  * Must be called with xhci->lock held.
2048  */
2049 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2050                 struct xhci_input_control_ctx *ctrl_ctx)
2051 {
2052         u32 added_eps;
2053
2054         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2055         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2056                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2057                                 "Not enough ep ctxs: "
2058                                 "%u active, need to add %u, limit is %u.",
2059                                 xhci->num_active_eps, added_eps,
2060                                 xhci->limit_active_eps);
2061                 return -ENOMEM;
2062         }
2063         xhci->num_active_eps += added_eps;
2064         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2065                         "Adding %u ep ctxs, %u now active.", added_eps,
2066                         xhci->num_active_eps);
2067         return 0;
2068 }
2069
2070 /*
2071  * The configure endpoint was failed by the xHC for some other reason, so we
2072  * need to revert the resources that failed configuration would have used.
2073  *
2074  * Must be called with xhci->lock held.
2075  */
2076 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2077                 struct xhci_input_control_ctx *ctrl_ctx)
2078 {
2079         u32 num_failed_eps;
2080
2081         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2082         xhci->num_active_eps -= num_failed_eps;
2083         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2084                         "Removing %u failed ep ctxs, %u now active.",
2085                         num_failed_eps,
2086                         xhci->num_active_eps);
2087 }
2088
2089 /*
2090  * Now that the command has completed, clean up the active endpoint count by
2091  * subtracting out the endpoints that were dropped (but not changed).
2092  *
2093  * Must be called with xhci->lock held.
2094  */
2095 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2096                 struct xhci_input_control_ctx *ctrl_ctx)
2097 {
2098         u32 num_dropped_eps;
2099
2100         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2101         xhci->num_active_eps -= num_dropped_eps;
2102         if (num_dropped_eps)
2103                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2104                                 "Removing %u dropped ep ctxs, %u now active.",
2105                                 num_dropped_eps,
2106                                 xhci->num_active_eps);
2107 }
2108
2109 static unsigned int xhci_get_block_size(struct usb_device *udev)
2110 {
2111         switch (udev->speed) {
2112         case USB_SPEED_LOW:
2113         case USB_SPEED_FULL:
2114                 return FS_BLOCK;
2115         case USB_SPEED_HIGH:
2116                 return HS_BLOCK;
2117         case USB_SPEED_SUPER:
2118         case USB_SPEED_SUPER_PLUS:
2119                 return SS_BLOCK;
2120         case USB_SPEED_UNKNOWN:
2121         case USB_SPEED_WIRELESS:
2122         default:
2123                 /* Should never happen */
2124                 return 1;
2125         }
2126 }
2127
2128 static unsigned int
2129 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2130 {
2131         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2132                 return LS_OVERHEAD;
2133         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2134                 return FS_OVERHEAD;
2135         return HS_OVERHEAD;
2136 }
2137
2138 /* If we are changing a LS/FS device under a HS hub,
2139  * make sure (if we are activating a new TT) that the HS bus has enough
2140  * bandwidth for this new TT.
2141  */
2142 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2143                 struct xhci_virt_device *virt_dev,
2144                 int old_active_eps)
2145 {
2146         struct xhci_interval_bw_table *bw_table;
2147         struct xhci_tt_bw_info *tt_info;
2148
2149         /* Find the bandwidth table for the root port this TT is attached to. */
2150         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2151         tt_info = virt_dev->tt_info;
2152         /* If this TT already had active endpoints, the bandwidth for this TT
2153          * has already been added.  Removing all periodic endpoints (and thus
2154          * making the TT enactive) will only decrease the bandwidth used.
2155          */
2156         if (old_active_eps)
2157                 return 0;
2158         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2159                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2160                         return -ENOMEM;
2161                 return 0;
2162         }
2163         /* Not sure why we would have no new active endpoints...
2164          *
2165          * Maybe because of an Evaluate Context change for a hub update or a
2166          * control endpoint 0 max packet size change?
2167          * FIXME: skip the bandwidth calculation in that case.
2168          */
2169         return 0;
2170 }
2171
2172 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2173                 struct xhci_virt_device *virt_dev)
2174 {
2175         unsigned int bw_reserved;
2176
2177         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2178         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2179                 return -ENOMEM;
2180
2181         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2182         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2183                 return -ENOMEM;
2184
2185         return 0;
2186 }
2187
2188 /*
2189  * This algorithm is a very conservative estimate of the worst-case scheduling
2190  * scenario for any one interval.  The hardware dynamically schedules the
2191  * packets, so we can't tell which microframe could be the limiting factor in
2192  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2193  *
2194  * Obviously, we can't solve an NP complete problem to find the minimum worst
2195  * case scenario.  Instead, we come up with an estimate that is no less than
2196  * the worst case bandwidth used for any one microframe, but may be an
2197  * over-estimate.
2198  *
2199  * We walk the requirements for each endpoint by interval, starting with the
2200  * smallest interval, and place packets in the schedule where there is only one
2201  * possible way to schedule packets for that interval.  In order to simplify
2202  * this algorithm, we record the largest max packet size for each interval, and
2203  * assume all packets will be that size.
2204  *
2205  * For interval 0, we obviously must schedule all packets for each interval.
2206  * The bandwidth for interval 0 is just the amount of data to be transmitted
2207  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2208  * the number of packets).
2209  *
2210  * For interval 1, we have two possible microframes to schedule those packets
2211  * in.  For this algorithm, if we can schedule the same number of packets for
2212  * each possible scheduling opportunity (each microframe), we will do so.  The
2213  * remaining number of packets will be saved to be transmitted in the gaps in
2214  * the next interval's scheduling sequence.
2215  *
2216  * As we move those remaining packets to be scheduled with interval 2 packets,
2217  * we have to double the number of remaining packets to transmit.  This is
2218  * because the intervals are actually powers of 2, and we would be transmitting
2219  * the previous interval's packets twice in this interval.  We also have to be
2220  * sure that when we look at the largest max packet size for this interval, we
2221  * also look at the largest max packet size for the remaining packets and take
2222  * the greater of the two.
2223  *
2224  * The algorithm continues to evenly distribute packets in each scheduling
2225  * opportunity, and push the remaining packets out, until we get to the last
2226  * interval.  Then those packets and their associated overhead are just added
2227  * to the bandwidth used.
2228  */
2229 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2230                 struct xhci_virt_device *virt_dev,
2231                 int old_active_eps)
2232 {
2233         unsigned int bw_reserved;
2234         unsigned int max_bandwidth;
2235         unsigned int bw_used;
2236         unsigned int block_size;
2237         struct xhci_interval_bw_table *bw_table;
2238         unsigned int packet_size = 0;
2239         unsigned int overhead = 0;
2240         unsigned int packets_transmitted = 0;
2241         unsigned int packets_remaining = 0;
2242         unsigned int i;
2243
2244         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2245                 return xhci_check_ss_bw(xhci, virt_dev);
2246
2247         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2248                 max_bandwidth = HS_BW_LIMIT;
2249                 /* Convert percent of bus BW reserved to blocks reserved */
2250                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2251         } else {
2252                 max_bandwidth = FS_BW_LIMIT;
2253                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2254         }
2255
2256         bw_table = virt_dev->bw_table;
2257         /* We need to translate the max packet size and max ESIT payloads into
2258          * the units the hardware uses.
2259          */
2260         block_size = xhci_get_block_size(virt_dev->udev);
2261
2262         /* If we are manipulating a LS/FS device under a HS hub, double check
2263          * that the HS bus has enough bandwidth if we are activing a new TT.
2264          */
2265         if (virt_dev->tt_info) {
2266                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2267                                 "Recalculating BW for rootport %u",
2268                                 virt_dev->real_port);
2269                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2270                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2271                                         "newly activated TT.\n");
2272                         return -ENOMEM;
2273                 }
2274                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275                                 "Recalculating BW for TT slot %u port %u",
2276                                 virt_dev->tt_info->slot_id,
2277                                 virt_dev->tt_info->ttport);
2278         } else {
2279                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2280                                 "Recalculating BW for rootport %u",
2281                                 virt_dev->real_port);
2282         }
2283
2284         /* Add in how much bandwidth will be used for interval zero, or the
2285          * rounded max ESIT payload + number of packets * largest overhead.
2286          */
2287         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2288                 bw_table->interval_bw[0].num_packets *
2289                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2290
2291         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2292                 unsigned int bw_added;
2293                 unsigned int largest_mps;
2294                 unsigned int interval_overhead;
2295
2296                 /*
2297                  * How many packets could we transmit in this interval?
2298                  * If packets didn't fit in the previous interval, we will need
2299                  * to transmit that many packets twice within this interval.
2300                  */
2301                 packets_remaining = 2 * packets_remaining +
2302                         bw_table->interval_bw[i].num_packets;
2303
2304                 /* Find the largest max packet size of this or the previous
2305                  * interval.
2306                  */
2307                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2308                         largest_mps = 0;
2309                 else {
2310                         struct xhci_virt_ep *virt_ep;
2311                         struct list_head *ep_entry;
2312
2313                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2314                         virt_ep = list_entry(ep_entry,
2315                                         struct xhci_virt_ep, bw_endpoint_list);
2316                         /* Convert to blocks, rounding up */
2317                         largest_mps = DIV_ROUND_UP(
2318                                         virt_ep->bw_info.max_packet_size,
2319                                         block_size);
2320                 }
2321                 if (largest_mps > packet_size)
2322                         packet_size = largest_mps;
2323
2324                 /* Use the larger overhead of this or the previous interval. */
2325                 interval_overhead = xhci_get_largest_overhead(
2326                                 &bw_table->interval_bw[i]);
2327                 if (interval_overhead > overhead)
2328                         overhead = interval_overhead;
2329
2330                 /* How many packets can we evenly distribute across
2331                  * (1 << (i + 1)) possible scheduling opportunities?
2332                  */
2333                 packets_transmitted = packets_remaining >> (i + 1);
2334
2335                 /* Add in the bandwidth used for those scheduled packets */
2336                 bw_added = packets_transmitted * (overhead + packet_size);
2337
2338                 /* How many packets do we have remaining to transmit? */
2339                 packets_remaining = packets_remaining % (1 << (i + 1));
2340
2341                 /* What largest max packet size should those packets have? */
2342                 /* If we've transmitted all packets, don't carry over the
2343                  * largest packet size.
2344                  */
2345                 if (packets_remaining == 0) {
2346                         packet_size = 0;
2347                         overhead = 0;
2348                 } else if (packets_transmitted > 0) {
2349                         /* Otherwise if we do have remaining packets, and we've
2350                          * scheduled some packets in this interval, take the
2351                          * largest max packet size from endpoints with this
2352                          * interval.
2353                          */
2354                         packet_size = largest_mps;
2355                         overhead = interval_overhead;
2356                 }
2357                 /* Otherwise carry over packet_size and overhead from the last
2358                  * time we had a remainder.
2359                  */
2360                 bw_used += bw_added;
2361                 if (bw_used > max_bandwidth) {
2362                         xhci_warn(xhci, "Not enough bandwidth. "
2363                                         "Proposed: %u, Max: %u\n",
2364                                 bw_used, max_bandwidth);
2365                         return -ENOMEM;
2366                 }
2367         }
2368         /*
2369          * Ok, we know we have some packets left over after even-handedly
2370          * scheduling interval 15.  We don't know which microframes they will
2371          * fit into, so we over-schedule and say they will be scheduled every
2372          * microframe.
2373          */
2374         if (packets_remaining > 0)
2375                 bw_used += overhead + packet_size;
2376
2377         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2378                 unsigned int port_index = virt_dev->real_port - 1;
2379
2380                 /* OK, we're manipulating a HS device attached to a
2381                  * root port bandwidth domain.  Include the number of active TTs
2382                  * in the bandwidth used.
2383                  */
2384                 bw_used += TT_HS_OVERHEAD *
2385                         xhci->rh_bw[port_index].num_active_tts;
2386         }
2387
2388         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2389                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2390                 "Available: %u " "percent",
2391                 bw_used, max_bandwidth, bw_reserved,
2392                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2393                 max_bandwidth);
2394
2395         bw_used += bw_reserved;
2396         if (bw_used > max_bandwidth) {
2397                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2398                                 bw_used, max_bandwidth);
2399                 return -ENOMEM;
2400         }
2401
2402         bw_table->bw_used = bw_used;
2403         return 0;
2404 }
2405
2406 static bool xhci_is_async_ep(unsigned int ep_type)
2407 {
2408         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2409                                         ep_type != ISOC_IN_EP &&
2410                                         ep_type != INT_IN_EP);
2411 }
2412
2413 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2414 {
2415         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2416 }
2417
2418 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2419 {
2420         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2421
2422         if (ep_bw->ep_interval == 0)
2423                 return SS_OVERHEAD_BURST +
2424                         (ep_bw->mult * ep_bw->num_packets *
2425                                         (SS_OVERHEAD + mps));
2426         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2427                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2428                                 1 << ep_bw->ep_interval);
2429
2430 }
2431
2432 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2433                 struct xhci_bw_info *ep_bw,
2434                 struct xhci_interval_bw_table *bw_table,
2435                 struct usb_device *udev,
2436                 struct xhci_virt_ep *virt_ep,
2437                 struct xhci_tt_bw_info *tt_info)
2438 {
2439         struct xhci_interval_bw *interval_bw;
2440         int normalized_interval;
2441
2442         if (xhci_is_async_ep(ep_bw->type))
2443                 return;
2444
2445         if (udev->speed >= USB_SPEED_SUPER) {
2446                 if (xhci_is_sync_in_ep(ep_bw->type))
2447                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2448                                 xhci_get_ss_bw_consumed(ep_bw);
2449                 else
2450                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2451                                 xhci_get_ss_bw_consumed(ep_bw);
2452                 return;
2453         }
2454
2455         /* SuperSpeed endpoints never get added to intervals in the table, so
2456          * this check is only valid for HS/FS/LS devices.
2457          */
2458         if (list_empty(&virt_ep->bw_endpoint_list))
2459                 return;
2460         /* For LS/FS devices, we need to translate the interval expressed in
2461          * microframes to frames.
2462          */
2463         if (udev->speed == USB_SPEED_HIGH)
2464                 normalized_interval = ep_bw->ep_interval;
2465         else
2466                 normalized_interval = ep_bw->ep_interval - 3;
2467
2468         if (normalized_interval == 0)
2469                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2470         interval_bw = &bw_table->interval_bw[normalized_interval];
2471         interval_bw->num_packets -= ep_bw->num_packets;
2472         switch (udev->speed) {
2473         case USB_SPEED_LOW:
2474                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2475                 break;
2476         case USB_SPEED_FULL:
2477                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2478                 break;
2479         case USB_SPEED_HIGH:
2480                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2481                 break;
2482         case USB_SPEED_SUPER:
2483         case USB_SPEED_SUPER_PLUS:
2484         case USB_SPEED_UNKNOWN:
2485         case USB_SPEED_WIRELESS:
2486                 /* Should never happen because only LS/FS/HS endpoints will get
2487                  * added to the endpoint list.
2488                  */
2489                 return;
2490         }
2491         if (tt_info)
2492                 tt_info->active_eps -= 1;
2493         list_del_init(&virt_ep->bw_endpoint_list);
2494 }
2495
2496 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2497                 struct xhci_bw_info *ep_bw,
2498                 struct xhci_interval_bw_table *bw_table,
2499                 struct usb_device *udev,
2500                 struct xhci_virt_ep *virt_ep,
2501                 struct xhci_tt_bw_info *tt_info)
2502 {
2503         struct xhci_interval_bw *interval_bw;
2504         struct xhci_virt_ep *smaller_ep;
2505         int normalized_interval;
2506
2507         if (xhci_is_async_ep(ep_bw->type))
2508                 return;
2509
2510         if (udev->speed == USB_SPEED_SUPER) {
2511                 if (xhci_is_sync_in_ep(ep_bw->type))
2512                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2513                                 xhci_get_ss_bw_consumed(ep_bw);
2514                 else
2515                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2516                                 xhci_get_ss_bw_consumed(ep_bw);
2517                 return;
2518         }
2519
2520         /* For LS/FS devices, we need to translate the interval expressed in
2521          * microframes to frames.
2522          */
2523         if (udev->speed == USB_SPEED_HIGH)
2524                 normalized_interval = ep_bw->ep_interval;
2525         else
2526                 normalized_interval = ep_bw->ep_interval - 3;
2527
2528         if (normalized_interval == 0)
2529                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2530         interval_bw = &bw_table->interval_bw[normalized_interval];
2531         interval_bw->num_packets += ep_bw->num_packets;
2532         switch (udev->speed) {
2533         case USB_SPEED_LOW:
2534                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2535                 break;
2536         case USB_SPEED_FULL:
2537                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2538                 break;
2539         case USB_SPEED_HIGH:
2540                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2541                 break;
2542         case USB_SPEED_SUPER:
2543         case USB_SPEED_SUPER_PLUS:
2544         case USB_SPEED_UNKNOWN:
2545         case USB_SPEED_WIRELESS:
2546                 /* Should never happen because only LS/FS/HS endpoints will get
2547                  * added to the endpoint list.
2548                  */
2549                 return;
2550         }
2551
2552         if (tt_info)
2553                 tt_info->active_eps += 1;
2554         /* Insert the endpoint into the list, largest max packet size first. */
2555         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2556                         bw_endpoint_list) {
2557                 if (ep_bw->max_packet_size >=
2558                                 smaller_ep->bw_info.max_packet_size) {
2559                         /* Add the new ep before the smaller endpoint */
2560                         list_add_tail(&virt_ep->bw_endpoint_list,
2561                                         &smaller_ep->bw_endpoint_list);
2562                         return;
2563                 }
2564         }
2565         /* Add the new endpoint at the end of the list. */
2566         list_add_tail(&virt_ep->bw_endpoint_list,
2567                         &interval_bw->endpoints);
2568 }
2569
2570 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2571                 struct xhci_virt_device *virt_dev,
2572                 int old_active_eps)
2573 {
2574         struct xhci_root_port_bw_info *rh_bw_info;
2575         if (!virt_dev->tt_info)
2576                 return;
2577
2578         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2579         if (old_active_eps == 0 &&
2580                                 virt_dev->tt_info->active_eps != 0) {
2581                 rh_bw_info->num_active_tts += 1;
2582                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2583         } else if (old_active_eps != 0 &&
2584                                 virt_dev->tt_info->active_eps == 0) {
2585                 rh_bw_info->num_active_tts -= 1;
2586                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2587         }
2588 }
2589
2590 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2591                 struct xhci_virt_device *virt_dev,
2592                 struct xhci_container_ctx *in_ctx)
2593 {
2594         struct xhci_bw_info ep_bw_info[31];
2595         int i;
2596         struct xhci_input_control_ctx *ctrl_ctx;
2597         int old_active_eps = 0;
2598
2599         if (virt_dev->tt_info)
2600                 old_active_eps = virt_dev->tt_info->active_eps;
2601
2602         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2603         if (!ctrl_ctx) {
2604                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2605                                 __func__);
2606                 return -ENOMEM;
2607         }
2608
2609         for (i = 0; i < 31; i++) {
2610                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2611                         continue;
2612
2613                 /* Make a copy of the BW info in case we need to revert this */
2614                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2615                                 sizeof(ep_bw_info[i]));
2616                 /* Drop the endpoint from the interval table if the endpoint is
2617                  * being dropped or changed.
2618                  */
2619                 if (EP_IS_DROPPED(ctrl_ctx, i))
2620                         xhci_drop_ep_from_interval_table(xhci,
2621                                         &virt_dev->eps[i].bw_info,
2622                                         virt_dev->bw_table,
2623                                         virt_dev->udev,
2624                                         &virt_dev->eps[i],
2625                                         virt_dev->tt_info);
2626         }
2627         /* Overwrite the information stored in the endpoints' bw_info */
2628         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2629         for (i = 0; i < 31; i++) {
2630                 /* Add any changed or added endpoints to the interval table */
2631                 if (EP_IS_ADDED(ctrl_ctx, i))
2632                         xhci_add_ep_to_interval_table(xhci,
2633                                         &virt_dev->eps[i].bw_info,
2634                                         virt_dev->bw_table,
2635                                         virt_dev->udev,
2636                                         &virt_dev->eps[i],
2637                                         virt_dev->tt_info);
2638         }
2639
2640         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2641                 /* Ok, this fits in the bandwidth we have.
2642                  * Update the number of active TTs.
2643                  */
2644                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2645                 return 0;
2646         }
2647
2648         /* We don't have enough bandwidth for this, revert the stored info. */
2649         for (i = 0; i < 31; i++) {
2650                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2651                         continue;
2652
2653                 /* Drop the new copies of any added or changed endpoints from
2654                  * the interval table.
2655                  */
2656                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2657                         xhci_drop_ep_from_interval_table(xhci,
2658                                         &virt_dev->eps[i].bw_info,
2659                                         virt_dev->bw_table,
2660                                         virt_dev->udev,
2661                                         &virt_dev->eps[i],
2662                                         virt_dev->tt_info);
2663                 }
2664                 /* Revert the endpoint back to its old information */
2665                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2666                                 sizeof(ep_bw_info[i]));
2667                 /* Add any changed or dropped endpoints back into the table */
2668                 if (EP_IS_DROPPED(ctrl_ctx, i))
2669                         xhci_add_ep_to_interval_table(xhci,
2670                                         &virt_dev->eps[i].bw_info,
2671                                         virt_dev->bw_table,
2672                                         virt_dev->udev,
2673                                         &virt_dev->eps[i],
2674                                         virt_dev->tt_info);
2675         }
2676         return -ENOMEM;
2677 }
2678
2679
2680 /* Issue a configure endpoint command or evaluate context command
2681  * and wait for it to finish.
2682  */
2683 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2684                 struct usb_device *udev,
2685                 struct xhci_command *command,
2686                 bool ctx_change, bool must_succeed)
2687 {
2688         int ret;
2689         unsigned long flags;
2690         struct xhci_input_control_ctx *ctrl_ctx;
2691         struct xhci_virt_device *virt_dev;
2692         struct xhci_slot_ctx *slot_ctx;
2693
2694         if (!command)
2695                 return -EINVAL;
2696
2697         spin_lock_irqsave(&xhci->lock, flags);
2698
2699         if (xhci->xhc_state & XHCI_STATE_DYING) {
2700                 spin_unlock_irqrestore(&xhci->lock, flags);
2701                 return -ESHUTDOWN;
2702         }
2703
2704         virt_dev = xhci->devs[udev->slot_id];
2705
2706         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2707         if (!ctrl_ctx) {
2708                 spin_unlock_irqrestore(&xhci->lock, flags);
2709                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2710                                 __func__);
2711                 return -ENOMEM;
2712         }
2713
2714         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2715                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2716                 spin_unlock_irqrestore(&xhci->lock, flags);
2717                 xhci_warn(xhci, "Not enough host resources, "
2718                                 "active endpoint contexts = %u\n",
2719                                 xhci->num_active_eps);
2720                 return -ENOMEM;
2721         }
2722         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2723             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2724                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2725                         xhci_free_host_resources(xhci, ctrl_ctx);
2726                 spin_unlock_irqrestore(&xhci->lock, flags);
2727                 xhci_warn(xhci, "Not enough bandwidth\n");
2728                 return -ENOMEM;
2729         }
2730
2731         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2732         trace_xhci_configure_endpoint(slot_ctx);
2733
2734         if (!ctx_change)
2735                 ret = xhci_queue_configure_endpoint(xhci, command,
2736                                 command->in_ctx->dma,
2737                                 udev->slot_id, must_succeed);
2738         else
2739                 ret = xhci_queue_evaluate_context(xhci, command,
2740                                 command->in_ctx->dma,
2741                                 udev->slot_id, must_succeed);
2742         if (ret < 0) {
2743                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2744                         xhci_free_host_resources(xhci, ctrl_ctx);
2745                 spin_unlock_irqrestore(&xhci->lock, flags);
2746                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2747                                 "FIXME allocate a new ring segment");
2748                 return -ENOMEM;
2749         }
2750         xhci_ring_cmd_db(xhci);
2751         spin_unlock_irqrestore(&xhci->lock, flags);
2752
2753         /* Wait for the configure endpoint command to complete */
2754         wait_for_completion(command->completion);
2755
2756         if (!ctx_change)
2757                 ret = xhci_configure_endpoint_result(xhci, udev,
2758                                                      &command->status);
2759         else
2760                 ret = xhci_evaluate_context_result(xhci, udev,
2761                                                    &command->status);
2762
2763         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2764                 spin_lock_irqsave(&xhci->lock, flags);
2765                 /* If the command failed, remove the reserved resources.
2766                  * Otherwise, clean up the estimate to include dropped eps.
2767                  */
2768                 if (ret)
2769                         xhci_free_host_resources(xhci, ctrl_ctx);
2770                 else
2771                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2772                 spin_unlock_irqrestore(&xhci->lock, flags);
2773         }
2774         return ret;
2775 }
2776
2777 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2778         struct xhci_virt_device *vdev, int i)
2779 {
2780         struct xhci_virt_ep *ep = &vdev->eps[i];
2781
2782         if (ep->ep_state & EP_HAS_STREAMS) {
2783                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2784                                 xhci_get_endpoint_address(i));
2785                 xhci_free_stream_info(xhci, ep->stream_info);
2786                 ep->stream_info = NULL;
2787                 ep->ep_state &= ~EP_HAS_STREAMS;
2788         }
2789 }
2790
2791 /* Called after one or more calls to xhci_add_endpoint() or
2792  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2793  * to call xhci_reset_bandwidth().
2794  *
2795  * Since we are in the middle of changing either configuration or
2796  * installing a new alt setting, the USB core won't allow URBs to be
2797  * enqueued for any endpoint on the old config or interface.  Nothing
2798  * else should be touching the xhci->devs[slot_id] structure, so we
2799  * don't need to take the xhci->lock for manipulating that.
2800  */
2801 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2802 {
2803         int i;
2804         int ret = 0;
2805         struct xhci_hcd *xhci;
2806         struct xhci_virt_device *virt_dev;
2807         struct xhci_input_control_ctx *ctrl_ctx;
2808         struct xhci_slot_ctx *slot_ctx;
2809         struct xhci_command *command;
2810
2811         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2812         if (ret <= 0)
2813                 return ret;
2814         xhci = hcd_to_xhci(hcd);
2815         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2816                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2817                 return -ENODEV;
2818
2819         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2820         virt_dev = xhci->devs[udev->slot_id];
2821
2822         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2823         if (!command)
2824                 return -ENOMEM;
2825
2826         command->in_ctx = virt_dev->in_ctx;
2827
2828         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2829         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2830         if (!ctrl_ctx) {
2831                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2832                                 __func__);
2833                 ret = -ENOMEM;
2834                 goto command_cleanup;
2835         }
2836         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2837         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2838         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2839
2840         /* Don't issue the command if there's no endpoints to update. */
2841         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2842             ctrl_ctx->drop_flags == 0) {
2843                 ret = 0;
2844                 goto command_cleanup;
2845         }
2846         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2847         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2848         for (i = 31; i >= 1; i--) {
2849                 __le32 le32 = cpu_to_le32(BIT(i));
2850
2851                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2852                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2853                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2854                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2855                         break;
2856                 }
2857         }
2858
2859         ret = xhci_configure_endpoint(xhci, udev, command,
2860                         false, false);
2861         if (ret)
2862                 /* Callee should call reset_bandwidth() */
2863                 goto command_cleanup;
2864
2865         /* Free any rings that were dropped, but not changed. */
2866         for (i = 1; i < 31; i++) {
2867                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2868                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2869                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2870                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2871                 }
2872         }
2873         xhci_zero_in_ctx(xhci, virt_dev);
2874         /*
2875          * Install any rings for completely new endpoints or changed endpoints,
2876          * and free any old rings from changed endpoints.
2877          */
2878         for (i = 1; i < 31; i++) {
2879                 if (!virt_dev->eps[i].new_ring)
2880                         continue;
2881                 /* Only free the old ring if it exists.
2882                  * It may not if this is the first add of an endpoint.
2883                  */
2884                 if (virt_dev->eps[i].ring) {
2885                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2886                 }
2887                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2888                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2889                 virt_dev->eps[i].new_ring = NULL;
2890         }
2891 command_cleanup:
2892         kfree(command->completion);
2893         kfree(command);
2894
2895         return ret;
2896 }
2897
2898 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2899 {
2900         struct xhci_hcd *xhci;
2901         struct xhci_virt_device *virt_dev;
2902         int i, ret;
2903
2904         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2905         if (ret <= 0)
2906                 return;
2907         xhci = hcd_to_xhci(hcd);
2908
2909         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2910         virt_dev = xhci->devs[udev->slot_id];
2911         /* Free any rings allocated for added endpoints */
2912         for (i = 0; i < 31; i++) {
2913                 if (virt_dev->eps[i].new_ring) {
2914                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2915                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2916                         virt_dev->eps[i].new_ring = NULL;
2917                 }
2918         }
2919         xhci_zero_in_ctx(xhci, virt_dev);
2920 }
2921
2922 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2923                 struct xhci_container_ctx *in_ctx,
2924                 struct xhci_container_ctx *out_ctx,
2925                 struct xhci_input_control_ctx *ctrl_ctx,
2926                 u32 add_flags, u32 drop_flags)
2927 {
2928         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2929         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2930         xhci_slot_copy(xhci, in_ctx, out_ctx);
2931         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2932 }
2933
2934 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2935                 unsigned int slot_id, unsigned int ep_index,
2936                 struct xhci_dequeue_state *deq_state)
2937 {
2938         struct xhci_input_control_ctx *ctrl_ctx;
2939         struct xhci_container_ctx *in_ctx;
2940         struct xhci_ep_ctx *ep_ctx;
2941         u32 added_ctxs;
2942         dma_addr_t addr;
2943
2944         in_ctx = xhci->devs[slot_id]->in_ctx;
2945         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2946         if (!ctrl_ctx) {
2947                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2948                                 __func__);
2949                 return;
2950         }
2951
2952         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2953                         xhci->devs[slot_id]->out_ctx, ep_index);
2954         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2955         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2956                         deq_state->new_deq_ptr);
2957         if (addr == 0) {
2958                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2959                                 "reset ep command\n");
2960                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2961                                 deq_state->new_deq_seg,
2962                                 deq_state->new_deq_ptr);
2963                 return;
2964         }
2965         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2966
2967         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2968         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2969                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2970                         added_ctxs, added_ctxs);
2971 }
2972
2973 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2974                                unsigned int stream_id, struct xhci_td *td)
2975 {
2976         struct xhci_dequeue_state deq_state;
2977         struct usb_device *udev = td->urb->dev;
2978
2979         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2980                         "Cleaning up stalled endpoint ring");
2981         /* We need to move the HW's dequeue pointer past this TD,
2982          * or it will attempt to resend it on the next doorbell ring.
2983          */
2984         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2985                         ep_index, stream_id, td, &deq_state);
2986
2987         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2988                 return;
2989
2990         /* HW with the reset endpoint quirk will use the saved dequeue state to
2991          * issue a configure endpoint command later.
2992          */
2993         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2994                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2995                                 "Queueing new dequeue state");
2996                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2997                                 ep_index, &deq_state);
2998         } else {
2999                 /* Better hope no one uses the input context between now and the
3000                  * reset endpoint completion!
3001                  * XXX: No idea how this hardware will react when stream rings
3002                  * are enabled.
3003                  */
3004                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3005                                 "Setting up input context for "
3006                                 "configure endpoint command");
3007                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3008                                 ep_index, &deq_state);
3009         }
3010 }
3011
3012 /*
3013  * Called after usb core issues a clear halt control message.
3014  * The host side of the halt should already be cleared by a reset endpoint
3015  * command issued when the STALL event was received.
3016  *
3017  * The reset endpoint command may only be issued to endpoints in the halted
3018  * state. For software that wishes to reset the data toggle or sequence number
3019  * of an endpoint that isn't in the halted state this function will issue a
3020  * configure endpoint command with the Drop and Add bits set for the target
3021  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3022  */
3023
3024 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3025                 struct usb_host_endpoint *host_ep)
3026 {
3027         struct xhci_hcd *xhci;
3028         struct usb_device *udev;
3029         struct xhci_virt_device *vdev;
3030         struct xhci_virt_ep *ep;
3031         struct xhci_input_control_ctx *ctrl_ctx;
3032         struct xhci_command *stop_cmd, *cfg_cmd;
3033         unsigned int ep_index;
3034         unsigned long flags;
3035         u32 ep_flag;
3036
3037         xhci = hcd_to_xhci(hcd);
3038         if (!host_ep->hcpriv)
3039                 return;
3040         udev = (struct usb_device *) host_ep->hcpriv;
3041         vdev = xhci->devs[udev->slot_id];
3042         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3043         ep = &vdev->eps[ep_index];
3044
3045         /* Bail out if toggle is already being cleared by a endpoint reset */
3046         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3047                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3048                 return;
3049         }
3050         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3051         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3052             usb_endpoint_xfer_isoc(&host_ep->desc))
3053                 return;
3054
3055         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3056
3057         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3058                 return;
3059
3060         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3061         if (!stop_cmd)
3062                 return;
3063
3064         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3065         if (!cfg_cmd)
3066                 goto cleanup;
3067
3068         spin_lock_irqsave(&xhci->lock, flags);
3069
3070         /* block queuing new trbs and ringing ep doorbell */
3071         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3072
3073         /*
3074          * Make sure endpoint ring is empty before resetting the toggle/seq.
3075          * Driver is required to synchronously cancel all transfer request.
3076          * Stop the endpoint to force xHC to update the output context
3077          */
3078
3079         if (!list_empty(&ep->ring->td_list)) {
3080                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3081                 spin_unlock_irqrestore(&xhci->lock, flags);
3082                 xhci_free_command(xhci, cfg_cmd);
3083                 goto cleanup;
3084         }
3085         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3086         xhci_ring_cmd_db(xhci);
3087         spin_unlock_irqrestore(&xhci->lock, flags);
3088
3089         wait_for_completion(stop_cmd->completion);
3090
3091         spin_lock_irqsave(&xhci->lock, flags);
3092
3093         /* config ep command clears toggle if add and drop ep flags are set */
3094         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3095         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3096                                            ctrl_ctx, ep_flag, ep_flag);
3097         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3098
3099         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3100                                       udev->slot_id, false);
3101         xhci_ring_cmd_db(xhci);
3102         spin_unlock_irqrestore(&xhci->lock, flags);
3103
3104         wait_for_completion(cfg_cmd->completion);
3105
3106         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3107         xhci_free_command(xhci, cfg_cmd);
3108 cleanup:
3109         xhci_free_command(xhci, stop_cmd);
3110 }
3111
3112 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3113                 struct usb_device *udev, struct usb_host_endpoint *ep,
3114                 unsigned int slot_id)
3115 {
3116         int ret;
3117         unsigned int ep_index;
3118         unsigned int ep_state;
3119
3120         if (!ep)
3121                 return -EINVAL;
3122         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3123         if (ret <= 0)
3124                 return -EINVAL;
3125         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3126                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3127                                 " descriptor for ep 0x%x does not support streams\n",
3128                                 ep->desc.bEndpointAddress);
3129                 return -EINVAL;
3130         }
3131
3132         ep_index = xhci_get_endpoint_index(&ep->desc);
3133         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3134         if (ep_state & EP_HAS_STREAMS ||
3135                         ep_state & EP_GETTING_STREAMS) {
3136                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3137                                 "already has streams set up.\n",
3138                                 ep->desc.bEndpointAddress);
3139                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3140                                 "dynamic stream context array reallocation.\n");
3141                 return -EINVAL;
3142         }
3143         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3144                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3145                                 "endpoint 0x%x; URBs are pending.\n",
3146                                 ep->desc.bEndpointAddress);
3147                 return -EINVAL;
3148         }
3149         return 0;
3150 }
3151
3152 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3153                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3154 {
3155         unsigned int max_streams;
3156
3157         /* The stream context array size must be a power of two */
3158         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3159         /*
3160          * Find out how many primary stream array entries the host controller
3161          * supports.  Later we may use secondary stream arrays (similar to 2nd
3162          * level page entries), but that's an optional feature for xHCI host
3163          * controllers. xHCs must support at least 4 stream IDs.
3164          */
3165         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3166         if (*num_stream_ctxs > max_streams) {
3167                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3168                                 max_streams);
3169                 *num_stream_ctxs = max_streams;
3170                 *num_streams = max_streams;
3171         }
3172 }
3173
3174 /* Returns an error code if one of the endpoint already has streams.
3175  * This does not change any data structures, it only checks and gathers
3176  * information.
3177  */
3178 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3179                 struct usb_device *udev,
3180                 struct usb_host_endpoint **eps, unsigned int num_eps,
3181                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3182 {
3183         unsigned int max_streams;
3184         unsigned int endpoint_flag;
3185         int i;
3186         int ret;
3187
3188         for (i = 0; i < num_eps; i++) {
3189                 ret = xhci_check_streams_endpoint(xhci, udev,
3190                                 eps[i], udev->slot_id);
3191                 if (ret < 0)
3192                         return ret;
3193
3194                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3195                 if (max_streams < (*num_streams - 1)) {
3196                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3197                                         eps[i]->desc.bEndpointAddress,
3198                                         max_streams);
3199                         *num_streams = max_streams+1;
3200                 }
3201
3202                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3203                 if (*changed_ep_bitmask & endpoint_flag)
3204                         return -EINVAL;
3205                 *changed_ep_bitmask |= endpoint_flag;
3206         }
3207         return 0;
3208 }
3209
3210 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3211                 struct usb_device *udev,
3212                 struct usb_host_endpoint **eps, unsigned int num_eps)
3213 {
3214         u32 changed_ep_bitmask = 0;
3215         unsigned int slot_id;
3216         unsigned int ep_index;
3217         unsigned int ep_state;
3218         int i;
3219
3220         slot_id = udev->slot_id;
3221         if (!xhci->devs[slot_id])
3222                 return 0;
3223
3224         for (i = 0; i < num_eps; i++) {
3225                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3227                 /* Are streams already being freed for the endpoint? */
3228                 if (ep_state & EP_GETTING_NO_STREAMS) {
3229                         xhci_warn(xhci, "WARN Can't disable streams for "
3230                                         "endpoint 0x%x, "
3231                                         "streams are being disabled already\n",
3232                                         eps[i]->desc.bEndpointAddress);
3233                         return 0;
3234                 }
3235                 /* Are there actually any streams to free? */
3236                 if (!(ep_state & EP_HAS_STREAMS) &&
3237                                 !(ep_state & EP_GETTING_STREAMS)) {
3238                         xhci_warn(xhci, "WARN Can't disable streams for "
3239                                         "endpoint 0x%x, "
3240                                         "streams are already disabled!\n",
3241                                         eps[i]->desc.bEndpointAddress);
3242                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3243                                         "with non-streams endpoint\n");
3244                         return 0;
3245                 }
3246                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3247         }
3248         return changed_ep_bitmask;
3249 }
3250
3251 /*
3252  * The USB device drivers use this function (through the HCD interface in USB
3253  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3254  * coordinate mass storage command queueing across multiple endpoints (basically
3255  * a stream ID == a task ID).
3256  *
3257  * Setting up streams involves allocating the same size stream context array
3258  * for each endpoint and issuing a configure endpoint command for all endpoints.
3259  *
3260  * Don't allow the call to succeed if one endpoint only supports one stream
3261  * (which means it doesn't support streams at all).
3262  *
3263  * Drivers may get less stream IDs than they asked for, if the host controller
3264  * hardware or endpoints claim they can't support the number of requested
3265  * stream IDs.
3266  */
3267 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3268                 struct usb_host_endpoint **eps, unsigned int num_eps,
3269                 unsigned int num_streams, gfp_t mem_flags)
3270 {
3271         int i, ret;
3272         struct xhci_hcd *xhci;
3273         struct xhci_virt_device *vdev;
3274         struct xhci_command *config_cmd;
3275         struct xhci_input_control_ctx *ctrl_ctx;
3276         unsigned int ep_index;
3277         unsigned int num_stream_ctxs;
3278         unsigned int max_packet;
3279         unsigned long flags;
3280         u32 changed_ep_bitmask = 0;
3281
3282         if (!eps)
3283                 return -EINVAL;
3284
3285         /* Add one to the number of streams requested to account for
3286          * stream 0 that is reserved for xHCI usage.
3287          */
3288         num_streams += 1;
3289         xhci = hcd_to_xhci(hcd);
3290         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3291                         num_streams);
3292
3293         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3294         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3295                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3296                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3297                 return -ENOSYS;
3298         }
3299
3300         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3301         if (!config_cmd)
3302                 return -ENOMEM;
3303
3304         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3305         if (!ctrl_ctx) {
3306                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3307                                 __func__);
3308                 xhci_free_command(xhci, config_cmd);
3309                 return -ENOMEM;
3310         }
3311
3312         /* Check to make sure all endpoints are not already configured for
3313          * streams.  While we're at it, find the maximum number of streams that
3314          * all the endpoints will support and check for duplicate endpoints.
3315          */
3316         spin_lock_irqsave(&xhci->lock, flags);
3317         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3318                         num_eps, &num_streams, &changed_ep_bitmask);
3319         if (ret < 0) {
3320                 xhci_free_command(xhci, config_cmd);
3321                 spin_unlock_irqrestore(&xhci->lock, flags);
3322                 return ret;
3323         }
3324         if (num_streams <= 1) {
3325                 xhci_warn(xhci, "WARN: endpoints can't handle "
3326                                 "more than one stream.\n");
3327                 xhci_free_command(xhci, config_cmd);
3328                 spin_unlock_irqrestore(&xhci->lock, flags);
3329                 return -EINVAL;
3330         }
3331         vdev = xhci->devs[udev->slot_id];
3332         /* Mark each endpoint as being in transition, so
3333          * xhci_urb_enqueue() will reject all URBs.
3334          */
3335         for (i = 0; i < num_eps; i++) {
3336                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3337                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3338         }
3339         spin_unlock_irqrestore(&xhci->lock, flags);
3340
3341         /* Setup internal data structures and allocate HW data structures for
3342          * streams (but don't install the HW structures in the input context
3343          * until we're sure all memory allocation succeeded).
3344          */
3345         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3346         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3347                         num_stream_ctxs, num_streams);
3348
3349         for (i = 0; i < num_eps; i++) {
3350                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3352                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3353                                 num_stream_ctxs,
3354                                 num_streams,
3355                                 max_packet, mem_flags);
3356                 if (!vdev->eps[ep_index].stream_info)
3357                         goto cleanup;
3358                 /* Set maxPstreams in endpoint context and update deq ptr to
3359                  * point to stream context array. FIXME
3360                  */
3361         }
3362
3363         /* Set up the input context for a configure endpoint command. */
3364         for (i = 0; i < num_eps; i++) {
3365                 struct xhci_ep_ctx *ep_ctx;
3366
3367                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3369
3370                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3371                                 vdev->out_ctx, ep_index);
3372                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3373                                 vdev->eps[ep_index].stream_info);
3374         }
3375         /* Tell the HW to drop its old copy of the endpoint context info
3376          * and add the updated copy from the input context.
3377          */
3378         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3379                         vdev->out_ctx, ctrl_ctx,
3380                         changed_ep_bitmask, changed_ep_bitmask);
3381
3382         /* Issue and wait for the configure endpoint command */
3383         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3384                         false, false);
3385
3386         /* xHC rejected the configure endpoint command for some reason, so we
3387          * leave the old ring intact and free our internal streams data
3388          * structure.
3389          */
3390         if (ret < 0)
3391                 goto cleanup;
3392
3393         spin_lock_irqsave(&xhci->lock, flags);
3394         for (i = 0; i < num_eps; i++) {
3395                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3396                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3397                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3398                          udev->slot_id, ep_index);
3399                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3400         }
3401         xhci_free_command(xhci, config_cmd);
3402         spin_unlock_irqrestore(&xhci->lock, flags);
3403
3404         /* Subtract 1 for stream 0, which drivers can't use */
3405         return num_streams - 1;
3406
3407 cleanup:
3408         /* If it didn't work, free the streams! */
3409         for (i = 0; i < num_eps; i++) {
3410                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3411                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3412                 vdev->eps[ep_index].stream_info = NULL;
3413                 /* FIXME Unset maxPstreams in endpoint context and
3414                  * update deq ptr to point to normal string ring.
3415                  */
3416                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3417                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3418                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3419         }
3420         xhci_free_command(xhci, config_cmd);
3421         return -ENOMEM;
3422 }
3423
3424 /* Transition the endpoint from using streams to being a "normal" endpoint
3425  * without streams.
3426  *
3427  * Modify the endpoint context state, submit a configure endpoint command,
3428  * and free all endpoint rings for streams if that completes successfully.
3429  */
3430 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3431                 struct usb_host_endpoint **eps, unsigned int num_eps,
3432                 gfp_t mem_flags)
3433 {
3434         int i, ret;
3435         struct xhci_hcd *xhci;
3436         struct xhci_virt_device *vdev;
3437         struct xhci_command *command;
3438         struct xhci_input_control_ctx *ctrl_ctx;
3439         unsigned int ep_index;
3440         unsigned long flags;
3441         u32 changed_ep_bitmask;
3442
3443         xhci = hcd_to_xhci(hcd);
3444         vdev = xhci->devs[udev->slot_id];
3445
3446         /* Set up a configure endpoint command to remove the streams rings */
3447         spin_lock_irqsave(&xhci->lock, flags);
3448         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3449                         udev, eps, num_eps);
3450         if (changed_ep_bitmask == 0) {
3451                 spin_unlock_irqrestore(&xhci->lock, flags);
3452                 return -EINVAL;
3453         }
3454
3455         /* Use the xhci_command structure from the first endpoint.  We may have
3456          * allocated too many, but the driver may call xhci_free_streams() for
3457          * each endpoint it grouped into one call to xhci_alloc_streams().
3458          */
3459         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3460         command = vdev->eps[ep_index].stream_info->free_streams_command;
3461         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3462         if (!ctrl_ctx) {
3463                 spin_unlock_irqrestore(&xhci->lock, flags);
3464                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3465                                 __func__);
3466                 return -EINVAL;
3467         }
3468
3469         for (i = 0; i < num_eps; i++) {
3470                 struct xhci_ep_ctx *ep_ctx;
3471
3472                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3474                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3475                         EP_GETTING_NO_STREAMS;
3476
3477                 xhci_endpoint_copy(xhci, command->in_ctx,
3478                                 vdev->out_ctx, ep_index);
3479                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3480                                 &vdev->eps[ep_index]);
3481         }
3482         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3483                         vdev->out_ctx, ctrl_ctx,
3484                         changed_ep_bitmask, changed_ep_bitmask);
3485         spin_unlock_irqrestore(&xhci->lock, flags);
3486
3487         /* Issue and wait for the configure endpoint command,
3488          * which must succeed.
3489          */
3490         ret = xhci_configure_endpoint(xhci, udev, command,
3491                         false, true);
3492
3493         /* xHC rejected the configure endpoint command for some reason, so we
3494          * leave the streams rings intact.
3495          */
3496         if (ret < 0)
3497                 return ret;
3498
3499         spin_lock_irqsave(&xhci->lock, flags);
3500         for (i = 0; i < num_eps; i++) {
3501                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3502                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3503                 vdev->eps[ep_index].stream_info = NULL;
3504                 /* FIXME Unset maxPstreams in endpoint context and
3505                  * update deq ptr to point to normal string ring.
3506                  */
3507                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3508                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3509         }
3510         spin_unlock_irqrestore(&xhci->lock, flags);
3511
3512         return 0;
3513 }
3514
3515 /*
3516  * Deletes endpoint resources for endpoints that were active before a Reset
3517  * Device command, or a Disable Slot command.  The Reset Device command leaves
3518  * the control endpoint intact, whereas the Disable Slot command deletes it.
3519  *
3520  * Must be called with xhci->lock held.
3521  */
3522 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3523         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3524 {
3525         int i;
3526         unsigned int num_dropped_eps = 0;
3527         unsigned int drop_flags = 0;
3528
3529         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3530                 if (virt_dev->eps[i].ring) {
3531                         drop_flags |= 1 << i;
3532                         num_dropped_eps++;
3533                 }
3534         }
3535         xhci->num_active_eps -= num_dropped_eps;
3536         if (num_dropped_eps)
3537                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3538                                 "Dropped %u ep ctxs, flags = 0x%x, "
3539                                 "%u now active.",
3540                                 num_dropped_eps, drop_flags,
3541                                 xhci->num_active_eps);
3542 }
3543
3544 /*
3545  * This submits a Reset Device Command, which will set the device state to 0,
3546  * set the device address to 0, and disable all the endpoints except the default
3547  * control endpoint.  The USB core should come back and call
3548  * xhci_address_device(), and then re-set up the configuration.  If this is
3549  * called because of a usb_reset_and_verify_device(), then the old alternate
3550  * settings will be re-installed through the normal bandwidth allocation
3551  * functions.
3552  *
3553  * Wait for the Reset Device command to finish.  Remove all structures
3554  * associated with the endpoints that were disabled.  Clear the input device
3555  * structure? Reset the control endpoint 0 max packet size?
3556  *
3557  * If the virt_dev to be reset does not exist or does not match the udev,
3558  * it means the device is lost, possibly due to the xHC restore error and
3559  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3560  * re-allocate the device.
3561  */
3562 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3563                 struct usb_device *udev)
3564 {
3565         int ret, i;
3566         unsigned long flags;
3567         struct xhci_hcd *xhci;
3568         unsigned int slot_id;
3569         struct xhci_virt_device *virt_dev;
3570         struct xhci_command *reset_device_cmd;
3571         struct xhci_slot_ctx *slot_ctx;
3572         int old_active_eps = 0;
3573
3574         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3575         if (ret <= 0)
3576                 return ret;
3577         xhci = hcd_to_xhci(hcd);
3578         slot_id = udev->slot_id;
3579         virt_dev = xhci->devs[slot_id];
3580         if (!virt_dev) {
3581                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3582                                 "not exist. Re-allocate the device\n", slot_id);
3583                 ret = xhci_alloc_dev(hcd, udev);
3584                 if (ret == 1)
3585                         return 0;
3586                 else
3587                         return -EINVAL;
3588         }
3589
3590         if (virt_dev->tt_info)
3591                 old_active_eps = virt_dev->tt_info->active_eps;
3592
3593         if (virt_dev->udev != udev) {
3594                 /* If the virt_dev and the udev does not match, this virt_dev
3595                  * may belong to another udev.
3596                  * Re-allocate the device.
3597                  */
3598                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3599                                 "not match the udev. Re-allocate the device\n",
3600                                 slot_id);
3601                 ret = xhci_alloc_dev(hcd, udev);
3602                 if (ret == 1)
3603                         return 0;
3604                 else
3605                         return -EINVAL;
3606         }
3607
3608         /* If device is not setup, there is no point in resetting it */
3609         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3610         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3611                                                 SLOT_STATE_DISABLED)
3612                 return 0;
3613
3614         trace_xhci_discover_or_reset_device(slot_ctx);
3615
3616         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3617         /* Allocate the command structure that holds the struct completion.
3618          * Assume we're in process context, since the normal device reset
3619          * process has to wait for the device anyway.  Storage devices are
3620          * reset as part of error handling, so use GFP_NOIO instead of
3621          * GFP_KERNEL.
3622          */
3623         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3624         if (!reset_device_cmd) {
3625                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3626                 return -ENOMEM;
3627         }
3628
3629         /* Attempt to submit the Reset Device command to the command ring */
3630         spin_lock_irqsave(&xhci->lock, flags);
3631
3632         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3633         if (ret) {
3634                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3635                 spin_unlock_irqrestore(&xhci->lock, flags);
3636                 goto command_cleanup;
3637         }
3638         xhci_ring_cmd_db(xhci);
3639         spin_unlock_irqrestore(&xhci->lock, flags);
3640
3641         /* Wait for the Reset Device command to finish */
3642         wait_for_completion(reset_device_cmd->completion);
3643
3644         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3645          * unless we tried to reset a slot ID that wasn't enabled,
3646          * or the device wasn't in the addressed or configured state.
3647          */
3648         ret = reset_device_cmd->status;
3649         switch (ret) {
3650         case COMP_COMMAND_ABORTED:
3651         case COMP_COMMAND_RING_STOPPED:
3652                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3653                 ret = -ETIME;
3654                 goto command_cleanup;
3655         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3656         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3657                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3658                                 slot_id,
3659                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3660                 xhci_dbg(xhci, "Not freeing device rings.\n");
3661                 /* Don't treat this as an error.  May change my mind later. */
3662                 ret = 0;
3663                 goto command_cleanup;
3664         case COMP_SUCCESS:
3665                 xhci_dbg(xhci, "Successful reset device command.\n");
3666                 break;
3667         default:
3668                 if (xhci_is_vendor_info_code(xhci, ret))
3669                         break;
3670                 xhci_warn(xhci, "Unknown completion code %u for "
3671                                 "reset device command.\n", ret);
3672                 ret = -EINVAL;
3673                 goto command_cleanup;
3674         }
3675
3676         /* Free up host controller endpoint resources */
3677         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3678                 spin_lock_irqsave(&xhci->lock, flags);
3679                 /* Don't delete the default control endpoint resources */
3680                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3681                 spin_unlock_irqrestore(&xhci->lock, flags);
3682         }
3683
3684         /* Everything but endpoint 0 is disabled, so free the rings. */
3685         for (i = 1; i < 31; i++) {
3686                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3687
3688                 if (ep->ep_state & EP_HAS_STREAMS) {
3689                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3690                                         xhci_get_endpoint_address(i));
3691                         xhci_free_stream_info(xhci, ep->stream_info);
3692                         ep->stream_info = NULL;
3693                         ep->ep_state &= ~EP_HAS_STREAMS;
3694                 }
3695
3696                 if (ep->ring) {
3697                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3698                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3699                 }
3700                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3701                         xhci_drop_ep_from_interval_table(xhci,
3702                                         &virt_dev->eps[i].bw_info,
3703                                         virt_dev->bw_table,
3704                                         udev,
3705                                         &virt_dev->eps[i],
3706                                         virt_dev->tt_info);
3707                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3708         }
3709         /* If necessary, update the number of active TTs on this root port */
3710         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3711         ret = 0;
3712
3713 command_cleanup:
3714         xhci_free_command(xhci, reset_device_cmd);
3715         return ret;
3716 }
3717
3718 /*
3719  * At this point, the struct usb_device is about to go away, the device has
3720  * disconnected, and all traffic has been stopped and the endpoints have been
3721  * disabled.  Free any HC data structures associated with that device.
3722  */
3723 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3724 {
3725         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3726         struct xhci_virt_device *virt_dev;
3727         struct xhci_slot_ctx *slot_ctx;
3728         int i, ret;
3729
3730 #ifndef CONFIG_USB_DEFAULT_PERSIST
3731         /*
3732          * We called pm_runtime_get_noresume when the device was attached.
3733          * Decrement the counter here to allow controller to runtime suspend
3734          * if no devices remain.
3735          */
3736         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3737                 pm_runtime_put_noidle(hcd->self.controller);
3738 #endif
3739
3740         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3741         /* If the host is halted due to driver unload, we still need to free the
3742          * device.
3743          */
3744         if (ret <= 0 && ret != -ENODEV)
3745                 return;
3746
3747         virt_dev = xhci->devs[udev->slot_id];
3748         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3749         trace_xhci_free_dev(slot_ctx);
3750
3751         /* Stop any wayward timer functions (which may grab the lock) */
3752         for (i = 0; i < 31; i++) {
3753                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3754                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3755         }
3756         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3757         virt_dev->udev = NULL;
3758         ret = xhci_disable_slot(xhci, udev->slot_id);
3759         if (ret)
3760                 xhci_free_virt_device(xhci, udev->slot_id);
3761 }
3762
3763 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3764 {
3765         struct xhci_command *command;
3766         unsigned long flags;
3767         u32 state;
3768         int ret = 0;
3769
3770         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3771         if (!command)
3772                 return -ENOMEM;
3773
3774         spin_lock_irqsave(&xhci->lock, flags);
3775         /* Don't disable the slot if the host controller is dead. */
3776         state = readl(&xhci->op_regs->status);
3777         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3778                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3779                 spin_unlock_irqrestore(&xhci->lock, flags);
3780                 kfree(command);
3781                 return -ENODEV;
3782         }
3783
3784         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3785                                 slot_id);
3786         if (ret) {
3787                 spin_unlock_irqrestore(&xhci->lock, flags);
3788                 kfree(command);
3789                 return ret;
3790         }
3791         xhci_ring_cmd_db(xhci);
3792         spin_unlock_irqrestore(&xhci->lock, flags);
3793         return ret;
3794 }
3795
3796 /*
3797  * Checks if we have enough host controller resources for the default control
3798  * endpoint.
3799  *
3800  * Must be called with xhci->lock held.
3801  */
3802 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3803 {
3804         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3805                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3806                                 "Not enough ep ctxs: "
3807                                 "%u active, need to add 1, limit is %u.",
3808                                 xhci->num_active_eps, xhci->limit_active_eps);
3809                 return -ENOMEM;
3810         }
3811         xhci->num_active_eps += 1;
3812         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3813                         "Adding 1 ep ctx, %u now active.",
3814                         xhci->num_active_eps);
3815         return 0;
3816 }
3817
3818
3819 /*
3820  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3821  * timed out, or allocating memory failed.  Returns 1 on success.
3822  */
3823 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3824 {
3825         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3826         struct xhci_virt_device *vdev;
3827         struct xhci_slot_ctx *slot_ctx;
3828         unsigned long flags;
3829         int ret, slot_id;
3830         struct xhci_command *command;
3831
3832         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3833         if (!command)
3834                 return 0;
3835
3836         spin_lock_irqsave(&xhci->lock, flags);
3837         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3838         if (ret) {
3839                 spin_unlock_irqrestore(&xhci->lock, flags);
3840                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3841                 xhci_free_command(xhci, command);
3842                 return 0;
3843         }
3844         xhci_ring_cmd_db(xhci);
3845         spin_unlock_irqrestore(&xhci->lock, flags);
3846
3847         wait_for_completion(command->completion);
3848         slot_id = command->slot_id;
3849
3850         if (!slot_id || command->status != COMP_SUCCESS) {
3851                 xhci_err(xhci, "Error while assigning device slot ID\n");
3852                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3853                                 HCS_MAX_SLOTS(
3854                                         readl(&xhci->cap_regs->hcs_params1)));
3855                 xhci_free_command(xhci, command);
3856                 return 0;
3857         }
3858
3859         xhci_free_command(xhci, command);
3860
3861         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3862                 spin_lock_irqsave(&xhci->lock, flags);
3863                 ret = xhci_reserve_host_control_ep_resources(xhci);
3864                 if (ret) {
3865                         spin_unlock_irqrestore(&xhci->lock, flags);
3866                         xhci_warn(xhci, "Not enough host resources, "
3867                                         "active endpoint contexts = %u\n",
3868                                         xhci->num_active_eps);
3869                         goto disable_slot;
3870                 }
3871                 spin_unlock_irqrestore(&xhci->lock, flags);
3872         }
3873         /* Use GFP_NOIO, since this function can be called from
3874          * xhci_discover_or_reset_device(), which may be called as part of
3875          * mass storage driver error handling.
3876          */
3877         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3878                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3879                 goto disable_slot;
3880         }
3881         vdev = xhci->devs[slot_id];
3882         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3883         trace_xhci_alloc_dev(slot_ctx);
3884
3885         udev->slot_id = slot_id;
3886
3887         xhci_debugfs_create_slot(xhci, slot_id);
3888
3889 #ifndef CONFIG_USB_DEFAULT_PERSIST
3890         /*
3891          * If resetting upon resume, we can't put the controller into runtime
3892          * suspend if there is a device attached.
3893          */
3894         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3895                 pm_runtime_get_noresume(hcd->self.controller);
3896 #endif
3897
3898         /* Is this a LS or FS device under a HS hub? */
3899         /* Hub or peripherial? */
3900         return 1;
3901
3902 disable_slot:
3903         ret = xhci_disable_slot(xhci, udev->slot_id);
3904         if (ret)
3905                 xhci_free_virt_device(xhci, udev->slot_id);
3906
3907         return 0;
3908 }
3909
3910 /*
3911  * Issue an Address Device command and optionally send a corresponding
3912  * SetAddress request to the device.
3913  */
3914 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3915                              enum xhci_setup_dev setup)
3916 {
3917         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3918         unsigned long flags;
3919         struct xhci_virt_device *virt_dev;
3920         int ret = 0;
3921         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3922         struct xhci_slot_ctx *slot_ctx;
3923         struct xhci_input_control_ctx *ctrl_ctx;
3924         u64 temp_64;
3925         struct xhci_command *command = NULL;
3926
3927         mutex_lock(&xhci->mutex);
3928
3929         if (xhci->xhc_state) {  /* dying, removing or halted */
3930                 ret = -ESHUTDOWN;
3931                 goto out;
3932         }
3933
3934         if (!udev->slot_id) {
3935                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3936                                 "Bad Slot ID %d", udev->slot_id);
3937                 ret = -EINVAL;
3938                 goto out;
3939         }
3940
3941         virt_dev = xhci->devs[udev->slot_id];
3942
3943         if (WARN_ON(!virt_dev)) {
3944                 /*
3945                  * In plug/unplug torture test with an NEC controller,
3946                  * a zero-dereference was observed once due to virt_dev = 0.
3947                  * Print useful debug rather than crash if it is observed again!
3948                  */
3949                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3950                         udev->slot_id);
3951                 ret = -EINVAL;
3952                 goto out;
3953         }
3954         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955         trace_xhci_setup_device_slot(slot_ctx);
3956
3957         if (setup == SETUP_CONTEXT_ONLY) {
3958                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3959                     SLOT_STATE_DEFAULT) {
3960                         xhci_dbg(xhci, "Slot already in default state\n");
3961                         goto out;
3962                 }
3963         }
3964
3965         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3966         if (!command) {
3967                 ret = -ENOMEM;
3968                 goto out;
3969         }
3970
3971         command->in_ctx = virt_dev->in_ctx;
3972
3973         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3974         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3975         if (!ctrl_ctx) {
3976                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3977                                 __func__);
3978                 ret = -EINVAL;
3979                 goto out;
3980         }
3981         /*
3982          * If this is the first Set Address since device plug-in or
3983          * virt_device realloaction after a resume with an xHCI power loss,
3984          * then set up the slot context.
3985          */
3986         if (!slot_ctx->dev_info)
3987                 xhci_setup_addressable_virt_dev(xhci, udev);
3988         /* Otherwise, update the control endpoint ring enqueue pointer. */
3989         else
3990                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3991         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3992         ctrl_ctx->drop_flags = 0;
3993
3994         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3995                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3996
3997         spin_lock_irqsave(&xhci->lock, flags);
3998         trace_xhci_setup_device(virt_dev);
3999         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4000                                         udev->slot_id, setup);
4001         if (ret) {
4002                 spin_unlock_irqrestore(&xhci->lock, flags);
4003                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4004                                 "FIXME: allocate a command ring segment");
4005                 goto out;
4006         }
4007         xhci_ring_cmd_db(xhci);
4008         spin_unlock_irqrestore(&xhci->lock, flags);
4009
4010         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4011         wait_for_completion(command->completion);
4012
4013         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4014          * the SetAddress() "recovery interval" required by USB and aborting the
4015          * command on a timeout.
4016          */
4017         switch (command->status) {
4018         case COMP_COMMAND_ABORTED:
4019         case COMP_COMMAND_RING_STOPPED:
4020                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4021                 ret = -ETIME;
4022                 break;
4023         case COMP_CONTEXT_STATE_ERROR:
4024         case COMP_SLOT_NOT_ENABLED_ERROR:
4025                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4026                          act, udev->slot_id);
4027                 ret = -EINVAL;
4028                 break;
4029         case COMP_USB_TRANSACTION_ERROR:
4030                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4031
4032                 mutex_unlock(&xhci->mutex);
4033                 ret = xhci_disable_slot(xhci, udev->slot_id);
4034                 if (!ret)
4035                         xhci_alloc_dev(hcd, udev);
4036                 kfree(command->completion);
4037                 kfree(command);
4038                 return -EPROTO;
4039         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4040                 dev_warn(&udev->dev,
4041                          "ERROR: Incompatible device for setup %s command\n", act);
4042                 ret = -ENODEV;
4043                 break;
4044         case COMP_SUCCESS:
4045                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4046                                "Successful setup %s command", act);
4047                 break;
4048         default:
4049                 xhci_err(xhci,
4050                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4051                          act, command->status);
4052                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4053                 ret = -EINVAL;
4054                 break;
4055         }
4056         if (ret)
4057                 goto out;
4058         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4059         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4060                         "Op regs DCBAA ptr = %#016llx", temp_64);
4061         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4062                 "Slot ID %d dcbaa entry @%p = %#016llx",
4063                 udev->slot_id,
4064                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4065                 (unsigned long long)
4066                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4067         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4068                         "Output Context DMA address = %#08llx",
4069                         (unsigned long long)virt_dev->out_ctx->dma);
4070         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4071                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4072         /*
4073          * USB core uses address 1 for the roothubs, so we add one to the
4074          * address given back to us by the HC.
4075          */
4076         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4077                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4078         /* Zero the input context control for later use */
4079         ctrl_ctx->add_flags = 0;
4080         ctrl_ctx->drop_flags = 0;
4081
4082         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4083                        "Internal device address = %d",
4084                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4085 out:
4086         mutex_unlock(&xhci->mutex);
4087         if (command) {
4088                 kfree(command->completion);
4089                 kfree(command);
4090         }
4091         return ret;
4092 }
4093
4094 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4095 {
4096         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4097 }
4098
4099 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4100 {
4101         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4102 }
4103
4104 /*
4105  * Transfer the port index into real index in the HW port status
4106  * registers. Caculate offset between the port's PORTSC register
4107  * and port status base. Divide the number of per port register
4108  * to get the real index. The raw port number bases 1.
4109  */
4110 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4111 {
4112         struct xhci_hub *rhub;
4113
4114         rhub = xhci_get_rhub(hcd);
4115         return rhub->ports[port1 - 1]->hw_portnum + 1;
4116 }
4117
4118 /*
4119  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4120  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4121  */
4122 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4123                         struct usb_device *udev, u16 max_exit_latency)
4124 {
4125         struct xhci_virt_device *virt_dev;
4126         struct xhci_command *command;
4127         struct xhci_input_control_ctx *ctrl_ctx;
4128         struct xhci_slot_ctx *slot_ctx;
4129         unsigned long flags;
4130         int ret;
4131
4132         spin_lock_irqsave(&xhci->lock, flags);
4133
4134         virt_dev = xhci->devs[udev->slot_id];
4135
4136         /*
4137          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4138          * xHC was re-initialized. Exit latency will be set later after
4139          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4140          */
4141
4142         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4143                 spin_unlock_irqrestore(&xhci->lock, flags);
4144                 return 0;
4145         }
4146
4147         /* Attempt to issue an Evaluate Context command to change the MEL. */
4148         command = xhci->lpm_command;
4149         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4150         if (!ctrl_ctx) {
4151                 spin_unlock_irqrestore(&xhci->lock, flags);
4152                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4153                                 __func__);
4154                 return -ENOMEM;
4155         }
4156
4157         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4158         spin_unlock_irqrestore(&xhci->lock, flags);
4159
4160         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4161         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4162         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4163         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4164         slot_ctx->dev_state = 0;
4165
4166         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4167                         "Set up evaluate context for LPM MEL change.");
4168
4169         /* Issue and wait for the evaluate context command. */
4170         ret = xhci_configure_endpoint(xhci, udev, command,
4171                         true, true);
4172
4173         if (!ret) {
4174                 spin_lock_irqsave(&xhci->lock, flags);
4175                 virt_dev->current_mel = max_exit_latency;
4176                 spin_unlock_irqrestore(&xhci->lock, flags);
4177         }
4178         return ret;
4179 }
4180
4181 #ifdef CONFIG_PM
4182
4183 /* BESL to HIRD Encoding array for USB2 LPM */
4184 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4185         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4186
4187 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4188 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4189                                         struct usb_device *udev)
4190 {
4191         int u2del, besl, besl_host;
4192         int besl_device = 0;
4193         u32 field;
4194
4195         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4196         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4197
4198         if (field & USB_BESL_SUPPORT) {
4199                 for (besl_host = 0; besl_host < 16; besl_host++) {
4200                         if (xhci_besl_encoding[besl_host] >= u2del)
4201                                 break;
4202                 }
4203                 /* Use baseline BESL value as default */
4204                 if (field & USB_BESL_BASELINE_VALID)
4205                         besl_device = USB_GET_BESL_BASELINE(field);
4206                 else if (field & USB_BESL_DEEP_VALID)
4207                         besl_device = USB_GET_BESL_DEEP(field);
4208         } else {
4209                 if (u2del <= 50)
4210                         besl_host = 0;
4211                 else
4212                         besl_host = (u2del - 51) / 75 + 1;
4213         }
4214
4215         besl = besl_host + besl_device;
4216         if (besl > 15)
4217                 besl = 15;
4218
4219         return besl;
4220 }
4221
4222 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4223 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4224 {
4225         u32 field;
4226         int l1;
4227         int besld = 0;
4228         int hirdm = 0;
4229
4230         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4231
4232         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4233         l1 = udev->l1_params.timeout / 256;
4234
4235         /* device has preferred BESLD */
4236         if (field & USB_BESL_DEEP_VALID) {
4237                 besld = USB_GET_BESL_DEEP(field);
4238                 hirdm = 1;
4239         }
4240
4241         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4242 }
4243
4244 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4245                         struct usb_device *udev, int enable)
4246 {
4247         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4248         struct xhci_port **ports;
4249         __le32 __iomem  *pm_addr, *hlpm_addr;
4250         u32             pm_val, hlpm_val, field;
4251         unsigned int    port_num;
4252         unsigned long   flags;
4253         int             hird, exit_latency;
4254         int             ret;
4255
4256         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4257                         !udev->lpm_capable)
4258                 return -EPERM;
4259
4260         if (!udev->parent || udev->parent->parent ||
4261                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4262                 return -EPERM;
4263
4264         if (udev->usb2_hw_lpm_capable != 1)
4265                 return -EPERM;
4266
4267         spin_lock_irqsave(&xhci->lock, flags);
4268
4269         ports = xhci->usb2_rhub.ports;
4270         port_num = udev->portnum - 1;
4271         pm_addr = ports[port_num]->addr + PORTPMSC;
4272         pm_val = readl(pm_addr);
4273         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4274         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4275
4276         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4277                         enable ? "enable" : "disable", port_num + 1);
4278
4279         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4280                 /* Host supports BESL timeout instead of HIRD */
4281                 if (udev->usb2_hw_lpm_besl_capable) {
4282                         /* if device doesn't have a preferred BESL value use a
4283                          * default one which works with mixed HIRD and BESL
4284                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4285                          */
4286                         if ((field & USB_BESL_SUPPORT) &&
4287                             (field & USB_BESL_BASELINE_VALID))
4288                                 hird = USB_GET_BESL_BASELINE(field);
4289                         else
4290                                 hird = udev->l1_params.besl;
4291
4292                         exit_latency = xhci_besl_encoding[hird];
4293                         spin_unlock_irqrestore(&xhci->lock, flags);
4294
4295                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4296                          * input context for link powermanagement evaluate
4297                          * context commands. It is protected by hcd->bandwidth
4298                          * mutex and is shared by all devices. We need to set
4299                          * the max ext latency in USB 2 BESL LPM as well, so
4300                          * use the same mutex and xhci_change_max_exit_latency()
4301                          */
4302                         mutex_lock(hcd->bandwidth_mutex);
4303                         ret = xhci_change_max_exit_latency(xhci, udev,
4304                                                            exit_latency);
4305                         mutex_unlock(hcd->bandwidth_mutex);
4306
4307                         if (ret < 0)
4308                                 return ret;
4309                         spin_lock_irqsave(&xhci->lock, flags);
4310
4311                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4312                         writel(hlpm_val, hlpm_addr);
4313                         /* flush write */
4314                         readl(hlpm_addr);
4315                 } else {
4316                         hird = xhci_calculate_hird_besl(xhci, udev);
4317                 }
4318
4319                 pm_val &= ~PORT_HIRD_MASK;
4320                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4321                 writel(pm_val, pm_addr);
4322                 pm_val = readl(pm_addr);
4323                 pm_val |= PORT_HLE;
4324                 writel(pm_val, pm_addr);
4325                 /* flush write */
4326                 readl(pm_addr);
4327         } else {
4328                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4329                 writel(pm_val, pm_addr);
4330                 /* flush write */
4331                 readl(pm_addr);
4332                 if (udev->usb2_hw_lpm_besl_capable) {
4333                         spin_unlock_irqrestore(&xhci->lock, flags);
4334                         mutex_lock(hcd->bandwidth_mutex);
4335                         xhci_change_max_exit_latency(xhci, udev, 0);
4336                         mutex_unlock(hcd->bandwidth_mutex);
4337                         return 0;
4338                 }
4339         }
4340
4341         spin_unlock_irqrestore(&xhci->lock, flags);
4342         return 0;
4343 }
4344
4345 /* check if a usb2 port supports a given extened capability protocol
4346  * only USB2 ports extended protocol capability values are cached.
4347  * Return 1 if capability is supported
4348  */
4349 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4350                                            unsigned capability)
4351 {
4352         u32 port_offset, port_count;
4353         int i;
4354
4355         for (i = 0; i < xhci->num_ext_caps; i++) {
4356                 if (xhci->ext_caps[i] & capability) {
4357                         /* port offsets starts at 1 */
4358                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4359                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4360                         if (port >= port_offset &&
4361                             port < port_offset + port_count)
4362                                 return 1;
4363                 }
4364         }
4365         return 0;
4366 }
4367
4368 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4369 {
4370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4371         int             portnum = udev->portnum - 1;
4372
4373         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4374                         !udev->lpm_capable)
4375                 return 0;
4376
4377         /* we only support lpm for non-hub device connected to root hub yet */
4378         if (!udev->parent || udev->parent->parent ||
4379                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4380                 return 0;
4381
4382         if (xhci->hw_lpm_support == 1 &&
4383                         xhci_check_usb2_port_capability(
4384                                 xhci, portnum, XHCI_HLC)) {
4385                 udev->usb2_hw_lpm_capable = 1;
4386                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4387                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4388                 if (xhci_check_usb2_port_capability(xhci, portnum,
4389                                         XHCI_BLC))
4390                         udev->usb2_hw_lpm_besl_capable = 1;
4391         }
4392
4393         return 0;
4394 }
4395
4396 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4397
4398 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4399 static unsigned long long xhci_service_interval_to_ns(
4400                 struct usb_endpoint_descriptor *desc)
4401 {
4402         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4403 }
4404
4405 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4406                 enum usb3_link_state state)
4407 {
4408         unsigned long long sel;
4409         unsigned long long pel;
4410         unsigned int max_sel_pel;
4411         char *state_name;
4412
4413         switch (state) {
4414         case USB3_LPM_U1:
4415                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4416                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4417                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4418                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4419                 state_name = "U1";
4420                 break;
4421         case USB3_LPM_U2:
4422                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4423                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4424                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4425                 state_name = "U2";
4426                 break;
4427         default:
4428                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4429                                 __func__);
4430                 return USB3_LPM_DISABLED;
4431         }
4432
4433         if (sel <= max_sel_pel && pel <= max_sel_pel)
4434                 return USB3_LPM_DEVICE_INITIATED;
4435
4436         if (sel > max_sel_pel)
4437                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4438                                 "due to long SEL %llu ms\n",
4439                                 state_name, sel);
4440         else
4441                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4442                                 "due to long PEL %llu ms\n",
4443                                 state_name, pel);
4444         return USB3_LPM_DISABLED;
4445 }
4446
4447 /* The U1 timeout should be the maximum of the following values:
4448  *  - For control endpoints, U1 system exit latency (SEL) * 3
4449  *  - For bulk endpoints, U1 SEL * 5
4450  *  - For interrupt endpoints:
4451  *    - Notification EPs, U1 SEL * 3
4452  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4453  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4454  */
4455 static unsigned long long xhci_calculate_intel_u1_timeout(
4456                 struct usb_device *udev,
4457                 struct usb_endpoint_descriptor *desc)
4458 {
4459         unsigned long long timeout_ns;
4460         int ep_type;
4461         int intr_type;
4462
4463         ep_type = usb_endpoint_type(desc);
4464         switch (ep_type) {
4465         case USB_ENDPOINT_XFER_CONTROL:
4466                 timeout_ns = udev->u1_params.sel * 3;
4467                 break;
4468         case USB_ENDPOINT_XFER_BULK:
4469                 timeout_ns = udev->u1_params.sel * 5;
4470                 break;
4471         case USB_ENDPOINT_XFER_INT:
4472                 intr_type = usb_endpoint_interrupt_type(desc);
4473                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4474                         timeout_ns = udev->u1_params.sel * 3;
4475                         break;
4476                 }
4477                 /* Otherwise the calculation is the same as isoc eps */
4478                 /* fall through */
4479         case USB_ENDPOINT_XFER_ISOC:
4480                 timeout_ns = xhci_service_interval_to_ns(desc);
4481                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4482                 if (timeout_ns < udev->u1_params.sel * 2)
4483                         timeout_ns = udev->u1_params.sel * 2;
4484                 break;
4485         default:
4486                 return 0;
4487         }
4488
4489         return timeout_ns;
4490 }
4491
4492 /* Returns the hub-encoded U1 timeout value. */
4493 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4494                 struct usb_device *udev,
4495                 struct usb_endpoint_descriptor *desc)
4496 {
4497         unsigned long long timeout_ns;
4498
4499         if (xhci->quirks & XHCI_INTEL_HOST)
4500                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4501         else
4502                 timeout_ns = udev->u1_params.sel;
4503
4504         /* The U1 timeout is encoded in 1us intervals.
4505          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4506          */
4507         if (timeout_ns == USB3_LPM_DISABLED)
4508                 timeout_ns = 1;
4509         else
4510                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4511
4512         /* If the necessary timeout value is bigger than what we can set in the
4513          * USB 3.0 hub, we have to disable hub-initiated U1.
4514          */
4515         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4516                 return timeout_ns;
4517         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4518                         "due to long timeout %llu ms\n", timeout_ns);
4519         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4520 }
4521
4522 /* The U2 timeout should be the maximum of:
4523  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4524  *  - largest bInterval of any active periodic endpoint (to avoid going
4525  *    into lower power link states between intervals).
4526  *  - the U2 Exit Latency of the device
4527  */
4528 static unsigned long long xhci_calculate_intel_u2_timeout(
4529                 struct usb_device *udev,
4530                 struct usb_endpoint_descriptor *desc)
4531 {
4532         unsigned long long timeout_ns;
4533         unsigned long long u2_del_ns;
4534
4535         timeout_ns = 10 * 1000 * 1000;
4536
4537         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4538                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4539                 timeout_ns = xhci_service_interval_to_ns(desc);
4540
4541         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4542         if (u2_del_ns > timeout_ns)
4543                 timeout_ns = u2_del_ns;
4544
4545         return timeout_ns;
4546 }
4547
4548 /* Returns the hub-encoded U2 timeout value. */
4549 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4550                 struct usb_device *udev,
4551                 struct usb_endpoint_descriptor *desc)
4552 {
4553         unsigned long long timeout_ns;
4554
4555         if (xhci->quirks & XHCI_INTEL_HOST)
4556                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4557         else
4558                 timeout_ns = udev->u2_params.sel;
4559
4560         /* The U2 timeout is encoded in 256us intervals */
4561         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4562         /* If the necessary timeout value is bigger than what we can set in the
4563          * USB 3.0 hub, we have to disable hub-initiated U2.
4564          */
4565         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4566                 return timeout_ns;
4567         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4568                         "due to long timeout %llu ms\n", timeout_ns);
4569         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4570 }
4571
4572 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4573                 struct usb_device *udev,
4574                 struct usb_endpoint_descriptor *desc,
4575                 enum usb3_link_state state,
4576                 u16 *timeout)
4577 {
4578         if (state == USB3_LPM_U1)
4579                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4580         else if (state == USB3_LPM_U2)
4581                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4582
4583         return USB3_LPM_DISABLED;
4584 }
4585
4586 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4587                 struct usb_device *udev,
4588                 struct usb_endpoint_descriptor *desc,
4589                 enum usb3_link_state state,
4590                 u16 *timeout)
4591 {
4592         u16 alt_timeout;
4593
4594         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4595                 desc, state, timeout);
4596
4597         /* If we found we can't enable hub-initiated LPM, or
4598          * the U1 or U2 exit latency was too high to allow
4599          * device-initiated LPM as well, just stop searching.
4600          */
4601         if (alt_timeout == USB3_LPM_DISABLED ||
4602                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4603                 *timeout = alt_timeout;
4604                 return -E2BIG;
4605         }
4606         if (alt_timeout > *timeout)
4607                 *timeout = alt_timeout;
4608         return 0;
4609 }
4610
4611 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4612                 struct usb_device *udev,
4613                 struct usb_host_interface *alt,
4614                 enum usb3_link_state state,
4615                 u16 *timeout)
4616 {
4617         int j;
4618
4619         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4620                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4621                                         &alt->endpoint[j].desc, state, timeout))
4622                         return -E2BIG;
4623                 continue;
4624         }
4625         return 0;
4626 }
4627
4628 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4629                 enum usb3_link_state state)
4630 {
4631         struct usb_device *parent;
4632         unsigned int num_hubs;
4633
4634         if (state == USB3_LPM_U2)
4635                 return 0;
4636
4637         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4638         for (parent = udev->parent, num_hubs = 0; parent->parent;
4639                         parent = parent->parent)
4640                 num_hubs++;
4641
4642         if (num_hubs < 2)
4643                 return 0;
4644
4645         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4646                         " below second-tier hub.\n");
4647         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4648                         "to decrease power consumption.\n");
4649         return -E2BIG;
4650 }
4651
4652 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4653                 struct usb_device *udev,
4654                 enum usb3_link_state state)
4655 {
4656         if (xhci->quirks & XHCI_INTEL_HOST)
4657                 return xhci_check_intel_tier_policy(udev, state);
4658         else
4659                 return 0;
4660 }
4661
4662 /* Returns the U1 or U2 timeout that should be enabled.
4663  * If the tier check or timeout setting functions return with a non-zero exit
4664  * code, that means the timeout value has been finalized and we shouldn't look
4665  * at any more endpoints.
4666  */
4667 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4668                         struct usb_device *udev, enum usb3_link_state state)
4669 {
4670         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4671         struct usb_host_config *config;
4672         char *state_name;
4673         int i;
4674         u16 timeout = USB3_LPM_DISABLED;
4675
4676         if (state == USB3_LPM_U1)
4677                 state_name = "U1";
4678         else if (state == USB3_LPM_U2)
4679                 state_name = "U2";
4680         else {
4681                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4682                                 state);
4683                 return timeout;
4684         }
4685
4686         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4687                 return timeout;
4688
4689         /* Gather some information about the currently installed configuration
4690          * and alternate interface settings.
4691          */
4692         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4693                         state, &timeout))
4694                 return timeout;
4695
4696         config = udev->actconfig;
4697         if (!config)
4698                 return timeout;
4699
4700         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4701                 struct usb_driver *driver;
4702                 struct usb_interface *intf = config->interface[i];
4703
4704                 if (!intf)
4705                         continue;
4706
4707                 /* Check if any currently bound drivers want hub-initiated LPM
4708                  * disabled.
4709                  */
4710                 if (intf->dev.driver) {
4711                         driver = to_usb_driver(intf->dev.driver);
4712                         if (driver && driver->disable_hub_initiated_lpm) {
4713                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4714                                                 "at request of driver %s\n",
4715                                                 state_name, driver->name);
4716                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4717                         }
4718                 }
4719
4720                 /* Not sure how this could happen... */
4721                 if (!intf->cur_altsetting)
4722                         continue;
4723
4724                 if (xhci_update_timeout_for_interface(xhci, udev,
4725                                         intf->cur_altsetting,
4726                                         state, &timeout))
4727                         return timeout;
4728         }
4729         return timeout;
4730 }
4731
4732 static int calculate_max_exit_latency(struct usb_device *udev,
4733                 enum usb3_link_state state_changed,
4734                 u16 hub_encoded_timeout)
4735 {
4736         unsigned long long u1_mel_us = 0;
4737         unsigned long long u2_mel_us = 0;
4738         unsigned long long mel_us = 0;
4739         bool disabling_u1;
4740         bool disabling_u2;
4741         bool enabling_u1;
4742         bool enabling_u2;
4743
4744         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4745                         hub_encoded_timeout == USB3_LPM_DISABLED);
4746         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4747                         hub_encoded_timeout == USB3_LPM_DISABLED);
4748
4749         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4750                         hub_encoded_timeout != USB3_LPM_DISABLED);
4751         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4752                         hub_encoded_timeout != USB3_LPM_DISABLED);
4753
4754         /* If U1 was already enabled and we're not disabling it,
4755          * or we're going to enable U1, account for the U1 max exit latency.
4756          */
4757         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4758                         enabling_u1)
4759                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4760         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4761                         enabling_u2)
4762                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4763
4764         if (u1_mel_us > u2_mel_us)
4765                 mel_us = u1_mel_us;
4766         else
4767                 mel_us = u2_mel_us;
4768         /* xHCI host controller max exit latency field is only 16 bits wide. */
4769         if (mel_us > MAX_EXIT) {
4770                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4771                                 "is too big.\n", mel_us);
4772                 return -E2BIG;
4773         }
4774         return mel_us;
4775 }
4776
4777 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4778 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4779                         struct usb_device *udev, enum usb3_link_state state)
4780 {
4781         struct xhci_hcd *xhci;
4782         u16 hub_encoded_timeout;
4783         int mel;
4784         int ret;
4785
4786         xhci = hcd_to_xhci(hcd);
4787         /* The LPM timeout values are pretty host-controller specific, so don't
4788          * enable hub-initiated timeouts unless the vendor has provided
4789          * information about their timeout algorithm.
4790          */
4791         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4792                         !xhci->devs[udev->slot_id])
4793                 return USB3_LPM_DISABLED;
4794
4795         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4796         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4797         if (mel < 0) {
4798                 /* Max Exit Latency is too big, disable LPM. */
4799                 hub_encoded_timeout = USB3_LPM_DISABLED;
4800                 mel = 0;
4801         }
4802
4803         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4804         if (ret)
4805                 return ret;
4806         return hub_encoded_timeout;
4807 }
4808
4809 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4810                         struct usb_device *udev, enum usb3_link_state state)
4811 {
4812         struct xhci_hcd *xhci;
4813         u16 mel;
4814
4815         xhci = hcd_to_xhci(hcd);
4816         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4817                         !xhci->devs[udev->slot_id])
4818                 return 0;
4819
4820         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4821         return xhci_change_max_exit_latency(xhci, udev, mel);
4822 }
4823 #else /* CONFIG_PM */
4824
4825 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4826                                 struct usb_device *udev, int enable)
4827 {
4828         return 0;
4829 }
4830
4831 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4832 {
4833         return 0;
4834 }
4835
4836 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4837                         struct usb_device *udev, enum usb3_link_state state)
4838 {
4839         return USB3_LPM_DISABLED;
4840 }
4841
4842 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4843                         struct usb_device *udev, enum usb3_link_state state)
4844 {
4845         return 0;
4846 }
4847 #endif  /* CONFIG_PM */
4848
4849 /*-------------------------------------------------------------------------*/
4850
4851 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4852  * internal data structures for the device.
4853  */
4854 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4855                         struct usb_tt *tt, gfp_t mem_flags)
4856 {
4857         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4858         struct xhci_virt_device *vdev;
4859         struct xhci_command *config_cmd;
4860         struct xhci_input_control_ctx *ctrl_ctx;
4861         struct xhci_slot_ctx *slot_ctx;
4862         unsigned long flags;
4863         unsigned think_time;
4864         int ret;
4865
4866         /* Ignore root hubs */
4867         if (!hdev->parent)
4868                 return 0;
4869
4870         vdev = xhci->devs[hdev->slot_id];
4871         if (!vdev) {
4872                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4873                 return -EINVAL;
4874         }
4875
4876         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4877         if (!config_cmd)
4878                 return -ENOMEM;
4879
4880         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4881         if (!ctrl_ctx) {
4882                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4883                                 __func__);
4884                 xhci_free_command(xhci, config_cmd);
4885                 return -ENOMEM;
4886         }
4887
4888         spin_lock_irqsave(&xhci->lock, flags);
4889         if (hdev->speed == USB_SPEED_HIGH &&
4890                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4891                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4892                 xhci_free_command(xhci, config_cmd);
4893                 spin_unlock_irqrestore(&xhci->lock, flags);
4894                 return -ENOMEM;
4895         }
4896
4897         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4898         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4899         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4900         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4901         /*
4902          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4903          * but it may be already set to 1 when setup an xHCI virtual
4904          * device, so clear it anyway.
4905          */
4906         if (tt->multi)
4907                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4908         else if (hdev->speed == USB_SPEED_FULL)
4909                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4910
4911         if (xhci->hci_version > 0x95) {
4912                 xhci_dbg(xhci, "xHCI version %x needs hub "
4913                                 "TT think time and number of ports\n",
4914                                 (unsigned int) xhci->hci_version);
4915                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4916                 /* Set TT think time - convert from ns to FS bit times.
4917                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4918                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4919                  *
4920                  * xHCI 1.0: this field shall be 0 if the device is not a
4921                  * High-spped hub.
4922                  */
4923                 think_time = tt->think_time;
4924                 if (think_time != 0)
4925                         think_time = (think_time / 666) - 1;
4926                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4927                         slot_ctx->tt_info |=
4928                                 cpu_to_le32(TT_THINK_TIME(think_time));
4929         } else {
4930                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4931                                 "TT think time or number of ports\n",
4932                                 (unsigned int) xhci->hci_version);
4933         }
4934         slot_ctx->dev_state = 0;
4935         spin_unlock_irqrestore(&xhci->lock, flags);
4936
4937         xhci_dbg(xhci, "Set up %s for hub device.\n",
4938                         (xhci->hci_version > 0x95) ?
4939                         "configure endpoint" : "evaluate context");
4940
4941         /* Issue and wait for the configure endpoint or
4942          * evaluate context command.
4943          */
4944         if (xhci->hci_version > 0x95)
4945                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4946                                 false, false);
4947         else
4948                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4949                                 true, false);
4950
4951         xhci_free_command(xhci, config_cmd);
4952         return ret;
4953 }
4954
4955 static int xhci_get_frame(struct usb_hcd *hcd)
4956 {
4957         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4958         /* EHCI mods by the periodic size.  Why? */
4959         return readl(&xhci->run_regs->microframe_index) >> 3;
4960 }
4961
4962 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4963 {
4964         struct xhci_hcd         *xhci;
4965         /*
4966          * TODO: Check with DWC3 clients for sysdev according to
4967          * quirks
4968          */
4969         struct device           *dev = hcd->self.sysdev;
4970         unsigned int            minor_rev;
4971         int                     retval;
4972
4973         /* Accept arbitrarily long scatter-gather lists */
4974         hcd->self.sg_tablesize = ~0;
4975
4976         /* support to build packet from discontinuous buffers */
4977         hcd->self.no_sg_constraint = 1;
4978
4979         /* XHCI controllers don't stop the ep queue on short packets :| */
4980         hcd->self.no_stop_on_short = 1;
4981
4982         xhci = hcd_to_xhci(hcd);
4983
4984         if (usb_hcd_is_primary_hcd(hcd)) {
4985                 xhci->main_hcd = hcd;
4986                 xhci->usb2_rhub.hcd = hcd;
4987                 /* Mark the first roothub as being USB 2.0.
4988                  * The xHCI driver will register the USB 3.0 roothub.
4989                  */
4990                 hcd->speed = HCD_USB2;
4991                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4992                 /*
4993                  * USB 2.0 roothub under xHCI has an integrated TT,
4994                  * (rate matching hub) as opposed to having an OHCI/UHCI
4995                  * companion controller.
4996                  */
4997                 hcd->has_tt = 1;
4998         } else {
4999                 /*
5000                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5001                  * minor revision instead of sbrn
5002                  */
5003                 minor_rev = xhci->usb3_rhub.min_rev;
5004                 if (minor_rev) {
5005                         hcd->speed = HCD_USB31;
5006                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5007                 }
5008                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5009                           minor_rev,
5010                           minor_rev ? "Enhanced" : "");
5011
5012                 xhci->usb3_rhub.hcd = hcd;
5013                 /* xHCI private pointer was set in xhci_pci_probe for the second
5014                  * registered roothub.
5015                  */
5016                 return 0;
5017         }
5018
5019         mutex_init(&xhci->mutex);
5020         xhci->cap_regs = hcd->regs;
5021         xhci->op_regs = hcd->regs +
5022                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5023         xhci->run_regs = hcd->regs +
5024                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5025         /* Cache read-only capability registers */
5026         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5027         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5028         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5029         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5030         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5031         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5032         if (xhci->hci_version > 0x100)
5033                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5034
5035         xhci->quirks |= quirks;
5036
5037         get_quirks(dev, xhci);
5038
5039         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5040          * success event after a short transfer. This quirk will ignore such
5041          * spurious event.
5042          */
5043         if (xhci->hci_version > 0x96)
5044                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5045
5046         /* Make sure the HC is halted. */
5047         retval = xhci_halt(xhci);
5048         if (retval)
5049                 return retval;
5050
5051         xhci_zero_64b_regs(xhci);
5052
5053         xhci_dbg(xhci, "Resetting HCD\n");
5054         /* Reset the internal HC memory state and registers. */
5055         retval = xhci_reset(xhci);
5056         if (retval)
5057                 return retval;
5058         xhci_dbg(xhci, "Reset complete\n");
5059
5060         /*
5061          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5062          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5063          * address memory pointers actually. So, this driver clears the AC64
5064          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5065          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5066          */
5067         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5068                 xhci->hcc_params &= ~BIT(0);
5069
5070         /* Set dma_mask and coherent_dma_mask to 64-bits,
5071          * if xHC supports 64-bit addressing */
5072         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5073                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5074                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5075                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5076         } else {
5077                 /*
5078                  * This is to avoid error in cases where a 32-bit USB
5079                  * controller is used on a 64-bit capable system.
5080                  */
5081                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5082                 if (retval)
5083                         return retval;
5084                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5085                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5086         }
5087
5088         xhci_dbg(xhci, "Calling HCD init\n");
5089         /* Initialize HCD and host controller data structures. */
5090         retval = xhci_init(hcd);
5091         if (retval)
5092                 return retval;
5093         xhci_dbg(xhci, "Called HCD init\n");
5094
5095         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5096                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5097
5098         return 0;
5099 }
5100 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5101
5102 static const struct hc_driver xhci_hc_driver = {
5103         .description =          "xhci-hcd",
5104         .product_desc =         "xHCI Host Controller",
5105         .hcd_priv_size =        sizeof(struct xhci_hcd),
5106
5107         /*
5108          * generic hardware linkage
5109          */
5110         .irq =                  xhci_irq,
5111         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5112
5113         /*
5114          * basic lifecycle operations
5115          */
5116         .reset =                NULL, /* set in xhci_init_driver() */
5117         .start =                xhci_run,
5118         .stop =                 xhci_stop,
5119         .shutdown =             xhci_shutdown,
5120
5121         /*
5122          * managing i/o requests and associated device resources
5123          */
5124         .urb_enqueue =          xhci_urb_enqueue,
5125         .urb_dequeue =          xhci_urb_dequeue,
5126         .alloc_dev =            xhci_alloc_dev,
5127         .free_dev =             xhci_free_dev,
5128         .alloc_streams =        xhci_alloc_streams,
5129         .free_streams =         xhci_free_streams,
5130         .add_endpoint =         xhci_add_endpoint,
5131         .drop_endpoint =        xhci_drop_endpoint,
5132         .endpoint_reset =       xhci_endpoint_reset,
5133         .check_bandwidth =      xhci_check_bandwidth,
5134         .reset_bandwidth =      xhci_reset_bandwidth,
5135         .address_device =       xhci_address_device,
5136         .enable_device =        xhci_enable_device,
5137         .update_hub_device =    xhci_update_hub_device,
5138         .reset_device =         xhci_discover_or_reset_device,
5139
5140         /*
5141          * scheduling support
5142          */
5143         .get_frame_number =     xhci_get_frame,
5144
5145         /*
5146          * root hub support
5147          */
5148         .hub_control =          xhci_hub_control,
5149         .hub_status_data =      xhci_hub_status_data,
5150         .bus_suspend =          xhci_bus_suspend,
5151         .bus_resume =           xhci_bus_resume,
5152         .get_resuming_ports =   xhci_get_resuming_ports,
5153
5154         /*
5155          * call back when device connected and addressed
5156          */
5157         .update_device =        xhci_update_device,
5158         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5159         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5160         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5161         .find_raw_port_number = xhci_find_raw_port_number,
5162 };
5163
5164 void xhci_init_driver(struct hc_driver *drv,
5165                       const struct xhci_driver_overrides *over)
5166 {
5167         BUG_ON(!over);
5168
5169         /* Copy the generic table to drv then apply the overrides */
5170         *drv = xhci_hc_driver;
5171
5172         if (over) {
5173                 drv->hcd_priv_size += over->extra_priv_size;
5174                 if (over->reset)
5175                         drv->reset = over->reset;
5176                 if (over->start)
5177                         drv->start = over->start;
5178         }
5179 }
5180 EXPORT_SYMBOL_GPL(xhci_init_driver);
5181
5182 MODULE_DESCRIPTION(DRIVER_DESC);
5183 MODULE_AUTHOR(DRIVER_AUTHOR);
5184 MODULE_LICENSE("GPL");
5185
5186 static int __init xhci_hcd_init(void)
5187 {
5188         /*
5189          * Check the compiler generated sizes of structures that must be laid
5190          * out in specific ways for hardware access.
5191          */
5192         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5193         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5194         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5195         /* xhci_device_control has eight fields, and also
5196          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5197          */
5198         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5199         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5200         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5201         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5202         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5203         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5204         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5205
5206         if (usb_disabled())
5207                 return -ENODEV;
5208
5209         xhci_debugfs_create_root();
5210
5211         return 0;
5212 }
5213
5214 /*
5215  * If an init function is provided, an exit function must also be provided
5216  * to allow module unload.
5217  */
5218 static void __exit xhci_hcd_fini(void)
5219 {
5220         xhci_debugfs_remove_root();
5221 }
5222
5223 module_init(xhci_hcd_init);
5224 module_exit(xhci_hcd_fini);